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SUMMARY

The awake cortex exhibits diverse non-rhythmic
network states. However, how these states emerge
and how each state impacts network function is un-
clear. Here, we demonstrate that model networks
of spiking neurons with moderate recurrent interac-
tions display a spectrum of non-rhythmic asynchro-
nous dynamics based on the level of afferent excita-
tion, from afferent input-dominated (AD) regimes,
characterized by unbalanced synaptic currents and
sparse firing, to recurrent input-dominated (RD) re-
gimes, characterized by balanced synaptic currents
and dense firing. The model predicted regime-spe-
cific relationships between different neural biophysi-
cal properties, which were all experimentally vali-
dated in the somatosensory cortex (S1) of awake
mice.Moreover, AD regimesmore precisely encoded
spatiotemporal patterns of presynaptic activity,
while RD regimes better encoded the strength of
afferent inputs. These results provide a theoretical
foundation for how recurrent neocortical circuits
generate non-rhythmic waking states and how these
different states modulate the processing of incoming
information.

INTRODUCTION

Cortical circuits display spontaneous asynchronous dynamics

with low pairwise spiking synchrony (Ecker et al., 2010; Renart

et al., 2010). Theoretical description of these regimes is based

on balanced synaptic activity emerging from recurrent networks

(Amit and Brunel, 1997; Destexhe and Contreras, 2006; Henne-

quin et al., 2017; Kumar et al., 2008; Litwin-Kumar and Doiron,

2012; Parga, 2013; Renart et al., 2010; Tsodyks and Sejnowski,

1995; Vogels et al., 2005; van Vreeswijk and Sompolinsky, 1996).

In this setting, excitatory and inhibitory currents cancel each

other and generate Gaussian fluctuations in the membrane po-

tential (Vm) with amean close to the spiking threshold (van Vrees-
Cell
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wijk and Sompolinsky, 1996). While early recordings in cats sup-

ported this view (Steriade et al., 2001), recent experiments in

awake rodents suggest a more complex picture (Busse et al.,

2017; McGinley et al., 2015a; Nakajima and Halassa, 2017):

spontaneous cortical dynamics exhibits diverse asynchronous

states characterized by different mean Vm (McGinley et al.,

2015b; Polack et al., 2013; Reimer et al., 2014) and firing activity

(Vinck et al., 2015).

These observations raise fundamental questions. Is recur-

rently balanced dynamics a valid model for all the different asyn-

chronous states? If not, do asynchronous dynamics exist

beyond the balanced setting? Can we develop a computational

model that reveals the mechanisms generating these asynchro-

nous states, that precisely describes the Vm dynamics observed

during wakefulness, and that allows us to understand the spe-

cific computational advantages of each state?

To address these questions, we explored the dynamics

emerging in models of recurrently connected networks of excit-

atory and inhibitory spiking units. We found that, for moderate

recurrent interactions, spiking network models displayed a

spectrum of asynchronous states exhibiting spiking activity

spanning over orders of magnitudes, with profound differences

across states in the relative contributions of the afferent and

recurrent components to network dynamics. The model pre-

dicted a number of relationships among different electrophysio-

logically measurable features that were all experimentally

confirmed by electrophysiological recordings of neural activity

in the mouse somatosensory cortex (S1). Finally, we demon-

strated that different activity regimes were characterized by

distinct information coding properties in themodel. These results

provide a theoretical framework for explaining the origin and the

information coding properties of the diverse non-rhythmic states

of wakefulness.

RESULTS

Recurrent Networks Exhibit a Spectrum of
Asynchronous Regimes upon Modulation of Afferent
Excitation
We hypothesized that the non-rhythmic regimes of wakefulness

could be described by a set of emergent solutions of recurrent
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er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:yann.zerlaut@iit.it
mailto:stefano.panzeri@iit.it
mailto:tommaso.fellin@iit.it
https://doi.org/10.1016/j.celrep.2019.03.102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.03.102&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. A Spectrum of Asynchronous

Regimes in a Recurrent Spiking Network

upon Variation of Afferent Excitation

(A) Schematic of the model. An afferent excitatory

input targets the recurrently connected excitatory

(green) and inhibitory (red) populations. In the inset,

post-synaptic deflections at Vm = �70 mV asso-

ciated with each type of synaptic connection (gray,

afferent population). The spiking response of single

neurons to a current pulse of 120 pA is shown in the

background.

(B) Stationary firing rates of the excitatory (green)

and inhibitory (red) populations as a function of na
(dots with error bars represent mean ± SEM over

n = 10 simulations). The AD (blue circle) and the RD

(orange circle) levels are indicated. The mean-field

predictions (thick transparent lines) are also

shown.

(C) Fraction of afferent currents within the sum of

recurrent and afferent excitatory currents (Iaffe /Ie,

gray) and absolute ratio between inhibitory and

excitatory currents (jIi=Ie j , black) as a function of

na (n = 10 simulations; thick transparent lines:

mean-field predictions).

(D) Membrane potential traces for four neurons in

the AD (i) and in the RD (ii) regimes.

(E) Excitatory (green) and inhibitory (red) synaptic

currents targeting a single neuron in the AD (i, left)

and RD (ii, right) regimes.

(F–K) Mean depolarization mv (F), standard devia-

tion sV, (G), skewness of the Vm distribution gv (H),

autocorrelation time tV (I), mean and SD (m and s,

respectively) of the excitatory (indexed by e) and

inhibitory currents (indexed by i) over time (J), and

ratio of inhibitory to excitatory synaptic conduc-

tances Gi/Ge (K). Values are evaluated on excit-

atory cells on a single simulation, error bars

represent variability (SD) over n = 10 cells.

See also Figures S1 and S2 and Table S1.
activity in excitatory and inhibitory spiking networks. Specif-

ically, we reasoned that regimes of intense synaptic activity (Bru-

nel, 2000; Kumar et al., 2008; Renart et al., 2010; van Vreeswijk

and Sompolinsky, 1996) should be complemented with regimes

of low spiking, where single-neuron dynamics is driven by a few

synaptic events, to describe the lower depolarization that char-

acterizes asynchronous regimes associated with moderate

arousal (McGinley et al., 2015a). Consequently, we explored

the dynamics of spiking networks in a wide range of recurrent

activity, down to recurrent activity lower than 0.1 Hz. We imple-

mented a randomly connected recurrent network of leaky inte-

grate-and-fire excitatory and inhibitory neurons with conduc-

tance-based synapses (Kumar et al., 2008). The network had

the following experimentally driven features: recurrent synaptic

weights leading to post-synaptic deflections below 2 mV at

rest (Jiang et al., 2015; Lefort et al., 2009; Markram et al.,

2015), probabilities of connections among neurons matching

the relatively sparse ones observed in the adult mouse sensory

cortex (Jiang et al., 2015), an afferent input describing the syn-
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chronized excitatory thalamic drives onto sensory cortices

(Bruno and Sakmann, 2006), and a higher excitability of inhibitory

cells to model the high firing of the fast-spiking non-adapting in-

terneurons (Markram et al., 2004). The network model is sche-

matized in Figure 1A. All parameters are listed in Table S1.

We analyzed the emergent network dynamics as a function of

the stationary level of afferent excitation. We found stable asyn-

chronous dynamics over a wide range of excitatory and inhibi-

tory activity. The stationary spiking of the network spanned four

orders of magnitude (Figure 1B), while pairwise synchrony re-

mained one order of magnitude below classical synchronous

regimes (SI < 5e�3; see Figure S1 for a detailed analysis

of the network’s residual synchrony). Varying the model’s

afferent activity, na, from na = 3 Hz to na = 25 Hz resulted in a

logarithmically graded increase of excitatory firing rates, ne,

from ne = 0.004 Hz to ne = 8.5 Hz and inhibitory firing rates, ni,

from ni = 0.07 Hz to ni = 21.8 Hz (Figure 1B). Thus, recurrent dy-

namics exponentiated the level of afferent input. Importantly,

the relative contributions of the afferent and recurrent excitation



in shaping the single-neuron dynamics varied over the different

levels of activity (gray curve in Figure 1C). It varied from regimes

dominated by the afferent excitation (Iaffe =Ie > 0.75 for na% 6 Hz,

where Ie is the sum of the afferent Iaffe and recurrent Irece excit-

atory currents) to a recurrent connectivity-dominated regime

(Irece =Ie > 0.73 for na R 12 Hz). The ratio between mean

inhibitory and excitatory synaptic currents (Ii/Ie, where Ii is the

recurrent inhibitory current) varied over those different activity

levels (black curve in Figure 1C). It gradually varied from

excitatory-dominated regimes where Ii/Ie � 1 (Ii/Ie < 0.50

below for na = 6 Hz) to balanced activity where Ii/Ie � 1 (Ii/Ie >

0.85 for na R 12 Hz). We refer to this continuum of diverse

emergent solutions of recurrent activity as a ‘‘spectrum’’ of

asynchronous regimes.

We selected two levels of afferent drive leading to two rela-

tive extreme states along this spectrum (Figure 1B). The first

example, termed the afferent input-dominated state (AD),

was a state found at low afferent excitation that was charac-

terized by temporally sparse spiking activity and was domi-

nated by its afferent excitation (see below). The second

example state, termed the recurrent input-dominated state

(RD), was found at high afferent excitation that was charac-

terized by temporally dense spiking activity and was domi-

nated by its synaptically balanced recurrent activity (see

below). We show samples of membrane potential traces (Fig-

ure 1D) and synaptic currents (Figure 1E) for the two selected

regimes.

