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Abstract 1 

Extracellular vesicles (EVs) are nano-sized membrane-bound structures released by cells that 2 

are able to transfer nucleic acids, protein cargos and metabolites to specific recipient cells, 3 

allowing cell-to-cell communications in an endocrine and paracrine manner. Endothelial, 4 

leukocyte and platelet-derived EVs have emerged both as biomarkers and key effectors in the 5 

development and progression of different stages of vascular damage, from earliest alteration 6 

of endothelial function, to advanced atherosclerotic lesions and cardiovascular calcification. 7 

Under pathological conditions, circulating EVs, promote endothelial dysfunction by 8 

impairing vasorelaxation and instigate vascular inflammation by increasing levels of adhesion 9 

molecules, reactive oxygen species and pro-inflammatory cytokines. Platelets, endothelial 10 

cells, macrophages and foam cells secrete EVs that regulate macrophage polarization and 11 

contribute to atherosclerotic plaque progression. Finally, under pathological stimuli, smooth 12 

muscle cells and macrophages secrete EVs that aggregate between collagen fibers and serve 13 

as nucleation sites for ectopic mineralization in the vessel wall, leading to formation of 14 

micro- and macrocalcification. In this review, we summarize the emerging evidence of the 15 

pathological role of EVs in vascular damage, highlighting the major findings from the most 16 

recent studies and discussing future perspectives in this research field. 17 

  18 
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Introduction 1 

Cardiovascular disease, causing more than 17.9 million deaths per year and accounting for 31% 2 

of global mortality, represents the leading cause of death worldwide1. Cardiovascular events 3 

are the consequence of vascular damage, a continuum of pathological alterations, ranging from 4 

early endothelial dysfunction to calcific atherosclerotic lesions, caused by several established 5 

risk factors, including arterial hypertension, diabetes, metabolic syndrome, ageing, smoking 6 

and physical inactivity2.  7 

Extracellular vesicles (EVs) are particles loaded with nucleic acids, proteins and metabolites, 8 

protected by an outer lipid membrane. According to their biogenesis, EVs can be categorized 9 

into two main subgroups: exosomes and microvesicles3. Exosomes are generated by inward 10 

budding of the endosomal membrane, forming intraluminal vesicles that are packaged in 11 

multivesicular bodies and then released into the extracellular space through fusion with the 12 

plasma membrane; microvesicles are generated by outward budding and fission of plasma 13 

membrane. EVs are heterogeneous in size ranging from 30-150 nm of exosomes to 100-1000 14 

nm of microvesicles3. The latter include vesicles of small size released by normal cells also 15 

named ectosomes, and larger apoptotic vesicles released by damaged cells.  16 

Since their first description in the late 60s,4 extensive knowledge has been gained on the role 17 

of EVs in human physiology and disease. Far from being simple biomarkers of cellular injury,  18 

EVs released  into the extracellular space can mediate cell-to-cell communication and regulate 19 

biological processes by means of RNA and protein transfer into recipient cells3. 20 

In the cardiovascular field, EVs have been shown to play a dual role: a protective and 21 

therapeutic role, with a beneficial effect on vascular function, depending on their cellular origin 22 

and cargo5 as well as pathological role as mediators contributing to the initiation and 23 

progression of vascular damage, from earliest to latest stages6. 24 
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In this review, we will focus on the pathological role of EVs in vascular damage, from the 1 

earliest stages of endothelial dysfunction to vascular inflammation, initiation and progression 2 

of atherosclerosis, fibrosis and calcification. 3 

 4 

Extracellular vesicles, endothelial dysfunction and oxidative stress 5 

Endothelial dysfunction 6 

The endothelium plays a crucial role in maintaining vascular homeostasis and regulating the 7 

delicate balance between vasoconstriction and vasorelaxation. Under physiological conditions, 8 

the equilibrium is maintained by the release of endothelium-derived relaxing factors (e.g., nitric 9 

oxide - NO -, prostaglandins, endothelium-dependent hyperpolarization factors) and 10 

endothelium-derived contracting factors7. The reduction of endothelium-derived relaxing 11 

factors is the main driver of endothelial dysfunction and is considered the initial step of 12 

atherosclerosis, the underlying pathology of cardiovascular disease8. 13 

Increased circulating levels of endothelial-derived EVs have been associated with endothelial 14 

dysfunction in different physiological and pathological conditions, including physical 15 

inactivity, obesity, diabetes, chronic kidney disease (CKD), pre-eclampsia and coronary artery 16 

disease9. Several in vitro and in vivo studies suggest that EVs, beyond their role as biomarkers 17 

of impaired endothelial function, can interact directly with the endothelium and play a central 18 

role in promoting cellular dysfunction.   19 

Despite significant heterogeneity in both cell treatment conditions and isolation protocols, it 20 

has been consistently demonstrated through in vitro studies that, under pathological conditions, 21 

circulating EVs impair vasorelaxation through the reduction of NO bioavailability. The effect 22 

is mediated by inhibition of endothelial NO-synthase (eNOS) through activation of 23 

