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Summary

According to the World Health Organization, Cardio-Vascular Diseases (CVDs)
are the worldwide’ leading cause of death. Although not even remotely accounting
for the same amount of deaths, a particularly pernicious condition associated with
the most common CVDs is Sudden Cardiac Arrest (SCA). SCA is a deadly condition
in which the heart unexpectedly stops beating in a functional manner, thus effec-
tively stopping the patient’s blood flow. When this happens the patient can only
survive if the blood’s flow is promptly restored by restarting the heart’s activity, e.g.
with defibrillation; or by artificially forcing the flow, e.g. with Cardio-Pulmonary
Resuscitation (CPR). What makes especially deadly SCA, besides requiring imme-
diate action, is that the underlying causes can remain silent until the fatal event.
Nowadays, the only effective weapons to fight SCA are preventive screenings, and
a readily available Automated External Defibrillators (AED). An AED is a defib-
rillator that automates most of the defibrillation process, including formulating a
diagnosis on the patient; thus it can be used by layman after a basic training.

Thanks to the continuous advancements in technology, smart and wearable de-
vices are rapidly gaining a place in every home; and with the current trend of
integrating more and more sensors, such devices offer an interesting prospective
in the healthcare field. As a matter of fact, devices capable of acquiring various
vital parameters such as the Electrocardiogram (ECG) or the photoplethysmogram
(PPG) are already a reality, albeit still not so common. Being able to frequently
monitor the heart’s condition by means of such parameters could open new scenar-
ios in the fight to CVDs. Besides offering an effective and practical way on spotting
early signs of CVDs, or monitoring an existing condition; these devices leave open
some interrogatives on the huge amount of data they produce and the elaboration it
will require. In fact, finding a reliable algorithm capable of recognizing arrhythmia
is still an open problem.

Born from the joint collaboration of Università degli studi di Toirino, Politecnico
di Torino, and Elpro SRL; this doctorate dissertation aims to tackle the above-
mentioned problems to provide a contribution towards a better understanding, and
perhaps a small step in finding some solutions.

After a brief introduction on the challenges and aspects related to AEDs and
ECG in general on Chapter 1, a novel series of wearable devices is presented on
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Chapter 2. What follows then is an attempt on generalizing heart rhythm recogni-
tion with the use of neural networks on Chapter 3. Finally, Chapter 4 and Chapter
5 deal specifically with the SCA problem respectively in terms of defining a better
algorithm for shockable rhythm recognition and develop a consumer-grade fully-
fledged AED that implements the aforementioned algorithm.
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Chapter 1

An overview on
Electrocardiography, Sudden
Cardiac Arrest, and defibrillators

Sudden Cardiac Arrest (SCA) is a condition in which the heart suddenly and
unexpectedly stops beating in a functional manner, thus effectively stopping the
blood flow. During such an event the patient only has a chance of survival if the
blood flow is restored as soon as possible by: restarting the heart’s activity, e.g.
via defibrillation; or by artificially forcing the flow, e.g. with cardio pulmonary
resuscitation (CPR). Delays in restoring the blood flow can be fatal, and even in
the best case scenario the patient risks a series of complications due to hypoxia[1].

Despite SCA is usually the result of other cardiac diseases, it is still extremely
difficult to prevent because the causes are usually asymptomatic until the fatal
event. It is, in fact, fairly common to occur in young adults with no previous
history of heart diseases, and even athletes [2, 3, 4]. Indeed, it is now common
practice -or even required by law in some countries (e.g. Italy)- for amateurs and
professional athletes to do annual cardiac screenings to possibly avoid or reduce
chances of SCA.

Typically, a routine check on the heart involves analyzing measurements taken
with Electrocardiography, and in some cases Echocardiography. In Electrocardio-
graphy, two or more (up to ten) electrodes are placed in specific part of the body
to register the difference in potential caused by the heart’s activation. Plotting the
registered voltage versus time gives the electrocardiogram (ECG), which contains
detailed information about the heart’s activity, and thus it’s possible to assert its
status. In Echocardiography, instead, ultrasounds are used to create a live image of
the heart and its surrounding. The resulting video can be used to assert anomalies
in the heart structure or in its movement. Unlike ECG, Echocardiography can give
morphological information about the heart, but ECG can give precise timing data.
However, Echocardiography is expensive and difficult to perform limiting its use
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An overview on Electrocardiography, Sudden Cardiac Arrest, and defibrillators

only in cases where there is already a suspect of a heart condition. ECG, on the
contrary, it’s relatively easy to perform, it’s also faster, cheaper, and it require less
sophisticated hardware that can be integrated in mobile or even wearable devices,
allowing therefore a mean of monitoring the heart status during everyday activities.

As a matter of fact, during the last few years there has been a growing trend
on the market of low-cost devices capable of acquiring ECG targeted at ordinary
(non-physician) people. Even some popular smart-watches, like the Apple Watch
(Figure 1.1a)[5], are now integrating a built-in two-leads ECG. The capillary dif-
fusion of ECG capable devices can eventually lead to a better and more timely
diagnosis of heart diseases, and hopefully to the reduction of SCA deaths as a con-
sequence. However, there is still an open problem regarding the interpretation of
this kind of data in the huge amount that is produced. It would be unrealistic
to think that every ECG acquisition would be investigated by a cardiologist. On
the other hand, a fully automated system would require a non-negligible degree of
complexity that not even big companies like Apple are ready to provide. In fact,
despite being able not only to register ECG, but also recognizing atrial fibrillation,
the Apple Watch is not certified as a medical device and it cannot provide diag-
nosis[6]. It can only warn the user that its heart-beat might contain anomalies,
and thus they should contact a cardiologist. Basically, in this hybrid approach the
smart-device detects anomalies and then the cardiologist formulates a diagnosis.
Therefore, those devices are not aimed at becoming a sort of substitution to the
cardiologist, but a reliable companion capable of spotting early signs of certain dis-
eases that would have remained undiscovered otherwise. Given how early-stage is
the adoption of such technology in consumer devices, there is still a huge margin of
improvement. For instance: most devices are only capable of recording two-leads
ECG, whilst only a handful can record six-leads ECG (Figure 1.1b)[7]. Further-
more, most of them are only capable of asserting atrial fibrillation, ignoring any
other form of rhythm anomaly that might be recognized in ECGs. In particular,
automated rhythm recognition is what makes this kind of devices so interesting and
practical in detecting heart diseases.

2



1.1 – Electrocardiography

(a) Apple Watch. (b) AliveCore KardiaMobile 6L.

Figure 1.1: Example of consumer products with ECG recording capabilities.

Albeit the main topic of this thesis is an algorithm capable of recognizing SCA, it
is undeniable the impact that ECG capable wearable devices could have on spotting
early signs of heart diseases, which ultimately can lead on prevention of SCA. Since
the two arguments are closely related we decided that would be of great interest
to include in this study the design of an ECG wrist-watch united with a neural
algorithm capable of recognizing different kinds of arrhythmia starting from a single
lead ECG signal. These topics will be treated on Chapters 2 and 3 respectively.
The SCA algorithm, instead, is presented on Chapter 4, while the defibrillator on
which the algorithm is implemented is treated on 5. However, there are a few
recurring concepts to address before ending this brief introduction, which are: the
Electrocardiogram signal, the Sudden Cardiac Arrest, and finally defibrillators.

1.1 Electrocardiography
In a formal definition, Electrocardiography is the procedure in which the heart’s

electrical activity is recorded in the form of an electrocardiogram (ECG or also
known as EKG) using electrodes placed on the patient’s skin. Each contraction of
the heart follows a fairly precise pattern of depolarization and re-polarization of
the cells through the conduction of a pulse known as action potential. This pattern
originates from the pacemaker cells in the sinoatrial node, which are the responsible
for every heartbeat’s origin. The pulse moves from the sinoatrial node through the
atria to the atrioventricular node. After which it continues through the bundle of
his where it separates in the left and right bundle branches, which are respectively
responsible of the left and right ventricle activation. Finally, the pulse ends in
the Purkinje fibers, which are the branches terminations. The action potential
movement through this intricate net of conducting fibers (shown in Figure 1.2a)
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produces a difference in potential that can be sensed through electrodes placed on
the skin. The electrocardiogram is the plot of such differences of potential versus
the time.

(a) Diagram of the human heart[8].
(b) Conduction system of the human
heart[9].

Figure 1.2: The human heart and its pulse conduction system.

Depending on where on the patient the electrodes are placed the ECG has
different characteristic waveforms that can be interpreted by cardiologists. The
signal produced by the difference between different electrodes is called lead (or
rarely derivation), and the number of leads is usually different by the number of
electrodes. The simplest configuration for an ECG is the single lead ECG, in which
the plot only consists of the potential difference between two electrodes. However,
the most common analysis use 10 electrodes for a twelve leads ECG, or 4 electrodes
which produce six leads ECG. Single lead ECG are commonly taken from limb to
limb, usually from the arms, because it’s the most comfortable way of acquiring it
without having to take off clothes. Six leads ECG are instead taken placing the
electrodes on all the limbs. However, one of the electrodes (the right leg one) is used
as a common reference in order to reduce the noise, and therefore is not producing
a signal. The leads are then derived according to the Einthoven’s triangle[10, 11],
with the help of a virtual ground known as Wilson’s central terminal (produced
by the average of the limbs signals), as shown in Figure 1.3a. Adding six more
electrodes to the chest of the patient according to Figure 1.3b, it is possible to
derive twelve leads ECG[12].
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1.1 – Electrocardiography

(a) Einthoven’s triangle, and the six result-
ing leads[13]. (b) Precordial electrodes placement[14].

Figure 1.3: ECG electrodes placement.

Each lead highlights different aspects of the heartbeat, and thus they all have a
different interpretation. However, even a single lead signal can be enough to extract
a vast amount of information about the heart’s condition. For instance, Figure 1.4
shows a single heartbeat as seen in lead I. In this image there are highlighted the
various waves that compose a single heartbeat. In particular, it is fairly trivial to
divide it in three different entities, each related to distinct phases of the heart’s
activation [15, 12].

• The P wave, which represents atrial depolarization. In this phase, the ac-
tion potential spreads from the sinoatrial node to the atrioventricular node
contracting the atria.

• The QRS complex, which represents the rapid depolarization of the ven-
tricles. During this phase the action potential diffuses through the bundle
branches contracting from top to bottom both ventricles.

• The T wave represents ventricular re-polarization after the contraction. At
the end of this final phase the ventricles can be stimulated again.

Alterations on length or shape of these macro-elements are usually correlated to
some functional alteration of the heart.
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Figure 1.4: ECG of a single heartbeat[16].

1.2 Suddeen Cardiac Arrest
Sudden Cardiac Arrest (SCA) is a condition in which the heart suddenly and

unexpectedly stops beating in an functional manner, thus effectively stopping the
blood flow. Under this critical condition the patient will die in the course of just
a few minutes as their organs deplete all available oxygen contained in the blood.
Albeit cerebral neurons in normal conditions can resist up to 20 minutes in a low
oxygen environment, cerebral recovery from more than 5 minutes of cardiac arrest
is hampered by complex secondary derangement of multiple organ systems after
re-perfusion [17] (effect known as post-resuscitation syndrome). Therefore, it is
imperative not only for the patient’s survival, but also for their well-being, that
the blood flow is restored as soon as possible by either restoring the heart’s normal
functioning, or forcing it externally [1].

Causes and mechanisms

There are various causes that can lead to SCA, of both cardiac and non-cardiac
nature. It is out of the scope of this brief introduction to treat them all in detail.
However, there is a common element among the causes and it’s the alteration of
the electrical activity and/or response of the heart tissue. This usually manifests
with a variation of the preferential path for the action potential’s conduction (see
Figure 1.2b), or the cellular response at its passage. This critical alteration results
in loss of synchrony between the heart’s cells, which then start to produce ineffective
contractions thus stopping the blood’s flow.

SCA can manifest in different rhythm alterations. However, the most common
and characteristic are Ventricular Tachycardia (VT) and Ventricular Fibrillation
(VF).
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1.2 – Suddeen Cardiac Arrest

Ventricular Tachycardia (VT) is a rhythm alteration in which the ventricles,
regardless of the atria, contracts multiple times in rapid succession, usually with a
rather high frequency (above 100bpm, up to 250bpm) [18, 19]. Depending on the
gravity of the causes this condition can last a few seconds, not causing a serious risk
for the patient; or persist for more drastically reducing the cardiac output, with
the additional risk of degenerating into VF.

VT is usually caused when the cardiac pulse is not generated in the sinoatrial
node, but instead in other stimulated ventricular cell. Another mechanism that
can cause VT is the presence of non-conductive scar tissue on the heart which may
cause the formation of a re-entrance circuit. Therefore, once the pulse is gener-
ated, it starts circulating around the heart causing spontaneous and uncontrolled
contractions.

Depending on its duration or morphology VT has different classifications. When
three or more premature ventricular contractions happen within a maximum du-
ration of 30 seconds, the VT is classified as Non-sustained [20], otherwise if the
events extends to more than 30 seconds of duration it’s a case of Sustained VT
[21]. Depending on the ECG shape it is also possible to define: Monomorphic VT
[22] (or mono-phasic) when all ventricular beats have the same shape, Biphasic VT
when the QRS complexes alternates from beat to beat, or Poly-phasic VT [23] in
the case where all ventricular beats are different from each other.

Figure 1.5: ECG of a Ventricular Tachycardia. Acquired using the AED proposed
in Chapter 5 and a patient simulator. The ECG is plotted with 2mm/mV and
5mm/sec settings.

Ventricular Fibrillation (VF) is a rhythm dominated by an uncoordinated
and chaotic electrical activity of the heart. During VF the ventricles are quivering,
contracting in a completely ineffective manner[24, 25]. VF is a deadly condition
which has to be treated as soon as possible to avoid death. There are multiple causes
for VF occurrence, but the most common is the result of the damage provoked by
cardiac disease. It is extremely common as a result of an underlying ischemic
heart disease. Other causes can be related to: drugs, and drugs overdose, extreme
electro-chemical imbalances (especially hyperkalemia or hypokalemia), damages on
the tissues, etc.
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Figure 1.6: ECG of a Ventricular Fibrillation. Acquired using the AED proposed
in Chapter 5 and a patient simulator. The ECG is plotted with 2mm/mV and
5mm/sec settings.

