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Abstract

In order to approximate functions defined on (—1, 1) with exponential growth for |x| — 1, we consider
interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights.
Convergence results and error estimates in weighted L?” metric and uniform metric are given. In particular,
in some function spaces, the related interpolating polynomials behave essentially like the polynomial of
best approximation.
© 2012 Published by Elsevier Inc.
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1. Introduction

There is an extensive literature concerning the mean convergence on (—1, 1) of Lagrange
interpolation based on the zeros of orthogonal polynomials w.r.t. “doubling” weights (for
instance Jacobi or generalized Jacobi weights). To this regard, we recall [17,18,22,9,28], among
others. These interpolation processes are useful in the (weighted) polynomial approximation of
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locally continuous functions, having algebraic singularities at the endpoints =1 and at some inner
points. Nevertheless, these processes are not suitable in order to approximate functions having
exponential growth close to 1. This last topic has received few attention and, as far as we know,
we recall [2,7,8,25,29].

In this paper we propose two interpolation processes, which behave like the best
approximation in wide subspaces of weighted L?-spaces and then turn out to be suitable for
approximating functions with exponential growth at £1.

Taking into account the properties of the considered functions, it is natural to choose weighted
spaces L/ with

ulx) = (1- x2)“e_%(1_x2)7a, a>0, u>0,xe(-1,1),
and a weight of the form
o) =(1—x)re 1= 450,420, xe (=1, 1),

for the orthonormal systems { p;; () }ineN-

Let us denote by S, (o, f) the mth Fourier sumof f € L}, in the previous orthonormal system
and by L,, (o, f) the mth Lagrange polynomial of f € C%(—1, 1) based on the zeros of p,, (o).
Unfortunately, as in the case of exponential weights on unbounded intervals (see, e.g., [19,13]),
the sequence {Sy, (0, f)}meN converges to f in L for arestricted class of functions (see [15,16]).
Therefore, we cannot expect good approximation properties for the polynomial L,, (o, f), which
is the discrete version of S, (o, f). In fact, the associated Lebesgue constants in LY are “big”
(see [2,7]).

On the other hand, bounded projectors, or projectors having the minimal order logm, are
required in several contexts. So, the aim of this paper is to overcome this gap.

With a,, = ay, (ﬁ) the Mhaskar—Rakhmanov—Saff number related to /o and 6 € (0, 1)
fixed, we denote by xp the characteristic function of the interval [—agy, ag,]. Then we are
going to consider the interpolating polynomial £, (o, f) = L, (o, xe f). Analogously, letting
L;“n’z(a, f) denote the Lagrange polynomial, interpolating f at the zeros of (a,%1 — D pm(0), we
are going to study £} ,(o, f) = L, ,(0, xo ). The behavior of these interpolation processes is
stated in Theorems 3.1, 3.2, 3.5, 3.7 and 3.8, where error estimates are given.

The operators related to these processes are not projectors of continuous functions into the
space of all the polynomials of degree at most m — 1 and m + 1, P,,_; and P41, but they do
are projectors into some subsets P,y C Py—1 and P +1 C Ppyi. We will show that these
subspaces fulfill the same density properties of P, or IP,,1 and that the Marcinkiewicz-type
inequalities hold for polynomials belonging to them.

The paper is structured as follows. In Section 2 we recall some basic facts concerning the best
weighted polynomial approximation, give the definitions of the interpolation processes and state
some preliminary results. In Section 3 we state the main results, proved in Section 4.

2. Basic facts and preliminary results

In the sequel C will stand for a positive constant that can assume different values in each
formula and we shall write C # C(a, b, ...) when C is independent of a, b, . ... Furthermore
A ~ B will mean that if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)*! < C.



G. Mastroianni, 1. Notarangelo / Journal of Approximation Theory 167 (2013) 65-93 67

2.1. Function spaces and best polynomial approximation

Let w be defined as
wx) = e~ =¥ 2.1

we consider the weight function

w(x) = V() Vw(x) = (1 — xHte=2(0=x)7 2.2)

wherew > 0, u > 0,x € (—1, 1).

The weight w belongs to a wide class of exponential weights defined in [4,5], and in [15], it
was checked that u belongs to the same class of w. In particular, setting Q(x) = — logu(x), we
can define the Mhaskar—Rakhmanov-Saff number a;, = a,(u), 1 < 7 € R, as the positive root
of

2 /1 3010 @rt)
T=— ar Qrl) —.
7w Jo 1 —t2
The number a; is an increasing function of t, with lim;_,  c a; = | and
1 1
Cl-L—_ot-H/Z < 1— &r < CZ-L—_DH—I/2’

where C; and C; are positive constants independent of t and « is fixed (see [5, pp. 13,31]).
We can associate to the weight u the following function spaces. For 1 < p < oo, by L% we
denote the set of all measurable functions f such that

1/p

1
1Al =l full, = (/1 Ifulp(X)dX) < 00.
For p = oo, by a slight abuse of notation, we set
L®:=C, = {f eC'-1,1): fim f (ou(x) = 0} ,
x—

and we equip this space with the norm

I fllge =l fullo = sup |f)u(x)|.

xe(=1,1)

Note that the Weierstrass theorem implies the limit conditions in the definition of C,,.

In the sequel, if u = 1, we will simply write L”. Moreover, we will use the notation L”([),
meaning that the norm is extended to I C (—1, 1).

The Sobolev-type subspaces of LY are given by

Wl ={retl: fV e AC1,0, 1/ V¢ ul, <00}, 1srez,

where 1 < p < 00, ¢(x) :== +/1 — x2 and AC(—1, 1) denotes the set of all functions which are
absolutely continuous on every closed subset of (—1, 1). We equip these spaces with the norm

1 o = Nfullp + 1F P ull .
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In order to introduce some further subspaces of L{,’ ,for1 < p < oo,r > 1 and for a
sufficiently small # > 0 (say ¢ < fp), we define the main part of the 7th modulus of smoothness
as

2

(fHu

LP[—h* h*]’

where h* = 1 — Bh!/(@+1/2 B = 1 is a fixed constant, and

a h
A@f@)=§j() —Df<X+(-—2)¢ud

i=0

Then the complete rth modulus of smoothness is given by
w;(f’ t)u,p = .Q;(f, t)u,p+P1nf “(f P)"‘”LP 1,—1*]
+ pigf ICf = P)ullpop 1

r—1
with 1* = 1 — B¢//@+1/2 and B > 1 a fixed constant. We emphasize that the behavior of
a)(’p (f, Du,p 1s independent of the constant B.
We also remark that for any f € WP ), withr > 1land 1 < p < oo, we have (see [14])

00 (f:Dup <C sup B | f @ ull Lo iy, C#C(fo1). (2.3)

O<h<t

By means of the »th modulus of smoothness, for I < p < oo, we can define the Zygmund
spaces

wy,(f, 1)
Zf(u)::Zﬁ,(u):{feLﬁ: sup#<oo, r>s}, 0<seR,
>0
equipped with the norm
r(f t)up

1£lz2 oy = £l p + sup
t>0
In the sequel we will denote these subspaces briefly by ZZ (1), without the second index r and
with the assumption r > s. We note that Q(;(f, Du,p ™~ a)fp(f, t)u,p forany f € ZPw),r > s,
and so in the definition of the Zygmund-type spaces wj,(f, #)u,p can be replaced by {20(f, H)u,p
(see [14)).
Let us denote by PP, the set of all algebraic polynomials of degree at most m and by