ERK1/ERK2 signaling10,11 and enhancement of phosphoinositide (PI) 3-kinase pathway11. 24 
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Similar findings were obtained from studies with animal models, recapitulating hypertensive 1 

and hyperglycemic conditions. The results of these studies showed that circulating EVs can 2 

harbor and transfer specific molecules, whose concentration is modified by pathological 3 

conditions, ultimately altering endothelial and vascular function of recipient vessels, by direct 4 

and indirect mechanisms9.  5 

High blood pressure levels increase the concentration of angiotensin-converting enzyme (ACE) 6 

in EVs secreted by adventitial fibroblasts in spontaneously hypertensive rats. Transfer of ACE 7 

in smooth muscles cells (SMCs) enhance the ACE activity and angiotensin-II (Ang II) 8 

concentration in recipient cells12. In part by these pathways, adventitial-derived EVs and 9 

circulating EVs from hypertensive rats can modulate the vascular function at different levels: 10 

by regulating SMCs proliferation, impairing vascular remodeling12,13 and  affecting 11 

endothelium-dependent vasodilatation14. 12 

Studies on animal models that mimic diabetes-induced endothelial dysfunction, showed similar 13 

results, although mediated by different mechanisms. Circulating EVs, collected from diabetic 14 

mice, display higher levels of arginase 1 (Arg1) than EVs from normoglycemic controls. Arg1 15 

converts L-arginine to urea and L-ornithine, reducing L-arginine bioavailability, the substrate 16 

for NO production. Hence, transfer of Arg1 to endothelial cells by circulating EVs results in 17 

NO reduction and impaired vasorelaxation15. 18 

Translational studies, investigating the effects of human circulating EVs on endothelial cell 19 

function, corroborated the hypothesis derived from animal studies, underlying the importance 20 

of comorbidities in the determination of EV content and effects. Circulating EVs of patients 21 

with metabolic syndrome reduce NO bioavailability via eNOS phosphorylation in endothelial 22 

cells16. In CKD, circulating EVs reduce acetylcholine mediated vasorelaxation, as assessed by 23 

reduction of cGMP in recipient endothelial cells17. Similarly, circulating EVs from patients 24 

with myocardial infarction, but not from controls, reduce acetylcholine mediated 25 
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vasorelaxation18,19 by lowering levels of eNOS through ERK1/ERK2 and PI-3 kinase 1 

pathways20. 2 

 3 

Oxidative stress 4 

Oxidative stress plays a critical role in endothelial dysfunction by direct impairment of NO 5 

availability21. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase increases 6 

oxidative stress, reduces NO availability and weakens endothelium-dependent 7 

vasorelaxation22. Similar to the findings on endothelial dysfunction, the evidence of EV role in 8 

the regulation of vascular oxidative stress is derived from in vitro, animal and translational 9 

studies. 10 

Under hyperglycemic conditions, cultured endothelial cells release EVs with high levels of 11 

reactive oxygen species (ROS) and increased NADPH oxidase activity23. Similarly, proteomic 12 

analysis of endothelial derived EVs exposed to high glucose concentrations, showed a 13 

modification of their protein cargo and increased EV-mediated oxidative stress24. The increase 14 

in ROS concentration enhances p38 phosphorylation in endothelial recipient cells and activate 15 

the endothelial layer23. 16 

Analogous effects of EV-mediated oxidative stress have been shown in ApoE-deficient mice 17 

fed a high fat diet. In this animal model, high-glucose-stimulated endothelial EVs demonstrated 18 

impaired endothelial function, increased macrophage infiltration and enhanced adhesion 19 

protein expression in atherosclerotic lesions by ROS-dependent mechanisms23.  20 

Finally, a translational study showed that EVs from patients with acute coronary syndrome are 21 

able to increase oxidative stress in recipient endothelial cells, through upregulation of the 22 

p22phox NADPH oxidase subunit20, with consequent redox-sensitive activation of mitogen-23 

activated protein (MAP) kinases and ERK1/ERK2 phosphorylation. These effects are partially 24 

abolished by inhibition of renin-angiotensin system20. 25 
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Taken together these data indicate that EVs released under various pathological conditions, 1 

may represent endocrine and paracrine mediators able to promote endothelial dysfunction and 2 

vascular oxidative stress through various arrays of different pathways. However, although pre-3 

clinical evidence are relatively robust, translational studies are currently limited, involving only 4 

few of the many pathological conditions that can alter endothelial function through EV-5 

mediated mechanisms. Moreover, most of the studies evaluated the effects of circulating EV 6 

from patients with late-stage disease, such as myocardial infarction and end stage CKD. 7 

