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The Day Care Assignment: A Dynamic Matching Problem†

By John Kennes, Daniel Monte, and Norovsambuu Tumennasan*

We study the problem of centralized allocation of children to public 
day care centers, illustrated by the case of Denmark. Our framework 
applies to problems of dynamic matching in which there is entry and 
exit of agents over time; for example, the school choice problem once 
student mobility is taken into account. We show that there does not 
exist any mechanism that is both stable and strategy-proof. We also 
show that the well-known Top Trading Cycles mechanism is neither 
Pareto efficient nor strategy-proof. Finally, a mechanism in which 
parents sequentially choose menus of schools is both strategy-proof 
and Pareto efficient. (JEL C73, D82, I21)

The decision of which day care center to enroll a child in is an important and 
difficult one, justified by mounting evidence that early childhood care facilities 

are crucial to the development of critical noncognitive skills.1 The decision is further 
complicated by the heterogeneity of these facilities and the fact that there are import-
ant risks associated with opting out of a day care facility in favor of home care.2

The day care system is public in most European countries, as well as in Canada, Japan, 
and Brazil, among others. Spain is introducing, through the Minister of Education 
and Science, a new plan called “Plan Educa3,” which is a comprehensive program to 
foster the creation of new educational spaces for children zero–three years.3 In many 
of these countries there is considerable dissatisfaction with the current day care system.4

1 For example, see Chetty et al. (2011) and Heckman (2008). 
2 See, for example, Goldin (1994). 
3 A detailed description of the program can be found here: http://www.mecd.gob.es/educacion-mecd/areas-

educacion/comunidades-autonomas/programas-cooperacion/plan-educa3.html .
4 The Japanese day care system was the subject of a recent report by the New York Times: “But the quality of the 

public day care network—and a growing shortage of slots as more women entered the work force—has created its 
own set of seemingly intractable problems.(…) Some families are so anxious to get into public day care that they 
upend their lives, moving to districts known to have the shortest waiting lists.” (Tabuchi 2013). 
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Many public day care systems are centrally administered, particularly in the 
European countries. A centralized public day care system attempts to balance par-
ents’ reported preferences for the different day care centers with the priorities of 
these day care centers regarding the various children. These priorities are set by 
local governments and vary across municipalities.

The assignment system currently in place in Denmark, which is our main exam-
ple, is such that the oldest unassigned child is given high priority in a day care where 
no current capacity restriction exists—a concept called “child care guarantee.” 
Another important feature of the Danish system, which is common to other dynamic 
matching problems, is that children currently allocated to a day care center have the 
highest priority in those places in the subsequent period. That is, children currently 
allocated to a day care center will not be displaced from that center involuntarily.

In the current paper, we study this problem of centralized assignment of children 
to day care centers. Our problem can be seen as a dynamic version of the well-
known school choice problem, in which children of a specific cohort are assigned 
to different public schools.5 Specifically, our problem extends the school choice 
problem in two fundamental ways. First, we consider a dynamic structure: in our 
model, each child may attend day care for two periods, but not necessarily in the 
same facility. Moreover, in any given period, children of different ages may be allo-
cated to the same day care. In Denmark, for example, children attending the same 
day care range in age from six months to three years. Every month, a new group of 
young children start day care, while those children who have turned three leave for 
the next level of preschool. The second defining feature of our problem is that the 
schools’ priorities are history-dependent: a school gives the highest priority to the 
children allocated to it in the previous period.

In practice, the school choice itself also has dynamic features and it has been doc-
umented that there is considerable mobility of children across schools. To illustrate, 
consider the example of New York City primary schools, where Schwartz, Stiefel, and 
Chalico (2009) report that students move considerably both within year and across 
years. In their sample, only 3.4 percent of eighth graders had attended the same school 
in the entire period from 1996–1997 to 2000–2001, while 22.75 percent of the stu-
dents had had at least one “moving year” (a year in which the student switched schools 
within the year). This is consistent with a study conducted in 2010 by the US General 
Accounting Office, where it is reported that “nearly all students change schools at 
some point before reaching high school.” 6 Hence, while it is true that students from 
different cohorts do not compete for the same spots, there is considerable entry and 
exit of students in each school. Many of the students who start, say ninth grade, this 
year, move out of their school district/city and many new students move into their 
school district/city. Theoretically, one could allocate the new students and the old stu-
dents who want to change their school through a centralized mechanism before these 
students start tenth grade. Thus, we believe that our results could have implications on 
the school choice problem if mobility is taken into account.

5 See Abdulkadiro  g ˘   lu and Sönmez (2003 and also Pathak (2011) for a recent survey. 
6 US General Accounting Office (2010). 
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One of the main objectives in the school choice literature has been to identify 
mechanisms that implement allocations that satisfy one or more well-defined pos-
itive properties, such as stability and Pareto efficiency. A stable mechanism is one 
that leads to an allocation in which no child would (i) prefer a different school to her 
current one, or rather, prefer to be left unassigned, and (ii) find a student in that pre-
ferred school with a lower priority than hers—or an empty seat in that school. Pareto 
efficiency, on the other hand, is a welfare criterion that considers only the  well-being 
of the students. Abdulkadiro  g ˘   lu and Sönmez (2003) discuss two important mech-
anisms that could be used in this allocation problem: the Gale-Shapley Deferred 
Acceptance (DA) mechanism, which is both stable and  strategy-proof; and the  Top 
Trading Cycles (TTC) mechanism, which is both efficient and  strategy-proof. Here, 
we extend the concepts of stability and Pareto  efficiency to our problem and study 
whether these concepts are compatible with one another in a dynamic environment.

In our model, we show that a stable matching always exists. To find such match-
ing, one can treat our problem as a sequence of separate school choice problems 
and use the DA mechanism in each period.7 We also show that this matching is not 
Pareto dominated by any other stable matching, and that if there exists an efficient 
and stable matching, it must be the DA one. Importantly, though, the DA mech-
anism is not strategy-proof: parents might have incentives to misreport their true 
preferences. 

The manipulability of the DA in our dynamic environment raises the question 
of whether there is any mechanism that is both stable and strategy-proof.8 Here we 
prove an impossibility result: no mechanism is both stable and strategy-proof.

For most of the paper, we assume that priorities of schools are history-dependent 
in only a rather weak sense: the priority ranking of each school will change only 
for children previously allocated to it, while for all other children, the priorities will 
remain the same. We call this condition independence of previous assignment. We 
also consider a restriction on preferences, which we call rankability, and a stron-
ger version of it, denoted strong rankability. The rankability restriction implies that 
preferences over schools are stable and consistent over time.9 In this way, we make 
our model as close as possible to the static problem. Nevertheless even with only 
this weak link between periods, our problem is substantially different from the static 
case, in which the DA mechanism is strategy-proof.

Next we turn the focus to studying Pareto efficiency and strategy-proofness. 
Unlike the case of stability, extending the concept of efficiency in the dynamic 
assignment problem is straightforward—at least conceptually. However, although, 
in static settings, it is impossible to find a Pareto improving matching in which a 

7 Precisely, we use an adaptation of the DA mechanism to our dynamic setting, which we denote by DA-IP (see 
Section III). 

8 In the school choice framework much attention has been given to stability, and the DA mechanism has since 
been adopted in the New York and Boston public school systems. (See Abdulkadiro  g ˘   lu, Pathak, and Roth 2009 and 
Abdulkadiro  g ˘   lu et al. 2005 for a discussion of the practical considerations in the student assignment mechanisms 
in these two cities.) 

9 Our strong rankability assumption does not rule out preferences with switching costs, i.e., costs for switching 
schools across periods. However, if these costs are prohibitively large, any student would rather stay in whichever 
school she is allocated to in the first period, and would not consider moving to other schools. The problem would 
be very close to the static school choice problem. 
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child trades her placement for a worse one, in a dynamic setting this may be pos-
sible as long as the child obtains a better placement in the other period. Hence, as 
long as there are two or more “willing” participants in such a trade, there is room 
for Pareto improvement even if none exists by changing only one-period matchings. 
This possibility of Pareto improving intertemporal trade is the main reason behind 
our result that the TTC mechanism is not efficient. We also show that TTC is not 
strategy-proof, and that even a variation of this mechanism, which we call “TTC by 
cohort,” is not strategy-proof. The reason why strategy-proofness is more difficult 
to achieve in the dynamic environment that we consider here is that there is an addi-
tional potential benefit for a player to gain from misreporting her true preferences: 
the player can affect the priority rankings of schools in the subsequent period.

Finally, the serial dictatorship mechanism adapted to our environment is shown 
to be strategy-proof and efficient.10 In this mechanism, children are exogenously 
ordered by the planner and they choose a menu of schools over time according to 
their position in the queue. This means that in a dynamic environment like ours, 
there are mechanisms that are both efficient and strategy-proof. 

We should highlight the fact that although our problem is motivated by the assign-
ment of children to day care centers, it has many other potential applications. The 
school choice problem itself has dynamic features, as mentioned previously. Other 
interesting applications are the assignment of teachers to public schools, diplomats 
to different embassies, or high-level bureaucrats to different regions.11 Another 
problem related to ours is the market for new physicians in the United Kingdom, 
where each doctor is allocated to two six-month positions, a medical post and a 
surgical post.12

The theory of market design in dynamic settings is very recent.13,14 Kurino 
(2014) studies the centralized housing allocation problem with overlapping gen-
erations of agents. The school choice problem differs from the housing allocation 
problem in the sense that the objects have priorities in the former but not in the latter. 
Hence, stability—a central issue in our paper—is not considered in Kurino (2014). 
The second part of our paper, where we consider the compatibility of efficiency and 
strategy-proofness, is related to Kurino’s but with the important difference that the 
domain of possible mechanisms in our study contains the priorities of the schools.15

10 Our problem is not part of the literature on multi-unit allocation. Pápai (2001) and Ehlers and Klaus (2003), 
for example, have obtained negative results concerning strategy-proofness and efficiency; however, the problem 
here is substantially different and their results do not apply to our setting. Many of the results in that literature 
depend on the feature that the agents’ preferences over bundles of objects vary in a permissive way. In contrast, in 
our problem the preferences of the agents are restrictive because the children’s preferences are rankable. 

11 See Bloch and Cantala (2011). 
12 See Roth (1991) and Irving (1998). 
13 Abdulkadiro  g ˘   lu and Sönmez (1999) and Guillen and Kesten (2012) study the house allocation problem with 

existing tenants. In their models, the existing tenants have the highest priority for the house (room) they occupied in 
the preceding period. In this aspect these papers are related to ours, but their models are static while ours is dynamic. 

14 Blum, Roth, and Rothblum (1997) study two-sided matching in labor markets in which there are vacancy 
openings over time. In their model, however, preferences are essentially static and their focus is on the decentralized 
(re)-equilibration of stable matchings. 

15 Thus, the version of TTC used in our paper is Abdulkadiro  g ˘   lu and Sönmez’s (2003) TTC mechanism for the 
school choice problem, while Kurino (2014) focuses on Abdulkadiro  g ˘   lu and Sönmez’s (1999) TTC mechanism for 
the housing market problem with existing tenants. Because of this, Kurino (2014) obtains that the constant TTC 
mechanism favoring existing tenants is both strategy-proof and efficient when the agents’ preferences are rankable. 
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Bloch and Cantala (2011) study a dynamic matching problem focusing on the 
long-run properties of different assignment rules. Pereyra (2013) studies the alloca-
tion of teachers to public schools, restricting his attention to rankable preferences 
and seniority-based priorities and shows that the DA is strategy-proof in his setting. 
In this sense, the first part of our paper, where we consider the compatibility of 
stability and strategy-proofness, and Pereyra (2013) complement each other. In the 
second part of our paper, we investigate efficiency and strategy-proofness, which is 
not studied by Pereyra. Dur (2011) considers a dynamic school choice problem in 
which the incentives for placing siblings are taken into account. He shows that there 
is no fair (stable) and strategy-proof mechanism.

Abdulkadiro  g ˘   lu and Leortscher (2007) study a dynamic house allocation prob-
lem in which the set of agents is common in all periods. With a focus on efficiency, 
they propose a random mechanism that is superior in terms of efficiency to the 
random serial dictatorship. Finally, Ünver (2010) extends the literature on central-
ized matching for kidney exchanges to a dynamic environment in which the pool of 
agents evolves over time.

The structure of this paper is as follows. In Section I, we present a brief descrip-
tion of the Danish day care system. In Section II, we describe the model in detail. In 
Section III, we study stable matchings and their properties. In Section IV, we prove 
an impossibility result relating stability and strategy-proofness. In Section V, we 
discuss a strategy-proof and efficient mechanism. In Section VI, we provide a brief 
conclusion. Longer proofs are collected in the Appendix.

I. The Danish Day care System

In Denmark, children are allocated at the different day care centers by the local 
municipalities. Below, we highlight the essential features of the allocation rules 
at Aarhus, which are also common to most municipalities in Denmark, including 
Copenhagen.

Children can start day care at the age of six months and when they turn three 
years old must exit, moving to the next level of preschooling. The assignment takes 
place once a month and each parent reports their top three choices among all day 
care centers. They also report whether they want the option for what is called as a 
“guaranteed spot,” in case the child is currently unassigned.16 The parents can enroll 
their child any time after birth. Even if a child has a spot in some day care, she can 
participate in the assignment algorithm without having to give up her spot, i.e., she 
may sign up for two different day care centers and will be placed on a waiting list 

16  “You can choose a guaranteed place and also a desired place with one or more specific institutions. These 
requests will be taken into account when we find a place for you. However, we cannot guarantee your desired insti-
tution. If your desired institutions does not have an opening, you will be offered a ‘guaranteed place.’ A guaranteed 
place is a place within the district you live in, or at a distance from your home which involves no more than half 
an hour of extra transport each way to and from work. The municipal placement guarantee is satisfied when you 
have been offered a place. To be assigned a guaranteed seat at a desired time, the application must be received by 
the placement guarantee office no later than 3 months before the place is desired.” (Translated from https://www.
borger.dk.) 
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for these two facilities. It is important to highlight that children currently allocated 
to a day care, will not be displaced from that day care involuntarily.

For specificity, below we present the “placement assignment rules,” as stated by 
the Aarhus municipality.17 Children are assigned according to the following order:

 (i) children with special needs, e.g., children with disabilities;

 (ii) children with siblings in the same day care;

 (iii) immigrant children who after expert evaluations are considered in need of 
special assistance in day care;

 (iv) the oldest child who is listed for a guaranteed place in his or her own district, 
i.e., not at a particular day care;

 (v) the oldest child who is listed for a guaranteed place in the local warranty 
district (Aarhus Municipality is divided into eight major warranty districts. A 
warranty district consists of one to several districts);

 (vi) the oldest child listed for a guaranteed place from a different warranty district;

 (vii) The oldest child from the waiting list of a particular day care. This offer is 
also made to a child already in a day care.

In Section IID, after we have adapted the concepts of efficiency and stability to 
our setting, we show that this assignment mechanism is manipulable and fails effi-
ciency and stability.

II. Model

In Section IIA, we build our model. Specifically, we define matching for our set-
ting, and we discuss the preference relation of the children over the different profiles 
of day care centers and the priority orderings of the day care centers over the set of 
children. In Section IIB, we define the concepts of Pareto efficiency and stability. In 
Section IIC, we define a mechanism and its properties, and, in particular, we define 
strategy-proofness.

A. setup

Time is discrete and  t = 1, ⋯ , ∞ . There are a finite number of infinitely lived 
schools. Let  s = { s  1  , ⋯ ,  s  m  }  be the set of schools. Each school  s ∈ s  has a 

17 For the original document see: https://www.borger.dk/ .
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 maximal capacity   r  s    ,  which we assume is constant.18 Children can attend school 
when they are one and two years old. School attendance is not mandatory. Let  h  
stand for the option of staying home. For technical convenience, we treat  h  as a 
school with unbounded capacity. Let    s ̅   = s ∪ {h}  and  r =  ( r  s  )  s∈  s ̅     . In each period 
 t ≥ 1 , a new set of one-year old children   i  t    (which is possibly empty) arrives. We use 
the notation   i  0    to denote the set of two year old children in period 1. Consequently, 
at any period  t ≥ 1  the set of school-age children is   i  t−1   ∪  i  t   . As time passes the set 
of school-age children evolves in the “overlapping generations” (OLG) fashion. The 
set of all children is  i =  ∪  t=0,⋯,∞    i  t   .

Matching.—A period  t  matching is a correspondence indicating which school-
age child in period  t  attends which school, and a matching is a collection of all 
period  t  matchings. First, we define the period 0 matching,   μ   0  , as a correspondence 
  μ   0  :  i   0  ∪   s ̅   →  i   0  ∪   s ̅    satisfying the following properties: (i) for all  i ∈  i  0   , 
  μ   0 (i) ⊂   s ̅    and  |  μ   0 (i) | = 1;  (ii) for all  s ∈   s ̅   ,  |  μ   0 (s) | ≤  r   s   and   μ   0 (s) ⊂  i  0  ;  and 
(iii) for all  i ∈  i  0   ,  i ∈  μ   0 (s)  if and only if  {s} =  μ   0 (i) .