For high afferent excitation (na = 20 Hz, RD), the recurrent ac-

tivity was dense (> 1 Hz, here ne = 7.6 ± 0.1 Hz and ni =

19.2 ± 0:2 Hz), and the network displayed balanced asynchro-

nous dynamics characterized by (1) mean depolarized Vm

(mV = �59.3 + 0.1 mV; Figure 1F) with standard deviation

sV = 3.7 ± 0.1 mV (Figure 1G), which implied Vm fluctuations

being closer to the spiking threshold (see Vm traces in Fig-

ure 1D); (2) symmetric Vm distribution (Figure 1H; skewness

gV = 0.02 ± 0.04), a signature of Gaussian fluctuations (coef-

ficient of determination of a Gaussian fitting after blanking

spikes: R2 = 0.994 ± 0.002); (3) fast membrane potential fluctu-

ations (autocorrelation time tV = 6.2 ± 0.8 ms, much lower

than the membrane time constant at rest t0m = 20 ms; Fig-

ure 1I); (4) high conductance state (synaptic conductances

sum up to more than four times the leak conductance

[Destexhe et al., 2003], conductance ratio was 6.6 ± 0.1);

(5) balanced excitatory and inhibitory currents (jIi=Ie j =

0.881 ± 0.003; Figure 1C) with large means compared to their

temporal fluctuations (me/se = 3.2 ± 0.1 and mi/si = 2.8 ± 0.1;

Figure 1J); and (6) the predominance of the recurrent activity in

shaping single-neuron dynamics (recurrently mediated synap-

tic currents were 84.6% ± 0.1% of the membrane currents,

afferent excitatory currents were 10.8% ± 0.1% and leak cur-

rents 4.6% ± 0.1%).

For low afferent activity (na = 5 Hz, AD), asynchronous

dynamics exhibited a qualitatively different set of elec-

trophysiological features. Spiking activity was sparse (ne =

0.09 ± 0.01 Hz and ni = 0.54 ± 0.0143 Hz; Figure 1B), which,

at the single-neuron level, was associated with (1) a longer dis-

tance between the mean Vm and the spiking threshold (mV =

64.1 ± 0.3 mV; Figure 1F); (2) a strongly skewed Vm distribution
(gV = 0.49 ± 0.09; Figure 1H); (3) slower Vm fluctuations (tV =

20.4 ± 1.1 ms; Figure 1I); (4) a lower conductance state preser-

ving the efficacy of synaptically evoked depolarizations (synap-

tic conductances increased the input conductance by only

18.2% ± 1.0%); (5) excitatory-dominated synaptic currents,

where the mean of the excitatory currents largely exceeded

those of inhibitory currents (jIi=Ie j = 0.28 ± 0.02, Figure 1C),

leading to a nearly unitary ratio of conductances (Gi/Ge =

0.8 ± 0.2, instead of Gi/Ge = 2.5 ± 0.1 for the balanced cur-

rents of RD; Figure 1K); and (6) the predominance of the non-

recurrent components in shaping single-neuron dynamics

(recurrently mediated synaptic currents were 14.6% ± 0.2%

of the membrane currents, afferent excitatory current

were 44.9% ± 1.3%, and leak current contributions were

40.4% ± 1.5%). In contrast to the RD state, the stability of

the AD regime did not rely on the balance between excitatory

and inhibitory synaptic currents (see Figure 1E): the low amount

of recurrent inhibitory currents did not cancel the afferent-domi-

nated excitatory currents (see Figures 1C, 1E, and 1J). Rather,

leak currents ensured stability by significantly contributing to

single-neuron integration: the temporal dynamics of the mem-

brane potential was dominated by leak-mediated repolarization

following sparse synaptic events (see Figure 1D) and, accord-

ingly, tV = 20.4 ± 1.1 ms was close to the membrane time con-

stant at rest t0m = 20 ms.

AMean-FieldDescription Predicts the Emergence of the
Spectrum
To understand whether the variations of the firing rates (ne, ni)

and the Vm fluctuations properties ðmV ; sV ; tV ; gV Þ are sufficient

for the emergence of the spectrum, we developed and analyzed

a ‘‘mean field’’ description of network activity including these

quantities (see STAR Methods). The mean-field description of

network activity reduces the firing rate dynamics of each popu-

lation into the dynamics of a prototypical neuron whose behavior

is captured by a rate-based input-output function (Renart et al.,

2004). In the mean-field approach, the neuronal input-output

function is determined by converting the input firing rates into

Gaussian fluctuations of synaptic currents, which are in turn

translated into an output firing rate using estimates from sto-

chastic calculus (Tuckwell, 2005). Building on previous work

(Zerlaut et al., 2016), we extended this formalism so that the input

firing rates are converted into Vm fluctuations properties that also

include higher-order non-Gaussian properties (such as gV and

the tail integral of the distribution) and that are converted into

an output firing rate with a semi-analytical approach (see STAR

Methods). We found that the spectrum of dynamics found in

the numerical simulations was also present in such a mean-field

description (Figures 1B, 1C, and S2). Because the mean-field

description only considered ne, ni, mV ; sV ; tV ; gV , this analysis

further demonstrates that changes in those parameters are

sufficient to generate changes in the spectrum. This confirms

that the spectrum can be generated also without relying on spe-

cific details of numerical networks (such as a degree of clustering

within the drawn connectivity) or more complex dynamical

features (such as pairwise synchrony, or deviations from the

Poisson spiking statistics), which were not included in the

mean-field approach.
Cell Reports 27, 1119–1132, April 23, 2019 1121



Figure 2. The Spectrum Is Conditioned to Moderate Strength of Recurrent Interactions

(A) Post-synaptic deflections following an excitatory (top) and inhibitory (bottom) event as a function of the modulating factor for synaptic weights (color-coded

scale on the right).

(B) Sample traces of activity at low (left, i, na = 4 Hz) and high (right, ii, na = 20 Hz) levels of afferent activity for different strength of synaptic weights (same color

code as in A).

(C–F) Excitatory stationary firing rates (ne in C), inhibitory stationary firing rates (ni in D), fraction of afferent excitatory current (I
aff
e /Ie in E), and inhibitory to excitatory

current ratio (jIi=Ie j in F) as a function of na for different factors of recurrent synaptic weights. Data are presented as mean ± SEM over n = 10 simulations. Non-

visible error bars correspond to variabilities smaller than the marker size.

See also Figure S3.
Moderate Strength of Recurrent Interactions Is
Necessary for the Emergence of the Spectrum
What are the crucial parameters that lead to the emergence of

the spectrum of activity states? We addressed this question

through parameter variations in the numerical model.

We first considered what happened when increasing, with

respect to the reference network configuration considered

above, the value of the recurrent synaptic weights (Figure 2).

We modulated both the excitatory and inhibitory synaptic

weights using a common factor f (see Figure 2A) to keep a

balanced setting between excitation and inhibition across the

considered levels of recurrent interactions. This prevented the

emergence of highly synchronized regimes (Brunel, 2000); see

Figure S3. When multiplying recurrent weights by a moderate

f value with f in the range between 0.1 and 2 (see f = 0.5 and

f = 1.2 in Figure 2A), the network was still able to create states

of very low (respectively, very high) activity at lower (respectively,

higher) afferent activity. Under these conditions, the network

exponentiated the level of afferent input to generate recurrent

activity spanning several orders of magnitude (from 0.004 to

15 Hz; Figures 2C and 2D) with transitions from regimes domi-

nated by afferent inputs (Iaffe /Ie > 0.75 for na < 5 Hz; Figure 2E)

and excitatory currents (jIi=Ie j < 0.25 for na < 5 Hz; Figure 2F)

to regimes dominated by recurrent activity (Iaffe /Ie < 0.5 for na >

20 Hz; Figure 2E) and balanced synaptic currents (jIi=Ie j > 0.75

for na > 20 Hz; Figure 2F). Thus, the network displayed the spec-

trum of activity regimes over the entire range for 0.1 < f < 2.

However, when f > 2 (see example of f = 5 in Figure 2A), the

network generated states of dense balanced activity throughout
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the entire range of afferent input rates (see yellow curves in Fig-

ures 2C–2F) and showed a small range of variations of recurrent

firing rates (15–17 Hz; yellow curve in Figure 2C). For very low

values of the f factor (see f = 0, dark purple curves in Figure 2),

the population only displayed regimes dominated by afferent

inputs (Iaffe /Ie = 1; Figure 2E) and excitatory currents (jIi=Ie j = 0;

Figure 2F). Consistent with the need of moderate recurrent

interactions, increasing recurrent connectivity with respect to

the reference scenario by augmenting connection probability

(pconn > 20%) restricted the occurrence of AD-type activity to

lower and lower afferent activity levels (see Figure S3B).

Other experimentally driven constraints of network implemen-

tation were less critical for generating the spectrum. Varying syn-

aptic weights of the afferent input in the [�50%, +50%] range

shifted the onset of the activity increase (in terms of the na level)

but allowed for a set of asynchronous regimes across orders of

magnitude (Figure S3C). Varying the inhibitory excitability by

shifting the spiking threshold in the [�57, �52] mV range also

did not affect the ability of the network to display the spectrum

(Figure S3D). This was also the case when varying the network

size (Figure S3E) and the excitatory and inhibitory synaptic

weights independently in the [�50%, +50%] range (Figures

S3F and S3G). However, more extreme variations (very low

inhibitory excitabilities Vinh
threR�51mV [Figure S3E], strong excit-

atory weights QeR 4 nS [Figure S3F], and weak inhibitory

weights Qi% 5 nS [Figure S3G]) led to a recurrent network with

a very strong excitatory-to-excitatory loop and produced satu-

rated (ne = ni = 200 Hz) and highly synchronized (SI > 0.9) activity

because of weak inhibition unable to prevent an excitatory



Figure 3. Relationship between Membrane Potential Features and Firing Rates for Different Parameter Settings of the Recurrent Network

(A) Relationship between na and mV for a model network with different parameter settings. Specifically, (i) moderate and balanced recurrent interactions (the

architecture shown in Figures 1 and 2), (ii) strong and balanced recurrent interactions for f = 5 in Figure 2, (iii) weak and balanced recurrent interactions found for

f = 0.1 in Figure 2, (iv) a moderately inhibitory-augmented case with Qi = 2,Qi0, and (v) a strongly inhibitory-augmented case with Qi = 4,Qi0.

(B) Relationship between mV and ne in the different cases shown in (A).

(C) Relationship between mV and sV under the different scenarios shown in (A).

(D) Relationship between mV and gV.

(E) Relationship between mV and tV . The mean ± SEM over 10 excitatory cells averaged over 10 network simulations lasting 1 s each is presented.

The insets in (B)–(E) (v) show the dependency of ne, sV, gV, and tVon na.