En(flup = Pigwfm ICf = Pull,

the error of best polynomial approximation in L;,1 < p < oo. A polynomial realizing the
infimum in the previous definition is called polynomial of best approximation for f € L.
Moreover, we say that P € IP,, is a polynomial of quasi best approximation for f € L} if

I(f = P)ull, = CEn(fu,p.

with C independent of m and f.
The next theorem can be deduced from the results in [14].
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Theorem 2.1 Let u(x) = (1 — x)*e~20=™ yitha > 0 and ju > 0. Forany f € L[, 1 <
p < oo, the inequalities

1
En(fu,p = Caw, (f, n—1) 2.4

u,p

and

1 C i r—1
o (f, ;)M <— ;a + i) VEi(ups
hold with C independent of m and f.

From the previous theorem, we deduce the following estimates for the error of best
approximation

C
Em(f)u,p =< W”f”W,p(u)’ Vfe er(“)a r>1, (2.5)

and

C
En(Pup < W lzpy YF € 28w, s >0, 2.6)

where C # C(m, f)and 1 < p < o0.
2.2. Interpolation operators and polynomial spaces
Now, with w as in (2.1) and v*(x) = (1 — x2)*, we consider the weight

o) = vV wx) = (1 —x2)e 1= 450, >0, 2.7)

and the corresponding sequence of orthonormal polynomials with positive leading coefficients
{Pm(0)}men. We denote by xy = x,, x(0), 1 < k < |m/2], the positive zeros of p,,(c) and by
X_r = —Xxi the negative ones. If m is odd, then xg = 0 is a zero of p;, (o).

These zeros are located as follows (see [5, pp. 22-23])

—am (1 = C8m) S X—jmp2) <+ <X1<X2<-- <Xmp2) <am A —cdm),

where 0 < ¢ # c(m), a,, is the Mhaskar—-Rakhmanov—Saff number related to the weight /o,
satisfying (see [4, p. 4] and also [15])

1
1—ay, ~m o2, (2.8)

and

1 —a,\2?
S 1= ( ) : (2.9)

Let us denote by L, (o, f) the mth Lagrange polynomial interpolating a function f €
C 0(—1, 1) at the zeros of p,, (o). It is well-known that

Lp(o, f,x) = Y (o, x)f(x),

lkl<lm/2]
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with
Pm (0, X)
P (0, X)) (x — x)”

Li(o,x) = k| < |m/2],

and L,,(0) : CO(—=1,1) = P,,_; is a projector, i.e. L, (o, P) = P forany P € P,,_;.
Following an idea used for gaussian rules on (0, 4o0) in [10,11] and for Lagrange

interpolation on unbounded intervals in [19], we are going to define a “truncated” interpolation

process.
With a,, the Mhaskar—-Rakhmanov—Saff number related to /o, for a fixed 8 € (0, 1), we
define an index j = j(m, ) by means of the equation

xj=_min {x;:xx > aem}, (2.10)
1<k<|m/2]

with m sufficiently large (say m > myg), and we introduce the interpolation operator L, (o),
defined by

Ln(o, f,x) =Y lr(o, ) f (%) @.11)
|kI<j
for any f € C,. By definition, L, (o, f) € Py,—1 and L, (o, f, x;) = f(x;) for |i| < j, while
Ly (0o, f,x;) = 0for |i| > j. Therefore L,, (o, P) # P in general for P € P,,_;.
Now, consider the following collection of polynomials

Pu1={0 €Pp_1: Q) =0, |i| > J}

with x; = Xx;,;(0) and j = j(m) defined as in (2.10). Naturally, P,—; depends on the
weight o and on the parameter & € (0, 1). Moreover, for any f € Cy, L, (0, f) € Pu_1
and L, (o, Ly, (o, f)) = Ly (o, f). Itis also easily seen that

Pt = L(©@)Pp1) = { > ek(a,x)P(xk)}
PE]P)m,l

lkl<j

and the operator £,,(c) : C%(—1,1) — P, _; is a projector, i.e. L,,(o, Q) = Q for any
Q € Pm—1~

The next theorem shows that _J,, Pn—1 is dense in LY 1 < p < 00, and the corresponding
error of best approximation

Enm—1(fup = Lol I(f = Qul,

is strictly connected with Ep;(f)y, p, where

M= Ki) ﬁJ ~m, 2.12)
0+1/ s

with s > 1 fixed and 6 € (0, 1) as in (2.10).

Theorem 2.2. Let 0 = v*w and u = v /w with arbitrarily fixed parameters a > 0, A, u > 0.
Then, for every function f € LY, 1 < p < oo, there exists a polynomial sequence {ay _Ym» with
gy _y € Pm—1, such that

lim | (f —gy_)ul,=0. (2.13)

m—0Q
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Furthermore, letting xo denote the characteristic function of [—agm, apm]), With ag, =
aom (ﬁ) ,0 € (0, 1), we have

im |[(f = Xogp 1) u] , =0. (2.14)
Finally, forany f € L, 1 < p < oo, we get

ot Py = C{Ew Py +e I ful (2.15)
where y = 2a/QRa+ 1), M is defined by (2.12), and C and A are positive constants independent
of mand f.

Let us now introduce a further interpolation operator. Following an idea due to J. Szabados
in [27], we denote by L,’jﬁz(a, f) the Lagrange polynomial, interpolating f at the zeros of p,, (o)
and at the two extra points X+(|m/2)+1) ‘= £am, Gm = ap (ﬁ) Then, for any f € CO(—I, 1),

we have

m2@ L) =" Y Lo f ()

[k|<lm/2]+1
where
pm(o.x)  (ah —x?)
(o, x) = — = 5o L=kl = [m/2],
P (0, xK) (X — xk) (a2, — x;)
and

am £ X pm(o,x)

0% s = .
j:(\_m/Zj—H)(o *) 2a;,  pm(o, Zam)

In analogy with (2.11), the “truncated” version of Lfn,z(o) is given by
Lo, fix) =Y (o, x) f(xp), (2.16)
[k|<j

where the index j is defined by (2.10). We note that this operator has the same form of the one
defined in [12] for Lagrange interpolation on the real line.

By arguments similar to those used for the operator £, (o), it is easily seen that the operator
L}, ,(o) is a projector from the space of all continuous on (—1, 1) functions into the set of
polynomials

i1 =1Q € Pugr: Q(Fam) = Q(xi) =0, il > j} = L}, ,(0)Prt1),

where x; = x,.i(0), am = am (ﬁ) and j = j(m) is given by (2.10). Moreover, L} ,(0, Q) =
Q forany Q € 7):1+1 and, in analogy with Theorem 2.2, | J,, P:jHrl isdensein L%, 1 < p < oo.
In particular, setting

Epi(Pup=_inf |I(f—Qul,

m+1

forany f € LY, 1 < p < oo, we have

Byt (D = C{Eu (D + 1 full ) 2.17)
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where y = 20/ (2o + 1), M is defined by (2.12), and C and A are positive constants independent
of mand f.

In the next section, we are going to study the behavior of the previous defined polynomial
operators in some suitable function spaces.