DEFINITION 1 (Matching): A period  t  matching   μ   t   (where  t ≥ 1 ) is a 
correspondence 

   μ   t  :  i  t−1   ∪  i  t   ∪   s ̅   →  i  t−1   ∪  i  t   ∪   s ̅   

such that

 (i) for all  i ∈  i  t−1   ∪  i  t   ,   μ   t (i) ⊂   s ̅    and  |  μ   t (i) | = 1 ; 

 (ii) for all  s ∈   s ̅   ,  |  μ   t (s) | ≤  r   s   and   μ   t (s) ⊂  i  t−1   ∪  i  t   ; 

 (iii) for all  i ∈  i  t−1   ∪  i  t    and all  s ∈   s ̅   ,  i ∈  μ   t (s)  if and only if  {s} =  μ   t (i) .

A matching  μ  is a collection of period matchings,  μ = ( μ   0 ,  μ   1 , ⋯ ,  μ   t , ⋯) . We 
use the notation  μ(i)  to denote  ( μ   t (i),  μ   t+1 (i))  ,  where  t  is the period in which  i  is one 
year old.

Requirement (i) ensures that each child is placed at most at one school, while 
requirement (ii) ensures that each school does not house more children than its 
capacity. Due to requirement (iii), a child is matched to a school if and only if the 
school is matched to the child. 

Children’s Preferences.—Each child is characterized by a strict preference rela-
tion   ≻  i    over     s ̅     2  . The notation  (s,  s ′  )  denotes the allocation in which a child is placed 
at school  s  at age one and at school   s ′    at age two. We write  (s,  s ′  )  ⪰  i   (  s ̅  ,    s ̅   ′  )  if either  

18 One can relax this assumption to allow the possibility that the schools’ capacities increase over time. 
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(s,  s ′  )  ≻  i   (  s ̅  ,    s ̅   ′  )  or  (s,  s ′  ) = (  s ̅  ,    s ̅   ′  ) . Throughout the paper, we maintain the follow-
ing assumption on preferences.

ASSUMPTION 1 (Rankability): Each child  i ’s preferences satisfy the following 
assumption, which we call rankability: if  (s, s)  ≻  i   ( s ′  ,  s ′  )  for some  s,  s ′   ∈   s ̅   , then 
 (s,  s ″  )  ≻  i   ( s ′  ,  s ″  )  and  ( s ″  , s)  ≻  i   ( s ″  ,  s ′  )  for any   s ″   ≠  s ′   . 

A direct consequence of the rankability assumption is the following: whenever  
(s, s)  ≻  i   ( s ′  ,  s ′  )  for some  s ≠  s ′   ∈   s ̅   , then it must be that  (s, s)  ≻  i   (s,  s ′  )  and 
 (s, s)  ≻  i   ( s ′  , s) . In addition, if  ( s ′  ,  s ′  )  ≻  i   ( s ″  ,  s ″  ) , then  (s, s)  ≻  i   ( s ′  ,  s ″  ) . However, it 
is possible that  ( s ′  ,  s ′  )  ≻  i   (s,  s ′  )  (and  ( s ′  ,  s ′  )  ≻  i   ( s ′  , s) ). Here also note that for each 
child there must exist some school such that attending this school for two consecu-
tive periods is the most preferred option for the child.

The reasonings behind the rankability assumption are that (i) each parent has 
a ranking of the schools (not the pairs of schools) that is stable over time, and her 
preferences over the pairs of schools are derived from this ranking; and (ii) there 
is a constant switching cost of schools that parents care about. Based on these rea-
sonings, we think that if a parent ranks school  s  ahead of   s ′   , then she should prefer 
 (s,  s ″  )  to  ( s ′  ,  s ″  )  for all   s ″   ≠  s ′   . However, a parent could prefer  ( s ′  ,  s ′  )  to  (s, s)  in 
order to save switching costs. These properties are captured in Assumption 1.

Below we present a stronger version of the rankability assumption.

DEFINITION 2 (Strong Rankability): Child  i ’s preferences satisfy strong rankabil-
ity if, for any  s,  s ′   ∈   s ̅    

  (s, s)  ≻  i   ( s ′  ,  s ′  ) ⇔ (s,  s ″  )  ≻  i   ( s ′  ,  s ″  ) and ( s ″  , s)  ≻  i   ( s ″  ,  s ′  ) for all  s ″   ∈   s ̅   . 

Under strongly rankable preferences a child always prefers attending two 
(weakly) superior schools to attending an inferior school for two periods. Here, we 
note that for all of our positive results we always assume that the preferences are 
rankable. On the other hand, for our negative results we assume that the preferences 
are strongly rankable because doing so strengthens these negative results.19

schools’ Priorities.—At any period  t ≥ 1 , each school ranks all the school-age 
children by priority. Priorities do not represent school preferences, but, rather, they 
are imposed by the local municipality. For example, children with special needs 
might be given higher priority by the schools tailored to meet those needs, moreover, 
in the existing assignment mechanism in Denmark, all schools give priority to their 
currently enrolled children.

Henceforth, we assume that each institution gives the highest priority to its cur-
rently enrolled children, which is a feature of the assignment mechanism currently 

19 Kurino (2014) considers two types of preferences: time-separable and time-invariant. We note here that our 
assumption of rankable preferences is neither weaker nor stronger than his assumption of time-separable prefer-
ences. His time-invariability assumption is equivalent to our strong rankability assumption. Also, strong rankability 
is closely related to the responsiveness assumption used in many-to-one matching settings. 
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in place in Denmark. A rationale behind this priority is that no school forces its 
current enrollee out in order to free a spot for some other child. Because of this 
assumption, the priority ranking of each school is history dependent, i.e., a school’s 
priority ranking depends on its attendees of the previous period.

One can argue that even in the school choice problem, the schools’ priorities are 
history dependent because a typical school (for example, in Boston) gives priority to 
children whose siblings are in it. In other words, the matchings of the previous peri-
ods affect how the schools rank the new applicants. However, in the school choice 
literature, this history dependence of the schools’ priorities is not modeled explic-
itly.20 This omission is justified if the older siblings make decisions without caring 
about the younger ones, i.e., one sibling’s well-being is not dependent on another’s. 
However, in our model, the children participate in the assignment mechanism twice 
and, of course, any child’s well-being depends on the schools she attends in differ-
ent periods. Therefore, in our model, we have to take the history dependence of the 
schools’ priorities seriously.

We will denote the binary relation that generates the priority ranking of school  
s  at period  t ≥ 1  by   ⊳  s  t  ( μ   t−1 ) .  That is, if at period  t  child  i  has a higher prior-
ity than child  j  at school  s  given the period  t − 1  matching   μ   t−1  , then we denote 
 i  ⊳  s  t    ( μ   t−1 )  j . We will assume throughout the paper that priorities are strict. In prac-
tice, whenever the school system outlines coarse priorities, as in the Danish system 
that we described in Section I, the system often designs a tie-breaking rule, so that, 
effectively priorities are indeed strict. In the Danish case, the tie-breaking rule is 
based on a first-come first-served basis.

We write  i  ⊵  s  t    ( μ   t−1 )  j  if either  i  ⊳  s  t    ( μ   t−1 )  j  or  i = j .
We assume that each school ranks the children in a lexicographical manner in 

which children’s past attendance matters the most and then some criterion based on 
exogenous characteristics of the child (e.g., proximity to school, medical condition, 
immigration status, and age). Let us now state formally the assumptions we impose 
on the priorities.

ASSUMPTION 2 (Priorities): For all  i ∈ i  and all  t = 1, 2, … ,  each school’s 
priorities satisfy:

 (i) (Priority for currently enrolled children) if  i ∈  i  t−1    and  i ∈  μ   t−1 (s)  for 
some  s ∈ s , then  i  ⊳  s  t   ( μ   t−1 )j  for all  j ∉  μ   t−1 (s).  

 (ii) (Weak consistency of different period rankings) if  i  ⊳  s  t−1  ( μ   t−2 )j  for some  
i, j ∈  i  t−1   ,  s ∈ s , and  μ , then  i  ⊳  s  t    ( μ   t−1 )  j  in any of the following cases:

	 	 •	   μ   t−1 (i) =  μ   t−1 (  j) = s  
	 	 •	   μ   t−1 (i) = s, h  and   μ   t−1 (  j) = h  
	 	 •	   μ   t−1 (  j) ≠ s, h . 

20 With the exception of one recent working paper (Dur 2011) that consider the sibling priorities explicitly (and 
thus, history-dependence) in the school choice problem. 
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 (iii) (Weak irrelevance of previous assignment) if  i  ⊳  s  t   ( μ   t−1 )j  for some  i, j ∈  i  t−1   , 
 s ∈ s , and  μ  with   μ   t−1 (i) ≠ s, h  and   μ   t−1 (  j) ≠ s, h , then  i  ⊳  s  t    (  μ ̅     t−1 )  j  for 
any   μ ̅    satisfying one of the following conditions.

	 •	    μ ̅     t−1 (i) =   μ ̅     t−1 (  j) = s  
	 •	    μ ̅     t−1 (i) = s, h  and    μ ̅     t−1 (  j) = h  
	 •	    μ ̅     t−1 (  j) ≠ s, h.  

 (iv) (Weak irrelevance of difference in age) if  i  ⊳  s  t   ( μ   t−1 )j  for some  i ∈  i  t−1   , 
 j ∈  i  t   ,  s ∈ s , and  μ  with   μ   t−1 (i) ≠ s, h , then  i  ⊳  s  t    (  μ ̅     t−1 )  j  for all   μ ̅   . 
in  addition, if  j   ⊳  s  t   ( μ   t−1 )i  for some  i ∈  i  t−1   ,  j ∈  i  t   ,  s ∈ s , and  μ  with 
  μ   t−1 (i) ≠ s, h , then  j  ⊳  s  t    (  μ ̅     t−1 )  i  for all   μ ̅    with    μ ̅     t−1 (i) ≠ s, h .

Loosely speaking, the last three assumptions mean that the priorities of any 
school do not depend on the attendees of other schools (excluding staying home). 
Specifically, the second one says that if child  i  has higher priority than child  j  at 
school  s  in period  t − 1 , then child  i  keeps her advantage over child  j  in the follow-
ing period unless child  j  attends school  s  ( h ) while child  i  does not attend  s  ( s  or  h ). 
The third one says that at any period, school  s ’s relative ranking of any two children 
is not affected by the fact that one child has attended school   s ′   ≠ s  and the other   
s ″   ≠ s . The fourth assumption says that at any period school  s ’s relative ranking of 
any two children is not affected by the fact that one child has attended school   s ′   ≠ s  
at period  t − 1  while the other is one year old at period  t .

Assumption 2 resembles the priorities in the Danish day care system. For instance, 
in the Danish system a child’s priority at some school can be improved from one 
period to the next one if (i) she attends the school in the first period or (ii) she stays 
home in the first period and asks for guaranteed spot in the next period.

Here, we remark that Assumption 2 does not rule out the possibility that a school  
s  gives priorities to the children who have not attended any school over the ones 
who have attended some school other than  s  in the previous period. This possibility 
is ruled out if the schools’ priorities satisfy the independence of Past Attendance 
property, which we define below. 

DEFINITION 3 (Independence of Past Attendance): school  s ’s priorities satisfy 
the independence of Past Attendance (iPA) property if the conditions below are 
satisfied:

 (i) (Consistency of different period rankings) if  i  ⊳  s  t−1  ( μ   t−2 )j  for some 
 i, j ∈  i  t−1   ,  s ∈ s  and  μ , then  i  ⊳  s  t    ( μ   t−1 )  j  in any of the following cases:

	 	 •	   μ   t−1 (i) =  μ   t−1 ( j) = s  
	 	 •	   μ   t−1 ( j) ≠ s . 

 (ii) (irrelevance of previous assignment) if  i  ⊳  s  t   ( μ   t−1 )j  for some  i, j ∈  i  t−1   ,  
s ∈ s , and  μ  with   μ   t−1 (i) ≠ s  and   μ   t−1 ( j) ≠ s , then  i  ⊳  s  t    (  μ ̅     t−1 )  j  for any 
  μ ̅    satisfying one of the following conditions.

	 	 •	    μ ̅     t−1 (i) =   μ ̅     t−1 ( j) = s  
	 	 •	    μ ̅     t−1 ( j) ≠ s . 
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 (iii) (irrelevance of difference in age) if  i  ⊳  s  t   ( μ   t−1 )j  for some  i ∈  i  t−1   ,  j ∈  i  t   , 
 s ∈ s , and  μ  with   μ   t−1 (i) ≠ s , then  i  ⊳  s  t    (  μ ̅     t−1 )  j  for all   μ ̅   . in addition, if 
 j  ⊳  s  t   ( μ   t−1 )i  for some  i ∈  i  t−1   ,  j ∈  i  t   ,  s ∈ s , and  μ  with   μ   t−1 (i) ≠ s , 
then  j  ⊳  s  t    (  μ ̅     t−1 )  i  for all   μ ̅    with    μ ̅     t−1 (i) ≠ s .

In practice, IPA is often not satisfied. Many schools give priority to two-year-old 
children who have not attended any school in the previous period over one-year-old 
children and the two-year-old children who have attended school in the previous 
period. In particular, given a concept called “guaranteed spots,” IPA is not satisfied 
in the current Danish day care assignment mechanism.

B. Properties of a Matching: Efficiency and stability

We first define the concept of a market, which will be used in our other definitions.

DEFINITION 4 (Market): A market  M  is  M = (i,   s ̅  , r,  μ   0 , ≻, ⊳ ) , where   μ   0   
is a period 0 matching,  ≻=  ( ≻  i  )  i∈i    is a preference profile of the children, and 
 ⊳  =  ( ⊳  s  )  s∈s    is a priority function of the schools. The set of markets is   .

Here, observe that the period  0  matching is included in the definition of mar-
ket explicitly. Since our model starts at period 1, the period  0  matching cannot be 
changed. Thus, all the matchings in a given market  M = (i,   s ̅  , r,  μ   0 , ≻, ⊳)  must 
have the common period 0 matching,   μ   0  .

In this section, we define the properties of matching for a fixed market  M . The 
matching literature has identified Pareto efficiency and stability as the two main 
desirable properties. The main goal of this subsection is to adapt these concepts to 
our dynamic assignment problem.

For both Pareto efficiency and stability, we start defining weaker concepts because 
they will be useful later in our analysis. First, let us define  autarkic efficiency, which 
requires eliminating all one period “trades” that improve at least one child without 
hurting others.

DEFINITION 5 (Autarkic Efficiency): Matching  μ  is autarkic-efficient if for any 
 t ≥ 1 , there does not exist period  t  matching    μ ̅     t   such that  ( μ   0 , … ,  μ   t−1 ,   μ ̅     t ,  μ   t+1 , …)  
Pareto dominates  μ .

For autarkic efficiency, one considers the possibilities to improve everyone by alter-
ing one period matchings. However, even when this possibility does not exist, one may 
be able to (weakly) improve every agent by changing matchings of several periods. 
Below we present an example in which two children from the same cohort (or genera-
tion) improve over an autarkic-efficient matching by trading their allocations.

ExAMPLE 1 (Pareto Improving Trade within Cohort): suppose that  i  
= { i  1  ,  i  2  ,  j  1  ,  j  2  } , and in period 1,   i  1    and   i  2    are two years old and   j  1    and   j  2    are one 
year old. There are four schools   s  1  ,  s  2  ,  s  3   , and   s  4   , and each school has a capacity of 
one child. The schools’ priorities satisfy iPA and the children’s preferences satisfy 

AQ 1
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strong rankability. The schools’ priorities are given as follows under the assumption 
that the children have not attended any school in the previous period:

   i  1    ⊳   s  1      i  2    ⊳   s  1      j  1    ⊳   s  1      j  2  

  i  2    ⊳   s  2      i  1    ⊳   s  2      j  2    ⊳   s  2      j  1  

  i  1    ⊳   s  3      i  2    ⊳   s  3      j  1    ⊳   s  3      j  2  

  i  1    ⊳   s  4      i  2    ⊳   s  4      j  2    ⊳   s  4      j  1   .

Child   i  1   ’s top choice is   s  1   , while child   i  2   ’s is   s  2   . The other two children’s prefer-
ences satisfy the following conditions: 

  ( s  2  ,  s  2  )  ≻   j  1     ( s  1  ,  s  1  )  ≻   j  1     ( s  4  ,  s  2  )  ≻   j  1     ( s  3  ,  s  1  )  ≻   j  1     ( s  3  ,  s  3  )  ≻   j  1     ( s  4  ,  s  4  )

 ( s  2  ,  s  2  )  ≻   j  2     ( s  1  ,  s  1  )  ≻   j  2     ( s  3  ,  s  1  )  ≻   j  2     ( s  4  ,  s  2  )  ≻   j  2     ( s  3  ,  s  3  )  ≻   j  2     ( s  4  ,  s  4   ).

Now consider the following matching  μ :   μ   1 ( i  1  ) =  s  1   ,   μ   1 ( i  2  ) =  s  2   ,   μ   1 ( j  1  ) =  s  3   , 
  μ   1 ( j  2  ) =  s  4   ,   μ   2 ( j  1  ) =  s  1   ,   μ   2 ( j  2  ) =  s  2   . Matching  μ  satisfies autarkic efficiency. 
However, observe that children   j  1    and   j  2    strictly improves over  μ  if they trade their 
matchings.