Diagnosis

The main symptoms of SCA are absence of pulse and consciousness. However,
the diagnosis can only be formulated with the ECG analysis. In ECGs, Ventricular
Tachycardia usually appears as a rapid repetition of wide and tall peaks, whilst the
Ventricular Fibrillation follows a chaotic pattern.

Treatment

Although VT can effectively be treated with cardioversion, medication, and
surgery; defibrillation remain the preferable option. Good timing is vital to avoid
further damage and/or the degeneration to VF [26].

Things are different for VF, which is only treatable with immediate defibrilla-
tion.

1.3 Defibrillators
A defibrillator is an electrical medical device capable of releasing a therapeutic

dose of electric energy (called defibrillation) into a patient who is suffering from
certain conditions like Sudden Cardiac Arrest (SCA). An overview of the mecha-
nisms involved in a defibrillation is in [27]. Defibrillators can be divided in two main
macro-groups depending on their intended use: internal (or implantable) defibrilla-
tors, which are surgically implanted into a high risk patient who needs defibrillation
frequently; or external defibrillators, which are devices commonly used in emergen-
cies. Internal defibrillators are out of the scope of this thesis, so they will not be
treated with more detail.

An external defibrillator is a portable device that usually incorporates different
vital parameters acquisition systems and a display to monitor them. Among the
vital parameter that a defibrillator can acquire from a patient, the ECG is the
most important, and therefore always present. A trained physician can use a de-
fibrillator on a patient to both diagnose SCA interpreting the ECG, and treat it
with defibrillation. Among the external defibrillators, there is a specific class which
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is particularly interesting for the purpose of this thesis, which are the Automated
External Defibrillators (AED).

An AED is a defibrillator capable of autonomously recognizing ECG signals
related to SCA and perform defibrillation when required. In other words, and AED
is a defibrillator that only requires a basic training to be operated, and therefore it
can be used by non-physicians, widening the use scenario of defibrillators outside
the hospitals. The need of AEDs arose by the deadliness of SCA, which is the result
of the combination between an immediate need for assistance with the possibility
of happening at any time. Without intervention the person can die within a few
minutes. Even in the best case scenario, it is highly improbable that a medical
team is able to arrive in this short time, and thus the patient’s life is usually in the
bystander’s hands.

An AED is a device designed to be used by lay persons, without a medical
background. Therefore they have to be extremely easy to use, resilient to errors,
and ideally they shouldn’t rely on the operator if not for the most basic actions. A
typical AED has both audible and visible instruction for its use, which guide the
user through the resuscitation phases. A typical operation of an AED follows these
steps:

1 The AED will give preliminary instructions such as to call the emergency
number, and to stay calm.

2 Instruct the operator on how to apply the electrodes on the patient and wait
until they are placed.

3 Analyze the patient’s ECG to decide whether they need a defibrillation or
not. In the negative case step 4 is not performed.

4 Charge the defibrillation circuit and instruct the user on how to release the
discharge (usually with a button).

5 Guide the user into performing Cardio Pulmonary Resuscitation (CPR).

6 Repeat the cycle from step 3 until an emergency squad arrives or the patient
regain consciousness.

The above passages are the synthesis of the American Heart Association guide-
lines [28]. There may be subtle differences between different brands of AEDs,
however the key concept is always the same: make any person able to help a victim
of SCA in the matter of seconds instead of minutes.
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Chapter 2

Wearable ECG devices

As briefly discussed in the introduction, wearable devices have a huge unused po-
tential in preventing diseases by giving a mean of self-checkup to a wide consumer
audience. The widespread application of these checks could be used in spotting
early signs of diseases, to monitor the state of a known condition, or just to assert
the well-being of a person. It is undeniable how the advent of smart devices revo-
lutionized modern society. Smartphones, smartwatches, and all sort of Internet of
Things (IoT) devices flooded our lives with many kind of sensors that could have a
major impact on people’s health. For instance: accelerometers can be used to detect
falls, which can be a life-saving feature for the elderly [29]; cameras or custom-made
sensors can be used to assert a driver’s state of attention to avoid accidents [30];
optical heart-rate monitors can be used to keep track of the cardio-pulmonary re-
sponse during exercise [31], or to monitor sleep quality [32]; and many more. The
applications are of various nature: some exploiting sensors commonly available in
smartphones or similar devices, some using brand-new hardware targeted to specific
applications.

In this dissertation the focus is on ECG capable devices, which require a fairly
simple hardware that could be introduced in many consumer devices such as smart-
watches or smartphones. Having close at hand a device capable of acquiring an
ECG can drastically facilitate the monitoring of patient at risk by eliminating the
need of going to hospitals. For example: a cardiologist can assert the status of a
patient at distance just by requesting an acquisition. Furthermore, frequent ECG
acquisitions on demand could be better suited on spotting sporadic events than
holters. In fact, holters use is limited on cases where there is already a suspect of
some sort of arrhythmia, can only monitor the patient for a finite amount of time
[33] (typically 48 hours), and with the associated discomfort of having to wear a
device attached on the chest. On the other hand, introducing ECG capabilities on
a consumer device has the advantage of allowing a permanent, although discontin-
uous, tracking of the ECG. Moreover, it can be used to promptly check the heart’s
status when the patient is feeling transitory discomforts such as: palpitations, short
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of breath, chest pain, etc; which could only persist for a brief amount of time, not
sufficient to book an appointment with a specialist.

In the market there are already available some portable ECG. The most noto-
rious case is probably the Apple Watch [5], which is incorporating an ECG circuit
since its 4th generation (also called Series 4) in 2019. The Apple Watch (Fig-
ure 2.1a) uses the back of its metal body chassis as the first electrode, and the
digital crown as the second. Therefore, its use is limited to one lead ECGs, which
is good enough to incorporate an atrial fibrillation detection algorithm. However,
the measurements are restricted to lead I acquisitions with a fixed duration of 30
seconds, and can only be viewed and shared when paired with an Apple iPhone.

(a) Apple Watch. (b) D-HEART PORTABLE ECG DEVICE.

(c) AliveCore Kardia. (d) AliveCore Kardia 6L.

Figure 2.1: Some example of consumer products with ECG capabilities.

The AliveCore KardiaMobile [7] (Figure 2.1c), and the new generation Kar-
diaMobile 6L [34] (Figure 2.1d) are two other examples of consumer ECG device.
Unlike the Apple Watch it relies on a custom stick-like form factor, which only
serves as an electrocardiograph. KardiaMobile 6L has three electrodes allowing
both single lead and six lead acquisitions: two of them are on the front, meant to
be touched with the left and right hand respectively; and one is on the back, which
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should be in contact with the left leg. It needs a smartphone in order to work, to
which it connects via Bluetooth using its dedicated app; and it can record an ECG
of variable length from 30 seconds up to 5 minutes. The app shows the ECG in real
time, and after the acquisition it provides a simple rhythm evaluation. However it
can only recognize: atrial fibrillation, bradycardia, tachycardia, and normal heart
rhythm.

Finally, the D-Heart portable ECG device [35] (Figure 2.1b) is a semi-professional
ECG acquisition system, which is capable of 8 lead and asynchronous 12 lead ac-
quisitions. Unlike the Apple Watch and the AliveCore KardiaMobile, the D-Heart
has a holter-like form factor that trades off portability and comfort for the sake
of better acquisitions. In fact, it uses six disposable electrodes positioned on the
chest: three used in the Einthoven’s configuration, two on the center of the chest,
and the last is positioned in one of the precordial positions. By moving the last one
it is possible to acquire all 12 derivations, albeit not at the same time for obvious
reasons. The final result is then available on a smartphone connected via Bluetooth.
The downside of this approach is that it needs training on placing the electrodes in
their correct positions. Indeed, even a few centimeters can make a huge difference
on the placement of precordial electrodes since there is far less margin than those
placed on the limbs. However, this is a viable choice for professionals who needs to
visit patients without the need of moving bulky electrocardiographs, or for patients
with particular conditions who need a more in-depth monitoring of their heart.

2.1 Case study: ECG Watch
ECG Watch [36, 37, 38] (Figure 2.2) is a device developed in the Neuronica Lab.

As the name suggests, it is a wrist-worn electrocardiograph and it’s capable of single
lead acquisitions using two electrodes: one on the front, and one on the back. The
one-lead limitation however, does not constrain the user on just lead I acquisitions.
In fact, by placing one of the electrodes on the left thigh it is possible to acquire
lead II or lead III ECGs if the other electrode is in contact with the right or left
hand respectively [11]. The acquisitions are controlled using a smartphone app,
connected to ECG Watch via Bluetooth 2.0. Using the app it is possible to choose
between ten or twenty seconds acquisitions and, once data is collected, it is possible
to inspect the ECG as well as saving or sharing it. Just like the Apple Watch, and
the AliveCore KardiaMobile, the ECG Watch application has an atrial fibrillation
recognition algorithm. However, unlike the device seen so far, ECG Watch was
designed to be more open and research-oriented. Therefore, it is possible to export
raw data in a clear CSV format so that it can be used for further analysis or to fill
a database.
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Figure 2.2: ECG Watch.

2.1.1 Hardware
Figure 2.3 contains a schematic representation of ECG Watch’s hardware. The

device’s brain is a Texas Instruments MSP430 micro-controller [39], which is respon-
sible of acquiring the ECG signal as well as controlling the Bluetooth 2.0 module.
The analog front-end is a circuit designed to adapt the ECG signal, which is a
differential voltage that hardly exceeds a few millivolts, to the Analog-to-Digital
Converter (ADC) of the micro-controller. Finally, the device is powered by a single
LiPo battery that can be recharged using a USB connector type micro-B.

Figure 2.3: ECG Watch block diagram.

The analog front-end, shown in Figure 2.4, can be divided in four different
sections (stages). Starting from the left, th first stage (red box) consists of the
electrodes connectors and two current limiting resistors, which are required in case
of failure to limit the current that may flow in the user. The second stage (orange
box) contain a high pass filter which has the double task of removing the unknown
DC component of the input signal among very low frequencies (below 100mHz),
and to apply a known DC bias: V Ref (indicated simply as Ref in Figure 2.4).
V ref is obtained by halving the system voltage supply of 3.3V using a resistor
divider with a buffer in series to decouple it from the rest of the circuit, as shown
in Figure 2.5.
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Figure 2.4: ECG Watch analog front-end.

The third stage, highlighted by the green box in Figure 2.4, contains a dif-
ferential amplifier -the Texas Instruments INA333 [40]. The INA333 is used to
transform the differential input signal into a single-ended signal, which is required
by the micro-controller’s ADC. In this stage there is also an amplification of 40dB
set by RG.

The forth and final stage, contained in the blue box, is a first order band-pass
active filter, which has the following transfer function:

H(S) = −R2

R1
· R1C1s

R1C1s + 1 · 1
R2C2s + 1 (2.1)

The filter has a gain defined by R2
R1

, which is set at 40dB for a grand total of
60dB amplification with regard to the whole circuit. Finally, since most of the
ECG spectrum is concentrated below 70Hz [41], the allowed band has been set to
[0.7 − 72]Hz by appropriately choosing the positions of the two poles: − 1

R1C1
and

− 1
R2C2

.

Figure 2.5: ECG Watch Ref circuit.
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The final stage of the analog front-end is directly connected to the micro-
controller’s ADC, which produces a 10bit data-stream with a sampling frequency of
1ksps. Because of the limitation of the Bluetooth 2.0 connection, the resulting data
is stored in the internal flash until the end of the acquisition, when it is recovered
and sent to the smartphone. The internal flash is sufficient for a little more than 20
seconds, hence the device is configured to work with 10 or 20 seconds fixed-length
acquisitions.

Finally, the Bluetooth 2.0 module is a generic HC-06 [42] all-in-one circuit board,
chosen for its ease of use and low consumption. The communication is handled
through a UART port and a standard AT protocol in which every command is
defined by some mnemonic characters followed by their numeric parameters.

Power consumption is always a major concern when dealing with wearable and
IoT devices since it lowers the user experience quality. In ECG Watch most of the
power is spent in the digital circuit, with an approximate consumption of 30mW
during the acquisition, and 150mW during Bluetooth transmission. On the other
hand, the analog circuit only draws 1.5mW during its operation. Considering a
heavy usage of 50 acquisitions per day and a 120mAh battery, the estimated time
before needing to recharge it is 8 days.

2.1.2 Performance Evaluations
To assert and evaluate its performance, ECG Watch was compared with a state-

of-the-art patient monitor: the General Electrics (GE) B105 [43]. The B105 has
been chosen because it is a consolidated monitor widely used in hospitals. Fur-
thermore, having a CE marking it means that it has already passed all the related
tests described in the IEC 60601 standards [44], which makes it a reliable choice
for comparing ECG Watch.

The tests were performed with the aid of 30 volunteers evenly divided between
males and females with an age in the range of 25 and 35 years old with no known car-
diac problems. In addition to the volunteers, the patient simulator Fluke ProSim4
was used to evaluate ECG containing rhythm alterations such as atrial fibrillation.
The acquisition were taken simultaneously with the B105 attached to the patient
using four Silver-Silver Chloride wet electrodes positioned on the limbs; while ECG
Watch was used on lead I configuration except in five cases where the signal was
not strong enough and thus lead II was used.
Finally, once all data was gathered the post-processing consisted in normalizing
and filtering all signals with three different digital filters: a median-based baseline-
wonder removal filter, a 50Hz notch filter, and a moving average filter to smooth
the final results. After filtering, the signals were manually aligned for comparison.
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Figure 2.6: Comparison between ECG Watch and GE B105 lead I acquisitions.

In Figure 2.6 there is an example of the results from the acquisition campaign.
Despite having a higher noise level, qualitatively speaking ECG Watch’s signal do
not differ by much from the one obtained by GE B105. However, a quantitative
analysis is the only way to rigorously assert the quality of the system. For this
purpose it was defined a series of parameters to evaluate comparatively: heart-
rate, power spectral density distribution of the signals, signal-to-noise ratio, and
finally time-domain difference.

