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Abstract: The digital transformation of agriculture has evolved various aspects of management into
artificial intelligent systems for the sake of making value from the ever-increasing data originated from
numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable
potential to handle numerous challenges in the establishment of knowledge-based farming systems.
The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing
the recent scholarly literature based on keywords’ combinations of “machine learning” along with
“crop management”, “water management”, “soil management”, and “livestock management”, and
in accordance with PRISMA guidelines. Only journal papers were considered eligible that were
published within 2018–2020. The results indicated that this topic pertains to different disciplines
that favour convergence research at the international level. Furthermore, crop management was
observed to be at the centre of attention. A plethora of machine learning algorithms were used,
with those belonging to Artificial Neural Networks being more efficient. In addition, maize and
wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally,
a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been
utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study
will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential
advantages of using machine learning in agriculture and contributing to a more systematic research
on this topic.

Keywords: machine learning; crop management; water management; soil management; livestock
management; artificial intelligence; precision agriculture; precision livestock farming

1. Introduction
1.1. General Context of Machine Learning in Agriculture

Modern agriculture has to cope with several challenges, including the increasing call
for food, as a consequence of the global explosion of earth’s population, climate changes [1],
natural resources depletion [2], alteration of dietary choices [3], as well as safety and health
concerns [4]. As a means of addressing the above issues, placing pressure on the agricul-
tural sector, there exists an urgent necessity for optimizing the effectiveness of agricultural
practices by, simultaneously, lessening the environmental burden. In particular, these two
essentials have driven the transformation of agriculture into precision agriculture. This
modernization of farming has a great potential to assure sustainability, maximal produc-
tivity, and a safe environment [5]. In general, smart farming is based on four key pillars
in order to deal with the increasing needs; (a) optimal natural resources’ management,
(b) conservation of the ecosystem, (c) development of adequate services, and (d) utilization

Sensors 2021, 21, 3758. https://doi.org/10.3390/s21113758 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5743-625X
https://orcid.org/0000-0001-5633-7022
https://orcid.org/0000-0002-5731-9472
https://orcid.org/0000-0002-7058-5986
https://www.mdpi.com/article/10.3390/s21113758?type=check_update&version=1
https://doi.org/10.3390/s21113758
https://doi.org/10.3390/s21113758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113758
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3758 2 of 55

of modern technologies [6]. An essential prerequisite of modern agriculture is, definitely,
the adoption of Information and Communication Technology (ICT), which is promoted
by policy-makers around the world. ICT can indicatively include farm management in-
formation systems, humidity and soil sensors, accelerometers, wireless sensor networks,
cameras, drones, low-cost satellites, online services, and automated guided vehicles [7].

The large volume of data, which is produced by digital technologies and usually
referred to as “big data”, needs large storage capabilities in addition to editing, analyzing,
and interpreting. The latter has a considerable potential to add value for society, environ-
ment, and decision-makers [8]. Nevertheless, big data encompass challenges on account
of their so-called “5-V” requirements; (a) Volume, (b) Variety, (c) Velocity, (d) Veracity,
and (e) Value [9]. The conventional data processing techniques are incapable of meeting
the constantly growing demands in the new era of smart farming, which is an important
obstacle for extracting valuable information from field data [10]. To that end, Machine
Learning (ML) has emerged, which is a subset of artificial intelligence [11], by taking
advantage of the exponential computational power capacity growth.

There is a plethora of applications of ML in agriculture. According to the recent
literature survey by Liakos et al. [12], regarding the time period of 2004 to 2018, four
generic categories were identified (Figure 1). These categories refer to crop, water, soil,
and livestock management. In particular, as far as crop management is concerned, it
represented the majority of the articles amongst all categories (61% of the total articles) and
was further sub-divided into:

• Yield prediction;
• Disease detection;
• Weed detection;
• Crop recognition;
• Crop quality.

Figure 1. The four generic categories in agriculture exploiting machine learning techniques, as presented in [12].

The generic categories dealing with the management of water and soil were found
to be less investigated, corresponding cumulatively to 20% of the total number of papers
(10% for each category).

Finally, two main sub-categories were identified for the livestock-related applications
corresponding to a total 19% of journal papers:

• Livestock production;
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• Animal welfare.

1.2. Open Problems Associated with Machine Learning in Agriculture

Due to the broad range of applications of ML in agriculture, several reviews have
been published in this research field. The majority of these review studies have been
dedicated to crop disease detection [13–16], weed detection [17,18], yield prediction [19,20],
crop recognition [21,22], water management [23,24], animal welfare [25,26], and livestock
production [27,28]. Furthermore, other studies were concerned with the implementation of
ML methods regarding the main grain crops by investigating different aspects including
quality and disease detection [29]. Finally, focus has been paid on big data analysis using
ML, aiming at finding out real-life problems that originated from smart farming [30], or
dealing with methods to analyze hyperspectral and multispectral data [31].

Although ML in agriculture has made considerable progress, several open problems
remain, which have some common points of reference, despite the fact that the topic covers
a variety of sub-fields. According to [23,24,28,32], the main problems are associated with
the implementation of sensors on farms for numerous reasons, including high costs of ICT,
traditional practices, and lack of information. In addition, the majority of the available
datasets do not reflect realistic cases, since they are normally generated by a few people
getting images or specimens in a short time period and from a limited area [15,21–23].
Consequently, more practical datasets coming from fields are required [18,20]. Moreover,
the need for more efficient ML algorithms and scalable computational architectures has
been pointed out, which can lead to rapid information processing [18,22,23,31]. The chal-
lenging background, when it comes to obtaining images, video, or audio recordings, has
also been mentioned owing to changes in lighting [16,29], blind spots of cameras, envi-
ronmental noise, and simultaneous vocalizations [25]. Another important open problem
is that the vast majority of farmers are non-experts in ML and, thus, they cannot fully
comprehend the underlying patterns obtained by ML algorithms. For this reason, more
user-friendly systems should be developed. In particular, simple systems, being easy to
understand and operate, would be valuable, as for example a visualization tool with a user-
friendly interface for the correct presentation and manipulation of data [25,30,31]. Taking
into account that farmers are getting more and more familiar with smartphones, specific
smartphone applications have been proposed as a possible solution to address the above
challenge [15,16,21]. Last but not least, the development of efficient ML techniques by in-
corporating expert knowledge from different stakeholders should be fostered, particularly
regarding computing science, agriculture, and the private sector, as a means of designing
realistic solutions [19,22,24,33]. As stated in [12], currently, all of the efforts pertain to
individual solutions, which are not always connected with the process of decision-making,
as seen for example in other domains.

1.3. Aim of the Present Study

As pointed out above, because of the multiple applications of ML in agriculture,
several review studies have been published recently. However, these studies usually
concentrate purely on one sub-field of agricultural production. Motivated by the current
tremendous progress in ML, the increasing interest worldwide, and its impact in various
do-mains of agriculture, a systematic bibliographic survey is presented on the range of the
categories proposed in [12], which were summarized in Figure 1. In particular, we focus
on reviewing the relevant literature of the last three years (2018–2020) for the intention of
providing an updated view of ML applications in agricultural systems. In fact, this work is
an updated continuation of the work presented at [12]; following, consequently, exactly
the same framework and inclusion criteria. As a consequence, the scholarly literature
was screened in order to cover a broad spectrum of important features for capturing the
current progress and trends, including the identification of: (a) the research areas which
are interested mostly in ML in agriculture along with the geographical distribution of the
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contributing organizations, (b) the most efficient ML models, (c) the most investigated
crops and animals, and (d) the most implemented features and technologies.

As will be discussed next, overall, a 745% increase in the number of journal papers
took place in the last three years as compared to [12], thus justifying the need for a new
updated review on the specific topic. Moreover, crop management remained as the most
investigated topic, with a number of ML algorithms having been exploited as a means
of tackling the heterogeneous data that originated from agricultural fields. As compared
to [12], more crop and animal species have been investigated by using an extensive range
of input parameters coming mainly from remote sensing, such as satellites and drones. In
addition, people from different research fields have dealt with ML in agriculture, hence,
contributing to the remarkable advancement in this field.

1.4. Outline of the Paper

The remainder of this paper is structured as follows. The second section briefly
describes the fundamentals of ML along with the subject of the four generic categories
for the sake of better comprehension of the scope of the present study. The implemented
methodology, along with the inclusive criteria and the search engines, is analyzed in the
third section. The main performance metrics, which were used in the selected articles,
are also presented in this section. The main results are shown in the fourth section in the
form of bar and pie charts, while in the fifth section, the main conclusions are drawn by
also discussing the results from a broader perspective. Finally, all the selected journal
papers are summarized in Tables A1–A9, in accordance with their field of application, and
presented in the Appendix A, together with Tables A10 and A11 that contain commonly
used abbreviations, with the intention of not disrupting the flow of the main text.

2. Background
2.1. Fundamentals of Machine Learning: A Brief Overview

In general, the objective of ML algorithms is to optimize the performance of a task,
via exploiting examples or past experience. In particular, ML can generate efficient rela-
tionships regarding data inputs and reconstruct a knowledge scheme. In this data-driven
methodology, the more data are used, the better ML works. This is similar to how well
a human being performs a particular task by gaining more experience [34]. The central
outcome of ML is a measure of generalizability; the degree to which the ML algorithm has
the ability to provide correct predictions, when new data are presented, on the basis of
learned rules originated from preceding exposure to similar data [35]. More specifically,
data involve a set of examples, which are described by a group of characteristics, usually
called features. Broadly speaking, ML systems operate at two processes, namely the learn-
ing (used for training) and testing. In order to facilitate the former process, these features
commonly form a feature vector that can be binary, numeric, ordinal, or nominal [36]. This
vector is utilized as an input within the learning phase. In brief, by relying on training data,
within the learning phase, the machine learns to perform the task from experience. Once
the learning performance reaches a satisfactory point (expressed through mathematical
and statistical relationships), it ends. Subsequently, the model that was developed through
the training process can be used to classify, cluster, or predict.

An overview of a typical ML system is illustrated in Figure 2. With the intention of
forming the derived complex raw data into a suitable state, a pre-processing effort is re-
quired. This usually includes: (a) data cleaning for removing inconsistent or missing items
and noise, (b) data integration, when many data sources exist and (c) data transformation,
such as normalization and discretization [37]. The extraction/selection feature aims at
creating or/and identifying the most informative subset of features in which, subsequently,
the learning model is going to be implemented throughout the training phase [38]. Regard-
ing the feedback loop, which is depicted in Figure 2, it serves for adjustments pertaining to
the feature extraction/selection unit as well as the pre-processing one that further improves
the overall learning model’s performance. During the phase of testing, previously unseen
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samples are imported to the trained model, which are usually represented as feature vec-
tors. Finally, an appropriate decision is made by the model (for example, classification or
regression) in reliance of the features existing in each sample. Deep learning, a subfield
of ML, utilizes an alternative architecture via shifting the process of converting raw data
to features (feature engineering) to the corresponding learning system. Consequently, the
feature extraction/selection unit is absent, resulting in a fully trainable system; it starts
from a raw input and ends with the desired output [39,40].

Figure 2. A graphical illustration of a typical machine learning system.

Based on the learning type, ML can be classified according to the relative litera-
ture [41,42] as:

• Supervised learning: The input and output are known and the machine tries to find
the optimal way to reach an output given an input;

• Unsupervised learning: No labels are provided, leaving the learning algorithm itself
to generate structure within its input;

• Semi-supervised learning: Input data constitute a mixture of labeled and non-labeled
data;

• Reinforcement learning: Decisions are made towards finding out actions that can lead
to the more positive outcome, while it is solely determined by trial and error method
and delayed outcome.

Nowadays, ML is used in facilitating several management aspects in agriculture [12]
and in a plethora of other applications, such as image recognition [43], speech recogni-
tion [44], autonomous driving [45], credit card fraud detection [46], stock market forecast-
ing [47], fluid mechanics [48], email, spam and malware filtering [49], medical diagno-
sis [40], contamination detection in urban water networks [50], and activity recognition [51],
to mention but a few.
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2.2. Brief Description of the Four Generic Categories
2.2.1. Crop Management

The crop management category involves versatile aspects that originated from the
combination of farming techniques in the direction of managing the biological, chemical
and physical crop environment with the aim of reaching both quantitative and qualitative
targets [52]. Using advanced approaches to manage crops, such as yield prediction, disease
detection, weed detection, crop recognition, and crop quality, contributes to the increase
of productivity and, consequently, the financial income. The above aspects constitute key
goals of precision agriculture.

Yield Prediction

In general, yield prediction is one of the most important and challenging topics in
modern agriculture. An accurate model can help, for instance, the farm owners to take
informed management decisions on what to grow towards matching the crop to the existing
market’s demands [20]. However, this is not a trivial task; it consists of various steps.
Yield prediction can be determined by several factors such as environment, management
practices, crop genotypic and phenotypic characteristics, and their interactions. Hence, it
necessitates a fundamental comprehension of the relationship between these interactive
factors and yield. In turn, identifying such kinds of relationships mandates comprehensive
datasets along with powerful algorithms such as ML techniques [53].

Disease Detection

Crop diseases constitute a major threat in agricultural production systems that deteri-
orate yield quality and quantity at production, storage, and transportation level. At farm
level, reports on yield losses, due to plant diseases, are very common [54]. Furthermore,
crop diseases pose significant risks to food security at a global scale. Timely identification
of plant diseases is a key aspect for efficient management. Plant diseases may be provoked
by various kinds of bacteria, fungi, pests, viruses, and other agents. Disease symptoms,
namely the physical evidence of the presence of pathogens and the changes in the plants’
phenotype, may consist of leaf and fruit spots, wilting and color change [55], curling
of leaves, etc. Historically, disease detection was conducted by expert agronomists, by
performing field scouting. However, this process is time-consuming and solely based on vi-
sual inspection. Recent technological advances have made commercially available sensing
systems able to identify diseased plants before the symptoms become visible. Furthermore,
in the past few years, computer vision, especially by employing deep learning, has made
remarkable progress. As highlighted by Zhang et al. [56], who focused on identifying
cucumber leaf diseases by utilizing deep learning, due to the complex environmental back-
ground, it is beneficial to eliminate background before model training. Moreover, accurate
image classifiers for disease diagnosis need a large dataset of both healthy and diseased
plant images. In reference to large-scale cultivations, such kinds of automated processes
can be combined with autonomous vehicles, to timely identify phytopathological problems
by implementing regular inspections. Furthermore, maps of the spatial distribution of the
plant disease can be created, depicting the zones in the farm where the infection has been
spread [57].

Weed Detection

As a result of their prolific seed production and longevity, weeds usually grow and
spread invasively over large parts of the field very fast, competing with crops for the
resources, including space, sunlight, nutrients, and water availability. Besides, weeds
frequently arise sooner than crops without having to face natural enemies, a fact that
adversely affects crop growth [18]. In order to prevent crop yield reduction, weed control is
an important management task by either mechanical treatment or application of herbicides.
Mechanical treatment is, in most cases, difficult to be performed and ineffective if not
properly performed, making herbicide application the most widely used operation. Using
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large quantities of herbicides, however, turns out to be both costly and detrimental for the
environment, especially in the case of uniform application without taking into account the
spatial distribution of the weeds. Remarkably, long-term herbicide use is very likely to
make weeds more resistant, thus, resulting in more demanding and expensive weed control.
In recent years, considerable achievements have been made pertaining to the differentiation
of weeds from crops on the basis of smart agriculture. This discrimination can be accom-
plished by using remote or proximal sensing with sensors attached on satellites, aerial, and
ground vehicles, as well as unmanned vehicles (both ground (UGV) and aerial (UAV)). The
transformation of data gathered by UAVs into meaningful information is, however, still a
challenging task, since both data collection and classification need painstaking effort [58].
ML algorithms coupled with imaging technologies or non-imaging spectroscopy can allow
for real-time differentiation and localization of target weeds, enabling precise application
of herbicides to specific zones, instead of spraying the entire fields [59] and planning of the
shortest weeding path [60].

Crop Recognition

Automatic recognition of crops has gained considerable attention in several scientific
fields, such as plant taxonomy, botanical gardens, and new species discovery. Plant species
can be recognized and classified via analysis of various organs, including leaves, stems,
fruits, flowers, roots, and seeds [61,62]. Using leaf-based plant recognition seems to be the
most common approach by examining specific leaf’s characteristics like color, shape, and
texture [63]. With the broader use of satellites and aerial vehicles as means of sensing crop
properties, crop classification through remote sensing has become particularly popular. As
in the above sub-categories, the advancement on computer software and image processing
devices combined with ML has led to the automatic recognition and classification of crops.