Loosely speaking, in Example 1, children   j  1    and   j  2    are assigned “extreme” allo-
cations under matching  μ . Hence, these children   j  1    and   j  2    improve over the extreme 
allocations by “trading” their allocations.

In the example above, the children from the same cohort strictly improve over an 
autarkic-efficient matching by trading their matchings. The example illustrates the need 
to strengthen the autarkic efficiency concept. We say a matching  μ  is Pareto efficient if 
no other matching strictly improves at least one child without hurting the others.

DEFINITION 6 (Pareto Efficiency): A matching   μ ̅    Pareto dominates  μ  if 

  μ ̅  (i)  ⪰  i   μ(i) ∀ i ∈ i and  μ ̅  ( j)  ≻  j   μ( j) for some j ∈ i . 

A matching  μ  is Pareto efficient if no matching   μ ̅    Pareto dominates  μ .

Note here that any Pareto efficient matching is also autarkic-efficient. 
Now, let us consider stability. Adapting the definition of stable matching in our 

setting is not straightforward, as the dynamic nature of our setting presents some 
challenges that are absent in the school choice problem. We propose a stability con-
cept based on the idea of justified envy freeness.21 As in the case of efficiency, we 

21 In static settings in which one side of the market has priorities but not preferences, stable matchings have 
been interpreted as matchings that are free of justified envy (see Balinski and Sönmez 1999 and Abdulkadiro  g ˘   lu 
and Sönmez 2003). 
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first define the concept of autarkic stability, which we perceive as a naive version of 
our main stability concept. A matching is said to satisfy autarkic stability if no child 
can justify her envy of another child at some period  t  without considering the effects 
that her alternative placement would have on the priorities of the schools. That is, if 
child  i  improves by moving to school  s  from her currently matched school only at  t  
while keeping her past/future allocation fixed, then  s  must not have assigned a seat 
to any child who has lower priority than  i . In a way, for autarkic stability, we are 
analyzing the problem at fixed period  t , assuming that the matching of every other 
period   t ′   ≠ t  is fixed.

DEFINITION 7 (Autarkic Stability): A matching  μ  satisfies autarkic stability if, at 
any period  t ≥ 1 , there does not exist a school-child pair  (s, i)  such that (1) and (2) 
below hold at the same time:

(1)  a)  (s,   μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t+1 (i)),  or

 b)  ( μ   t−1 (i), s)  ≻  i   ( μ   t−1 (i),  μ   t (i)),  

(2)   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t  ( μ   t−1 )j  for some  j ∈  μ   t (s) .  

Condition (1) above refers to the fact that child  i  would be strictly better off by 
switching to some school  s  rather than the school specified by the matching  μ . On 
top of that, condition (2) implies that either there are unfilled spots at the preferred 
school  s  of child  i , or the school is in full capacity, but some child  j  placed at this 
school under the matching  μ  has lower priority than child  i .

In the notion of autarkic stability, each child ignores that switching her school 
at age one could lead to a different matching at the period when she is two. In this 
sense, justified envy is toward the status quo matching (not against potential match-
ings that form as a result of some child’s school switch). In a marriage market with 
externality studied in Sasaki and Toda (1996), any pair who is contemplating to 
form a new match together considers the other agents’ potential responses to the 
pair’s action. These potential responses could include the status quo, i.e., the ones in 
which the agents who were not matched to the blocking pair in the original matching 
remains matched to the same agent. In this sense, in the autarkic-stability concept 
we consider a fixed potential response, which is the status quo.

In the definition of autarkic stability, one considers only the one period potential 
deviations, therefore there are two shortcomings in this stability notion: (i) because 
the children can attend school for two periods, a child could imagine situations 
in which she changes her match in both periods; and (ii) the schools’ priorities, 
which have to be considered for stability, evolve depending on the past matchings. 
These shortcomings are magnified if strong rankability or IPA are not satisfied. To 
 illustrate this let us consider the following two examples of matchings that might 
satisfy autarkic stability, but that nevertheless present a case for justified envy.

ExAMPLE 2 (Justified Envy under Failure of Strong Rankability): Consider a 
matching that places child  i  at school   s ′    when she is both one and two years old. 
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However, there is another school  s  such that child  i  improves only if she switches to 
school  s  in both periods. Observe that child  i ’s preferences are not strongly rank-
able. Moreover, suppose that when child  i  is one year old, at school  s  she has prior-
ity over another child   i ′    who is placed at school  s  at that time. in addition, suppose 
that when child  i  is two years old, there is no child at school  s  with lower priority 
than  i . With this information, we cannot rule out the possibility that the matching 
satisfies autarkic stability because child  i  prefers  ( s ′  ,  s ′  )  to  (s,  s ′  ) .

However, one can argue that child  i ’s envy of   i ′    is justified: she has the right to 
attend school  s  ahead of   i ′    at age one. Then, in the following period, she will be in 
the highest priority group at school  s . This would give her the right to attend school  
s  when she is two. 

ExAMPLE 3 (Justified Envy under Failure of IPA): suppose that there are two 
schools,  s  and   s ′   , with respective capacities of one and two children. Children  i  and   
i ′    are born at the same period and their preferences satisfy the following property:  
(s, s) ≻ ( s ′  , s) ≻ (h, s) ≻ ( s ′  ,  s ′  ) . suppose that school  s  gives higher priority to 
child  i  than   i ′    at period  t  when the children are one year old. However,   i ′    is given 
higher priority over child  i  by school  s  at period  t + 1  if at period  t ,   i ′    does not 
attend any school, while  i  attends   s ′   . Observe that school  s ’s priorities do not satisfy 
iPA.

Consider a matching that places both children at school   s ′    in period  t  but places 
child  i  at school  s  and child   i ′    at school   s ′    in period  t + 1 . implicitly, the period  t  spot 
of school  s  is assigned to some other child who has higher priority at school  s  over 
both children. With this information only, we cannot prove that the matching does 
not satisfy autarkic stability.

However, one can argue that child   i ′    envies  i  in a justified manner: if she stays 
home at period  t  and attends school  s  at period  t + 1 , then she would definitely 
improve. in addition, she would have had priority over  i  at school  s  in period  t + 1 .

To account for the issues raised in Examples 2 and 3, we strengthen the concept 
of autarkic stability. Mainly, for our stability concept we will consider children who 
take into consideration that priorities are history-dependent, so that justified envy 
is not simply based on the current period’s matching. Before formally defining the 
concept, we need to define the following notation.

For any  i, j ∈  i  t   ,  s ∈   s ̅   , and  μ , such that  μ(i) ≠ μ( j)  and  μ( j) ∈ s , let 

   M ̅     t (i, j, μ) ≡  

  {  μ ̅     t  :   μ ̅     t (i) =  μ   t ( j),   μ ̅     t ( j) ≠  μ   t ( j) and    μ ̅     t ( i ′  ) =  μ   t ( i ′  ) ∀  i ′   ≠ i, j ∈  i  t−1   ∪  i  t  }    . 

That is, the set    M ̅     t (i, j, μ)  is a set of matchings at period  t , such that  j  is replaced 
by  i  in the allocation specified by the matching   μ   t  ,  j  is placed at a different school, 
and all other children’s placements remain unchanged. One may think of this as the 
set of all hypothetical matchings at time  t  such that  i  replaces  j , who then finds a 
school somewhere else—perhaps home, or some other school, and all other children 
remain in the same school. Under this view, an allocation of a particular period is 
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considered “unfair” (or subject to justified envy) if the child takes the matching of 
all other children at all other periods as given. In particular, when the child “feels” 
that she has justified envy over some child in a particular school, for the following 
period, she imagines that this child, over whom she had priority, will either stay at 
home or be placed in some other school that will not affect the next period’s match-
ing, and all other children remain matched as they were originally.

DEFINITION 8 (Stability): Matching  μ  is stable if it satisfies autarkic stability and 
at any period  t ≥ 1 , there does not exist a triplet  (s,  s ′  , i) , such that 

  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t+1 (i)), 

for  s ≠  μ   t (i) ,   s ′   ≠  μ   t+1 (i) , and one of the following conditions holds:

 (i)   | μ   t (s)|  <  r  s    and   | μ   t+1 ( s ′  )|  <  r   s ′    ,  

 (ii)   | μ   t (s)|  <  r  s   ,   | μ   t+1 ( s ′  )|  =  r   s ′     , and, for some   j ′   ∈  μ   t+1 ( s ′  ) ,  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′    
where    μ ̅     t   is the period  t  matching with    μ ̅     t (i) = s  and    μ ̅     t ( i ′  ) =  μ   t ( i ′  )  for all   
i ′   ≠ i ∈  i  t−1   ∪  i  t  ,  

 (iii)   | μ   t (s)|  =  r  s   ,   | μ   t+1 ( s ′  )|  <  r   s ′     , and, for some  j ∈  μ   t (s) ,  i  ⊳  s  t   ( μ   t−1 )j,  

 (iv)   | μ   t (s)|  =  r  s   ,   | μ   t+1 ( s ′  )|  =  r   s ′     , for some  j ∈  μ   t (s) ,   j ′   ∈  μ   t+1 ( s ′  )  and for 
any    μ ̅     t  ∈  M ̅  (i, j, μ) ,  i  ⊳  s  t  ( μ   t−1 )j  and  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′   .  22

We interpret justified envy in the dynamic context as the existence of a pair of 
schools for which a child prefers to its current match and, such that in some “rea-
sonable” way, it would be “fair” for her to go to the preferred schools. Specifically, a 
reasonable way may mean one of the following four cases:  (i)  both of these schools 
have unassigned spots;  (ii)  in the first period, a preferred school has an unassigned 
spot, and, in the second, the child has a higher priority over another child allocated at 
a preferred school;  (iii)  a preferred school in the second period is operating with less 
than full capacity, and in the first period the child is placed on a higher priority in 
that preferred school than some other child already allocated there; and finally  (iv)  
in the first year the child has a higher priority than some other child in a particular 
school, and, in the second year, the child has a higher priority than some other child 
even if there had been a reallocation in the first period, in which she replaced some 
child in year 1, as long as in this new allocation all other children remained in the 
same school.

In the definition of stability each child ignores the fact that switching her school 
at age one could change the matching at the period when she is two. In fact, the 
 history dependence of the schools’ priorities is considered for justified envy care-
fully, but it is always toward the status quo matching.

22 Observe that   μ   t ( j) = s ≠ h  as  h  has an unlimited capacity. Hence,   M   t (i, j, μ)  is well defined. 
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In static settings it is well-known that the stability notion based on the idea 
of blocking is equivalent to the one based on the idea of elimination of justified 
envy. However, this is not true in our setting because the schools’ priorities are 
 history-dependent in our setting. If one considered a notion of stability based on 
the idea of blocking groups, it would have been necessary to define “preferences” 
for schools. Then, due to the history-dependence of the schools’ priorities, a school 
could “prefer” a matching in which it matches to the same child for two periods to 
another matching in which the child is replaced with another in one period only. In 
such cases, the stability notions based on the idea of blocking may not be equivalent 
to ours, which we illustrate through the example below.

Consider a market  M  and a matching in this market in which school  s  with a 
capacity of one child is matched to child  i  in periods  1  and  2 . Suppose that there 
is a two-year-old child  j  in period 1 who improves if she attends  s  at period 1. In 
addition, let school  s  give a higher priority to  j  than to  i  at period 1. According to 
our definition of stability, child  j  has a justified envy; thus, the matching above is not 
stable. However, this matching could be stable according to the notions of stability 
based upon the idea of blocking pairs. For instance,  s ’s preferences can be such that 
it prefers the original matching to the matching in which it matches with  j  in period 
1 and with  i  in period 2, due to the history-dependence of its priorities. If this is the 
case, school  s  will not be a part of a coalition that blocks the original matching.23

Stability is a refinement of autarkic stability, and we believe that it is a natural 
concept that captures the meaning of justified envy in our setting. We must remark 
that the definition of stability is stronger than what Examples 2 and 3 call for. In other 
words, one can slightly weaken Definition 8 so that a matching is stable if it satis-
fies autarkic stability and is free of justified envy, as discussed in Examples 2 and 
3. However, this does not change any of the results in the next section. Given this, 
weakening the definition of stability is not beneficial from a technical perspective.

Examples 2 and 3 show that our stability concept is not equivalent to the autar-
kic stability notion if either strong rankability or IPA are not satisfied. But what if 
both of them are satisfied? In this case, it turns out that the two concepts of stabil-
ity are equivalent. Since this is a lengthy result, we refer the interested readers to 
Appendix A.

C. Mechanism and its Properties

A mechanism  φ  is a systematic process that assigns a matching for each market. 
Here, we consider direct mechanisms, i.e., each child reports her full preferences, 
and, based on these reports, the mechanism returns a matching. In each market, no 
mechanism modifies the period 0 matching corresponding to this market. In other 
words, a mechanism returns period matchings in periods  t ≥ 1  for each market. Let   
φ  i  (M)  be the pair of schools to which child  i  is matched under mechanism  φ . We 

23 Thus, our stability notion is not equivalent to Kurino’s (2009) notion of dynamic pairwise-stability. There 
are also other notions of stability in two sided dynamic marriage models, such as Kurino’s (2009) dynamic pair-
wise-stability or Damiano and Lam’s (2005) self-sustaining stability. In these notions agents are farsighted, which 
is not the case for our notions of stability. 
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will focus mainly on the strategy-proof mechanisms: i.e., the ones in which report-
ing a true preference is a weakly dominant strategy for each agent in its associated 
preference revelation game.

DEFINITION 9 (Strategy-Proofness): A mechanism  φ  is strategy-proof if the fol-
lowing condition is satisfied for all  M =  (i,   s ̅  ,  μ   0 ,  ≻ , r,  ⊳)  ∈  ,  i ∈ i , and   ≻  i  ′   

   φ  i   (i,   s ̅  ,  μ   0 , ≻, r,  ⊳)   ⪰  i    φ  i   (i,   s ̅  ,  μ   0 ,  ≻  i  ′ ,  ≻  −i  , r,  ⊳)  ,

where   ≻  −i    is the preferences of the players except  i .

The mechanisms we study in this paper collect the preference reports of one-year-
old children in each period  t ≥ 1 , and they produce a period matching for period  t  
based on the reports accumulated in periods   t ′   ≤ t . For such a mechanism, a child’s 
matching in the period when she is two depends on the reports of the children who 
are born in that period. This implies that the child must worry about the actions of all 
the children born in the future periods. In this sense, it is very difficult for children 
to choose their optimal strategies. For this reason, the class of strategy-proof mech-
anisms is very important in our setting for practical reasons.

One may worry that reporting preference profiles over pairs of schools is a big 
burden on the children. However, we will later define the notion of isolated pref-
erences, which ranks the schools (not the pairs of schools) depending on the past 
matchings. Then all the mechanisms we consider in this paper can be adjusted so 
that each child reports her isolated preferences in each period.

DEFINITION 10 (Stability and Efficiency): A mechanism  φ  is efficient (stable), if it 
yields an efficient (stable) matching in each market  M ∈  .

D. Danish Mechanism revisited

In this subsection, we revisit the Danish mechanism. For specificity, we focus on 
the Aarhus mechanism presented in Section I and show that the mechanism does not 
satisfy any of the desirable properties discussed in the previous subsection.

ExAMPLE 4 (Aarhus Mechanism): suppose there are two schools,  { s  1  ,  s  2  }  and 
each school has a capacity of one child. in each period, one child is born. Their 
preferences satisfy the following property:  ( s  1  ,  s  1  ) ≻ ( s  2  ,  s  1  ) ≻ (h,  s  1  ) ≻ ( s  2  ,  s  2  ) . 
Denote the child born in period  t  by   i  t     . if all children report truthfully, their allo-
cation in the Aarhus mechanism will be  μ ( i  1  )  =  ( s  1  ,  s  1  ) ;   μ ( i  2  )  =  ( s  2  ,  s  2  ) ; μ ( i  3  )   
=  ( s  1  ,  s  1  ) ;  …  μ ( i  k  )  =  ( s  1  ,  s  1  )   ;and  μ ( i  k+1  )  =  ( s  2  ,  s  2  )  , for  k  odd.24

24 In any given period  t , if child  i ∈  i  t−1    is allocated to   s  2    and child  j ∈  i  t    asks for a guaranteed place (see 
Section I), then, when a spot opens at school   s  1    in period  t ,  j  will have a higher priority at   s  1    than child  i . 
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Consider the following strategy: each child participates in the Aarhus mechanism 
when she is two. Each child also participates in the Aarhus mechanism when she is 
one if and only if the child from the previous generation attended school   s  2    in the 
previous period. Whenever a child participates her reported preferences rank the 
schools as follows:   s  1  , h,  s  2   .

The resulting matching from the strategy described above is that  (h,  s  1  )  for each 
child. it is easy to see that this strategy profile is an (subgame perfect) equilibrium: 
no child wants to deviate because she cannot attend school   s  1    when she is one. if she 
attends school   s  2    when she is one, then she cannot attend   s  1    when she is two because 
she will lose her priority over the younger child in that period.