Whether EVs from patients with the earliest stages of cardiovascular disease harbor the same 8 

content and biological properties of EVs from patients with advanced cardiovascular disease 9 

remains to be elucidated. The answer to these timely questions is pivotal for future 10 

prioritization of potential targets to prevent and treat cardiovascular disease. 11 

 12 

Extracellular vesicles and vascular inflammation 13 

Accumulating evidence indicates that the inflammatory response, involving both the innate and 14 

the adaptative immunity, plays a pivotal role in initiation of atherosclerosis and its 15 

complications25. Inflammatory response is now recognized as valuable target for the reduction 16 

of cardiovascular events, as demonstrated by the efficacy of colchicine and the IL-1β inhibitor 17 

canakinumab for secondary prevention26,27. 18 

Circulating EVs released from different cell types can modulate leukocyte-endothelium 19 

interaction and actively participate in the vascular inflammatory response, through diverse and 20 

multifaceted mechanisms, including transferring of miRNA, proteins or phospholipids to target 21 

cells. Most of the available scientific reports focus on EVs released by monocyte, neutrophils 22 

and platelets that seem to act as mediators of vascular inflammation at different levels, 23 

including endothelial activation, leukocyte adhesion and diapedesis. 24 
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In vitro, activated monocyte-derived EVs stimulate by autocrine mechanisms the production 1 

of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin 2 

6 (IL-6), and activation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-3 

κB)28. Consistently, stimulation of endothelial cells by activated monocyte-derived EVs, leads 4 

to NF-κB activation and expression of several adhesion molecules and pro-inflammatory 5 

cytokines, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion 6 

molecule-1 (VCAM-1), E-selectin, C-C Motif Chemokine Ligand 2 (CCL2) and IL-629,30. The 7 

effects are mediated by mechanisms involving IL-1 and NLR family pyrin domain containing 8 

3 (NLRP3) and modulation of mi-RNA cargos. In particular, in monocyte-derived EVs, 9 

inflammatory stimuli increase miR-155 and reduce miR-22330  that exhibit opposite effects at 10 

vascular level. While mi-R155 stimulates inflammation and atherogenesis, miR-233 displays 11 

anti-inflammatory effects by reducing IL-6 and IL1-β in macrophages and ICAM-1 expression 12 

in endothelial cells31,32. Therefore, the combined effect of inflammatory molecules and 13 

miRNAs contributes to the pleiotropic effects of monocyte-derived EVs in vasculature. 14 

Similar to monocyte EVs, environmental conditions regulate the content and biological 15 

properties of neutrophil-derived EVs that have been shown to enhance endothelial 16 

inflammation and contribute to atherogenesis. A crucial mechanism is played again by miR-17 

155, transferred from neutrophil-derived EVs to endothelial cells in atheroprone sites33, where 18 

a high ICAM-1 expression  promotes EVs adhesion via  CD18 binding33. Under basal 19 

conditions, neutrophil-derived EVs display anti-inflammatory effects promoting cells adhesion 20 

properties34. On the opposite side, following inflammatory stimuli, neutrophil-derived EVs 21 

increase the production of pro-inflammatory cytokines in endothelial cells35. Beyond 22 

endothelial activation, neutrophil-derived EVs enhance monocyte adhesion to the endothelial 23 

layer and monocyte transmigration by CCL-2 mediated mechanism33. This is induced by a 24 

direct and preferential effect on endothelial cells, rather than on monocyte, suggesting that the 25 
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EV-mediated cross-talk between neutrophils and endothelium is pivotal for the regulation of 1 

leukocyte infiltration in the vascular wall33. 2 

The effects of platelet-derived EVs on the different steps of vascular inflammation have been 3 

extensively studied. Platelet-derived EVs regulate endothelial activation and production of  4 

inflammatory molecules in both endothelial cells and monocytes36,37. Pathological conditions 5 

can alter the cargos of platelet-derived EVs, particularly at miRNA level. MiR-320b, whose 6 

transcription is reduced in patients with myocardial infarction, promotes the transcription and 7 

production of ICAM-1 in endothelial recipient cells. Therefore, the reduction of miR-320b can 8 

contribute to the activation of endothelium with enhanced leukocyte adhesion and diapedesis37. 9 

Platelet derived-EVs favor rolling of neutrophils and monocytes on endothelial surface and the 10 

interaction between flowing leukocyte and rolling leukocyte, in a P-selectin mediated 11 

manner38–40. This effect is provided by direct transfer of IL-1β and chemokine (C-C motif) 12 

ligand 5 (CCL5) through activated platelet-derived EVs to endothelial cells40,41. Leukocytes 13 

then become firmly adhered to endothelial cells through CXC receptor-chemokine interaction, 14 

which is enhanced by platelet-derived EVs through activation of both leukocytes and 15 

endothelial cells39. 16 

Beyond the traditional regulators of endothelial function, other cells can modulate the 17 

activation of endothelium by the release of EVs that acts through endocrine mechanisms. In 18 

particular, under hypoxic and inflammatory conditions, adipose cells release EVs that increase 19 

