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Abstract

In order to approximate functions defined on (−1, 1) with exponential growth for |x | → 1, we consider
interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights.
Convergence results and error estimates in weighted L p metric and uniform metric are given. In particular,
in some function spaces, the related interpolating polynomials behave essentially like the polynomial of
best approximation.
c⃝ 2012 Published by Elsevier Inc.
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1. Introduction

There is an extensive literature concerning the mean convergence on (−1, 1) of Lagrange
interpolation based on the zeros of orthogonal polynomials w.r.t. “doubling” weights (for
instance Jacobi or generalized Jacobi weights). To this regard, we recall [17,18,22,9,28], among
others. These interpolation processes are useful in the (weighted) polynomial approximation of
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locally continuous functions, having algebraic singularities at the endpoints ±1 and at some inner
points. Nevertheless, these processes are not suitable in order to approximate functions having
exponential growth close to ±1. This last topic has received few attention and, as far as we know,
we recall [2,7,8,25,29].

In this paper we propose two interpolation processes, which behave like the best
approximation in wide subspaces of weighted L p-spaces and then turn out to be suitable for
approximating functions with exponential growth at ±1.

Taking into account the properties of the considered functions, it is natural to choose weighted
spaces L p

u with

u(x) = (1 − x2)µe−
1
2 (1−x2)−α

, α > 0, µ ≥ 0, x ∈ (−1, 1),

and a weight of the form

σ(x) = (1 − x2)λe−(1−x2)−α

, α > 0, λ ≥ 0, x ∈ (−1, 1),

for the orthonormal systems {pm(σ )}m∈N.
Let us denote by Sm(σ, f ) the mth Fourier sum of f ∈ L1

σ in the previous orthonormal system
and by Lm(σ, f ) the mth Lagrange polynomial of f ∈ C0(−1, 1) based on the zeros of pm(σ ).
Unfortunately, as in the case of exponential weights on unbounded intervals (see, e.g., [19,13]),
the sequence {Sm(σ, f )}m∈N converges to f in L p

u for a restricted class of functions (see [15,16]).
Therefore, we cannot expect good approximation properties for the polynomial Lm(σ, f ), which
is the discrete version of Sm(σ, f ). In fact, the associated Lebesgue constants in L p

u are “big”
(see [2,7]).

On the other hand, bounded projectors, or projectors having the minimal order log m, are
required in several contexts. So, the aim of this paper is to overcome this gap.

With am = am
√

σ


the Mhaskar–Rakhmanov–Saff number related to
√

σ and θ ∈ (0, 1)

fixed, we denote by χθ the characteristic function of the interval [−aθm, aθm]. Then we are
going to consider the interpolating polynomial Lm(σ, f ) = Lm(σ, χθ f ). Analogously, letting
L∗

m,2(σ, f ) denote the Lagrange polynomial, interpolating f at the zeros of (a2
m − ·

2)pm(σ ), we
are going to study L∗

m,2(σ, f ) = L∗

m,2(σ, χθ f ). The behavior of these interpolation processes is
stated in Theorems 3.1, 3.2, 3.5, 3.7 and 3.8, where error estimates are given.

The operators related to these processes are not projectors of continuous functions into the
space of all the polynomials of degree at most m − 1 and m + 1, Pm−1 and Pm+1, but they do
are projectors into some subsets Pm−1 ⊂ Pm−1 and P ∗

m+1 ⊂ Pm+1. We will show that these
subspaces fulfill the same density properties of Pm−1 or Pm+1 and that the Marcinkiewicz-type
inequalities hold for polynomials belonging to them.

The paper is structured as follows. In Section 2 we recall some basic facts concerning the best
weighted polynomial approximation, give the definitions of the interpolation processes and state
some preliminary results. In Section 3 we state the main results, proved in Section 4.

2. Basic facts and preliminary results

In the sequel C will stand for a positive constant that can assume different values in each
formula and we shall write C ≠ C(a, b, . . .) when C is independent of a, b, . . .. Furthermore
A ∼ B will mean that if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)±1

≤ C.
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2.1. Function spaces and best polynomial approximation

Let w be defined as

w(x) = e−(1−x2)−α

, (2.1)

we consider the weight function

u(x) = vµ(x)


w(x) = (1 − x2)µe−
1
2 (1−x2)−α

, (2.2)

where α > 0, µ ≥ 0, x ∈ (−1, 1).
The weight w belongs to a wide class of exponential weights defined in [4,5], and in [15], it

was checked that u belongs to the same class of w. In particular, setting Q(x) = − log u(x), we
can define the Mhaskar–Rakhmanov–Saff number āτ = āτ (u), 1 ≤ τ ∈ R, as the positive root
of

τ =
2
π

 1

0
āτ t Q′(āτ t)

dt
√

1 − t2
.

The number āτ is an increasing function of τ , with limτ→+∞ āτ = 1 and

C1τ
−

1
α+1/2 ≤ 1 − āτ ≤ C2τ

−
1

α+1/2 ,

where C1 and C2 are positive constants independent of τ and α is fixed (see [5, pp. 13,31]).
We can associate to the weight u the following function spaces. For 1 ≤ p < ∞, by L p

u we
denote the set of all measurable functions f such that

∥ f ∥L p
u

:= ∥ f u∥p =

 1

−1
| f u|

p(x) dx

1/p

< ∞.

For p = ∞, by a slight abuse of notation, we set

L∞
u := Cu =


f ∈ C0(−1, 1) : lim

x→±1
f (x)u(x) = 0


,

and we equip this space with the norm

∥ f ∥L∞
u

:= ∥ f u∥∞ = sup
x∈(−1,1)

| f (x)u(x)| .

Note that the Weierstrass theorem implies the limit conditions in the definition of Cu .
In the sequel, if u = 1, we will simply write L p. Moreover, we will use the notation L p(I ),

meaning that the norm is extended to I ⊂ (−1, 1).
The Sobolev-type subspaces of L p

u are given by

W p
r (u) =


f ∈ L p

u : f (r−1)
∈ AC(−1, 1), ∥ f (r)ϕr u∥p < ∞


, 1 ≤ r ∈ Z,

where 1 ≤ p ≤ ∞, ϕ(x) :=
√

1 − x2 and AC(−1, 1) denotes the set of all functions which are
absolutely continuous on every closed subset of (−1, 1). We equip these spaces with the norm

∥ f ∥W p
r (u) = ∥ f u∥p + ∥ f (r)ϕr u∥p.
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In order to introduce some further subspaces of L p
u , for 1 ≤ p ≤ ∞, r ≥ 1 and for a

sufficiently small t > 0 (say t < t0), we define the main part of the r th modulus of smoothness
as

Ωr
ϕ( f, t)u,p = sup

0<h≤t

∆r
hϕ ( f ) u


L p[−h∗,h∗]

,

where h∗
= 1 − B h1/(α+1/2), B > 1 is a fixed constant, and

∆r
hϕ f (x) =

r
i=0


r
i


(−1)i f


x + (r − 2i)

hϕ(x)

2


.

Then the complete r th modulus of smoothness is given by

ωr
ϕ( f, t)u,p = Ωr

ϕ( f, t)u,p + inf
P∈Pr−1

∥( f − P) u∥L p[−1,−t∗]

+ inf
P∈Pr−1

∥( f − P) u∥L p[t∗,1]

with t∗ = 1 − B t1/(α+1/2) and B > 1 a fixed constant. We emphasize that the behavior of
ωr

ϕ( f, t)u,p is independent of the constant B.
We also remark that for any f ∈ W p

r (u), with r ≥ 1 and 1 ≤ p ≤ ∞, we have (see [14])

Ωr
ϕ( f, t)u,p ≤ C sup

0<h≤t
hr

∥ f (r)ϕr u∥L p[−h∗,h∗], C ≠ C( f, t). (2.3)

By means of the r th modulus of smoothness, for 1 ≤ p ≤ ∞, we can define the Zygmund
spaces

Z p
s (u) := Z p

s,r (u) =


f ∈ L p

u : sup
t>0

ωr
ϕ( f, t)u,p

t s < ∞, r > s


, 0 < s ∈ R,

equipped with the norm

∥ f ∥Z p
s,r (u) = ∥ f ∥L p

u
+ sup

t>0

ωr
ϕ( f, t)u,p

t s .

In the sequel we will denote these subspaces briefly by Z p
s (u), without the second index r and

with the assumption r > s. We note that Ωr
ϕ( f, t)u,p ∼ ωr

ϕ( f, t)u,p for any f ∈ Z p
s (u), r > s,

and so in the definition of the Zygmund-type spaces ωr
ϕ( f, t)u,p can be replaced by Ωr

ϕ( f, t)u,p
(see [14]).

Let us denote by Pm the set of all algebraic polynomials of degree at most m and by

Em( f )u,p = inf
P∈Pm

∥( f − P) u∥p

the error of best polynomial approximation in L p
u , 1 ≤ p ≤ ∞. A polynomial realizing the

infimum in the previous definition is called polynomial of best approximation for f ∈ L p
u .