Clearly, the Aarhus mechanism is not efficient as each child matching with  
( s  2  ,  s  1  )  Pareto dominates  (h,  s  1  ) . Furthermore, in each period, the younger 
child can attend school   s  2    as it has an unfilled spot. Consequently, the Aarhus 
allocation mechanism is not weakly stable. Finally, in the Aarhus mechanism, 
each child reports that  h  is preferred to   s  2   . Thus, the mechanism fails  strategy- 
proofness too.

III. Stable Matchings

Now we turn our attention to the question of whether stable matchings exist. We 
first show that if the schools’ priority rankings do not satisfy  IPA,  then the existence 
of a stable matching is not guaranteed. Later, we show that  IPA  is a sufficient condi-
tion for the existence of stable matchings.

ExAMPLE 5: Consider the following market in which iPA is violated. There are 
two schools,  s  and   s ′   , with respective capacities of one and three. in each period, 
there are two identical one-year-old children. Their preferences are strongly rank-
able and satisfy the following property:  (s, s) ≻ (h, s) ≻ ( s ′  ,  s ′  ) ≻ (h, h) .

Each period, the schools rank the children in which the highest priority groups 
are: (i) the previous period’s attendees, and (ii) two-year-old children who have not 
attended any school in the previous period. (Note that condition (2) violates iPA.)

Now we show that stable matchings do not exist in this example. By contradiction, 
suppose that  μ  is a stable matching. Then,

 (i) suppose there exist  i  and  t , such that   μ   t (i) = h . Then, because there are four 
school-age children and four spots at the two schools, at least one unassigned 
spot must exist at period  t . Let    s ̅   ∈ {s,  s ′  }  be a school with an unassigned at 
period  t . if  i ∈  i  t   , then  (  s ̅  ,  μ   t+1 (i)) ≻  i  (h,  μ   t+1 (i)) = μ(i)  due to strong rank-
ability. This means that  μ  is not stable, leading to a contradiction. if  i ∈  i  t−1   , 
then we reach a contradiction in a similar fashion.

 (ii) suppose for some  i  and  t ,  ( μ   t (i),  μ   t+1 (i)) = (s,  s ′  ) . Clearly,  i  has the high-
est priority at school  s  in period  t + 1 . in addition, as  (s, s)  ≻  i   (s,  s ′  )  by 
strong rankability, child  i  can be improved in a justified manner. This is a 
contradiction.
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 (iii) suppose for  i ∈  i  t   ,   μ   t+1 (i) = s . Then one of the following happens: (1)   
μ   t+2 (s) = j  for some  j ∈  i  t+1    or (2)   μ   t+2 (s) ≠ j  for all  j ∈  i  t+1   . in the 
former case, the matching of  j  is  ( s ′  , s) ; otherwise, we are back to case 1. 
Consequently, the matching of    j ̅   ≠ j ∈  i  t+1    is   ( s ′  ,  s ′  )  . if    j ̅    stays home at  
t + 1 , at  t + 2  she has priority over any one-year-old or  j  (who attended   s ′    
at  t + 1  ). in addition,    j ̅    prefers   (h, s)   to   ( s ′  ,  s ′  )  . Hence,    j ̅    can be improved in 
a justified manner. in case (2), either we are back to case 1 or both children 
born at   i  t+1    match with  ( s ′  ,  s ′  ) . At  t + 2 , both of these children have priority 
over any one-year-old at school  s . in addition,  ( s ′  , s)  is preferred to  ( s ′  ,  s ′  ) . 
Hence, both children can be improved in a justified manner.

In example 5, the children’s preferences are strongly rankable preferences. 
However, one can construct a similar example in which no stable matching exists 
and the children’s preferences are not strongly rankable. Hence, we conclude that the 
existence of stable matchings is not guaranteed without IPA regardless of whether 
strong rankability is satisfied or not. But with IPA, is the existence guaranteed? The 
answer to this question is positive, but first let us introduce the algorithm used for 
the existence result.

The Gale-shapley Deferred Acceptance Mechanism and its Properties.—The 
Gale and Shapley deferred acceptance algorithm (DA algorithm) was originally 
designed to deal with static two-sided matching problems. To run this algorithm at 
a certain period  t , one needs to know the schools’ priorities over all school-age chil-
dren, as well as the children’s preferences over schools. In our setting, the schools’ 
priorities are well-defined given the previous period’s matching. However, the chil-
dren’s preferences are defined over the pairs of schools. Hence, we propose a ver-
sion of the DA algorithm, in which we use “one-period preferences” for each child 
at a given period, based on the past matchings and the original preferences of the 
children over the pairs of schools (we do not want to derive one period preferences 
based on the future matchings, as the current matchings affect next period’s priority 
rankings of the schools).

For now, let us assume that at period  t ≥ 1 , we have derived the one-period 
preference relation     i  ( μ   t−1 )  for each  i ∈  i  t−1   ∪  i  t    depending on   μ   t−1   matchings. 
Let  ( μ   t−1 ) =   {   i  ( μ   t−1 )}   i∈ i  t−1  ∪ i  t     . Thus,  s   i  ( μ   t−1 ) s ′    means that, at time  t , player  i  
prefers school  s  to   s ′    given the period  t − 1  matching   μ   t−1  . Now we define stability 
in a static context, which we will use in some of our proofs.

DEFINITION 11 (Static Stability): Period  t  matching   μ   t   is statically stable under 
preferences  ( μ   t−1 )  and   μ   t−1  , if there exists no school-child pair  (s, i)  such that

 (i)  s   i  ( μ   t−1 ) μ   t (i),  

 (ii)  | μ   t (s)| <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) . 

Now we will define the one-period preferences, called isolated preferences, that 
will be used in the algorithms we consider in the paper. We construct the concept of 
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isolated preferences with the purpose of having a meaningful one-period preference 
ranking of the children. It is perhaps not controversial how a two-year-old child 
who was matched to some school in the previous period would rank the schools. 
Specifically, if child  i  was matched to school  s  in the previous period, then she ranks 
school   s ′    ahead of   s ″    only if  (s,  s ′  )  ≻  i   (s,  s ″  ) . The answer to the question of how 
one-year-old children rank the schools is not clear. In our opinion, a one-year-old 
child  i  would rank school  s  ahead of school   s ′    if  (s, s)  ≻  i   ( s ′  ,  s ′  ) . Indeed, recall that if 
 (s, s)  ≻  i   ( s ′  ,  s ′  ) , then  (s,  s ″  )  ≻  i   ( s ′  ,  s ″  )  for all   s ″   ≠  s ′   . Therefore, as long as a mech-
anism does not match  i  with  s  and   s ′    when she is one and two, respectively, it seems 
as though a one-year-old child  i  should rank  s  ahead of   s ′    in this situation. Below we 
define the isolated preferences formally.

DEFINITION 12 (Isolated Preference Relation): For given   μ   t−1  ,

 (i) the isolated preference relation for  i ∈  i  t    is the preference relation   ≻  i  1   such 
that   s ′   ≻  i  1  s ″   ,if and only if  ( s ′  ,  s ′  ) ≻  i  ( s ″  ,  s ″  )  for any   s ′   ≠  s ″   ∈   s ̅  ,  

 (ii) the isolated preference relation for  i ∈  i  t−1    is the preference relation 
  ≻  i  2 ( μ   t−1 )  depending on previous period’s matching and such that 
  s ′   ≻  i  2 ( μ   t−1 ) s ″   , if and only if  ( μ   t−1 (i),  s ′  ) ≻  i  ( μ   t−1 (i),  s ″  )  for any   s ′   ≠  s ″   ∈   s ̅   .  

Here, we remark that for any child whose preferences satisfy strong rankabil-
ity, the isolated preferences are independent of the previous period’s matching. 
Furthermore, the isolated preferences for a one-year-old child is identical to the 
ones for the two-year-old self of the same child.

We stress that in a world in which preferences do not satisfy rankability, the con-
cept of isolated preferences is not useful: it is not plausible to assume that one-year 
old children rank the schools according to her isolated preferences if there are com-
plementarities between some schools. Furthermore, in such cases it can be shown 
that a stable matching might not exist.25 Thus, our assumption that the preferences 
are rankable is key for our results.

Now we will state the formal definition of the Gale and Shapley deferred accep-
tance algorithm (henceforth, we will refer to it as the DA-IP algorithm). The algo-
rithm is the same in each period, and it only uses the matching of the preceding 
period. Recall that the matching of period  t = 0  is fixed, and will not be altered 
by the algorithm. In any period  t ≥ 1 , assume that the previous period’s matching 
is given (if  t ≠ 0 , then the previous period’s matching was obtained by the DA-IP 
algorithm). At period  t , the schools assign their spots to the all school-age children 
in finite rounds as follows.

Round 1: Each child proposes to her first choice according to her isolated pref-
erences. Each school tentatively assigns its spots to the proposers according to its 

25 Proof upon request. 
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priority ranking. If the number of proposers to school  s  is greater than the number of 
available spots   r  s   , then the remaining proposers are rejected.

In general, at

Round k: Each child who was rejected in the previous round proposes to her next 
choice according to her isolated preferences. Each school considers the pool of chil-
dren who it had been holding plus the current proposers. Then it tentatively assigns 
its spots to this pool of children according to its priority ranking. The remaining 
proposers are rejected.

The algorithm terminates when no proposal is rejected and each child is assigned 
her final tentative assignment.

Given that the children’s preferences as well as schools’ priority rankings are 
strict, it is easy to see that the DA-IP algorithm yields a unique matching. We refer 
to this matching as the DA-IP matching and use the notation   μ  DA    for it.

We denote by deferred acceptance with isolated preferences mechanism (DA-iP) 
the revelation mechanism that maps each market  M  to the matching produced by the 
DA algorithm for market  M , using isolated preferences.

With the next result we show that, when assuming IPA, stability is equivalent to 
static stability under isolated preferences.

LEMMA 1: if  μ  is stable then for all  t ≥ 1 ,   μ   t   is statically stable under isolated 
preferences and   μ   t−1  . Conversely, if for all  t ≥ 1 ,   μ   t   is statically stable under iso-
lated preferences and   μ   t−1  , then  μ = ( μ   0 , ⋯,  μ   t , ⋯)  satisfies:

 (i) autarkic stability; and

 (ii) stability if each school’s priorities satisfy iPA.

PROOF:
See Appendix C.
Lemma 1 implies that to find a stable matching, it suffices to find a stable match-

ing under isolated preferences in each period, sequentially starting from period 
1. In other words, for the purpose of finding a stable matching, one can view the 
dynamic problem of assigning children to day care centers as separate school choice 
problems in different periods. Consequently, the matching obtained from the DA-IP 
mechanism is stable (Gale and Shapley 1962 shows that the DA algorithm yields a 
stable matching in static settings). We state the result below.

THEOREM 1 (Existence of Stable Matching): The DA-iP matching satisfies autar-
kic stability. Furthermore, if the schools’ priorities satisfy iPA, then the DA-iP 
matching is stable.

As we already mentioned, Examples 2 and 3 illustrate the need of strengthen-
ing the (autarkic) stability concept if strong rankability or IPA are not satisfied. 
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However, Theorem 1 demonstrates that IPA is a sufficient condition for the exis-
tence of stable matchings even if strong rankability is not satisfied (but assuming 
rankability). In addition, Theorem 5 shows that with or without strong rankability, 
the existence of stable matchings is not guaranteed without IPA.

REMARK 1 (Special Case): An interesting special case of our problem is one in 
which all the children are born in period  0 . Then this problem is a static allocation 
problem in which two-year-old children are assigned to schools only once. in addi-
tion, the schools’ priorities are well-defined at period 1. Furthermore, each child’s 
preferences can be set to her isolated preferences at period 1. Then one can see that 
this special case of our dynamic problem is a school choice problem.26

One of the most important results in the matching literature is that the DA-IP 
matching Pareto dominates all other stable matchings.27 We study how the DA-IP 
matching compares to the other stable matchings in a dynamic environment. Our 
results are presented in detail in Appendix B. We summarize our findings in the 
following proposition.

PROPOSITION 1: The DA-iP matching does not necessarily Pareto dominate all 
other stable matchings. However, it is not Pareto dominated by any stable matching 
in any market. Moreover, if there exists a stable and efficient matching in some mar-
ket, then it must be the DA-iP matching.

IV. Strategy-Proofness and Stability

It is well-known that in static settings, the DA mechanism is strategy-proof. We 
show below, that in our dynamic setting this result no longer holds for our version 
of DA-IP. In fact, the result is much stronger: there is no mechanism that is strate-
gy-proof and stable.

THEOREM 2 (Impossibility Result): No mechanism satisfies both autarkic stability 
and strategy-proofness.

PROOF:
Consider the following example: there are four schools  {s,   s ̅  ,  s  1  ,  s  2  }  and each 

school has a capacity of one child. There is no school-age child until period  
t − 1 ≥ 1 . Suppose   i  t−1   = {i,   i ̅   } ,   i  t   = { i  1  ,  i  2  } ,   i  t+1   = { i ′   } , and   i  τ   =  Ø  
for all  τ ≥ t + 2 . The schools’ priorities satisfy IPA. In addition, any school 

26 Recall that the school choice problem is a static allocation problem in which each student has preferences 
over the schools (not over the pairs of schools), each school prioritizes all the children, and each student obtains at 
most one seat at some school. 

27 See Gale and Shapley (1962). 
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  s ′   ∈  {s,   s ̅  ,  s  1  ,  s  2  }   prioritizes the children as follows under the assumption that no 
child attended   s ′    in the previous period: 
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We consider two preference profiles that differ from each other in child   i  1   ’s pref-
erences. Each child’s preferences are strongly rankable. Child  i ’s top choice is  (s, s) , 
while child    i ̅     ’s is  (  s ̅  ,   s ̅  ) . The preferences of children   i  2    and   i ′    satisfy the following 
conditions: 
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( s  1  ,  s  1  )  

 ≻   i  2      
(s, s)

  
 ≻   i  2      

(  s ̅  ,   s ̅  )
      

( s  2  ,  s  2  )
  

 ≻   i ′    
  

(s, s)
  

 ≻   i ′    
  

( s  1  ,  s  1  )
  

 ≻   i  2    
  

(  s ̅  ,   s ̅  )
  .

Child   i  1   ’s preference ordering is   ≻   i  1    
1    under preference profile 1 and is   ≻   i  1    

2    under 
profile 2. These preferences are given as follows:
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In addition, suppose  ( s  2  , s) ≻   i  1    
1  ( s  1  ,  s  1  ) .

Step 1: Under profile 1, the only matching  μ  that satisfies autarkic stability is 
  μ   t−1 (i) =  μ   t (i) = s ,   μ   t−1 (  i ̅  ) =  μ   t (  i ̅  ) =   s ̅   ,   μ   t ( i  1  ) =  μ   t+1 ( i  1  ) =  s  1   ,   μ   t ( i  2  ) =  μ   t+1 ( i  2  ) 
=  s  2   ,   μ   t+1 ( i ′  ) = s , and   μ   t+2 ( i ′  ) =  s  2   .

PROOF OF STEP 1:
Under profile 1, the DA-IP matching is as follows:   μ   t−1 (i) =  μ   t (i) = s , 

  μ   t−1 (  i ̅  ) =  μ   t (  i ̅  ) =   s ̅   ,   μ   t ( i  1  ) =  μ   t+1 ( i  1  ) =  s  1   ,   μ   t ( i  2  ) =  μ   t+1 ( i  2  ) =  s  2   ,   μ   t+1 ( i ′  ) 
= s  and   μ   t+2 ( i ′  ) =  s  2   . We know that DA-IP matching satisfies autarkic stability. 
We now show that it is the unique matching that satisfies autarkic stability.

Let   μ ̂    be a matching that satisfies autarkic stability. It is clear that    μ ̂     t−1 (i) 
=   μ ̂     t (i) = s ,    μ ̂     t−1 (  i ̅  ) =   μ ̂     t (  i ̅  ) =   s ̅   , and    μ ̂     t+2 ( i ′  ) =  s  2   . Consequently, we obtain 
that    μ ̂     t ( i  1  ) =  s  1    because child   i  1    has higher priority in school   s  1    at period  t  than 
anyone but  i . However,  i  must match with  s  at period  t . Hence,    μ ̂     t ( i  1  ) =  s  1   . This 
implies that    μ ̂     t ( i  2  ) =  s  2   . Then   i  2    has the highest priority at school   s  2    at period 
 t + 1 . Since   s  2    is the top choice for   i  2   ,    μ ̂     t+1 ( i  2  ) =  s  2   . Consequently,    μ ̂     t+1 ( i ′  ) = s,  
which means    μ ̂     t+1 ( i  1  ) =  s  1   . Now we have shown that   μ ̂   = μ .
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Step 2: Under profile 2, the only matching that satisfies autarkic stability,   μ ̅  ,  is as 
follows:    μ ̅     t−1 (i) =   μ ̅     t (i) = s ,    μ ̅     t−1 (  i ̅  ) =   μ ̅     t (  i ̅  ) =   s ̅   ,    μ ̅     t ( i  1  ) =  s  2   ,    μ ̅     t ( i  2  ) =  s  1   , 
   μ ̅     t+1 ( i  1  ) = s ,    μ ̅     t+1 ( i  2  ) =  s  1   ,    μ ̅     t+1 ( i ′  ) =  s  2   , and    μ ̅     t+2 ( i ′  ) =  s  2   .