Crop Quality

Crop quality is very consequential for the market and, in general, is related to soil and
climate conditions, cultivation practices and crop characteristics, to name a few. High qual-
ity agricultural products are typically sold at better prices, hence, offering larger earnings
to farmers. For instance, as regards fruit quality, flesh firmness, soluble solids content, and
skin color are among the most ordinary maturity indices utilized for harvesting [64]. The
timing of harvesting greatly affects the quality characteristics of the harvested products
in both high value crops (tree crops, grapes, vegetables, herbs, etc.) and arable crops.
Therefore, developing decision support systems can aid farmers in taking appropriate man-
agement decisions for increased quality of production. For example, selective harvesting is
a management practice that may considerably increase quality. Furthermore, crop quality
is closely linked with food waste, an additional challenge that modern agriculture has
to cope with, since if the crop deviates from the desired shape, color, or size, it may be
thrown away. Similarly to the above sub-section, ML algorithms combined with imaging
technologies can provide encouraging results.

2.2.2. Water Management

The agricultural sector constitutes the main consumer of available fresh water on
a global scale, as plant growth largely relies on water availability. Taking into account
the rapid depletion rate of a lot of aquifers with negligible recharge, more effective water
management is needed for the purpose of better conserving water in terms of accomplishing
a sustainable crop production [65]. Effective water management can also lead to the
improvement of water quality as well as reduction of pollution and health risks [66].
Recent research on precision agriculture offers the potential of variable rate irrigation
so as to attain water savings. This can be realized by implementing irrigation at rates,
which vary according to field variability on the basis of specific water requirements of
separate management zones, instead of using a uniform rate in the entire field. The
effectiveness and feasibility of the variable rate irrigation approach depend on agronomic
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factors, including topography, soil properties, and their effect on soil water in order
to accomplish both water savings and yield optimization [67]. Carefully monitoring
the status of soil water, crop growth conditions, and temporal and spatial patterns in
combination with weather conditions monitoring and forecasting, can help in irrigation
programming and efficient management of water. Among the utilized ICTs, remote sensing
can provide images with spatial and temporal variability associated with the soil moisture
status and crop growth parameters for precision water management. Interestingly, water
management is challenging enough in arid areas, where groundwater sources are used for
irrigation, with the precipitation providing only part of the total crop evapotranspiration
(ET) demands [68].

2.2.3. Soil Management

Soil, a heterogeneous natural resource, involves mechanisms and processes that are
very complex. Precise information regarding soil on a regional scale is vital, as it contributes
towards better soil management consistent with land potential and, in general, sustainable
agriculture [5]. Better management of soil is also of great interest owing to issues like land
degradation (loss of the biological productivity), soil-nutrient imbalance (due to fertilizers
overuse), and soil erosion (as a result of vegetation overcutting, improper crop rotations
rather than balanced ones, livestock overgrazing, and unsustainable fallow periods) [69].
Useful soil properties can entail texture, organic matter, and nutrients content, to mention
but a few. Traditional soil assessment methods include soil sampling and laboratory
analysis, which are normally expensive and take considerable time and effort. However,
remote sensing and soil mapping sensors can provide low-cost and effortless solution for
the study of soil spatial variability. Data fusion and handling of such heterogeneous “big
data” may be important drawbacks, when traditional data analysis methods are used. ML
techniques can serve as a trustworthy, low-cost solution for such a task.

2.2.4. Livestock Management

It is widely accepted that livestock production systems have been intensified in the
context of productivity per animal. This intensification involves social concerns that can
influence consumer perception of food safety, security, and sustainability, based on animal
welfare and human health. In particular, monitoring both the welfare of animals and overall
production is a key aspect so as to improve production systems [70]. The above fields take
place in the framework of precision livestock farming, aiming at applying engineering
techniques to monitor animal health in real time and recognizing warning messages, as
well as improving the production at the initial stages. The role of precision livestock
farming is getting more and more significant by supporting the decision-making processes
of livestock owners and changing their role. It can also facilitate the products’ traceability,
in addition to monitoring their quality and the living conditions of animals, as required
by policy-makers [71]. Precision livestock farming relies on non-invasive sensors, such as
cameras, accelerometers, gyroscopes, radio-frequency identification systems, pedometers,
and optical and temperature sensors [25]. IoT sensors leverage variable physical quantities
(VPQs) as a means of sensing temperature, sound, humidity, etc. For instance, IoT sensors
can warn if a VPQ falls out of regular limits in real-time, giving valuable information
regarding individual animals. As a result, the cost of repetitively and arduously checking
each animal can be reduced [72]. In order to take advantage of the large amounts of data,
ML methodologies have become an integral part of modern livestock farming. Models can
be developed that have the capability of defining the manner a biological system operates,
relying on causal relationships and exploiting this biological awareness towards generating
predictions and suggestions.

Animal Welfare

There is an ongoing concern for animal welfare, since the health of animals is strongly
associated with product quality and, as a consequence, predominantly with the health
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of consumers and, secondarily, with the improvement of economic efficiency [73]. There
exist several indexes for animal welfare evaluation, including physiological stress and
behavioral indicators. The most commonly used indicator is animal behavior, which
can be affected by diseases, emotions, and living conditions, which have the potential to
demonstrate physiological conditions [25]. Sensors, commonly used to detect behavioral
changes (for example, changes in water or food consumption, reduced animal activity),
include microphone systems, cameras, accelerometers, etc.

Livestock Production

The use of sensor technology, along with advanced ML techniques, can increase
livestock production efficiency. Given the impact of practices of animal management on
productive elements, livestock owners are getting cautious of their asset. However, as
the livestock holdings get larger, the proper consideration of every single animal is very
difficult. From this perspective, the support to farmers via precision livestock farming,
mentioned above, is an auspicious step for aspects associated with economic efficiency
and establishment of sustainable workplaces with reduced environmental footprint [74].
Generally, several models have been used in animal production, with their intentions
normally revolving around growing and feeding animals in the best way. However, the
large volumes of data being involved, again, call for ML approaches.

3. Methods
3.1. Screening of the Relative Literature

In order to identify the relevant studies concerning ML in respect to different aspects
of management in agriculture, the search engines of Scopus, Google Scholar, ScienceDirect,
PubMed, Web of Science, and MDPI were utilized. In addition, keywords’ combinations of
“machine learning” in conjunction with each of the following: “crop management”, “water
management”, “soil management”, and “livestock management” were used. Our intention
was to filter the literature on the same framework as [12]; however, focusing solely within
the period 2018–2020. Once a relevant study was being identified, the references of the
paper at hand were being scanned to find studies that had not been found throughout
the initial searching procedure. This process was being iterated until no relevant studies
occurred. In this stage, only journal papers were considered eligible. Thus, non-English
studies, conferences papers, chapters, reviews, as well as Master and Doctoral Theses
were excluded. The latest search was conducted on 15 December 2020. Subsequently,
the abstract of each paper was being reviewed, while, at a next stage, the full text was
being read to decide its appropriateness. After a discussion between all co-authors with
reference to the appropriateness of the selected papers, some of them were excluded, in
the case they did not meet the two main inclusion criteria, namely: (a) the paper was
published within 2018–2020 and (b) the paper referred to one of the categories and sub-
categories, which were summarized in Figure 1. Finally, the papers were classified in these
sub-categories. Overall, 338 journal papers were identified. The flowchart of the present
review methodology is depicted in Figure 3, based on the PRISMA guidelines [75], along
with information about at which stage each exclusive criterion was imposed similarly to
recent systematic review studies such as [72,76–78].

3.2. Definition of the Performance Metrics Commonly Used in the Reviewed Studies

In this subsection, the most commonly used performance metrics of the reviewed
papers are briefly described. In general, these metrics are utilized in an effort to provide
a common measure to evaluate the ML algorithms. The selection of the appropriate
metrics is very important, since: (a) how the algorithm’s performance is measured relies
on these metrics and (b) the metric itself can influence the way the significance of several
characteristics is weighted.
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Figure 3. The flowchart of the methodology of the present systematic review along with the flow of information regarding
the exclusive criteria, based on PRISMA guidelines [75].

Confusion matrix constitutes one of the most intuitive metrics towards finding the
correctness of a model. It is used for classification problems, where the result can be of
at least two types of classes. Let us consider a simple example, by giving a label to a
target variable: for example, “1” when a plant has been infected with a disease and “0”
otherwise. In this simplified case, the confusion matrix (Figure 4) is a 2 × 2 table having
two dimensions, namely “Actual” and “Predicted”, while its dimensions have the outcome
of the comparison between the predictions with the actual class label. Concerning the
above simplified example, this outcome can acquire the following values:

• True Positive (TP): The plant has a disease (1) and the model classifies this case as
diseased (1);

• True Negative (TN): The plant does not have a disease (0) and the model classifies this
case as a healthy plant (0);

• False Positive (FP): The plant does not have a disease (0), but the model classifies this
case as diseased (1);
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• False Negative (FN): The plant has a disease (1), but the model classifies this case as a
healthy plant (0).

Figure 4. Representative illustration of a simplified confusion matrix.

As can be shown in Table 1, the aforementioned values can be implemented in order
to estimate the performance metrics, typically observed in classification problems [79].

Table 1. Summary of the most commonly used evaluation metrics of the reviewed studies.

Name Formula

Accuracy (TP + TN)/(TP + FP + FN + TN)
Recall TP/(TP + FN)

Precision TP/(TP + FP)
Specificity TN/(TN + FP)
F1 score (2 × Recall × Precision)/(Recall + Precision)

Other common evaluation metrics were the coefficient of correlation (R), coefficient of
determination (R2; basically, the square of the correlation coefficient), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE), which
can be given via the following relationships [80,81]:

R =
T·∑T

t=1 Z(t)·X(t)−
(

∑T
t=1 Z(t)

)
·
(

∑T
t=1 X(t)

)
√

T·∑T
t=1(Z(t))2 −

(
∑T

t=1 Z(t)
)2
·
√

T·∑T
t=1(X(t))2 −

(
∑T

t=1 X(t)
)2

, (1)

MAE =
1
T
·∑T

t=1|Z(t)− X(t)|, (2)

MAPE =
1
T
·∑T

t=1

∣∣∣∣Z(t)− X(t)
Z(t)

∣∣∣∣, (3)

MSE =
1
T
·∑T

t=1(Z(t)− X(t))2, (4)

where X(t) and Z(t) correspond to the predicted and real value, respectively, t stands for
the iteration at each point, while T for the testing records number. Accordingly, low values
of MAE, MAPE, and MSE values denote a small error and, hence, better performance. In
contrast, R2 near 1 is desired, which demonstrates better model performance and also that
the regression curve efficiently fits the data.

4. Results
4.1. Preliminary Data Visualization Analysis

Graphical representation of data related to the reviewed studies, by using maps, bar
or pie charts, for example, can provide an efficient approach to demonstrate and interpret
the patterns of data. The data visualization analysis, as it usually refers to, can be vital in
the context of analyzing large amounts of data and has gained remarkable attention in the
past few years, including review studies. Indicatively, significant results can be deduced
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in an effort to identify: (a) the most contributing authors and organizations, (b) the most
contributing international journals (or equivalently which research fields are interested in
this topic), and (c) the current trends in this field [82].

4.1.1. Classification of the Studies in Terms of Application Domain

As can be seen in the flowchart of the present methodology (Figure 3), the literature
survey on ML in agriculture resulted in 338 journal papers. Subsequently, these studies
were classified into the four generic categories as well as into their sub-categories, as
already mentioned above. Figure 5 depicts the aforementioned papers’ distribution. In
particular, the majority of the studies were intended for crop management (68%), while soil
management (10%), water management (10%), and livestock management (12% in total;
animal welfare: 7% and livestock production: 5%) had almost equal contribution in the
present bibliographic survey. Focusing on crop management, the most contributing sub-
categories were yield prediction (20%) and disease detection (19%). The former research
field arises as a consequence of the increasing interest of farmers in taking decisions based
on efficient management that can lead to the desired yield. Disease detection, on the other
hand, is also very important, as diseases constitute a primary menace for food security and
quality assurance. Equal percentages (13%) were observed for weed detection and crop
recognition, both of which are essential in crop management at farm and agricultural policy
making level. Finally, examination of crop quality was relatively scarce corresponding to
3% of all studies. This can be attributed to the complexity of monitoring and modeling the
quality-related parameters.

Figure 5. The classification of the reviewed studies according to the field of application.

In this fashion, it should be mentioned again that all the selected journal papers are
summarized in Tables A1–A9, depending on their field of application, and presented in the
Appendix A. The columns of the tables correspond (from left to right) to the “Reference
number” (Ref), “Input Data”, “Functionality”, “Models/Algorithms”, and “Best Output”.
One additional column exists for the sub-categories belonging in crop management, namely
“Crop”, whereas the corresponding column in the sub-categories pertaining to livestock
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management refers to “Animal”. The present systematic review deals with a plethora of
different ML models and algorithms. For the sake of brevity, the commonly used abbrevia-
tions are used instead of the entire names, which are summarized in Tables A10 and A11
(presented also in the Appendix A). The list of the aforementioned Tables, along with their
content, is listed in Table 2.

Table 2. List of the tables appearing in the Appendix A related to: (a) the categories and sub-categories
of the machine learning applications in agriculture (Tables A1–A9) and (b) the abbreviations of
machine learning models and algorithms (Tables A10 and A11, respectively).

Table Content

A1 Crop Management: Yield Prediction
A2 Crop Management: Disease Detection
A3 Crop Management: Weed Detection
A4 Crop Management: Crop Recognition
A5 Crop Management: Crop Quality
A6 Water Management
A7 Soil Management
A8 Livestock Management: Animal Welfare
A9 Livestock Management: Livestock Production

A10 Abbreviations of machine learning models
A11 Abbreviations of machine learning algorithms

4.1.2. Geographical Distribution of the Contributing Organizations

The subject of this sub-section is to find out the geographical distribution of all the
contributing organizations in ML applications in agriculture. To that end, the author’s
affiliation was taken into account. In case a paper included more than one author, which
was the most frequent scenario, each country could contribute only once in the final map
chart (Figure 6), similarly to [83,84]. As can be gleaned from Figure 6, investigating ML in
agriculture is distributed worldwide, including both developed and developing economies.
Remarkably, out of the 55 contributing countries, the least contribution originated from
African countries (3%), whereas the major contribution came from Asian countries (55%).
The latter result is attributed mainly to the considerable contribution of Chinese (24.9%) as
well as Indian organizations (10.1%). USA appeared to be the second most contributing
country with 20.7% percentage, while Australia (9.5%), Spain (6.8%), Germany (5.9%),
Brazil, UK, and Iran (5.62%) seem to be particularly interested in ML in agriculture. It
should be stressed that livestock management, which is a relatively different sub-field
comparing to crop, water, and soil management, was primary examined from studies
coming from Australia, USA, China, and UK, while all the papers regarding Ireland were
focused on animals. Finally, another noteworthy observation is that a large number of
articles were a result of international collaboration, with the synergy of China and USA
standing out.

4.1.3. Distribution of the Most Contributing Journal Papers

For the purpose of identifying the research areas that are mostly interested in ML
in agriculture, the most frequently appeared international journal papers are depicted in
Figure 7. In total, there were 129 relevant journals. However, in this bar chart, only the
journals contributing with at least 4 papers are presented for brevity. As a general remark,
remote sensing was of particular importance, since reliable data from satellites and UAV, for
instance, constitute valuable input data for the ML algorithms. In addition, smart farming,
environment, and agricultural sustainability were of central interest. Journals associated
with computational techniques were also presented with considerable frequency. A typical
example of such type of journals, which was presented in the majority of the studies with a
percentage of 19.8%, was “Computers and Electronics in Agriculture”. This journal aims at
providing the advances in relation to the application of computers and electronic systems
for solving problems in plant and animal production.
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Figure 6. Geographical distribution of the contribution of each country to the research field focusing on machine learning
in agriculture.