Heart-rate

The heart-rate was evaluated using a Bland-Altman (BA) plot [45, 46]. A BA
plot is a technique used to highlight differences between two instruments. Paired
acquisitions are plotted in a Cartesian coordinate system where: ordinate represents
the difference between a pair of acquisitions, and abscissa represents the mean
between them. In this specific case, each point represents a pair of heart-rate
estimation, taken from the same signal acquired by ECG Watch and by GE B105.
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Figure 2.7: Bland-Altman plot of heart-rates estimated from ECG Watch and GE
B105. All dimensions are in bpm

The BA plot of the heart-rate estimation for ECG Watch and GE B105 is shown
in Figure 2.7. From this it emerges that ECG Watch overestimates, on average, the
heart-rate by 0.6bpm, as shown by the mean value highlighted by the yellow line.
However, all points are within 5% of the average value meaning measurements are
consistent. The upper and lower bound lines highlight the limits of acceptance for
this last condition. Finally, cross-correlation (Equation 3.3) between the heart-rate
estimation of the two systems were evaluated as a further mean of comparison and it
resulted a value of roughly 98.7%, with a mean standard deviation for each subject
of 2bpm. As a result it is possible to say that there are not significant differences
between the two devices heart-rate estimations.

Power Spectral Density

The next benchmark to compare ECG Watch and B105 involves frequency do-
main differences. In particular, Power Spectral Density (PSD) [47] is a function
that describes the distribution of power among the frequencies composing a signal.
in other words: it provide an insight on the information content of each frequency
of the signal. A comparison of the PSD obtained by the two devices can therefore
give a quantitative idea on the frequency response quality. There are multiple way
of estimating a PSD, but for sake of simplicity the squared discrete Fast Fourier
Transform (FFT) module has been chosen:
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PSD(f) = (∆t)2
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⃓
2

(2.2)

The results are shown in Figure 2.8 where it’s possible to qualitatively compare
ECG Watch and GE B105 in the band of 0 − 40Hz, where the differences are more
pronounced.

Figure 2.8: PSD plot of ECG Watch and GE B105 signals. The band was restricted
to 0 − 40Hz in order to highlight differences.

However, despite having a rather artistic impact, not much can be said by simply
observing the two signals plot. There is, of course, a certain amount of similarities,
however it is just a qualitative comparison. Therefore, an additional parameter
was evaluated starting from the PSD: the Cumulative Spectral Power (CSP). The
CSP is a cumulative sum of the DSP normalized with regards to the total power.
Therefore, the resulting function has a monotone curve contained between 0 and
1, where the numeric value represents the percentage of energy contained up to a
specific frequency f . The CSP formula is the following:

CSP (f) =
f∑︂

n=0
PSD(n) (2.3)
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Using Equation 2.3 is possible to assert at which frequency the signal contain
a certain amount of power, and then compare it between the two measurement
systems. The first point of interest is the frequency at which the signal reaches
50%, namely the power median. Then, a bandwidth of 60% around the median has
been defined as the second and third frequency of interest. The results are resumed
in Table 2.1 in terms of average values for the three frequency of interest for both
ECG Watch and GE B105. From this it is possible to say that ECG Watch and GE
B105 have a similar content in frequency, even thought the lower bound of ECG
Watch bandwidth hints that the spectrum has a wider band.

Table 2.1: CSP Analysis for ECG Watch and GE B105. Frequency of interest.

Device f20%[Hz] f50%[Hz] f80%[Hz]

GE B105 3.9 8.7 15.3
ECG Watch 3.6 8.6 15.3

Signal-to-Noise Ratio

In digital signal processing it is not uncommon to divide an acquired signal
into: unmeaningful information, also known as noise; and meaningful information,
which is the actual signal. The definition of noise and signal is usually application
specific, however a reliable and simple way of doing so is by defining a bandwidth
of interest. The data contained in the bandwidth is defined as signal, whilst all
remaining is considered noise. The ratio between data inside the bandwidth of
interest and outside it is an indication of signal quality.

SNR = PSignal

PNoise

=
∑︁

n∈B PSD(n)∑︁
n/∈B PSD(n) (2.4)

In this study the bandwidth was chosen according to IEC 60601-2-27, which
defines the monitoring bandwidth in the range of 0.67 − 40Hz. Furthermore, with
regards to Equation 2.4, PSignal and PNoise are respectively the sum of the PSD
function evaluated inside and outside the bandwidth of interest B. All the acquired
signal’s SNR were evaluated and the results are resumed in Table 2.2.

Table 2.2: SNR Analysis for ECG Watch and GE B105.

Device Mean [dB] Standard Deviation [dB]

GE B105 145.7 27
ECG Watch 128.14 10
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The results confirm what was qualitatively observed in Figure 2.6, namely that
ECG Watch has a noise level slightly higher than GE B105.

Time domain differences

Finally, the last comparison between GE B105 and ECG Watch involved time
domain differences. In this test, a single heartbeat is extracted from data in order
to evaluate point-to-point discrepancies between the two systems. The heartbeat
(Figure 2.9) was manually selected and aligned between the two datasets, then it
was normalized, and finally it was compared in pairs.

Figure 2.9: The same heartbeat acquired from ECG Watch and GE B105.

Figure 2.9 highlights a qualitative difference between the two acquisition sys-
tems: the underlying signal is the same, however ECG Watch has a higher compo-
nent of noise. On the other hand, Table 2.3 is far more interesting and significant
as it highlights that the mean difference is about 2.7%, while the maximum dis-
crepancy between the two signals is over 15%.

Table 2.3: Time domain difference Analysis for ECG Watch and GE B105.

Mean [a.u.] Standard Deviation
[a.u.]

Max [a.u.]

-0.027 0.0931 0.1508
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2.2 Vital ECG
The tests described in the last section proved that albeit ECG Watch is not quite

on par with a professional certified monitor, its results are not so different either.
Furthermore, an indirect effect of the above mentioned tests was the highlight
of some technical limitations during the extended use of the device such: as not
knowing the battery state of charge, the Bluetooth 2.0 protocol, the overall device
size, and the micro-controller performances. Because of the consolidated results
obtained with ECG Watch, however, the device was used as a starting point for a
new generation of wearable ECG devices: Vital ECG [48].

Vital ECG, shown in Figure 2.10, was designed to overcome some of ECG
Watch’s weak points as well as to add more sensors in order to obtain more informa-
tion on the wearer’s state. Besides the ECG module, the device also incorporates:
a pulse oximeter, a temperature and humidity sensor, and an inertial measurement
unit. Vital ECG works with the Bluetooth 4.2 BLE protocol, which requires less
power and allow higher data rates. Finally, a battery fuel gauge provides a feedback
on the battery state of charge in order to avoid losing data. Despite all the added
sensors and functionalities, Vital ECG and ECG Watch share roughly the same
dimensions making it possible to use the same case with some minor adaptations.

(a) Top view. (b) During acquisition.

Figure 2.10: Vital ECG prototype.

2.2.1 Hardware
Instead of using a Bluetooth module, Vital ECG uses a micro-controller that

incorporates the Radio Frequency (RF) circuits. This choice not only reduces
the total footprint of the RF circuit, but also improves the communication chain
by not requiring anymore an intermediary between the micro-controller and the
smartphone.
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Figure 2.11: Vital ECG block diagram.

Figure 2.11 shows the block diagram of Vital ECG. The chosen micro-controller
is a Texas Instruments CC2640R2F [49]. Despite being able of the latest Bluetooth
5.0 connections, the protocol 4.2 was preferred because it required less internal
resources allowing better overall performances. Nonetheless, the Bluetooth 4.2
BLE standard was good enough for real time ECG transmission allowing arbitrary
length acquisitions.

The Temperature and Humidity sensor incorporated in Vital ECG is a ST
HTS221 [50], capable of 16-bit acquisition with a humidity accuracy of 3.5% rH
in a range between 20 − 80% rH; and a temperature accuracy of ±5◦C from 15 to
40◦C.

As Inertial Measurement Unit (IMU), the TDK MPU-9250 [51] was chosen
because of its size and relatively low cost. It is a reliable integrated circuit that
incorporates a digital motion processor with an internal 16-bit ADC that converts
data from: a three-axis accelerometer, a three-axis magnetometer, and a three-axis
gyroscope.

Finally, Vital ECG includes a pulse oximeter sensor. A pulse-oximeter is a
non invasive sensor capable of measuring the peripheral oxygen saturation (SpO2)
of a person. The core idea behind this technology is that blood has a index of
refraction that varies with the oxygen content, hence it is possible to correlate the
blood’s light absorption with its oxygen content. Therefore, exciting the extremity
of a finger, where the capillary vessels are more exposed to outside light sources,
with a known wavelength light emitted by a LED it is possible to measure the
reflected light and estimate the blood’s light absorption. In actual acquisitions,
however, two LEDs with different wavelength are employed: one more sensitive to
oxygenated hemoglobin, and one more sensitive to de-oxygenated hemoglobin. This
allows the estimation of the percentage of oxygenated hemoglobin in the peripheral
bloodstream with a simple ratio given by:
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SpO2 = HbO2

HbO2 + Hb
(2.5)

where Hb and HbO2 are respectively the blood’s concentration of de-oxygenated
and oxygenated hemoglobin.

The pulse oximeter sensor chosen in Vital ECG is a Maxim MAX30102 [52].
The MAX30102 was chosen because it integrates the LEDs and the photo-diodes
in a single package along with the related optics and control circuits.

In what regards the ECG circuits there are two major changes from ECG Watch.
The first one is that is not relying anymore on AC coupling to eliminate low fre-
quencies, the second one, instead, is that is using wider bandwidth in the filters.
The idea behind this choices was to obtain the most accurate reconstruction of
the input signal, and then apply digital filters to enhance the results. This allows
not only to adjust the filters for different applications, but also to obtain a raw
recording of the ECG for research purposes.

The new front-end circuit is shown in Figure 2.12 and it can be divided in two
parts: on the left half the first stage containing the differential amplifier and the
baseline-wonder filter; and on the right half a second order active low-pass filter
composed of a Sallen-Key cell [53].

Figure 2.12: Vital ECG analog front-end.

In the first stage, an integrator circuit is used to close the loop between the
output of the differential amplifier and its reference voltage. Knowing how a three
op-amp differential amplifier -such as the INA333 [40] employed in Vital ECG-
works makes it trivial to find that the transfer function is that of a first order high
pass:

H1(s) = INAGAIN · sR2C1

1 + sR2C1
(2.6)
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The second stage consist of a well known Sallen-Key cell circuit, which has the
following transfer function:

H2(s) =
(︃

1 + R7

R8

)︃
· 1

1 + C3(R5 + R6)s + C2C3R5R6s2 (2.7)

Thus, the combined transfer function with three poles and a zero has the fol-
lowing form:

H(s) = H1(s) · H2(s) = A · sR2C1

1 + sR2C1
· 1

1 + C3(R5 + R6)s + C2C3R5R6s2 (2.8)

where A is the combined gain of the INA333 and the Sallen-Key cell. The high-
pass and low-pass cut-off frequencies has been set at 0.5 Hz and 40 Hz respectively.
Being a second order filter, the low-pass side was designed according to the But-
terworth function. The total gain was set at 750 where the INA333 accounted for
5 and the Sallen-Key for the remaining 150.

The second stage is directly connected to the micro-controller’s 12-bit ADC,
which samples the signal at a frequency of 1ksps (samples per second).

The power consumption of Vital ECG is a major improvement over ECG Watch.
It was measured an average value of 160µW during stand-by, and 30mW during
transmission. Estimating a heavy use of 50 acquisition per day, the 120mAh battery
can last around 40 days.

2.2.2 Performance Evaluations
Despite having many more sensors, most of them were never actually used

because of some inner limitations of the CC2640R2F. Therefore only the ECG is
taken in account in this section.

Vital ECG was evaluated with the same tests described in the previous section
for what regarded ECG Watch. However, the GE B105 was not available, therefore
the reference device in this case was a GE MAC2000 [54]. The MAC2000 is a pro-
fessional electrocardiograph capable of 12-leads recording as well as some advanced
heart rhythm recognition features.

The tests involved 36 healthy subjects, evenly distributed between males and fe-
males in an age group in the range of 25−35 years old. For these tests the MAC2000
was configured with four stainless steel clamps electrodes placed on the limbs, and
set with a monitor filter. It would have been unfair to compare Vital ECG with an
professional electrocardiograph configured in diagnostic mode. Vital ECG, instead,
was used to acquire lead I ECGs. The experiment involved 5 simultaneous ECG
acquisitions for each patient using both Vital ECG and MAC2000.
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Vital ECG data was further filtered with a second order 50 Hz notch filter and
a first order low-pass filter set at 40 Hz. Unlike Vital ECG, MAC2000 does not
save raw data, therefore no further filtering was applied.

Heart-rate

Figure 2.13 shows the heart-rates estimations Bland-Altman plot for Vital ECG
and MAC2000. Despite having a mean value closer to zero, w.r.t the comparison
between ECG Watch and B105, the results are more scattered and less consistent.
Cross-correlation was evaluated and resulted at 90.5%, which further shows how
data is less reliable.

Figure 2.13: Bland-Altman plot of heart-rates estimated from Vital ECG and GE
MAC2000 acquisitions.

Power Spectral Density

Figure 2.14 shows the estimated PSD for both Vital ECG and MAC2000 re-
stricted in a band of [0 − 45] Hz. Even just qualitatively it is already evident how,
although they have the same underlying shape, Vital ECG has a very different
frequency content, which suggests more noise.
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Figure 2.14: PSD plot of Vital ECG and GE MAC2000 signals. The band was
restricted to 0 − 45Hz in order to highlight differences.

The CSP analysis, resumed in Table 2.4 shows quantitatively what already
evinced from Figure 2.14. MAC2000 is capable of recording more information in a
wider frequency range, w.r.t the bandwidth of interest.

Table 2.4: CSP Analysis for Vital ECG and GE MAC2000. Frequency of interest.

Device f20%[Hz] f50%[Hz] f80%[Hz]

GE MAC2000 5.5 13.6 31.9
Vital ECG 4.3 11.4 25.6

Signal-to-Noise Ratio

The SNR was defined to follow the same configuration of the ECG Watch and
B105 comparison. Therefore the bandwidth of interest is still set at [0.67 − 40Hz].
The results resumed in Table 2.5 better prove how Vital ECG cannot compete with
MAC2000.
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Table 2.5: SNR Analysis for Vital ECG and GE MAC2000.

Device Mean [dB] Standard Deviation [dB]

GE MAC2000 155.8 11
Vital ECG 119.9 12

Time domain differences

The final test involve a direct comparison in the time domain. Figure 2.15 shows
the same heartbeat as acquired by Vital ECG and MAC2000. Qualitatively, there
is a massive difference between the two signals, as it looks like they are two different
heartbeats.

Figure 2.15: The same heartbeat acquired using Vital ECG and GE MAC2000.

However, the results resumed in Table 2.6 are not as exaggerated as the image
suggests.