PROOF OF STEP 2:
Under profile 2, the DA-IP matching   μ ̅    is as follows:    μ ̅     t−1 (i) =   μ ̅     t (i) = s , 

   μ ̅     t−1 (  i ̅  ) =   μ ̅     t (  i ̅  ) =   s ̅   ,    μ ̅     t ( i  1  ) =  s  2   ,    μ ̅     t ( i  2  ) =  s  1   ,    μ ̅     t+1 ( i  1  ) = s ,    μ ̅     t+1 ( i  2  ) =  s  1   , 
   μ ̅     t+1 ( i ′  ) =  s  2   , and    μ ̅     t+2 ( i ′  ) =  s  2   . We know that the DA-IP matching   μ ̅    is a match-
ing that satisfies autarkic stability. We now show that   μ ̅    is the only one.

Let   μ ̂    be matching that satisfies autarkic stability. It is clear that    μ ̂     t−1 (i)  
=   μ ̂     t (i) = s ,    μ ̂     t−1 (  i ̅  ) =   μ ̂     t (  i ̅  ) =   s ̅   , and    μ ̂     t+2 ( i ′  ) =  s  2   . Consequently, we obtain 
that    μ ̂     t ( i  1  ) =  s  2    because child   i  1    has higher priority in school   s  2    at period  t  than   i  2   . 
This means that    μ ̂     t ( i  2  ) =  s  1   .

Now, let us argue that    μ ̂     t+1 ( i ′  ) =  s  2   . If not,    μ ̂     t+1 ( i  1  ) =  s  2   ; otherwise, child   i ′    has 
higher priority than child   i  2    at school   s  2    and   s  2    is the top choice of child   i ′   . Hence, 
this contradicts with   μ ̂    being a matching that satisfies autarkic stability. Thus, 
   μ ̂     t+1 ( i  1  ) =  s  2   . But because  ( s  2  ,   s ̅  ) ≻   i  1    

2  ( s  2  ,  s  2  )  and child   i  1    has higher priority at 
school    s ̅    than anyone but    i ̅   ,   μ ̂    satisfies autarkic stability. This is a contradiction. 
Hence,    μ ̂     t+1 ( i ′  ) =  s  2   .

Because    μ ̂     t+1 ( i ′  ) =  s  2   ,    μ ̂     t+1 ( i  1  ) = s  as   i  1    has higher priority at school  s  than   i  2   . 
Consequently,    μ ̂     t+1 ( i  2  ) =  s  1   . This means   μ ̂   =  μ ̅   .

Step 3: If a mechanism yields a matching that satisfies autarkic stability, then this 
mechanism is not strategy proof.

PROOF OF STEP 3:
If a mechanism yields a matching that satisfies autarkic stability, then it must 

allocate  ( s  1  ,  s  1  )  to   i  1    under profile 1 and  ( s  2  , s)  under profile 2. One can easily see 
that under profile 1 child   i  1    has incentive to misreports her preference as if under 
profile 2.

Theorem 2 has two important, direct consequences which we present next.

COROLLARY 1: (i) No mechanism satisfies both strategy-proofness and stability. 
(ii) The DA-iP mechanism is not strategy-proof.

PROOF:
Recall that each stable matching satisfies autarkic stability. This and Theorem 2 

prove item 1 of the corollary.
Even when strong rankability and IPA are satisfied, strategy-proofness is hard 

to achieve in our dynamic assignment problem. In static problems, a child has a 
motive to misreport her preferences only if she can obtain a better placement. This 
motive is also present in our dynamic assignment problem. To be specific, a child 
will misreport her preferences if she can improve her present placement without 
hurting her placement in the other period. This motive, as known from the school 
choice literature, is eliminated if the mechanism is the DA or Top Trading Cycles 
mechanism. However, in our setting, there is an extra motive absent in the school 
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choice problem: one might misrepresent her preferences to affect the schools’ prior-
ities in the subsequent period. This way, she could obtain a better future placement 
by (weakly) sacrificing her current one.

In the example used for the proof of Theorem 2, type 1 child   i  1    likes school  s  
better than any other school, but attending  s  in period  t  is impossible for her. Again, 
in period  t + 1 , she cannot attend  s  because child   i ′    attends  s . But observe that child   
i ′    wants to attend school   s  2    but cannot do so because child   i  2    attends   s  2   . The most 
important aspect is that child   i  2    has higher priority over child   i ′    at school   s  2    in period  
t + 1  only because she attends school   s  2    in period  t . Child   i  1    can eliminate child 
  i  2   ’s advantage over   i ′    if she attends school   s  2    in period  t . By doing this,   i  1    enables   
i ′    to attend   s  2    at  t + 1 . Ultimately, she frees a spot at school  s  for herself at  
t + 1 . This is the reason why type 1 child   i  1    has an incentive to misreport her 
preferences.

REMARK 2 (OLG Structure): For Theorem 2, the OLG structure of our model 
plays a key role. To illustrate this point, let us consider the following dynamic model 
in which all the children are born at period 1 and attend school for two periods. 
Lemma 1 is valid in this modified model; thus, the DA-iP algorithm produces a sta-
ble matching in each market. Furthermore, the DA-iP algorithm matches each child 
to the same school in periods 1 and 2 because the preferences satisfy rankability. 
Thus, in the modified model, by running the DA-iP algorithm only once in period 1 
and then by replicating period 1 matching in period 2, one obtains a stable matching 
in each market. Observe here that the mechanism corresponding to this process only 
uses the period 1 isolated preferences of the children. Consequently, the new mech-
anism is essentially a static mechanism; thus, no child can improve by misreporting 
her isolated preferences.

REMARK 3 (History-Dependent-Priorities): The assumption of history-dependent 
priorities of the schools is indispensable in Theorem 2 if the children’s preferences 
are strongly rankable. To see this point, suppose that the children’s preferences are 
strongly rankable and that the schools’ priorities are independent of the previous 
period’s matching—in particular, a child who did not attend a school in the previous 
period can have higher priority over some other child who did attend that school. in 
this case, the DA-iP mechanism must be strategy-proof. Let us discuss why this is the 
case. For the DA-iP mechanism, one has to report her preferences over the pairs of 
schools. But this, in fact, is equivalent to the case in which the school-age children 
report their isolated preferences in each period and the algorithm is run sequen-
tially because the DA-iP algorithm uses the isolated preference. As the preferences 
satisfy strong rankability and the schools’ preferences are independent of history, 
any child’s reported isolated preferences in one period do not affect her placement 
in the other period. Now recall that the DA-iP mechanism is strategy-proof in the 
static settings. Hence, by misreporting one’s isolated preferences in some period, 
she is worse off in that period without affecting her placement in the other period. 
Accordingly, no one misreports her isolated preferences. Thus, the DA-iP mecha-
nism is strategy-proof.
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REMARK 4 (Rankable Preferences): if the children’s preferences satisfy rankability 
but do not satisfy strong rankability, then an impossibility result similar to Theorem 2 
arises even if the schools’ priorities are independent of history. To see this, consider 
a market in which there are three schools and two one-year-old children  i, j  in period 
 t . Each school has a capacity of one child and the preferences of  i  and  j  satisfy 
that  ( s  1  ,  s  1  )  ≻  i   ( s  3  ,  s  1  )  ≻  i   ( s  2  ,  s  2  )  and  ( s  1  ,  s  1  )  ≻  j   ( s  2  ,  s  2  )  ≻  j   ( s  2  ,  s  1  ) . suppose 
there is another child who is two at period  t . Let this child’s most preferred option 
be   s  1    and suppose   s  1    gives its highest priority to this child. Furthermore, assume 
that school   s  2    gives priority to  i  over  j . Then the DA-iP mechanism matches  i  with 
 ( s  2  ,  s  2  )  and  j  with  ( s  3  ,  s  1  )  if both children reports their preferences truthfully. 
However,  i  can obtain  ( s  3  ,  s  1  )  by reporting   s  2    as her least preferred school. Hence, 
the DA-iP mechanism is not strategy-proof if the children’s preferences do not sat-
isfy strong rankability even if the schools’ priorities are independent of history.

REMARK 5 (Property Rights): We argued above that history-dependent priorities of 
the schools are crucial for Theorem 2. if schools’ priorities are not  history-dependent, 
then a strategy-proof and stable mechanism implies that there are markets in which 
some children will be forced out of the schools that they attended in the previous 
period. For example, in the example used in the proof of Theorem 2, child   i  2    is 
forced out of school   s  2    at period  t + 1 . Therefore, under the restriction that no two-
year-old child can be forced out of the school she attended in the previous period, 
Theorem 2 is valid even when the schools’ priorities are independent of the previous 
period’s matching.

REMARK 6 (DA-IP Mechanism and Strategy-Proofness): The DA-iP mechanism 
is strategy-proof under some restrictive set of markets   , i.e., under some restric-
tive sets of the preferences and priorities. We consider three possibilities here. The 
first case is when the cost of switching schools is very large for the children, i.e., 
 (s, s)  ≻  i   ( s ′  ,  s ″  )  for all  i ∈ i ,  s ∈   s ̅    and   s ′   ≠  s ″   ∈   s ̅   . in this case, each child’s 
goal is to obtain the best possible school when she is one and to stay in the same 
school when she is two. When the DA-iP is the implementation mechanism, each 
child achieves this goal by truthfully reporting her preferences. in practice, schools 
are heterogenous in quality and switching costs might not play such a decisive role 
in parents’ choices: the switching costs might not be prohibitively large. second, 
if the preferences are strongly rankable and the priorities of the schools favor the 
older cohort (or generation). The latter means that whenever  i ∈  i  t−1    and  j ∈  i  t   ,  
it must be that  i  ⊳  s  t   j  for every  s . This result, which is proven in Pereyra (2013), is not 
valid if the preferences are not strongly rankable (see the example used in remark 
1). Finally, the DA-iP mechanism is strategy-proof if not only the schools’ priorities 
favor the older cohort but also each school ranks the younger children in the exact 
same way. in this case, the DA-iP mechanism is equivalent to the DA-iP mechanism 
done by cohorts: in each period the DA-iP mechanism is run first among the two-
year-old children only, and after allocating the two-year-old children and adjusting 
the schools’ capacities accordingly the DA-iP is run among the one-year old -chil-
dren. Consequently, in each period the whole set of schools is available for the old 
children, but only some schools are available for the young children. since the old 
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cohort in period 1 stays in the system only for one period, no child from this cohort 
has incentive to misreport. Now let us focus on the period 1 young child who has the 
highest priority in all schools in period 1. in period 2, this child will have the highest 
priority in the schools that had no open spots for the young children in period 1. As 
a result, the DA-iP assigns this child to her most preferred pair of schools among 
those that are available to her cohort if the child reports her preferences truthfully. 
Hence, this child has no incentive to misreport. Then the second highest ranked 
child has no incentive to misreport, and so on.

V. Efficiency and Strategy-Proofness

In this section, we start pointing out that some mechanisms that are known to be 
efficient in static settings are not efficient in our setting. Then, in Section VB, we 
study the Top Trading Cycles in detail, and we propose a version of it using isolated 
preferences (TTC-IP). We show that it is neither Pareto efficient nor strategy-proof. 
Finally, in Section VC, we study a variation of the serial dictatorship mechanism, 
which is both strategy-proof and efficient.

A. Efficient Matchings

We have shown that stability and strategy-proofness may be incompatible for the 
dynamic assignment problem. In the remaining sections of this paper, we investigate 
whether strategy-proofness is compatible with efficiency. However, before doing so, 
let us consider some properties of efficient matchings.

From the school choice literature, we know that the Top Trading Cycles (TTC) 
or the Serial Dictatorship (SD) mechanisms yield efficient matchings. Hence, one 
might expect that these mechanisms when run using the isolated preferences of the 
children yield efficient matchings. In other words, one may expect that a result anal-
ogous to the result of Lemma 1 will hold for efficiency as well. However, let us show 
that this is not the case using Example 1 in which an autarkic efficient matching is 
not Pareto efficient. However, this autarkic efficient matching is produced by the 
TTC-IP mechanism using isolated preferences, which we will consider in the next 
subsection.

B. The Top Trading Cycles Mechanism

The TTC mechanism was introduced by Abdulkadiro  g ˘   lu and Sönmez (2003) for 
the context of the school choice problem.28 Next, we will state the formal definition 
of the TTC-IP mechanism.

In each period  t ≥ 2 , we assume that the preceding period’s matching is pro-
duced by the TTC-IP mechanism according to the isolated preferences of children. 

28 TTC mechanism, which is attributed to David Gale, is first considered in Shapley and Scarf (1974). 
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Recall that in period  t = 0 , the matching is exogenously given and is not affected 
by the TTC-IP mechanism. In period  t ≥ 1  :

Round 1: Each child points to her preferred school. Each school  s ∈ s  points 
to its highest ranked child. Then we look for cycles: a cycle is either (i) a set   {i, h}  , 
where  h  is  i ’s preferred school, or (ii) an ordered set   { i  1  ,  s  1  ,  i  2  ,  s  2  , … ,  i  k  ,  s  k  }   such 
that  h  is not in this set, and   s  j    is child   i  j   ’s preferred school, whereas child   i  l    is the 
highest ranked child in school   s  l−1   , for  l = 2, … , k;  and child   i  1    is the highest 
ranked child at school   s  k   . There always must be at least one cycle and each child and 
school can be a part of only one cycle. Each child in any cycle is allocated to her 
preferred school.

In general, at:

Round k: All children allocated in the previous rounds, as well as all the schools 
that have filled their capacity in the previous rounds, do not participate in step 
 k . Each remaining child points to its preferred school, among the set of schools with 
remaining spots. Each remaining school  s ∈ s  points to the highest priority child 
among the remaining children. Then we look for cycles and each child in any cycle 
is allocated to the school that she pointed to.

The process continues until all children are allocated.29

As we already hinted, the TTC-IP mechanism is not efficient. Given the impor-
tance of the TTC mechanism in the school choice problem, let us state this result in 
the following proposition.

PROPOSITION 2 (TTC-IP is not Pareto Efficient): The TTC-iP mechanism is not 
Pareto efficient.

PROOF:
Consider Example 1 and observe that  μ  is the matching from the TTC-IP mecha-

nism. As we mentioned  μ  is not efficient.
Note that in Example 1, not only the TTC-IP mechanism is not efficient, but also 

a variation of it, done by cohorts. Precisely, consider the following mechanism. 
At any period  t ≥ 1 , the children born in period  t − 1  are allocated according to 
the TTC-IP mechanism (see Abdulkadiro  g ˘   lu and Sönmez 2003). Once every child  
i ∈  i  t−1    is allocated, most schools will have less, if any, spots available. Consider 
only the schools with open spots and use the TTC-IP mechanism for the generation 

29 We point out that the version of the TTC-IP that we use is similar to the one Abdulkadiro  g ˘   lu and Sönmez 
(1999) use in the housing allocation problem with existing tenants. In both versions, the object to be assigned will 
point to its current owner, unless she already obtained another object. In the case of Abdulkadiro  g ˘   lu and Sönmez 
(1999), each house points to its current tenant unless she is already assigned a house while in our model, due to 
the fact that the schools give their highest priorities to its current enrollees, each school points to one of these chil-
dren unless all of them are assigned to a school. However, the two versions of TTC are different in the sense that 
in Abdulkadiro  g ˘   lu and Sönmez (1999), no house prioritizes the (non existing) tenants but in our model, different 
schools can prioritize the children differently. 
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born in period  t , where from the initial number of spots for each school, we have 
subtracted the number of two-year-old children already allocated. For this round, 
consider only the priority of schools over the children of generation  t .  i.e., a young 
child cannot replace an already allocated two-year-old child. This variation of the 
TTC-IP mechanism is also not Pareto efficient.

In the example below, we show that the TTC-IP mechanism is not strategy-proof.

ExAMPLE 6 (TTC-IP is not Strategy-Proof): Assume that there are four schools 
 {s,  s  1  ,  s  2  ,  s  3  },  and four children:   {i,  i  1  ,  i  2  ,  i  3  }  , with  i ∈  i  −1    and   { i  1  ,  i  2  ,  i  3  }  ∈  i  0   . 
Assume also that   i  t   =  ∅  for all  t ≥ 1 . The schools’ priorities satisfy iPA and the 
children’s preferences are strongly rankable. school    s ̅   = s,  s  1  ,  s  2  ,  s  3    prioritizes 
the children as follows assuming that these children have not attended    s ̅    in the pre-
vious period: 

    

i

  

 ⊳  s  

  

 i  2  

  

 ⊳  s  

  

 i  1  

  

 

  

 

     
 i  1    

 ⊳   s  1      
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The children’s preferences are: 
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in addition, child   i  1    prefers  ( s ′  , s)  to  ( s  1  ,  s  1  ) .
The matching resulting from the TTC-iP is   μ   0  (i)  = s ,   μ   0  ( i  1  )  =  s  1   ,   μ   0 ( i  2  ) =  s  2   , 

  μ   0  ( i  3  )  =  s  3   ,   μ   1  ( i  1  )  =  s  1   ,   μ   1  ( i  2  )  = s , and   μ   1  ( i  3  )  =  s  3   . However, if   i  1    misreports 
its preferences as  s ≻   i  1     s  2   ≻   i  1     s  1   ≻   i  1     s  3   , while all others report truthfully, the resulting 
matching is    μ ̅     0  (i)  = s ,    μ ̅     0  ( i  1  )  =  s  2   ,    μ ̅     0  ( i  2  )  =  s  3   ,    μ ̅     0  ( i  3  )  =  s  1   ,    μ ̅     1  ( i  1  )  = s ,    μ ̅     1  ( i  2  )  
=  s  3   , and    μ ̅     1  ( i  3  )  =  s  1   .