Figure 7. Distribution of the most contributing international journals (published at least four articles) concerning applications
of machine learning in agriculture.
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The “Remote Sensing” and “Sensors” journals followed with approximately 11.8% and
6.5% of the total number of publications, respectively. These are cross-sectoral journals
that are concentrated on applications of science and sensing technologies in various fields,
including agriculture. Other journals, covering this research field, were also “IEEE Access”
and “International Journal of Remote Sensing” with approximately 2.1% and 1.2% contribu-
tion, respectively. Moreover, agriculture-oriented journals were also presented in Figure 7,
including “Precision Agriculture”, “Frontiers in Plant Science”, “Agricultural and Forest Me-
teorology”, and “Agricultural Water Management” with 1–3% percentage. These journals
deal with several aspects of agriculture ranging from management strategies (so as to
incorporate spatial and temporal data as a means of optimizing productivity, resource use
efficiency, sustainability and profitability of agricultural production) up to crop molecular
genetics and plant pathogens. An interdisciplinary journal concentrating on soil functions
and processes also appeared with 2.1%, namely “Geoderma”, plausibly covering the soil
management generic category. Finally, several journals focusing on physics and applied
natural sciences, such as “Applied Sciences” (2.7%), “Scientific Reports” (1.8%), “Biosystems
Engineering” (1.5%), and “PLOS ONE” (1.5%), had a notable contribution to ML studies.
As a consequence, ML in agriculture concerns several disciplines and constitutes a fun-
damental area for developing various techniques, which can be beneficial to other fields
as well.

4.2. Synopsis of the Main Features Associated with the Relative Literature
4.2.1. Machine Learning Models Providing the Best Results

A wide range of ML algorithms was implemented in the selected studies; their ab-
breviations are given in Table A11. The ML algorithms that were used by each study
as well as those that provided the best output have been listed in the last two columns
of Tables A1–A9. These algorithms can be classified into the eight broad families of ML
models, which are summarized in Table A10. Figure 8 focuses on the best performed ML
models as a means of capturing a broad picture of the current situation and demonstrating
advancement similarly to [12].

As can be demonstrated in Figure 8, the most frequent ML model providing the best
output was, by far, Artificial Neural Networks (ANNs), which appeared in almost half of
the reviewed studies (namely, 51.8%). More specifically, ANN models provided the best re-
sults in the majority of the studies concerning all sub-categories. ANNs have been inspired
by the biological neural networks that comprise human brains [85], while they allow for
learning via examples from representative data describing a physical phenomenon. A dis-
tinct characteristic of ANNs is that they can develop relationships between dependent and
independent variables, and thus extract useful information from representative datasets.
ANN models can offer several benefits, such as their ability to handle noisy data [86], a sit-
uation that is very common in agricultural measurements. Among the most popular ANNs
are the Deep Neural Networks (DNNs), which utilize multiple hidden layers between
input and output layers. DNNs can be unsupervised, semi-supervised, or supervised. A
usual kind of DNNs are the Convolutional Neural Networks (CNNs), whose layers, unlike
common neural networks, can set up neurons in three dimensions [87]. In fact, CNNs
were presented as the algorithms that provide the best output in all sub-categories, with
an almost 50% of the individual percentage of ANNs. As stressed in recent studies, such
as that of Yang et al. [88], CNNs are receiving more and more attention because of their
efficient results when it comes to detection through images’ processing.
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Figure 8. Machine Learning models giving the best output.

Recurrent Neural Networks (RNNs) followed, representing approximately 10% of
ANNs, with Long Short-Term Memory (LSTM) standing out. They are called “recurrent”
as they carry out the same process for every element, with the previous computations
determining the current output, while they have a “memory” that stores information
pertaining to what has been calculated so far. RNNs can face problems concerning van-
ishing gradients and inability to “memorize” many sequential data. Towards addressing
these issues, the cell structures of LSTM can control which part of information will be
either stored in long memory or discarded, resulting in optimization of the memorizing
process [51]. Moreover, Multi-Layer Perceptron (MLP), Fully Convolutional Networks
(FCNs), and Radial Basis Function Networks (RBFNs) appeared to have the best perfor-
mance in almost 3–5% of ANNs. Finally, ML algorithms, belonging to ANNs with low
frequency, were Back-Propagation Neural Networks (BPNNs), Modular Artificial Neural
Networks (MANNs), Deep Belief Networks (DBNs), Adaptive-Neuro Fuzzy Inference
System (ANFIS), Subtractive Clustering Fuzzy Inference System (SCFIS), Takagi-Sugeno
Fuzzy Neural Networks (TS-FNN), and Feed Forward Neural Networks (FFNNs).

The second most accurate ML model was Ensemble Learning (EL), contributing to
the ML models used in agricultural systems with approximately 22.2%. EL is a concise
term for methods that integrate multiple inducers for the purpose of making a decision,
normally in supervised ML tasks. An inducer is an algorithm, which gets as an input
a number of labeled examples and creates a model that can generalize these examples.
Thus, predictions can be made for a set of new unlabeled examples. The key feature
of EL is that via combining various models, the errors coming from a single inducer is
likely to be compensated from other inducers. Accordingly, the prediction of the overall
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performance would be superior comparing to a single inducer [89]. This type of ML
model was presented in all sub-categories, apart from crop quality, perhaps owing to the
small number of papers belonging in this subcategory. Support Vector Machine (SVM)
followed, contributing in approximately 11.5% of the studies. The strength of the SVM
stems from its capability to accurately learn data patterns while showing reproducibility.
Despite the fact that it can also be applied for regression applications, SVM is a commonly
used methodology for classification extending across numerous data science settings [90],
including agricultural research.

Decision Trees (DT) and Regression models came next with equal percentage, namely
4.7%. Both these ML models were presented in all generic categories. As far as DT are
concerned, they are either regression or classification models structured in a tree-like
architecture. Interestingly, handling missing data in DT is a well-established problem. By
implementing DT, the dataset can be gradually organized into smaller subsets, whereas,
in parallel, a tree graph is created. In particular, each tree’s node denotes a dissimilar
pairwise comparison regarding a certain feature, while each branch corresponds to the
result of this comparison. As regards leaf nodes, they stand for the final decision/prediction
provided after following a certain rule [91,92]. As for Regression, it is used for supervised
learning models intending to model a target value on the basis of independent predictors.
In particular, the output can be any number based on what it predicts. Regression is
typically applied for time series modeling, prediction, and defining the relationships
between the variables.

Finally, the ML models, leading to optimal performance (although with lower contri-
bution to literature), were those of Instance Based Models (IBM) (2.7%), Dimensionality
Reduction (DR) (1.5%), Bayesian Models (BM) (0.9%), and Clustering (0.3%). IBM ap-
peared only in crop, water, and livestock management, whereas BM only in crop and
soil management. On the other hand, DR and Clustering appeared as the best solution
only in crop management. In brief, IBM are memory-based ML models that can learn
through comparison of the new instances with examples within the training database. DR
can be executed both in unsupervised and supervised learning types, while it is typically
carried out in advance of classification/regression so as to prevent dimensionality effects.
Concerning the case of BM, they are a family of probabilistic models whose analysis is
performed within the Bayesian inference framework. BM can be implemented in both
classification and regression problems and belong to the broad category of supervised
learning. Finally, Clustering belongs to unsupervised ML models. It contains automatically
discovering of natural grouping of data [12].

4.2.2. Most Studied Crops and Animals

In this sub-section, the most examined crops and animals that were used in the
ML models are discussed as a result of our searching within the four sub-categories
of crop management similarly to [12]. These sub-categories refer to yield prediction,
disease detection, crop recognition, and crop quality. Overall, approximately 80 different
crop species were investigated. The 10 most utilized crops are summarized in Figure 9.
Specifically, the remarkable interest on maize (also known as corn) can be attributed to
the fact that it is cultivated in many parts across the globe as well as its versatile usage
(for example, direct consumption by humans, animal feed, producing ethanol, and other
biofuels). Wheat and rice follow, which are two of the most widely consumed cereal
grains. According to the Food and Agriculture Organization (FAO) [93], the trade in
wheat worldwide is more than the summation of all other crops. Concerning rice, it is the
cereal grain with the third-highest production and constitutes the most consumed staple
food in Asia [94]. The large contribution of Asian countries presented in Figure 6, like
China and India, justifies the interest in this crop. In the same vein, soybeans, which are
broadly distributed in East Asia, USA, Africa, and Australia [95], were presented in many
studies. Finally, tomato, grape, canola/rapeseed (cultivated primarily for its oil-rich seed),
potato, cotton, and barley complete the top 10 examined crops. All these species are widely
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cultivated all over the world. Some other indicative species, which were investigated at
least five times in the present reviewed studies, were also alfalfa, citrus, sunflower, pepper,
pea, apple, squash, sugarcane, and rye.

Figure 9. The 10 most investigated crops using machine learning models; the results refer to crop management.

As far as livestock management is concerned, the examined animal species can be
classified, in descending order of frequency, into the categories of cattle (58.5%), sheep and
goats (26.8%), swine (14.6%), poultry (4.9%), and sheepdog (2.4%). As can be depicted in
Figure 10, the last animal, which is historically utilized with regard to the raising of sheep,
was investigated only in one study belonging to animal welfare, whereas all the other
animals were examined in both categories of livestock management. In particular, the most
investigated animal in both animal welfare and livestock production was cattle. Sheep and
goats came next, which included nine studies for sheep and two studies for goats. Cattles
are usually raised as livestock aimed at meat, milk, and hide used for leather. Similarly,
sheep are raised for meat and milk as well as fleece. Finally, swine (often called domestic
pigs) and poultry (for example, chicken, turkey, and duck), which are used mainly for their
meat or eggs (poultry), had equal contribution from the two livestock sub-categories.
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Figure 10. Frequency of animal species in studies concerning livestock management by using machine learning models.

4.2.3. Most Studied Features and Technologies

As mentioned in the beginning of this study, modern agriculture has to incorporate
large amounts of heterogeneous data, which have originated from a variety of sensors over
large areas at various spatial scale and resolution. Subsequently, such data are used as
input into ML algorithms for their iterative learning up until modeling of the process in the
most effective way possible. Figure 11 shows the features and technologies that were used
in the reviewed studies, separately for each category, for the sake of better comprehending
the results of the analysis.

Data coming from remote sensing were the most common in the yield prediction
sub-category. Remote sensing, in turn, was primarily based on data derived from satellites
(40.6% of the total studies published in this sub-category) and, secondarily, from UAVs
(23.2% of the total studies published in this sub-category). A remarkable observation is
the rapid increase of the usage of UAVs versus satellites from the year 2018 towards 2020,
as UAVs seem to be a reliable alternative that can give faster and cheaper results, usually
in higher resolution and independent of the weather conditions. Therefore, UAVs allow
for discriminating details of localized circumscribed regions that the satellites’ lowest
resolution may miss, especially under cloudy conditions. This explosion in the use of UAV
systems in agriculture is a result of the developing market of drones and sensing solutions
attached to them, rendering them economically affordable. In addition, the establishment
of formal regulations for UAV operations and the simplification and automatization of the
operational and analysis processes had a significant contribution on the increasing popu-
larity of these systems. Data pertaining to the weather conditions of the investigated area
were also of great importance as well as soil parameters of the farm at hand. An additional
way of getting the data was via in situ manual measurements, involving measurements
such as crop height, plant growth, and crop maturity. Finally, data concerning topographic,
irrigation, and fertilization aspects were presented with approximately equal frequency.
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Figure 11. Distribution of the most usual features implemented as input data in the machine learning algorithms for each
category/sub-category.

As far as disease detection is concerned, Red-Green-Blue (RGB) images appear to be
the most usual input data for the ML algorithms (in 62% of the publications). Normally,
deep learning methods like CNNs are implemented with the intention of training a classifier
to discriminate images depicting healthy leaves, for example, from infected ones. CNNs
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use some particular operations to transform the RGB images so that the desired features are
enhanced. Subsequently, higher weights are given to the images having the most suitable
features. This characteristic constitutes a significant advantage of CNNs as compared to
other ML algorithms, when it comes to image classification [79]. The second most common
input data came from either multispectral or hyperspectral measurements originated from
spectroradiometers, UAVs, and satellites. Concerning the investigated diseases, fungal
diseases were the most common ones with diseases from bacteria following, as is illustrated
in Figure 12a. This kind of disease can cause major problems in agriculture with detrimental
economic consequences [96]. Other examined origins of crop diseases were, in descending
order of frequency, pests, viruses, toxicity, and deficiencies.

Figure 12. Distribution of the most usual output features of the machine learning algorithms regarding: (a) Disease detection
and (b) Crop quality.

Images were also the most used input data for weed detection purposes. These
images were RGB images that originated mainly from in situ measurements as well as from
UGVs and UAVs and, secondarily, multispectral images from the aforementioned sources.
Finally, other parameters that were observed, although with lower frequency, were satellite
multispectral images, mainly due to the considerably low resolution they provide, video
recordings, and hyperspectral and greyscale images. Concerning crop recognition, the
majority of the studies used data coming mostly from satellites and, secondarily, from in
situ manual measurements. This is attributed to the fact that most of the studies in this
category concern crop classification, a sector where satellite imaging is the most widely
used data source owing to its potential for analysis of time series of extremely large surfaces
of cultivated land. Laboratory measurements followed, while RGB and greyscale images
as well as hyperspectral and multispectral measurements from UAVs were observed with
lower incidence.

The input data pertaining to crop quality consisted mainly of RGB images, while
X-ray images were also utilized (for seed germination monitoring). Additionally, quality
parameters, such as color, mass, and flesh firmness, were used. There were also two studies
using spectral data either from satellites or spectroradiometers. In general, the studies
belonging in this sub-category dealt with either crop quality (80%) or seed germination
potential (20%) (Figure 12b). The latter refers to the seed quality assessment that is essential
for the seed production industry. Two studies were found about germination that both
combined X-ray images analysis and ML.

Concerning soil management, various soil properties were taken into account in
65.7% of the studies. These properties included salinity, organic matter content, and
electrical conductivity of soil and soil organic carbon. Usage of weather data was also
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very common (in 48.6% of the studies), while topographic and data pertaining to the soil
moisture content (namely the ratio of the water mass over the dry soil) and crop properties
were presented with lower frequency. Additionally, remote sensing, including satellite
and UAV multispectral and hyperspectral data, as well as proximal sensing, to a lesser
extent, were very frequent choices (in 40% of the studies). Finally, properties associated
with soil temperature, land type, land cover, root microbial dynamics, and groundwater
salinity make up the rest of data, which are labeled as “other” in the corresponding graph
of Figure 11.

In water management, weather data stood for the most common input data (appeared
in the 75% of the studies), with ET being used in the vast majority of them. In many cases,
accurate estimation of ET (the summation of the transpiration via the plant canopy and the
evaporation from plant, soil, and open water surface) is among the most central elements
of hydrologic cycle for optimal management of water resources [97]. Data from remote
sensors and measurements of soil water content were also broadly used in this category.
Soil water availability has a central impact on crops’ root growth by affecting soil aeration
and nutrient availability [98]. Stem water potential, appearing in three studies, is actually
a measure of water tension within the xylem of the plant, therefore functioning as an
indicator of the crop’s water status. Furthermore, in situ measurements, soil, and other
parameters related to cumulative water infiltration, soil and water quality, field topography,
and crop yield were also used, as can be seen in Figure 11.

Finally, in what concerns livestock management, motion capture sensors, including
accelerometers, gyroscopes, and pedometers, were the most common devices giving in-
formation about the daily activities of animals. This kind of sensors was used solely in
the studies investigating animal welfare. Images, audio, and video recordings came next,
however, appearing in both animal welfare and livestock production sub-categories. Physi-
cal and growth characteristics followed, with slightly less incidence, by appearing mainly
in livestock production sub-category. These characteristics included the animal’s weight,
gender, age, metabolites, biometric traits, backfat and muscle thickness, and heat stress.
The final characteristic may have detrimental consequences in livestock health and product
quality [99], while through the measurement of backfat and muscle thickness, estimations
of the carcass lean yield can be made [100].

5. Discussion and Main Conclusions

The present systematic review study deals with ML in agriculture, an ever-increasing
topic worldwide. To that end, a comprehensive analysis of the present status was conducted
concerning the four generic categories that had been identified in the previous review by
Liakos et al. [12]. These categories pertain to crop, water, soil, and livestock management.
Thus, by reviewing the relative literature of the last three years (2018–2020), several aspects
were analyzed on the basis of an integrated approach. In summary, the following main
conclusions can be drawn:

• The majority of the journal papers focused on crop management, whereas the other
three generic categories contributed almost with equal percentage. Considering the
review paper of [12] as a reference study, it can be deduced that the above picture
remains, more or less, the same, with the only difference being the decrease of the
percentage of the articles regarding livestock from 19% to 12% in favor of those refer-
ring to crop management. Nonetheless, this reveals just one side of the coin. Taking
into account the tremendous increase in the number of relative papers published
within the last three years (in particular, 40 articles were identified in [12] comparing
to the 338 of the present literature survey), approximately 400% more publications
were found on livestock management. Another important finding was the increasing
research interest on crop recognition.