3. Main results

Let us first consider the Lagrange polynomial L, (w, f), based on the zeros of p,,(w), in
the space Cﬂ, where w(x) = e_(l_xz)w, a > 0. Since the sequence {p, (w)/w}, is not
uniformly bounded (see formula (4.10) in Section 4) and, moreover, the zeros of p,,(w) are not
arc sine distributed, then we cannot expect that the mth Lebesgue constant

[k (w, x)|
Ly (w)loo = V Y ==
] xel}]_alx'l) " [k|<Lm/2] ()

has the desired order logm (for a more complete discussion on this topic see [9, p. 251] and
also [18]). In fact, from a result due to S.B. Damelin in [2], it follows that

1( 2043
| Lm (W) lloo ~ 8,;1/4 ~ m6<2a+1>

Now, concerning the interpolation process {L;(0)}nen in C,, denoting by x; the
characteristic function of [—x;, x;], with j as in (2.10), we have L, (o, f) = L (o, x; f) for
any f € C, and the following theorem holds.

Theorem 3.1. Ler o (x) = (1—x2)*e= 0™ andu(x) = (1—x2)te= 2097 4 5 0,4, u >
0. Then, for every f € C,, we have

lxjLm (0, fru|, < Collogm)lix, fullco, Co # Colm, ), 3.1
if and only if

A+1< <A+5 (32)

2 TasHER Ty '

Moreover, from (3.1), it follows that

I[f = xiLm (0. H]ul, < Co{Uogm) Ex(fuce +e | futlloo}. (3.3)

where y = 2a/Qa + 1), M = cm,0 < ¢ < 1, is defined by (2.12), A # A(m, f) and here
and in the following we denote by Cy a constant, independent of m and f, having the form
Cog=0 (log_”(l/é’)) with some fixed v.

We also remark that the previous statement seems to be the best possible in the sense that it
can be shown that, even if conditions (3.2) are satisfied, the quantities

[xiLm @ ful and L (o0 xjf)ul

diverge with an order greater than log m for m — oo, but we will omit the details (the proofs are
based on inequalities (4.9)—(4.12) in Section 4).
The behavior of £,, (o, f) in the L% -norm is expressed by the following theorem.
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Theorem 3.2. Let u = v*\/w and o = v*w. For any f € C, and for 1 < p < oo, there exists
a constant Cy, depending on 6 € (0, 1), such that

|xiLm @, frul, = Collxjfulloo. Co # Colm, f), (3.4)
if and only if
" A
~_err, Y fep (3.5)

/U)\.(p vM
where p(x) = /1 — x2.
Moreover, from (3.4), for any f € C,, we get
ILf = 2im o, D)l = Co | EnPhue + ™M1 fuloo) (3.6)

with Cy, A independent of m and f, M as in (2.12) and y = 20/ (2a + 1).
Finally, setting Axy = xp41 — Xk, for any f € C°(—1, 1) and for 1 < p < 0o, we have

1/p
|%iLm @ Hrul, <Co (Z Axy |f(xk)u(xk)|p) . Co # Co(m, [), (€N)
k<)
if and only if
N A
L A L (3.8)
VA vH P q

The next proposition will be useful in order to estimate the error of our interpolation processes
. p .
in L; metric.

Proposition 3.3. Let f € LY, such that Q,(f,t)u,pt ' =Y7 € L'(0, 1) for 1 < p < oo. Then
we have

1/p
1 1/m N D
(Z Axk|f(xk>u<xk>|"> 56{||xjfu||p+m/0 %dr} (39)

lkl<j
with C independent of m and f.
Then, as a consequence of (3.7) and Proposition 3.3, we obtain the following.

Corollary 34. Let | < p < oo and f € Ly such that 2 (f, 1), pt~'""7 € L1(0,1). Then,
under the assumptions (3.8), we have

1 /1/'" 25(f, Du,p
0

”[f_Xj[fm(O',f)]M”pfce{ml/p AEeT dz+e—AmV||fu||,,}, (3.10)

where y = 2a/Q2a + 1), Cy, A are independent of m and f, but depend on 6.

We remark that, under the assumptions of Corollary 3.4, the Lagrange interpolation is well
defined, since in [24] it was proved that if f € Lﬁ , 1 < p < 00, is such that

LOr(f, t
/—‘p(f )u’pdt<oo, r>1,
0

(1 1/p

then f is continuous on (—1, 1).
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In particular, if

Q(Z(fv [)M,[J
sup T < 00,
t>0 t

with1/p <s eRandr > s, ie.if f € ZP(u), 1 < p < oo, then, for m > my, (3.10) becomes

C
ILf = xiLm (. H]u||, < m—infnzg(u), (3.11)

and, if 1 < s € N, then the norm ||f||z§’(u) can be replaced by the Sobolev-type norm || f'|| WP ()
taking (2.3) into account. Therefore, in the considered classes of functions, the sequence
{ XjemLm (0, f)}m converges to f in the Lf-norm with the order of the best polynomial
approximation, given by (2.6).

Let us now consider the polynomial sequence {L, (o, f)},,, in which we drop one of the
“truncations”. In this case a theorem, analogous to Theorem 3.2, holds with the restriction
l<p<4

Theorem 3.5. Let u = v*/w and o = v*w. Then, for any f € C,, there exists a constant Cy,
depending on 6 € (0, 1) and independent of m and f, such that

I1Lm (o, full, <Collxjfulloo, Co # Co(m, [), (3.12)
if and only if
n A
LANPYY S ﬂeLl, l<p<4 (3.13)
Moreover, we get
1/p
I1£m (o, full, <Co (Z Axg If(Xk)u(Xk)|p> ) (3.14)
|kl=<j
if and only if
® A 1 1
LAY ﬂeLq, 4 =1, l<p<4 (3.15)
Vor v P q

Note that the special case p = 2 and u = A = 0 has been treated in [1] using a truncated
gaussian rule. Nevertheless, this procedure cannot be applied in the general case p # 2. From
Theorem 3.5, we can deduce consequences similar to those related to Theorem 3.2; we omit the
details about this topic and state the following.

Corollary 3.6. Let 1 < p < 4. For any polynomial P, € P, _1, the equivalence

I/p
1P—1uellp ~ (Z Axk|Pm_1u|f’<xk))

lkl<j

¢

holds if and only if assumptions (3.15) are satisfied. Here the constants in
are independent of m and Py, _1.

‘~” depend on 6 and
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Let us now consider the second interpolation polynomial £} , (o, f). Its behavior is stated by
the following theorems.

Theorem 3.7. Let o (x) = (1—x2)e= 0= and u(x) = (1—x2)le 20D o 5 0,0, u >
0. Then, for every f € Cy, we have

|Lh2 (0 Hrul < Collogm)lixj fulloo, Co # Calm, ), (3.16)
if and only if
0<pu—243 24 (3.17)
su—z+7=L :

Moreover, from (3.16), it follows that

I[f = £52(. H]u]|, < Co{Gogm) Ent(fluse +e M|l fulloo}. (3.18)
where y = 2a/QRa + 1),M = cm,0 < ¢ < 1, is defined by (2.12), C # C(m, f) and
A # A(m, f).