See also Figure S4.
runaway (Brunel, 2000). Low afferent input weights Qa% 1 nS

also prevented the appearance of the spectrum because only

quiescent regimes (ne = ni = 0 Hz) could be observed in the

na < 25 Hz range of afferent inputs (Figure S3C).
Relationships between Afferent Activity, Vm Properties,
and Firing Rate
We computed (Figure 3) the firing rate ne and mV, sV, gV, and tV in

excitatory cells under the following five different conditions: (1)
Cell Reports 27, 1119–1132, April 23, 2019 1123



balanced and moderate recurrent interactions (f = 1) corre-

sponding to a set of parameters that generates the spectrum

of asynchronous states, (2) balanced and strong recurrent inter-

actions (f = 5); (3) balanced and weak recurrent interactions (f =

0.1), (4) weakly inhibitory-augmented recurrent interactions

(inhibitory synaptic weights increased by a factor of 2 with

respect to the values of case 1 and Table S1), and (5) strongly

inhibitory-augmented recurrent interactions (inhibitory synaptic

weights increased by a factor of 4 with respect to the values of

case 1 and Table S1). We found that the first four cases showed

a monotonic relationship between na and mV (Figure 3A). This

observation allowed us to invert the na versus mV relationship.

Therefore, mV can be used as a proxy of na and this allowed us

to study the dependence of ne (Figure 3B) and other membrane

potential properties (Figures 3C and 3E) on mV.

We then considered the relationship between mV and ne and

the relationships between mV and sV, gV, and tV. We first studied

the case of moderate (f = 1; column i in Figure 3B) strength of the

recurrent connectivity. We found that the relationship between

mV and ne was monotonic, with mV varying over a range of several

millivolts and ne spanning more than three orders of magnitude.

For the relationship between sV and mV, we found a non-mono-

tonic, inverted-U-shaped, relationship (Figure 3Ci) compatible

with the following scenario (see Kuhn et al., 2004). At hyperpolar-

ized levels, sV increased with mV because an increase in mV is

associated with an increase in the afferent and recurrent fre-

quencies (Figures 3A and 3B) and, as a general phenomenon,

an increase in synaptic events per unit time (here, na, ne, and ni)

results in an increase in the amplitude of the Vm fluctuations

(here, sV ) at a fixed size of synaptic events (Daley and Vere-

Jones, 2003). However, this trend competed with the shunting

effect associated with increasing synaptic activities (Chance

et al., 2002; Destexhe et al., 2003). At depolarized levels, the

high levels of synaptic activity (Figures 3A and 3B) led to high

membrane conductance and caused a strong shunting that

dampened the size of post-synaptic events, thus decreasing

the fluctuations amplitude sV despite the increase in event fre-

quencies (Kuhn et al., 2004). The constraints to Vm fluctuations

due to the spiking threshold and reversal potentials made a

weak contribution to the observed mV -sV relationship (Kuhn

et al., 2004); see Figure S5. The gV-mV relationship showed a

gradual decay with mV (Figure 3Di), starting from positive skew-

ness ðgV � 1Þ for low mV values toward gV � 0 (corresponding

to a symmetric distribution) for higher mV values most likely

because, at high levels of synaptic events, the statistical mo-

ments beyond second order vanish (Daley and Vere-Jones,

2003). Finally, we observed a monotonically decreasing relation-

ship between tV and mV (Figure 3Ei), in agreement with the

observation that single-neuron integration is faster because of

an increase of synaptically mediated membrane conductance

(Destexhe and Paré, 1999).

The relationships between mV, ne, sV, gV, and tV observed for

balanced and moderate recurrent connectivity across regimes

were not found to be all conserved in conditions in which the

single-neuron parameters were the same but the network

parameter settings varied. In the case of strong synaptic weights

(column ii in Figure 3 and f = 5 in Figure 2), the set of emergent

solutions was confined in a narrow region of network activity re-
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sulting in ne spanning less than an order of magnitude (Figure 3B)

and approximately constant Vm fluctuations properties across

regimes (Figures 3C–3E; mV ��60 mV, sV �3.7 mV, gV �0,

and tV �5 ms). For weak recurrent interactions (column iii in Fig-

ure 3 and f = 0.1 in Figure 2), the set of regimes contrasted with

the moderate interaction case because of the increasing rela-

tionship between mV and sV (Figure 3C) and a range of gV char-

acterized by large variations down to very negative values (Fig-

ure 3D). On the other hand, the mV -ne and mV -tV relationships

were similar between the weak (f = 0.1) and moderate (f = 1)

recurrence cases (Figures 3B and 3E). In the case of strongly

inhibitory-augmented architecture (column v and red curves in

Figure 3), the monotonic increase between na and mV was not

observed and thus mV could not be used as a proxy for na. As

a consequence, even if this latter case showed some features

of the spectrum of asynchronous states as a function of na (Fig-

ure 3v; log-distributed ne, inverted-U shape for sV, and

decreasing tV), the relationship between ne, membrane potential

features and mV displayed very different behavior compared to

that of the balanced network with moderate connectivity

strength (Figure 3i). In case v, the mV-ne and mV-tV relationship

displayed C-shape curves (red curves in Figures 3B and 3E)

rather than the monotonic relationships observed in case i

(blue curves in Figures 3B and 3E) and the mV-sV relationship cor-

responded to a steeply decreasing relationship. The case of

moderately inhibitory-augmented recurrent architecture (column

iv in Figure 3) provided an intermediate case between case v and

case i.

These results demonstrate that the relationships described

above are not only determined by single cell properties (which

were kept constant across comparisons in Figure 3), but they

are strongly shaped by how network properties constrain the

emergent activity regimes and their associated inputs to a

neuron.

Disinhibition Broadens the Spectrum
To test the generality of the findings, we considered a more

complex network including a disinhibitory circuit (see Figure 4A

and Table S2). The disinhibitory cells formed inhibitory synap-

ses on inhibitory neurons. Because experimental evidence sug-

gests weak inputs into disinhibitory cells from the local network

(Jiang et al., 2015; Pfeffer et al., 2013), we assumed in the

model that the disinhibitory cells received only excitatory

afferent inputs. By lowering the excitability of the inhibitory

population as a function of na, the disinhibitory activity allowed

excitatory-dominated states to span higher ranges of firing rate

values (up to ne = 58.3 ± 3.9 Hz for na = 25 Hz; see Figure 4B)

while remaining largely asynchronous (SI < 0.12; Figure S3I). As

the model configuration inclusive of the disinhibitory circuit

presumably provided a more realistic setting, we hereafter

continued our analysis using the three-population model of

Figure 4A.

Modulation of the Network State upon Time-Varying
Afferent Excitation
We studied whether the model could generate the spectrum

of states with time-varying inputs. Given that in awake cortical

data different states can persist for time scales of < 1 s



Figure 4. Modulation of Network Activity

upon a Time-Varying Afferent Excitation

(A) Schematic of the network model including

the disinhibitory circuit. The parameter pad corre-

sponds to the connection probability between the

afferent and disinhibitory populations.

(B) Stationary co-modulations of the excitatory (ne,

green), inhibitory (ni , red), and disinhibitory (nd,

purple) rates in absence (pad = 0, dashed line; re-

produced from Figure 1B) and in the presence of a

disinhibitory circuit (solid line, pad = 7:5%).

(C–E) Network dynamics in response to a time-

varying input.

(C) Waveform for the afferent excitation.

(D) Temporal evolution of the instantaneous firing

rates (binned in 2-ms windows and smoothed with

a 10-ms-wide Gaussian filter) of the excitatory (ne,

green), inhibitory (ni , red), and disinhibitory (nd,

purple) populations. Mean ±SEM over n = 10 trials.

Time axis as in (C).

(E) Membrane potential traces in a trial (green,

excitatory cells; red, inhibitory cell; purple, dis-

inhibitory). To highlight mean depolarization levels,

the artificial reset and refractory mechanism has

been hidden by blanking the 10 ms following each

spike emission (see also Figure S6). Time axis as

in (C).

(F) Network time constants tNTWK for the three

different levels of afferent activity considered in (C)

(blue, na = 4 Hz; orange, na = 18 Hz; brown, na =

8 Hz). The time constant was determined by

stimulating the network with a 100-ms-long step

input of afferent activity of 2 Hz (black curve in the

inset) and fitting the trial-average responses with

an exponential rise-and-decay function (red

dashed curves, see STAR Methods). We show

the average over 100 stimulus repetitions of the

network responses in the inset.

(G and H) Pooled membrane potential histograms

for the three different stimulation periods (G) and

pooled normalized autocorrelation functions (H).

Data were obtained by pooling together the Vm

after blanking spikes over 100 excitatory neurons

in each interval for a single network simulation.

See also Figure S5 and Table S2.
(McGinley et al., 2015a), we focused on studying network dy-

namics when inputs were stationary for hundreds of millisec-

onds. We stimulated the three-population model (Figure 4C)

with a time-varying waveform made of three 900-ms-long pla-

teaus of presynaptic activity at low (na = 4 Hz, T1 period, blue

interval), high (na = 18 Hz, T2, orange), and intermediate (na =

8 Hz, T3, gray) levels. Figure 4D shows the temporal evolution

of the firing rates (averaged over n = 10 trials) and Figure 4E

shows the Vm dynamics in the three cellular populations

included in the model in a single trial. We observed dynamic

modulations of the firing rate with time scales to reach station-
Cell R
ary behavior that were similarly fast

across the different cell types (red,

green, and purple in Figure 4D). We

found the relaxation time of the network

(tNTWK , estimated by fitting the response
to a short step of afferent activity; see Figure 4F) to be be-

tween 4 and 20 ms (with a monotonic dependence on the level

of ongoing activity, as predicted theoretically [Destexhe et al.,

2003; van Vreeswijk and Sompolinsky, 1996]). For time scales

longer than few hundred milliseconds, the network dynamics

can thus be considered as stationary. Consequently, the char-

acterization described above for stationary states (Figures 1

and 4B) should also hold when the analysis was restricted

to the three separate windows T1, T2, and T3 (see Figures

4C–4E). Indeed, the first period (T1; blue in Figures 4C and

4F–4H) displayed the properties of the AD regime with its
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Figure 5. In the S1 Cortex of Awake Mice, Non-rhythmic Activity Is Associated with Various Membrane Depolarization Levels

(A) Intracellular recordings of Vm fluctuations (top) during spontaneous activity andmaximumpower of Vm in the [2, 10]-Hz band (bottom). Three periods classified

as non-rhythmic epochs (blue, brown, and orange stars) and one rhythmic epoch (purple star) are highlighted. Note thePowmax
½2;10�Hz index being below (for the three

non-rhythmic events) and above (for the rhythmic event) the rhythmicity threshold.