Note that under truth-telling,   i  1   ’s allocation was   ( s  1  ,  s  1  )  , while after misreport-
ing it is   ( s  2  , s)  . Thus,   i  1    has improved herself by misreporting.

Observe that the previous example shows that a variation of the TTC-IP, which is 
done by cohorts, is not strategy-proof.30

30 Kurino (2014) shows that under strongly rankable preferences, the constant TTC mechanism favoring 
existing tenants, which is based on Abdulkadiro  g ˘   lu and Sönmez’s (1999) TTC mechanism in the housing alloca-
tion model with existing tenants, is Pareto efficient and strategy-proof. Because the houses do not have priorities 
Kurino’s model, the constant TTC mechanism favoring existing tenants is not dependent on the priorities, but it 
respects the property rights’ of the older generation. Our version of TTC is based Abdulkadiro  g ˘   lu and Sönmez’s 
(2003), TTC mechanism in the school choice problem, and it depends on the schools’ priorities. In other words, 
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REMARK 7 (TTC-IP Strategy-Proofness and Efficiency): One may ask if there is 
any restriction on the priorities and preferences that would restore the efficiency 
and strategy-proofness for TTC-iP. One such case is the one in which switching the 
schools is prohibitively large for the children, i.e., if attending the same school for 
two periods is preferred by each child to attending any two different schools. Again, 
in practice, schools are heterogenous and switching costs might not be prohibitively 
large. On the other hand, priorities favoring the older generation (cohort) is not 
a solution as long as the switching cost is “reasonable,” because the TTC-iP by 
cohort is neither strategy-proof nor efficient. Another case in which TTC-iP is both 
efficient and strategy-proof occurs when the priorities are such that (i) they favor 
the older generation and (ii) the young children in each period are ranked in the 
exact same way in each school. in this case, even under rankable preferences our 
TTC-iP mechanism is both efficient and strategy-proof. To see this, first observe that 
because each school gives higher priority to the older children, the TTC-iP mech-
anism is equivalent to the TTC-iP mechanism by cohort: as long as an old child is 
not assigned under TTC-iP, all schools with open spots point to some old child. Then 
because TTC-iP is strategy-proof in the static school choice problem, in period 1, 
no old child has incentive to manipulate the TTC-iP. Now let us focus on the period 
1 young child who has the highest priority in all schools in period 1. in period 2, 
this child will have the highest priority in the schools that had no open spots for the 
young children in period 1. As a result, the TTC-iP assigns this child to her most 
preferred pair of schools among those that are available to her cohort if the child 
reports her preferences truthfully. Hence, this child has no incentive to misreport. 
Then the second highest ranked child has no incentive to misreport, and so on. This 
shows that TTC-iP is strategy-proof in this case, and in a similar way one can argue 
that the TTC-iP is Pareto efficient.

C. serial Dictatorship Mechanism

To answer the question of whether any mechanism is efficient and strategy-proof 
we will adopt the well-known SD mechanism in our setting. In our version of the 
SD mechanism, we will utilize the feature of our model that the old children of the 
current period do not participate in the system next period. This allows us to let each 
young child choose two schools (one for the period in which she is one and one for 
the period in which she is two).

Formally, in each period  t ≥ 0  children are exogenously ordered. First, recall 
that the matching of period  t = 0  is exogenous. The serial dictatorship algorithm 
runs as follows: at period 1, following the ordering for the period 0 children, the 
two-year-old children are allocated sequentially to their preferred schools from the 
set of schools that have not yet filled their capacity. Once all two-year-old children 
are allocated, following the ordering of the period 1 children, each one-year-old 
child is allocated sequentially to their most preferred pairs of schools—one for each 

the reason why Kurino (2014) and we obtain seemingly different results for TTC is because these papers consider 
different versions of TTC. 
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period—which have not filled their capacities. Here, observe that each one year old 
child finds out her allocation for two periods in period 1. Thus, in period 2, all the 
two-year-old children are already matched to schools. Consequently, in period 2, 
following the ordering of the period 2 children, each one-year-old child is allocated 
sequentially to their most preferred pairs of schools that have not filled their capac-
ities. This process is replicated in each period.

At any given period there is a finite number of school-age children, therefore 
this is a well-defined algorithm that always converges to a unique matching. The 
serial dictatorship mechanism is the revelation mechanism that implements this 
algorithm. It is easy to see that the serial dictatorship mechanism is efficient and 
 strategy-proof.31 It is strategy-proof since each child can be allocated to the best 
available menu. Moreover, it is efficient since the first child to choose in a given 
cohort can only improve if there is a school chosen by another child in the previous 
cohort that would make her better off. No child in the previous cohort would engage 
in such a trade, since all open schools were available to the older cohort and not 
chosen by them. The child with an index 2 of the young cohort cannot improve by 
trading with the first child, since the first child is already choosing the best available 
option for her. A similar argument holds for any other indexed child.

There is a shortcoming of our SD mechanism: in period 1, some two-year-old 
child could be forced out of the school she has attended in period 0.32 To overcome 
this, we can modify the SD mechanism so that it differs from the previously consid-
ered SD mechanism only in how the two-year-old children in period 1 are allocated. 
Specifically, to determine the allocations of the two-year-old children in period 1, 
we first run the TTC-IP mechanism among these children. Afterward, starting with 
the young children in period 1, we run the SD mechanism. This modified SD mech-
anism is strategy-proof and efficient.

VI. Conclusion

In this paper, we introduced the day care assignment problem. This problem is a 
dynamic version of the school choice problem in which there is entry and exit of stu-
dents over time and in which the day care centers’ priorities are  history-dependent. 
We showed that the Gale-Shapley deferred-acceptance mechanism and the  Top 
Trading Cycles mechanism—both commonly used in the school choice problem—
are not strategy-proof in the dynamic problem.

31 Kurino (2014) considers the constant serial dictatorship favoring the existing tenants (the older cohorts in our 
language), and he shows that it is a strategy-proof and efficient mechanism. In this mechanism, all the agents are 
placed on an ordering in which the older agents appear ahead of the younger agents. Then in each period, following 
this ordering, the mechanism matches sequentially each agent (who are in the alive in that period) to the house that 
is available and that is the agent’s most preferred according to her period preferences. In our setting, period pref-
erences are not well defined when the preferences are not strongly rankable. Thus, to use Kurino’s (2014) constant 
serial dictatorship mechanism favoring the existing tenants in our setting, one has to modify it so that it uses the 
isolated preferences of the children. Now it is not complicated to see that Kurino’s and our version of the serial 
dictatorships produce the same matching in each market. However, if the preferences are neither rankable and nor 
time-separable, it is not clear how one can run the constant serial dictatorship. On the other hand, ours can be run 
without any adjustment, and it will be Pareto efficient and strategy-proof. 

32 This problem does not arise for the children who are one in any period other than 0. 
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In general, we study two main questions in the paper: (i) whether stability and 
strategy-proofness are compatible with one another in our model, and (ii) whether 
Pareto efficiency and strategy-proofness are compatible. For the first question, we 
proved an impossibility result: no stable and strategy-proof mechanism exists for 
this class of dynamic matching problems. This result is particularly important in the 
context of the school choice problem, in which much attention has been given to sta-
bility and, in particular, to the DA mechanism (which has been adopted in the New 
York and Boston public school systems). For the second question, we show that a 
version of the TTC adapted to a dynamic problem is not strategy-proof nor efficient, 
but that the SD mechanism is both Pareto efficient and strategy-proof.

We offer two practical suggestions for the problem of assigning children to pub-
lic day care centers. First, the education authorities might use the DA mechanism 
period-by-period. We have shown that, under truth-telling, this mechanism is stable 
and not Pareto dominated by any other stable mechanism. Moreover, it is often the 
case that nonstrategy-proof mechanisms are implemented successfully, provided 
that the strategic issues are not severe (see Kojima and Pathak 2009 and Budish and 
Cantillon 2012, for example). When IPA is satisfied, the sophistication level needed 
for a successful manipulation of the DA mechanism is rather high.33 In addition, 
one would need to have information about the preference profile of the children 
born in the succeeding period. All this leads to an important practical question of 
how the DA-IP mechanism performs in practice. We are planning to explore this 
question in a laboratory setting. Another approach is to study the performance of the 
DA-IP mechanism in large markets, which is the main concern of a follow-up paper 
by Monte and Tumennasan (2012b). Our preliminary results indicate that if IPA is 
satisfied, the incentives for manipulation disappear as the market becomes large. 
This seems to suggest that the DA-IP mechanism could be implemented in practice, 
successfully.

The second suggestion for the practical problem of designing a centralized allo-
cation in day care centers is to use the SD mechanism. This mechanism has disad-
vantages, since it disregards the schools’ priorities. However, in addition to being 
efficient and strategy-proof, in our dynamic problem there is an important, but less 
obvious, advantage of the SD mechanism which is a notion of “fairness.” In the stan-
dard school choice problem, the SD mechanism is considered unfair because parents 
listed last are at a clear disadvantage to parents listed first. This problem with the 
Serial Dictatorship is somewhat mitigated in a dynamic assignment problem. To 
illustrate this point, consider the case in which the number of children born at every 
period is the same. The child who chooses last in her cohort will have at least half of 
the day care-spots available to her in period 2, whereas in the static problem, the last 
child to choose in the serial dictatorship mechanism might have only one option.34 
In fact, if each period has only one child (or if the number of periods that children 

33 When IPA is not satisfied (which is the case for the current Danish system), then there may be a simpler 
manipulation of the DA mechanism: by staying at home at age one, a child improves her priority ranking in all 
schools in the next period. This ultimately enables the child to go to her favorite school in the next period. 

34 This assumes that there is at least the same number of spots as there are children in a given period. Formally, 
consider the case in which there are  2n  children at every period (with  n  children being born every period) and  2n  
daycare spots available. The last child choosing in her cohort, will have  n + 1  options in her second period. In the 
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attend increases so that there is at most one child born in each period), then the 
option sets of the children are somewhat similar.

Finally, Monte and Tumennasan (2012a) show in a follow-up paper that for the 
multi-market allocation problem, the set of nonbossy and strategy-proof rules that 
implement a Pareto efficient outcome is the set of Sequential Dictatorships—a slight 
generalization of the Serial Dictatorship. This result provides further support for the 
use of the Serial Dictatorship mechanism in this dynamic environment.

Appendix

A. The Relation between Stability and Autarkic Stability

Now we will explore under what conditions, the stability concepts will coincide. 
From Examples 2 and 3, one could conjecture that stable matchings may be equiv-
alent to matchings that satisfy autarkic stability if the children’s preferences are 
strongly rankable and the schools’ priority rankings satisfy IPA. Indeed this is the 
case, as we will show in the next two lemmas.

LEMMA 2: suppose that all schools’ priorities satisfy IPA. if  μ  satisfies autarkic 
stability but is not stable, then for some period  t ≥ 1  and some school-child pair  
(s, i) ,

 (i)   μ   t (i) =  μ   t+1 (i),  

 (ii)   (s, s)  ≻  i   ( μ   t (i),  μ   t+1 (i)),  

 (iii)   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .  

PROOF:
Since  μ  is not but satisfies autarkic stability for some  t ≥ 1 , there must exist  

(s,  s ′  , i)  such that  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t+1 (i)) ,  s ≠  μ   t (i) ,   s ′   ≠  μ   t+1 (i)  and one of the 
following conditions are satisfied:

 (i)   | μ   t (s)|  <  r  s    and   | μ   t+1 ( s ′  )|  <  r   s ′     ,

 (ii)   | μ   t (s)|  <  r  s   ,   | μ   t+1 ( s ′  )|  =  r   s ′     , and, for some   j ′   ∈  μ   t+1 ( s ′  ) ,  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′     
where    μ ̅     t   is the period  t  matching with    μ ̅     t (i) = s  and    μ ̅     t ( i ′  ) =  μ   t ( i ′   )  for all   
i ′   ≠ i ∈  i   t−1  ∪  i   t  ,

 (iii)   | μ   t (s)|  =  r  s   ,   | μ   t+1 ( s ′  )|  <  r   s ′     , and, for some  j ∈  μ   t (s) ,  i  ⊳  s  t   ( μ   t−1 )j ,

static case with  2n  children and  2n  spots, the last child to choose in the serial dictatorship mechanism might have 
only one spot available. 

AQ 2
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 (iv)   | μ   t (s)|  =  r  s   ,   | μ   t+1 ( s ′  )|  =  r   s ′     , for some  j ∈  μ   t (s) ,   j ′   ∈  μ   t+1 ( s ′  )  and for 
any    μ ̅     t  ∈ M(i, j, μ) ,  i  ⊳  s  t   ( μ   t−1 )j  and  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′   .  

Case 1:  s =  s ′   . Consequently,  (s, s)  ≻  i   ( μ   t (i),  μ   t+1 (i)) . In addition,   | μ   t (s)|   
<  r  s    (conditions 1 or 2) or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s)  (conditions 3 or 4). 
Combining this with  μ  being such that it satisfies autarkic stability, one obtains that  
( μ   t (i),  μ   t+1 (i))  ≻  i   (s,  μ   t+1 (i)) . Given weak rankability, this, in turn, implies that 
if   μ   t (i) ≠  μ   t+1 (i)  then  ( μ   t (i),  μ   t (i))  ≻  i   (s, s) . Then, by transitivity of preferences, 
 ( μ   t (i),  μ   t (i))  ≻  i   ( μ   t (i),  μ   t+1 (i)) . This implies that  μ  does not satisfy autarkic sta-
bility because child  i  has the highest priority at school  s  at period  t + 1 , hence, at 
 t + 1 , she has a right to attend school  s  ahead of any other child. Therefore, 
  μ   t (i) =  μ   t+1 (i) . This is the condition we seek.

Case 2:  s ≠  s ′    and   μ   t (i) =  μ   t+1 (i) . Consequently,  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t (i)) . In 
addition,   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) . Combining this with 
the fact that  μ  satisfies autarkic stability, one obtains  ( μ   t (i),  μ   t (i))  ≻  i   (s,  μ   t (i)) . 
Recall that  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t (i)) . Hence, by transitivity,  (s,  s ′  )  ≻  i   (s,  μ   t (i)) .  
Then, by rankability,  ( s ′  ,  s ′  )  ≻  i   ( μ   t (i),  μ   t (i)) . Suppose  (s, s)  ≻  i   ( s ′  ,  s ′  ) . Then 
 (s, s)  ≻  i   ( μ   t (i),  μ   t (i))  and, by assumption,   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for 
some  j ∈  μ   t (s) . Hence, we have identified a pair  (s, i)  asked in the lemma.

Now suppose  ( s ′  ,  s ′  )  ≻  i   (s, s) . Since  μ  satisfies autarkic stability, at least one 
of the two conditions must hold: (a)  ( μ   t (i),  μ   t (i)) ≻  i  ( μ   t (i),  s ′  )  or/and (b)  | μ   t+1 ( s ′  )| 
=  r   s ′      and there exists no   j ′   ∈  μ   t+1 ( s ′  )  such that  i  ⊳   s ′    t+1  ( μ   t ) j ′   .

Suppose (a) occurs. Recall  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t (i)) , hence,  (s,  s ′  )  ≻  i   ( μ   t (i),  s ′  ) .  
Then rankability implies that  (s, s)  ≻  i   ( μ   t (i),  μ   t (i))  because  s ≠  s ′   . Observe 
that the pair  (s, i)  is the pair asked in the lemma as we already pointed out that 
 (s, s)  ≻  i   ( μ   t (i),  μ   t (i)) ,   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .

Suppose now (b) occurs but not (a). Recall that one of the four conditions listed 
in the beginning of the proof must be satisfied. Since  | μ   t+1 ( s ′  )| =  r   s ′     , 1 and 3 
are ruled out. If condition 2 is satisfied, then  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′    for some   j ′   ∈  μ   t+1 ( s ′  ) . 
Furthermore,    μ ̅     t   differs from   μ   t   only in that    μ ̅     t (i) = s . Then, by IPA,  i  ⊳   s ′    t+1  ( μ   t ) j ′   . 
This a contradiction with  b  occurring. If condition (4) is satisfied, then there must exist  
j,  j ′    such that, for any    μ ̅     t  ∈ M(i, j, μ) ,  i  ⊳  s  t   ( μ   t−1 )j  and  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′   . In particular, it 
must be true for    μ ̅     t   such that    μ ̅     t (  j  ) = h . Observe that    μ ̅     t   differs from   μ   t   only in that 
   μ ̅     t (i) = s  and    μ ̅     t ( j) = h . By IPA,  i  ⊳   s ′    t+1  ( μ   t ) j ′   . This a contradiction with  b  
occurring.