Theorem 3.8. Let u = v*/w and o = v*w. Then, for any f € C, and for 1 < p < oo, there
exists a constant Co, depending on 0 € (0, 1), such that

(Vo D u||,, <Collxjfulloo, Co # Co(m, [), (3.19)
if and only if
pntl )
Y e et (3.20)
/vkgo it
Moreover, for any f € C, and for 1 < p < 0o, we have
1/p
|£h2 @ Hul, = Co (Z Ax |f<xk)u(xk)|l’) . Co #Calm, ),
k|<j
if and only if
n+1 A 1 1
T —err, Y ¥ep, 4oL 3.21)
VA vt P q

From the previous theorem we can deduce an analogous of Corollary 3.4. Therefore, as in
(3.11), under the assumptions (3.21), forany f € Zf(u), 1 < p <ooand 1/p < s € R, and for
m > mg, we have

. C
(=L CP) P = Vi PR

and, forany f € W/ (u),1 < p <ocand 1 <r € Z, we get

C
I = Loz o D]ull, = =20 g (3.22)
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where Cy is independent of m and f in both cases. So, the polynomial sequence {L:;*n , (0, f )}
’ m

converges to the function f in the L%-norm with the order of the best approximation in the
considered classes of functions (see (2.6) and (2.5)).

Furthermore, the operator E;kn,z(o) is uniformly bounded in Sobolev-type spaces, as the next
theorem shows.

Theorem 3.9. Let o, u be the above defined weights and let conditions (3.21) be fulfilled. Then,
forevery f € WP (u), withr > 1 and 1 < p < 00, we have

132 ) lyp = Co Il (3.23)

Moreover, for every f € WF (u),s > r > 1, we get

Co
1 =220 Dlypay = = 1 lwpay (3.24)
where in both cases Cy is independent of m and f.

Note that in the previous theorem W/ () can be replaced by Z! (u), with the assumption
s > 1/p (which is necessary for the continuity of f, see [24]).

As a further consequence of Theorem 3.8, in analogy with Corollary 3.6, the following
Marcinkiewicz equivalence holds in the subspace P, ;.

Corollary 3.10. Let 1 < p < oo. For any polynomial Py € Py, ., the equivalence

1/p
1 Pagrullp ~ (Z Axk|Pm+1u|"(xk)>

|kl=<j

holds if and only if assumptions (3.21) are satisfied. Here the constants in “~" depend on 6 and
are independent of m and Pp41.

To conclude this section, we want to emphasize that, in the previous theorems, the constants
Cy, depending on log=!(1/6), 6 € (0, 1), appear. The parameter 6 is crucial in our results, since
it cannot assume the value 1; in other words, the “truncation” of the sums in (2.11) and (2.16)
seems to be essential (for further details see Section 4).

4. Proofs

First of all we recall some restricted range inequalities, which will be used in the
proofs. Letting o be as in (2.7), we consider /o = v*2/w,A > 0, and its related
Mhaskar—Rakhmanov-Saff number a,, = a,, (\/E) Then, for any polynomial P, € P,,1 <
p < o0, the inequalities

|Pavel, = ClPuvaly, @1

[—am,am]

and
| Pu/o || o ey = Ce™™ |Puv/al] . n>1,y =2a/Qa+1), (4.2)

hold with C and A positive constants independent of P, (see [5, pp. 15-16], [4, Theorem 1.7,
p- 12] and [6, Lemma 2.3]).
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In order to avoid considering Mhaskar—Rakhmanov—Saff numbers related to different weights
in the proofs, the following remark will be useful. Let u = v*/w = v* %2 /o, u > 0, be the
weight in (2.2), and a,, = @y, (1/0). For any Py, € Py, from (4.1) we can deduce (see [15])

Pyl < C {||Pmu||m_asm,asm], s> 1, ifu—1/2 <0, 43

| PuullLri—a, a,)»  Otherwise

where C is independent of P,. Using the same argument, we can deduce an inequality of the
form (4.2), where /o and ay, are replaced by u and a;;,, respectively.
Now, using the previous inequalities, we are able to prove the following.

Proposition 4.1. Let u be the weight in (2.2), ayy its MRS number and n > 1. For any function
felLl 1< p<oo wehave

I fulloeizap < € {En(up +e M I full,p ) (44)
where C, A are positive constants independent of f and M, and y = 2o /2o + 1).

Proof. Letting Py; € Py be the polynomial of best approximation of f in L} -metric, by (4.2),
we get

||fu||Lp{|x|3,3,]M} = I(f = Pm) M||Lp{|x|3a,7M} + ||PM14||LP{|x|z&UM}
Ev(fup +Ce M [ Pyu],

whence our claim follows. [

IA

Now, given f € Lf ,1 < p < oo, let fj = x;f, where x; is the characteristic function of
[—xj,x;] and x; = min|<gm/2){Xk : Xx > dem} as in (2.10), for a fixed & € (0, 1) and for
m > mg, As a consequence of Proposition 4.1, we can estimate the L,’; -distance between f and
fj by (4.4) as

s@+1)

Om .
— |, otherwise,
0+1

taking (4.3) into account.

Let us now recall some properties of the orthonormal system {p,,(0)}nenN, related to the
weight o(x) = (1 — x2)*e=0=*™ & = 0,1 > 0, which will be used in the sequel. The
distance between two consecutive zeros of p,, (o) satisfies (see [5, p. 23])

0
L—mJ s>1,ifu—r/2 <0,
M

2 2

as —x
Axp = Xpg1 — Xp ~ Zm k , —m/2] <k<|m/2] -1, 4.5)
m,/a2 — x} + a2 é,
and
L7 I 4.6)
am

where §,, is given by (2.9).
Taking into account the definition of the operators ;um)Lm (o) and L:; 5 (0), we are
interested in the behavior of the orthonormal polynomials and their zeros in some subintervals
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of the related Mhaskar—Rakhmanov—Saff interval [—a, (v/o) , am (v/o)]. The next lemma is
useful to this aim.

Lemma 4.2. Let 61 and 0, be fixed such that 0 < 61 < 0, < 1 and let x € [—ag,m, ag,m]. Then
we have

2 _ 42
a%m—xZ Ag,m — X

my/|a2 — x2| + a%6m m

Om(x) =
and

C
2 2 2 2 2
agzm - S 1 - S <1 + m) (a92’n 7 )’

~" depend on 61 and 65, while C does not.

3

where the constants in
In particular, for x € [—agm, apm], 0 € (0, 1), we get

az —x*~1- xz, 4.7

m

where the constants in “~” depend on log_1 (1/6).

We omit the proof of the lemma, which follows from standard computation and is essentially
based on the following inequality. For every fixed r, s > 0, with r < s, one has (see [5, formula
(3.5.3), p. 81] and [4, p. 27])

e1(1 = an) log (=) < (1 - Z'") < e2(1 = aym) log ().
sm

where c1, c3 > 0 are independent of m, r, s and (1 — a,) ~ (1 — agn).

From Lemma 4.2, we deduce that the zeros of p, (o) are arc sine distributed in every
subinterval of the Mhaskar—Saff interval of the form [—ay,,, ag,,] with 6 € (0, 1) fixed. Namely,
from (4.5), for |xx| < xj, j as in (2.10), with ag,, < x; < a3, and 0 < 6 < 0 < 1, by
Lemma 4.2 and (4.6), we deduce (see also [14] and [5, p. 32])

a2 — x2
Axg ~ YTk 0GR (4.8)
m

m

where ¢(xx) = /1 — x,% and the constants in “~” depend on log_1 (1/6). We note that (4.8) is
not true in general for |k| < |m /2] (we refer to [29] for precise estimates of the distance between
consecutive zeros related to a wider class of weights).