• Several ML algorithms have been developed for the purpose of handling the hetero-
geneous data coming from agricultural fields. These algorithms can be classified in
families of ML models. Similar to [12], the most efficient ML models proved to be
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ANNs. Nevertheless, in contrast to [12], the interest also been shifted towards EL,
which can combine the predictions that originated from more than one model. SVM
completes the group with the three most accurate ML models in agriculture, due to
some advantages, such as its high performance when it works with image data [101].

• As far as the most investigated crops are concerned, mainly maize and, secondarily,
wheat, rice, and soybean were widely studied by using ML. In livestock management,
cattle along with sheep and goats stood out constituting almost 85% of the studies.
Comparing to [12], more species have been included, while wheat and rice as well as
cattle, remain important specimens for ML applications.

• A very important result of the present review study was the demonstration of the
input data used in the ML algorithms and the corresponding sensors. RGB images
constituted the most common choice, thus, justifying the broad usage of CNNs due
to their ability to handle this type of data more efficiently. Moreover, a wide range
of parameters pertaining to weather as well as soil, water, and crop quality was
used. The most common means of acquiring measurements for ML applications was
remote sensing, including imaging from satellites, UAVs and UGVs, while in situ and
laboratory measurements were also used. As highlighted above, UAVs are constantly
gaining ground against satellites mainly because of their flexibility and ability to
provide images with high resolution under any weather conditions. Satellites, on
the other hand, can supply time-series over large areas [102]. Finally, animal welfare-
related studies used mainly devices such as accelerometers for activity recognition,
whereas those ones referring to livestock production utilized primary physical and
growth characteristics of the animal.

As can be inferred from the geographical distribution (illustrated in Figure 6) in
tandem with the broad spectrum of research fields, ML applications for facilitating various
aspects of management in the agricultural sector is an important issue on an international
scale. As a matter of fact, its versatile nature favors convergence research. Convergence
research is a relatively recently introduced approach that is based on shared knowledge
between different research fields and can have a positive impact on the society. This
can refer to several aspects, including improvement of the environmental footprint and
assuring human’s health. Towards this direction, ML in agriculture has a considerable
potential to create value.

Another noteworthy finding of the present analysis is the capturing of the increasing
interest on topics concerning ML analyses in agricultural applications. More specifically,
as can be shown in Figure 13, an approximately 26% increase was presented in the total
number of the relevant studies, if a comparison is made between 2018 and 2019. The
next year (i.e., 2020), the corresponding increase jumped to 109% against 2019 findings;
thus, resulting in an overall 164% rise comparing with 2018. The accelerating rate of the
research interest on ML in agriculture is a consequence of various factors, following the
considerable advancements of ICT systems in agriculture. Moreover, there exists a vital
need for increasing the efficiency of agricultural practices while reducing the environmental
burden. This calls for both reliable measurements and handling of large volumes of data as
a means of providing a wide overview of the processes taking place in agriculture. The
currently observed technological outbreak has a great potential to strengthen agriculture in
the direction of enhancing food security and responding to the rising consumers’ demands.
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Figure 13. Temporal distribution of the reviewed studies focusing on machine learning in agriculture, which were published
within 2018–2020.

In a nutshell, ICT in combination with ML, seem to constitute one of our best hopes to
meet the emerging challenges. Taking into account the rate of today’s data accumulation
along with the advancement of various technologies, farms will certainly need to advance
their management practices by adopting Decision Support Systems (DSSs) tailored to the
needs of each cultivation system. These DSSs use algorithms, which have the ability to
work on a wider set of cases by considering a vast amount of data and parameters that the
farmers would be impossible to handle. However, the majority of ICT necessitates upfront
costs to be paid, namely the high infrastructure investment costs that frequently prevent
farmers from adopting these technologies. This is going to be a pressing issue, mainly in
developing economies, where agriculture is an essential economic factor. Nevertheless,
having a tangible impact is a long-haul game. A different mentality is required by all
stakeholders so as to learn new skills, be aware of the potential profits of handling big data,
and assert sufficient funding. Overall, considering the constantly increasing recognition of
the value of artificial intelligence in agriculture, ML will definitely become a behind-the-
scenes enabler for the establishment of a sustainable and more productive agriculture. It
is anticipated that the present systematic effort is going to constitute a beneficial guide to
researchers, manufacturers, engineers, ICT system developers, policymakers, and farmers
and, consequently, contribute towards a more systematic research on ML in agriculture.
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Appendix A

In this section, the reviewed articles are summarized within the corresponding Tables
as described in Table 2.
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Table A1. Crop Management: Yield Prediction.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[103] Coffee Weather data, soil
fertility

Prediction of Robusta coffee
yield by using various soil

fertility properties
ELM, RF, MLR

ELM: Model with SOM, K, S:
RMSE = 496.35 kgha−1, MAE =

326.40 kgha−1

[104] Maize Weather and satellite
spectral data

Silage maize yield
estimation via Landsat 8 OLI

data
BRT, RFR, SVR, GPR BRT: R = 0.89, RMSE = 4.66

[105] Maize

Soil properties,
topographic,

multispectral aerial
images

Prediction of corn yield and
soil properties (SOM, CEC,

Mg, K, pH)

RF, ANN, SVM, GBM,
Cubist

(1) Corn yield: RF (R2 = 0.53); (2)
SOM: NN (R2 = 0.64); (3) CEC: NN
(R2 = 0.67); (4) K: SVM (R2 = 0.21);
(5) Mg: SVM (R2 = 0.22); (6) pH:

GBM (R2 = 0.15)

[106] Cotton Satellite spectral data Cotton yield estimation ANN

(1) 2013: Yield vs. CI (R =
−0.2–0.60), best ANN (R = 0.68); (2)
2014: Yield vs. CI (R = −0.79–0.84),

best ANN (R = 0.86)

[107] Apple RGB images
Detection and estimation of

the number of apples in
canopy images

MLR
Yield relative error = −10–13%,

Yield relative error STD = 28% of
average tree yield

[108] Maize
Crop data—CERES

model, satellite spectral
data

Forecasting spring maize
yield from Landsat-8 images

SVM, RF, DT, LDA,
KNN

RS: SVM: Acc = 97%, RMSE = 397
kgha−1

[109] Maize, soybean Satellite spectral data
Estimation of corn and

soybean yield via Landsat
and SPOT images

MLR, ANN R2 values: (1) Maize: ANN: 0.92, (2)
Soybean: ANN: 0.90

[110] Turmeric Soil fertility, weather
data

Forecasting oil yield
produced from turmeric

rhizomes
ANN Multilayer-feed-forward NN with

12 nodes: R2 = 0.88

[111] Sunflower Plant height, SPAD Prediction of sunflower seed
yield PLSR, ANN

(1) ANN: RMSE = 0.66 tha−1, R2 =
0.86; (2) PLSR: RMSE = 0.93 tha−1,

R2 = 0.69

[112] Pistachio Irrigation, soil
characteristics

Estimation of pistachio yield
in orchards MLR, ANN Acc values: ANN: 90%, MLR: 28%

[113] Rice
Weather data, irrigation,

planting area,
fertilization

Evaluation of feature subsets
for prediction of paddy crop

yield
ANN, SVR, KNN, RF

Forward Feature Selection:
RF: RMSE = 0.085, MAE = 0.055, R

= 0.93

[114] Potato Satellite spectral data Prediction of potato yield via
Sentinel 2 satellite data

MLR, RQL, LB, SVM,
RF, MARS, KNN, ANN

(1) Reduced dataset: LB: MAE =
8.95%, R2 = 0.89; (2) No feature

selection: SVM: MAE = 8.64%, R2 =
0.93; (3) 1–2 months prior to harvest:

RF: MAE = 8.71%, R2 = 0.89

[115] Wheat Satellite spectral data Prediction of wheat yield SVM, RF, ANN R2 values: (1) SVM: 0.74; (2) RF:
0.68; (3) ANN: 0.68

[116] Soybean, Maize
Hydrological, weather
and satellite spectral

data

Prediction of soybean and
corn yields

DNN, RF, SVM, MARS,
ERT, ANN

DNN (1) Corn: 21–33% more
accurate (2) Soybean: 17–22% more

accurate

[117] Wheat, barley Multispectral images
from UAV

Prediction of barley and
wheat yields CNN

(1) Early growth phase(<25%):
MAE = 484.3 kgha−1, MAPE = 8.8%;

(2) Later growth phase(>25%):
MAE = 484.3 kgha−1, MAPE = 8.8%

[118] Strawberry Multispectral images
from UAV

Detection and counting of
strawberry species for yield

prediction
CNN

Faster RCNN: (1) Detection: MaP =
0.83 (at 2 m), MaP = 0.72 (at 3 m); (2)

Count: Acc = 84.1%, Average
occlusion = 13.5%

[119] Rice
Weather data, irrigation,

planting area,
fertilization

Prediction of paddy fields
yield

ANN, MLR, SVR, KNN,
RF

ANN-MLR: R = 0.99, RMSE = 0.051,
MAE = 0.041

[120] Soybean Weather and satellite
spectral data

Prediction of soybean yield
in 15 states of USA CNN, LSTM 2011–2015: End-of-season

RMSE = 329.53 kgha−1, R2 = 0.78

[121] Maize Satellite spectral data Prediction of maize yield MLR, RF, SVM

RF: (1) yield: R2 = 0.6; (2) GNDVI:
R2 = 0.48;

Best monitoring period:
Crop age = 105–135 days

[122] Mango Multispectral data from
UGV

Estimation of mango
maturity level by simulating

imaging devices of optical
filters

SVM
Estimation of dry matter by using a
4-sensor device with 4 filters: R2 =

0.69

[123] Rapeseed, barley,
wheat

EC, STI, gamma
radiometrics and

weather data
Forecasting crop yield RF RMSE = 0.36–0.42 t/ha, Lin’s CCC

= 0.89–0.92

[53] Maize
Genetic information of

hybrids, soil and
weather data

Prediction of maize yield DNN

(1) With predicted weather data:
RMSE = 12% of average yield, 50%

of STD; (2) Using ideal weather
data: RMSE = 11% of average yield,

46% of STD

[124] Rice RGB leaf images

Prediction of nutrient
deficiencies (P, N, K) in

image leaves from paddy
fields

ANN Acc = 77%
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Ref Crop Input Data Functionality Models/Algorithms Best Output

[125] Rice RGB and multispectral
images from UAV Estimation of rice grain yield CNN

R2 values: (1) Only RGB images:
0.424–0.499; (2) RGB and

multispectral images: 0.464–0.511

[126] Maize Satellite spectral data,
crop modeling data

Estimation of end-of-season
and early maize yield RF

(1) Early maize yield: R2 = 0.53,
RMSE = 271 kgha−1, MAE = 202
kgha−1; (2) End-of-season maize
yield: R2 = 0.59, RMSE = 258 kg

ha−1, MAE = 201 kgha−1

[127] Potato Soil parameters and
tillage treatments

Forecasting of organic potato
yield ANN, MLR

(1) MLR: R2 = 0.894, RMSE = 0.431,
MAE = 0.327; (2) ANN: R2 = 0.95,

RMSE = 0.431, MAE = 0.327

[128] Maize Simulations data,
weather and soil data

Prediction of crop yield
based on gridded crop

meta-models
RF, XGBoost

(1) XGBoost: (a) growing season
climate: R2 = 0.91, MAE = 0.74, (b)
annual climate: R2 = 0.92, MAE =
0.66: (2) RF: (a) growing season

climate: R2 = 0.94, MAE = 0.71, (b)
annual climate: R2 = 0.95, MAE =

0.58

[129] Soybean
Satellite spectral data,

precipitation and
daytime

Forecasting soybean yield RF, multivariate OLS,
LSTM

(1) DOY 16: OLS: MAE = 0.42
Mgha−1; (2) DOY 32: LSTM: MAE =

0.42 Mgha−1; (3) DOY 48: LSTM:
MAE = 0.25 Mgha−1; (4) DOY 64:

LSTM: MAE = 0.24 Mgha−1

[130] Potato

Topography, soil EC,
soil chemistry and

multispectral data from
ground based sensors

Potato tuber yield prediction
via ground based proximal

sensing
LR, KNN, EN, SVR

Best models: (1) SVR: 2017: (a) New
Brunswick: RMSE = 5.97 tha−1, (b)

Prince Edward Island: RMSE = 6.60
tha−1; (2) 2018: (a) New Brunswick

RMSE = 4.62 tha−1, (b) Prince
Edward Island: RMSE = 6.17 tha−1

[131] Rice, maize,
millet, ragi Weather data Prediction of various kharif

crops yield MANN, SVR Overall RMSE = 79.85%

[132] Wheat Soil, weather, and
satellite spectral data

Winter wheat prediction
from four mid-season

timings

RF, GPR, SVM, ANN,
KNN, DT, BT

(1) RF: R2 = 0.81, RMSE = 910–920
kgha−1, MAE = 740 kgha−1; (2)

GPR: R2 = 0.78, RMSE = 920–960
kgha−1, MAE = 735–767 kgha−1

[133] Maize
Data derived from
various cropping

systems

Maize grain yield prediction
from CA and conventional

cropping systems

LDA, MLR, GNB, KNN,
CART, SVM

Best results: LDA: Acc = 0.61,
Precision = 0.59, Recall = 0.59,

F1-score = 0.59

[134] Soybean
Multispectral, RGB and

thermal images from
UAV

Estimation of soybean grain
yield DNN, PLSR, RFR, SVR

DNN: (1) Intermediate-level feature
fusion: R2 = 0.720, Relative RMSE =
15.9%; (2) input-level feature fusion:

R2 = 0.691,
Relative RMSE = 16.8%

[135] Soybean, Maize Weather data and soil
data

Soybean and corn yield
forecasting

CNN-RNN, RF, LASSO,
DNN

CNN-RNN: RMSE values
(bushels/acre): (1) Soybean: 2016:

4.15, 2017: 4.32, 2018: 4.91; (2)
Maize: 2016: 16.48, 2017: 15.74,

2018: 17.64

[136] Grape Multispectral images
from UAV

Estimation of vineyard final
yield MLP

(1) Only NDVI: RMSE = 1.2
kg/vine, Relative error = 28.7%; (2)
Both NDVI ANF VFC: RMSE = 0.9

kg/vine,
Relative error = 21.8%

[137] Rice Satellite spectral data Prediction of rice crop yield RF, SVM

(1) HD NDVI: RF: RMSE = 11.2%,
MAE = 9.1%, SVM: RMSE = 8.7%,
MAE = 5.6%; (2) HDM NDVI: RF:

RMSE = 11.3%, MAE = 9.2%, SVM:
RMSE = 8.7%, MAE = 5.6%

[138] Maize
Fertilization, planting

density, soil EC, satellite
spectral data

Prediction of corn yield
response to nitrogen and

seed rate management
CNN Average value for 9 fields in the

USA: RMSE = 0.7

[139] Sugarcane Monthly precipitation
data

Forecasting of sugarcane
yield RNN RMSE = 0.31 tha−1, MAE = 0.39

tha−1, MAPE = 5.18%

[140] Wheat Satellite spectral and
weather data Estimation of wheat yield

SVR, RF, Cubist,
XGBoost, MLP, GPR,

KNN, MARS
SVR: RMSE = 0.55 tha−1, R2 = 0.77

[141] Maize, Soybean Satellite spectral data Forecasting of maize and
soybean yield MLR, ANN

ANN: (1) Corn: RMSE = 4.83–8.41,
R = 0.91–0.99; (2) Soybean: RMSE =

5.18–7.77, R = 0.79–0.99

[142] Maize Satellite spectral and
weather data

Prediction of maize yield
under severe weather

conditions
DNN (1) Drought cases: R = 0.954; (2)

Heatwave cases: R = 0.887–0.914

[143] Rice Weather data Paddy yield prediction ANN R = 0.78–1.00,
MSE = 0.040–0.204

[144] Maize Plant population, soil
and weather data

Maize yield forecasting in 3
US states of Corn Belt

XGBoost, RF, LASSO,
GBM, WEL WEL: RMSE = 1.138 kgha−1

[145] Maize Satellite spectral and
weather data Estimation of maize yield DLS R2 = 0.76, RMSE = 0.038 tha−1



Sensors 2021, 21, 3758 27 of 55

Table A1. Cont.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[146] Various crops Satellite spectral and
weather data