(B) Vm sample epoch classified as (i) rhythmic, (ii) low mV (mV < �70mV), (iii) intermediate mV(mV˛ [�70, �60] mV), and (iv) high mV (mV > �60 mV). The black traces

correspond to the prolonged epoch shown in (A) and the two other samples (copper colors) were extracted from the same intracellular recording.

(C) Fraction of occurrence of the rhythmic and non-rhythmic epochs at their respective levels of mean depolarization, mV. Single-cell recordings have been sorted

with respect to their average level of non-rhythmic activity mV and color coded accordingly.

Three cells—1, 22, and 10 (shown in A and B)—are highlighted. The plain gray area represents the dataset after pooling together all Vm recordings (n = 22 cells).

Note that the fraction of occurrence of rhythmic activity in the pooled data corresponds to 50%as a consequence of the definition of the rhythmicity threshold (see

STAR Methods).
low firing rate (ne = 0.02 ± 0.01 Hz) and slow (tV = 17.8 ±

0.3 ms), skewed (gV = 0.55 ± 0.01), and hyperpolarized

(mV = �65.3 ± 0.1 mV) Vm fluctuations. Similarly, the second

period (T2; orange in Figure 4) displayed the properties of the

AD regime with its high rate (ne = 25.9 ± 0.6 Hz) and its fast

(tV = 2.3 ± 0.1 ms), depolarized (mV = �55.9 ± 0.1 mV),

and Gaussian (R2 = 0.99 ± 0.01, Gaussian fitting after

blanking spikes) Vm fluctuations. The third period (T3; gray in

Figure 4) displayed the properties of an intermediate regime

(see Figure 3) with ne = 4.2 ± 0.3 Hz, mV = �60.8 ±

0.2 mV, sV = 4.3 ± 0.1 mV, and tV = 6.8 ± 0.3 ms.

Recordings in the S1 Cortex of Awake Mice Confirm
Model Predictions
We performed intracellular patch-clamp recordings from layer 2/

3 neurons of the S1 cortex of awake mice (n = 22 cells in n = 8

animals) during spontaneous activities (Figure 5). These record-

ings (Figure 5A) showed fluctuations in the membrane potential

of the recorded cell between rhythmic and asynchronous dy-

namics as described in previous reports (Crochet and Petersen,

2006; Poulet and Petersen, 2008). Because our focus was on

asynchronous cortical dynamics, we introduced a threshold in

the low-frequency power of the Vm recordings, called the rhyth-

micity threshold (see STAR Methods). We classified as rhythmic

periods all the time stretches for which the Vm power exceeded

this threshold (Figure 5A) and we considered for further analyses

only the epochs of network activity with Vm power below this

threshold (‘‘non-rhythmic’’ stretches; see Figure 5A). Results

were robust to variations of this threshold (Figure S6D).
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We then divided the stretches of non-rhythmic activity into

500-ms-long epochs. Each epoch was considered a possible

different state. We chose this epoch length as it offered a good

compromise between the following constraints: (1) it was short

enough to enable the identification of specific states of wakeful-

ness (Figure S7) and (2) it was long enough to average synapti-

cally driven Vm dynamics and to analyze network activity beyond

its own relaxation time constant (Reinhold et al., 2015). Similarly

to previous findings in the auditory (McGinley et al., 2015b) and

visual (Reimer et al., 2014) cortices of awake-behaving mice,

we found non-rhythmic epochs of network activity in the S1

cortex that showed various levels of mV . Figure 5B shows repre-

sentative membrane potential epochs and their fraction of

occurrence at the various mV levels over single cells (color coded

in Figure 5C) and over the ensemble data (gray area in Figure 5C).

Few cells (n = 3 out of 22, for example ‘‘cell 10’’ shown in Figures

5A and 5B) displayed non-rhythmic activity over a wide range of

mV (> 20mV). The majority of cells displayed non-rhythmic activ-

ity over a narrower range of mV (for the remaining n = 19 out of 22

the extent of mV was 10.8 ± 4.1 mV; e.g., ‘‘cell 1’’ showed only

hyperpolarized non-rhythmic activity and ‘‘cell 22’’ exhibited

mostly depolarized non-rhythmic activity; see Figure 5C).

One central prediction of the model was the occurrence of a

range of different states at various mV values with ne spanning

over three to four orders of magnitude (inset in Figure 6A). This

was confirmed in experimental data: hyperpolarized epochs dis-

played ne < 0.1 Hz, while depolarized epochs exhibited ne in the

10-Hz range (see Figure 6A). The wide range of ne across the

non-rhythmic states of wakefulness with different mV values



Figure 6. The Model Predicts the Electrophysiological Features Characterizing the Different Non-rhythmic Epochs of Wakefulness in the S1

Cortex

(A) Spiking probability (ne, in Hz) of intracellularly recorded layer 2/3 pyramidal cells within mV-classified epochs. The red dashed line is a linear regression between

mV and log10ðneÞ (see STAR Methods). The correlation coefficients and the p value of a one-tailed permutation test (see STAR Methods) are reported. In the right

inset, we show 300-ms-long epochs displaying spikes for three levels of mV (blue, brown, and orange stars in main plot). In the top inset, we show the predictions

of the network model.

(B) Co-modulation between mV and sV. Note that the linear regression has been split into two segments (depicted in red) to test the significance of the non-

monotonic relationship.

(C) Co-modulation between mV and gV.

(D) Co-modulation between mV and tV.

See also Figures S6, S7, and S8.
was further confirmedby extracellular recordings (see Figure S8).

We combined the previously described intracellular approach

with extracellular recordings of the multiunit activity (MUA) in

layer 2/3 (n = 4 mice, n = 14 cells; see STARMethods). We found

that the logarithm of the mean MUA within non-rhythmic epochs

exhibited a robust linear correlation with mV (correlation coeffi-

cient c = 0.5; one-tailed permutation test: p < 1e�5; see Fig-

ure S8). This suggests that the wide range of rates predicted

by the model was observed not only at the single-neuron level

but also at the mass circuit activity level, as expected by the

theoretical model.

Moreover, we measured in real data: (1) the standard devi-

ation, sV ; (2) the skewness of the Vm distribution, gV ; and (3)

the speed of the Vm fluctuations quantified by the autocorre-

lation time, tV (see STAR Methods). The network model

predicted that (1) the sV - mV relationship should be non-

monotonic with a peak in the intermediate mV range (inset

of Figure 6B), (2) the gV -mV relationship should start from

strongly positively skewed values ðgV � 1Þ and monotonically

decrease with mV (inset of Figure 5 and Figure 6C), and (3) the

tV -mV relationship should be monotonically decreasing with a

near-15-ms drop in tV (inset of Figure 6D). Remarkably, we

found all those features in our experimental recordings (Fig-

ures 6B–6D). Moreover, those relationships were found to

be highly significant (p < 5e�5 for all relationships; see Figures

6B–6D). The model prediction of a transition toward Gaussian

fluctuations at high mV (Figure 4F) was also found to hold

on real data: we fitted the pooled distributions with a

Gaussian curve (see STAR Methods) and the coefficient of

determination was R2 = 0.99 ± 0.01 above mV = �60 mV

compared to R2 = 0.96 ± 0:04 below mV = �60 mV

(n = 55 mV -defined distributions across 13 cells for mV >

�60 mV and n = 129 mV -defined distributions across the 22

cells for mV % �60 mV; p = 3.2e�5, unpaired t test).
Activity Levels along the Spectrum Have Different
Computational Properties
Does the shift between activity states within the spectrum affect

the capabilities of the circuit to encode afferent information? To

address this question, we designed two types of afferent stim-

ulus sets that we fed to the model, both in the AD regime and

in the RD regime (Figure 7).

The first stimulus set mimicked the precise spatiotemporal

patterns often evoked by sensory stimuli (Foffani et al., 2009;

Luczak et al., 2015; Panzeri et al., 2010; Petersen et al., 2008;

Urbain et al., 2015). It consisted of a pattern of sequential presyn-

aptic co-activations, distributed over 500 ms, and it targeted a

subset of 100 neurons within the network (see STAR Methods).

We show in Figure 7A an example of such an afferent pattern.

Figures 7B and 7C show the response in the targeted sub-

network over different trials for the AD and RD regimes, respec-

tively. The network activity across trials was highly structured by

the stimulus in the AD regime (Figure 7B), while the stimulus-

evoked response was less reliable in the RD regime (Figure 7C).

We generated various random realizations of such afferent

patterns (see Figure S9A) and analyzed the reliability of the re-

sponses across trials using a scalar metric for MUA (van Rossum

2001; see STAR Methods). We found that the trial-to-trial cross

correlation between the output spiking responses and the pre-

sented afferent pattern was significantly larger in the AD than

in the RD regime (p = 6e�3, paired t test; see Figure 7D). By

including the distance of the above metric in a nearest-neighbor

classifier, we constructed a decoder retrieving both the pattern

identity and the stimulus onset from the output spiking activity

of the target population (see STAR Methods). We used this clas-

sifier to analyze whether the ability of the AD regime to generate

reliable output patterns (reported in Figure 7D) would lead to a

robust joint decoding of both the identity and onset timing of

the afferent input pattern. We found that these spatiotemporal
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Figure 7. The AD Regime Enables the Precise Encoding of Complex Patterns of Presynaptic Activity, while the RD Regime Exhibits High

Population Responsiveness to Afferent Inputs

(A) Representative example of a presynaptic activity pattern that corresponds to 10 activations of different groups of 10 synchronously spiking units (randomly

picked within the 100 cells of the presynaptic population) in a 500-ms window (see STAR Methods).

(B) Spiking response of a sub-network of neurons (20 cells) across 20 trials in the AD regime. The y axis indexes both the neuron identity (color coded) and the trial

number (vertical extent on a given color level).

(C) Same as in (B) but for the RD regime.

