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We address the propagation and hadronization of a struck quark by studying the gauge invariance of the 
color-averaged cut quark propagator, and by relating this to the single inclusive quark fragmentation 
correlator by means of new sum rules. Using suitable Wilson lines, we provide a gauge-invariant 
definition for the mass of the color-averaged dressed quark and decompose this into the sum of a 
current and an interaction-dependent component. The latter, which we argue is an order parameter 
for dynamical chiral symmetry breaking, also appears in the sum rule for the twist-3 Ẽ fragmentation 
function, providing a specific experimental way to probe the dynamical generation of mass in Quantum 
Chromo Dynamics.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the crucial properties of the strong force is confinement, 
namely the fact that partons cannot exist as free particles outside 
of hadrons. As a consequence, any individual parton struck in a 
high-energy scattering process and freed from its parent hadron 
must transform into at least one hadron. During this hadronization 
process, the colored and much lighter parton interacts with the 
surrounding matter and the vacuum to produce massive and col-
orless hadrons. Hadronization is thus tightly connected to the dy-
namical generation of the mass, the spin, and the size of hadrons, 
but the details of the quark-to-hadron transition are still unknown. 
Unraveling hadronization dynamics is not only of fundamental im-
portance to understand the nature of visible matter, but also to 
tackle hadron tomography studies at current and future facilities, 
such as the 12 GeV upgrade at Jefferson Lab [1] and a future US-
based Electron-Ion Collider [2], where measuring the transverse 
momentum of one final state hadron is crucial to provide a han-
dle into the transverse motion of quarks and gluons in the hadron 
target [3–10].
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In this letter, we address the propagation and hadronization 
of a struck quark by studying the gauge invariance properties of 
the “inclusive jet correlator” defined in Ref. [11–14], i.e., the color-
averaged cut quark propagator supplemented by suitable Wilson 
lines, and by relating this by means of sum rules to the fragmenta-
tion correlator [15] utilized in Quantum Chromo Dynamics (QCD) 
to describe the semi-inclusive transition of a quark into a single 
hadron.

In particular, through the Dirac decomposition of the jet corre-
lator, we provide a gauge-invariant definition of the jet mass M j
that was previously introduced in Ref. [14]. In this letter, we elu-
cidate for the first time its nature and properties, recognizing that 
M j can be decomposed into the sum of the current quark mass 
and of an interaction-dependent “correlation mass”. Thus the jet 
correlator can also be interpreted as a color-averaged propagator 
for a dressed quark.

We find that the jet mass and the correlation mass are experi-
mentally accessible through sum rules for the unpolarized collinear 
twist-3 E and Ẽ fragmentation functions (FFs). A similar sum rule 
for the D̃⊥ FF also supplies information on the average transverse 
momentum of the produced hadrons. This letter focuses on those 
FFs whose sum rules encode in a quantitative way the intimate 
connection between hadronization and the dynamical generation 
of mass and momentum, providing one with a novel way to quan-
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tify the quark dressing process, the dynamical breaking of the chi-
ral symmetry, and the nature of the QCD vacuum.

2. The inclusive jet correlator

Let us consider the unintegrated color-averaged gauge-invariant 
cut propagator for a quark of momentum k:

�i j(k; w) = Disc
∫

d4ξ

(2π)4
eik·ξ

× Trc

Nc
〈�|T W1ψi(ξ)ψ j(0)W2|�〉 ,

(1)

where |�〉 is the interacting QCD vacuum, and, for simplicity, we 
omitted the flavor index of the quark field ψ .

Gauge invariance is implemented via the Wilson lines W1 ≡
W (∞, ξ ; w) and W2 ≡ W (0, ∞; w), and the time-ordering opera-
tor T exchanges, when needed, the ψ and ψ fields as well as the 
ending point ξ of the Wilson line W1 and the starting point 0 of 
W2. The vector w will be used to specify the shape of the path in 
spacetime.