Moreover, we say that P ∈ Pm is a polynomial of quasi best approximation for f ∈ L p
u if

∥( f − P) u∥p ≤ C Em( f )u,p,

with C independent of m and f .
The next theorem can be deduced from the results in [14].
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Theorem 2.1. Let u(x) = (1 − x2)µe−
1
2 (1−x2)−α

, with α > 0 and µ ≥ 0. For any f ∈ L p
u , 1 ≤

p ≤ ∞, the inequalities

Em( f )u,p ≤ C ωr
ϕ


f,

1
m


u,p

(2.4)

and

ωr
ϕ


f,

1
m


u,p

≤
C

mr

m
i=0

(1 + i)r−1 Ei ( f )u,p,

hold with C independent of m and f .

From the previous theorem, we deduce the following estimates for the error of best
approximation

Em( f )u,p ≤
C

mr ∥ f ∥W p
r (u), ∀ f ∈ W p

r (u), r ≥ 1, (2.5)

and

Em( f )u,p ≤
C

ms ∥ f ∥Z p
s (u), ∀ f ∈ Z p

s (u), s > 0, (2.6)

where C ≠ C(m, f ) and 1 ≤ p ≤ ∞.

2.2. Interpolation operators and polynomial spaces

Now, with w as in (2.1) and vλ(x) = (1 − x2)λ, we consider the weight

σ(x) = vλ(x)w(x) = (1 − x2)λe−(1−x2)−α

, α > 0, λ ≥ 0, (2.7)

and the corresponding sequence of orthonormal polynomials with positive leading coefficients
{pm(σ )}m∈N. We denote by xk = xm,k(σ ), 1 ≤ k ≤ ⌊m/2⌋, the positive zeros of pm(σ ) and by
x−k = −xk the negative ones. If m is odd, then x0 = 0 is a zero of pm(σ ).

These zeros are located as follows (see [5, pp. 22–23])

−am (1 − cδm) ≤ x−⌊m/2⌋ < · · · < x1 < x2 < · · · < x⌊m/2⌋ ≤ am (1 − cδm) ,

where 0 < c ≠ c(m), am is the Mhaskar–Rakhmanov–Saff number related to the weight
√

σ ,
satisfying (see [4, p. 4] and also [15])

1 − am ∼ m−
1

α+1/2 , (2.8)

and

δm :=


1 − am

m

2/3

. (2.9)

Let us denote by Lm(σ, f ) the mth Lagrange polynomial interpolating a function f ∈

C0(−1, 1) at the zeros of pm(σ ). It is well-known that

Lm(σ, f, x) =


|k|≤⌊m/2⌋

ℓk(σ, x) f (xk),
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with

ℓk(σ, x) =
pm(σ, x)

p′
m(σ, xk)(x − xk)

, |k| ≤ ⌊m/2⌋,

and Lm(σ ) : C0(−1, 1) → Pm−1 is a projector, i.e. Lm(σ, P) = P for any P ∈ Pm−1.
Following an idea used for gaussian rules on (0, +∞) in [10,11] and for Lagrange

interpolation on unbounded intervals in [19], we are going to define a “truncated” interpolation
process.

With am the Mhaskar–Rakhmanov–Saff number related to
√

σ , for a fixed θ ∈ (0, 1), we
define an index j = j (m, θ) by means of the equation

x j = min
1≤k≤⌊m/2⌋

{xk : xk ≥ aθm} , (2.10)

with m sufficiently large (say m > m0), and we introduce the interpolation operator Lm(σ ),
defined by

Lm(σ, f, x) =


|k|≤ j

ℓk(σ, x) f (xk) (2.11)

for any f ∈ Cu . By definition, Lm(σ, f ) ∈ Pm−1 and Lm(σ, f, xi ) = f (xi ) for |i | ≤ j , while
Lm(σ, f, xi ) = 0 for |i | > j . Therefore Lm(σ, P) ≠ P in general for P ∈ Pm−1.

Now, consider the following collection of polynomials

Pm−1 = {Q ∈ Pm−1 : Q(xi ) = 0, |i | > j}

with xi = xm,i (σ ) and j = j (m) defined as in (2.10). Naturally, Pm−1 depends on the
weight σ and on the parameter θ ∈ (0, 1). Moreover, for any f ∈ Cu, Lm(σ, f ) ∈ Pm−1
and Lm(σ, Lm(σ, f )) = Lm(σ, f ). It is also easily seen that

Pm−1 = L(σ )(Pm−1) =


|k|≤ j

ℓk(σ, x)P(xk)


P∈Pm−1

and the operator Lm(σ ) : C0(−1, 1) → Pm−1 is a projector, i.e. Lm(σ, Q) = Q for any
Q ∈ Pm−1.

The next theorem shows that


m Pm−1 is dense in L p
u , 1 ≤ p ≤ ∞, and the corresponding

error of best approximationEm−1( f )u,p = inf
Q∈Pm−1

∥( f − Q) u∥p

is strictly connected with EM ( f )u,p, where

M =


θ

θ + 1


m

s


∼ m, (2.12)

with s ≥ 1 fixed and θ ∈ (0, 1) as in (2.10).

Theorem 2.2. Let σ = vλw and u = vµ
√

w with arbitrarily fixed parameters α > 0, λ, µ ≥ 0.
Then, for every function f ∈ L p

u , 1 ≤ p ≤ ∞, there exists a polynomial sequence {q∗

m−1}m , with
q∗

m−1 ∈ Pm−1, such that

lim
m→∞

 f − q∗

m−1


u


p = 0. (2.13)
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Furthermore, letting χθ denote the characteristic function of [−aθm, aθm], with aθm =

aθm
√

σ

, θ ∈ (0, 1), we have

lim
m→∞

 f − χθq∗

m−1


u


p = 0. (2.14)

Finally, for any f ∈ L p
u , 1 ≤ p ≤ ∞, we get

Em−1( f )u,p ≤ C


EM ( f )u,p + e−AMγ

∥ f u∥p


, (2.15)

where γ = 2α/(2α +1), M is defined by (2.12), and C and A are positive constants independent
of m and f .

Let us now introduce a further interpolation operator. Following an idea due to J. Szabados
in [27], we denote by L∗

m,2(σ, f ) the Lagrange polynomial, interpolating f at the zeros of pm(σ )

and at the two extra points x±(⌊m/2⌋+1) := ±am, am = am
√

σ

. Then, for any f ∈ C0(−1, 1),

we have

L∗

m,2(σ, f, x) =


|k|≤⌊m/2⌋+1

ℓ∗

k(σ, x) f (xk)

where

ℓ∗

k(σ, x) =
pm(σ, x)

p′
m(σ, xk)(x − xk)

(a2
m − x2)

(a2
m − x2

k )
, 1 ≤ |k| ≤ ⌊m/2⌋,

and

ℓ∗

±(⌊m/2⌋+1)(σ, x) =
am ± x

2am

pm(σ, x)

pm(σ, ±am)
.

In analogy with (2.11), the “truncated” version of L∗

m,2(σ ) is given by

L∗

m,2(σ, f, x) =


|k|≤ j

ℓ∗

k(σ, x) f (xk), (2.16)

where the index j is defined by (2.10). We note that this operator has the same form of the one
defined in [12] for Lagrange interpolation on the real line.

By arguments similar to those used for the operator Lm(σ ), it is easily seen that the operator
L∗

m,2(σ ) is a projector from the space of all continuous on (−1, 1) functions into the set of
polynomials

P ∗

m+1 = {Q ∈ Pm+1 : Q(±am) = Q(xi ) = 0, |i | > j} = L∗

m,2(σ )(Pm+1),

where xi = xm,i (σ ), am = am
√

σ


and j = j (m) is given by (2.10). Moreover, L∗

m,2(σ, Q) =

Q for any Q ∈ P ∗

m+1 and, in analogy with Theorem 2.2,


m P ∗

m+1 is dense in L p
u , 1 ≤ p ≤ ∞.

In particular, settingE∗

m+1( f )u,p = inf
Q∈P ∗

m+1

∥( f − Q) u∥p

for any f ∈ L p
u , 1 ≤ p ≤ ∞, we have

E∗

m+1( f )u,p ≤ C


EM ( f )u,p + e−AMγ

∥ f u∥p


(2.17)
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where γ = 2α/(2α + 1), M is defined by (2.12), and C and A are positive constants independent
of m and f .

In the next section, we are going to study the behavior of the previous defined polynomial
operators in some suitable function spaces.

3. Main results

Let us first consider the Lagrange polynomial Lm(w, f ), based on the zeros of pm(w), in
the space C√

w, where w(x) = e−(1−x2)−α
, α > 0. Since the sequence {pm(w)

√
w}m is not

uniformly bounded (see formula (4.10) in Section 4) and, moreover, the zeros of pm(w) are not
arc sine distributed, then we cannot expect that the mth Lebesgue constant

∥Lm(w)∥∞ = max
x∈(−1,1)


w(x)


|k|≤⌊m/2⌋

|ℓk(w, x)|
√

w(xk)

has the desired order log m (for a more complete discussion on this topic see [9, p. 251] and
also [18]). In fact, from a result due to S.B. Damelin in [2], it follows that

∥Lm(w)∥∞ ∼ δ
−1/4
m ∼ m

1
6


2α+3
2α+1


.