(D) Mean cross correlation of the output spiking patterns across realizations for a given input pattern (mean ± SEM over 10 input patterns; for each input pattern

we computed the mean cross correlation across all pairs of observations of the 20 realizations; two-sided Student’s t test).

(E) Performance in decoding the pattern identity from the sub-network spiking patterns with a nearest-neighbor classifier (see STAR Methods). The mean ac-

curacy ± SEM over 10 patterns of 10 test trials each is shown (two-sided Student’s t test). The thin dashed line indicates the level of chance (from 10 patterns and

10 onsets: 1%).

(F) The model network is fed with a stimulus whose firing rate envelope is of varying maximum amplitudes stimulus dnmax
a (amplitude values are color coded).

(G) Mean and standard deviations over n = 10 trials of the increase in excitatory population activity dneðtÞ= neðtÞ � nstate in the AD regime. In the inset, the response

average in the time window T (highlighted by a gray bar along the time axis) as a function of the maximum amplitude of the stimulus dnmax
a is shown. Note that the

slope in the log-log input-output curves as a function of na (lower insets in B and C) is not directly informative about the linear gain because of the different ranges

in na and ne (see Figure 4B).

(H) Same as in (F) but for the RD regime.

(I) Slope of the relationship between hdneiT and dnmax
a (mean ± SEM over n = 10 trials; statistical analysis: two-sided Student’s t test).

(J) Decoding the sub-network rate waveform with a nearest-neighbor classifier. The thin dashed line indicates the level of chance (from the five waveforms shown

in F: 20%). The mean accuracy ± SEM over five patterns of 10 test trials each is shown (two-sided Student’s t test).

See also Figure S9.
features of the afferent input pattern were faithfully encoded by

the activity of the target network in the AD regime (accuracy

for the joint decoding of both afferent pattern identity and onset:

83.0% ± 10.1%; Figure 7E). In contrast, in the RD regime the

decoding accuracy remained close to the level of chance

(7.0% ± 9.0%; Figure 7E). The explanation for this difference

can be found in the drastically different levels of activity in the

two regimes (ne = 0.02± 0.01 Hz for the AD regime compared

to ne = 25.9 ± 0.6 Hz for RD). In the AD regime, the patterned

structure of the input strongly constrained the spiking activity

of the population (as the stimulus-evoked spikes represented

92.4% ± 4.4% of the overall activity), therefore leading to a

reliable encoding of the input identity. In the RD regime, the stim-

ulus-evoked spiking was confounded by the strong ongoing dy-

namics in single trials in the RD regime (stimulus-evoked activity

only represented 6.7% ± 5.7% of the overall activity) therefore

impeding a reliable decoding of activity patterns.

We then fed the network with waveforms of afferent activity at

various amplitudes, targeting the entire network without any
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spatiotemporal structure within the stationary period of the

afferent waveform (see STAR Methods and Figure 7F). We de-

coded the level of afferent activity from the sum of the excitatory

population activity within the recurrent network (Figures 7G and

7H, for the AD and RD regimes, respectively). In the RD regime,

the network showed a linear response of high gain (Figure 7I and

inset of Figure 7H) and the response waveforms accurately rep-

resented the level of the afferent input (see Figure 7H) (Murphy

and Miller, 2009; Tsodyks and Sejnowski, 1995; van Vreeswijk

and Sompolinsky, 1996). We found that, however, this was not

the case in the AD regime. In this regime, the population

response exhibited a weak amplification of the input signal

(Figure 7I) and it failed to accurately follow the input (single trial

responses in the AD regime had significantly lower cross

correlations with the input waveform: 0.81 ± 0.26 for AD versus

0.87 ± 0.23 for RD, p = 4.4e�3, two-tailed Student’s t test).

When decoding the input signal from the single-trial time-varying

rate of a small populations of the network (100 excitatory neu-

rons), we observed a higher decoding accuracy in the RD regime



than in the AD regime (Figure 7J; see STAR Methods), suggest-

ing that the RD regime favors the reliable encoding of the overall

strength of the afferent activity thanks to its high amplification

properties.

DISCUSSION

Our study reports an emergent feature of recurrent dynamics in

spiking network models: a spectrum of asynchronous activity

states in which firing activity spans orders of magnitude and in

which the predominance of the synaptic activity shifts from the

AD to the RD. Importantly, the continuous set of network states

predicted by the model matches the set of non-rhythmic cortical

states observed in awake rodents. Moreover, we found that,

under specific biophysical constraints (discussed below), two

different computational properties could coexist within the

same network: the reliable encoding of complex presynaptic ac-

tivity patterns in the AD regime together with the fast and high-

gain response properties associated with the RD regime.

Using rate-based models, previous work suggested that

recurrent networks can be made to operate in afferent-driven

regimes and recurrent-driven regimes (Ahmadian et al., 2013;

Rubin et al., 2015). However, this seminal work could neither

investigate the detailed biophysical mechanisms behind the cre-

ation and coexistence of these regimes in the same network nor

fully reveal the computational advantages in terms of information

coding of each state resulting from their spiking dynamics. The

present study developed those aspects through the combination

of network modeling and experimental recordings in awake

rodents.

Key Features of theModel Necessary for the Emergence
of the Spectrum
Unlike previous analysis where afferent synaptic currents

were described by stochastic processes only constrained by a

mean and a variance (Brunel, 2000; Renart et al., 2004; van

Vreeswijk and Sompolinsky, 1996), we explicitly modeled

afferent activity as a shot noise process producing post-synaptic

events of excitatory currents. At the single-cell level, this feature

was crucial to producing a skewedmembrane potential distribu-

tion (DeWeese and Zador, 2006; Richardson and Swarbrick,

2010; Tan et al., 2014). At the network level, this enabled the

emergence of the AD regime. Crucial to our model was the pres-

ence of conductance-based interactions. This feature of the

model allowed synaptic efficacy to be high at low levels of activ-

ity while being strongly dampened at higher level (Kuhn et al.,

2004). This property constrained an uncontrolled increase of

the Vm fluctuations upon a two to three orders of magnitude raise

in recurrent activity and helped in maintaining stable asynchro-

nous dynamics over the large range of ne. This feature of

single-cell integration is not a sufficient condition and the non-

monotonic sV -mV relationship is not generally observed in the

network model (Figures 2 and 3).

The key variable governing network state modulation in the

model was the level of afferent excitation. In agreement with

such a dependence, shifts in the network state in the cortex

can be controlled by thalamic excitation (Poulet et al., 2012).

Network state modulation has also been shown to be regulated
by the activity of other subcortical structures (Reimer et al., 2016;

Zagha and McCormick, 2014). However, it remains to be estab-

lished whether the contribution of subcortical structures is

only mediated by a net increase in afferent excitatory input (Fig-

ure 1), by the neuromodulation of effective synaptic weights (Fig-

ure 2), by a combined effect of such modulations, or by other

mechanisms.

Another network setting critical to obtaining the spectrum of

regimes was the moderate strength of recurrent interactions

(Figure 2). Whether this condition is met experimentally is difficult

to assess, given the high heterogeneity of excitatory and inhibi-

tory cells found in the neocortex, and given the area, layer, and

species specificities that are often experimentally observed.

This complexity notwithstanding, we restrict our discussion

here to mouse experimental data on cortical layer 2/3. Unitary

post-synaptic potentials observed in slice recordings (maximum

amplitudes below 2 mV [Jiang et al., 2015; Lefort et al., 2009;

Markram et al., 2015]) are compatible with the ‘‘moderate

weights’’ that we used for both excitatory and inhibitory synaptic

transmission (at�70mV, our model givesmaximal amplitudes of

dV = 2.1 mV for excitatory synapses and dV = �1.4 mV for inhib-

itory synapses; Figure 1A). Moreover, from local measurements

of excitatory projections in an adult rodent cortex (Seeman et al.,

2018), recurrent excitatory connections seem to match the

‘‘sparse connectivity’’ requirement with connectivity probabili-

ties below 10% (slightly higher values in the 10%–20% range

were observed in juvenile animals [Lefort et al., 2009; Markram

et al., 2015]). In contrast, local measurements of inhibitory pro-

jections in adult mice show high (> 30%) connectivity probabili-

ties (Jiang et al., 2015; see also Barth et al., 2016). However, con-

nectivity values of inhibitory projections largely vary depending

on the type of source and target neurons (Pfeffer et al., 2013).

This high heterogeneity across interneuronal subtypes may

thus result in moderate connectivity values after averaging

over inhibitory projections, despite some interneuronal classes

showing high connectivity with specific targets. Altogether,

although previous experimental observations provide evidence

in support of our model setting, the extent to which moderate

strength of recurrent interactions in the neocortex can be

extended across different cortices and animal species remains

to be determined. This is even more true considering that

the strength of recurrent connectivity may vary over time (e.g.,

at different developmental stages and in an activity-based

manner).

Electrophysiological Properties of Non-rhythmic
Network States: Model versus Experiments
Although we presented theoretical analyses of the dependence

of the network dynamics on the afferent firing rate na, we decided

to compare real data and the model in evaluating how ne and

several higher-order membrane potential properties of cortical

neurons depend on mV , rather than on na. The model prediction

of the relationship between mV and ne and mV and higher-order

membrane potential properties was computed by combining

two different model predictions (Figure 3): the dependence of

ne and higher-order membrane potential properties on na, and

the dependence between na and mV . One caveat arising from

such an approach is that it does not allow a direct verification
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that both such model features hold in real data. Although this

caveat is partly alleviated by the fact that we propose to compare

multiple relationships computed from the model and measured

from the data, verification of both relationships would require

measuring the na to the cortical network (S1) while it undergoes

transitions in network states. However, fully monitoring the level

of afferent input to S1 (or any other cortical network) at the

experimental level is hard to achieve, because it would require

monitoring the activity of all afferent populations, as well as of

all neuromodulatory factors. The experimental measure of the

relationship between mV and ne in real data remains however of

significant interest for the following reasons. First, the experi-

mentally measured membrane potential integrates the effect of

multiple sources of afferent activity. Second, given that we

showed that the relationship between mV and ne depends criti-

cally on the parameters and dynamic regimes of the considered

network (Figure 3), this relationship is informative to understand-

ing network dynamics.