Thanks to the color trace, we can perform a cyclic permuta-
tion of the fields. The operator becomes ψi(ξ) ψ j(0) W (0, ξ ; w), 
where the two Wilson lines are now combined into a single one: 
W (0, ξ ; w) = W2 W1. We consider W = W2 W1 to be a staple-like 
Wilson line, and the vector w defines the longitudinal direction. 
Let us now introduce the light-like vectors n+ and n− such that 
n+ ·n− = 1. For sake of simplicity, in this treatment we restrict our 
attention to the case w = n+ [15], but the techniques discussed 
in this paper can in principle be applied also to an off-the-light-
cone vector w [12,16]. Accordingly, W is a staple-like Wilson line 
running along the n+ direction to infinity, then jolting in the n−
direction and the plane transverse to n± , and running back from 
infinity again along the n+ direction:

W (0, ξ ;n+) = U[0+,0−,0T ;∞+,0−,0T ]
× U[∞+,0−,0T ;∞+, ξ−, ξT ]
× U[∞+, ξ−, ξT ; ξ+, ξ−, ξT ] . (2)

On the RHS we have specified the light-cone coordinates of the 
starting and ending points and we have left the dependence on n+
implicit. In Eq. (2) each U represents one of the straight segments 
of the staple:

U[a;b] = P exp
(

− ig

b∫
a

dzμ Aμ(z)
)

, (3)

where z runs in a straight line from a to b, P denotes the path-
ordering operator, and the square brackets are used to emphasize 
the straightness of the path.

In this letter, we study the cut propagator � as an object of in-
trinsic theoretical interest in a formal twist expansion in powers 
of 1/k− . This can be justified in scattering processes with a hard 
scale, such as the 4-momentum transfer Q in deep inelastic scat-
tering. In such processes, the n± vectors are determined by the 
initial or final state momenta, and k− ∝ Q 	 kT 	 k+ . Our consid-
erations will be, however, process independent.

By taking the discontinuity (Disc) of the propagator – or its cut, 
in diagrammatic terms – Eq. (1) can be interpreted as a gauge-
invariant inclusive quark-to-jet amplitude squared, or “inclusive jet 
correlator” in short, in which all the quark hadronization products 
cross the cut and are on-shell [11–14,17]. The adjective “inclusive” 
is to stress that none of the jet’s constituents is actually measured, 
hence the absence of an axis and radius in Eq. (1), contrary to 
semi-inclusive definitions of jets [18–23].

The color averaging of the initial-state quark, implemented as 
Trc[. . . ]/Nc in Eq. (1), arises naturally in QCD factorization the-
orems and in the definition of the fragmentation correlator, to 
which the cut quark propagator � is connected through the sum 
rules we will prove later. In our analysis, color-averaging plays a 
crucial role, technically, as it enables a spectral decomposition of 
the cut propagator �. At the conceptual level, it implements the 
color neutralization that has to take place in order for all the states 
propagating through the cut to be on-shell hadrons, as confine-
ment dictates for a physical process. Therefore, Eq. (1) can also 
be interpreted as a color-averaged (or color-screened) version of the 
gauge-invariant Feynman propagator for a dressed quark with four-
momentum k.

3. Spectral decomposition

The cut propagator � can be given a spectral representation by 
rewriting Eq. (1) as a convolution of a quark bilinear S̃ and the 
Fourier transform W̃ of the Wilson line W :

�i j(k) = Disc
∫

d4 p
Trc

Nc
〈�|̃Sij(p)W̃ (k − p)|�〉 , (4)

where

S̃ i j(p) =
∫

d4ξ

(2π)4
eiξ ·p T ψi(ξ)ψ j(0) , (5)

W̃ (k − p) =
∫

d4ξ

(2π)4
eiξ ·(k−p) T W (0, ξ) . (6)

In Eq. (5), the operator T acts as an ordinary time-ordering oper-
ator, while in Eq. (6) it acts only on the endpoints of the path for 
the Wilson line, orienting this from 0 to ξ or vice versa.

The quark operator S̃ can furthermore be decomposed in Dirac 
space assuming invariance under Lorentz and parity transforma-
tions:

S̃ i j(p) = ŝ3(p2)/pij +
√

p2 ŝ1(p2)Ii j , (7)

where we refer to ŝ1,3 as “spectral operators”. In principle, when 
working in an axial v · A = 0 gauge, we should also add a struc-
ture proportional to /v to the right hand side of Eq. (7) [24], where 
v is the vector used to specify the gauge choice, which, in prin-
ciple, can be different from the vector w used to construct the 
Wilson line. However, in our explicit calculations we adopt the 
light-cone gauge, v = n+(= w), and, in this specific case, this ad-
ditional gauge-fixing term would only contribute at twist-4 level, 
which is not relevant to the matter discussed in this letter.