Now, concerning the interpolation process {Lm(σ )}m∈N in Cu , denoting by χ j the
characteristic function of [−x j , x j ], with j as in (2.10), we have Lm(σ, f ) = Lm(σ, χ j f ) for
any f ∈ Cu and the following theorem holds.

Theorem 3.1. Let σ(x) = (1−x2)λe−(1−x2)−α
and u(x) = (1−x2)µe−

1
2 (1−x2)−α

, α > 0, λ, µ ≥

0. Then, for every f ∈ Cu , we haveχ j Lm (σ, f ) u


∞
≤ Cθ (log m)∥χ j f u∥∞, Cθ ≠ Cθ (m, f ), (3.1)

if and only if

λ

2
+

1
4

≤ µ ≤
λ

2
+

5
4
. (3.2)

Moreover, from (3.1), it follows that f − χ j Lm (σ, f )


u


∞
≤ Cθ


(log m) EM ( f )u,∞ + e−AMγ

∥ f u∥∞


, (3.3)

where γ = 2α/(2α + 1), M = cm, 0 < c < 1, is defined by (2.12), A ≠ A(m, f ) and here
and in the following we denote by Cθ a constant, independent of m and f , having the form
Cθ = O


log−ν(1/θ)


with some fixed ν.

We also remark that the previous statement seems to be the best possible in the sense that it
can be shown that, even if conditions (3.2) are satisfied, the quantitiesχ j Lm (σ, f ) u


∞

and
Lm


σ, χ j f


u


∞

diverge with an order greater than log m for m → ∞, but we will omit the details (the proofs are
based on inequalities (4.9)–(4.12) in Section 4).

The behavior of Lm(σ, f ) in the L p
u -norm is expressed by the following theorem.
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Theorem 3.2. Let u = vµ
√

w and σ = vλw. For any f ∈ Cu and for 1 ≤ p < ∞, there exists
a constant Cθ , depending on θ ∈ (0, 1), such thatχ j Lm (σ, f ) u


p ≤ Cθ∥χ j f u∥∞, Cθ ≠ Cθ (m, f ), (3.4)

if and only if

vµ
vλϕ

∈ L p,


vλϕ

vµ
∈ L1, (3.5)

where ϕ(x) =
√

1 − x2.
Moreover, from (3.4), for any f ∈ Cu , we get f − χ j Lm (σ, f )


u


p ≤ Cθ


EM ( f )u,∞ + e−AMγ

∥ f u∥∞


(3.6)

with Cθ , A independent of m and f, M as in (2.12) and γ = 2α/(2α + 1).
Finally, setting ∆xk = xk+1 − xk , for any f ∈ C0(−1, 1) and for 1 < p < ∞, we have

χ j Lm (σ, f ) u


p ≤ Cθ


|k|≤ j

∆xk | f (xk)u(xk)|
p

1/p

, Cθ ≠ Cθ (m, f ), (3.7)

if and only if

vµ
vλϕ

∈ L p,


vλϕ

vµ
∈ Lq ,

1
p

+
1
q

= 1. (3.8)

The next proposition will be useful in order to estimate the error of our interpolation processes
in L p

u metric.

Proposition 3.3. Let f ∈ L p
u , such that Ωϕ( f, t)u,p t−1−1/p

∈ L1(0, 1) for 1 < p < ∞. Then
we have

|k|≤ j

∆xk | f (xk)u(xk)|
p

1/p

≤ C


∥χ j f u∥p +
1

m1/p

 1/m

0

Ωϕ( f, t)u,p

t1+1/p
dt


(3.9)

with C independent of m and f .

Then, as a consequence of (3.7) and Proposition 3.3, we obtain the following.

Corollary 3.4. Let 1 < p < ∞ and f ∈ L p
u such that Ωr

ϕ( f, t)u,p t−1−1/p
∈ L1(0, 1). Then,

under the assumptions (3.8), we have f − χ j Lm (σ, f )


u


p ≤ Cθ


1

m1/p

 1/m

0

Ωr
ϕ( f, t)u,p

t1+1/p
dt + e−Amγ

∥ f u∥p


, (3.10)

where γ = 2α/(2α + 1), Cθ , A are independent of m and f , but depend on θ .

We remark that, under the assumptions of Corollary 3.4, the Lagrange interpolation is well
defined, since in [24] it was proved that if f ∈ L p

u , 1 < p < ∞, is such that 1

0

Ωr
ϕ( f, t)u,p

t1+1/p
dt < ∞, r ≥ 1,

then f is continuous on (−1, 1).
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In particular, if

sup
t>0

Ωr
ϕ( f, t)u,p

t s < ∞,

with 1/p < s ∈ R and r > s, i.e. if f ∈ Z p
s (u), 1 < p < ∞, then, for m > m0, (3.10) becomes f − χ j Lm (σ, f )


u


p ≤
Cθ

ms ∥ f ∥Z p
s (u), (3.11)

and, if 1 ≤ s ∈ N, then the norm ∥ f ∥Z p
s (u) can be replaced by the Sobolev-type norm ∥ f ∥W p

s (u),
taking (2.3) into account. Therefore, in the considered classes of functions, the sequence
χ j (m)Lm (σ, f )


m converges to f in the L p

u -norm with the order of the best polynomial
approximation, given by (2.6).

Let us now consider the polynomial sequence {Lm (σ, f )}m , in which we drop one of the
“truncations”. In this case a theorem, analogous to Theorem 3.2, holds with the restriction
1 < p < 4.

Theorem 3.5. Let u = vµ
√

w and σ = vλw. Then, for any f ∈ Cu , there exists a constant Cθ ,
depending on θ ∈ (0, 1) and independent of m and f , such that

∥Lm (σ, f ) u∥p ≤ Cθ∥χ j f u∥∞, Cθ ≠ Cθ (m, f ), (3.12)

if and only if

vµ

√
vλ

∈ L p,

√
vλ

vµ
∈ L1, 1 ≤ p < 4. (3.13)

Moreover, we get

∥Lm (σ, f ) u∥p ≤ Cθ


|k|≤ j

∆xk | f (xk)u(xk)|
p

1/p

, (3.14)

if and only if

vµ

√
vλ

∈ L p,

√
vλ

vµ
∈ Lq ,

1
p

+
1
q

= 1, 1 < p < 4. (3.15)

Note that the special case p = 2 and µ = λ = 0 has been treated in [1] using a truncated
gaussian rule. Nevertheless, this procedure cannot be applied in the general case p ≠ 2. From
Theorem 3.5, we can deduce consequences similar to those related to Theorem 3.2; we omit the
details about this topic and state the following.

Corollary 3.6. Let 1 < p < 4. For any polynomial Pm−1 ∈ Pm−1, the equivalence

∥Pm−1u∥p ∼


|k|≤ j

∆xk |Pm−1u|
p(xk)

1/p

holds if and only if assumptions (3.15) are satisfied. Here the constants in “∼” depend on θ and
are independent of m and Pm−1.
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Let us now consider the second interpolation polynomial L∗

m,2(σ, f ). Its behavior is stated by
the following theorems.

Theorem 3.7. Let σ(x) = (1−x2)λe−(1−x2)−α
and u(x) = (1−x2)µe−

1
2 (1−x2)−α

, α > 0, λ, µ ≥

0. Then, for every f ∈ Cu , we haveL∗

m,2 (σ, f ) u


∞
≤ Cθ (log m)∥χ j f u∥∞, Cθ ≠ Cθ (m, f ), (3.16)

if and only if

0 ≤ µ −
λ

2
+

3
4

≤ 1. (3.17)

Moreover, from (3.16), it follows that f − L∗

m,2 (σ, f )


u


∞
≤ Cθ


(log m) EM ( f )u,∞ + e−AMγ

∥ f u∥∞


, (3.18)

where γ = 2α/(2α + 1), M = cm, 0 < c < 1, is defined by (2.12), C ≠ C(m, f ) and
A ≠ A(m, f ).

Theorem 3.8. Let u = vµ
√

w and σ = vλw. Then, for any f ∈ Cu and for 1 ≤ p < ∞, there
exists a constant Cθ , depending on θ ∈ (0, 1), such thatL∗

m,2 (σ, f ) u


p
≤ Cθ∥χ j f u∥∞, Cθ ≠ Cθ (m, f ), (3.19)

if and only if

vµ+1
vλϕ

∈ L p,


vλϕ

vµ+1 ∈ L1. (3.20)

Moreover, for any f ∈ Cu and for 1 < p < ∞, we have

L∗

m,2 (σ, f ) u


p
≤ Cθ


|k|≤ j

∆xk | f (xk)u(xk)|
p

1/p

, Cθ ≠ Cθ (m, f ),

if and only if

vµ+1
vλϕ

∈ L p,


vλϕ

vµ+1 ∈ Lq ,
1
p

+
1
q

= 1. (3.21)

From the previous theorem we can deduce an analogous of Corollary 3.4. Therefore, as in
(3.11), under the assumptions (3.21), for any f ∈ Z p

s (u), 1 < p < ∞ and 1/p < s ∈ R, and for
m > m0, we have f − L∗

m,2 (σ, f )


u


p
≤

Cθ

ms ∥ f ∥Z p
s (u),

and, for any f ∈ W p
r (u), 1 < p < ∞ and 1 ≤ r ∈ Z, we get f − L∗

m,2 (σ, f )


u


p
≤

Cθ

mr ∥ f ∥W p
r (u), (3.22)
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where Cθ is independent of m and f in both cases. So, the polynomial sequence


L∗

m,2 (σ, f )


m
converges to the function f in the L p

u -norm with the order of the best approximation in the
considered classes of functions (see (2.6) and (2.5)).