The prediction that ne spans three orders of magnitude as a

function of mV (Figure 3) may contrast with previous studies re-

porting a much smaller range of firing rate variation during wake-

fulness (Watson et al., 2016; Hengen et al., 2016). However,

those studies analyzed network dynamics at the time scale of

homeostatic regulations (between 15 and 20 min) and slower

temporal scales are expected to average away the faster, sec-

onds-scale dynamics investigated in our study (Figure S7).

Hypothetical Functions of Non-rhythmic Waking States
The transition toward aroused states elicits desynchronization

of network activity (Harris and Thiele, 2011). This is thought

to facilitate sensory processing through an increase in the

signal-to-noise ratio of sensory-evoked activity (Busse et al.,

2017; Harris and Thiele, 2011). However, the functional modu-

lation of sensation within the various non-rhythmic substates of

wakefulness remains unknown. Our model suggests that

neocortical networks can switch their encoding mode upon

changes of the afferent excitatory input, to either faithfully

encode complex patterns of presynaptic activity (in the AD

regime) or to exhibit strong population-wide recurrent amplifi-

cation of the level of afferent input (in the RD regime). Experi-

mentally, the behavioral state of the animal, indexed based

on pupil size and running speed into low arousal, moderate

arousal, and hyper arousal, was shown to modulate the Vm

signature of cortical dynamics similarly to what was observed

in the model (McGinley et al., 2015b; Reimer et al., 2014; Busse

et al., 2017). Importantly, under this definition of arousal state,

arousal levels vary frequently and rapidly in head-fixed awake

mice, with each arousal state lasting a few seconds and transi-

tions between states happening within a few hundreds of milli-

seconds, in agreement with the time scales analyzed in this

work. Comparing the experimental data presented in those

studies with the predictions of our study, the AD regime could

correspond to the moderate arousal state while the RD regime

could correspond to the hyper arousal regime. Interestingly,

moderate arousal was found to be optimal for the discrimina-

tion of a tone-in-noise auditory stimulus (McGinley et al.,

2015b), a result in agreement with our model’s prediction of

more reliable assembly activation in the AD regime (Figure 7D).
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In contrast, during locomotion (hyper arousal) neuronal re-

sponses in the visual system were found to be enhanced at

all stimulus orientations (Reimer et al., 2014), consistent with

the prediction of an unspecific recurrent amplification of popu-

lation activity in the RD regime (Figure 7H).

Because the precise spatiotemporal pattern of neural re-

sponses within sensory cortices is thought to encode stimulus

identity (Luczak et al., 2015; Panzeri et al., 2010), the AD regime

might be an activity regime optimized for sensory discrimination.

In contrast, the fast and unstructured amplification of excitatory

inputs that characterizes the RD regime may potentiate the

cortical response to weak sensory stimuli and could therefore

represent a regime optimized for sensory detection. Future

work focusing on the modulation of sensation in awake-

behaving animals across various sensory modalities will test

the validity and generality of this theoretical framework.
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Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Tommaso

Fellin (tommaso.fellin@iit.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental procedures involving animals have been approved by the IIT Animal Welfare Body and by the Italian Ministry of Health

(authorization # 34/2015-PR and 125/2012-B), in accordance with the National legislation (D.Lgs. 26/2014) and the European legis-

lation (European Directive 2010/63/EU). Experiments were performed on young-adult (4-6weeks old, either sex) C57BL/6J n = 4mice

(Charles River, Calco, Italy) and PV-IRES-Cre n = 4 mice (B6;129P2-Pvalbtm1(cre)Arbr/J, Jackson Laboratory, Bar Harbor, USA). The an-

imals were housed in a 12:12 hr light-dark cycle in singularly ventilated cages, with access to food and water ad libitum.

METHOD DETAILS

In vivo electrophysiology in awake mice
The experimental procedures for in vivo electrophysiological recordings in awake head-fixed mice have been previously described

(Zucca et al., 2017). Briefly, a custom metal plate was fixed on the skull of young (P22-P24) mice two weeks before the experimental

sessions. After a 2-3 days recovery period, mice were habituated to sit quietly on the experimental setup for at least 7-10 days (one

session per day and gradually increasing session duration). The day of the experiment, micewere anesthetized with 2.5% isofluorane

and a small craniotomy (0.5 mm x 0.5 mm) was opened over the somatosensory cortex and a 30 minutes long recovery period was

provided to the animal before starting the recordings. Brain surface was kept moist with a HEPES-buffered artificial cerebrospinal

fluid (ACSF). Current-clamp patch-clamp recordings were carried out on superficial pyramidal neurons (100 – 350 mm). 3–6 MU bo-

rosilicate glass pipettes (Hilgenberg, Malsfeld, Germany) were filled with an internal solution containing (in mM): K-gluconate 140,

MgCl2 1, NaCl 8, Na2ATP 2, Na3GTP 0.5, HEPES 10, Tris-phosphocreatine 10 to pH 7.2 with KOH. For simultaneous recordings

of multi-unit activity (Figure S8), an additional glass pipette filled with ACSF was lowered into the tissue with the deeper tip placed

at �300 mm from pial surface. Electrical signals were acquired using a Multiclamp 700B amplifier, filtered at 10 kHz, digitized at

50 kHz with a Digidata 1440 and stored with pClamp 10 (Molecular Devices, San Jose, USA). We recorded from n = 14 cells in

N = 4Wild-Type (WT) C57BL/6J animals. In the analysis, we added data from n = 8 cells in N = 4 PV-Cre mice obtained in recordings

that were designed for a previous publication (Zucca et al., 2017). Those recordings contained period of optogenetic stimulation

(every 5 s, see details in Zucca et al., 2017) of PV cells intermingled with period of spontaneous activity. The stimulation epochs

and subsequent 500 ms-long time periods were discarded from the analysis in the additional 8 cells of PV-Cre mice. All the relations

displayed in Figure 5 for the pooled data (WT + PV-Cre) were found similarly significant in the dataset containing only the WT mice

(p < 1e-3 for all relations with similar correlation coefficients, see Figure S6C).

Computing the electrophysiological properties of non-rhythmic epochs
From the previously described recordings, we extracted stable membrane potential samples. Cells or periods with action potential

peaking below 0mV or displaying a slow (� 1min) drift in the Vm trace were discarded from the analysis. This resulted in dataset of

n = 22 cells with a recording time per cell of 5.1± 3.2 min. This stability criterion enabled us to perform the analysis on an absolute

scale of membrane potential values (see Figures 5 and S6).
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We first estimated a time-varying low frequency power within the Vm samples: Powmax
½2;10�HzðtÞ. To this purpose, we discretized

the time axis over windows of 500ms sliding with 25ms shifts and extracted the maximum power within the [2,10]Hz band (esti-

mated with a fast Fourier transform algorithm, numpy.fft). All segments whose center ti had a Powmax
½2;10�HzðtiÞ value greater than

the rhythmicity threshold were classified as ‘‘rhythmic’’ and discarded from future analysis. The value of the rhythmicity

threshold was adjusted so that 50% of the data should be classified as ‘‘rhythmic’’ (see Figure 5C, in Figure S6D we analyze

various rhythmicity threshold levels). In the remaining ‘‘non-rhythmic’’ samples ftigNR, we evaluate the mean depolarization level

mVðtiÞ over the same 500ms interval surrounding the center time ti (T = 500ms is a good tradeoff between an interval short

enough to catch the potential variability in network regimes at the sub-second timescale, i.e., T < 1 s, and an interval long

enough to overcome the relaxation time of the network dynamics, i.e., T[10ms, see main text). At that point, each time ti
is associated to a given depolarization level mVðtiÞ. We now discretize the mV axis in j˛[1,20] points from �80mV to �50mV

and we count the number of segments nj over all ti where mV ðtiÞ˛½mj
V ; m

j + 1
V � (see Figure S6A). As all cells did not contribute

equally to all mV levels (see Figure S6C), we applied a ‘‘minimum contribution’’ criteria: if a depolarization level counted less

than 200 segments (nj < 200), the ½mj
V ; m

j + 1
V � level was discarded from future analysis (see Figure S6A). We then count the num-

ber of spikes falling in a given level ½mj
V ; m

j + 1
V � level by counting spikes within the 500ms window. Spikes were detected as a

positive crossing of the �30mV level (spikes were blanked in the Vm traces by discarding the values above this threshold).

We then computed the fluctuations properties of all depolarization levels. This was achieved by constructing a ‘‘pooled distri-

bution’’ and a ‘‘pooled autocorrelation function’’ corresponding to all ½mj
V ; m

j + 1
V � intervals. For all ½mj

V ; m
j + 1
V � intervals, we took

500ms samples around all ti matching mV ðtiÞ˛½mj
V ; m

j + 1
V � and incremented the ‘‘pooled distribution’’ with those Vm samples. Simi-

larly, we incremented the ‘‘pooled autocorrelation function’’ with the individual normalized autocorrelation functions (evaluated

up to 100ms time shift) of those Vm samples. The resulting ‘‘pooled distributions’’ and ‘‘pooled autocorrelation functions’’ are

illustrated for a single cell on Figure S6A. The ‘‘pooled distributions’’ at all ½mj
V ; m

j +1
V � levels were used to evaluate the standard

deviation s
j
V and skewness g

j
V while the ‘‘pooled autocorrelation functions’’ were used to determine the autocorrelation time tjV .

The autocorrelation time tjVwas determined by a numerical integration of this normalized autocorrelation function (Zerlaut et al.,

2016). This procedure was repeated for all cells (shown in Figure S6B) and yielded the population data of Figure 5. We also

analyzed the goodness-to-fit of a Gaussian fitting of the ‘‘pooled distributions,’’ we performed a least-square fitting (using

the function scipy.optimize.leastsq) and we report the coefficient of determination R2 (see main text).