VCAM-1 and leukocyte adhesiveness of endothelial recipient cells42. Moreover, endothelial 20 

cell-derived EVs can regulate the activation of endothelial layer by autocrine and paracrine 21 

action. Specific environmental conditions (e.g., hypoxia, inflammatory stimuli, hyperglycemia, 22 

oxidative stress) alter the proteins, lipids and RNAs carried by endothelial-derived EVs43,44. In 23 

particular, under the effect of ROS, endothelial cells release EVs containing pro-inflammatory 24 
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oxidized phospholipids that stimulate the adhesion of monocyte to endothelial cells with 1 

consequent induction of vascular inflammation44. 2 

In conclusion, several pro-inflammatory stimuli and stressors can modify cargos and biological 3 

properties of EVs that can act in an autocrine, paracrine and endocrine fashion, regulating the 4 

multiple steps of vascular inflammation. Although the effects of EVs released by various cell 5 

types have been investigated in multiple in vitro studies, translational research is currently 6 

limited. Future studies should explore the effects of specific pathological conditions and 7 

diseases in animal models to better understand the diagnostic and therapeutic potential of in 8 

vitro findings. 9 

Moreover, most of the studies evaluated the effects of EVs from a single cell type. However, 10 

given the variety of cells that contribute to the regulation of vascular inflammation by EV-11 

mediated mechanisms, future efforts should be devoted investigating the pleiotropic and 12 

simultaneous effects of EVs from multiple cell types. The synergic effect of EVs from multiple 13 

cell sources could unravel novel mechanisms widening the spectrum of EV-mediated effects 14 

in vasculature. 15 

 16 

Extracellular vesicles and atherosclerosis 17 

Infiltration of low-density lipoproteins (LDL) in the subendothelial space is the cornerstone of 18 

the initiation of the atherosclerotic process. Exposure of the vessel wall to chronically high 19 

circulating LDL via an altered endothelial barrier results in the deposition of LDL in the intima 20 

layer45. Increase of ROS in the subendothelial space leads to oxidation of LDL with oxidized 21 

LDL (ox-LDL) formation. Ox-LDL facilitate the differentiation of monocytes into 22 

macrophages that express high levels of scavenger receptors for LDL46. Scavenger receptor 23 

binds to and uptakes ox-LDL in macrophages by phagocytosis and pinocytosis, leading to a 24 
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vicious cycle of cholesterol ester accumulation in the form of cytoplasmatic lipid droplets45. 1 

This process, together with an impairment of the export mechanism of cholesterol mediated by 2 

ATP-binding cassette (ABC) transporters (ABCA1 and ABCG1), leads to the formation of 3 

lipid-laden foam cells in the atherosclerotic plaque46.  4 

EVs from different sources, including platelets, endothelial cells, monocytes, macrophages, 5 

SMCs and adipose tissue play an important role in the regulation of atherosclerotic plaque 6 

development.  7 

Platelet-derived EVs can promote the initiation and progression of atherosclerotic lesion in the 8 

arterial wall at different steps47. Activated platelet-derived EVs increase the internalization of 9 

ox-LDL in macrophages, secretion of pro-inflammatory cytokines and formation of foam 10 

cells48. Moreover, in the latest stage of the atherosclerotic disease, platelet-derived EVs can 11 

promote thrombus formation after the rupture or erosion of the atherosclerotic plaque. In fact, 12 

platelet-derived EVs harbor negatively charged phosphatidylserine that directly enhances the 13 

aggregation of prothrombin complexes and activate the intrinsic and extrinsic coagulation 14 

pathways47,49,50. The cross-talk between monocytes and platelets is pivotal for the modulation 15 

of EV release by both cell types, and strongly affect their biological properties51. 16 

Monocyte/platelet aggregates are associated with cardiovascular disease and hypertension52,53. 17 

Under inflammatory stimuli, their interaction promotes the release of EVs with pro-atherogenic 18 

properties and long-lasting effects at vascular levels51. These effects can be blunted by the 19 

inhibition of platelet activation with acetylsalicylic acid, P2Y12 inhibitor and iloprost51. 20 

Endothelial EVs are crucial in the development of the atherosclerotic processes, and local pro-21 

atherogenic stimuli can alter endothelial EV release, regulating endothelial and macrophage 22 

function locally and at distant sites. In vitro, Ox-LDL and IL-6 increase packaging of miR-92a-23 