Concerning the polynomials p,, (o), m € N, the equivalences

P (0, )0 (x),] a2, — 2|

~1 (4.9)

sup
xe(=1,1)

and

1/6
sup ‘pm(a, xNo(x)( ~ 8t~ (L> , (4.10)

xe(=1,1) 1 —a,
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were proved in [4, formulas (1.38) and (1.39), p. 10], where a,, = an (/o) and 8,, = 8, (V/0)
satisfy (2.8) and (2.9). Moreover, in [5, pp. 22-23] the relation

1
’p;n(a’ Xk)| Jo ) ~ Aka, k| < Lm/2], 4.11)

where x; are the zeros of p,, (o) and Ax; = xg41 — X, was shown.
Now, let 8 € (0, 1) fixed. By Lemma 4.2, from (4.9) and (4.7), we deduce the inequality

[pm (o, )| o (x)px) <Cq, |x| < aom, 4.12)
where ¢(x) = +/1 — x? and

| 1/4
Co=C¢ (1 * log(1/9)>

with C independent of m and 6.

In the next lemma we show a rough inequality for the Lebesgue constant in the space C,
associated with the Lagrange interpolation at the zeros of p,, (o), for arbitrary parameters of the
weights, that can be easily deduced from (4.9)—(4.12). This will be useful to prove Theorem 2.2.

Lemma 4.3. Let 0 = v*w and u = v*/w be the weights in (2.7) and (2.2) . Then, for every
A, > 0and for any f € C,, we have

ILm (0, flullee < Cm" || fulloos
for some T > 0, where C is independent of m and f.

Proof of Theorem 2.2. We first prove (2.13). By Theorem 2.1, there exists a sequence
{gm—1}msgm-1 € Py_1, converging to f € LP 1 < p < oo, for m — o0. Now, with
M =M, = [(0/® + 1))m/s|,s > 1 fixed, the subsequence {g}s converges to f € L%
and we construct the sequence {g,; _} as

q;;_l(x) = Ly (o, CIvax) € Ppu-1.
Hence we get
[(F=ap-)ul, < 1 =@ ul, + [(am —a) u],
= I(f —am) ull, + 1L (o, qrr) — Lin(o, g ul,

> (o)gmxu

k>

= [ICf —ga) ull, + (4.13)

p

Concerning the second summand at the right-hand side, by using Lemma 4.3 and inequality (4.2),
we have

> t(o)gm Cex)u

k> j

< Cm"|lgmull L={x|>agm}

P
< Ce M || gpuloo, (4.14)

where y = 20/Q2a + 1), 7 > 0, A > 0. Then, by (4.13) and (4.14), the limit relation (2.13)
follows.
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Moreover, by Proposition 4.1, (4.13) and (4.14), we get
|(F = xiam-)ull, = |(F = xif)ul, + x5 (F = am-0)ul,
< C{Ew(Pup+ M W full, | + 1 = ann ul,

+Ce™ M |l gptl o,

and then (2.14).

In particular, from the previous inequality we obtain (2.15), letting {g,,—1}m be a sequence
of polynomials of quasi best approximation for f and using the Nikolskii inequality (see
[5, pp. 293-312] and also [24])

1(20t2
lgmullo < CMP<2“+‘>||un||,,. O (4.15)

Proof of Theorem 3.1. Let us first prove that conditions (3.2) imply inequality (3.1). We can
write

lxiLm (o x5 ) ] oo

[xiLm(@)]o = sup

feCu 1% fulloo
) 1 (o, x)ux) (4.16)
xe[_x]’xj]lklfj u(-xk) ' ’

where y; is the characteristic function of [—x;, x;].
Taking into account that, for x, xx € [—x;, x;], the relation (4.7) holds, using (4.11) and
(4.12), we have

|t (o, X) u(x) _ Asguh=4/2=1/4(x)
u(xg) = 0 g [or 2 1A ()
with Cg depending on 6 and k # d, x4 being a zero closest to x. Since (see [5, pp. 320-321])

ja (o, ) ux)

15
u(xq)
it follows that
Axk
o < Co |14 pp—r2-1/4
IxjLm(@)], = Co |: v x) Iklf;csﬁd |x — x| or—A2=1/4 (xp)

< Cglogm

since the zeros xi, |k| < j, are arc sine distributed by (4.8) and 0 < u — A/2 —1/4 < 1 by
assumption (see, e.g., [9, p. 243, formula (4.1.13)]). Then inequality (3.1) follows.

Now, let us prove by contradiction that inequality (3.1) implies conditions (3.2), i.e. 0 <
u—A/2—1/4 < 1. Let us first suppose u — A/2 — 1/4 < 0. Setting x = (x;—1 + x;)/2 and
recalling a result in [18] (see also [9, pp. 250-251] and [26]), we have

IxiLm@)| ., =C|xjpm@Iu] = Clpmlo, ¥)| u().

Then by using the formula (see [4, formula (12.7), p. 134])

|Pm(@, )| o )y Ja2 — x2 ~ %, ¥ € (ot Xt 1), @.17)
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we get

|Pm (0, D) uX) ~ | pm(0, $)] /o (¥)y/a2 — 2o 21 (x)

~(1- a@m)ui)x/27]/4,

2

: ) )
since a;, —x“ ~ 1 —Xx“ ~ 1 — ag,;,, and then

—(u—r/2-1/4)
lxiLm(@)], = CU = agm)! 2714 ~ ™ w1

which is a contradiction.
Let us now suppose . — A/2 — 1/4 > 1. We choose x € (—1/2,1/2) and 6y < 6. By (4.16)
and (4.11), we have

Axy
(1= U2 % — x|

IxiLm(©@)] s = Clpm(o, ®)lu@ Y
|kl<j

Axy,
>C
- Z a- x%)u—k/2—l/4|i — Xt

a@()mflxk [<agm

A /2— Axy
> C(1 — agym) (L—=2/2—1/4) Z _ =7k

- ki
X —x
agym <|xk|<aom | 3

which yields again a contradiction.
Finally, let us prove that inequality (3.1) implies the error bound (3.3). Letting QO € Py, be
a polynomial realizing the infimum in the definition of E,,;,_1 (f)4, 0, for any f € C,, we have

ILf = xiLm @ D]l = [(f =xi F)ul o+ [xi (f = @ul,
+ Lm0 f = @ ul
< (£ = x; ) ull o + Em—1(Fuco
+ [ xilm @, f = Qu -
Hence, by Proposition 4.1, Theorem 2.2 and inequality (3.1), we obtain (3.3). [
The following lemma states a Marcinkiewicz-type inequality.
Lemma 4.4. Let o be the weight in (2.7), 6 € (0, 1), and xx = xpn x(0), with |k| < j and j

given by (2.10). Moreover; let vP(x) = (1 — x2)P, with B > —1. Then there exists 8 € (0, 1)
such that, for any polynomial Py, € Py, withl a fixed integer, and for 1 < p < oo, we have

D Axy [P ()| < ¢ / " | Pin )P ()] dx, 4.18)
k=) 4

where Cg depends on 6, but is independent of m and Py,.

Proof. Let ag,, < xj < xj41 < ap,,- By (4.8) and Lemma 4.2, we have

Xj+1
> Axi | Pl = € [/ | P ()17 dx

lkl<j -
p
/2 2p/
a; —Xx le(x)‘ dx}.