Numerical simulations of recurrent network dynamics
We studied two versions of recurrently connected networks targeted by an afferent excitatory population: 1) a model with two

coupled populations (excitatory and inhibitory neurons) and 2) a three population model with excitatory, inhibitory and disinhibitory

neurons. Single cells were described as single compartment Integrate and Fire models with conductance-based exponential synap-

ses. Their membrane potential dynamics thus follows the set of equations:8>>>>>>>>><
>>>>>>>>>:

Cm

dV

dt
= gL ðEL � VÞ+GeðtÞðEe � VÞ+Gið tÞðEi � VÞ

GeðtÞ=
X
fteg

Qe e
�t�te

te Hðt � teÞ+
X
ftag

Qa e
�t�ta

ta Hðt � taÞ

GiðtÞ=
X
ftig

Qi e
�t�ti

ti Hðt � tiÞ+
X
ftdg

Qd e
�t�td

td Hðt � tdÞ

(1)

WhereH is the Heaviside (step) function. Note that, to emphasize the similarity in the equation between the different cell types consid-

ered (excitatory, inhibitory and disinhibitory), we omitted the index of the target cell (e.g., the weight should be Qae for the afferent

excitation onto the excitatory cell instead of Qa here). This set of equation is complemented with a threshold and reset mechanism,

i.e., when the membrane potential V reaches a threshold Vthre it is reset at the value Vreset during a refractory period trefrac. The sets of

events ftXg corresponds to the synaptic events targeting a specific neuron. All parameters can be found on Table S1 for the two pop-

ulation model (Figure 1). The additional parameters required for the coupled three population model (excitation, inhibition, disinhibi-

tion, for Figures 4 and 7) can be found on Table S2.

Recurrent connections were drawn randomly by connecting each neuron of the population Y with pXYNX neurons of the population

X. Afferent drive of frequency na onto population X with connectivity probability paX was modeled by stimulating each neuron of the

population X with a Poisson process of frequency paXNana (i.e., using the properties of Poisson processes under the hypothesis of

independent processes).

Numerical simulations were performed with the Brian2 simulator (Goodman and Brette, 2009). A time step of dt = 0.1ms

was chosen. Stationary properties of network activity were evaluated with simulations lasting 10 s. The first 200ms were dis-

carded from the analysis to remove the contributions of initial transients. Simulations were repeated over multiple seeds

generating different realizations of the random connectivity scheme and of the random afferent stimulation (see number in

the legends).
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Mean field analysis of recurrent dynamics
Weobtained an analytical estimate of the network activity in the numerical model by adapting the classical mean-field descriptions of

network dynamics. In a nutshell (see Brunel and Hakim [1999] for further details and Renart et al. [2004] for review), the mean field

approach provides a simplified, or reduced, description of the spike-based dynamics of the network in terms of the temporal evo-

lution of the firing rates of the populations. To perform this reduction, we hypothesize that spike trains follow the statistics of Poisson

point processes (and can therefore be statistically described by their underlying rate of events) and that all neurons receive an

average synaptic inputs (the ‘‘mean-field’’) derived from the mean connectivity property of the network and the firing rates of their

input populations. From those hypotheses, it results that the firing rate of a population follows the behavior of a prototypical neuron

whose dynamics is described by a simple equation relating its output firing rate to the set of rates of its input populations. For inter-

connected populations including recurrent connections, one therefore obtains a coupled dynamical system of a few variables (only

the firing rates of the different populations considered) that can be analyzed and compared to the output of the numerical simulations

(see main text and Figure S2). We describe in the following how we adapted such a theoretical description to capture the behavior of

the network described in the main text.

For the set of rate equations describing population activity, we started from the first order of the Markovian formalism proposed in

(El Boustani and Destexhe, 2009). For the two population model, the rates of the excitatory and inhibitory population (ne, ni respec-

tively) thus follow: 8>><
>>:

vne
vt

=
1

T
$ðFeðne; ni; naÞ � neÞ

vni
vt

=
1

T
$ðFiðne; ni; naÞ � niÞ

(2)

Where T = 5ms arbitrarily sets the timescale of the Markovian description (not crucial here, as we limit our analysis to the sta-

tionary solution of this equation). Importantly, na is not a variable of this system of equation as this is an external input. For

simplicity we describe the theoretical framework for the two-population model only. A generalization to the three population

model (see Figure 4A) is straightforward: one needs to introduce an equation describing the evolution of nd coupled to the ni

term in Equation 2.

The functions Fe and Fi represent the input-output functions of the excitatory and inhibitory cells respectively: i.e., they relate

the input firing rates to the output firing rate of each cell type given the cellular, synaptic and connectivity parameters (see Table

S1). They constitute the core quantities of this theoretical framework. While more reductive biophysical models enable an

analytical approximations for those input-output functions through stochastic calculus (reviewed in Renart et al., 2004), the

situation considered here clearly impedes such analytical approach. Two reasons prevent this approach: 1) the previously

mentioned analytical approach rely on the diffusion approximation (i.e., reducing the post-synaptic currents to a stochastic pro-

cess of a given mean and variance) whereas some of the dynamics described here is led by higher-order fluctuations (typically,

the strongly skewed distribution of excitatory currents is crucial for spiking in the sparse activity regime, see the main text)

and 2) even in the fluctuation-driven regime where the diffusion approximation holds, the present model is too complex to

be analyzed through the commonly used Fokker-Planck approach (we consider a model of conductance-based synapses

with non-negligible synaptic dynamics). We therefore chose to adopt a semi-analytical approach (see Kumar et al., 2008 and

Zerlaut et al., 2018) for a semi-analytical procedure similar to the one presented here): we simulated numerically the dynamics

of single neuron dynamics at various stationary input rates ðne; ni; naÞ and we calculated the output firing at each level for the

two considered populations (excitatory and inhibitory), we thus obtain a numerical subsampling of the required F functions (see

Figure S2A, note the important sampling of low activity levels). To convert this discrete sampling into an analytical function, we

adapted a fitting procedure described previously (Zerlaut et al., 2016). Briefly, this previous study showed that a fitting of the

output firing rate could be achieved by transforming the firing rate data into a phenomenological threshold where a linear fitting

enables to obtain a stable and accurate minimization. We transposed this approach to capture the output firing probability both

within-and-far from the diffusion approximation. This was achieved by adding higher order terms to the phenomenological

threshold: 1) the skewness of the membrane potential distribution gV and 2) the probability to be above threshold PV >Vthre
given

the third-order Edgeworth expansion of the membrane potential distribution (typically, two terms with a significant contribution

in the sparse activity regime).

We present here themathematical relations used to build up this procedure (all derivations were performedwith the pythonmodule

for symbolic computation: sympy and directly exported to numpy for numerical evaluation, see the associated Interactive notebook).

We start by calculating the properties of the subthreshold membrane potential fluctuations. Again, for simplicity, we omitted the

index of the target population in the following notations. Adapting previous analysis (Kuhn et al., 2004; Zerlaut et al., 2016) to the

shotnoise inputs (Equation 1), the expression for the mean mV , standard deviation sV and average autocorrelation time tV of the

membrane potential fluctuations are given by:

mV =
gL EL +

P
s˛fe; i; a; dgps Ns ns Qs ts Es

gL +
P

s˛fe; i; a; dgps Ns ns Qs ts
(3)
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2
X ðQsts tmðEs � mV Þ=CmÞ2
ðsV Þ =

s˛fe; i; a; dg
ps Ns ns

2 ðts + tmÞ (4)
tV =

P
s˛fe; i; a; dgps Ns nsðQsts

tmðEs � mVÞ
Cm

Þ2

P
s˛fe; i; a; dgps Ns ns

.
ðts + tmÞðQsts

tmðEs � mVÞ
Cm

Þ2
(5)

Pushing the analysis of the shot noise to the third-order, one can also get the skewness of the distribution:

gV =
1

s3
V

X
s˛fe; i; a; dg

ps Ns ns
ðQsts tmðEs � mV Þ=CmÞ3
3 ðts + 2 tmÞ ð2 ts + tmÞ (6)

From the three statistical moments of the Vm distribution, one can get the third-order Edgeworth expansion of the membrane poten-

tial (Brigham and Destexhe, 2015):

PðVÞ= 1ffiffiffiffiffiffi
2p

p
sV

e
�
ðV � mV Þ2

2 s2
V

 
1+

gV

6

�
V � mVffiffiffi
2

p
sV

�3
!

That we use to obtain a baseline estimate of the probability to be above threshold:

PV >Vthre
=

ZN
Vthre

PðVÞdV =

ffiffiffi
p

2

r
� 1

6

0
B@gV � gV

ðsVÞ2
ðVthre � mVÞ2 + 3

ffiffiffiffiffiffiffi
2 p

p
e

ðVthre � mV Þ2
2 s2

V Erf

 
Veff
thre � mVffiffiffi

2
p

sV

!1CA e
�
ðVthre � mV Þ2

2 s2
V (7)

In this semi-analytical framework (Zerlaut et al., 2016), the formula linking the output firing rate nout and the phenomenological

threshold Veff
thre is:

nout =
1

2 tV
Erfc

 
Veff
thre � mVffiffiffi

2
p

sV

!
(8)

Where Erfc is the complementary Error function (of inverse InvErfc). To determine the phenomenological threshold based on a set of

observation of nout as a function of ðne; ni; naÞ, we translate ðne; ni; naÞ into ðmV ; sV ; tV ; gV ;PV >Vthre
Þ and we invert the previous equa-

tion through:

Veff
thre = mV +

ffiffiffi
2

p
sV InvErfcð2 tV noutÞ (9)

and we fit a second-order polynomial of the form:

Veff
thre =p0 +

X
i˛½1;5�

pi Xi +
X

ði;jÞ˛½1;5�2
pij Xi Xj (10)

where the Xi terms are given by:

X1 =
mV � m0

V

dm0
V

; X2 =
sV � s0

V

ds0
V

; X3 =
tV � t0V
dt0V

; X4 =gV ; X5 =PV >Vthre

The normalization factors m0
V = �60mV, dm0

V = 10mV. s0V = 4mV, ds0V = 6mV, tV = 10ms and dt0V = 20ms are arbitrary normalization

constants (for the fitting, one needs to insure that all terms remain in the same order of magnitude: � ½� 1;1�). The linear fitting

was performed by a linear least-squares minimization (Ridge regression) from scikit-learn (Pedregosa et al., 2011). We show on

Figure S2A the result of this procedure: from the numerical sampling of the input-output function (dots with error bars in Fig-

ure S2A), the fitting enables to get an analytical function (plain lines in Figure S2A). We reproduce this procedure to obtain the

two functions: F e and F i (shown in (i) and (ii) in Figure S2A, the fitting coefficients are reported on Table S3). We can now use

Equation 2 to make theoretical predictions on the network activity as well as its signatures (in terms of membrane potential

and synaptic currents in particular). Finding the stable fixed point was done by launching a trajectory ruled by the system Equation

2 starting from ðn0e; n0i Þ = (0.02Hz, 0.02Hz). On Figure S2B we show the phase space of the dynamical system corresponding to

Equation 2 and the trajectory that finds the fixed point of the dynamics ðnFPe ; nFPi Þ for the sparse activity state and the dense

balanced state. On Figure S2C, we show how the stationary activity levels predicts the membrane potential signature of the

two regimes by applying Equations 3, 4, 5, and 6.
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Characterizing network dynamics
From the numerical simulations, we monitored all spike times and binned them in Tb = 2ms time bins to obtain the spike train SiðtÞ for
each neuron i (SiðtÞ takes only 0 or 1 values as trefrac > Tb). We analyzed the network activity by looking at the time-varying firing rate of

the population X:

nXðtÞ=
P

i ˛ ½0;NX �SiðtÞ
NX

Wemeasured population synchrony by averaging the correlation coefficient of the spike trains over some ði; jÞ neuronal pairs (Kumar

et al., 2008), i.e., the synchrony index SI was given by:

SI=

*
CovðSi;SjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSiÞVarðSjÞ

p
+

i;j

In practice we selected 4000 spiking neuronal pairs for numerical evaluation.