Furthermore, the operator L∗

m,2(σ ) is uniformly bounded in Sobolev-type spaces, as the next
theorem shows.

Theorem 3.9. Let σ, u be the above defined weights and let conditions (3.21) be fulfilled. Then,
for every f ∈ W p

r (u), with r ≥ 1 and 1 < p < ∞, we haveL∗

m,2(σ, f )


W p
r (u)

≤ Cθ ∥ f ∥W p
r (u). (3.23)

Moreover, for every f ∈ W p
s (u), s > r ≥ 1, we get f − L∗

m,2(σ, f )


W p
r (u)

≤
Cθ

ms−r ∥ f ∥W p
s (u), (3.24)

where in both cases Cθ is independent of m and f .

Note that in the previous theorem W p
r (u) can be replaced by Z p

s (u), with the assumption
s > 1/p (which is necessary for the continuity of f , see [24]).

As a further consequence of Theorem 3.8, in analogy with Corollary 3.6, the following
Marcinkiewicz equivalence holds in the subspace P ∗

m+1.

Corollary 3.10. Let 1 < p < ∞. For any polynomial Pm+1 ∈ P ∗

m+1, the equivalence

∥Pm+1u∥p ∼


|k|≤ j

∆xk |Pm+1u|
p(xk)

1/p

holds if and only if assumptions (3.21) are satisfied. Here the constants in “∼” depend on θ and
are independent of m and Pm+1.

To conclude this section, we want to emphasize that, in the previous theorems, the constants
Cθ , depending on log−1(1/θ), θ ∈ (0, 1), appear. The parameter θ is crucial in our results, since
it cannot assume the value 1; in other words, the “truncation” of the sums in (2.11) and (2.16)
seems to be essential (for further details see Section 4).

4. Proofs

First of all we recall some restricted range inequalities, which will be used in the
proofs. Letting σ be as in (2.7), we consider

√
σ = vλ/2√w, λ ≥ 0, and its related

Mhaskar–Rakhmanov–Saff number am = am
√

σ

. Then, for any polynomial Pm ∈ Pm, 1 ≤

p ≤ ∞, the inequalitiesPm
√

σ


p ≤ C
Pm

√
σ


L p[−am ,am ]
(4.1)

and Pm
√

σ


L p{|x |≥aηm }
≤ Ce−Amγ Pm

√
σ


p , η > 1, γ = 2α/(2α + 1), (4.2)

hold with C and A positive constants independent of Pm (see [5, pp. 15–16], [4, Theorem 1.7,
p. 12] and [6, Lemma 2.3]).
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In order to avoid considering Mhaskar–Rakhmanov–Saff numbers related to different weights
in the proofs, the following remark will be useful. Let u = vµ

√
w = vµ−λ/2√σ , µ ≥ 0, be the

weight in (2.2), and am = am
√

σ

. For any Pm ∈ Pm , from (4.1) we can deduce (see [15])

∥Pmu∥p ≤ C

∥Pmu∥L p[−asm ,asm ] , s > 1, if µ − λ/2 < 0,

∥Pmu∥L p[−am ,am ] , otherwise
(4.3)

where C is independent of Pm . Using the same argument, we can deduce an inequality of the
form (4.2), where

√
σ and aηm are replaced by u and aηsm , respectively.

Now, using the previous inequalities, we are able to prove the following.

Proposition 4.1. Let u be the weight in (2.2), āM its MRS number and η > 1. For any function
f ∈ L p

u , 1 ≤ p ≤ ∞, we have

∥ f u∥L p{|x |≥āηM } ≤ C


EM ( f )u,p + e−AMγ

∥ f u∥p


, (4.4)

where C, A are positive constants independent of f and M, and γ = 2α/(2α + 1).

Proof. Letting PM ∈ PM be the polynomial of best approximation of f in L p
u -metric, by (4.2),

we get

∥ f u∥L p{|x |≥āηM } ≤ ∥( f − PM ) u∥L p{|x |≥āηM } + ∥PM u∥L p{|x |≥āηM }

≤ EM ( f )u,p + Ce−AMγ

∥PM u∥p,

whence our claim follows. �

Now, given f ∈ L p
u , 1 ≤ p ≤ ∞, let f j = χ j f , where χ j is the characteristic function of

[−x j , x j ] and x j = min1≤k⌊m/2⌋{xk : xk ≥ aθm} as in (2.10), for a fixed θ ∈ (0, 1) and for
m > m0, As a consequence of Proposition 4.1, we can estimate the L p

u -distance between f and
f j by (4.4) as

M =




θm

s(θ + 1)


, s > 1, if µ − λ/2 < 0,

θm

θ + 1


, otherwise,

taking (4.3) into account.
Let us now recall some properties of the orthonormal system {pm(σ )}m∈N, related to the

weight σ(x) = (1 − x2)λe−(1−x2)−α
, α > 0, λ ≥ 0, which will be used in the sequel. The

distance between two consecutive zeros of pm(σ ) satisfies (see [5, p. 23])

∆xk = xk+1 − xk ∼
a2

2m − x2
k

m


a2
m − x2

k + a2
mδm

, −⌊m/2⌋ ≤ k ≤ ⌊m/2⌋ − 1, (4.5)

and

1 −
x⌊m/2⌋

am
∼ δm, (4.6)

where δm is given by (2.9).
Taking into account the definition of the operators χ j (m)Lm (σ ) and L∗

m,2 (σ ), we are
interested in the behavior of the orthonormal polynomials and their zeros in some subintervals
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of the related Mhaskar–Rakhmanov–Saff interval

−am

√
σ

, am

√
σ


. The next lemma is
useful to this aim.

Lemma 4.2. Let θ1 and θ2 be fixed such that 0 < θ1 < θ2 ≤ 1 and let x ∈ [−aθ1m, aθ1m]. Then
we have

ϕm(x) :=
a2

2m − x2

m


|a2
m − x2| + a2

mδm
∼


a2
θ2m − x2

m

and

a2
θ2m − x2

≤ 1 − x2
≤


1 +

C
log(θ2/θ1)


(a2

θ2m − x2),

where the constants in “∼” depend on θ1 and θ2, while C does not.
In particular, for x ∈ [−aθm, aθm], θ ∈ (0, 1), we get

a2
m − x2

∼ 1 − x2, (4.7)

where the constants in “∼” depend on log−1(1/θ).

We omit the proof of the lemma, which follows from standard computation and is essentially
based on the following inequality. For every fixed r, s > 0, with r < s, one has (see [5, formula
(3.5.3), p. 81] and [4, p. 27])

c1(1 − asm) log
 s

r


≤


1 −

arm

asm


≤ c2(1 − arm) log

 s

r


,

where c1, c2 > 0 are independent of m, r, s and (1 − arm) ∼ (1 − asm).
From Lemma 4.2, we deduce that the zeros of pm(σ ) are arc sine distributed in every

subinterval of the Mhaskar–Saff interval of the form [−aθ̄m, aθ̄m] with θ̄ ∈ (0, 1) fixed. Namely,
from (4.5), for |xk | ≤ x j , j as in (2.10), with aθm ≤ x j < aθ̄m and 0 < θ < θ̄ < 1, by
Lemma 4.2 and (4.6), we deduce (see also [14] and [5, p. 32])

∆xk ∼


a2

m − x2
k

m
∼

ϕ(xk)

m
, |k| ≤ j, (4.8)

where ϕ(xk) =


1 − x2

k and the constants in “∼” depend on log−1(1/θ). We note that (4.8) is
not true in general for |k| ≤ ⌊m/2⌋ (we refer to [29] for precise estimates of the distance between
consecutive zeros related to a wider class of weights).

Concerning the polynomials pm(σ ), m ∈ N, the equivalences

sup
x∈(−1,1)

pm(σ, x)


σ(x)
4


|a2
m − x2|

 ∼ 1 (4.9)

and

sup
x∈(−1,1)

pm(σ, x)


σ(x)

 ∼ δ
−1/4
m ∼


m

1 − am

1/6

, (4.10)
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were proved in [4, formulas (1.38) and (1.39), p. 10], where am = am
√

σ


and δm = δm
√

σ


satisfy (2.8) and (2.9). Moreover, in [5, pp. 22–23] the relation

1p′
m(σ, xk)

√σ(xk)
∼ ∆xk

4


a2
m − x2

k , |k| ≤ ⌊m/2⌋ , (4.11)

where xk are the zeros of pm(σ ) and ∆xk = xk+1 − xk , was shown.
Now, let θ ∈ (0, 1) fixed. By Lemma 4.2, from (4.9) and (4.7), we deduce the inequality

|pm(σ, x)|


σ(x)ϕ(x) ≤ Cθ , |x | ≤ aθm, (4.12)

where ϕ(x) =
√

1 − x2 and

Cθ = C


1 +
1

log(1/θ)

1/4

with C independent of m and θ .
In the next lemma we show a rough inequality for the Lebesgue constant in the space Cu

associated with the Lagrange interpolation at the zeros of pm(σ ), for arbitrary parameters of the
weights, that can be easily deduced from (4.9)–(4.12). This will be useful to prove Theorem 2.2.