Prediction of autumn crops
yield SVR, RF, DNN

RMSE values (×104 tons)
SVR = 501.98; RF = 477.45; DNN =

253.74

[147] Wheat Multispectral images
from UAV

Growth monitoring and
yield prediction of wheat in

key growth stages

LR, SMLR, PLSR, ANN,
RF

Best results: RF:
R2 = 0.78, RMSE = 0.103

[148] Cotton
Topographic, weather,

soil and satellite
spectral data

Within-field yield prediction RF, GB Best results: RF: RMSE = 0.20 tha−1,
CCC = 0.50–0.66

[149] Cotton Satellite spectral data Yield prediction RF, CART RF: RMSE = 62.77 Kg ha−1, MAPE =
0.32

[150] Rice Multispectral images
from UAV Prediction of rice grain yield RF RMSE = 62.77 Kg ha−1, MAPE =

0.32

[151] Soybean Multispectral images
from UAV Yield estimation in soybean MLP R = 0.92

[152] Potato Weather, irrigation, and
satellite spectral data

Forecasting of yield in potato
fields at municipal level RF, SVM, GLM

(1) winter cycle: R2 = 0.757, %RMSE
= 18.9; (2) summer cycle; R2 = 0.858,

%RMSE = 14.9
[153] Sugarcane Satellite spectral data Prediction of sugarcane yield MLR R2 = 0.92–0.99

[154] Cotton Multispectral images
from UAV Estimation of cotton yield ANN, SVR, RFR ANN: R2 = 0.9

[155] Rice Weather and soil data Prediction of rice yields from
Blockchain nodes RF, MLR, GBR, DTR RF: R2 = 0.941, %RMSE = 0.62, MAE

= 0.72

[156] Maize Multispectral images
from UAV

Prediction of maize yield at
specific phenological stages GB Stage V10: R2 = 0.90; Stage VT: R2 =

0.93

[157] Wheat
Satellite spectral and

weather data, soil
hydraulic properties

Forecasting of wheat yield RF, MLR RF: 1 month before harvest: R =
0.85, RMSE = 0.70 tha−1, ROC = 0.90

[158] Maize Soil and weather data Estimation of maize yield
with publicly available data

LSTM, LASSO, RF, SVR,
AdaBoost

LSTM: MAE = 0.83 (buac−1), MAPE
= 0.48%

[159] Rice Soil and weather data
Finding optimal features
gathering for forecasting

paddy yield
RF, DT, GBM RF: MSE = 0.07, R2 = 0.67;

[160] Alfalfa Hyperspectral data
from UAV

In-season alfalfa yield
forecast

Combination of RF,
SVR, KNN R2 = 0.874

[161] Maize Multispectral images
from UAV Yield prediction of maize BPNN, SVM, RF, ELM SVM: RMSE = 1.099, MAE = 0.886

[162] Mentha

Satellite spectral data,
field inventory data
(soil, plant height,

biomass)

Mentha crop biomass
forecasting MLP R2 = 0.762, RMSE = 2.74 th−1

[163] Wheat Multispectral images
from UAV

Prediction of wheat grain
yield LR, RF, SVM, ANN LR: RMSE = 972 kgha−1, R2 = 0.62

[164] Maize Multispectral images
from UAV Prediction of maize yield RF, RF+R, RF+BAG,

SVM, LR, KNN, ANN RF: R = 0.78, MAE = 853.11 kgha−1

[165] Potato Hyperspectral data
from UAV

Yield prediction at two
growth stages RF, PLSR RF: R2 = 0.63, MAE = 853.11 kgha−1

[166] Carrot Satellite spectral data Carrot yield Mapping RF R2 = 0.82, RMSE = 2.64 Mgha−1;
MAE = 1.74 Mgha−1

[167] Soybean multispectral images
from UAV Predicting yield DT RMSE = 196 kgha−1

[168] Wheat Satellite spectral, soil
and weather data

Winter wheat yield
prediction at a regional level

Combination of LSTM
and CNN R2 = 0.75, RMSE = 732 kgha−1;

[169] Potato Hyperspectral data
from UAV

Yield prediction at two
growth stages RF, PLSR R2 values: RF: 0.63; PLSR: 0.81

[170] Wheat Satellite spectral and
weather data

Winter yield prediction in
the Conterminous United

States

OLS, LASSO, SVM, RF,
AdaBoost, DNN

AdaBoost: R2 = 0.86, RMSE = 0.51
tha−1, MAE = 0.39 tha−1

Acc: Accuracy: CA: Conservation Agriculture; CI: Crop Indices; CEC: Cation Exchange Capacity; CCC: Concordance Correlation Coefficient;
DOY: Day Of Year; EC: Electrical Conductivity; HD: Heading Date; HDM: Heading Date to Maturity; K: Potassium; Mg: Magnesium; N:
Nitrogen; OLI: Operational Land Imager; P: Phosphorus; RGB: Red-Green-Blue; S: Sulphur; SOM: Soil Organic Matter; SPAD: Soil and
Plant Analyzer Development; STI: Soil Texture Information; STD: Standard Deviation; UAV: Unmanned Aerial Vehicle; UGV: Unmanned
Ground Vehicle.

Table A2. Crop Management: Disease Detection.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[171] Various crops RGB images Detection and diagnosis of
plant diseases CNN Acc = 99.53%

[172] Melon Fluorescence, thermal
images

Detection of Dickeya
dadantii in melon plants LR, SVM, ANN ANN: Whole leaves: Acc = 96%; F1

score = 0.99

[173] Tomato RGB images
Recognition of 10 plant

diseases and pests in tomato
plants

CNN Recognition rate = 96%
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[174] Avocando Hyperspectral images
Detection of nitrogen and

iron deficiencies and laurel
wilt disease in avocando

DT, MLP MLP: Detection at early stage: Acc
= 100%

[175] Maize RGB images
Examination of nine factors

affecting disease detection in
maize fields

CNN

Acc values: (1) Original dataset:
76%; Background removed: 79%; (2)

Subdivided (full): 87%; (3)
Subdivided (reduced): 81%

[176] Milk thistle Spectral measurements
form spectroradiometer

Identification of
Microbotryum silybum in

milk thistle plants
MLP-ARD Acc = 90.32%

[177] Tomato Spectral measurements
form spectroradiometer

Detection of leaf diseases
(target, bacterial spots and

late blight) in tomato
KNN

Acc values: (1) Healthy leaves:
100%, (2) Asymptomatic: 100%, (3)
Early stage: 97.8%, (4) Late stage:

100%

[178] Maize RGB images Identification of eight types
of leaf diseases in maize CNN

(1) GoogLeNet:
Acc = 98.9%; (2) Cifar10: Acc =

98.8%

[179] Various crops RGB images Identification of six plant
leaf diseases RBFN (1) Early blight: Acc = 0.8914; (2)

Common rusts: Acc = 0.8871

[180] Citrus RGB images Detection and classification
of citrus diseases SVM

Acc values: 1st dataset: 97%; 1st
and 2nd dataset: 89%; 3rd dataset:

90.4%

[181] Grape Multispectral images
from UAV

Identification of infected
areas CNN

(1) Color space YUV: Acc = 95.84%;
(2) Color space YUV and ExGR: Acc

= 95.92%

[182] Soybeean RGB images
Detection and classification

of three leaf diseases in
soybeans

SVM

(1) Healthy: Acc = 82%; (2) Downy
mildew: Acc = 79%; (3) Frog eye:

Acc = 95.9%; (4) Septoria leaf blight:
Acc = 90%

[183] Millet RGB images
Identification of fungal

disease (mildew) in pearl
millet

CNN Acc = 95.00%, Precision = 90.50%,
Recall = 94.50%, F1 score = 91.75%

[184] Maize RGB images from UAV Detection of northern leaf
blight in maize CNN Acc = 95.1%

[185] Wheat RGB images from UAV
Classification of

helminthosporium leaf
blotch in wheat

CNN Acc = 91.43%,

[186] Avocado RGB images,
multispectral images

Detection of laurel wilt
disease in healthy and

stressed avocado plants in
early stage

MLP, KNN
Healthy vs. Nitrogen deficiency

using 6 bands images: (1) MLP: Acc
= 98%; (2) KNN: Acc = 86%

[187] Basil RGB images

Identification and
classification of five types of
leave diseases in four kinds

of basil leaves

DT, RF, SVM, AdaBoost,
GLM, ANN, NB, KNN,

LDA
RF: Acc = 98.4%

[188] Various crops RGB images Identification of several
diseases on leaves CNN

Acc values: (1) Healthy: 89%; (2)
Mildly diseased: 31%; (3)

Moderately diseased: 87%; (4)
Severely diseased: 94%

[189] Tea RGB images from UAV

Identification of tea red Scab,
tea leaf blight and tea red
leaf spot diseases in tea

leaves

SVM, DT, RF, CNN
CNN: Acc values: (1) tea red Scab:

0.7; (2) tea leaf blight: 1.0; (3)tea red
leaf spot: 1.0

[190] Wheat Hyperspectral images
from UAV

Detection of yellow rust in
wheat plots CNN Acc = 0.85

[191] Grape RGB images Detection of grapevine
yellows in red grapes CNN Sensitivity = 98.96%

Specificity = 99.40%

[192] Maize RGB images from UAV Detection of northern leaf
blight in maize CNN Acc = 0.9979,

F1 score = 0.7153

[193] Sugar beet RGB images
Detection and classification

of diseased leaf spots in
sugar beet

CNN Acc = 95.48%

[194] Various crops RGB images Identification of various
plant leaf diseases CNN Acc = 96.46%

[195] Strawberry RGB images Detection of powdery
mildew in strawberry leaves LDA

(1) Artificial lighting conditions:
recall = 95.26%, precision = 95.45%,

F1 score = 95.37%; (2) Natural
lighting conditions: recall = 81.54%,
precision = 72%, F1 score = 75.95%

[196] Various different
crops RGB images Detection of diseased plants DL Acc = 93.67%

[197] Citrus Hyperspectral images
from UAV

Detection of canker disease
on leaves and immature

fruits

RBFN,
KNN

RBFN: Acc values: (a)
asymptomatic: 94%, (b) early stage:

96%, (c) late stage: 100%

[198] Grape RGB images Detection of diseased vine
on leaves SVM Acc = 95%

[199] Wheat RGB images Identification of three leaf
diseases in wheat CNN Acc values: (1) Septoria: 100%; (2)

Tan Spot: 99.32%; (3) Rust: 99.29%
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[200] Grape Spectral measurements
form spectroradiometer

Classification of Flavescence
dorée disease in grapevines SVM, LDA SVM: Acc = 96%

[201] Papaya RGB images Recognition of five papaya
diseases SVM Acc = 90%, Precision = 85.6%

[202] Rice RGB images
Recognition and

classification of rice infected
leaves

KNN, ANN ANN: Acc = 90%, Recall = 88%

[203] Tomato Hyperspectral images
from UAV

Detection of bacterial spot
and target spot on tomato

leaves
MLP, STDA MLP: Acc values: (a) bacterial spot:

98%, (b) target spot: 97%

[204] Squash

Hyperspectral images
from UAV and

laboratory
measurements

Classification of powdery
mildew in squash RBFN

Acc values: (1) Laboratory:
Asymptomatic: 82%, Late stage:
99%; (2) Field conditions: Early

stage: 89%, Late disease stage: 96%

[205] Tomato

Hyperspectral images
from UAV and

laboratory
measurements

Detection of bacterial spot
and target spot on tomato

leaves
RBFN, STDA

Field conditions: Acc values: (a)
Healthy vs. BS: 98%, (b) Healthy vs.

TS: 96%, (c) Healthy vs. TYLC:
100%

[206] Tomato RGB images Identification of various
diseases in tomato CNN

Acc values: (1) PV dataset: 98.4%;
(2) 2nd dataset: 98.7%; (3) Field

data: 86.27%

[79] Walnut RGB images Identification of anthracnose
infected leaves CNN

Acc values: (1) RGB: 95.97%; (2)
Grayscale: 92.47%; (3) Fast Fourier:

92.94%

[207] Various crops RGB images Classification of infected
leaves DBN Acc = 0.877, Sensitivity = 0.862,

Specificity = 0.877

[208] Grape Multispectral images
from UAV

Detection of Mildew disease
in vineyards CNN Acc values: (1) Grapevine-level:

92%; (2) Leaf level: 87%

[209] Rice RGB images, videos
Video detection of brown

spot, stem borer and sheath
blight in rice

CNN

(1) Brown spot: Recall = 75.0%,
Precision = 90.0%; (2) Stem borer:
Recall = 45.5%, Precision = 71.4%;
(3) Sheath blight: Recall = 74.1%,

Precision = 90.9%

[210] Cassava RGB images
Detection and classification

of diseased leaves of
fine-grain cassava

CNN Acc = 93%

[211] Banana

Satellite spectral data,
Multispectral images

from UAV, RGB images
from UAV

Detection of banana diseases
in different African

landscapes
RF, SVM

RF: Acc = 97%, omissions error =
10%; commission error = 10%;

Kappa coefficient = 0.96

[212] Tomato RGB images
Detection of early blight, leaf

mold and late blight on
tomato leaves

CNN Acc = 98%

[213] Pepper Spectral reflectance at
350–2500 nm

Detection of fusarium
disease in pepper leaves ANN, NB, KNN KNN: Average success rate = 100%

[214] Tomato Spectral measurements
form spectroradiometer

Detection of fusarium
disease on pepper leaves CNN Acc = 98.6%

[215] Citrus Multispectral images
from UAV

Detection of citrus greening
in citrus orchards

SVM, KNN, MLR, NB,
AdaBoost, ANN AdaBoost: Acc = 100%

[216] Soybean RGB images Prediction of charcoal rot
disease in soybean GBT Sensitivity = 96.25%, specificity =

97.33%
[217] Wheat RGB images from UAV Detection of wheat lodging RF, CNN, SVM CNN: Acc = 93%

[218] Tomato Weather data
Prediction of powdery

mildew disease in tomato
plants

ELM Acc = 89.19%, AUC = 88.57%

[219] Soybean RGB images Diagnosis of soybean leaf
diseases CNN Acc = 98.14%

[220] Potato RGB images Identification of early and
late blight disease NB, KNN, SVM SVM: Average Acc = 99.67%

[221] Various crops RGB images Quantification of uncertainty
in detection of plant diseases BDL

Mean softmax probability values:
(1) Healthy: 0.68; (2) Non-Healthy:

0.72;

[222] Coffee Satellite spectral data Identification of coffee berry
necrosis via satellite imagery MLP, RF, NB NB: Acc = 0.534

[223] Tomato RGB images

Recognition of blight,
powdery mildew, leaf mold
fungus and tobacco mosaic

virus diseases

CNN Faster RCNN:
mAP = 97.01%

[224] Maize RGB images
Diagnosis of northern leaf
blight, gray leaf spot, and

common rust diseases
CNN Acc = 98.2%; macro average

precision = 0.98

[225] Grape RGB images
Detection of black measles,

black rot, leaf blight and
mites on leaves

CNN mAP = 81.1%

[226] Grape
Weather data, expert

input (disease incidence
form visual inspection)

Forecasting downy mildew
in vineyards GLM, LASSO, RF, GB GB: AUC = 0.85
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Table A2. Cont.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[227] Maize RGB images Detection of northern leaf
blight in maize CNN mAP = 91.83%

[228] Onion RGB images
Detection of downy mildew

symptoms in onions field
images

WSL mAP@0.5 = 74.1–87.2%

[229] Coffee RGB images
Detection of coffee leaf rust

via remote sensing and
wireless sensor networks

CNN F1 score = 0.775, p-value = 0.231

[230] Tomato
Weather data,

multispectral images
captured from UAV

Detection of late blight
disease CNN

Acc values: AlexNet: (1) Transfer
learning: 89.69%; (2) Feature

extraction: 93.4%,

[231] Rice RGB images Detection of brown rice
planthopper CNN Average recall rate = 81.92%,

average Acc = 94.64%

[232] Grape
UAV multispectral
images, depth map

information
Detection of vine diseases CNN VddNet: Accuracy = 93.72%

[233] Apple RGB images Identification of apple leaf
diseases (S, FS, CR) CNN Improved VGG16: Acc = 99.40%(H),

98.04% (S), 98.33%(FS), 100%(CR)

[234] Cotton UAV multispectral
images

Disease classification of
cotton root rot KM, SVM KM: Acc = 88.39%, Kappa = 0.7198

Acc: Accuracy; AUC: Area Under Curve; CR: Cedar Rust; ExGR: Excess Green Minus Excess Red; FS: Frogeye Spot; H: Healthy; mAP:
mean Average Precision; RGB: Red-Green-Blue; S: Scab; TYLC: Tomato Yellow Leaf Curl; UAV: Unmanned Aerial Vehicle; VddNet: Vine
Disease Detection Network.