3p in EVs secreted by endothelial cells, which in turn activates endothelial proliferation and 24 

angiogenesis. In humans, miR-92a-3p is increased in endothelial-derived circulating EVs from 25 
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patients with coronary artery disease, indicating that this pathway is particularly relevant in 1 

patients with cardiovascular disease54.  2 

Endothelial EVs modulate macrophage polarization in opposing directions depending on 3 

environmental stimuli. Macrophages polarize towards two different phenotypes: “classic” pro-4 

inflammatory phenotype (M1), associated with atherosclerotic progression and foam cells 5 

formation and proliferation, or anti-inflammatory phenotype (M2), associated with anti-6 

atherogenic properties55. Ox-LDL-treated endothelial cells release EVs that polarize 7 

macrophages toward M1 phenotype. On the other hand, stimulation with Kruppel like factor 2 8 

(KLF2), a critical regulator of the anti-inflammatory response in atherosclerotic plaque, 9 

induces EV production from endothelial cells that stimulate M2 polarization56. Ox-LDL treated 10 

endothelial cell derived-EVs contain low levels of Metastasis Associated Lung 11 

Adenocarcinoma Transcript 1 (MALAT1)57, a long non-coding RNA (lncRNA) that promotes 12 

M2 polarization of macrophages, with consequent increase of inflammation and foam cell 13 

formation58. Moreover, reduction of MALAT1 in endothelial-derived EVs leads to elevated 14 

ROS production and dendritic cell maturation through nuclear factor erythroid 2-related factor 15 

2 (Nrf2) signaling, further contributing to plaque progression 57. 16 

The effect of macrophage-derived EVs in the atherosclerosis is mainly played at local and 17 

paracrine level, regulating the delicate balance between macrophage recruitment and migration 18 

and the phenotype switch of SMCs, through paracrine cross-talk between macrophages, foam 19 

cells and SMCs. In macrophages, ox-LDL alters mi-RNA content of EVs, increasing miR-146a 20 

concentration that in turns inhibits macrophage migratory capacity and promote lipid-laden 21 

macrophage engulfment59. On the other hand, foam cells of macrophage origin release EVs 22 

that enhance SMC migration and intimal adhesion by integrin transfer and activation ERK/Akt 23 

pathway60. SMCs that migrate from the media into the intima layer undergo a phenotypic 24 

switch towards a macrophage-like phenotype and accumulation of oxidized-lipid, contributing 25 
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to foam cells formation and atherosclerotic plaque progression61. Ultimately, the progression 1 

of atherosclerotic plaque is characterized by the development of a necrotic core, driven by 2 

apoptosis of macrophages, SMCs and endothelial cells and by impaired efferocytosis, the 3 

process of dead cell clearance45. Macrophage-derived EVs enhance macrophage and 4 

endothelial cell apoptosis by transferring of lncRNA GAS5, thus contributing to the formation 5 

and development of the necrotic core62. 6 

In metabolic syndrome a relevant role is played by adipose tissue release of circulating EVs, 7 

whose content and biological properties are regulated by environmental conditions and food 8 

intake. In high fat-induced conditions, adipose tissue-derived EVs favor M1 transition and 9 

atherosclerotic plaque progression through NF-κB activation55. Moreover, under a high-fat 10 

diet adipose tissue-derived EVs contribute to engorgement of macrophages by down-11 

regulation of ABCA1 and ABCG1, with consequent reduction of cholesterol export and 12 

increased foam cell development46. Finally, circulating EVs of patients with metabolic 13 

syndrome increase SMC proliferation and migration63. This effect seems to be mediated by 14 

ras-associated protein-1 (Rap1), a protein that is notably increased in EVs of patients with 15 

metabolic syndrome compared with controls, and its levels correlate with body mass index, 16 

and waist and hip circumference 63. 17 

In conclusion, EVs from different sources modulate the atherosclerotic process by a complex 18 

interplay of multiple pathways. Given the multifaceted nature of the atherosclerotic plaque 19 

that involves several cell type function in a complex and dynamic processes, traditional tools 20 

of in vitro cultures and assays may be limited. The study of Oggero and colleagues 51 21 

demonstrated how the interaction between different cell types may alter EV content and their 22 

biological effects. At the same time, EVs from the same source can activate different 23 

pathways in different recipient cells. It is hard to define by traditional and simplistic models 24 

the final effects of this complex network. Ex vivo organ culture approach and three-25 
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dimensional (3D) models that better recapitulate the morphological complexity of the 1 

atherosclerotic plaque may represent the future directions to address this unmet need. 2 

Moreover, the replication of the organ/tissue properties by 3D-bioprinting may expand the 3 

applicability of these models for the discoveries of specific therapeutic candidates targeting 4 