Case 3:  s ≠  s ′    and   μ   t (i) ≠  μ   t+1 (i) . Consequently,  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t+1 (i)) .  
Since  μ  satisfies autarkic stability, one of the two conditions must hold: (a) 
 ( μ   t (i),  μ   t+1 (i))  ≻  i   ( μ   t (i),  s ′  )  or/and (b)  | μ   t+1 ( s ′  )| =  r   s ′      and no   j ′   ∈  μ   t+1 ( s ′  )  with 
 i  ⊳   s ′    t+1  ( μ   t ) j ′    exists.

Suppose (a) occurs. Recall that by assumption, in Case 3,  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t+1 (i)) , 
hence,  (s,  s ′  )  ≻  i   ( μ   t (i),  s ′  ) . rankability and this imply  (s, s)  ≻  i   ( μ   t (i),  μ   t (i)) . Then,   
(s,  μ   t+1 (i))   ≻  i    ( μ   t (i),  μ   t+1 (i))   by rankability. Consider the pair  (s, i) . As pointed 
out earlier,   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) . This means that  μ  
does not satisfy autarkic stability which is a contradiction.
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Suppose now (b) occurs but not (a), therefore   ( μ   t  (i) ,  s ′  )   ≻  i   ( μ   t (i),  μ   t+1 (i)) . Recall 
that  (s,  s ′  )  ≻  i   ( μ   t (i),  μ   t+1 (i)) . In addition, one of the four conditions listed in the 
beginning of the proof must be satisfied. Since  | μ   t+1 ( s ′  )| =  r   s ′     , 1 and 3 are ruled out. 
If condition (2) is satisfied, then  i  ⊳   s ′    t+1  (  μ ̅     t ) j ′    for some   j ′   ∈  μ   t+1 ( s ′  ) . Furthermore,    μ ̅     t   
differs from   μ   t   only in that    μ ̅     t (i) = s . By IPA,  i  ⊳   s ′    t+1  ( μ   t ) j ′   . This is a contradiction 
with (b) occurring. If condition (4) is satisfied, then there must exist  j,  j ′    such that, 
for any    μ ̅     t  ∈ M(i, j, μ) ,  i  ⊳  s  t   ( μ   t−1 )j  and  i  ⊳   s ′    t+1 (  μ ̅     t ) j ′   . Fix    μ ̅     t   such that    μ ̅     t ( j) = h . 
Observe that    μ ̅     t   differs from   μ   t   only in that    μ ̅     t (i) = s  and    μ ̅     t ( j) = h . By IPA, 
 i  ⊳   s ′    t+1  ( μ   t ) j ′   . This is a contradiction with (b) occurring.

Next, we show that the stability concept for the our dynamic problem is in fact 
equivalent to the static concept of stability for a large class of problems. Precisely, 
if the children’s preferences are strongly rankable and the schools’ priorities satisfy 
IPA, the two concepts are equivalent.

THEOREM 3 (Equivalence of Autarkic Stability and Stability): suppose every 
child’s preferences satisfy strong rankability and every school’s priorities satisfy 
iPA. Then matching  μ  is stable if and only if it satisfies autarkic stability.

PROOF:
By definition, any stable matching satisfies autarkic stability. Hence, we need 

to show that any matching that satisfies autarkic stability is stable. Suppose other-
wise, i.e., there exists a matching  μ  that satisfies autarkic stability but is not stable. 
By Lemma 2, if  μ  satisfies autarkic stability but is not stable, then for some period  
t ≥ 1  and some school-child pair  (s, i) ,

 (i)   μ   t (i) =  μ   t+1 (i),  

 (ii)  (s, s)  ≻  i   ( μ   t (i),  μ   t+1 (i)),  

 (iii)   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t  ( μ   t−1 )j  for some  j ∈  μ   t (s) .  

Clearly,  (s, s)  ≻  i   ( μ   t (i),  μ   t (i)) . Moreover, each child’s preferences are strongly 
rankable, hence,   (s,  μ   t (i))   ≻  i    ( μ   t (i),  μ   t (i))  . By combining this with the third condi-
tion above, one obtains that  μ  does not satisfy autarkic stability.

B. Properties of the Gale and shapley Matching

First, we show that, in contrast to static problems, there could be multiple stable 
matchings that do not Pareto dominate one another. The following example illus-
trates this point.

ExAMPLE 7 (The DA-IP matching does not Pareto dominate other stable match-
ings in some markets): There are three schools  {s,  s  1  ,  s  2  } . All schools have a capac-
ity of one child. There is no school-age child until period  t − 1 ≥ 1 . At period  
t − 1 , only one child  i  is one year old. At period  t , there are two one-year-old 
children  { i  1  ,  i  2  } . At period  t + 1 , child   i ′    is one year old. if children    i ̅   ≠   i ̅  ′  
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∈ {i,  i  1  ,  i  2  ,  i ′  }  have not attended school    s ̅   = s,  s  1  ,  s  2    in the previous period, then 
school    s ̅    ranks child    i ̅    and child    i ̅  ′  according to the following rankings. 

   
i

  
 ⊳  s  

  
 i  1  

  
 ⊳  s  

  
 i  2  

  
 ⊳  s  

  
 i ′  
    i   ⊳   s  1       i ′     ⊳   s  1       i  2     ⊳   s  1       i  1      

i

  
 ⊳   s  2    

  
 i  1  

  
 ⊳   s  2    

  
 i  2  

  
 ⊳   s  2    

  
 i ′  
    .

Each child’s preferences are strongly rankable. Child  i ’s top choice is  (s, s) . The 
preferences of children   i  1   ,   i  2   , and   i ′    satisfy the following conditions: 

   
( s  1  ,  s  1  )

  
 ≻   i  1    

  
( s  2  ,  s  2  )

  
 ≻   i  1    

  
(s, s),

     (s, s)   ≻   i  2      ( s  2  ,  s  2  )   ≻   i  2      ( s  1  ,  s  1  ),     
( s  1  ,  s  1  )

  
 ≻   i ′    

  
( s  2  ,  s  2  )

  
 ≻   i ′    

  
(s, s) .

   

The DA-iP matching   μ  DA    is as follows:   μ  DA  t−1 (i) =  μ  DA  t  (i) = s ,   μ  DA  t  ( i  1  ) 
=  μ  DA  t+1 ( i  1  ) =  s  1   ,   μ  DA  t  ( i  2  ) =  s  2   ,   μ  DA  t+1 ( i  2  ) = s ,   μ  DA  t+1 ( i ′  ) =  s  2   , and   μ  DA  t+2 ( i ′  ) =  s  1   . 
Thanks to Theorem 1,   μ  DA    satisfies autarkic stability.

Now let us consider the following matching   μ ̅    :    μ ̅     t−1 (i) =   μ ̅     t (i) = s ,    μ ̅     t ( i  1  )  
=   μ ̅     t+1 ( i  1  ) =  s  2   ,    μ ̅     t ( i  2  ) =  s  1   ,    μ ̅     t+1 ( i  2  ) = s ,    μ ̅     t+1 ( i ′  ) =  s  1   , and    μ ̅     t+2 ( i ′  ) =  s  1   . it 
easy to check   μ ̅    is stable.

Now observe that matching   μ  DA    does not Pareto dominate matching   μ ̅    because 
child   i ′    prefers   μ ̅    to  μ . in fact,   μ ̅    is not Pareto dominated by any stable matching. To 
see this, observe that the only matching that Pareto dominates   μ ̅    is the one in which 
children 1 and 2 switch their matches in period  t . But this is not stable because child   
i  1    justifiably envies child   i ′    at  t + 1 .  

First observe that in Example 7 both IPA and strong rankability are satisfied. 
Hence, stability coincides with autarkic stability. The example above shows that 
there may exist mechanisms that produce stable matchings not Pareto dominated 
by the DA-IP matching. This is the first main distinction between the matching 
produced by the DA-IP algorithm in the school choice problem versus the matching 
produced by the DA-IP algorithm in the dynamic problem of assigning children to 
day care centers.

Given the importance of this result when compared to the static case, we state the 
result below.

THEOREM 4: The DA-iP matching does not necessarily Pareto dominate all stable 
matchings.

In light of Theorem 4, one must explore whether any stable matching Pareto 
dominates the DA-IP matching. This, indeed, is impossible which we show in the 
following proposition.
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PROPOSITION 3 (The DA-IP matching is not Pareto dominated by any stable 
matching): if each school’s priority rankings satisfy iPA, then the DA-iP matching 
is not Pareto dominated by any other stable matchings.

PROOF:
Fix a market  M = (i,   s ̅  , r,  μ   0 ,  ≻ ,  ⊳ ) , and recall each matching in this market 

has the common period 0 matching,   μ   0  .
Suppose, by contradiction, that some stable matching  μ  Pareto dominates match-

ing   μ  DA   .

Step 1: If  i ∈  i  0   , then   μ  DA  1  (i) =  μ   1 (i) .

PROOF OF STEP 1:
For any two-year-old child, her isolated preference is   ≻  i  2 ( μ   0 ) . From Lemma 1, 

we have that   μ  DA  1    and   μ   1   are stable period 1 matchings under isolated preferences 
and   μ   0  . Gale and Shapley (1962) show that   μ  DA  1    Pareto dominates every other stat-
ically stable period 1 matchings under isolated preferences and   μ   0   in terms of iso-
lated preferences. This means   μ  DA  1  (i)  ≻  i  2  ( μ   0 ) μ   1 (i)  if   μ  DA  1  (i) ≠  μ   1 (i) . By definition 
of   ≻  i  2  ( μ   0 ) ,  ( μ   0 (i),  μ  DA  1  (i))  ≻  i   ( μ   0 (i),  μ   1 (i))  if   μ  DA  1  (i) ≠  μ   1 (i) . Hence, if  μ  Pareto 
dominates   μ  DA   , then   μ  DA  1  (i) =  μ   1 (i) .

Step 2: If  i ∈  i  1   , then   μ  DA  1  (i) =  μ   1 (i) .

PROOF OF STEP 2:
Suppose   μ  DA  1  (i) ≠  μ   1 (i)  for some  i ∈  i  1   . Then, as in the proof of step 1, we 

obtain that   μ  DA  1  (i)  ≻  i  1   μ   1 (i)  or equivalently, 

(A1)  ( μ  DA  1  (i),  μ  DA  1  (i))  ≻  i   ( μ   1 (i),  μ   1 (i)) . 

The stability of   μ  DA    implies  ( μ  DA  1  (i),  μ  DA  2  (i))  ⪰  i   ( μ  DA  1  (i),  μ  DA  1  (i)) ; otherwise,   μ  DA    
does not satisfy autarkic stability as child  i  is in the highest priority group in period 
2. Now weak rankability yields  ( μ  DA  2  (i),  μ  DA  2  (i))  ⪰  i   ( μ  DA  1  (i),  μ  DA  1  (i)) . Now it is easy 
to see that 

(A2)  ( μ  DA  2  (i),  μ  DA  2  (i))  ⪰  i   ( μ  DA  1  (i),  μ  DA  2  (i))  ⪰  i   ( μ  DA  1  (i),  μ  DA  1  (i)) . 

Similarly, as  μ  is stable, we obtain 

(A3)  ( μ   2 (i),  μ   2 (i))  ⪰  i   ( μ   1 (i),  μ   2 (i))  ⪰  i   ( μ   1 (i),  μ   1 (i)) . 

Now let us show that   μ   1 (i) ≠  μ   2 (i) . Suppose otherwise. Then relations (A1) and 
(A2) yield that  ( μ  DA  1  (i),  μ  DA  2  (i))  ≻  i   ( μ   1 (i),  μ   1 (i)) . This contradicts with  μ  Pareto 
dominating   μ  DA   . Hence,   μ   1 (i) ≠  μ   2 (i) . Consequently, the preference relations in (A3) 
must be strict. Also observe that   μ   1 (i) ≠  μ  DA  2  (i)  thanks to relations (A1) and (A3).

Now let us show that  ( μ   2 (i),  μ   2 (i))  ≻  i   ( μ  DA  2  (i),  μ  DA  2  (i)) . If not, rankability and 
relation (A1) yield that  ( μ  DA  1  (i),  μ  DA  2  (i))  ⪰  i   ( μ   1 (i),  μ  DA  2  (i))  and  ( μ   1 (i),  μ  DA  2  (i)) 
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 ⪰  i   ( μ   1 (i),  μ   2 (i))  as   μ   1 (i) ≠  μ  DA  2  (i)  and   μ   1 (i) ≠  μ   2 (i) . Consequently,  ( μ  DA  1  (i), 
 μ  DA  2  (i))  ⪰  i  ( μ   1 (i),  μ   2 (i))  which contradicts that  μ  Pareto dominates   μ  DA   . Now let us 
summarize the preference relation we found so far: 

(A4)  ( μ   2 (i),  μ   2 (i))  ≻  i   ( μ  DA  2  (i),  μ  DA  2  (i))  ⪰  i   ( μ  DA  1  (i),  μ  DA  1  (i))  ≻  i   ( μ   1 (i)),  μ   1 (i)) .

From Lemma 1, we know that   μ   2   is statically stable under isolated prefer-
ences and   μ   1  . Now suppose we ran the DA-IP algorithm at period 1 under iso-
lated preferences and   μ   1  . Let us denote the resulting matching    μ ̅     2  . From Gale and 
Shapley (1962), we know that if    μ ̅     2 (i) ≠  μ   2 (i) , then    μ ̅     2 (i)  ≻  i  2  ( μ   1 ) μ   2 (i) . In other 
words,  ( μ   1 (i),   μ ̅     2 (i))  ⪰  i   ( μ   1 (i),  μ   2 (i)) . This along with relation (A1) and   μ   1 (i)  
≠  μ   2 (i)  implies that    μ ̅     2 (i) ≠  μ   1 (i) . Then by rankability,  ( μ   1 (i),   μ ̅     2 (i))  ≻  i   ( μ   1 (i),  
μ   2 (i))  implies  (  μ ̅     2 (i),   μ ̅     2 (i))  ≻  i   ( μ   2 (i),  μ   2 (i)) . Now let us update relation (A4). 

(A5)   (  μ ̅     2 (i),   μ ̅     2 (i))  ≻  i   ( μ   2 (i),  μ   2 (i))

  ≻  i   ( μ  DA  2  (i),  μ  DA  2  (i))  ≻  i   ( μ  DA  1  (i),  μ  DA  1  (i))  ≻  i   ( μ   1 (i)),  μ   1 (i) ).

Next, we will proceed to show that    μ ̅     2   is statically stable under isolated prefer-
ences and   μ  DA  1   . Let us postpone the proof momentarily to discuss its implications. 
From Lemma 1, we know that   μ  DA  2    is a stable matching under isolated preferences 
and   μ  DA  1   . In addition, it must Pareto dominate    μ ̅     2   in terms of the isolated preferences, 
since    μ ̅     2   is statically stable and the   μ  DA  2    must Pareto dominate all stable matchings 
(see Gale and Shapley 1962). Hence, if   μ  DA  2  (i) ≠   μ ̅     2 (i) , then   μ  DA  2  (i)  ≻  i  2  ( μ  DA  1  )  μ ̅     2 (i) . 
By the definition of   ≻  i  2  ( μ  DA  1  ) ,  ( μ  DA  1  (i),  μ  DA  2  (i))  ≻  i   ( μ  DA  1  (i),   μ ̅     2 (i)) . Recalling that  
( μ  DA  1  (i),  μ  DA  1  (i))  ≻  i   ( μ   1 (i),  μ   1 (i)) , we find that  ( μ  DA  1  (i),   μ ̅     2 (i))  ≻  i   ( μ   1 (i),   μ ̅     2 (i)) .  
Weak rankability and  (  μ ̅     2 (i),   μ ̅     2 (i))  ≻  i   ( μ   2 (i),  μ   2 (i))  yield  ( μ   1 (i),   μ ̅     2 (i))  ≻  i   ( μ   1 (i),  
 μ   2 (i)) . The previous three relations yield  ( μ  DA  1  (i),  μ  DA  2  (i))  ≻  i   ( μ   1 (i),  μ   2 (i)) . 
However, recall that  μ  Pareto dominates   μ  DA   . This is the contradiction we are look-
ing for. Thus, to complete the proof, it is left to show that    μ ̅     2   is statically stable under 
isolated preferences and   μ  DA  1   .