Table A3. Crop Management: Weed Detection.

Ref Input Data Functionality Models/Algorithms Best Output

[235] RGB images
Classification of thinleaf

(monocots), broa leaf (dicots)
weeds

AdaBoost with NB Acc values: (1) Original dataset: 98.40%;
(2) expanded dataset: 94.72%

[236] RGB images from UAV Detection of weeds in bean,
spinach fields CNN Acc values: (1) Bean field: 88.73%;

(2) Spinach field: 94.34%

[237] RGB images Detection of four weed
species in sugar beet fields SVN, ANN

Overall Acc: SVM: 95.00%; Weed
classification: SVM: 93.33%; Sugar beet

plants: SVM: 96.67%

[238] RGB images from UAV,
multispectral images

Detection of Gramineae weed
in rice fields ANN Best system:

80% < M/MGT < 108%, 70% < MP < 85%

[239] RGB images
Classification of crops (three

species) and weeds (nine
species)

CNN Average Acc: 98.21±0.55%

[240] Multispectral and RGB
images from UAV

Weed mapping between and
within crop rows, (1) cotton;

(2) sunflower
RF

Weed detection Acc:
(1) Cotton: 84%

(2) Sunflower: 87.9%

[241] Hyperspectral images Recognition of three weed
species in maize crops RF

Mean correct classification rate: (1) Zea
mays: 1.0; (2) Convolvulus arvensis:

0.789; Rumex: 0.691; Cirsium arvense
0.752

[242] RGB images from UAV Detection of weeds in early
season maize fields RF Overall Acc = 0.945, Kappa = 0.912

[243] RGB images from UAV
Weed mapping and

prescription map generation
in rice field

FCN
Overall Acc = 0.9196,

mean intersection over union (mean IU)
= 0.8473

[244] Handheld multispectral data

Weed detection in maize and
sugar beet row-crops with:

(1) spectral method; (2)
spatial; (3) both methods

SVM
Mean detection rate: (1) spectral method:
75%; (2) spatial: 79%; (3) both methods:

89%

[245] Multispectral images from
UAV

Development of Weed/crop
segmentation, mapping
framework in sugar beet

fields

DNN AUC: (1) background: 0.839; (2) crop:
0.681; (3) weed: 0.576

[246] RGB images Classification of potato plant
and three weed species ANN Acc = 98.1%

[247] RGB images Estimation of weed growth
stage (18 species) CNN

Maximum Acc = 78% (Polygonum spp.),
minimum Acc = 46% (blackgrass),

average Acc = 70% (the number of leaves)
and 96% for deviation of two leaves

[248] Multispectral images Classification of corn (crop)
and silver beet (weed) SVM Precision = 98%, Acc = 98%

[249] RGB images
Classification of Carolina

Geranium within strawberry
plants

CNN

F1 score values: (1) DetectNet: (0.94,
highest);

(2) VGGNet: 0.77;
(3) GoogLeNet: 0.62

[250] RGB images Classification of weeds in
organic carrot production CNN

Plant-based evaluation:
Acc = 94.6%,

Precision = 93.20%,
Recall = 97.5%,

F1 Score = 95.32%
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Table A3. Cont.

Ref Input Data Functionality Models/Algorithms Best Output

[251] Grayscale images from UGV Recognition of Broad-leaved
dock in grasslands CNN, SVM VGG-F: Acc = 96.8%

[252] Multispectral images from
UAV

Mapping of Black-grass weed
in winter wheat fields CNN

Baseline model:
AUC = 0.78; Weighted kappa = 0.59;

Average misclasssification rate = 17.8%

[253] RGB images
Segmentation of rice and

weed images at seedling stage
in paddy fields

FCN Semantic segmentation:
Average Acc rate = 92.7%

[254] RGB images from UGV

Creation of multiclass dataset
for classification of eight

Australian rangelands weed
species

CNN RS-50: Average Acc = 95.7%, average
inference time = 53.4 ms per image

[255] RGB images

Evaluation of weed detection,
spraying and mapping

system. Two Scenarios: (1)
artificial weeds, plants; (2)

real weeds, plants

CNN
Scenario: (1) Acc = 91%, Recall = 91%; (2)

Acc = 71%, Precision = 78% (for plant
detection and spraying Acc)

[256] RGB images Detection of goldenrod weed
in wild blueberry crops LC, QC QC: Acc = 93.80%

[257] RGB images Detection of five weed species
in turfgrass CNN

Precision values: Dollar weed: VGGNet
(0.97); old world diamond-flower:

VGGNet (0.99); Florida pusley: VGGNet
(0.98); annual bluegrass: DetectNet (1.00)

[258] RGB images Detection of three weed
species in perennial ryegrass CNN

Precision values: Dandelion: DetectNet
(0.99); ground ivy: VGGNet (0.99),

spotted spurge:
AlexNet (0.87)

[259] RGB images, multispectral
images from UGV

Crop-weed classification
along with stem detection FCN Overall: Mean precision = 91.3%, Mean

recall = 96.3%

[260] RGB images
Identification of crops (cotton,

tomato) and weeds
(velvetleaf and nightsade)

CNN, SVM, XGBoost, LR Densenet and SVM:
micro F1 score = 99.29%

[261] Videos recordings Classification of two weeds
species in rice field ANN, KNN Acc values: Right channel (76.62%), Left

channel (85.59%)

[262] RGB images Weed and crop discrimination
in paddy fields MCS, SRF, SVM Acc values: Right channel (76.62%), Left

channel (85.59%)

[263] Gray-scale and RGB images Weed and crop
discrimination in carrot fields RF Acc = 94%

[264] Multispectral and RGB
images

Discrimination of weed and
crops with similar

morphologies
CNN Acc = 98.6%

[265] RGB images Detection of C. sepium weed
and sugar beet plants CNN mAP = 0.751–0.829

APs@IoU0.5 = 0.761–0.897

[266] RGB images Recognition of eight types of
weeds in rangelands CNN, RNN DeepWeeds dataset:

Acc = 98.1%

[267] Multispectral images from
UAV

Weed estimation on lettuce
crops SVM, CNN

F1 score values: (1) SVM: 88%; (2)
CNN-YOLOv3: 94%; (3) Mask R-CNN:

94%

[268] RGB images
Examination of pre-trained
DNN for improvements in

weed identification
CNN (1) Xception: improvement = 0.51%; (2)

Inception-Resnet: improvement = 1.89%

[269] RGB images from UAV Detection of five weeds in
soybean fields CNN Faster RCNN: precision = 065, recall =

0.68, F1 score = 0.66, IoU = 0.85

[270] RGB images
Detection of goose grass

weed in tomato, strawberry
fields

CNN

(1) Strawberry: (a) entire plant: F1 score =
0.75, (b) leaf blade: F1 score = 0.85;

(2) Tomato: (a) entire plant: F1 score =
0.56, (b) leaf blade: F1 score = 0.65

[271] Video recordings Detection of five weed species
in Marfona potato fields ANN Correct classification rate = 98.33%

[272] In situ measurements,
satellite spectral data

Identification of gamba grass
in pasture fields XGBoost Balanced Acc = 86.9%

[273] RGB images from UAV,
satellite spectral data

Weed maps creation in oat
fields RF Acc values: (1) Subset A: 89.0%; (2)

Subset B: 87.1%

[274] In situ measurements, RGB
images from UAV

Identification of Italian
ryegrass in early growth

wheat
DNN Presicion = 95.44%, recall = 95.48%, F

score = 95.56%

[275] RGB images from UGV

Weed detection evaluation of
a spraying robot in potato

fields on: (1) Image-level; (2)
application-level; (3)

field-level

CNN

YOLOv3: (1) Image-level: recall = 57%,
precision = 84%; (2) application-level:
plants detected = 83%; (3) field-level:

correct spraying = 96%

[276] RGB images from UGV
Detection of four weed

species in maize and bean
crops

CNN Average precision = 0.15–0.73

[277] RGB images from UAV Detection of Colchicum
autumnale in grassland sites CNN U-Net: Precision = 0.692, Recall = 0.886,

F2 score = 0.839

[278] RGB images from UAV
Weed mapping of Rumex

obtusifolius in native
grasslands

CNN VGG16: Acc = 92.1%, F1 score = 78.7%

Acc: Accuracy; AUC: Area under Curve; IoU: Intersection over Union; mAP: mean Average Precision; RGB: Red-Green-Blue; UAV:
Unmanned Aerial Vehicle; UGV: Unmanned Ground Vehicle.
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Table A4. Crop Management: Crop Recognition.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[279] Various crops Satellite spectral data Classification of
early-season crops RF Beginning of growth stage: acc =

97.1%, kappa = 93.5%

[280] Various crops Satellite spectral and
phenological data

Identification of various
crops from remote
sensing imagery

SVM, RF, DF DF: (1) 2015: overall acc = 88%; (2)
2016: overall acc = 85%

[281] Maize, Rice, Soybean Satellite spectral data
Three-dimensional

classification of various
crops

CNN, SVM, KNN
CNN: (1) 2015: overall acc = 0.939,
kappa = 0.902; (2) 2016: overall acc

= 0.959, kappa = 0.924

[282] Various crops Satellite spectral data, in
situ data

Identification of crops
growing under plastic
covered greenhouses

DT Overall acc = 75.87%, Kappa = 0.63

[283] Various crops
Satellite data,

phenological, in situ
data

Classification of various
crops NB, DT, KM KM: overall acc = 92.04%, Kappa =

0.7998

[284] Cabbage, Potato RGB images from UAV,
in situ data

Classification of potato
and cabbage crops SVM, RF SVM: overall acc = 90.85%

[285] Various crops Satellite spectral data Classification of various
crops SVM Overall acc = 94.32%

[286] Various crops Satellite spectral data, in
situ data

Classification of various
crops in large areas EBT, DT, WNN EBT: overall acc = 87%

[287] Various crops Satellite spectral data, in
situ data

Classification of various
crops SVM overall acc = 92.64%

[288] Various crops
Field location, in situ
and satellite spectral

data

Classification of six
crops with small sample

sizes

FFNN, ELM, MKL,
SVM MKL: accuracy = 92.1%

[289] Wolfberry, Maize,
Vegetables Satellite spectral data Crop classification in

cloudy and rainy areas RNN Landsat-8: overall acc = 88.3%,
Kappa = 0.86

[290] Maize, Canola, Wheat Satellite spectral data, in
situ data Crop classification RF, ANN, SVM RF: overall acc = 0.93, Kappa = 0.91

[291] Various crops Satellite spectral data Classification of various
crop types

Combination of
FCN-LSTM Acc = 86%, IoU = 0.64

[292] Various crops Satellite spectral data Crop classification of
various crops LightGBM Highest acc: 92.07%

[293] Maize, Peanut,
Soybeans, Rice

Satellite spectral and in
situ data

Prediction of different
crop types FCN, SVM, RF Best crop mapping: FCN: acc = 85%,

Kappa = 0.82

[294] Various crops Satellite spectral and in
situ data

Classification of early
growth crops CNN, RNN, RF Highest Kappa: 1D CNN: 0.942

[295] Various crops Satellite spectral and in
situ data

Classification of various
crops

CNN, LSTM, RF,
XGBoost, SVM CNN: acc = 85.54%, F1 score = 0.73

[296] Various crops Satellite spectral data Classification of
parcel-based crops LSTM, DCN DCN: overall acc = 89.41%

[297] Various crops Satellite spectral data Classification of crops
in farmland parcel maps LSTM, RF, SVM LSTM: overall acc = 83.67%, kappa

= 80.91%

[298] Various crops Satellite spectral data, in
situ data Crop classification SVM, RF, CNN-RNN,

GBM Pixel R-CNN: acc = 96.5%

[299] Zea mays,
Canola, radish Grayscale testbed data Classification of the

crops SVM Quadratic SVM: Precision = 91.87%,
Recall = 91.85%, F1 score = 91.83%

[300] Rice Morphological data

Classification of two
rice species

(Osmancik-97 and
Cammeo)

LR, MLP, SVM, DT, RF,
NB, KNN LR: acc = 93.02%

[301] Soybean Hyperspectral data,
seed properties

Discrimination of 10
soybean seed varieties

TS-FFNN, SIMCA,
PLS-DA, BPNN

TS-FFNN in terms of identification
Acc, stability and computational

cost

[302] Cotton Hyperspectral data,
seed properties

Identification of seven
cotton seed varieties: (1)

Full spectra, (2)
Effective wavelengths

PLS-DA, LGR, SVM,
CNN

(1) Full spectra:
CNN-SoftMax: 88.838%;

(2) Effective wavelengths:
CNN-SVM: 84.260%

[303] Various plants RGB images of leaves
Recognition of 15 plant
species of Swedish leaf

dataset
CNN Macro average: (1) Precision = 0.97,

(2) Recall = 0.97, (3) F1 score = 0.97

[304] Various shrubs and
trees RGB images of leaves Identification of 30

shrub and trees species
RF, SVM, AdaBoost,

ANN SVM: acc = 96.5–98.4%

[305] Various plants RGB images of leaves Identification of seven
plant species

BPNN, SOM, KNN,
SVM BPNN: Recognition rate = 92.47%

[306] Various crops Satellite spectral data Crop classification SVM
SVM (RBF): overall acc values: (1)

2016: 88.3%; (2) 2017: 91%; (3) 2018:
85.00%

[307] Various crops Satellite spectral data Crop classification FCN 3D FCN: overall acc = 97.56%,
Kappa = 95.85%

[308] Cotton, Rice, Wheat,
Gram Satellite spectral data Crop classification RF, KM RF: acc = 95.06%

[309] Various crops Satellite spectral data Crop classification SVM, RF, CART RF: overall acc = 97.85%, Kappa =
0.95

[310] Various crops Satellite spectral data, in
situ data Crop classification RF overall acc = 75%, Kappa = 72%

[311] Maize, Soybean Satellite spectral data Crop classification RF, MLP, LSTM LSTM: confidence interval = 95%

[312] Various crops Satellite spectral and in
situ data Crop classification XGBoost, SVM, RF,

MLP, CNN, RNN CNN: overall acc = 96.65%
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Ref Crop Input Data Functionality Models/Algorithms Best Output

[313] Rice Satellite spectral data Crop classification CNN, SVM, RF,
XGboost, MLP

CNN: overall acc = 93.14%, F1 score
= 0.8552

[314] Various crops Satellite spectral and in
situ data Crop classification RF Overall acc = 0.94, Kappa = 0.93

[315] Various crops Satellite spectral data Crop classification CNN, LSTM, SVM CNN: overall acc = 95.44%, Kappa
= 94.51%

[316] Various crops Satellite spectral data Crop classification prior
to harvesting DT, KNN, RF, SVM RF: overall acc = 81.5%, Kappa =

0.75
[317] Various crops Satellite spectral data Crop classification CNN Overall acc = 98.19%
[318] Various crops Satellite spectral data Crop classification SVM, DA, DT, NNL NNL: F1 score = 0.88

[319] Banana, Rice,
Sugarcane, Cotton

Satellite spectral and in
situ data Crop classification SVM Overall acc = 89%

[320] Various crops Satellite spectral and in
situ data Crop classification RF Overall acc = 93.1%

Acc: Accuracy; IoU: Intersection over Union; RGB: Red-Green-Blue; UAV: Unmanned Aerial Vehicle.