Lemma 4.3. Let σ = vλw and u = vµ
√

w be the weights in (2.7) and (2.2) . Then, for every
λ, µ ≥ 0 and for any f ∈ Cu , we have

∥Lm (σ, f ) u∥∞ ≤ C mτ
∥ f u∥∞,

for some τ > 0, where C is independent of m and f .

Proof of Theorem 2.2. We first prove (2.13). By Theorem 2.1, there exists a sequence
{qm−1}m, qm−1 ∈ Pm−1, converging to f ∈ L p

u , 1 ≤ p ≤ ∞, for m → ∞. Now, with
M = Mm = ⌊(θ/(θ + 1))m/s⌋, s > 1 fixed, the subsequence {qM }M converges to f ∈ L p

u
and we construct the sequence {q∗

m−1} as

q∗

m−1(x) = Lm(σ, qMm , x) ∈ Pm−1.

Hence we get f − q∗

m−1


u


p ≤ ∥( f − qM ) u∥p +
qM − q∗

m−1


u


p

= ∥( f − qM ) u∥p + ∥[Lm(σ, qM ) − Lm(σ, qM )] u∥p

= ∥( f − qM ) u∥p +


|k|> j

ℓk(σ )qM (xk)u


p

. (4.13)

Concerning the second summand at the right-hand side, by using Lemma 4.3 and inequality (4.2),
we have

|k|> j

ℓk(σ )qM (xk)u


p

≤ Cmτ
∥qM u∥L∞{|x |≥aθm }

≤ Ce−AMγ

∥qM u∥∞, (4.14)

where γ = 2α/(2α + 1), τ > 0, A > 0. Then, by (4.13) and (4.14), the limit relation (2.13)
follows.
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Moreover, by Proposition 4.1, (4.13) and (4.14), we get f − χ j q
∗

m−1


u


p ≤
 f − χ j f


u


p +
χ j


f − q∗

m−1


u


p

≤ C


EM ( f )u,p + e−AMγ

∥ f u∥p


+ ∥( f − qM ) u∥p

+ Ce−AMγ

∥qM u∥∞,

and then (2.14).
In particular, from the previous inequality we obtain (2.15), letting {qm−1}m be a sequence

of polynomials of quasi best approximation for f and using the Nikolskii inequality (see
[5, pp. 293–312] and also [24])

∥qM u∥∞ ≤ C M
1
p


2α+2
2α+1


∥qM u∥p. � (4.15)

Proof of Theorem 3.1. Let us first prove that conditions (3.2) imply inequality (3.1). We can
write χ j Lm(σ )


∞

= sup
f ∈Cu

χ j Lm

σ, χ j f


u


∞

∥χ j f u∥∞

= max
x∈[−x j ,x j ]


|k|≤ j

|ℓk(σ, x)| u(x)

u(xk)
, (4.16)

where χ j is the characteristic function of [−x j , x j ].
Taking into account that, for x, xk ∈ [−x j , x j ], the relation (4.7) holds, using (4.11) and

(4.12), we have

|ℓk(σ, x)| u(x)

u(xk)
≤ Cθ

∆xkv
µ−λ/2−1/4(x)

|x − xk |vµ−λ/2−1/4(xk)

with Cθ depending on θ and k ≠ d, xd being a zero closest to x . Since (see [5, pp. 320–321])

|ℓd(σ, x)| u(x)

u(xd)
∼ 1,

it follows thatχ j Lm(σ )


∞
≤ Cθ


1 + vµ−λ/2−1/4(x)


|k|≤ j, k≠d

∆xk

|x − xk |vµ−λ/2−1/4(xk)


≤ Cθ log m

since the zeros xk, |k| ≤ j , are arc sine distributed by (4.8) and 0 ≤ µ − λ/2 − 1/4 ≤ 1 by
assumption (see, e.g., [9, p. 243, formula (4.1.13)]). Then inequality (3.1) follows.

Now, let us prove by contradiction that inequality (3.1) implies conditions (3.2), i.e. 0 ≤

µ − λ/2 − 1/4 ≤ 1. Let us first suppose µ − λ/2 − 1/4 < 0. Setting x̄ = (x j−1 + x j )/2 and
recalling a result in [18] (see also [9, pp. 250–251] and [26]), we haveχ j Lm(σ )


∞

≥ C
χ j pm(σ )u


∞

≥ C |pm(σ, x̄)| u(x̄).

Then by using the formula (see [4, formula (12.7), p. 134])

|pm(σ, x)|


σ(x)


a2

m − x2 ∼
|x − xk |

∆xk
, x ∈ (xk, xk+1), (4.17)
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we get

|pm(σ, x̄)| u(x̄) ∼ |pm(σ, x̄)|


σ(x̄)


a2

m − x̄2 vµ−λ/2−1/4(x̄)

∼ (1 − aθm)µ−λ/2−1/4,

since a2
m − x̄2

∼ 1 − x̄2
∼ 1 − aθm , and thenχ j Lm(σ )


∞

≥ C(1 − aθm)µ−λ/2−1/4
∼ m

−(µ−λ/2−1/4)
α+1/2

which is a contradiction.
Let us now suppose µ − λ/2 − 1/4 > 1. We choose x̄ ∈ (−1/2, 1/2) and θ0 ≪ θ . By (4.16)

and (4.11), we haveχ j Lm(σ )


∞
≥ C |pm(σ, x̄)| u(x̄)


|k|≤ j

∆xk

(1 − x2
k )µ−λ/2−1/4|x̄ − xk |

≥ C


aθ0m≤|xk |≤aθm

∆xk

(1 − x2
k )µ−λ/2−1/4|x̄ − xk |

≥ C(1 − aθ0m)−(µ−λ/2−1/4)


aθ0m≤|xk |≤aθm

∆xk

|x̄ − xk |
,

which yields again a contradiction.
Finally, let us prove that inequality (3.1) implies the error bound (3.3). Letting Q ∈ Pm−1 be

a polynomial realizing the infimum in the definition of Em−1( f )u,∞, for any f ∈ Cu , we have f − χ j Lm (σ, f )


u


∞
≤
 f − χ j f


u


∞
+
χ j ( f − Q) u


∞

+
χ j Lm (σ, f − Q) u


∞

≤
 f − χ j f


u


∞
+ Em−1( f )u,∞

+
χ j Lm (σ, f − Q) u


∞

.

Hence, by Proposition 4.1, Theorem 2.2 and inequality (3.1), we obtain (3.3). �

The following lemma states a Marcinkiewicz-type inequality.

Lemma 4.4. Let σ be the weight in (2.7), θ ∈ (0, 1), and xk = xm,k(σ ), with |k| ≤ j and j
given by (2.10). Moreover, let vβ(x) = (1 − x2)β , with β > −1. Then there exists θ̄ ∈ (θ, 1)

such that, for any polynomial Plm ∈ Plm , with l a fixed integer, and for 1 ≤ p < ∞, we have
|k|≤ j

∆xk
Plm(xk)v

β(xk)
p

≤ Cθ̄

 aθ̄m

−aθ̄m

Plm(x)vβ(x)
p

dx, (4.18)

where Cθ̄ depends on θ̄ , but is independent of m and Plm .

Proof. Let aθm ≤ x j < x j+1 < aθ̄m . By (4.8) and Lemma 4.2, we have
|k|≤ j

∆xk |Plm(xk)|
p

≤ Cθ̄

 x j+1

−x j

|Plm(x)|p dx

+
1

m p

 x j+1

−x j

a2
θ̄m

− x2 P ′

lm(x)

p
dx


.
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Hence, using the unweighted Bernstein inequality in [−aθ̄m, aθ̄m], we get
|k|≤ j

∆xk |Plm(xk)|
p

≤ Cθ̄

 aθ̄m

−aθ̄m

|Plm(x)|p dx . (4.19)

Since there exists a polynomial Qm ∈ Pm , such that (see [17])

vβ(x) ∼ Qm(x), x ∈ [−aθ̄m, aθ̄m] ⊂ [−1 + m−2, 1 − m−2
],

using (4.19) with the polynomial Plm Qm , we obtain
|k|≤ j

∆xk
Plm(xk)v

β(xk)
p

≤ Cθ̄

 aθ̄m

−aθ̄m

Plm(x)vβ(x)
p

dx,

which was our claim. �

In order to prove Theorem 3.2, we recall some properties of the Hilbert transform H extended
to the interval (−1, 1), defined by

H( f, y) =

 1

−1

f (x)

x − y
dx, y ∈ (−1, 1),

where the integral is understood in the Cauchy principal value sense. The inversion formula 1

−1
H( f )g = −

 1

−1
H(g) f (4.20)

holds for any f ∈ L p and g ∈ Lq , 1 < p < ∞, 1/p + 1/q = 1. Moreover, if f ∈ L∞ and
g ∈ L log+ L , i.e.