EVs and cells. 5 

 6 

Extracellular vesicles and vascular fibrosis and calcification 7 

Fibrosis 8 

Collagen and elastin are the main components of vascular extracellular matrix (ECM). Type I 9 

and type III collagen fibers are the most abundant types of collagens in large and medium 10 

arteries, representing together more than 90% of fibrillary collagen. Vascular wall of large 11 

arteries is also rich in elastin, and the balance between collagen and elastin plays a pivotal role 12 

in the development of arterial stiffening64. Turnover of collagen and elastin is slow and mainly 13 

regulated by matrix metalloproteinases (MMPs) and elastolytic enzymes (cathepsins), involved 14 

in collagen and elastin degradation64. Endothelial-derived EVs contain several matrix-15 

degrading proteins, including MMPs65. Pro-inflammatory and pro-thrombotic conditions 16 

increase MMP-10 in endothelial EVs66, and endothelial EVs increase and activate MMP-2, 17 

mediating ECM remodeling67. 18 

Lysyl oxidase (LOX) and lysil oxidase-like (LOX-L) enzymes are members of a family of 19 

proteins directly involved in ECM regulation, modulating the cross-linking of collagen and 20 

elastin fibers. LOXL-2 is present in endothelial EVs and localized on the surface membrane of 21 

EVs directly interacting with ECM components. Hypoxic conditions increase LOXL-2 22 

expression in endothelial EVs and LOX enzymatic activity, explaining how environmental 23 

conditions may influence ECM remodeling through EV-mediated pathways43. Patients with 24 
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atherosclerotic cerebrovascular disease display higher levels of LOXL-2 in circulating 1 

endothelial EVs 68. 2 

 3 

Calcification 4 

Two main mechanistic initiators trigger and drive vascular calcification in humans: 5 

hyperphosphatemia in CKD and chronic inflammation. Although this two pathological 6 

conditions are mechanistically different, they can coexist and in some cases exert their action 7 

in a synergistic manner69.  8 

In CKD, hyperphosphatemia leads to the mineralization of the media layer with gross and 9 

aligned mineral deposit among elastin fibers (Monckeberg’s syndrome), independently of 10 

atherosclerotic plaque formation70. Hyperphosphatemic calcification is faster than 11 

inflammatory-driven calcification, both in humans with CKD and in experimental animal 12 

models69 . 13 

Inflammatory-driven vascular calcification is characteristically localized within the intima of 14 

atherosclerotic plaque71. Calcifying EVs (100-300 nm) released from macrophages and SMCs 15 

act as nucleating foci of mineralization within the plaque, leading to the formation of spherical 16 

or ellipsoidal microcalcifications that later merge, forming large macrocalcifications (≥50 17 

µm)71. The role of microcalcification and macrocalcification in the vascular wall and plaque 18 

stability is radically different. Macrocalcification usually localized in a deep portion of the 19 

plaque, and while it reduces vascular wall compliance, it may stabilize the plaque72. On the 20 

other hand, microcalcification is destabilizing, particularly when located in the thin fibrous cap. 21 

Microcalcifications increase atherosclerotic plaque vulnerability by accumulation of high local 22 

stress around their poles. Particularly, microcalcifications between 5 and 30 µm in diameter 23 

are considered to be the most harmful73. 24 
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EVs aggregate and nucleate mineral and then merge in the plaque forming microcalcification 1 

in the gaps between collagen fibers, with an inverse correlation between collagen density and 2 

microcalcification size74. Mechanisms underlying EV aggregation are only partially 3 

understood. Some authors proposed that interactions between negatively charged EVs and 4 

extracellular components may be involved, especially in the context of high matrix turnover75. 5 

EV surface may interact with fibronectin or collagen by integrin binding76,77, interacting with 6 

specific collagen sequences77. Annexin A1 (ANXA1) can directly contribute to EV-EV 7 

tethering and aggregation, and actively promotes nucleation of mineralizing foci78. Moreover, 8 

in pro-inflammatory conditions with high organic phosphate, ANXA1 facilitate the 9 

development of microcalcifications by enhanced tissue nonspecific alkaline phosphatase 10 

(TNAP) activity78. 11 

TNAP is an enzyme that converts inorganic pyrophosphate into free phosphate79. It is loaded 12 

into EVs secreted by macrophages and SMCs, and its role is critical in inflammatory-driven 13 

osteogenic calcification in atherosclerotic plaques79. On the contrary, hyperphosphatemic 14 

calcification in CKD is largely TNAP-independent and driven by TNAP-negative SMC-15 

derived EVs80. In CKD, inorganic phosphate enter the cell by endocytosis and is actively 16 

shuttled outside the cells by SMC-derived EVs, in a TNAP-independent process81. 17 