We can obtain a connection with the usual Källen-Lehman 
spectral representation of the (gauge-variant) quark propaga-
tor [13,25,26] by noticing that the quark’s Feynman propagator 
in momentum space is given by the expectation value of S̃ on the 
interacting vacuum. It is then possible to write

Trc

Nc
〈�|̃S(p)|�〉 =

+∞∫
−∞

dμ2

(2π)4

i

p2 − μ2 + iε

×
{
/p ρ3(μ

2) +
√

p2 ρ1(μ
2)

}
θ(μ2) . (8)

Using the operator decomposition for S̃ given in Eq. (7) and the 
Cutkosky rule [27,28], we can then connect the spectral operators 
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ŝ1,3 to the chiral-odd and -even Källen-Lehman spectral functions 
ρ1,3:

(2π)3 Disc
Trc

Nc
〈�|ŝ1,3(p2)|�〉 = ρ1,3(p2) θ(p2) θ(p−) . (9)

4. The TMD inclusive jet correlator

It is useful to consider the cut quark propagator integrated over 
the plus component of the partonic momentum [14],

J i j(k
−,kT ) ≡ 1

2

∫
dk+ �i j(k) , (10)

where the time ordering in Eq. (1) is now trivial since ξ− = 0 [29,
30]. Likewise, the Wilson line (2) will be evaluated at ξ− = 0. As 
explained later, this integrated correlator is also of interest for the 
derivation of sum rules for fragmentation functions.

The Transverse Momentum Dependent (TMD) correlator J can 
be decomposed in Dirac structures, with coefficients determined 
by Dirac projections of � defined as

J [
] ≡ 1

2

∫
dk+Tr

[
�




2

]
, (11)

where 
 is a generic Dirac matrix and Tr represent the trace on the 
Dirac indexes. The structures of interest for the present discussion 
are:

α(k−) ≡ J [γ −] = k−

ki
T

J [γ i ] , (12)

ζ(k−) ≡ k−

�
J [I] , (13)

where � is a scale with the dimension of a mass introduced for 
power counting purposes. The kinematic dependence of α and ζ
on k− can be justified as follows. The �(k) correlator can be ex-
panded on a basis of Dirac matrices, where the coefficients are, 
in principle, functions of all the independent scalars that one can 
build with the available Lorentz vectors, k, n± [9,31], for example 
k · n+ and k2. Calculating J [γ −] corresponds to integrating over k2

the coefficient of � associated to the /k Dirac structure. Since this 
coefficient is only a function of k− and k2, the result is a simple 
k− dependence for α. A similar argument applies to the definition 
of ζ .

The integrated cut quark propagator can then be decomposed 
up to terms of O(�2/(k−)2) as:

J (k−,kT ) = 1

2
α(k−)

[
γ + + /kT

k−
]
+ �

2k− ζ(k−)I . (14)

The coefficient α can be calculated directly from the defini-
tion (12), using the convolution (4) and the spectral decomposi-
tion (9). The details are collected in the Appendix. The transverse 
Wilson line drops out after integration over d2 pT in Eq. (4). More-
over, choosing the light-cone gauge A · n+ = 0 further simplifies 
the calculation because the longitudinal Wilson lines reduce to the 
unity matrix in color space. The result is:

α(k−) = θ(k−)

2(2π)3

{ +∞∫
0

dp2ρ
lcg

3 (p2)

}
= θ(k−)

2(2π)3
, (15)

where we have used the gauge-independent normalization prop-
erty 

∫ +∞
0 dsρ3(s) = 1 [26] and the superscript lcg stresses the use 

of the light-cone gauge. This confirms that α is a function of k−
only. The θ(k−) function factored out in Eq. (15) corresponds to 
four-momentum conservation, namely to assuming that the parti-
cles passing the cut all have physical four-momenta.