Table 2.6: Time domain difference Analysis for Vital ECG and GE MAC2000.

Mean [a.u.] Standard Deviation
[a.u.]

Max [a.u.]

-0.011 0.1213 0.28
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In conclusion, it is undeniable that MAC2000 offers incomparable results w.r.t.
Vital ECG, however it is also unfair to compare a bulky and very expensive
professional-grade electrocardiograph with a low-cost wearable monitoring-grade
one.

2.3 PulsECG
Despite not being able to meet its expectation Vital ECG still provided valuable

insight on the problems of wearable devices. However, the issue with Vital ECG
was not regarding the quality of its ECG recording, for which it could have been
done more in terms of better digital filtering; but rather the fact that its micro-
controller was unable to successfully handle the massive amount of data that it was
supposed to gather from all its sensors. Moreover, the generous dimensions required
to accommodate all components on the PCB still forced to keep an anachronistically
thick outer case. These limitations had a huge impact during the outlining of the
technical specification of Vital ECG’s direct evolution: PulsECG.

PulsECG (Figure 2.16) is currently the latest iteration of wearable ECG de-
vices developed in Neuronica Lab. The main goal of PulsECG was to obtain the
most reasonably small device without compromising the ECG quality. Unlike Vi-
tal ECG, PulsECG does not include an IMU and a temperature/humidity sensor.
Moreover, it uses a satellite board for the pulse oximeter sensor, which can be used
synchronously with the ECG circuit. The result is a considerably smaller PCB with
a more complex analog front-end.
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(a) Front view. (b) Back view.

(c) Inside. (d) Size comparison with ECG Watch.

Figure 2.16: PulsECG.

2.3.1 Hardware
PulsECG uses the same TI CC2640R2F micro-controller in Vital ECG. Despite

having a very similar block diagram (Figure 2.17), the pulse oximeter and the ECG
circuit are different.

Figure 2.17: PulsECG block diagram.

The new analog front-end (Figure 2.18) is an improved version of the one present
in Vital ECG (Figure 2.12). Because of its complexity it can be divided in five
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different stages, shown in Figure 2.19.

Figure 2.18: PulsECG block diagram.

Starting from the first stage (Figure 2.19a) there is the electrode connector and
an Electro-Static Discharge (ESD) protection circuit, which purpose is to save the
delicate differential amplifier that is connected to the outer world.

What follows stage one is a pre-filtering stage (Figure 2.19b) in the form of
two paired differential and common-mode low-pass filters. The cut-off frequency is
respectively of 48 kHz and 4.8 kHz. The common-mode cut frequency has been
chosen one decade earlier than the differential one in order to neglect the resulting
common-mode component that arise from the inevitable differences between the
components used in the filter (even 1% tolerances can create common-mode noise).

The third stage (Figure 2.19c) is completely analogous to the first stage of Vital
ECG’s front-end (Figure 2.12). Even in this case the high-pass cut frequency is set
at 0.5 Hz.
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(a) Stage 1. (b) Stage 2.

(c) Stage 3. (d) Stage 4.

(e) Stage 5.

Figure 2.19: PulsECG analog front-end divided in different stages.
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Stage four (Figure 2.19d) contains an active twin-T notch filter [55], for which
the transfer function in the Laplace domain (s) is:

HTwin-T(s) = s2 + ω2
0

s2 + sω0
Q

+ ω2
0

=
s2 +

(︂
1

RC

)︂2

s2 + s
(︂

1
RC

)︂(︄
4

1+ R21
R20

)︄
+
(︂

1
RC

)︂2
(2.9)

Where R = R6 = R7 = 2R22 and C = C19 = C21 = C39 = C41. In this
design the notch frequency f0 = ω0/(2π) was set at 50 Hz, while the quality factor
Q = (1 + R21/R20)/4 was set to 2.523.

Finally, the fifth stage (Figure 2.19e), is similar to the second stage of Vital
ECG’s front-end. However in this case the cut-off frequency is set at 100 Hz,
designed using the Bessel function.

The analog front-end’s output is fed into the micro-controller’s 12-bit ADC,
and the signal is sampled at a sampling frequency of 500 samples per seconds (sps),
which is half of what used for ECG Watch and Vital ECG. Lowering the sampling
frequency was an acceptable trade-off in order to be able to transfer ECG and PPG
(photoplethysmogram) data in real time. Having set the low-pass cut-frequency at
100 Hz, the minimum sampling frequency required to avoid aliasing (according to
Nyquist-Shannon theorem) is 200 sps, which is considerably lower than 500.

Despite the presence of multiple physical filters, PulsECG still provides a rather
raw and pure signal that has to be further processed once the acquisition is over.
Because of RAM memory limitations, post-processing is not handled directly in
the micro-controller, but rather on the app, which still provides a way to save
the raw signal in case it is needed. During the post-processing the signal passes
through different passages. First, the signal’s average value is removed from every
sample, to center it around the zero. Then an Infinite Impulse Response (IIR)
filter, implementing a 10th order comb, is applied; followed by a moving average
filter with window length set to 10 samples. The results are showed in Figure 2.20.
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Figure 2.20: ECG signal acquired using PulsECG, as seen from the Android appli-
cation.

For what it regards the pulse oximeter, PulsECG incorporates the newer Maxim
MAXM86161 [56]. With regards to its predecessor (MAX30102), this sensor has:
a significantly improved ambient-light cancellation, a better ADC, lower power
consumption, smaller dimension, and some useful software functionalities. Amongst
the latter, there is an interrupt pin that can be associated to an internal proximity
sensor, besides other functions. This proximity sensor has been exploited as a
trigger for the whole acquisition, acting as a starting signal for the system so that
users can begin an acquisition at their own pace. Figure 2.21 shows the PPG signal
acquired by PulsECG. Note that the results shown in Figure 2.20 and Figure 2.21
are acquired synchronously during the same acquisition.
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Figure 2.21: PPG signal acquired using PulsECG, as seen from the Android appli-
cation.

2.3.2 Performance Evaluations
Because of the Coronavirus disease 2019 (COVID-19) pandemic, it was im-

possible to launch an acquisition campaign for a formal evaluation of PulsECG.
Qualitatively speaking the results are more in line with the performance of ECG
Watch, albeit more defined, than those of Vital ECG.
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Chapter 3

Arrhythmia pattern recognition

In the previous chapters it was illustrated how the inclusion of ECG capabili-
ties in portable or wearable devices have a huge potential in terms of preventing
or monitoring cardiovascular conditions. However, as ECG capable devices become
more and more common there is still an open problem on how to handle the mas-
sive amount of data they produce. Regardless of how detailed and clear an ECG
appears, it is nothing but a scribble on a paper sheet without proper interpreta-
tion. Interpretation, however, comes at the cost of having an expert analyzing the
recording, which is not cheap neither in terms of money, nor time. Furthermore,
it would be completely unreasonable to deliver each and every acquisitions, even
those that might be clearly flawed, to be analyzed as it would require a inhumane
effort just to keep up with as the user base grow. However, there are two key con-
cepts here that could be exploited: the first is that cardiologists, being restricted by
human limitations, can only analyze a handful of ECG per day; the second is that
a cardiologist only needs to analyze an ECG showing some sort of anomaly in order
to actually make a diagnosis, all other rhythm that does not exhibit any strange
behavior could be ignored. Starting from these two assumptions, the only logical
solution is that an algorithm that filters out normal rhythms, while highlighting ab-
normal ones could be used. In this way only the few ECGs that exhibits anomalies
are sent and analyzed by doctors, while all the others can be ignored. In addition,
it would greatly help the ECG evaluation if the algorithm could also further high-
light the anomaly it found in terms of associating it with an arrhythmia, in order
to triage it. Because some rhythm alterations are more dangerous than others, and
therefore require a prompt and accurate analysis even if it is just a false positive.
For instance: an ECG that shows an elevation of the ST segment can be associated
with acute myocardial infarction [57] and thus should have maximum priority so
that, if it is confirmed, an ambulance can be dispatched as soon as possible.

Automatic rhythm recognition in ECG application is not a novel problem. In
fact, the first documented attempt of an automated analysis dates back in 1960,
with a description of a automatic processing of electrocardiograms leading to their
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analysis by digital computer [58]. However, despite the colossal improvement of
technology and techniques, automatic rhythm recognition is still today an open
problem. During the years there have been, of course, various valuable contribu-
tions on the matter, such as [59, 60, 61, 62]. Nonetheless, most of the proposed
algorithm -if not all of them- focus the attention on a single arrhythmia, in the
attempt of simplifying the problem, which is a widely used paradigm in computer
science also known as divide-et-impera. The result is that there is still the lack
of a reliable algorithm capable of interpreting an ECG and formulating a generic
diagnosis with a reasonable degree of accuracy. The reason behind this is that
heartbeat recognition is an intrinsically difficult task. It is hard to generalize rules
that can be easily programmed to a computer because even for humans there is
not a definite rule set, but rather an interpretation method, which requires prac-
tice and experience. In an attempt to mimic the human approach, data-driven
programming is a paradigm of computer science in which algorithms derive their
operation from a data-set, rather than a defined sequence of steps. In a certain
sense, these algorithms can learn from data and extrapolate an interpretation. For
this reason data-driven programming can be considered the paradigm that gave
birth to machine learning.

In recent years machine learning gained a lot of momentum due to the great
success that it had on consumer-level application such as: the natural language
processing involved in common virtual assistants like Siri [63] or Cortana [64]; or
the image segmentation and classification used in face recognition software [65]; or
the mixed sensor analysis used in self-driving car; etc. Obviously this success also
translated into adopting the various technologies involved machine learning also for
health related applications. For instance: deep learning models are widely used for
medical image processing in improving images, spotting anomalies, dividing images
in zones, extrapolating data, etc. A notorious case is IBM Watson, which was both
praised and criticized [66] for being able to detect, in some cases, skin cancers from
images better than humans [67]. A final, more recent, example is a neural model
that was employed to design drugs became infamous for being exploited to find
toxins, and being able to discover over 40000 of them in less than 6 hours [68, 69].

There are a numerous applications of machine learning for ECG pattern recog-
nition in literature. A few examples include: [70, 71, 72, 73]. However, as none of
them succeeded in developing a reliable generalized arrhythmia recognition model,
the problem of finding one is still open.

A novel approach to the ECG pattern recognition problem is proposed in this
chapter, involving the use of mono-dimensional Convolutional Neural Networks
(1D-CNN).
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3.1 Mono-dimensional Convolutional Neural Net-
works

Convolutional Neural Networks (CNN) are currently a very popular class of
neural networks in which a filter -usually called kernel- is passed along the data
to learn underlying patterns. 1D-CNNs are a sub-class of CNNs that only deals
with mono-dimensional data such as the ECG. This distinction is necessary because
CNN are usually employed on images and thus two-dimensional data.

The working principle of 1D-CNNs is presented in Figure 3.1. In this example,
a kernel with k = 3 elements is convoluted along an input vector of n = 10 elements
in order to produce a filtered output of m = n−k+1 = 8 elements. The convolution
process involves a few simple passages: first, the kernel is superimposed to the first
k elements of the input vector; then, corresponding elements of the two vectors
are multiplied together to form a new element of the output vector; after that the
kernel is moved of one (or more) elements with regards to the input vector and the
process is repeated until the kernel covers all the input elements.

Figure 3.1: 1D-CNN working principle using zero padding.

Because of how a 1D-CNN works the output is necessarily smaller than the
input. This effect of data erosion can be a serious problem when applying multiple
layers of convolution one over the other. Therefore, it is possible to just add dummy
data on both extremities of the input vector in order to compensate the data loss.
This expedient is better known as padding, or zero padding when the dummy data
consists of zeroes (as shown for example in Figure 3.1).
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The whole process is equivalent to filtering the input vector using the kernel
in order to extract or highlight specific patterns. Applying multiple layers of 1D-
CNN results in a growth of complexity of the extracted patterns. Therefore using
enough layers it is possible to use the model to represent patterns with arbitrary
complexity. For instance it could be possible to obtain the model of an heartbeat
as seen in ECGs.

3.2 Deep network for generalized ECG pattern
recognition

A neural network that use of many CNN layers, amongst other layers, is usually
referred to as deep neural network.

In this section various deep network architectures are evaluated in order to
obtain a model capable of generalized ECG pattern recognition [74]. Namely, a
network capable of classifying each and every heartbeat of a ECG signal in order
to formulate a diagnosis based on the rhythm.

3.2.1 Dataset
When dealing with CNNs, or any other supervised learning model, the most

delicate and difficult part is inarguably the preparation of a dataset. In the con-
text of ECG, the most notorious and reliable source of publicly available data is
Physionet [75], which is a repository containing dozens of databases used world-
wide for research purposes. From Physionet the MIT-BIH Arrhythmia Database
[76] has been selected because of its richness in both terms of different arrhythmias
represented, and number of recordings.

The MIT-BIH Arrhythmia Database contains data from 47 different patients
presented as two lead ambulatory ECG recordings of 30 minutes length each. What
makes this particular database so appealing for supervised learning approaches is
that every single heartbeat (approximately 110000 total) has been labelled inde-
pendently by two cardiologist. In total there are 15 different classification for each
heartbeat, plus a jolly class for unrecognizable ones. Table 3.1 resumes the different
heartbeat classes and their related label in the annotation file.

The total database consists of over 31 million samples digitalized with a sam-
pling frequency of 360 sps. Therefore, the first step in the dataset preparation is
dividing the database in segments small enough to be fed to the neural network,
but still large enough to contain at least one heartbeat. For the sake of simplicity
a segment size of 500 was chosen, ensuring the presence of at least one heartbeat
even in case of bradycardia down to 43.2 bpm. Data augmentation was applied in
terms of a 10% overlapping factor between adjacent segments, in order to produce
more data for the network training.
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Table 3.1: MIT-BIH heartbeat label meaning

Label Meaning Label Meaning
/ Paced beat R Right bundle branch block beat
A Atrial premature beat S Supra-ventricular premature beat
E Ventricular escape beat V Premature ventricular contraction
F Fusion of ventricular and normal beat ! Ventricular flutter wave
J Nodal premature beat a Aberrated atrial premature beat
L Left bundle branch block beat e Atrial escape beat
N Normal beat f Fusion of paced and normal beat
Q Unclassifiable beat j Nodal escape beat

Once the database was divided in smaller segments, data was normalized in a
range of [−1, +1], and the related label was assigned to the segment.