 Sortilin is a multiligand sorting receptor that exerts multiple roles, including regulation of 18 

inflammation and lipid metabolism82. Higher circulating sortilin levels are associated with 19 

increased rate of cardio-cerebrovascular events and aortic calcification83. Under osteogenic 20 

conditions, sortilin enhances the loading of activated TNAP in SMC-derived EVs in a Rab-11-21 

dependent pathway, enhancing inflammatory-driven calcification84. C-terminal serine 22 

phosphorylation of sortilin and sortilin dimerization by intermolecular disulfide bonds are two 23 

essential steps for sortilin loading in EVs85. 24 
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Macrophage-derived EVs directly contribute to osteogenic calcification through loading of 1 

annexin A5–S100A9 complex in EVs that interacts with phosphatidylserine and acts as 2 

nucleation site for mineralization86 in CKD environment. S100A9 is also increased in 3 

macrophages from patients with type 1 diabetes87, and high glucose increases release of 4 

calcifying EVs from macrophages through S100A9 signaling88, suggesting a crucial role of 5 

S100A9 in diabetes- and CKD-induced calcification. 6 

Ectopic vascular calcification is the consequence of an impaired balance between calcification 7 

promoting factors (e.g., bone morphogenic proteins, NF-κB) and inhibitors (e.g., matrix Gla 8 

protein (MGP), fetuin-A, osteopontin, osteoprotegerin)89. SMC-derived EVs are 9 

physiologically loaded with calcification inhibitors, including MGP and fetuin-A80,90. 10 

However, in hyperphosphatemic condition loading of fetuin-A and MGP in EVs is reduced, 11 

favoring EV-mediated calcification80,90. Fetuin-A is a glycoprotein produced and secreted by 12 

the liver91, internalized by SMCs and loaded into EVs in a sphingomyelin phosphodiesterase 3 13 

(SMPD3)-dependent process81. Alteration of extracellular calcium and phosphate increases 14 

SMPD3 and consequent release of calcifying EVs by SMCs81. 15 

Warfarin, beyond the known anticoagulant effect, promotes and accelerates vascular 16 

calcification92. The calcification inhibitor MGP is activated by carboxylation of glutamate 17 

residues in a vitamin-K dependent manner. Carboxylation and activation of MGP is therefore 18 

inhibited by warfarin administration92. Similarly to MGP, prothrombin harbors glutamate 19 

residues, and it is loaded to SMC-derived EVs via two distinct pathways: multivesicular bodies 20 

and membrane budding92. Prothrombin loading into EVs inhibits EV-induced calcification, 21 

suggesting that warfarin’s pro-calcifying effect is partially mediated through inhibition of 22 

prothrombin carboxylation92. Recent evidence suggests that retinoid acids are able to inhibit 23 

vascular calcification by increasing MGP in SMCs. Moreover, all trans-retinoic acid decrease 24 

TNAP activity in SMC-derived EVs, further contributing to calcification inhibition93. 25 
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In summary, the calcification process at vascular levels is driven by activation of multiple 1 

pathways, differentially enhanced by various underlying drivers. Several cells have been 2 

proved to be crucial in the inflammatory driven process. Macrophages are pivotal in the earliest 3 

step (initiation) of the calcification process, releasing calcifying EVs and promoting SMCs 4 

osteogenic differentiation. Macrophages and SMCs contribute together to the progression of 5 

the calcification process, where inflammation and calcification advance in parallel. Finally, in 6 

the late stage of disease, inflammation is substantially diminished and abundant calcification 7 

is virtually irreversible94. The cross-talk between cells is crucial in each step, but particularly 8 

in the initiation and propagation stages. Studies adopting co-culture of macrophages, SMCs 9 

and endothelial cells are warranted to understand the complex interplay between cells and 10 

regulation of EV release under co-stimulation of several cell types. 3D-bioprinting of cellular 11 

hydrogels that mimic the biomechanical properties of aortic valve tissue have been adopted to 12 

investigate the biomechanics of calcifying valves95. Moreover, acellular 3D models 13 

recapitulating calcification in atherosclerotic plaque have been proved to be valuable tools for 14 

studying EV-dependent mineralization74,96. The use of these tools should be implemented for 15 

the investigation of the complex interaction between cells, EVs and ECM in the atherosclerotic 16 

plaque and arterial wall, helping the identification of potential targets to inhibit, decelerate or 17 

prevent the complex calcification processes. 18 

 19 

Conclusions and perspectives 20 

Considerable progress has been made in recent years in understanding the role of EVs in both 21 

physiological and pathological regulation of vascular homeostasis and disease, shedding light 22 

on EV involvement in various stages of vascular damage. Despite the flourishing research in 23 
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the field, what is known appears to be only the tip of the iceberg of a much more complex 1 

and multifaceted roles played by EVs.  2 

Discrepancy in isolation techniques and EVs characterization among studies make it difficult 3 

to distinguish between different EVs subpopulations and their relative contribution to the 4 

development and progression of vascular damage. Several studies have demonstrated that EVs 5 

of different size and/or density display important dissimilarity in content and biological 6 