Table A5. Crop Management: Crop Quality.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[64] Apples

Quality features, (flesh
firmness, soluble solids,

fruit mass and skin
color)

Classification of apple
total quality: very poor,

poor, medium, good
and excellent

FIS, ANFIS FIS: acc values: (1) 2005: 83.54%;
2006: 92.73%; 2007: 96.36%

[321] Pepper
RGB images, quality
features (color, mass

and density of peppers)

Recognition of pepper
seed quality BLR, MLP

MLP: 15 traits, stability = 99.4%,
predicted germination = 79.1%,
predicted selection rate = 90.0%

[322] Soybeans Satellite spectral and
soil data

Estimation of crop gross
primary productivity RF, ANN ANN: R2 = 0.92, RMSE = 1.38

gCdm−2

[323] Wheat RGB images captured
by UAV

Estimation of
aboveground nitrogen

content combining
various VI and WFs

PLSR, PSO-SVR PSO-SVR: R2 = 0.9025, RMSE =
0.3287

[324] Millet, rye, maize RGB images captured in
laboratory

Assessment of grain
crops seed quality CNN

Faster R-CNN: (1) Pearl millet:
mAP = 94.3%; (2) rye: mAP = 94.2%,

(3) Maize: mAP = 97.9%

[325] Jatropha curcas X-ray imaging Prediction of vigor and
germination LDA

Acc values:
Fast germination: 82.08%;
Slow germination: 76.00%;
Non-germinated: 88.24%

[326] Various legumes Spectral data form
spectroradiomener

Estimation of five
warm-season legumes

forage quality
PLS, SVM, GP

SVM: All five crops: Acc =
R2

cv
R2

v
=

0.92–0.99, IVTD: Acc =
R2

cv
R2

v
=

0.42–0.98

[327] Forage grass X-ray imaging Prediction of vigor and
seed germination

LDA, PLS-DA, RF, NB,
SVM

PLS-DA: Acc values:
(1) Vigor: FT-NIR: 0.61, X-ray: 0.68,

Combination: 0.58;
(2) Germination: FT-NIR: 0.82,
X-ray: 0.86, Combination: 0.82

[328] Tomato RGB images
Dimensions and mass
estimation for quality

inspection

(1) DSM, (2)
Dimensions (CNN), (3)
Mass estimation on: (a)
MMD (BET, GPR, SVR,
ANN, GPR), (b) EDG

(BET, GPR, SVR, ANN)

(1) DSM: precision = 99.7%; MAE
values: (2) Width (2.38), Length
(2.58); (3) Mass estimation: (a)
MMD (4.71), (b) EDG (13.04)

[329] Peach Hyperspectral images Estimation of soluble
solids content SAE-RF R2 = 0.9184, RMSE = 0.6693

Acc: Accuracy; DSM: Detection and Segmentation Module; EDG: Estimated Dimensions Geometry; IVTD: In Vitro True Digestibility;
RGB; Red-Green-Blue; MMD: Manually Measured Dimensions; mAP: mean Average Precision; PSO: Particle Swarm Optimization; RGB;
Red-Green-Blue; SAE: Stacked AutoEncoder; VI: Vegetation Indices; WF: Wavelet Features.

Table A6. Water management.

Ref Property Input Data Functionality Models/Algorithms Best Output

[330] Crop water status
Weather data, crop

water status, thermal
images

Prediction of vineyard’s
water status. Scenario A:

with RT; Scenario B:
without RT

REPTree

(1) Scenario A: prediction: R2 = 0.58,
RMSE = 0.204 MPa; (2) Scenario B:

prediction: R2 = 0.65, RMSE = 0.184
MPa.

[331] Crop water status Crop water status,
hyperspectral data

Discrimination of stressed
and non-stressed vines RF, XGBoost RF: Acc = 83.3%, Kappa = 0.67

[332] Groundwater level Water table depth,
weather data

Prediction of water
table depth LSTM, FFNN, LSTM: R2 = 0.789–0.952

[333] Irrigation scheduling Weather, irrigation, soil
moisture, yield data

Prediction of weekly
irrigation plan in jojoba

orchards

DTR, RFR, GBRT, MLR,
BTC

(1) Regression: GBRT: Acc = 93%;
(2) Classification: GBRT: Acc = 95%
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Table A6. Cont.

Ref Property Input Data Functionality Models/Algorithms Best Output

[334] Crop water status Water status,
multispectral UAV data

Estimation of vineyard water
status MLR, ANN ANN: R2 = 0.83

[335] ET Weather data Estimation of daily ETo ELM, WANN
ELM: RMSE values: Region case A:

0.1785 mm/day; Region case B:
0.359 mm/day

[336] ET Weather data Estimation of daily ETo
RF, M5Tree, GBDT,
XGBoost, SVM, RF

XGBoost: RMSE = 0.185–0.817
mmday−1

[337] Soil water content
Weather data,

volumetric soil moisture
content

Prediction of one-day-ahead
volumetric soil moisture

content
FFNN, LSTM LSTM: R2 > 0.94

[338] Infiltration
Field data, moisture
content, cumulative

infiltration of soil

Estimation of cumulative
infiltration of soil SVM, ANN, ANFIS ANFIS: RMSE = 0.8165 cm, CC =

0.9943

[339] Soil water content
Weather data, soil

moisture difference,
ultraviolet radiation

Prediction of soil moisture SVR R = 0.98, R2 = 0.96, MSE = 0.10

[340] Soil water content Simulated soil moisture
data, weather data

Forecasting of monthly soil
moisture for: Scenario A:
upper; Scenario B: lower

layers

ELM (1) Scenario A: RRMSE = 19.16%;
(2) Scenario B: RRMSE = 18.99%

[341] ET Weather and in situ crop
data

Estimation of actual ET
Scenario A: rainfed maize
field under non-mulching;
Scenario B: partial plastic

film mulching

ANN, SVM

ANN: Scenario A: ET = 399.3 mm,
RMSE = 0.469, MAE = 0.376;

Scenario B: ET = 361.2 mm, RMSE =
0.421, MAE = 0.322

[342] Infiltration and
infiltration rate Soil and hydraulic data

Prediction of cumulative
infiltration and infiltration

rate in arid areas
ANFIS, SVM, RF

SVM: RMSE values: cumulative
infiltration: 0.2791 cm, infiltration

rate: 0.0633 cmh−1

[343] Water quality NIR spectroscopy. Estimation of water
pollution level CNN RMSE = 25.47 mgL−1

[344] ET Weather data, simulated
ET data

Estimation of ETo: (1)
2011–2015; (2) 2016–2017 LSTM

(1) Predictions in 3 sites: R2 > 0.90;
(2) All sites: RMSE = 0.38–0.58

mmday−1

[345] Soil water content
Weather data, potential

ET, simulated soil
moisture data

Estimation of soil moisture FFNN, Ross-IES FFNN: RMSE = 0.15–0.25, NSE =
0.71–0.91

[346] ET Weather data, simulated
ET data, soil data

Estimation of daily kikuyu
grass crop ET

RT, SVR, MLP, KNN,
LGR, MLR, BN, RFC

RFC: R = 0.9936, RMSE = 0.183
mmday−1, MRE = 6.52%

[347] Drought Weather data Evaluation of farmers’
draught perception RF, DT

Most influential parameters:
farmer’s age, education level, years

of experience and number of
cultivated land plots

[348] ET Weather and soil data;
simulated ET Prediction of daily potato ET ANN,

AdaBoost, KNN
KNN: R2 = 0.8965, RMSE = 0.355

mm day−1, MSE = 0.126 mm day−1

[349] Soil water erosion In situ data, geological,
and weather data

Susceptibility mapping of
soil erosion from water RF, GP, NB RF: Acc = 0.91, kappa = 0.94, POD =

0.94

[350] ET, drought Weather data, simulated
ET index Prediction of drought SVR Fuzzy-SVR: R2 = 0.903, RMSE =

0.137, MAE = 0.105

[351] ET Weather data, simulated
ETo

Estimation of daily ETo
CNN, ANN, XGBoost,

RF

CNN: (1) Regional: R2 = 0.91, RMSE
= 0.47; (2) Local: R2 = 0.92, RMSE =

0.37

[352] ET Weather data Estimation of daily ETo ELM, ANN, RF ELM: R2 = 0.920, MAE = 0.394
mmday−1

[353] ET Weather data Prediction of ET in semi-arid
and arid regions CART, CCNN, SVM SVM: (1) Station I: R2 = 0.92; (1)

Station II: R2 = 0.97

[354] Pan evaporation Weather data Prediction of monthly pan
evaporation ELM, ANN, M5Tree ELM: R2 = 0.864–0.924, RMSE =

0.3069–0.4212

[355] ET Weather data, simulated
ETo

Evaluation of ML algorithms
in daily reference ET

prediction

Cubist, SVM, ANN,
MLR

Cubist: R2 = 0.99, RMSE = 0.10
mmday−1, MAE = 0.07 mmday−1

[356] ET Weather data, simulated
ET Estimation of ETo

SVM, MLP, CNN,
GRNN, GMDH SVM: R = 0.96–1.00, ME = 95–99%

[357] Drought Weather data, simulated
Palmer Z-index values

Estimation of Palmer
drought severity index ANN, DT, LR, SVM ANN: R = 0.98, MSE = 0.40, RMSE =

0.56

[358] Water quality
In-situ water quality
data, hyperspectral,

satellite data.

Estimation of inland water
quality.

LSTM, PLSR, SVR,
DNN

DNN: R2 = 0.81, MSE = 0.29, RMSE
= 0.54

[359] Groundwater
In-situ water quality
data, hyperspectral,

satellite spectral data
Estimation of water quality DT Acc = 81.49%, ROC = 87.75%

[360] Groundwater
Weather data, ET,

satellite spectral data,
land use

Estimation of groundwater
withdrawals RF R2 = 0.93, MAE = 4.31 mm, RMSE =

13.50 mm

[361] Groundwater nitrate
concentration

Various
geo-environmental data

Comparison of different ML
models for estimating nitrate

concentration

SVM, Cubist, RF,
Bayesian-ANN

RF: R2 = 0.89, RMSE = 4.24, NSE =
0.87

Acc: Accuracy; CC: Coefficient of Correlation; ET: Evapotranspiration; ETo: reference EvapoTranspiration; ROC: Receiver Operating
Characteristic; ME: Model Efficiency; NSE: Nash-Sutcliffe model efficiency Coefficient; POD: Probability Of Detection.
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Table A7. Soil management.

Ref Property Input Data Functionality Models/Algorithms Best Output

[362] Soil organic matter Soil properties,
spectrometer NIR data

Estimation of soil
organic matter ELM, SVM TRI-ELM: R2 = 0.83, RPIQ = 3.49

[363] Soil microbial dynamics
Microbial dynamics
measurements from

root samples

Prediction of microbial
dynamics: (1) BP; (2) PS

and (3) ACCA
ANN, SVR, FIS

SCFIS: (1) BP: RMSE = 1350000, R2 =
1.00; (2) PS: RMSE = 45.28, R2 = 1.00;

(3) ACCA: RMSE = 271, R2 = 0.52

[364] Soil salinity
Soil salinity,

hyperspectral data,
satellite data

Prediction of soil
salinity

Bootstrap
BPNN

BPNN with hyperspectral data: R2

= 0.95, RMSE = 4.38 g/kg

[365] Soil properties Simulated topographic
attributes, satellite data

Prediction of SOC, CCE,
clay content Cu, RF, RT, MLR

(1) CCE: Cu: R2 = 0.30, RMSE = 9.52;
(2) SOC: Cu, RF: R2 = 0.55; (3) Clay

contents: RF: R2 = 0.15, RMSE = 7.86

[366] Soil organic matter
Soil properties, weather

data, terrain, satellite
spectral data

Prediction of soil
organic matter DT, BDT, RF, GBRT GBRT: ME = 1.26 g/kg, RMSE =

5.41 g/kg, CCC = 0.72

[367] Soil organic matter
soil properties, satellite,
land cover, topographic,

weather data

Prediction of soil
organic matter CNN, RF, XGBoost XGBoost: ME = 0.3663 g/kg, MSE =

1.0996 g/kg

[368] Electrical conductivity
soil properties,

simulated electrical
conductivity

Prediction of soil
electrical conductivity MLP MLP: WI = 0.780, ENS = 0.725,

ELM = 0.552

[369] Soil moisture content
Hyperspectral images

data, UAV, soil moisture
content data samples

Estimation of soil
moisture content RF, ELM RF: R2 = 0.907,RMSEP = 1.477, RPD

= 3.396

[370] Soil temperature Weather data
Estimation of soil

temperature at various
depths

ELM, GRNN, BPNN,
RF

ELM: RMSE = 2.26–2.95 ◦C, MAE =
1.76–2.26 ◦C, NSE = 0.856–0.930, CC

= 0.925–0.965

[371] SOC Soil properties, vis-NIR
spectral data Estimation of SOC RF

R2 = 0.74–0.84,
RMSEP = 0.14–0.18%, RPD =

1.98–2.5

[372] Soil properties
Soil properties,

visible-NIR, MIR
spectral data

Prediction of total
carbon, cation exchange

capacity and SOC
PLSR, Cu, CNN CNN: R2 = 0.95–0.98

[373] Soil properties

Soil properties,
simulated organic,

mineral samples, soil
spectral data

Estimation of various
soil properties CNN

RMSE values: OC: 28.83 g/kg, CEC:
8.68 cmol+/kg, Clay: 7.47%, Sand:

18.03%,
pH: 0.5 g/kg, N: 1.52 g/kg

[374] Soil moisture content,
soil ET

Soil properties, water,
weather and crop data

Estimation of soil
moisture content and

soil ET
NN-RBF Soil MC: RMSE = 0.428, RSE = 0.985,

MSE = 0.183, RPD = 8.251

[375] Soil salinity Soil salinity, crop field
temperature

Estimation of leaching
water requirements for

saline soils
Naive Bayes classifier Acc = 85%

[376] Soil erosion Weather data, satellite,
soil chemical data

Estimation of soil
erosion susceptibility

Combination of
GWR-ANN GWR-ANN: AUC = 91.64%

[377] Soil fertility Spectral, weather data,
EC, soil properties

Prediction of soil
fertility and
productivity

PLS

(1) Productivity: RMSEC = 0.20
T/ha, RMSECV = 0.54 T/ha, R2 =

0.9189;
(2) Organic matter: R2 = 0.9345,

RMSECV = 0.54%; (3) Clay: R2 =
0.9239, RMSECV = 5.28%

[378] Soil moisture
Multispectral images
from UAV, in situ soil

moisture, weather data.

Retrieval of surface soil
moisture BRT, RF, SVR, RVR BRT: MAE = 3.8%

[379] Soil moisture Soil samples, simulated
PWP, field capacity data

Estimation of PWP and
field capacity ANN, KNN, DL R2 = 0.829, R = 0.911, MAE = 0.027

[380] Soil temperature Weather data Estimation of soil
temperature

GMDH, ELM, ANN,
CART, MLR ELM: R = 0.99

[381] Soil moisture
Soil samples, on-field

thermal, simulated soil
moisture data

Estimation of soil
moisture content ANN, SVM, ANFIS SVM: R = 0.849, RMSE = 0.0131

[382] Gully erosion
Geological,

environmental,
geographical data

Evaluation of gully
erosion susceptibility

mapping

RF, CDTree, BFTree,
KLR RF: AUC = 0.893

[383] Groundwater salinity
Topographic,

groundwater salinity
data

Evaluation of
groundwater salinity
susceptibility maps

StoGB, RotFor, BGLM BGLM: Kappa = 0.85

[384] Heavy metals transfer Soil and crop properties
Identification of factors
related to heavy metals

transfer
RF, GBM, GLM RF: R2 = 0.17–0.84

[385] Land suitability Soil properties, weather,
topography data

Prediction of land
suitability maps SVM, RF RF: Kappa = 0.77, overall acc = 0.79

[386] SOC
Soil properties, satellite,

simulated
environmental data

Prediction of SOC MLR, SVM, Cu, RF,
ANN RF: R2 = 0.68

[387] Electrical conductivity,
SOC

Soil properties, weather
data

Electrical conductivity
and SOC prediction GLM

(1) EC: MSPE = 0.686, MAPE =
0.635; (2) OC: MSPE = 0.413, MAPE

= 0.474

[388] SOC, soil moisture
Proximal spectral data,
electrical conductivity,

soil samples data

Prediction of SOC and
soil moisture 3D maps Cu, RF Cu: R2 = 0.76, CCC = 0.84, RMSE =

0.38%
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Table A7. Cont.

Ref Property Input Data Functionality Models/Algorithms Best Output

[389] Soil aggregate stability Soil samples data Prediction of soil
aggregate stability GLM, ANN ANN: R2 = 0.82

[390] SOC
Soil samples, weather,
topographic, satellite

data
Prediction of SOC Cu, RF, SVM, XGBoost,

KNN
Best SOC prediction: RF: RMSE =

0.35%, R2 = 0.6

[391] Soil moisture In situ soil moisture,
satellite data

Estimation of surface
soil moisture SVM, RF, ANN, EN RF: NSE = 0.73

[392] SOC Composite surface soil,
satellite, weather data Prediction of SOC SVM, ANN, RT, RF,

XGBoost, DNN
DNN: MAE = 0.59%, RMSE =
0.75%, R2 = 0.65, CCC = 0.83

[393] Gully erosion Topographic, weather,
soil data

Mapping of gully
erosion susceptibility LMT, NBTree, ADTree LMT: AUC = 0.944

[394] Gully erosion Satellite spectral data Identification of gully
erosion LDA, SVM, RF Best overall acc: RF: 98.7%

[395] Gully erosion Satellite, weather, land
type maps data Gully erosion mapping LGR Acc = 68%, Kappa = 0.42

ACCA: Aminoyclopropane-1-carboxylate; AUC: Area Under Curve; BP: Bacterial Population; CC: Coefficient of Correlation; CCC:
Concordance Correlation Coefficient; CCE: Calcium Carbonate Equivalent; ET: EvaporoTransporation; MIR: Mid InfraRed; NSE: Nash-
Sutcliffe model efficiency Coefficient; NIR: Near-InfraRed; PS: Phosphate Solubilization; PWP: Permanent Wilting Point; RPIQ: Ratio of
Performance to Interquartile Range; RPD: Relative Percent Deviation; SOC: Soil Organic Carbon; WI: Willmott’s Index.