1 Xj+l
+ —_
mP —xj
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Hence, using the unweighted Bernstein inequality in [—ag,,, ag,,], we get

g
> A lPn)l” <G [ P17 . (4.19)
|k|<j —Agm
Since there exists a polynomial Q,, € IP,,, such that (see [17])
V() ~ Qu(x),  x €—agy. a5, CI-1+m 2 1—m™%

using (4.19) with the polynomial Py, Q,,, we obtain
YGm
3 Ave | PinivP )| < ¢ / | P 0007 ()] i,
[kl<j —Ajm
which was our claim. [

In order to prove Theorem 3.2, we recall some properties of the Hilbert transform H extended
to the interval (—1, 1), defined by

fx) d
-y

X

1
H(f,y)=/1 x, ye(=L1D,

where the integral is understood in the Cauchy principal value sense. The inversion formula

1 1
/ ()= - / o) f (4.20)

holds for any f € L and g € L9,1 < p < 00, 1/p + 1/g = 1. Moreover, if f € L and
geLloghL,ie. f_ll lg(x)]log™ |g(x)| dx < oo, the inversion (4.20) is still true (see [23]) and

IFH@I < 11 fllcollg(l +log* gDl (4.21)

If v# is a Jacobi weight of the form vP(x) = (1 — x?)P, then, for any measurable function f
such that f velr 1< p < 00, the inequality

[ V], <ClfPllp, C#C (4.22)
holds if and only (see [20,3,21])
1

——<B<l—-—.
Moreover, denoting by L” (logJr LP),1 < p < o0, the collection of all the functions f such

that

1

1 1/p
I flog™ 1 £1llp = <[ [17(o)ltog™ | f()1]” dX> < o0,
the following lemma holds.

Lemma 4.5 (P. Nevai, [22]). Let 1 < p < oo, v?(x) = (1 — x*)# be a Jacobi weight, G a
Sfunction such that |G (x)| < 1 almost everywhere in [—1, 1] and G(x) = 0forx ¢ [—1,1]. Ifa
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function g € LP(log* L)? satisfies gvP € LP then we have
sup ||gvﬁH(Gv7ﬁ)||p <C {1 + Hg (l +v# +log"™ |g|)||p}
G

with C # C(g).

In the next proofs, we will need also the following lemma, which can be proved applying
arguments similar to those used in [14] for the weight w(x) = e_(l_xz)w.

Lemma 4.6. Let /o (x) = v?2(x)Jwx) = (1 — xz)l/ze_%(l_xz)_a, witha > 0, A > 0, and
am = ap (\/E) Then, for any sufficiently large m, there exists a polynomial Ry, € P, where |
is a fixed integer, satisfying

Rim () ~ /o (x)
and
IR}, (0| V1 =32 < Cmy/o (x)
for |x| < agm, s > 1 afixed integer, with C independent of m, \/o and Rypy,.

Finally, we recall a well-known fact. Let a = (ay,...,a,) € R" and set |a]|, =

>n, |a,-|P)l/p if ] < p < ocoand ||alle = maxj<;<, |a;|. Moreover, let I, : R* — R
be defined by I, = Z?:l a;b;, withb = (by, ..., b,) € R" and n fixed. Then the norm of the
functional I3, is

n 1/q
Iallp = sup |Fn<a>|=(Z|b,-|‘1> , (4.23)

lall,=<1 i=1
where l/p+1/g=1ifl < p<oo,g=1ifp=ocandg =o0if p=1.
Proof of Theorem 3.2. First of all we observe that (3.4) can be written more precisely as

[xim (@, Fyul, < Comax|f Gdutx)l < Collxj fulloo.  Co # Cotm. 1.

Let us first prove that inequality (3.4) implies condition (3.5) and that (3.7) implies (3.8). To
this aim, with n € (0, 1/4) fixed, we consider the interval [—n, ] and, letting f € C,, introduce
a piecewise linear function £}, such that

o if x € [—n, 1]
Fn(xp) = {|f(Xk)|Sgn {pi/n(a’ xk)} sgn{—xk} otherwise.

Obviously F), € C,. Then, for x € [—n, ], we can write

Z Pm (0, X)u(x)| fu|(xy)

L (o, Fpp, x)u(x) = : |
77<|Xk‘§)cj |pm(a» -xk)| u(xk) |_x — -xkl

since sgn{—xy} = sgn{x — xx}, |x| < n < |x¢|. By (4.11) and (4.7), it follows that

A
1L (0 F, )l utx) = 2O L4 YO8 (5 .
n<|xr|<x; v
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Hence, using (4.17), for 1 < p < oo, we get

1w 0, Fdttlloi g = €Y A Y2 (ol ful(xe)

n<|xg|<x;

—CZAxk

lkl<j

? ()| Funtt (x0). (4.24)

Now, if (3.4) holds for any f € C, and for 1 < p < oo, with a = (a_j, .. .,a.,-) and
ar = Fp (xp)u(xy) for |k| < j, we have

|xjLm (0, Fu)ul|, < Cmax lag| = Clalloo-

Then by (4.24), taking into account (4.23), it follows that

Vi
sup Y A () < C

lallo<1 k|<;

i.e.
Z Axy (xk) <C. (4.25)
lk|<j
Since
> Axy (xk> > 2P () dx,
|k|<j —Agm

taking the supremum on all m € N, we deduce vM2=1/4=1 ¢ 11 which is the second condition
in (3.5).
Now, proceeding in an analogous way, inequality (3.7) implies

|xjLm (0. Fuyul, < Cliall,

where 1 < p < oo and ay = Axy|Fuu|(xy), |k| < Jj, and then

(o[

Hence we deduce v*/2-1/4=1 ¢ 14, which is the second condition in (3.8).
Moreover, using a result in [18], inequality (3.4) implies

q\ 1/4
(xk)j| ) <C, 1l/g+1/p=1. (4.26)

%) Con <a>||,,,,,=” sup || xj L (0. Hul , = Clixjpm(@)ullp.

XjJUllco=

Then, by (4.17), we get

1 P 1/p
s3p||x,-pm(a>u||pzc</_l[mm} dx) ,

i.e. the first condition in (3.5) has to be fulfilled. Analogously we can show that inequality (3.7)
implies the first condition in (3.8).
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Let us now prove that (3.5) and (3.8) imply (3.4) and (3.7), respectively. To this aim, setting
g(0) = xj @) [Lm (0, f.x)u)|”" sgn (Lo, £},

A

ck = Axgp), (o, x)u(xg) :Mgﬁ(xk)

and
A 1 dx
G =" / 15 (0 P (@, 1) (V) () ——,
v -1 X =Yy

we can write

|3 Lm (0, Pulll = Axk%]’j(mG(xk) (4.27)

lk|<j
with ¢x ~ 1, by virtue of (4.11) and | — x7? ~ a2 — x7, |k| < j.
Now, considering the quantities at the right-hand side of (4.27) and taking into account (4.23),
in order to prove (3.4), it suffices to show that

D A |G| < C | xiLm (0. f) uHﬁ“ . C#Cm). (4.28)
[k|<j

While, in order to prove (3.7), it suffices to show that

1/q
(Z Ax |G(xk>|‘f> <Clxstm o Pl a= T C#Cm. @29)

[kl=j

In any case, the following lemma completes the proof.
Lemma 4.7. The conditions (3.5) and (3.8) imply inequalities (4.28) and (4.29), respectively.

Proof. For any R;,, € P}, [ a fixed integer, we set

dx

1 —
I(y) = f 30y L@ Rim () = pn @ ) Rin () g@)u(x)
- x—y Rim (%)

= H(Xj pm()gt, ¥) — Pu(©2 Y) Rim (Y)YH (x,-%, y) .