properties. Some isolation methods allow the discrimination of EV subpopulations. Sucrose-7 

based or iodixanol-based density gradient can differentiate EVs according to their relative 8 

density, while size-exclusion chromatography discriminates particles and EVs based on their 9 

size. Recently, a “single EVs microarray” approach has been proposed for the discrimination 10 

of exosome and microvesicles, on the basis of their protein content, at single EV level78. The 11 

application of these methods to the future basic and translational research could unravel the 12 

fine mechanisms driving EV-mediated cardiovascular damage. 13 

Translational studies, linking in vitro evidence to clinical data are currently limited and 14 

should be implemented in the near future. Moreover, the effects of circulating EVs in the 15 

different stages of disease have been poorly investigated. The content and biological 16 

properties of EVs evolve with worsening and progression of the underlying conditions and 17 

risk factors. Understanding the dynamic changes of EV cargos and their effects on 18 

pathological processes is crucial for the selection of potential therapeutic targets in timely and 19 

tailored fashion. 20 

‘Omics’ data of human-derived EVs from biofluids and tissues could help in this process and 21 

guide future pre-clinical studies in a focused and personalized direction. Multi-omics is 22 

becoming an appealing strategy for the detection of potential target in cardiovascular 23 

disease94, and the implementation of this approach at EV level would provide important 24 

insights in the comprehension of EV cargos and biological properties in different settings of 25 
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cardiovascular disease. However, integration of data from transcriptomic, proteomic and 1 

metabolomic could be a challenge. Bioinformatic tools and artificial intelligence will play a 2 

crucial role in the next years for the management and interpretation of big data derived by 3 

multi-omics studies. Pathway and network analysis have been adopted in several studies for 4 

the selection of specific drug target51,78,97. However, the final prioritization of the targets is 5 

often driven by currently available literature and scientists’ research interest. The 6 

implementation of machine-learning approaches could overcome these biases by application 7 

of unbiased selection guided by integration of pre-clinical and clinical data71. 8 

In conclusion, although slightly decreased in the last decade in high-income countries, 9 

mortality for cardiovascular disease is still the leading cause for global deaths worldwide, 10 

particularly impacting mid- and low-income countries45. Extraordinary efforts are requested 11 

to better elucidate the mechanism underlying vascular damage from the earliest to the latest 12 

stages of disease; therefore, future research on EV role in this mission will be crucial. 13 
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Figure Legends 1 

Figure. Pathological role of extracellular vesicles in different stages of vascular damage 2 

Extracellular vesicles (EVs) released by different cells under several pathological conditions 3 

mediates initiation and propagation of vascular damage, from endothelial dysfunction to 4 

vascular inflammation, atherosclerosis, alteration of extracellular matrix composition and 5 

vascular calcification. NO=nitric oxide, NADPH=nicotinamide adenine dinucleotide 6 

phosphate, ROS=reactive oxygen species, Rap1=ras-associated protein-1, SMC=smooth 7 

muscle cell, LDL=low-density lipoproteins, ERK=extracellular signal-regulated kinases, 8 

NFκB=nuclear factor kappa-light-chain-enhancer of activated B cells, TNAP= tissue 9 

nonspecific alkaline phosphatase, MGP=matrix Gla protein, ECM=extracellular matrix. 10 

Some illustrations of the Figure were prepared using Motifolio drawing toolkit. 11 
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Figure 1. Extracellular vesicles (EVs) biogenesis and role in the development of cardiovascular calcification. EVs are released by cells by 2 
mechanisms: direct budding or fission of the plasma membrane, generating microvesicles; multivesicular bodies generation of intracellular vesicles 
and their release in the extracellular space through fusion with the plasma membrane, generating exosomes. EVs and microvesicles drive calcification 
process in the arterial wall through multiple pathways, including TNAP (tissue nonspecific alkaline phosphatase) generation of free phosphate, sortilin-
mediated loading of TNAP into EVs, annexin A1 tethering of EVs and S100A9 enhancement of EV-mediated ectopic calcification process. Some 
illustrations of the Figure were prepared using Motifolio drawing toolkit. 



 

 

Figure 2. Pathological role of extracellular vesicles (EVs) in different stages of vascular damage. EVs released by different cells under several 
pathological conditions mediates initiation and propagation of vascular damage, from endothelial dysfunction to vascular inflammation, 
atherosclerosis, alteration of extracellular matrix composition, and vascular calcification. Some illustrations of the Figure were prepared using 
Motifolio drawing toolkit. ERK indicates extracellular signal-regulated kinase; LDL, low-density lipoproteins; MGP, matrix Gla protein; NFκB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; Rap1, ras-associated protein-1; ROS, reactive oxygen species; SMC, 
smooth muscle cell; and TNAP, tissue nonspecific alkaline phosphatase. 
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