Additionally, wemonitored themembrane potential, the synaptic conductances and the synaptic currents of four randomly chosen

cells in each populations. To evaluate the mean, standard deviations, skewness and autocorrelation time of the membrane potential

fluctuations, we discarded the refractory periods from the analysis. The same discarding procedure was applied for the mean con-

ductances and currents reported here. The excitatory currents and conductances shown in the main text merge all excitatory con-

tributions together (afferent and recurrent excitations). The inhibitory currents and conductances correspond to recurrent inhibition

only for excitatory cells and add the disinhibitory contributions for inhibitory cells in the three population model.

Varying parameters of the network model
We investigated the robustness of the proposed theoretical picture by studying its sensitivity to parameter variations. The values of

parameters and results of this analysis is shown on Figure S3. Network simulations were run with time step 0.1ms, lasted 10 s and

were repeated over 4 different seeds.

Response to an afferent time-varying rate envelope
To emulate a time-varying afferent input onto the local cortical network (see Figure 4), we took an arbitrary waveform for the firing rate

activity of the afferent population. From this waveform, an inhomogeneous Poisson process was generated to stimulate each neuron

of the three populations model. For Figure 4, the waveform was taken as:

naðtÞ=
X

fi˛½1;2;3�g
Ai

�
1+Erfc

�
t � ti
Trise

� ��
1+Erfc

�
ti +Tlength � t

Trise

� ��
4

withA1 = 4Hz,A2 = 18Hz,A3 = 8Hz, t1 = 100ms, t2 = 1150ms, t3 = 2000ms, Trise = 50ms and Tlength = 900ms. The resulting waveform is

shown in Figure 4C.

Determining the relaxation time constant of the network dynamics
We determined the network time constant tNTWK at three different levels of network activity in the three-population model (see Fig-

ure 4F). The network model was stimulated with three different levels of stationary background activity na = 4 Hz, na = 8 Hz and na =

18 Hz. On top of this background activity, we added a 2Hz step of afferent excitation lasting Tstim = 100ms and each 500ms. We

repeated this stimulation a 100 times and we computed the trial-average response to this stimulus (shown in the inset of Figure 4F).

The network time constant was estimated by a least-square fitting of the following waveform: nðtÞ = n0e + dne

 
ðHðtÞ� Hðt�

TstimÞÞ
�
1� e

�
t

tNTWK

�
+ Hðt� TstimÞ e

�
t � Tstim

tNTWK

!
. The three values n0e, dne and tNTWK were determined through the minimization

procedure. We show the tNTWK values in the bar plot and the response amplitudes dne as the scale bar annotations in Figure 4F.

Encoding of spiking patterns of presynaptic activity
We designed a stimulation to investigate whether a complex spatio-temporal pattern targeting a subset of the local cortical pop-

ulation could be faithfully encoded by the activity of this sub-network (see Figures 7A–7E). We took the following scheme. Within

the 100 neurons of the afferent population, we made groups of 10 neurons that co-activate simultaneously. Those groups of 10

neurons target a subset of 100 neurons within the 4000 neurons of the excitatory population (with a synaptic weight equal to those

of background afferent connections). Presynaptic neurons only make mono-synaptic connections to a target neuron, but two co-

activated neurons may connect to the same neuron in the 100 neurons target population hence creating some degree of synchro-

nous activation (but with a low probability: 1%, because pae = 10%, see Table S1). Within a window of 500ms, we generate random

activations over time with a homogeneous Poisson process of frequency 20 Hz (i.e., 10 activations per 500 ms window) and assign
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randomly each activation time to a given afferent group, this generates one pattern (see example patterns on Figures 7A and S9A).

We reproduce this procedure 10 times with a different random seed to obtain 10 patterns of presynaptic activations. We then feed

the network with this afferent pattern on top of the non-specific background afferent drive (both in the AD regime and in the RD

regime). We run 20 trials per pattern, where the realization of the background activity varies while the pattern is kept constant.

We compared the output spiking patterns using the inner-product ðIRÞ and distance ðDÞ for multi-neuron spike trains derived in

(Houghton and Kreuz, 2012; Van Rossum, 2001) implemented in the publicly-available package pymuvr. This metrics takes a time-

scale t that sets the temporal sensitivity (for t/0 the metrics is only sensitive to infinitely precise coincident spiking, for t/N the

metrics is a joint spike count over time). The value of t was set to 5 ms as this timescale was found in preliminary analyses to be the

minimal timescale for which a reliable encoding of the input pattern was observed in the AD regime. The cross-correlation coef-

ficient between spike trains computed in Figure 7D was computed asCC S1; S2ð Þ= IR S1; S2ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IR S1; S1ð Þ IR S2; S2ð Þp

, where IR is

the inner product between two spike trains S1 and S2. We then implemented a k-neighbor classifier to decode the output spike

train of the excitatory subnetwork. The distance between two output patterns relied on the distance D. We implemented this

custommetrics in the k-neighbor-classifier of scikit-learn (Pedregosa et al., 2011) to obtain our classifier.We first train the classifier

on the first 10 trials and tested on the last 10 trials per pattern. For a first-nearest-neighbor classification, we found the following

decoding accuracies: 88.0 ± 9.8% for AD activity and 16.0 ± 0.2% for RD activity. Raising the number of neighbors up to 10 points

(over a training set containing 10 trials per presynaptic patterns) did not affect this difference: it yielded (non-monotonic) variations

of the decoding accuracy between 90% and 65% for AD regimes and between 27% and 16% for RD regimes, we therefore kept a

nearest-neighbor classifier for all analysis. To partially separate the spatial and temporal components in afferent patterns encoded

by the network activity, we duplicated all 10 patterns and their 10 repetitions in the training set by aligning the network response

onset time to all observed stimulus onsets (shifting the time axis, the procedure is depicted in Figure S9A). The final decoder should

therefore associate a trial in the test set with a given pattern identity and a given stimulus onset (accuracy results shown in Fig-

ure 7E). In Figure S9B, we show the distributions of decoded stimulus onsets in the AD and RD regimes. The percentage of stim-

ulus-evoked activity (see main text) was evaluated by comparing the firing rates in the 500 ms before and during the 500 ms of the

stimulus.

Encoding of presynaptic rate waveforms
We designed a stimulation to investigate whether the rate envelope of given presynaptic stimulus could be faithfully encoded by the

activity of the network (see Figures 7F–7J). The waveform was taken as:

naðtÞ=Abg +Astim

�
1+Erfc

�
t � t1
T1

� ��
1+Erfc

�
t2 � t

T2

���
4

with T1 = 100ms, T2 = 300ms, t1 = 400ms and t2 = 1100ms. Abg = 4Hz to produce the AD regime and Abg = 14Hz to produce the RD

regime. Astim was varied from 0.1Hz to 7Hz in 5 different levels (see the resulting waveforms are shown in Figure 7F). This time-varying

rate was then converted to a Poisson process (varying the seed in all trials) setting the activity of the afferent population and fed as an

input to the recurrent network. Similarly to the previous section, we implemented a k-neighbor classifier to decode the rate waveform

from a sub-population of the network (taking the same 100 neurons sample). The time-varying rate of the subpopulation was

computed by binning spikes in 2ms bins and Gaussian smoothing of extent 30ms, yielding the quantity RðtÞ. The metric for the

rate waveform decoder was the integral over the stimulus duration of the square difference between waveforms, i.e., for two wave-

forms R1 and R2, it corresponded to:

MðR1ðtÞ; R2ðtÞÞ=
Z1s
0

ðR1ðtÞ � R2ðtÞÞ2 dt

We run 20 trials for each of the five levels of afferent activity shown in Figure 7F.We trained the decoder on the first 10 trials and tested

it on the following 10 trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed with SciPy (Oliphant, 2007). Experimental data were translated to the Python format using Neo (Garcia

et al., 2014). In Figures 6A–6D, we performed least-square linear regressions on continuously distributed data (implemented

in scipy.stats.linregress), we report the correlation coefficients (‘‘c’’). Given the partial temporal overlap between individual sam-

ples of membrane potential, the data across the different mV levels cannot be considered as independent, so we evaluated sta-

tistical significance (‘‘p’’) with a non-parametric one-tailed permutation test (performed with 1e5 permutations, hence p values

were reported as ‘‘p<1e-5’’ if no permutation was found to exhibit the correlation value of the data). In Figure 7, we evaluated

the significance of the difference in encoding accuracy and response gain with a two-sided t test (implemented in

scipy.stats.ttest_rel).
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DATA AND SOFTWARE AVAILABILITY

The code for the numerical simulations and analysis producing the main and supplemental data is publicly available in the form of an

Interactive Python notebook (Pérez and Granger, 2007) on the following link: https://github.com/yzerlaut/notebook_papers/blob/

master/The_Spectrum_of_Asynch_Dynamics_2018.ipynb.
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