We now proceed to show that    μ ̅     2   is indeed a stable matching under isolated 
preferences and   μ  DA  1   . We already know from Assumption 1 and (A5) that, for all 
 i ∈  i  1   ,    μ ̅     2 (i)  ≻  i  2  ( μ   1 ) μ   2 (i)  if    μ ̅     2 (i) ≠  μ   2 (i) . Also, from Gale and Shapley (1962), 
we know that, for all  i ∈  i  2   ,    μ ̅     2 (i)  ≻  i  1   μ   2 (i)  if    μ ̅     2 (i) ≠  μ   2 (i) . Recall that    μ ̅     2   is stat-
ically stable matching under isolated preferences and   μ   1  . Now consider the isolated 
preferences in period 1 from   μ  DA  1    and suppose, under these isolated preferences,    μ ̅     2   
is not stable. Therefore, there must exist a school-child pair  (s, i)  such that both 
conditions are satisfied:

 (i)	 •	 if	 i ∈  i  1   , then  s  ≻  i  2  ( μ  DA  1  )  μ ̅     2 (i),  or
	 	 •	 if	 i ∈  i  2   , then  s  ≻  i  2    μ ̅     2 (i);  

 (ii)  |   μ ̅     2 (s) | < |  r  s   |  or/and  i  ⊳  s  2  ( μ  DA  1  )j  for some  j ∈   μ ̅     2 (s) .
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Because    μ ̅     2   is statically stable under the isolated preferences and   μ   1  , the condi-
tions 1 and 2 below cannot be satisfied at the same time:

 (1) (a) if  i ∈  i  1   , then  s  ≻  i  2  ( μ   1 )  μ ̅     2 (i),  or
  (b) if  i ∈  i  2   , then  s  ≻  i  1    μ ̅     2 (i) .  

 (2)  |   μ ̅     2 (s) | <  r  s    or/and  i  ⊳  s  2  ( μ   1 )j  for some  j ∈   μ ̅     2 (s) .  

Suppose  i ∈  i  1   . Then,  s  ≻  i  2  ( μ  DA  1  )  μ ̅     2 (i) . We show that in this case condition  1 (a)   
is satisfied. By the definition of   ≻  i  2  ( μ  DA  1  ) , 

  ( μ  DA  1  (i), s)  ≻  i   ( μ  DA  1  (i),   μ ̅     2 (i)) . 

If   μ   1 (i) =  μ  DA  1   , then 

  ( μ   1 (i), s)  ≻  i   ( μ   1 (i),   μ ̅     2 (i)) . 

This means that condition (1a) is satisfied. Let   μ   1 (i) ≠  μ  DA  1   . Then preference rela-
tions given in (A5), Assumption 1, 

  ( μ  DA  1  (i), s)  ≻  i   ( μ  DA  1  (i),   μ ̅     2 (i)) ,

and the fact that 

   (s, s)   ≻  i    (  μ ̅     2  (i) ,   μ ̅     2  (i) )  

imply that 

  ( μ   1 (i), s)  ≻  i   ( μ   1 (i),   μ ̅     2 (i)) . 

Hence, condition  (1a)  is satisfied. Suppose  i ∈  i  2   . Then  s  ≻  i  1    μ ̅     2 (i) . Since   ≻   1   does 
not depend on the last period’s matching, condition  (1b)  is satisfied. Therefore, 
we find that either  (1a)  or ( 1b)  is satisfied. This means that 2 cannot be satisfied. 
Clearly, it must be that  |   μ ̅     2 (s) | =  r  s   . This implies that school  s ’s priority ranking 
must satisfy  i  ⊳  s  2  ( μ  DA  1  )j  and  j  ⊳  s  2  ( μ   1 )i , for at least some  j ∈   μ ̅     2  (s)  . There are two 
cases consider:

 (i)  i ∉  μ  DA  1  (s),  or

 (ii)  i ∈  μ  DA  1  (s)  and  i ∈  i  1   .  

If case (i) happens, this implies that  j ∉  μ  DA  1  (s) ; otherwise,  j  would have the high-
est priority at school  s , hence, we reach a contradiction with  i  ⊳  s  2  ( μ  DA  1  )j . Therefore,  
j ∉  μ  DA  1  (s) . Since school  s ’s priority ranking satisfies IPA, given that  i  ⊳  s  2  ( μ  DA  1  )j  
it must be that  j ∈  μ   1 (s)  and  j ∈  i  1    to have the required reversal of school  s ’s 
 priority ranking. Then   μ  DA  1  ( j) ≠  μ   1 ( j) . This, as argued earlier in step 1, implies that  
( μ  DA  1  ( j),  μ  DA  1  ( j))  ≻  j   ( μ   1 ( j),  μ   1 ( j)) = (s, s),  where the last equality comes from the 
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fact above, that if  j ∉  μ  DA  1  (s) , it must be that  j ∈  μ   1 (s) . Now recall that  j ∈   μ ̅     2 (s) . 
Therefore, 

  ( μ  DA  1  ( j),  μ  DA  1  ( j))  ≻  j   ( μ   1 ( j),   μ ̅     2 ( j)) ,

which is a contradiction (see preference relation (A5)).
Suppose (ii) happens,  i ∈  μ  DA  1  (s) , i.e.,  s =  μ  DA  1  (i) . We know  s  ≻  i  2  ( μ  DA  1  )  μ ̅     2 (i) . 

These conditions yield 

  ( μ  DA  1  (i),  μ  DA  1  (i))  ≻  i   ( μ  DA  1  (i),   μ ̅     2 (i)) . 

This is a contradiction that we are looking for.
This completes the proof of step 2.

Step 3: The DA-IP algorithm yields a stable matching that is not Pareto domi-
nated by any other stable matchings.

PROOF OF STEP 3:
Proving step 3 is just a matter of reiterating the arguments of steps 1 and 2, 

assuming previous periods’ matchings are identical with the ones resulted from the 
DA-IP algorithm.

Now we study if any stable matching is efficient. The next proposition yields that 
unless one follows the DA-IP algorithm, then any stable matching is not efficient.

PROPOSITION 4: Consider any market in which the schools’ priorities satisfy iPA. 
Then any stable matching different from the DA-iP matching is not efficient.

PROOF:
Consider any stable matching  μ  with some period  t ≥ 1  matching that is dif-

ferent from the one that the DA-IP algorithm under isolated preferences and   μ   t−1   
yields. Consider any  i ∈  i  t   . Then   μ   t (i) =  μ   t+1 (i)  or 

  ( μ   t+1 (i),  μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t (i)); 

otherwise,  μ  is not stable because, in this case, child  i  would have the higher priority 
at school   μ   t (i)  and 

  ( μ   t (i),  μ   t (i))  ≻  i   ( μ   t (i),  μ   t+1 (i)) 

by Assumption 1.
For each child  i ∈  i  t−1   ∪  i  t   , define her preference relation to be     i  t   such that 

 s   i  t  s ′    if and only if 

  ( μ   t−1 (i), s)  ≻  i   ( μ   t−1 (i),  s ′  ) whenever i ∈  i  t−1   ,

  (s,  μ   t+1 (i))  ≻  i   ( s ′  ,  μ   t+1 (i)) whenever i ∈  i  t   
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Because  μ  is stable, there cannot exist any school-child pair  (s, i)  such that

 (i)  ( μ   t−1 (i), s) ≻  i  ( μ   t−1 (i),  μ   t (i))  or  (s,  μ   t+1 (i)) ≻  i  ( μ   t (i),  μ   t+1 (i)),  

 (ii)  |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .

In terms of   , these conditions mean that there is no school-child pair  (s, i)  such 
that

 (i)  s   i  t  μ   t (i),  

 (ii)  |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .

In other words,   μ   t   is a statically stable matching under    and   μ   t−1  .
Consider matching   μ ̅    such that    μ ̅     τ  =  μ   τ   for all  τ ≠ t  but    μ ̅     t   is the resulting 

matching from the DA-IP algorithm under    and   μ   t−1  .
From Gale and Shapley (1962), we know that    μ ̅     t   must Pareto dominate every 

other stable matching under    and   μ   t−1  . This and that   μ   t   is a statically stable match-
ing under    and   μ   t−1   imply that    μ ̅     t (i)   i   μ   t (i)  for all  i ∈  i  t−1   ∪  i  t    if    μ ̅     t (i) ≠  μ   t 
(i) . Consequently, if    μ ̅     t (i) ≠  μ   t (i)  for some  i ∈  i  t−1   , then  ( μ   t−1 (i),   μ ̅     t (i))  ≻  i   
( μ   t−1 (i),  μ   t (i)) . Similarly, if    μ ̅     t (i) ≠  μ   t (i)  for some  i ∈  i  t    then 

  (  μ ̅     t (i),  μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t+1 (i)) . 

Now consider   μ ̅    and  μ . Clearly,   μ ̅    Pareto dominates  μ  if    μ ̅     t (i) ≠  μ   t (i)  for some 
 i ∈  i  t−1   ∪  i  t   . Hence, it must be that    μ ̅     t (i) =  μ   t (i)  for all  i ∈  i  t−1   ∪  i  t   .

Consider   μ ̂    such that    μ ̂     τ  =  μ   τ   for all  τ ≠ t  but    μ ̂     t   is the resulting matching from 
the DA-IP algorithm under isolated preferences and    μ ̂     t−1  . Clearly,    μ ̅     t−1  =   μ ̂     t−1  , 
hence, the priority rankings of the schools are the same under both   μ ̅    and   μ ̂   . In 
addition, for each  j ∈  i  t−1   , the isolated preference relation   ≻  j  2 ( μ   t−1 )  is equiva-
lent to     j   . Now consider any child  j ∈  i  t   . Then under   , the relative ranking of 
  μ   t+1 ( j)  weakly improves from the one under   ≻  j  1  . In all other aspects,     j    and   ≻  j  1   are 
the same. Now recall that    μ ̅     t (i) =  μ   t (i)  for all  i ∈  i  t−1   ∪  i  t   . In addition, recall that   
μ   t (i) =  μ   t+1 (i)  or 

  ( μ   t+1 (i),  μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t (i)) . 

Therefore, under both     j    and   ≻  j  1  , the set of schools that are strictly preferred 
to   μ   t ( j)  is the same. Consequently, we obtain that under    and isolated prefer-
ences, for each  j ∈  i   t−1  ∪  i   t  , the set of schools that are strictly preferred to   μ   t ( j)  
is the same. In addition, because the DA-IP algorithm is used for both cases and 
   μ ̅     t ( j) =  μ   t ( j)  for all  j ∈  i  t−1   ∪  i  t   , it must be    μ ̅     t  =   μ ̂     t   thanks to Theorem 9 in 
Dubins and Freedman (1981). Consequently,   μ   t  =   μ ̂     t  , which contradicts that   μ   t   
differs from the matching that the DA-IP algorithm yields.
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Proposition 4 means that if any stable matching is efficient, then it must be the 
DA-IP matching. However, from Roth (1982), it is well known that the DA-IP 
matching (in static settings) is not necessarily Pareto efficient. This is still the case 
in our setting.

C. Proofs

We present here the proof of Lemma 1.

PROOF:
Necessity. Assume  μ  is stable. We need to show that for all  t ≥ 1 ,   μ   t   is statically 

stable under isolated preferences and   μ   t−1  . Suppose otherwise. Then there must 
exist  t ≥ 1  and a school-child pair  (s, i)  such that

 (i) if  i ∈  i  t   , then  s  ≻  i  1   μ   t (i)  and at least one of the following is satisfied: 
 |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) ,

 (ii) if  i ∈  i  t−1   , then  s  ≻  i  2   ( μ   t−1 )   μ   t (i)  and at least one of the following is satis-
fied:  |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .

Suppose  i ∈  i  t   . Then we are in case 1. Since  μ  satisfies autarkic stability, the 
following two conditions cannot be satisfied at the same time: (a)  (s,  μ   t+1 (i)) 
 ≻  i   ( μ   t (i),  μ   t+1 (i))  and (b)  |  μ   t (s) | <  r  s    and/or  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) . If 
(b) is not true, then this is a contradiction because  (s, i)  must satisfy the conditions 
given in case 1. Hence, assume that (b) is satisfied but (a) is not, i.e.,  ( μ   t (i),  μ   t+1 (i)) 
≻  i   (s,  μ   t+1 (i)) . If   μ   t (i) ≠  μ   t+1 (i) , Assumption 1 implies that  ( μ   t (i),  μ   t (i))  ≻  i   (s, s) . 
By the definition of   ≻   1  ,   μ   t (i)  ≻  i  1  s  which contradicts with the assumption that 
 s  ≻  i  1   μ   t (i) . Suppose   μ   t (i) =  μ   t+1 (i) . Recall that  s  ≻  i  1   μ   t (i) , hence,  (s, s)  ≻  i   ( μ   t (i),  
μ   t+1 (i)) . Recall that (b) is satisfied. Thus, by moving to school  s  in period  t , child  
i  would have the highest priority at school  s  at time  t + 1 . Hence,  μ  is not stable. 
Hence,  i ∉  i  t   .

Suppose  i ∈  i  t−1   . Then we are in case 2. Because  μ  satisfies autarkic stability, 
the following two conditions cannot be satisfied at the same time: (a)  ( μ   t−1 (i), s) 
 ≻  i   ( μ   t−1 (i),  μ   t (i))  and (b)  |  μ   t (s) | <  r  s    and/or  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) . 
If (b) is not true, then this is a contradiction because  (s, i)  must satisfy the condi-
tions given in case 2. Hence, (b) must be satisfied but (a) is not, i.e.,  ( μ   t−1 (i),  μ   t (i)) 
 ≻  i   ( μ   t−1 (i), s) . By the definition of   ≻  i  2  ( μ   t−1 ) , we have that   μ   t (i)  ≻  i  2  ( μ   t−1 )s  which 
contradicts with the assumption that  s  ≻  i  2   ( μ   t−1 )   μ   t (i) . Hence,  i ∉  i  t−1   . Therefore, 
for all  t ,   μ   t   is statically stable under isolated preferences and   μ   t−1  .

sufficiency. For any  t ≥ 1 ,   μ   t   is statically stable under isolated preferences and   
μ   t−1  . First let us show that  μ  satisfies autarkic stability. Suppose otherwise. Then, at 
some period  t ≥ 1 , there must exist a pair  (s, i)  such that one of the two conditions 
below is satisfied:

 (i) a)  (s,  μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t+1 (i)) , and
  b)  |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .  
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or

 (ii) a)  ( μ   t−1 (i), s)  ≻  i   ( μ   t−1 (i),  μ   t (i)) , and
  b)  |  μ   t (s) | <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s) .  

Suppose case 1 occurs. If  s ≠  μ   t+1 (i) , then rankability and 

  (s,  μ   t+1 (i))  ≻  i    ( μ   t (i),  μ   t+1 (i))  

yield  (s, s)  ≻  i    ( μ   t (i),  μ   t (i))  . By definition of   ≻  i  1  , we have that  s  ≻  i  1   μ   t (i) . This and  
1b  mean that   μ   t   is not statically stable under isolated preferences and   μ   t−1  . This is a 
contradiction. Suppose, on the other hand, that  s =  μ   t+1 (i) . If 

  ( μ   t+1 (i),  μ   t+1 (i))  ≻  i   ( μ   t (i),  μ   t (i)), 

then the definition of   ≻  i  1   yields   μ   t+1 (i)  ≻  i  1   μ   t (i) . This and 1b mean that   μ   t   is not 
statically stable under isolated preferences and   μ   t−1  .

Suppose  ( μ   t (i),  μ   t (i))  ≻  i   ( μ   t+1 (i),  μ   t+1 (i)) . This and Assumption 1 yield 

  ( μ   t (i),  μ   t (i))  ≻  i    ( μ   t (i),  μ   t+1 (i))  . 

Consider period  t + 1 . Then by the definition of   ≻  i  2 ( μ   t ) , we have that   μ   t (i) 
 ≻  i  2  ( μ   t ) μ   t+1 (i) . In addition, observe that child  i  has the highest priority at school   μ   t 
(i) . The last two conditions contradict that   μ   t+1   is statically stable under isolated 
preferences and   μ   t  .

Suppose case 2 occurs. By the definition of   ≻  i  2  ( μ   t−1 ) , we have that  s 
 ≻  i  2  ( μ   t−1 ) μ   t (i)  since  ( μ   t−1 (i), s)  ≻  i   ( μ   t−1 (i),  μ   t (i)) . But this and  2b  directly 
imply that   μ   t   is not statically stable under isolated preferences and   μ   t−1  . This is a 
contradiction.

We have shown that  μ  satisfies autarkic stability. Now we are left to show that  μ  
is stable if IPA is satisfied. Suppose otherwise. Then by Lemma 2, for some period  
t  and some school-child pair  (s, i) ,

 (i)   μ   t (i) =  μ   t+1 (i)  

 (ii)  (s, s) ≻  i  ( μ   t (i),  μ   t+1 (i))  

 (iii)   | μ   t (s)|  <  r  s    or/and  i  ⊳  s  t   ( μ   t−1 )j  for some  j ∈  μ   t (s)  

The first two conditions and the definition of   ≻  i  1   yield  s  ≻  i  1   μ   t (i) . This and the 
third condition imply that   μ   t   is not statically stable under isolated preferences and   μ   t−1  .
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 AuTHOr QuEriEs 46

PLEASE ANSWER ALL AUTHOR QUERIES (numbered with “AQ” in the 
margin of the page). Please disregard all Editor Queries (numbered with “EQ”  
in the margins). They are reminders for the editorial staff.
AQ# Question Response

1. I changed IPA to roman here and 
elsewhere it is not in a block of italic 
text. There does not seem to be a reason 
for it to be italicized.

2. “Since μ is not....” what?

3. Changed to 1 and 2 since in previous 
sentence you say conditions 1 and 2 
below.

4. Note: Changed to (1a) and (1b).
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