Analogously, we can rewrite the coefficient of the chiral-odd 
Dirac structure as

ζ(k−) = θ(k−)

2(2π)3

M j(k−)

�
, (16)

where M j is a gauge-invariant “jet” mass term, potentially function 
of k− . As we are going to discuss, this term characterizes the non-
perturbative generation of mass in the fragmentation of the quark 
to the inclusive jet.1

To illustrate the physical meaning of M j , we calculate ζ in the 
light-cone gauge A · n+ = 0. The calculation follows closely the 
strategy discussed for α in the Appendix. We obtain:

ζ(k−) = θ(k−)

2(2π)3�

{ +∞∫
0

dp2
√

p2ρ
lcg

1 (p2)

}
, (17)

which justifies the normalization chosen in Eq. (16). The gauge-
invariant M j mass has a particularly simple and k−-independent 
form in this gauge, and is completely determined by the first mo-
ment of the spectral function ρ lcg

1 :

M j =
+∞∫
0

dμ2
√

μ2 ρ
lcg

1 (μ2) . (18)

The integral at the right hand side is summing over all the discon-
tinuities of the quark propagator. In the light-cone gauge, therefore, 
M j can be interpreted as the average mass generated by the chi-
rality flipping component of the quark-to-jet amplitude squared 
(however, one has to be careful with a probabilistic interpreta-
tion because, in a confined theory, the spectral functions are not 
guaranteed to be positive definite). Choosing another gauge, the 
right hand side of this equation would also receive contributions 
from the Wilson line, and its physical interpretation would be 
less immediate. Interpretation aside, we stress that M j is gauge-
invariant, thanks to the gauge invariance of the operator � in 
Eq. (1), and distinct from the average invariant mass of the frag-
mented hadrons. We also note that under renormalization M j
would acquire an additional scale dependence.

Putting all elements together, up to twist 3 we find

4(2π)3 J (k−,kT ) =
{
γ + + M j

k− I + /kT

k−
}

θ(k−) . (19)

The jet correlator can thus be directly compared to the cut quark 
propagator with current quark mass mq , but now depends on the 
non-perturbative dressed quark mass M j .

Being related to the trace of the cut propagator, the mass M j
is intrinsically different from the mass function which appears 
in non-perturbative treatments of the quark propagator [32,33]. 
M j is gauge invariant and scale dependent, whereas the mass 
function is gauge dependent, but renormalization group invari-
ant. Nonetheless, being a scale that characterizes the physics of 
a color-screened dressed quark, it also provides a window on color 
confinement.

Remarkably, the gauge-invariant mass M j is also experimen-
tally accessible because it contributes explicitly to the mass sum 
rules for the twist-3 fragmentation functions E and Ẽ that we shall 
prove in the following.

1 The “jet mass” M j was labeled Mq in Ref. [14] to stress its quark flavor depen-
dence.
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5. Sum rules for single-hadron fragmentation functions

The unintegrated correlator describing the fragmentation of a 
quark into a single unpolarized hadron is [15,29,31,34–36]:

�h
i j(k, Ph) =

∑
Sh

∫
d4ξ

(2π)4
eik·ξ

× Trc

Nc
〈�|T W1ψi(ξ)a†

h(Ph Sh)ah(Ph Sh)ψ j(0)W2|�〉 ,

(20)

where a†
h and ah create and destroy a hadron h with momentum 

Ph and spin Sh .
Integrating over the suppressed quark momentum component 

k+ [29,37,38], one defines the TMD quark-to-single-hadron frag-
mentation correlator:

�h
i j(z, P h⊥) =

∫
dk+

2z
Disc [�h

i j(k, Ph)]k−=P−
h /z , (21)

where, in the parton frame, kT = 0 and P h⊥ is the hadronic trans-
verse momentum relative to the quark [16,36], and 0 < z < 1 if the 
considered discontinuity is in the s-channel of the associated scat-
tering amplitude [29,38]. The parametrization of this correlator in 
terms of TMD FFs is known up to twist 3 [15,31]. Here we are only 
interested in

�h
i j(z, P h⊥) = γ +

2
Dh

1 + Mh

2P−
h

Eh + /P h⊥
2zP−

h

D⊥ h , (22)

where Dh
1 is the unpolarized twist-2 TMD FF and Eh and D⊥ h are 

the unpolarized twist-3 TMD FFs.
We can now derive a master four-momentum sum rule for un-

integrated correlators, from which we can later obtain sum rules 
for specific fragmentation functions. Let’s consider the quantity