Note that I7 is a polynomial of degree at most m +Im — 1 and we can use inequality (4.18), since
we assumed v*/2- VA1 ¢ 14 1 < q < oo. Hence we get

1/q
Am = (Z Axy |G(xk)|q)
q>1/q

k|<j
Vvre
q 1/q
dy) ,

v

N

v

() I (xi)

= (Z Axg

kl=j

1
< Gy (/lxg(y)

WII(y)
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letting x; be the characteristic function of [—ag,,, a5,,], with 6 € (6, 1). From the definition of
11, it follows that

vte Vute g
Am = Coy |16 = HXjpm(@)gu) | + | X5 pm(0)RimH Xig
q Im q
=: {B; + B»}. (4.30)
Let us first estimate the term By for ¢ = 1. Using the inversion formula (4.20) and

subsequently (4.12), we obtain

8 —==xH
(e

for some G such that |G (y)| < 1. Recalling the definition of g,
g(¥) = Xj (@) Lo, f,x)u()|”~ sgn (Lo, f, %)},

if p =1,1e.|g(x)| <1, we use the estimate (4.21), since one of the functions )((;v"_MZ_I/4 or
G1v*/2+1/4=1t is bounded and the other one belongs to L log™ L. Therefore By < Cg for p = 1.
Otherwise, if | < p < 0o, we use the Holder inequality and Lemma 4.5, under the assumption
vH=2=1/4 ¢ [P obtaining

R
Bl < C / 20077 dx
-1

< Co |l xiLm (@, rulb".

Let us now estimate the term B for ¢ > 1. In this case, since by assumption (3.8), we have
—1/q <A/2+1/4—v < 1—1/q, we can use the boundedness of the Hilbert transform (4.22).
Hence, with x; < ag,,, by (4.12), we get

1
B < Ce/ X5 () dx,

Vvre
o

(o)

ok

p

N
B = ngTH(ijm(U)gu)
q
Vi
< Cy m pm(o)gu

q
< Collglly = Co | x;Lm (@ Hru]? "

In order to estimate the term By in (4.30), taking into account Lemma 4.6, we choose
Ry € Py, such that

[Rim (D)~ Vo(Mey), ye [_aém’ aém]'
Using also (4.12), we deduce

Xamﬂ< gu)

B, <(,
2= (s le

’

whence, proceeding in analogy with the estimate of By, our claim follows. [
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By virtue of the previous lemma, recalling (4.28) and (4.29), the proof for the inequalities
(3.4) and (3.7) is complete.

Finally, in order to show that the error estimate (3.6) follows from (3.4), we can proceed as
was done in the proof of (3.3). We omit the details. [l

Proof of Proposition 3.3. Let us set Iy = [xg, xx41] and |Ix| = xp41 — xx = Axg, k] < J.
Using a well-known embedding theorem (see [17, p. 283]), we can write

[ k| p
Axk|f<xk>|f’§c{||f||’z,,(,k)+[mxk)”f’ / Mdr} } (431)

(1+1/p
for 1 < p < oo, where

h A\ P 1/p
o(f,re@y = sup (/ f<x+—>—f<x——> dx) .
O<h<t \JI 2 2

Since |Ix| ~ ¢(xx)/m, by making a change of variables in the integral in (4.31) and recalling
the properties of the ordinary modulus of smoothness, we get

(Ax )l/p [ 1| w(f, DrLrn) dr ~ 1 1/m w (f, t(p(xk))L])(Ik) dt
k 0 (1+1/p mi/r J, (1+1/p :

Moreover, taking into account that u(x) ~ u(xy) for x € I, we have

wG)o(f 19D Loy ~ sup | dng (Nl -
O<h<t

Then inequality (4.31) becomes

Axp | f ()u(xp)]?

ppm | Ane Pt oy 1"

P
<C ||fu||Lp(1k)+ m]/p/O (1+1/p dr

Using the Minkowski inequality, it follows that

1/p
(Z Ax If(xk)u(Xk)l">

lkl=<j

I/p
1/m Oilllziz “ Ang (fu “L”(lk) ’

1
<C 1+ —— dt
<C I ulrvo + — (;} / T

0
p\ 1/p
3 |:sup | Ang (f)u||Lp(1k):| )

/‘/'” (kfj O<h<t
0

dt

1/p
<C + 1
= ”fu”Lp[—Xj,Xj] ml/p t1+1/p

2, Ve D i

1
<C ||f“||LF[—Xj,x_/]+m1/p/0 1+1/p dr
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whence we deduce inequality (3.9), since ¢+ < 1/m and for some constant B we have [—x;, x;] C
1 1
[—1 £ Bh#7,1 — Bh Wu] —: Ty, by (2.8), and then

Oi‘;}; | Anp () “”Lp[—xj,xj] = Oi‘;}; | Angp () ”“Lp(zh) = 02o(f, Du,p- O

Proof of Corollary 3.4. Let Py, with M as in (2.12), be a polynomial of quasi best approxima-
tion for f € LY. Then we can write

ILf = xiLm (@, P]u],
< ICf = P)ully, + [ [Py = %L (. Pap) u]| ) + [ 2 Lo (0, f = Pu)u],
< CEx (Nup + [P = %L (0. P)]u| , + | X; L (0, f = Pap)u],
= CEM (fu,p+h+ 1.
For the term I, using the error estimate (3.6) and the Nikolskii inequality (4.15), we get
I < Coe™ ™| Pyullog < Coe™ ™M || Pague] < Coe™ M | full.

Since, for the term I we can use inequality (3.7), Proposition 3.3 and the inequality (see
[17, p. 280])

/I/M Q,(f = Py, Du,p dt < C/I/M Q2 (f ODup
0 0

< ds,
1+1/p t1+1/p
our claim follows. [

Proof of Theorem 3.5. We can use the same arguments of the proof of Theorem 3.2, noting
that, since the equivalence afn — x2 ~ 1 — x2 does not hold for any x € [—an, anl, we will use
(4.9) and (4.11). In this case we will also use inequality (4.3), reducing the norm to the interval
[—agm, asm], s = 1. Therefore in this case (4.27) is replaced by

1 @ FY g = 3 A LR G

—AsmAsm
k1= Ck

- / A2 2 ofl/4

& = Axgppy (0 @Ov 2 ) [ad = x|~ 1
and

_ _ 1/4 [ asm dx

601 =P fa =" [ puengeoue ==, 5=,

—dsm

where

g(x) = |L(o, f, x)ux)P~Lsgn{Ly (o, f,x)}.