The final dataset was produced by randomly dividing the above obtained seg-
ments in a training dataset and a validation dataset with a ratio of 90% and 10%
respectively.

3.2.2 Experiments
Several network configuration were evaluated to asses the classification quality of

a 1D-CNN on the MIT-BIH dataset in search for the best performances in terms of
accuracy. During the tests different networks were assembled by varying: number
of 1D-CNN layers, 1D-CNN kernel size and, drop-out rate, and the activation
function. The most representative and successful are reported in Table 3.2.

Table 3.2: Classification accuracy for the best 1-D CNN architectures

Training Accuracy Test Accuracy Total Parameters
Net 1 92 % 91 % 65,056
Net 2 96 % 94 % 257,104
Net 3 96 % 94 % 533,072
Net 4 98 % 95 % 1,266,768

The simplest of the proposed networks, Net 1, achieved an accuracy equal to
92% and 91% respectively during training and validation. Net 1, which counted
around 65K parameters, consisted of a single convolutional layer containing 16
filters with kernel size 32; followed by a max pooling layer, that compress the output
information in a smaller vector easier to elaborate; a drop-out layer, required to
reduce over-fitting; a flatten layer, which reorders the output array in a vector; a
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fully dense layer, that further elaborates the output; and finally a softmax classifier
required for the output of the system.

The second network proposed, Net 2, composed of roughly 257K parameters
consisted of a convolutional layer with 64 filters of size 8, followed by the same
layers found at the end of Net 1. Net 2 was able to achieve an accuracy value of
96% during training, and 94% during validation, improving the results obtained
with Net 1.

Net 3 is the first one using a deep approach. It is composed of three con-
volutional layers with growing number of filters and decreasing kernel size, each
interleaved by max pooling layers. The following layers of the network are analo-
gous to those in the tail of Net 1 and Net 2. The first convolutional layer of Net
3 has 64 filters of 32 elements, while the second has 128 filters sized 16 elements,
and the third has 256 filters with size 8. Despite doubling the parameter numbers
there was no difference in terms of accuracy between Net 2 and Net 3, sign that
the model had encountered a plateau of performances.

Figure 3.2: Net 4 architecture.
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The final and deepest network proposed is Net 4, with its 1.2M parameters.
This network, represented schematically in Figure 3.2, has a grand total of five
convolutional layers. The filter parameters followed the same approach of Net
3 doubling the number of filters while halving the sizes in each consequent layer.
Therefore first of those has 32 filters of 128 elements, while the fifth has 512 filters of
size 8. Net 4 achieved an accuracy score of 98% and 95% in training and validation
respectively.

3.2.3 Results
Despite Net 4 was followed by several networks with much higher parameters

count, it was impossible to find a better model. It was only after the analysis of Net
4 confusion matrix (Figure 3.3) that it was clear why all further attempts failed.

A confusion matrix is a table used to highlight the performance of a classification
algorithm in a visual form. In a confusion matrix columns represent the expected
value, while rows represent predicted ones. Cross evaluating the predicted value
with the expected one gives information on the accuracy for each class. Therefore,
the confusion matrix of a perfect classifier is an identity matrix.

There are a few considerations to be made by observing Figure 3.3. The first
one is that class F, which represents the fusion of ventricular and normal beat,
is often confused with the class N, which represents normal beats; and class V,
which represents premature ventricular contractions. However, depending on how
the input segment was obtained a class F beat can result indistinguishable from a
class N or a class V. A solution to improve F classification could be to enlarge the
segment size, at the cost of lowering the classification of other heartbeats.

Class S, which represents supra-ventricular premature beats; was completely
misinterpreted as class V, which instead represents premature ventricular contrac-
tions. This is due to the fact that these two beats are very similar when examined
in lead I and lead II, which were the only available ECG signals for the network.

Class e, which represents atrial escape beats, is recognized as a different class
in 94% of the cases. After a deep investigation it was found a that the class e was
severely underrepresented in the input dataset, consisting of just 2% of the total
segments.

Finally, because of its nature it is not surprising that class Q is recognized
as many different classes. In fact, class Q represents unclassifiable heartbeats.
Namely, those heartbeats that the two cardiologists that examined and commented
the signals were not able to classify due to noise, uncertainties, alterations, etc.
Therefore, albeit the net classified erroneously those hearbeats, it is not possible to
exclude without further investigation that the network was actually responding to
some specific pattern learned from the correct class.

In conclusion, the confusion matrix analysis highlighted the fact that a data-
driven model can only be as good as the data used to synthesize it. If the data does
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not represent the problem, then it is impossible to find a proper solution. With a
better dataset it could be possible to find a model capable of representing all 16
classes with an accuracy higher than 96%. However, with the data at disposal this
is the best that this network could achieve.

Figure 3.3: Net 4 confusion matrix.

3.2.4 Comparison with other networks
Despite the result being far from perfection, Net 5 obtained comparable results

with other network using a less generalized approach. In fact, there are in literature
many networks designed for ECG pattern recognition, but they usually aim to
simplify the problem by reducing the number of patterns to recognize. For example
in [77] a very deep network with thirteen convolutional layers is used to classify five
of the sixteen available rhythms in the MIT-BIH dataset with an overall accuracy
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of 93.4%. In [78], the different rhythms are divided in five macro-classes according
to the AAMI EC57 [79] standards. The network proposed in this case consists of
three convolutional layers capable of achieving an accuracy of 92.7%. A similar
approach was used in [80] achieving an accuracy of 97.3

A completely different approach was used in [81] and [72] where the ECG signal
is treated as a 2D image and analyzed with massive networks achieving respec-
tively an accuracy of 98% and 80% in recognizing 6 and 12 different arrhythmia
respectively. Albeit none of the presented studies used all 16 available classes, it is
evident how growing in complexity causes a degradation of the performances.

Finally, in [82] Generative Adversarial Networks (GANs) are used to produce
data in order to re-balance the MIT-BIH dataset and, thus, represent all classes
equally. Consequentially, the classifying network, inspired by the inception network
[83], achieved an accuracy of 98% when used to recognize 15 different patterns,
proving that a generalized approach is possible when the initial dataset is balanced.
In this case, however, the network consists of different million parameters, which
could easily lead to over-fitting problems when exposed to a more robust dataset.

3.3 1D-CNN for non-generalized ECG pattern
recognition

The final observation made for the generalized model suggested that it could be
possible to re-balance the input dataset in order to achieve better performances.
To this purpose, a different non-generalized model is proposed, named Net5, aimed
at classifying not all the available classes, but just the four more represented: N,
V, R, and A. The remaining classes, some of which were under-represented, and
others had intrinsic problems in their recognition, are instead grouped in a new
super-class O, namely others.

In this case a simpler net with just 4053 parameters was enough to achieve a
training accuracy over 99.9% and a validation accuracy around 99.6%. Net 5, which
is shown in Figure 3.4, has four convolutional layers with the following composition:
the first one has 4 filters of size 4, the second one has 6 filters of size 6, the third
contain 8 filters with 10 elements, and the forth and final consist of 10 filters with
16 elements.
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Figure 3.4: Net 5 architecture.

Figure 3.5 shows the confusion matrix, which is almost an identity.

Figure 3.5: Net 5 confusion matrix.
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3.4 Feature extraction in ECG classification: a
comparison between 1D-CNN and feature en-
gineering

Neural networks, and in particular deep convolutional networks, are usually
referred and treated as black boxes. Although the accuracy and efficiency of CNN-
based approaches is undeniable, their ability in extracting and using features ex-
tracted from raw signals is still barely understood. In other words: the combined
complexity and abstraction of a CNN makes almost impossible to understand and
explain in human terms how the network is achieving its results. For this reason, the
previous discussed networks were employed in another research in an attempt to un-
cover differences and relationships between CNN feature maps and human-curated
temporal features, towards a deeper understanding of neural-based approaches for
ECG classification [84].

In contrast to CNN, feature engineering relies on domain experts, e.g. cardiol-
ogists, to extract relevant information from data. The extracted feature can then
be analyzed with statistical means, or by using non-deep neural networks, which
are intrinsically easier to explain than CNN. With regards to [85] fifteen tempo-
ral features, resumed in Table 3.3, are extracted and used to train a Multi-Layer
Perceptron (MLP) which was consequently used for ECG classification.

The main goal of this study is not to obtain the best ECG classification model,
but rather to assert whether deep networks are capable of extracting similar features
with regards to feature engineering. This would provide a valuable insight of how
a deep CNN handles data towards its layers as well as confirming the validity of
the extracted features in ECG classification models.

3.4.1 Cross-Correlation analysis
Given a pair of random variables X and Y coupled with their respective proba-

bility density function fX and fY ; the probability density function of their difference
fX−Y is known as cross-correlation.

fX−Y = fX ⋆ fY (3.1)
The cross-correlation can be seen as a measure of similarity between the two

starting random variables X and Y . When, instead, it is applied to two random
vectors X = (X1, . . . , Xm)T and Y = (Y1, . . . , Yn)T , the resulting cross-correlation
matrix has the form given by:

RXY := E[XYT ] (3.2)
However, in order to simplify interpretation the cross-correlation matrix can be

normalized and expressed as:
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Table 3.3: Temporal features extracted from the ECG raw data.

# Attribute

F1 Mean x̄ = ∑︁ xi

N

F2 Max value max (x)

F3 Root Mean Square (RMS)
√︃∑︁ x2

i

N

F4 Square Mean Root (SMR)
(︃∑︁ √

|xi|
N

)︃2

F5 Standard deviation
√︂

1
N−1

∑︁ (xi − x̄)2

F6 Variance F52

F7 Shape factor (using RMS) F 3∑︁ |xi|
N

F8 Shape factor (using SMR) F 4∑︁ |xi|
N

F9 Crest factor F 2
F 3

F10 Latitude factor F 2
F 4

F11 Impulse factor F 3∑︁ |xi|
N

F12 Skewness
1
N

∑︁
(xi−x̄)3

[ 1
N−1

∑︁
(xi−x̄)2]

3
2

F13 Kurtosis
1
N

∑︁
(xi−x̄)4

[ 1
N−1

∑︁
(xi−x̄)2]2

F14 Normalized 5th central moment
1
N

∑︁
(xi−x̄)5

[ 1
N−1

∑︁
(xi−x̄)2]

5
2

F15 Normalized 6th central moment
1
N

∑︁
(xi−x̄)6

[ 1
N−1

∑︁
(xi−x̄)2]3

Where: N is the number of elements of the input vector x, while xi is the ith element.

ρXY = cov(X, Y)
σXσY

(3.3)

which is in the range [−1, +1], with 1 indicating a perfect correlation, -1 a perfect
anti-correlation, and 0 no correlation at all.

The normalized cross-correlation (Equation 3.3) has been employed as similar-
ity measure to assert whether the engineered feature of Table 3.3 are present in any
of the feature map generated by the 1D-CNN. Therefore, for each sample (i), each
filter (j), and each extracted feature (k); the normalized cross-correlation was com-
puted to evaluate similarities between the 1D-CNN feature map xj

i = (xj
i1, . . . , xj

im)T
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and the temporal representation of the sample xk
i = (xk

i1, . . . , xk
in)T :

ρxj
i xk

i
= cov(xj

i , xk
i )

σxj
i
σxk

i

(3.4)

Averaging this score across all samples for each convolution filter it is possible
to evaluate the average similarity between feature maps and the extracted features:

ρj,k = 1
N

N∑︂
i

ρxj
i xk

i
(3.5)

Similarly to Equation 3.3, this score ranges in [−1, +1] with the same interpre-
tation. Equation 3.5 is the final score that was used to investigate the abstraction
level of the extracted features with regards to the feature maps extracted by the
1D-CNN.

Because of the implication of this study, a very deep net (Figure 3.6) with similar
results of Net 4 was employed. This network contains ten convolutional layers with
progressively higher number of filters and kernel dimension. The first convolutional
layer employes 4 filters with 8 elements, the second and the subsequent layers
doubles the number of filters or their dimension alternatively until the last layer
with 128 filters of size 128. The main idea behind this peculiar architecture is
that the first layers are supposed to extract less complicated temporal features,
while descending deeper in the network the extracted features’ complexity grows
exponentially, providing more abstract characteristics.

Figure 3.6: Net 6 architecture.

The extracted features are compared with the 1D-CNN feature maps by mean
of (3.5) in order to assert if and how the network is capable of extracting temporal
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features from ECG signals. The results are resumed in Table 3.4 where: for ev-
ery feature the minimum and the maximum normalized cross-correlation has been
reported with its corresponding feature map and filter.

Table 3.4: Maximum and minimum ρj,k between temporal features and CNN feature
maps. The highest and lowest similarity values are highlighted in bold.

Temporal feature Layer Filter ρ

F1 MAX 1 2 0.497
MIN 1 1 -0.882

F2 MAX 1 2 0.685
MIN 1 1 -0.808

F3 MAX 1 2 0.875
MIN 3 7 -0.236

F4 MAX 1 2 0.882
MIN 6 4 -0.252

F5 MAX 1 2 0.748
MIN 3 7 -0.236

F6 MAX 1 2 0.699
MIN 3 7 -0.246

F7 MAX 1 2 0.553
MIN 7 3 -0.180

F8 MAX 2 6 0.658
MIN 7 6 -0.138

F9 MAX 1 2 0.725
MIN 1 1 -0.838

F10 MAX 1 2 0.701
MIN 1 1 -0.700

F11 MAX 1 2 0.711
MIN 1 1 -0.780

F12 MAX 1 2 0.500
MIN 1 1 -0.553

F13 MAX 1 4 0.655
MIN 2 3 -0.048

F14 MAX 2 8 0.532
MIN 1 1 -0.300

F15 MAX 1 4 0.681
MIN 3 3 -0.014

From Table 3.4 it is possible to observe how, indeed, the 1D-CNN is capable of
extracting temporal-like features which are very similar to those human-engineered.
Furthermore, the extracted features are more common in the first layers of the
network, indicating that the more abstract features obtained in deeper layers derive
from the improvement on those temporal features.

In particular F1, F2, and F9 are strongly anti-correlated with the feature map
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generated from the first filter of the first layer; suggesting a response of how steep
the peaks are compared to the average. On the other hand, F3 and F4 are strongly
correlated to the second filter of the first layer which can be interpreted as the
peak-to-peak amplitude.