 1
−1 |g(x)| log+

|g(x)| dx < ∞, the inversion (4.20) is still true (see [23]) and

∥ f H(g)∥1 ≤ ∥ f ∥∞∥g(1 + log+
|g|)∥1. (4.21)

If vβ is a Jacobi weight of the form vβ(x) = (1 − x2)β , then, for any measurable function f
such that f vβ

∈ L p, 1 < p < ∞, the inequalityH ( f ) vβ


p ≤ C∥ f vβ
∥p, C ≠ C( f ), (4.22)

holds if and only (see [20,3,21])

−
1
p

< β < 1 −
1
p
.

Moreover, denoting by L p(log+ L p), 1 ≤ p < ∞, the collection of all the functions f such
that

∥ f log+
| f |∥p =

 1

−1


| f (x)| log+

| f (x)|
p dx

1/p

< ∞,

the following lemma holds.

Lemma 4.5 (P. Nevai, [22]). Let 1 < p < ∞, vβ(x) = (1 − x2)β be a Jacobi weight, G a
function such that |G(x)| ≤ 1 almost everywhere in [−1, 1] and G(x) = 0 for x ∉ [−1, 1]. If a
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function g ∈ L p(log+ L)p satisfies gvβ
∈ L p then we have

sup
G

gvβ H(Gv−β)


p ≤ C


1 +
g

1 + vβ

+ log+
|g|


p


with C ≠ C(g).

In the next proofs, we will need also the following lemma, which can be proved applying
arguments similar to those used in [14] for the weight w(x) = e−(1−x2)−α

.

Lemma 4.6. Let
√

σ(x) = vλ/2(x)
√

w(x) = (1 − x2)λ/2e−
1
2 (1−x2)−α

, with α > 0, λ ≥ 0, and
am = am

√
σ

. Then, for any sufficiently large m, there exists a polynomial Rlm ∈ Plm , where l

is a fixed integer, satisfying

Rlm(x) ∼


σ(x)

and R′

lm(x)
1 − x2 ≤ Cm


σ(x)

for |x | ≤ asm, s ≥ 1 a fixed integer, with C independent of m,
√

σ and Rlm .

Finally, we recall a well-known fact. Let a = (a1, . . . , an) ∈ Rn and set ∥a∥p =n
i=1 |ai |

p
1/p if 1 ≤ p < ∞ and ∥a∥∞ = max1≤i≤n |ai |. Moreover, let Γn : Rn

→ R
be defined by Γn =

n
i=1 ai bi , with b = (b1, . . . , bn) ∈ Rn and n fixed. Then the norm of the

functional Γn is

∥Γn∥p = sup
∥a∥p≤1

|Γn(a)| =


n

i=1

|bi |
q

1/q

, (4.23)

where 1/p + 1/q = 1 if 1 < p < ∞, q = 1 if p = ∞ and q = ∞ if p = 1.

Proof of Theorem 3.2. First of all we observe that (3.4) can be written more precisely asχ j Lm (σ, f ) u


p ≤ Cθ max
|k|≤ j

| f (xk)u(xk)| ≤ Cθ∥χ j f u∥∞, Cθ ≠ Cθ (m, f ).

Let us first prove that inequality (3.4) implies condition (3.5) and that (3.7) implies (3.8). To
this aim, with η ∈ (0, 1/4) fixed, we consider the interval [−η, η] and, letting f ∈ Cu , introduce
a piecewise linear function Fm such that

Fm(xk) =


0 if xk ∈ [−η, η]

| f (xk)|sgn


p′
m(σ, xk)


sgn{−xk} otherwise.

Obviously Fm ∈ Cu . Then, for x ∈ [−η, η], we can write

Lm (σ, Fm, x) u(x) =


η<|xk |≤x j

pm(σ, x)u(x)| f u|(xk)p′
m(σ, xk)

 u(xk) |x − xk |
,

since sgn{−xk} = sgn{x − xk}, |x | ≤ η < |xk |. By (4.11) and (4.7), it follows that

|Lm (σ, Fm, x)| u(x) ≥ C
|pm(σ, x)u(x)|

2


η<|xk |≤x j

∆xk


vλϕ

vµ
(xk)| f u|(xk).
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Hence, using (4.17), for 1 ≤ p < ∞, we get

∥Lm (σ, Fm) u∥L p[−η,η] ≥ C


η<|xk |≤x j

∆xk


vλϕ

vµ
(xk)| f u|(xk)

= C

|k|≤ j

∆xk


vλϕ

vµ
(xk)|Fmu|(xk). (4.24)

Now, if (3.4) holds for any f ∈ Cu and for 1 ≤ p < ∞, with a =

a− j , . . . , a j


and

ak = Fm(xk)u(xk) for |k| ≤ j , we haveχ j Lm (σ, Fm) u


p ≤ C max
|k|≤ j

|ak | = C∥a∥∞.

Then by (4.24), taking into account (4.23), it follows that

sup
∥a∥∞≤1


|k|≤ j

∆xk


vλϕ

vµ
(xk)ak ≤ C

i.e. 
|k|≤ j

∆xk


vλϕ

vµ
(xk) ≤ C. (4.25)

Since 
|k|≤ j

∆xk


vλϕ

vµ
(xk) ≥

 aθm

−aθm


vλϕ

vµ
(x) dx,

taking the supremum on all m ∈ N, we deduce vλ/2−1/4−µ
∈ L1, which is the second condition

in (3.5).
Now, proceeding in an analogous way, inequality (3.7) impliesχ j Lm (σ, Fm) u


p ≤ C∥a∥p

where 1 < p < ∞ and ak = ∆xk |Fmu|(xk), |k| ≤ j , and then
|k|≤ j

∆xk


vλϕ

vµ
(xk)

q1/q

≤ C, 1/q + 1/p = 1. (4.26)

Hence we deduce vλ/2−1/4−µ
∈ Lq , which is the second condition in (3.8).

Moreover, using a result in [18], inequality (3.4) impliesχ j Lm (σ )


u,p = sup
∥χ j f u∥∞=1

χ j Lm (σ, f ) u


p ≥ C∥χ j pm(σ )u∥p.

Then, by (4.17), we get

sup
m

∥χ j pm(σ )u∥p ≥ C
 1

−1


vµ
vλϕ

(x)

p

dx

1/p

,

i.e. the first condition in (3.5) has to be fulfilled. Analogously we can show that inequality (3.7)
implies the first condition in (3.8).
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Let us now prove that (3.5) and (3.8) imply (3.4) and (3.7), respectively. To this aim, setting

g(x) = χ j (x) |Lm(σ, f, x)u(x)|p−1 sgn {Lm(σ, f, x)} ,

ck = ∆xk p′
m(σ, xk)u(xk)


vλϕ

vµ
(xk)

and

G(y) =


vλϕ

vµ
(y)

 1

−1
χ j (x)pm(σ, x)g(x)u(x)

dx

x − y
,

we can writeχ j Lm (σ, f ) u
p

p =


|k|≤ j

∆xk
f (xk)u(xk)

ck
G(xk) (4.27)

with ck ∼ 1, by virtue of (4.11) and 1 − x2
k ∼ a2

m − x2
k , |k| ≤ j .

Now, considering the quantities at the right-hand side of (4.27) and taking into account (4.23),
in order to prove (3.4), it suffices to show that

|k|≤ j

∆xk |G(xk)| ≤ C
χ j Lm (σ, f ) u

p−1
p , C ≠ C(m). (4.28)

While, in order to prove (3.7), it suffices to show that
|k|≤ j

∆xk |G(xk)|
q

1/q

≤ C
χ j Lm (σ, f ) u

p−1
p , q =

p

p − 1
, C ≠ C(m). (4.29)

In any case, the following lemma completes the proof.

Lemma 4.7. The conditions (3.5) and (3.8) imply inequalities (4.28) and (4.29), respectively.

Proof. For any Rlm ∈ Plm, l a fixed integer, we set

Π (y) =

 1

−1
χ j (x)

pm(σ, x)Rlm(x) − pm(σ, y)Rlm(y)

x − y

g(x)u(x)

Rlm(x)
dx

= H(χ j pm(σ )gu, y) − pm(σ, y)Rlm(y)H


χ j
gu

Rlm
, y


.