Proceeding as in the previous proofs of Theorem 3.2 and Lemma 4.7, we can show that (3.12)
and (3.14) follow from (3.13) and (3.15), respectively. The restriction p < 4 is due to the fact

that the factor |a,2n — -2‘1/4 has to belong to L7, with 1/p 4+ 1/¢g = 1, and its reciprocal to L”.
We omit these details and prove that (3.12) and (3.14) imply (3.13) and (3.15), respectively.
So, in analogy with (4.25), inequality (3.12) implies

Z Axv* 7 (xy)

‘1/4
k|=<j

2 2
Ay — Xk
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and then
RV 2
/ v /_“(x)‘am—x
—Aaom

whence we deduce (3.13), taking the supremum on m € N.
Analogously, as in (4.26), inequality (3.14) implies

1/4
2‘ dx <C,

1474 l/q
ZAxk[v)‘/zﬂ(xk)‘ai—x,%‘ ] <C, 1l/p+1/g=1,
lkl<j
whence condition 1/2 — u > —1/q in (3.15) follows. Finally, using a result in [18], we have
1L @)y = sup Lm (o, Full, > Cllpm(@)ully > Cllv*?al — 2714,
) fulloo

whence we get the remaining conditions in (3.15),i.e. u —A/2 > —1/pand p < 4. O

Proof of Corollary 3.6. For any P,,_| € P,_1, by definition, we have L, (o, Py—1) = Ppn—1.
Hence, under the assumptions (3.15), for I < p < 4, from (3.14), it follows that

1/p
“Pm—lu”p <Cy (Z Axy |Pm_1()Ck)u()Ck)|p> .

lkl<j

On the other hand, the converse inequality can be proved by the same arguments used in the proof
of Lemma 4.4, taking into account that, by Lemma 4.6, there exists a polynomial R;;,, € P, for
some fixed [, such that

Rim(x) ~u(x), x €l[—ap,,,a5,], aom < x; < ag,,.
Then inequality (4.18) holds also with v# replaced by u. [

Proof of Theorem 3.7. We can proceed in analogy with the proof of Theorem 3.1. Taking into
account inequality (4.3), we set

”[’:;z,z () ”u,oo = sup H Xsﬁ;kn’z (o, f) u”oo

XjJu loo=1

where x; is the characteristic function of [—asm, dsm], asm = asm (V) ,s > 1.
Using (4.11), we have

2 2
a; — x| [l (o, x)|u(x
||£;knz(‘7)||uoo: max ,2,, i [€k (o, x)| u(x)
’ ’ X€[—agm,asm] kl<j a, — Xk M(Xk)
Ax,
2 2 k
~ max Pm (o, x)u(x)(a, —x ))
X€[—agm.asm] " " “;/ (ayQ,:l - x,g)3/4vu_)‘/2(xk)|x - xk'

= max Sx).
XE[—asm,asm]

We note that a2 — x?| < C(1 — x?), since if s > 1 we have a2, — a2, ~ 1 — a2,. While,
concerning the factor (a,%l - x,?), by Lemma 4.2, we have ai - x,% ~ Cp(l — x,%) for |k| < j.

Thus, using (4.9), we deduce

S(x) < Cout M) Y
|kl=<j

Axy
VA2 () [x = x|

X € [—asm, asm].
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Now, if x; < |x| < agm, we have v¢~*/2F3/4(x) < vl=4/243/4(x ) since w — A/2 +3/4 > 0,
by (3.17), and then

S <Co Y

X
[k|<j |

Otherwise, if |x| < x;, using well known arguments (see, e.g., [9, p. 243, formula (4.1.13)]) we
have

Axy,
w—>/2+43/4
S() = Gov x) |I;<j VA= 243/4 () |x — x| = Gologm

since the zeros xg, |k| < j, are arc sine distributed by (4.8) and 0 < u — 1/2 —1/4 < 1 by
assumption (3.17).

In order to prove that inequality (3.16) implies (3.17), it suffices to compute S(x) in the point
(xj—1 + x;)/2 and in some arbitrary x € [—1/2, 1/2], considering the sum for agy, < |xi| <
agm, with 0 < 6y « 6 < 1, in analogy with the proof of Theorem 3.1.

We omit the proof of (3.18), which is similar to that of (3.3), taking (2.17) into account. [

Proof of Theorem 3.8. We can use arguments analogous to those in the proof of Theorem 3.2.
Therefore we will only show that conditions (3.20) imply inequality (3.19) and vice-versa,
omitting the rest of the proof.

Using the restricted range inequality (4.3), with s > 1, forany f € C,, in analogy with (4.27),
we can write

1L (@ frully < 1L (o, fulll, =y Akac*m)

—AsmAsm
[kl<j k
* l r2—u 2 2 1/4
c; = Axg py, (0, xi)u(xp)v (xx) ‘am — xk’ ~1
and
—3/4 [@m d
60 = a =2 [ puten ] g ouen 2
—Asm X =

where s > 1 and

-1
g5 (xX) = |Lma(o, fr0)u)|"" sgn{Lma(o, f.)}.
Then, in order to prove (3.19), it suffices to show that

> Axi |G*a)| <Clig*ll,. € #Cm), 1< p < oo
[k|<j

This can be done proceeding in analogy with the proof of Lemma 4.7, under the assumptions
(3.20) and recalling that ai —xlg ~ l—x,% for |k| < j, |a,2n —x2| < C(1—x?) forx € [—dgm, agm].
Moreover, inequality (3.19) implies conditions (3.20). In fact, in this case (4.25) becomes

agm
C > Z Axpv* 734 () > / VM ER34 () dx

lkl=<j ~dom
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whence we get v*/>~#=3/4 ¢ L1, taking the supremum on m € N. On the other hand, we have
¢z 162 @, = s LoDl
XjJUlloo=

> Cllpm(0) @ — Dull,
> Cllv* ™ 21a2 — 2 13 Lo—ap.an]

and taking the supremum on m € N, we get pH—A2H3/4 cpp ] < p < 0.
We omit the proof of the second part of the theorem. [

Proof of Theorem 3.9. By definition, the norm in (3.23) is
1252 @ Dl = 1£ma @ Hull, +1[Lh2 @ H17 @ ull,.

Concerning the first term on the right-hand side, by Theorem 3.8 and Proposition 3.3, for m
sufficiently large, we have

" "
|2 0 frul], < Co {nfunp + ”fmﬂ}

for f € WP u),r>1land1 < p < 0o. Moreover, since

|62 09| <09l + ([~ L5z 0] 9"

’

to complete the proofs of (3.23) and (3.24) it suffices to estimate the norm

|[f = 2520 0] '
p

for f € W (u) and f € WP (u), s > r, respectively.
For the first case, we recall that, letting P,, € [P, be a polynomial of quasi best approximation,
we have (see [14, Theorem 3.7])

v

1
u| =cm o (f, —) < CIf Vg ull,.
p m u,p

and, moreover, for any Q,, € P, the following Bernstein inequality

() "

|a0ru| < cm g, (432)

holds (see [14,24]). Hence, by the Jackson inequality (2.4) and since

C
ILf = £z ), = 2 1full, + 109l | (4.33)

we get

|f - 25060 1]

ou| <[P o

= 0]

< Coll £ uly + Com” { 11Pw = f1ull,

+[f - L2 0 D]ul, )
= C@”f”w,”(u)-
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Concerning inequality (3.24), we assume f € W/ (u), s > r, and set Q41 = Lfmz(a, .
By (3.22) we have

00

f=0my1= Z (Q2k+l(m+]) — Q2k(m+1)) in (—1, 1).

k=0
Then, by the Bernstein inequality (4.32), we get

[¢f = Qnin® ¢

o0
(r)
‘ = ZH(Q2k+‘<m+l)_Q2k(m+1>) ‘Pr”H
7 k=0 P

1% r
<Gy (Zk“m) I[Q2+1ams1) = Qatmn)] “Hp

k=0
whence, by (4.33), it follows that

Co

0 r—s
H(f — Omi)" @u ‘p <Gy, (2k+1m) 1wy = 5= 1wy s
=0

which completes the proof. [J

We omit the proof of Corollary 3.10, which follows from Theorem 3.8 using arguments
analogous to those in the proof of Corollary 3.6.
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