3.4.2 Classification comparison
As a final investigation on the effective contribution of the features automatically

extracted by 1D-CNNs to the ECG classification problem [84], it was conducted
a comparison between Net 5 (presented in section 3.3) and the MLP used in [85].
This MLP consist of a single hidden layer with forty neurons and five output units
using the softmax activation function. Comparing the confusion matrixes of Net 5
(Figure 3.5) and the MLP (Figure 3.7) it is evident how the 1D-CNN is capable of
a better classification. These results not only prove that the manually engineered
features are effectively useful in ECG classification tasks, but also that deep net-
works can extract and improve those features by further elaborating them towards
higher level of abstraction.

Figure 3.7: MLP confusion matrix.
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Chapter 4

Shockable rhythm recognition in
Automated External Defibrillators

Automated External Defibrillators (AED) are a peculiar class of defibrillators
that require little to none knowledge for their operation. In fact, AEDs are designed
to automate most of the decision-making and to guide the operator through all the
steps required to resuscitate a Sudden Cardiac Arrest (SCA) victim. Such devices
are a life-saving asset that should be readily available in any crowded area such as:
train stations, malls, theaters, casinos, stadiums, etc; or any facility with a relatively
high risk fo SCA incidence such as gyms, playing fields, nursing homes, etc. It is in
fact proven that early defibrillation of SCA can improve the survival rate by over
50%, which is one of the reason why AEDs are referred to as the “single greatest
advance in the treatment of VF cardiac arrest since the development of CPR”. Most
AEDs nowadays also include audio-visual instructions on how to perform Cardio-
Pulmonary Resuscitation (CPR), which is the single most important operation to
perform on a SCA victim. Furthermore, some of them are also capable of sensing
chest compressions in order to give a feedback on the rescuer’s CPR performance in
terms of depth and frequency [86, 87]. Although some countries require a training
by law, their operation is usually simple enough to be used even without any prior
knowledge.

To achieve such degree of automation, the most critical aspect of an AED is
probably that the device has to formulate an accurate diagnosis on the patient’s
ECG. The results of misinterpretation are in fact almost always disastrous. In the
best case scenario the AED will fail in the recognition of a shockable rhythm, which
will result in not delivering the electric shock, and thus losing a chance of stopping
the malicious arrhythmia as well as wasting precious time that could make the
difference between life and death. On the other hand, if the AED misdiagnoses a
non-shockable rhythm as shockable the subsequent delivery of a defibrillation shock
to the patient will likely cause Sudden Cardiac Arrest [1]. Thereafter, the AED will
be the triggering cause of the very same condition that it was originally designed to
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cure endangering the life of a healthy person. Although, for obvious reasons, both
kind of misinterpretation are to avoid, the latter has a more dangerous effect, and
thus, when in doubt the preferred course of action is to not deliver the shock.

In the previous chapter a novel approach on ECG classification employing
mono-dimensional Convolutional Neural Networks (1D-CNN) was presented [74,
84]. However, despite the good results that such networks could achieve in dis-
criminating shockable from non-shockable rhythms, 1D-CNNs are inherently hard
to compute. Even Net 5, which the smaller network proposed, has over 4000 pa-
rameters and requires hundred of thousands instructions in order to calculate its
output. On the other hand, AEDs rely on low-power and low-cost micro-controllers
to operate, with their related constraints in terms of memory and speed. Even a
few seconds of delay in formulating a diagnosis can have a deleterious effect on the
survival chances of the patient, and on the operator’s nerves which might think the
device is malfunctioning in case it takes too long in providing a feedback. Because
of the current high interest of neural networks, the embedded scene is moving to-
wards integrating neural-processing modules [88] in lower end micro-controllers so
things might change in the future. However, for the time being neural networks
only find application in higher end devices that make use of Field Programmable
Gate Arrays (FPGAs) or high-power micro-controllers.

4.1 Shockable and non-shockable ECG rhythms
By definition a shockable rhythm is a pathological ECG rhythm for which defib-

rillation has the potential of having a positive effect. Conversely, a non-shockable
rhythm is a non-defined ECG rhythm for which defibrillation has a negative or
negligible effect.

This definition is especially important because not all the rhythms involved in
SCA events are shockable rhythms. There are, in fact, some exceptions where
treating SCA with defibrillation have the potential to cause more harm than the
triggering condition. For instance: in cases of Electromechanical dissociation the
heart has a characteristic Pulseless Electrical Activity (PEA) [89]. In a case of
PEA the ECG still shows an organized electrical activity that should produce a
pulse, however it does not. Another case of SCA associated with a non-shockable
rhythm is asystole, which is a condition characterized by the complete absence of
the heart’s electrical activity.

Shockable rhythms, instead, are a very restricted group of ECG rhythms con-
taining Ventricular Fibrillation (VF) and pulseless Ventricular Tachycardia (VT).
Despite being included in the same group, the two rhythms are extremely differ-
ent. While the former is characterized by a chaotic undefined ECG, the latter
exhibits a peculiar organized electrical activity. In relation to VT, the residual
organization is what makes particularly difficult its classification. In fact, as seen
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in Chapter 1, depending on the frequency and type, which can be mono-phasic,
bi-phasic, or poly-phasic; VT can show very different characteristics. Furthermore,
low frequency VT are usually associated with some residual pulse, which means
they should be treated as non-shockable rhythms. In conclusion, consisting in an
heterogeneous group, it is not trivial to generalize shockable rhythms ECG.

4.2 Shockable rhythm recognition
To keep the set-up as simple as possible, AEDs only employ a single pair of

self-adhesive electrodes. As a consequence the rhythm recognition algorithm can
only rely on a lead II ECG. The reason behind the choice of this particular lead is
that it allows the current to travel across the heart, while still being able to acquire
an ECG signal good enough for formulating a diagnosis. For this reason, from this
point any reference to ECG will be in terms of lead II.

To summarize, the shockable rhythm recognition algorithm can only operate
on single lead ECGs, and it needs an extremely low rate of false positives to avoid
delivering of defibrillation to healthy patients. Furthermore, since it is designed to
operate on data acquired in sub-optimal condition it has to be fairly tolerant to
noise and human errors such as the electrodes’ inversion. Finally, the algorithm
needs to be actually implementable in a system with limited resources.

Since shockable rhythms appear as ECGs with heterogeneous characteristics it is
not trivial to define a generalization without first extracting a model, or representing
the signal in a different way.

4.2.1 The heart as a dynamic system
The ECG of a healthy heart exhibits the behavior of an oscillator with a very

characteristic pulse, and a slightly variable rhythm. Having to respond to external
stimuli, the sinoatrial node regulates the heart’s rate of activation by varying the
rhythm. However, the pulse’s shape is an intrinsic characteristic of the heart and
thus it does not depends from external factors, but from the heart itself and its sta-
tus. Conversely, when the heart exhibits a pathological ECG, there are alterations
in both pulse and rhythm.

Van der Pol was the first to notice this oscillating behavior [90] and tried to
model it through a dynamic system in the form of:

v̈ − α(1 − v2)v̇ + ω2v = 0 (4.1)

which is also known as Van der Pol oscillator. Equation 4.1 represent an oscillatory
system of which the resistance is a function of the elongation, where v is the ECG
potential in function of time, and α is a scalar parameter that represent the non-
linearity and the strength of the damping.
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When α is positive, the system has a resistance which for a small amplitude
is negative. Therefore, for v = 0 the system is unstable. As long as v2 ≪ 1, the
system will leave the v = 0 condition in an aperiodic way. However, when v2 > 1
the resistance changes sign forcing v to move back towards the value v = 0. In this
way after a few oscillation the system enters a characteristic cycle known as limit
cycle, which strongly depends on the damping factor α.

Figure 4.1 depicts a Van der Pol oscillator in time domain (on left), and its
phase space (right) in terms of its amplitude and the first derivative.

Figure 4.1: Van der Pol oscillator with different damping factors [91].

4.2.2 Time delay method
Although it can be used to model the sinoatrial node functioning, the Van der

Pol oscillator is too simple to model the heartbeat as a whole. However, following
the reasoning of modeling the heartbeat as an unknown dynamic model with a
limit cycle, it is possible to apply Taken’s theorem in order to obtain a phase space
representation of the ECG.
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A phase space is an abstract space, which graphically represents the states of
a dynamic state. The dimension of the phase space is equal to the number of
variables required to describe completely the state of the system. However, if the
actual number of variables governing a dynamic system is not known, the phase
space can be reconstructed with Taken’s theorem, also known as the time-delay
embedding theorem [92].

Taken’s theorem states that if the dynamics of a system are governed by a certain
number (d) of independent variables, say xi; but only one, say y, is accessible; then
it is possible to reconstruct the system’s dynamic from the single observed variable
y by plotting in a phase space its values against itself for a certain number k of
times at a predefined time delay τ . Furthermore, the embedding dimension k is
at most 2d + 1. Equation 4.2 describes formally Taken’s theorem where X is the
vector containing the reconstructed phase space.

X =

⎡⎢⎢⎢⎢⎣
x1
x2
...

xn−(d−1)τ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
y1 y1+τ . . . y1+(d−1)τ
y2 y2+τ . . . y2+(d−1)τ
... ... ...

yn−(d−1)τ yn−(d−2)τ . . . yn

⎤⎥⎥⎥⎥⎦ (4.2)

Choosing an appropriate value τ and d is fundamental as the whole process
depends on those two parameters. If the dimension is too low the phase space is not
capable of effectively reconstructing the system, if it is too high the representation
will be pointlessly complicated. On the other hand, τ should have a convenient
value to incorporate the dynamic of the attractor.

It is possible to apply Taken’s theorem to the ECG problem. In this case
the dynamic system is the heart, which is governed by an unknown number d
of independent variables xi, whilst only the lead II ECG can be observed (y).
However, the problem of chosing an appropriate d and τ still remain open. For the
sake of simplicity, the proposed solution employs a dimension of the reconstructed
phase space d = 2. For what it regards τ , the inherent rhythmicity of the ECG
was exploited in order to set τ equal to the demi-period of a heartbeat. Figure 4.2
shows two examples of ECG signals and their respective phase space reconstruction.
The phase space allows to represent the signal by its limit cycle, which is relatively
easy to discriminate between shockable and non-shockable rhythms, as Figure 4.2
proves.

57



Shockable rhythm recognition in Automated External Defibrillators

(a) ECG of a Normal
Sinus Rhythm (NSR).

(b) Bi-dimensional phase space
reconstruction of the NSR ECG.

(c) ECG of a mono-phasic
Ventricular Tachycardia (VT) rhythm.

(d) Bi-dimensional phase space
reconstruction of the mono-VT ECG.

(e) ECG of a poly-phasic
Ventricular Tachycardia (VT) rhythm.

(f) Bi-dimensional phase space
reconstruction of the poly-VT ECG.

Figure 4.2: Bi-dimensional phase space reconstruction of lead II ECG signals.

4.2.3 Autocorrelation based time delay
In the last section it was showed how the reconstructed phase space of an ECG

can be used to highlight differences between shockable and non-shockable rhythms,
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in terms of limit cycles. However, last section leaves open the problem of finding
the demi-period of the signal in order to properly adjust the value of τ .

The autocorrelation is formally defined as the correlation of a signal with a
delayed copy of itself as a function of such delay. Given a discrete signal x(n), the
autocorrelation function can be expressed in terms of delay l as:

Rxx(l) =
∑︂
n∈Z

x(n)x(n − l) (4.3)

High values of Rxx at a given l can be interpreted as a repeating pattern with ca-
dence 1/l, while low negative values can be interpreted as anti-pattern. Evaluating
the local maxima of the absolute value of the autocorrelation it is possible to find
the periods of inherent patterns inside a signal.

In other words: the autocorrelation function can be used to find repeating
patterns in a time series, and therefore can be exploited to find the period of an
ECG signal.

What makes autocorrelation so interesting with regards to other techniques
used to evaluate the heart-rate such as the Pan-Thompkins algorithm [93]; is that
according to the Wiener-Kuinchin theorem it can be evaluated as the inverse fourier
transform of the Power Spectral Density (PSD) function of a signal [94]. The PSD,
as explained later, is required to differentiate VT from VF, therefore estimating
Rxx is convenient in this specific problem.

4.2.4 K-Means
The phase space reconstruction technique described earlier in this chapter offers

a convenient representation for ECGs in terms of their limit cycle. If the ECG is
modeled as an oscillator, and the limit cycle represents the stability state of the
oscillations, it is reasonable to expect that different limit cycles represent different
oscillations, and thus different rhythms. In particular, mono- and bi-phasic VT
are characterized by an highly symmetrical pattern that repeats itself at a high
frequency. On the other hand, polymorphic VT and VF are characterized by a
chaotic dynamics, which will appear differently in the phase space. Conversely,
a Normal Sinus Rhythm (NSR) is characterized by a repeating non-symmetrical
pattern, which is represented by a characteristic cross in the phase space. All other
non-shockable rhythm alteration are represented as slight variation on the pattern
and frequency of the NSR oscillation, thus appearing similar to NSR in the phase
space. However, so far it is still missing a generalization for the discrimination
between non-shockable and shockable rhythms.

In the proposed solution, K-Means [95] is exploited to reduce the cluster of
points in the phase space to a more compressed representation. K-Means is a
clustering method used to represent different clusters of an observation with their
nearest centroid. The resulting centroid can then be used to represent the cluster

59



Shockable rhythm recognition in Automated External Defibrillators

for further analysis. Given a sequence of n observations X = (x1, x2, . . . , xn), the
K-Means method goal is to partition X in k ≤ n clusters C = (C1, C2, . . . , Ck) in
order to minimize the within-cluster sum of square:

arg min
C

k∑︂
i=1

∑︂
x∈Ci

∥x − µi∥2 = arg min
C

k∑︂
i=1

|Ci| VarCi (4.4)

where µi represent the mean of the points in Ci.

Lloyd’s algorithm

Despite K-Means is a inherently difficult problem to solve computationally, there
are various efficient heuristic algorithms that converge quickly to a local minimum.
For the sake of simplicity the proposed approach employed the Lloyd’s algorithm
[96] in order to estimate Ci. In the Lloyd’s algorithm, also known as naive approach,
the centroids are found by alternating between two steps. The first step is the
assignment, in which each observation is assigned to the nearest cluster:

C l
i =

{︂
xp : d(xp, ml

i) ≤ d(xp, ml
j)|∀j, 1 ≤ j ≤ k, j /= i

}︂
(4.5)

where d(x, m) is the distance function, and ml represents the centroids position in
the iteration l.