Note that Π is a polynomial of degree at most m + lm −1 and we can use inequality (4.18), since
we assumed vλ/2−1/4−µ

∈ Lq , 1 ≤ q < ∞. Hence we get

Am :=


|k|≤ j

∆xk |G(xk)|
q

1/q

=


|k|≤ j

∆xk




vλϕ

vµ
(xk)Π (xk)


q1/q

≤ Cθ

 1

−1
χθ̄ (y)




vλϕ

vµ
(y)Π (y)


q

dy

1/q

,
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letting χθ̄ be the characteristic function of [−aθ̄m, aθ̄m], with θ̄ ∈ (θ, 1). From the definition of
Π , it follows that

Am ≤ Cθ


χθ̄


vλϕ

vµ
H(χ j pm(σ )gu)


q

+

χθ̄


vλϕ

vµ
pm(σ )Rlm H


χ j

gu

Rlm


q


=: {B1 + B2} . (4.30)

Let us first estimate the term B1 for q = 1. Using the inversion formula (4.20) and
subsequently (4.12), we obtain

B1 ≤ Cθ

 1

−1
χθ̄ (x)

g(x)
vµ
vλϕ

(x)H


G1


vλϕ

vµ
, x

 dx,

for some G1 such that |G1(y)| ≤ 1. Recalling the definition of g,

g(x) = χ j (x) |Lm(σ, f, x)u(x)|p−1 sgn {Lm(σ, f, x)} ,

if p = 1, i.e. |g(x)| ≤ 1, we use the estimate (4.21), since one of the functions χθ̄v
µ−λ/2−1/4 or

G1v
λ/2+1/4−µ is bounded and the other one belongs to L log+ L . Therefore B1 ≤ Cθ for p = 1.

Otherwise, if 1 < p < ∞, we use the Hölder inequality and Lemma 4.5, under the assumption
vµ−λ/2−1/4

∈ L p, obtaining

B1 ≤ Cθ

 1

−1
|g(x)|

p
p−1 dx

 p−1
p
 vµ

vλϕ
H


G1


vλϕ

vµ


p

≤ Cθ

χ j Lm (σ, f ) u
p−1

p .

Let us now estimate the term B1 for q > 1. In this case, since by assumption (3.8), we have
−1/q < λ/2 + 1/4 − ν < 1 − 1/q , we can use the boundedness of the Hilbert transform (4.22).
Hence, with x j < aθ̄m , by (4.12), we get

B1 =

χθ̄


vλϕ

vµ
H(χ j pm(σ )gu)


q

≤ Cθ

χ j


vλϕ

vµ
pm(σ )gu


q

≤ Cθ∥g∥q = Cθ

χ j Lm (σ, f ) u
p−1

p .

In order to estimate the term B2 in (4.30), taking into account Lemma 4.6, we choose
Rlm ∈ Plm such that

|Rlm(y)| ∼


σ(y)ϕ(y), y ∈ [−aθ̄m, aθ̄m].

Using also (4.12), we deduce

B2 ≤ Cθ

χθ̄


vλϕ

vµ
H


χ j
gu

Rlm


q

,

whence, proceeding in analogy with the estimate of B1, our claim follows. �
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By virtue of the previous lemma, recalling (4.28) and (4.29), the proof for the inequalities
(3.4) and (3.7) is complete.

Finally, in order to show that the error estimate (3.6) follows from (3.4), we can proceed as
was done in the proof of (3.3). We omit the details. �

Proof of Proposition 3.3. Let us set Ik = [xk, xk+1] and |Ik | = xk+1 − xk = ∆xk, |k| ≤ j .
Using a well-known embedding theorem (see [17, p. 283]), we can write

∆xk | f (xk)|
p

≤ C


∥ f ∥
p
L p(Ik )

+


(∆xk)

1/p


|Ik |

0

ω( f, t)L p(Ik )

t1+1/p
dt

p
(4.31)

for 1 < p < ∞, where

ω( f, t)L p(Ik ) = sup
0<h≤t


Ik

 f


x +

h

2


− f


x −

h

2

p

dx

1/p

.

Since |Ik | ∼ ϕ(xk)/m, by making a change of variables in the integral in (4.31) and recalling
the properties of the ordinary modulus of smoothness, we get

(∆xk)
1/p


|Ik |

0

ω( f, t)L p(Ik )

t1+1/p
dt ∼

1

m1/p

 1/m

0

ω ( f, tϕ(xk))L p(Ik )

t1+1/p
dt.

Moreover, taking into account that u(x) ∼ u(xk) for x ∈ Ik , we have

u(xk)ω( f, tϕ(xk))L p(Ik ) ∼ sup
0<h≤t

∆hϕ ( f ) u


L p(Ik )
.

Then inequality (4.31) becomes

∆xk | f (xk)u(xk)|
p

≤ C

∥ f u∥
p
L p(Ik )

+

 1

m1/p

 1/m

0

sup
0<h≤t

∆hϕ ( f ) u


L p(Ik )

t1+1/p
dt


p .

Using the Minkowski inequality, it follows that
|k|≤ j

∆xk | f (xk)u(xk)|
p

1/p

≤ C

∥ f u∥L p[−x j ,x j ] +
1

m1/p


|k|≤ j

 1/m

0

sup
0<h≤t

∆hϕ ( f ) u


L p(Ik )

t1+1/p
dt


p

1/p


≤ C


∥ f u∥L p[−x j ,x j ] +

1

m1/p

 1/m

0

 
|k|≤ j


sup

0<h≤t

∆hϕ ( f ) u


L p(Ik )

p1/p

t1+1/p
dt


≤ C

∥ f u∥L p[−x j ,x j ] +
1

m1/p

 1/m

0

sup
0<h≤t

∆hϕ ( f ) u


L p[−x j ,x j ]

t1+1/p
dt

 ,
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whence we deduce inequality (3.9), since t ≤ 1/m and for some constant B we have [−x j , x j ] ⊂
−1 + Bh

1
α+1/2 , 1 − Bh

1
α+1/2


=: Ih , by (2.8), and then

sup
0<h≤t

∆hϕ ( f ) u


L p[−x j ,x j ]
≤ sup

0<h≤t

∆hϕ ( f ) u


L p(Ih)
= Ωϕ( f, t)u,p. �

Proof of Corollary 3.4. Let PM , with M as in (2.12), be a polynomial of quasi best approxima-
tion for f ∈ L p

u . Then we can write f − χ j Lm (σ, f )


u


p

≤ ∥( f − PM ) u∥p +
PM − χ j Lm (σ, PM )


u


p +
χ j Lm (σ, f − PM ) u


p

≤ C EM ( f )u,p +
PM − χ j Lm (σ, PM )


u


p +
χ j Lm (σ, f − PM ) u


p

=: C EM ( f )u,p + I1 + I2.

For the term I1, using the error estimate (3.6) and the Nikolskii inequality (4.15), we get

I1 ≤ Cθ e−AMγ

∥PM u∥∞ ≤ Cθ e−AMγ

∥PM u∥p ≤ Cθ e−AMγ

∥ f u∥p.

Since, for the term I2 we can use inequality (3.7), Proposition 3.3 and the inequality (see
[17, p. 280]) 1/M

0

Ωr
ϕ( f − PM , t)u,p

t1+1/p
dt ≤ C

 1/M

0

Ωr
ϕ( f, t)u,p

t1+1/p
dt,

our claim follows. �

Proof of Theorem 3.5. We can use the same arguments of the proof of Theorem 3.2, noting
that, since the equivalence a2

m − x2
∼ 1 − x2 does not hold for any x ∈ [−am, am], we will use

(4.9) and (4.11). In this case we will also use inequality (4.3), reducing the norm to the interval
[−asm, asm], s ≥ 1. Therefore in this case (4.27) is replaced by

∥Lm (σ, f ) u∥
p
L p[−asm ,asm ]

=


|k|≤ j

∆xk
f (xk)u(xk)

c̄k
Ḡ(xk)

c̄k = ∆xk p′
m(σ, xk)u(xk)v

λ/2−µ(xk)

a2
m − x2

k

1/4
∼ 1

and

Ḡ(y) = vλ/2−µ(y)

a2
m − y2

1/4
 asm

−asm

pm(σ, x)g(x)u(x)
dx

x − y
, s ≥ 1,

where

g(x) = |Lm(σ, f, x)u(x)|p−1 sgn {Lm(σ, f, x)} .

Proceeding as in the previous proofs of Theorem 3.2 and Lemma 4.7, we can show that (3.12)
and (3.14) follow from (3.13) and (3.15), respectively. The restriction p < 4 is due to the fact

that the factor
a2

m − ·
2
1/4

has to belong to Lq , with 1/p + 1/q = 1, and its reciprocal to L p.
We omit these details and prove that (3.12) and (3.14) imply (3.13) and (3.15), respectively.

So, in analogy with (4.25), inequality (3.12) implies
|k|≤ j

∆xkv
λ/2−µ(xk)

a2
m − x2

k

1/4
≤ C
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and then aθm

−aθm

vλ/2−µ(x)

a2
m − x2

1/4
dx ≤ C,

whence we deduce (3.13), taking the supremum on m ∈ N.
Analogously, as in (4.26), inequality (3.14) implies

|k|≤ j

∆xk


vλ/2−µ(xk)

a2
m − x2

k

1/4
q
1/q

≤ C, 1/p + 1/q = 1,

whence condition λ/2 − µ > −1/q in (3.15) follows. Finally, using a result in [18], we have

∥Lm (σ )∥u,p = sup
∥χ j f u∥∞

∥Lm (σ, f ) u∥p ≥ C∥pm(σ )u∥p ≥ C∥vµ−λ/2
|a2

m − ·
2
|
−1/4

∥p

whence we get the remaining conditions in (3.15), i.e. µ − λ/2 > −1/p and p < 4. �

Proof of Corollary 3.6. For any Pm−1 ∈ Pm−1, by definition, we have Lm (σ, Pm−1) = Pm−1.
Hence, under the assumptions (3.15), for 1 < p < 4, from (3.14), it follows that

∥Pm−1u∥p ≤ Cθ


|k|≤ j

∆xk |Pm−1(xk)u(xk)|
p

1/p

.