Table A8. Livestock Management: Animal Welfare.

Ref Animal Input Data Functionality Models/Algorithms Best Output

[396] Swine 3D, 2D video images
Detection of pigs tail

posture as a sign of tail
biting

LMM
Low vs. not low tails: Acc = 73.9%,

Sensitivity = 88.4%, Specificity =
66.8%

[397] Sheep

Accelerometer and
gyroscope attached to
the ear and collar of

sheep

Classification of
Grazing and

Rumination Behavior in
Sheep

RF, SVM, KNN,
Adaboost

RF: Highest overall acc: collar: 92%;
ear: 91%

[398] Sheep Accelerometer,
gyroscope data

Classification of sheep
behavior (lying,

standing and walking)
RF Acc = 95%, F1-score = 91–97% for:

ear: 32 Hz, 7 s, collar: 32 Hz, 5 s

[399] Swine RGB images Recognition of pigs
feeding behavior CNN Faster R-CNN: Precision = 99.6%,

recall = 86.93%

[400] Swine RGB images, depth
images

Recognition of lactating
sow postures CNN

Faster R-CNN: Sow posture:
(1) Recumbency: night: 92.9%,

daytime: 84.1%;
(2) Standing: at night: 0.4%,

daytime: 10.5%
(3) Sitting: night: 0.55%, daytime:

3.4%

[401] Cattle, Sheep, sheepdog Audio field recordings
data

Classification of
animals’ vocalization SVM Acc: cattle: 95.78%, sheep: 99.29%,

dogs: 99.67%

[402] Cattle Accelerometer data Detection of sheep
rumination. SVM Acc = 86.1%

[403] Sheep
Ear-borne accelerometer

data, observation
recordings

Classification of grazed
sheep behavior Scenario

A: walking, standing,
lying, grazing

Scenario B:
active/inactive

Scenario C: body
posture

CART, SVM, LDA, QDA

(1) Scenario A: SVMAcc: 76.9%;
(2) Scenario B: CART

Acc: 98.1%;
(3) Scenario C:

Acc: LDA 90.6%

[404] Goat On-farm videos,
weather data

Classification of goats
behavior

(1) Anomaly detection
(2)

Feeding/non-feeding

KNN, SVR, CNN

(1) Most accurate: KNN: Acc =
95.02–96.5%; (2) Faster R-CNN:

Eating: 55.91–61.33 %, Non-feeding
(Resting): 79.91–81.53 %

[405] Cattle, sheep UAV Video data
Counting and

classification of cattle,
sheep

CNN Mask R-CNN: Cattle: Acc = 96%;
Sheep: Acc = 92%

[406] Cattle Accelerometer data Prediction of dairy cows
behavior at pasture

XGBoost, SVM,
AdaBoost, RF

Best predictions for most
behaviours: XGBoost: sensitivity =

0.78

[407] Cattle Pedometers Detection of early
lameness in dairy cattle RF, KNN RF: acc = 91%

[408] Cattle Environmental heat
stressors data

Evaluation of heat
stressors influence in

dairy cows
physiological responses

RF, GBM, ANN, PLR RF: (1) RR: RMSE = 9.695
respmin−1; (2) ST: RMSE = 0.334 ◦C

[409] Cattle Diets nutrient levels
data

Prediction of dairy cows
diet energy digestion ELM, LR, ANN, SVM

Best performance: kernel-ELM: (1)
DE: R2 = 08879, MAE = 4.0606; (2)

ED: R2 = 0899, MAE = 2.3272

[410] Cattle Routine herd data Detection of lameness in
dairy herds

GLM, RF, GBM,
XGBoost, CART

GBM: AUC = 0.75, Sensitivity =
0.58, Specificity = 0.83



Sensors 2021, 21, 3758 37 of 55

Table A8. Cont.

Ref Animal Input Data Functionality Models/Algorithms Best Output

[411] Poultry Air quality data
Early prediction of

Coccidiosis in poultry
farms

KNN AUC = 0.897–0.967

[412] Cattle
On-farm questionnaires,

clinical and milk
records

Prediction of mastitis
infection in dairy herds RF CONT vs. ENV: Acc = 95%, PPV =

100%, NPV = 95%

[413] Cattle Location (transceiver)
and accelerometer data

Detection of dairy cows
in estrus

KNN, LDA, CART,
BPNN, KNN BPNN: specificity = 85.71%

[414] Cattle Mid-NIR spectral data
using spectrometer

Prediction of bovine
tuberculosis in dairy

cows
CNN Accuracy = 71%, sensitivity = 0.79,

specificity = 0.65

[415] Cattle Metabolomics data from
serum samples

Evaluation of
metabotypes existence

in overconditioned
dairy cows

RF, NB, SMO, ADT ADT: acc = 84.2%

[416] Cattle Accelerometer data Classification of cows’
behavior GBDT, SVM, RF, KNN GBDT: acc = 86.3%, sensitivity =

80.6%

[417] Sheep
Gyroscope and

accelerometer ear
sensors

Detection of lame and
non-lame sheep in three

activities

RF, SVM, MLP,
AdaBoost RF: overall acc = 80%

[418] Cattle Activity and rumination
data

Prediction of calving
day in cattle

RNN, RF, LDA, KNN,
SVM

RNN/LSTM: Sensitivity = 0.72,
Specificity = 0.98

AUC: Area Under Curve; Cont: Contagious; DE: Digestible Energy; ED: Energy Digestibility; ENV: Environmental; DWT: Discrete Wavelet
Transform; MFCCs: Mel-Frequency Cepstral Coefficients; NIR: Near InfraRed; NPV: Negative Predictive Value; PTZ: Pan-Tilt-Zoom; PPV:
Positive Predictive Value; RGB: Red-Green-Blue; RR: Respiration Rate; ST: Skin Temperature.

Table A9. Livestock Management: Livestock Production.

Ref Animal Input Data Functionality Models/Algorithms Best Output

[419] Cattle Depth images in situ
BCS evaluation data

Estimation of BCS, Scenario A:
HER = 0.25; Scenario B: HER =

0.5
CNN Scenario A: Acc = 78%; Scenario B: Acc = 94%

[420] Swine Weather, physiological
data

Prediction of piglets
temperature

Scenario A: skin-surface;
Scenario B: hair-coat; Scenario

C: core

DNN, GBR, RF, GLR Best prediction: Scenario C: DNN: error =
0.36%

[421] Poultry Depth, RGB images
data

Classification of flock of
chickens’ behavior CNN Acc = 99.17%

[422] Cattle
Accelerometer,

observations recordings
data

Classification of cattle
behaviour

Scenario A: grazing; Scenario B:
standing; Scenario C:

ruminating

RF Highest F-scores: RF: Scenario A: 0.914;
Scenario B: 0.89; Scenario C: 0.932

[423] Sheep Phenotypic, weather
data

Prediction of on-farm water
and electricity consumption on
pasture based Irish dairy farms

BAG, ANN, MT Scenario 3: MT: R = 0.95, MAE = 0.88 µm,
RMSE = 1.19

[424] Cattle Milk production,
environmental data

Prediction of on-farm water
and electricity consumption on
pasture based Irish dairy farms

CART, RF, ANN, SVM Electricity consumption prediction: SVM:
relative prediction error = 12%

[425] Goat RGB data Detection of dairy goats from
surveillance video CNN Faster R-CNN: Acc = 92.49 %

[426] Cattle Animal feed, machinery,
milk yield data

Estimation of energy use
targets for buffalo farms ANN 30.5 % of total energy input can be saved if

targeted inputs are followed

[427] Cattle 3D images data Prediction of liveweight and
carcass characteristics ANN, SLR

ANN: Liveweight: R2 = 0.7, RMSE = 42;
CCW:

R2 = 0.88, RMSE = 14; SMY: R2 = 0.72, RMSE
= 14

[428] Swine RGB images Detection and pig counting on
farms CNN MAE = 1.67, RMSE = 2.13, detection speed =

42 ms per image

[429] Sheep Biometric traits, body
condition score data

Prediction of commercial meat
cuts and carcass traits MLR, ANN, SVR, BN SVM: Neck weight: R2 = 0.63, RMSE = 0.09

kg; HCW: R2 = 0.84, RMSE = 0.64

[430] Cattle Data produced by
REIMS

Prediction of beef attributes
(muscle tenderness, production

background, breed type and
quality grade)

SVM, RF, KNN, LDA,
PDA, XGBoost,

LogitBoost, PLS-DA
Best Acc: SVM: 99%

[431] Sheep Carcass, live weight and
environmental records

Estimation of sheep carcass
traits (IMF, HCW, CTLEAN,

GRFAT, LW)
DL, GBT, KNN, MT, RF

Highest prediction of all traits: RF: (1) IMF: R
= 0.56, MAE = 0.74; (2) HCW: R = 0.88, MAE

= 1.19; (3) CTLEAN: R = 0.88, MAE = 0.76

[432] Swine ADG, breed, MT,
gender and BBFT

Identification of pigs’ limb
condition

RF, KNN, ANN, SVM,
NB, GLM, Boost, LDA RF: Acc = 0.8846, Kappa = 0.7693

[433] Cattle Activity, weather data

Prediction of cows protein and
fat content, milk yield and

actual concentrate feed intake,
Scenario (1) only cows with

similar heat tolerance; Scenario
(2) all cows

ANN

(1) Scenario A: n = 116, 456; R = 0.87; slope =
0.76;

(2) Scenario B: n = 665, 836; R = 0.86; slope =
0.74
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Ref Animal Input Data Functionality Models/Algorithms Best Output

[434] Cattle
Animal behavior, feed
intake, estrus events

data

Detection of estrus in dairy
heifers GLM, ANN, RF RF: Acc = 76.3–96.5%

[435] Cattle Infrared thermal images Estimation of deep body
temperature LRM, QRM Higher correlation: QRM: R2 = 0.922

[436] Cattle Liveweight, biophysical
measurements data

Prediction of Carcass traits and
marbling score in beef cattle LR, MLP, MT, RF, SVM

SVM: carcass weight: R = 0.945, MAE = 0.139;
EMA: R = 0.676, MAE = 4.793; MS: R = 0.631,

MAE = 1.11

ACFW: Adult Clean Fleece Weight; ADG: Average Daily Gain; AFD: Adult Fibre Diameter; AGFW: Adult Greasy Fleece Weight; ASL:
Adult Staple Length; ASS: Adult Staple Strength; BBFT: Bacon/BackFat Thickness; BCS: Body Condition Score; CCW: Cold Carcass
Weights; CTLEAN: Computed Tomography Lean Meat Yield; DBT: Deep Body Temperature; EMA: Eye Muscle Area; GWAS: Genome-Wide
Association Studies; GRFAT: Greville Rule Fat Depth; HER: Human Error Range; IMF: IntraMuscular Fat; HCW: Hot Carcass Weight; LW:
Loin Weight; MS: Marbling Score; MT: Muscle Thickness; REIMS: Rapid Evaporative Ionization Mass Spectrometry; RGB: Red-Green-Blue;
SMY: Saleable Meat Yield.

Table A10. Abbreviations for machine learning models.

Abbreviation Model

ANN Artificial Neural Network
BM Bayesian Models
DL Deep Learning
DR Dimensionality Reduction
DT Decision Trees
EL Ensemble Learning

IBM Instance Based Models
SVM Support Vector Machine

Table A11. Abbreviations for machine learning algorithms.

Abbreviation Model Model

AdaBoost EL Adaptive Boosting
ADT DT Alternating Decision Trees

ANFIS ANN Adaptive-Neuro Fuzzy Inference Systems
ARD BM Automatic Relevance Determination

Bayesian-ANN ANN Bayesian Artificial Neural Network
BAG EL Bagging Algorithm
BDT DT Bagging Decision Trees
BDL BM,ANN Bayesian Deep Learning
BET EL Bagged Ensemble Tree

BGLM BM, Regression Bayesian Generalized Linear Model
BLR Regression Binary Logistic Regression
BN BM Bayesian Network

BPNN ANN Back-Propagation Neural Networks
BRT DT,EL Boosted Regression Trees
BTC EL Boosted Trees Classifiers

CART DT Classification And Regression Trees
CCNN ANN Cascade Correlation Neural Networks
CDTree DT Credal Decision Trees
CNN ANN Convolutional Neural Networks

Cu Regression Cubist
DBN ANN Deep Belief Networks
DF EL,SVM Decision Fusion

DLS Regression Damped Least Squares
DNN ANN Deep Neural Networks
DTR DT, Regression Decision Tree Regression
EBT DT,EL Ensemble Bagged Trees
ERT DT Extremely Randomized Trees
ELM ANN Extreme Learning Machines
EN Regression Elastic Net

FCN ANN Fully Convolutional Networks
FIS ANN Fuzzy Inference System

FFNN ANN Feed Forward Neural Networks
GBM EL Gradient Boosting Model
GBT DT Gradient Tree Boosting
GBR Regression Gradient Boosted Regression

GBRT DT, Regression Gradient Boosted Regression Trees
GBDT DT,EL Gradient Boosted Decision Trees
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Table A11. Cont.

Abbreviation Model Model

GLM Regression General Linear Model
GMDH DR Group Method of Data Handling

GNB BM Gaussian Naive Bayes
GP BM Gaussian Processes

GPR BM Gaussian Process Regression
GRNN ANN Generalized Regression Neural Networks
GWR Regression Geographically Weighted Regression
KM IBM K-Means

KNN IBM K-Nearest Neighbors
LASSO Regression Least Absolute Shrinkage and Selection Operator

LDA DR Linear Discriminant Analysis
LightGBM EL Light Gradient Boosting Machine

LMT Regression, DT Logistic Model Trees
LGR Regression LoGistic Regression
LMM Regression Linear Mixed Model

LR Regression Linear Regression
LSTM ANN Long-Short Term Memory

LogitBoost EL Logistic Boosting
M5Tree DT M5 model Trees
MANN ANN Modular Artificial Neural Networks
MARS Regression Multivariate Adaptive Regression Splines
MCS EL Multiple Classifier System
MKL DR Multiple Kernel Learning
MLP ANN Multi-Layer Perceptron
MLR Regression Multiple Linear Regression
MT DT Model Trees
NB BM Naïve Bayes

NBTree BM, DT Naïve Bayes Trees
NNL IBM Nearest Neighbor Learner
OLS Regression Ordinary Least Squares
PLSR Regression Partial Least Squares Regression

PLS-DA Regression, DR Partial Least Squares Discriminant Analysis
QC Regression Quadratic Classifier

QDA DR Quadratic Discriminant Analysis
QRM Regression Quadratic Regression Model
RBFN ANN Radial Basis Function Networks

REPTree DT Reduced Error Pruning Tree
RFC EL Randomizable Filtered Classifier
RFR EL, Regression Random Forest Regression
RNN ANN Recurrent Neural Network
RQL Regression Regression Quantile LASSO
RF EL Random Forest

Ross-IES EL Ross Iterative Ensemble Smoother
RotFor EL Rotation Forest
RVMR Regression Relevance Vector Machine Regression
SCFIS ANN Subtractive Clustering Fuzzy Inference System
STDA DR Stepwise Discriminant Analysis
SMO SVM Sequential Minimal Optimization
SMLR Regression Stepwise Multiple Linear Regression
SOM DR Self-Organising Maps

StoGB EL Stochastic Gradient Boosting
SVR SVM Support Vector Regression

TS-FNN ANN Takagi-Sugeno Fuzzy Neural Networks
XGBoost EL Extreme Gradient Boosting
WANN ANN Wavelet Artificial Neural Networks

WEL EL Weighted Ensemble Learning
WNN IBM Weighted Nearest Neighbors
WSL EL Weakly Supervised Learning
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