The second step is called update step and consist of recalculating the centroids
position based on the new assignment:

m
(l+1)
i = 1

C l
i

∑︂
xj∈Cl

i

xj (4.6)

Despite this algorithm does not guarantee to find the optimum solution, it will
converge in a fairly reasonable amount of iteration. The convergence condition is
that the assignment does not change for more than a certain amount of points.

Distance function

Because of the problem’s geometric symmetries along the phase space’s axes,
the distance function has been implemented with a Manhattan distance. In the
Manhattan distance, also known as taxicab metric, distances between two points
p1 and p2 is given by the sum of the lengths of the segments obtained projecting
the points onto the coordinate axes:

d(p1, p2) = ∥p1 − p2∥1 =
n∑︂

i=1
|pi

1 − pi
2| (4.7)
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where n is the dimension of the space. Consequently, in the case of a plane such as
the phase space considered in the proposed solution the Manhattan distance can
be expressed as:

d(p1, p2) = |px
1 − px

2 | + |py
1 − py

2| (4.8)
Therefore the Manhattan distance benefits axial distances over diagonal ones.

In this way the cross-like shape of a NSR ECG has an advantage over any other
arbitrary shape.

Algorithm implementation

In the proposed solution the convergence threshold for Lloyd’s algorithm has
been set as 10% of the total points. Additionally, it was implemented a safety back-
up mechanism for centroids that at the end of the Lloyd iteration are stuck with
no points. In such case the centroid is repositioned halfway through the centroid
with most points in an attempt of redistributing the cluster.

The last two parameters to define in order to use the Lloyd’s algorithm are the
number of cluster k and their initial position m0. Both k and m0 depends on data
and should be tailored according to the problem’s specification. Since the time
delay τ has been set to half the period of the signal, non-shockable rhythms are
reconstructed in the phase space as a cross-like shape where: the center contains
most of data, corresponding to the isoelectric line of the ECG; while the arms
mostly represents the QRS complexes. Exploiting this peculiar shape it is possible
to place k = 5 centroids according to this cross: one on the center, which will
represent most of data; and the other four on the cross’ edges, representing just a
little portion of the initial data. If the reconstructed phase space has the shape of
a cross, the five centroids will not be able to move since most of data is already
represented by the central centroid; otherwise, if data does not have a cross-like
shape, the centroids will be pushed away and data will be redistributed among all
five of them. Figure 4.3 depicts the results of the proposed solution applied to the
same signals showed in Figure 4.2.
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(a) K-Means method applied
to a NSR ECG.

(b) K-Means method applied
to a mono-VT ECG.

(c) K-Means method applied
to a poly-VT ECG.

Figure 4.3: K-Means applied to the phase space reconstruction of different lead II
ECG.

4.2.5 Links
Exploiting the K-Means method allows to reduce the problem in terms of rec-

ognizing the position of just five centroids. However, albeit knowing the position
of the centroids can already be a good indication of point’s distribution shape, it is
not sufficient to actually describe it. For instance Figure 4.4a shows a signals with
clear signs of VT. However, because of a combination of noise and inherent pattern
characteristics, the K-Means method applied on the phase space reconstruction
produces a cross-alike distribution of the centroids (Figure 4.4b).
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(a) Particularly noisy
VT ECG.

(b) K-Means method applied
to the same ECG.

Figure 4.4: K-Means applied to the phase space reconstruction of a noisy VT ECG.

Figure 4.4 highlights that use the centroids as a description of the reconstructed
phase space there is still the necessity of an additional information regarding the un-
derlying shape. In the proposed solution such information is provided in the form of
links between centroids. The presence of a statistically significant amount of points
between two centroids can be represented as a link among the two. Conversely the
absence of a statistically significant amount of points between two centroids can
be represented with the absence of a link. Therefore, a NSR ECG would appear
as a cross with the four outer neurons linked with the central one; while any other
configuration would appear differently. With regards to Figure 4.4b, it is clear how
the left and top centroids are linked together by the presence of points.

In order to assert if two centroids C1 and C2 are linked, all points pi belonging
to either of the centroids are projected on a line passing between the two. If a
significant amount of the projected points lay in the segment of the line enclosed
by the two centroids, then a link is formed. The projection is constructed taking
C1 as the reference system, then applying a dot product between p and C2 it is
possible to obtain the distance of the projected points d(p′)C1 with regards to C1:

d(p′)C1 = (p − C1) · (C2 − C1) (4.9)
Comparing this distance with the distance between C1 and C2 it is possible to

assert whether a point falls within the two centroids or not. In the proposed solution
the minimum amount of points to form a link was empirically set to 10% of the
total points in the phase space. Figure 4.5 shows the results of the linking process
applied to the signals showed in Figure 4.3 and Figure 4.4. In particular, the latter
show how links play a fundamental role in the phase space points depiction.
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(a) NSR ECG. (b) Mono-VT ECG.

(c) Poly-VT ECG. (d) Noisy VT ECG.

Figure 4.5: Linked K-Means method applied to the phase space reconstruction of
different lead II ECG.

4.3 Results
Resuming, the proposed method consist of representing a lead II ECG signal in

its phase space using a bi-dimensional time delay method. The phase space data is
then simplified by compressing it in five representative centroids obtained applying
K-Means. In order to achieve a better representation of data, the projection of
points to the line intersecting two centroids was used to assert connections between
coupled centroids. Finally, by controlling the resulting centroid’s position combined
with their connections it is possible to assert whether an ECG exhibits shockable
or non-shockable rhythms. Figure 4.6 shows a NSR signal that degenerate into VT,
paired with the algorithm results.
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Figure 4.6: The proposed algorithm at work. On top there is an ECG, on bottom
the algorithm’s results.

The algorithm was implemented in Matlab to validate its performance accord-
ing to the specification of IEC 60601-2-4 [97], which is a particular norm regarding
"Particular requirements for the basic safety and essential performance of cardiac
defibrillators". Section 201.107 of the norm describes the requirements for rhythm
recognition detectors and states that the validation database shall include: VF
rhythms of varying amplitudes, VT rhythms of varying rates and QRS width,
and various sinus rhythms including atrial fibrillation and flutter, supra-ventricular
tachycardias, sinus rhythm with premature ventricular contraction, asystole, and
rhythms that includes peacemakers. Furthermore, the norm also requires that the
algorithm’s performance shall be expressed in terms of specificity, sensitivity, and
a table reporting the results in form of Table 4.1.

Table 4.1: Algorithm results table. Template as for 60601-2-4.

Shockable rhythm Non-shockable rhythm
Shock A B
No shock C D

Sensitivity Se and specificity Sp are respectively defined as:

Se = A

A + B
; Sp = B

B + D
(4.10)

Moreover, the norm also define the minimum value of Se and Sp in order for
the algorithm to get certified, which can be resumed as: Sp over 95% in both cases,
SV T

p ≥ 90% for VT, and SV F
p ≥ 75% for VF.

The algorithm, therefore, was tested on various ECG extracted from different
databases in order to satisfy the norm requirements. Signals from MIT-BIH Normal
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Sinus Rhythm Database [98] (NSRDB) were used to test extensively the algorithm
specificity with regards to NSR signals. The MIT-BIH Supraventricular Arrhythmia
Database [99] (SVDB) was instead used to assert the algorithm specificity to supra-
ventricular arrhythmias. Finally, the CU Ventricular Tachyarrhythmia Database
[100] (CUDB) was used to assert both sensitivity and specificity to various shockable
and non-shockable rhythms. Each signal was divided in events with a fixed length of
four seconds, which will be the time window that the AED will have to analyze data.
No further elaboration was done. Table 4.2 resumes the database composition.

Table 4.2: Test database composition.

Signal Shockable event Non-shockable event Total events

NSRDB 16272 0 10000 10000
16420 0 19250 19250
16773 0 19250 19250
19093 0 9500 9500
17052 0 18750 18750

Summary 0 76750 76750

CUDB cu01 74 53 127
cu04 75 52 127
cu05 30 97 127
cu13 18 109 127
cu17 10 117 127
cu22 28 99 127
cu32 12 115 127
cu24 17 110 127

Summary 264 752 1016

SVDB 801 0 450 450
820 0 450 450
842 0 450 450
858 0 450 450
883 0 450 450

Summary 0 2250 2250

Finally, the test results are resumed in Table 4.3 in terms of: true positive TP,
true negative TN, false positive FP, false negative FN, and the resulting sensitivity
Se and specificity Sp. It is important to note that most of these recordings were
containing noise, which according to 60601-2-4 have to be removed. However, in
order to test the algorithm in the worst case scenario it was decided not to alter
data.
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Table 4.3: Test results.

Signal TP FP FN TN Se [%] Sp [%]

NSRDB 16272 0 0 0 10000 0 100.00
16420 0 0 0 19250 0 100.00
16773 0 0 0 19250 0 100.00
19093 0 0 0 9500 0 100.00
17052 0 0 0 18750 0 100.00

Summary 0 0 0 76750 0 100.00

CUDB cu01 74 0 0 53 100.00 100.00
cu04 72 0 3 52 96.00 100.00
cu05 28 0 2 97 93.33 100.00
cu13 17 0 1 109 94.44 100.00
cu17 10 0 0 117 100.00 100.00
cu22 27 0 1 99 96.43 100.00
cu32 12 0 0 115 100.00 100.00
cu24 17 1 0 109 100.00 99.09

Summary 257 1 7 751 97.34848 99.87

SVDB 801 0 0 0 450 0 100.00
820 0 0 0 450 0 100.00
842 0 1 0 449 0 99.78
858 0 0 0 450 0 100.00
883 0 0 0 450 0 100.00

Summary 0 1 0 2249 0 99.96

Final score 257 2 7 79750 97.34848 99.99749

4.4 Discriminating VT from VF
In conclusion of this chapter there is still an important distinction to do among

shockable rhythms. In fact, as stated in the introduction low frequency VT are
usually associated with a pulse. Therefore, after a shockable rhythm has been
recognized a final check should assert whether the rhythm is VT or VF, and in case
it is VT with a low frequency the rhythm should be recognized as non-shockable.
As a reference, low frequency in terms of VT is defined for less than 150 bpm.

Despite being recognized both as shockable rhythm, VT and VF exhibits a
rather different behavior. VT, in fact, follow a highly organized pattern; while VF
has a chaotic disorganized behavior. As a results it is reasonable to expect that
the Power Spectral Density distribution for VT and VF is rather different. In fact,
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VT exhibits a PSD marked by a very narrow band, as shown in Figure 4.7b; while
VF has a more distributed energy content. The evaluation of the PSD function has
been explained in chapter two in Equation 2.2.

(a) VT ECG. (b) VT PSD.

(c) VF ECG. (d) VF PSD.

Figure 4.7: Differences between VT and VF Power Spectral Distribution.

As a result, it is possible to use the Cumulative Spectral Power (CSP) described
in Equation 2.3 in order to differentiate VT from VF setting a narrow bandwidth
for the higher and lower bounds.

68



Chapter 5

Development of an Automated
External Defibrillator

In chapter 2 it was presented a series of wearable devices with ECG acquisi-
tion capabilities, after which chapter 3 introduced a novel approach on the ECG
classification problem. Since chapter 4 dealt with shockable rhythm recognition al-
gorithms to be implemented in Automated External Defibrillators (AED), the only
logical conclusion this dissertation is to present a novel device that implements the
algorithm presented in chapter 3.

In principle an AED is a rather simple device. A micro-controller has to manage
the charge and consequent discharge of a capacitor in response to the detection of
a shockable rhythm. Albeit the previous is an obvious understatement contrived
to conceptualize a complex device, it is not so far from reality. In fact, what makes
complicated an AED is a combination of multiple factors, first of which the presence
of a high-voltage circuitry operating back-to-back with delicate electronics such as
the ECG analog front-end. Furthermore, being a medical device, an AED has to
offer not only an absolute and categorical safety of operation, but has also to be
able to provide accurate forensic information regarding each and every use in case
something unexpected happens. As a matter of fact, the ECG file produced during
the use of an AED can be used as a evidence in case of litigation, e.g. to prove
that there was actually an attempt in resuscitating a SCA victim. Moreover, being
used primarily by under-trained operators in stressful conditions, an AED should
provide some error-tolerant behavior as well as to guide the user in each step by
means of voice commands and visual feedback. All these functions, and many more,
combined together in a reasonably small, inexpensive, and low power device; makes
the design process of an AED a rather complicated task.

The scope of this chapter, however, is not to provide a guide or a rationale on
the design process of an AED. As a matter of fact, the author already discussed
about it in [101] and in [102]. Instead, here will be presented a novel device that
was expressly designed to operate with the algorithm showed in chapter 4 to act
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both as a benchmark and as a link between the research’s and consumer’s worlds.

5.1 Hardware description
The proposed AED’s block diagram is showed in Figure 5.1, where every element

is grouped depending on the physical PCB it belongs. The system has two main
boards: the high-voltage board, represented by the top red group; and the control-
board, represented by the bottom yellow group. The two main boards are matched
with three or four satellite boards depending on the configuration. The extra board
is required for the display operation. Despite technically it is not part of the device,
the battery board was included in the block diagram because, for obvious reason,
the system cannot work without it.

Figure 5.1: The AED block diagram.

Starting from the battery: besides the LiMnO2 cells, the battery-pack con-
tains a PCB populated with some protection circuitry and a EEPROM memory.
The memory is required to save important information about the evolution of the
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State of Charge (SoC) of the battery. Accurate estimations of the battery’s SoC is
indeed of vital importance for the correct operation of the device. In fact, the con-
sequences of the AED shutting down during its operation can have unpredictable
results, where in the best case scenario the device simply won’t turn on and the
patient chances of survival drop significantly. Since LiMnO2 cells have a rather flat
Voltage-SoC characteristic, SoC estimation is an intrinsically difficult problem that
require different parameters such as: temperature, currents, and internal impedance
estimation. The time evolution of such parameters is saved in the internal memory
of the battery. In this way the SoC can be estimated even if the battery is removed
and placed on other devices.

Figure 5.2: The AED as seen from the inside. Left side is the high-voltage board,
right side is the control board.