On the other hand, the converse inequality can be proved by the same arguments used in the proof
of Lemma 4.4, taking into account that, by Lemma 4.6, there exists a polynomial Rlm ∈ Plm , for
some fixed l, such that

Rlm(x) ∼ u(x), x ∈ [−aθ̄m, aθ̄m], aθm ≤ x j < aθ̄m .

Then inequality (4.18) holds also with vβ replaced by u. �

Proof of Theorem 3.7. We can proceed in analogy with the proof of Theorem 3.1. Taking into
account inequality (4.3), we setL∗

m,2 (σ )


u,∞
= sup

∥χ j f u∥∞=1

χs L∗

m,2 (σ, f ) u


∞

where χs is the characteristic function of [−asm, asm], asm = asm
√

σ

, s ≥ 1.

Using (4.11), we haveL∗

m,2 (σ )


u,∞
= max

x∈[−asm ,asm ]


|k|≤ j

a2
m − x2

a2
m − x2

k

 |ℓk (σ, x)| u(x)

u(xk)

∼ max
x∈[−asm ,asm ]

pm(σ, x)u(x)(a2
m − x2)

 
|k|≤ j

∆xk

(a2
m − x2

k )3/4vµ−λ/2(xk)|x − xk |

=: max
x∈[−asm ,asm ]

S(x).

We note that |a2
m − x2

| ≤ C(1 − x2), since if s > 1 we have a2
sm − a2

m ∼ 1 − a2
sm . While,

concerning the factor (a2
m − x2

k ), by Lemma 4.2, we have a2
m − x2

k ∼ Cθ (1 − x2
k ) for |k| ≤ j .

Thus, using (4.9), we deduce

S(x) ≤ Cθv
µ−λ/2+3/4(x)


|k|≤ j

∆xk

vµ−λ/2+3/4(xk)|x − xk |
, x ∈ [−asm, asm].
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Now, if x j ≤ |x | ≤ asm , we have vµ−λ/2+3/4(x) ≤ vµ−λ/2+3/4(xk), since µ − λ/2 + 3/4 ≥ 0,
by (3.17), and then

S(x) ≤ Cθ


|k|≤ j

∆xk

|x − xk |
≤ Cθ log m.

Otherwise, if |x | ≤ x j , using well known arguments (see, e.g., [9, p. 243, formula (4.1.13)]) we
have

S(x) ≤ Cθv
µ−λ/2+3/4(x)


|k|≤ j

∆xk

vµ−λ/2+3/4(xk)|x − xk |
≤ Cθ log m

since the zeros xk, |k| ≤ j , are arc sine distributed by (4.8) and 0 ≤ µ − λ/2 − 1/4 ≤ 1 by
assumption (3.17).

In order to prove that inequality (3.16) implies (3.17), it suffices to compute S(x) in the point
(x j−1 + x j )/2 and in some arbitrary x̄ ∈ [−1/2, 1/2], considering the sum for aθ0m ≤ |xk | ≤

aθm , with 0 < θ0 ≪ θ < 1, in analogy with the proof of Theorem 3.1.
We omit the proof of (3.18), which is similar to that of (3.3), taking (2.17) into account. �

Proof of Theorem 3.8. We can use arguments analogous to those in the proof of Theorem 3.2.
Therefore we will only show that conditions (3.20) imply inequality (3.19) and vice-versa,
omitting the rest of the proof.

Using the restricted range inequality (4.3), with s > 1, for any f ∈ Cu , in analogy with (4.27),
we can write

∥Lm (σ, f ) u∥
p
p ≤ ∥Lm (σ, f ) u∥

p
L p[−asm ,asm ]

=


|k|≤ j

∆xk
f (xk)u(xk)

c∗

k
G∗(xk)

c∗

k = ∆xk p′
m(σ, xk)u(xk)v

λ/2−µ(xk)

a2
m − x2

k

1/4
∼ 1

and

G∗(y) = vλ/2−µ(y)

a2
m − y2

−3/4
 asm

−asm

pm(σ, x)

a2
m − x2

 g∗(x)u(x)
dx

x − y
,

where s ≥ 1 and

g∗(x) =
Lm,2(σ, f, x)u(x)

p−1 sgn


Lm,2(σ, f, x)

.

Then, in order to prove (3.19), it suffices to show that
|k|≤ j

∆xk
G∗(xk)

 ≤ C∥g∗
∥p, C ≠ C(m), 1 ≤ p < ∞.

This can be done proceeding in analogy with the proof of Lemma 4.7, under the assumptions
(3.20) and recalling that a2

m −x2
k ∼ 1−x2

k for |k| ≤ j, |a2
m −x2

| ≤ C(1−x2) for x ∈ [−asm, asm].
Moreover, inequality (3.19) implies conditions (3.20). In fact, in this case (4.25) becomes

C ≥


|k|≤ j

∆xkv
λ/2−µ−3/4(xk) ≥

 aθm

−aθm

vλ/2−µ−3/4(x)dx
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whence we get vλ/2−µ−3/4
∈ L1, taking the supremum on m ∈ N. On the other hand, we have

C ≥
L∗

m,2 (σ )


u,p
= sup

∥χ j f u∥∞=1

L∗

m,2 (σ, f ) u


p

≥ C∥pm(σ )(a2
m − ·

2)u∥p

≥ C∥vµ−λ/2
|a2

m − ·
2
|
3/4

∥L p[−am ,am ]

and taking the supremum on m ∈ N, we get vµ−λ/2+3/4
∈ L p, 1 ≤ p < ∞.

We omit the proof of the second part of the theorem. �

Proof of Theorem 3.9. By definition, the norm in (3.23) isL∗

m,2 (σ, f )


W p
r (u)

=
L∗

m,2 (σ, f ) u


p
+ ∥


L∗

m,2 (σ, f )
(r)

ϕr u∥p.

Concerning the first term on the right-hand side, by Theorem 3.8 and Proposition 3.3, for m
sufficiently large, we haveL∗

m,2 (σ, f ) u


p
≤ Cθ


∥ f u∥p +

∥ f (r)ϕr u∥p

mr


for f ∈ W p

r (u), r ≥ 1 and 1 < p < ∞. Moreover, sinceL∗

m,2 (σ, f )(r) ϕr u


p
≤ ∥ f (r)ϕr u∥p +

 f − L∗

m,2 (σ, f )
(r)

ϕr u


p
,

to complete the proofs of (3.23) and (3.24) it suffices to estimate the norm f − L∗

m,2 (σ, f )
(r)

ϕr u


p

for f ∈ W p
r (u) and f ∈ W p

s (u), s > r , respectively.
For the first case, we recall that, letting Pm ∈ Pm be a polynomial of quasi best approximation,

we have (see [14, Theorem 3.7])P(r)
m ϕr u


p

≤ C mr ωr
ϕ


f,

1
m


u,p

≤ C∥ f (r)ϕr u∥p,

and, moreover, for any Qm ∈ Pm , the following Bernstein inequalityq(r)
m ϕr u


p

≤ C mr
∥qmu∥p (4.32)

holds (see [14,24]). Hence, by the Jackson inequality (2.4) and since f − L∗

m,2 (σ, f )


u


p
≤

Cθ

mr


∥ f u∥p + ∥ f (r)ϕr u∥p


, (4.33)

we get f − L∗

m,2 (σ, f )
(r)

ϕr u


p
≤

[ f − Pm](r) ϕr u


p
+

Pm − L∗

m,2 (σ, f )
(r)

ϕr u


p

≤ Cθ∥ f (r)ϕr u∥p + Cθ mr


∥[Pm − f ] u∥p

+
 f − L∗

m,2 (σ, f )


u


p


≤ Cθ∥ f ∥W p

r (u).
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Concerning inequality (3.24), we assume f ∈ W p
s (u), s > r , and set Qm+1 = L∗

m,2(σ, f ).
By (3.22) we have

f − Qm+1 =

∞
k=0


Q2k+1(m+1) − Q2k (m+1)


in (−1, 1).

Then, by the Bernstein inequality (4.32), we get( f − Qm+1)
(r) ϕr u


p

≤

∞
k=0

Q2k+1(m+1) − Q2k (m+1)

(r)
ϕr u


p

≤ Cθ

∞
k=0


2k+1m

r Q2k+1(m+1) − Q2k (m+1)


u


p
,

whence, by (4.33), it follows that( f − Qm+1)
(r) ϕr u


p

≤ Cθ

∞
k=0


2k+1m

r−s
∥ f ∥W p

s (u) ≤
Cθ

ms−r ∥ f ∥W p
s (u),

which completes the proof. �

We omit the proof of Corollary 3.10, which follows from Theorem 3.8 using arguments
analogous to those in the proof of Corollary 3.6.
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