The high-voltage board contains all the circuitry that safely controls the charge
and discharge of the defibrillation capacitor. The charging circuit is a relatively
high-powered DC-DC converter that, starting from the 12V provided by the bat-
tery, can charge the capacitor to a voltage up to 1850V in less than 8 seconds.
The discharge circuit, instead, consist of a IGBT H-Bridge that allows biphasic
discharges in the patient. Additionally, in cases when the capacitor is charged, but
for some reason the defibrillation is no longer required, e.g. the electrodes were
disconnected; the high-voltage board is also equipped with an internal discharge
circuit, consisting of a 25W -50Ω resistor perfectly capable to absorb all the capaci-
tor residual energy. Finally, the high-voltage board includes protection circuitry to
protect it in case of misuse or faulty conditions. These protections includes, but are
not limited to: over-current protection on the charging circuit, over-voltage protec-
tion on the capacitor, and short-circuit protection on the discharge circuit in both
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terms of: H-Bridge phases, and electrodes shorting. Finally the high-voltage board
also incorporates the DC-DC converters required to power all AED’s circuitry.

Finally, the control board contains the AED’s brain with all the related elec-
tronics. From a functional point of view the control board can be divided in two
parts: the main control unit (MCU), and the auxiliary control unit (ACU). MCU
is the responsible of the most important operations during the active use of the
device and some of its most important tasks include: controlling the high voltage
circuitry; acquiring, analyzing, and storing the ECG and impedance signals; saving
detailed logs of operation; managing the user-machine interactions; etc. The ACU,
instead, is mostly responsible of the stand-by operation of the device waking-up
the MCU when it is required, monitoring the battery, and keeping track of time.
Besides the stand-by operations, however, ACU is also responsible for the audio
system in terms of both performing ambient recordings and producing an audio
signal when MCU requires it.

5.2 Mode of operation
The AED operation is organized as a Finite State Machine (FSM) with twelve

distinct states, where each state is characterized by different operative and logical
conditions. Each state is in turn organized as three different parts that defines
its life cycle: init, loop, and exit. The state’s init is the early stage of the state,
where the FSM correctly initializes the resources required for the state’s operation.
The loop stage, instead, represents the permanent functioning of the state, from
which it is only possible to exit after the occurrence of certain events depending
on the state itself. Finally, the exit stage represents the state’s end of life, which
is responsible for the correct release of the resources used by the state operation as
well as the selection of the state that will follow the current one.
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Figure 5.3: AED mode of operation: a twelve states finite state machine.

Figure 5.3 represents a simplified version of the 12-state FSM with a color-code
based on the state’s capability of operating the high-voltage circuitry, or interacting
with the patient in terms of ECG, impedance, or defibrillation. In this, yellow-
colored states are those which can control the high-voltage circuitry, but cannot
interact with the patient. Red states, instead, not only can operate the high-
voltage circuitry, but can also interact with the patient. Conversely, green states
can interact with the patient, but cannot control the high-voltage circuit. Finally,
blue states have no mean of interacting with the patient and no access to the
high-voltage circuitry.

What follows is a brief description of the functioning of some of the most im-
portant states, which allow a better understanding on how the device operates.

5.2.1 State: Analysis
When in this state, the AED performs ECG acquisitions and formulates a diag-

nosis in order to decide whether the patient requires defibrillation or not. In order
to enter in this state it is required that the pads are correctly placed on a patient.
In this state the high-voltage circuitry is disabled.
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Init

During the analysis state initialization the device checks if the pads are actually
connected to a patient by analyzing the impedance. After that, the operator will be
warned not to touch the patient in preparation of the upcoming rhythm analysis.
Consequently, when the message is over, the device wait up to four more seconds
in order to give the operator enough time to stop interacting with the patient.

Loop

During the analysis loop the system continuously perform three fundamental
checks:

1 the occurrence of an asynchronous request of changing state, e.g. the operator
pushing the shutdown button.

2 the patient’s impedance, which determines the premature exit from the state
in case the AED cannot detect anymore the patient.

3 ECG data is ready to be analyzed. In this case the system will perform
post-processing operations on the data, followed by the application of the
algorithm described in the previous chapter. Depending on the result of the
algorithm, this analysis can be repeated up to three times in case of non-
shockable rhythms.

Exit

The exit from this state does not require particular operations.

5.2.2 State: Armed
This state is entered when the system is ready to deliver a defibrillation discharge

to the patient.

Init

Upon entering this state the AED will enable the defibrillation button and starts
emitting a sound alarm.

Loop

This state implements a variation of the Analysis loop in which the condition
3 is repeated up to three times until the patient exhibits a shockable rhythm.
Moreover a fourth check is made on the defibrillation button. In case it is pressed
the AED will deliver the shock and exit the state right away.
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Exit

Upon exiting this state the AED will disable the shock button as well as stopping
the sound alarm.

5.2.3 State: Charging
The charging state is analogous to the Analysis state, with the only difference

that the capacitor is charging.

Init

Entering this state causes the charging circuit to be activated in conjunction
with the charging sound alarm.

Loop

The loop is similar to the one of the Armed state, with the difference that the
fourth check is on the capacitor state: when it reaches the desired voltage a change
of state is requested.

Exit

When exiting from this stage the charging sound alarm is stopped.

5.2.4 State: Self-test
This special state allows the machine to perform a diagnostic check on the main

components in order to avoid malfunctions.

Init

Upon entering this state the AED will enable the shock button, requesting the
operator to push it in order to perform the tests.

Loop

During the loop, the AED will wait up to 15 seconds for the operator to push the
button. When the button is pressed the device will perform a series of diagnostic
tests to evaluate the device state. These tests include: high-voltage charging and
discharging, ECG tests, memory access tests, pads recognition tests, date/time
tests, etc.
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Exit

Exiting this state the device will provide a feedback on the test’s results to the
operator.

5.3 Tests
This device was designed with the fundamental requirement of implementing

the novel algorithm described in chapter 4. For this purpose, the AED acted as a
benchmark for the validity of a real-world implementation of the proposed algorithm
to assert both the performance of the results and the computational efficiency.

The results were evaluated with the aid of a defibrillator analyzer: the Fluke
7000DP [103]. This is a high-performances analyzer that, among other functions,
can simulate a patient by providing a variable ECG waveform that can be recognized
by the AED. Moreover, in case of a shockable rhythm the analyzer can be used
to assert the defibrillation quality in terms of energy accuracy and defibrillation
waveform, as shown in Figure 5.5.

Figure 5.4: AED test configuration.

During the AED tests, each available waveform was evaluated with regards to
the expected output for a duration of time sufficient to analyze each rhythm not
less than three times. Figure 5.4 shows the actual test configuration.
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Figure 5.5: AED defibrillation test results.

The results are presented according to Table 4.1 in Table 5.1. The AED was
capable of correctly recognizing all the different waveform tested with the defib-
rillator analyzer. The average elaboration time for the algorithm was around 1.5
seconds, which is overall an acceptable delay with regards to an acquisition window
of four seconds.

Table 5.1: Algorithm results in terms of Sensitivity and Specificity.

Signal A B C D Se [%] Sp [%]

7000DP Shockable 60 0 0 0 100.00 100.00
Non-shockable 0 0 0 90 100.00 100.00
Summary 60 0 0 90 100.00 100.00

77



78



Chapter 6

Conclusions

Sudden Cardiac Arrest (SCA) is a deadly condition in which the heart unexpect-
edly stops beating in a functional manner, thus effectively stopping the patient’s
blood flow. When this happens the patient can only survive if the blood’s flow
is promptly restored by restarting the heart’s activity, e.g. with defibrillation; or
by artificially forcing the flow, e.g. with Cardio-Pulmonary Resuscitation (CPR).
What makes especially deadly SCA, besides requiring immediate action, is that the
underlying causes can remain silent for years until the fatal event. Therefore, the
only effective weapons to fight SCA are preventive screenings, and a readily avail-
able Automated External Defibrillators (AED). However, preventive screenings can
only be effective when performed with regular cadence. In addition, rare events are
difficult to spot unless the exams contemplate long-lasting investigations. On the
other hand, although AEDs are a life-saving commodity, they cannot be seen as
a definitive solution to the problem. As a matter of fact, AED can only rise the
chance of survival during a SCA event, and not ensure it. For this reason, AEDs
should aim have the best achievable performances, especially in terms of response
time. In particular, during the rhythm analysis AEDs require that the rescuer does
not touch the patient. As a consequence, the longer the analysis takes the longer
the patient will suffer hypoxia, and thus if the rhythm recognition fails, the patient
not only missed their chance of being defibrillated, but also had delayed CPR for
all the duration of the analysis drastically lowering the rate of survival.

6.1 Achieved results
The main goal of this dissertation was to provide a contribution to the above-

mentioned problems by supplying a new sets of instruments that could be employed
in fighting arrhythmias both before and after an SCA event.

To summarize, the main contributions are:

• a series of low-cost wearable devices capable of ECG and PPG acquisitions
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that can be employed to frequently monitor the heart in order to spot early
signs of arrhythmias;

• an innovative arrhythmia classifier that analyzes ECGs using 1D-CNN;

• a novel approach to shockable rhythm recognition by exploiting K-Means
clustering in a reconstructed phase space;

• a new fully-fledged AED that efficiently employs the shockable rhythm recog-
nition algorithm to provide diagnosis with the least amount of delay possible.

These accomplishments were confirmed with a series of experiments that yielded
the following results:

- ECG signals whose quality and heart-beat estimation are compatible with
consolidated medical gold standards can be obtained from ECG Watch and
Vital ECG;

- PulsECG’s synchronous ECG and PPG acquisitions yields an ECG signal
qualitatively comparable with those obtained with the above-mentioned de-
vices;

- proof that 1D-CNN can be used to assert arrhythmias, provided that the
starting dataset is consistent and balanced;

- evidence that deep networks can extract and further abstract the same temporal-
like attributes that humans employ in feature engineering;

- employing K-Means in describing shapes of the ECG phase space reconstruc-
tions produces results with very high rates in terms of sensitivity and speci-
ficity;

- the new AED efficiently implements the novel algorithm, and obtained the
CE marking.

6.1.1 Wearable ECG devices
The first step towards arrhythmias recognition is to form an in-depth knowledge

of the ECG signal. In Chapter 2 a series of wearable low-cost devices with ECG
capabilities were presented and discussed. Such devices could have a profound im-
pact on heart diseases’ prevention because they would open to a large consumer
audience the chance to perform self check-ups that nowadays only specialized cen-
ters allow. The ECG recordings produced by wearable devices can then either be
sent to specialists, or analyzed with automated algorithms. Regardless of how data
is handled, these devices can provide an improved way of spotting early signs of
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cardio-vascular diseases, or even a mean of keeping under control an existing con-
dition. Three novel tools: ECG Watch, Vital ECG, and PulsECG; are presented
with an in-depth description of the design and validation process. In particular,
the former two were compared with two different professional-grade CE certified
electrocardiograph; while the latter was only analyzed qualitatively because of the
limitation imposed by the COVID-19 pandemic. This comparison highlighted that,
despite the gold standards are obviously capable of better performances, the ECG
obtained with both ECG Watch and Vital ECG has compatible characteristics in
terms of quality and heart-rate estimation. Furthermore, qualitatively speaking
PulsECG seems capable of extracting ECG signals compatible with the other two
devices, with the addition of providing a synchronized PPG signal. In conclusion,
these devices represent a valuable tool for monitoring the ECG.

6.1.2 Arrhythmia pattern recognition
The desirable rise of consumer devices with ECG capabilities described in Chap-

ter 2, however, would produce an unmanageable amount of data that only trained
physician could understand. Indeed, an ECG without interpretation is just a scrib-
ble on a paper. As a consequence, the progress on the hardware of wearable ECGs
has to be paired with a similar progress on rhythm recognition algorithms, oth-
erwise there is a concrete risk of not having any benefit whatsoever in the use of
such devices. For this purpose, chapter 3 introduces the use of 1D-CNN in ECG
arrhythmia recognition. At first, the technique was applied to a wide generalized
problem where the network aimed at recognizing 16 different arrhythmias. How-
ever, because of class imbalances on the starting dataset, the network only succeded
in recognizing some of them. A second more successful attempt was made with a
less generalized approach that aimed on recognizing only 5 different arrhythmias.
The results of this second network showed that a classification was indeed possible
as long as the training dataset allowed it. To conclude the chapter, two more net-
work were used to assert the inner functioning of deep networks. For this purpose
intermediary outputs of the net were compared with manually-picked temporal
features in terms of cross-correlation. The results proved that the 1D-CNN was
indeed extracting some of the temporal features in the first layer hinting that the
further abstraction of such features in subsequent layers is responsible for the good
classification accuracy.

6.1.3 Shockable rhythm recognition for AED
Despite their fascinating results, deep network are still far too computationally

expensive to be employed in commercial AEDs. Being constrained by memory
and speed limits, the micro-controllers commonly employed in AEDs put some
restrictions to the algorithm that they can implement. Furthermore, since shockable
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rhythms appear as ECGs with heterogeneous characteristics it is not trivial to
define a generalization without first extracting a model, or representing the signal
in a different way. Another way of representation for the ECG was presented in
chapter 4, where it was described how to reconstruct the phase space of a dynamic
system by means of time-delay embedding. Shockable and non-shockable rhythm
exhibits two very different dynamics, so the reconstructed phase space is inherently
dissimilar. By exploiting K-Means clustering geometric proprieties it is possible
to represent all the points in a phase space by just five centroids. In addition,
it is possible to add links between paired centroids depending on the presence or
absence of data between them. The combination of the centroid’s position and
their links, finally, is sufficient to faithfully represent shapes in the phase space
complex enough to formulate a diagnosis on the rhythm. Finally, the PSD can be
analyzed to discriminate VT from VF, so that low frequency VT is recognized as
a non-shockable rhythm.

6.1.4 Development of an AED
In conclusion of this dissertation, Chapter 5 briefly presents a novel AED espe-

cially developed to take advantage of the shockable rhythm recognition algorithm
presented in Chapter 4. The proposed device complies with all modern standards
in terms of AED performances, as well as the significant IEC 60601 norms. At the
time of writing the AED is in a production-ready state, and has already obtained
the CE marking.

6.2 Future pathways
In this thesis the problem of cardio-vascular diseases has been tackled from

different perspectives. Despite the results of the proposed tools, there are still a
great number of points left open, and many more left out from this work. Moreover,
because of the COVID-19 pandemic and its secondary consequences such as the
electronic components shortage had a negative impact on reaching all the objectives.
In fact, besides PulsECG there was another device already designed and ready for
testing, if only the components were available. Some other examples of future
perspective are:

• the formal validation of PulsECG;

• testing Net 4, or similar 1D-CNNs, with different, more-complete datasets;

• reconstructing the ECG in a higher dimensional phase space;

• developing an AED capable of employing neural networks for the rhythm
recognition problem.
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