∑
h

∫
d4 Ph

(2π)4
(2π)δ(P 2

h − M2
h) Pμ

h �h(k, Ph) , (23)

which, naively, can be interpreted as the average hadronic four-
momentum produced during the hadronization of the parton. In-
troducing the operator associated with the vector Pμ

h [39],

P̂
μ =

∑
h, Sh

∫
dP−

h d2 P h⊥
2P−

h (2π)3
Pμ

h â†
h(Ph, Sh)âh(Ph, Sh) , (24)

and relying on its commutation relation 
[
O(ξ), P̂

μ] = i∂μO(ξ), 
one can relate Eq. (23) to the Fourier transform of the derivative 
of the matrix element in Eq. (1). Furthermore, integrating by parts 
with vanishing boundary conditions for the fields, one obtains:

∑
h

∫
d4 Ph

(2π)3
δ(P 2

h − M2
h)Pμ

h �h(k, Ph) = kμ �wc(k) , (25)

where the subscript wc implies considering � in Eq. (1) without 
the discontinuity. The relation holds true for all the components μ, 
but only for μ = −, 1, 2 there is a connection to the fragmentation 
functions.

We can now obtain sum rules for the fragmentation functions 
by integrating both sides of Eq. (25) in the parton frame over the 
suppressed momentum component k+ , calculating their disconti-
nuity [29,37,38], and using suitable Dirac projections of the result. 
Since the sum over the hadron spin Sh is fundamental in the ma-
nipulations involving the momentum operator (24) [39], we can 
only obtain sum rules for FFs involving unpolarized hadrons. In 
particular, for 
 = {γ − , I , γ i}, and suitably choosing μ = − or 
μ = i, we obtain:

[
 = γ − ]
∑
h,Sh

∫
dzz Dh

1(z) = 1 , (26)

[
 = I ]
∑
h,Sh

∫
dzMh Eh(z) = M j , (27)

[
 = γ i ]
∑
h,Sh

∫
dzM2

h D⊥(1)h(z) = 0 . (28)

Note that we identified the integrated TMD FFs f = Dh
1, E

h

with their collinear counterpart, i.e., f (z) ≡ ∫
d2 P h⊥ f (z, P 2

h⊥), 
which is formally correct in the context of models of QCD 
at low energies (given specific regularization prescriptions for 
the integral over the transverse momentum) and for bare, i.e.
non-renormalized, distributions in perturbative QCD. We fur-
thermore defined the first moment of any FF f as f (1)(z) =∫

d2 P h⊥[P 2
h⊥/(2z2M2

h)] f (z, P 2
h⊥) [36].

Since these arguments are related to the conservation of the 
partonic four-momentum encoded in Eq. (25) and on the sym-
metry properties of the correlators � and �, we expect these 
momentum sum rules to be valid in form also at the renormal-
ized level in perturbative QCD. In fact, renormalization is known 
to preserve Eq. (26) [16,40], and we will address quantitatively the 
renormalization of the other sum rules in future works.

Eq. (26) is the well-known momentum sum rule for the un-
polarized twist-2 FF, and encodes the conservation of the longi-
tudinal momentum in the fragmentation process [40]. The sum 
rule (27) was first introduced in Ref. [14], but it is proven here 
for the first time in field theory. It generalizes the sum rule pro-
posed in Ref. [41], which however neglected the non-perturbative 
component of the dressed quark mass. We refer to Eq. (27) as the 
“mass sum rule” because of its physical interpretation: the non-
perturbative color-screened dressed quark mass M j corresponds to 
the average of all the possible masses of the particles produced 
in the hadronization of the quark, weighted by the chiral-odd 
collinear twist-3 fragmentation function Eh(z). The sum rule (28)
is new, and encodes the conservation of the hadronic transverse 
momentum relative to the momentum of the fragmenting quark.

6. Twist-three fragmentation and the dynamical component of 
the jet mass

Let us now consider the equations of motion relations discussed 
in Ref. [15], that relate the twist-2 and the twist-3 fragmentation 
functions. In particular, we need

Eh = Ẽh + z
mq

Mh
Dh

1 , D⊥ h = D̃⊥ h + zDh
1, (29)

where the functions with a tilde are related to the parametriza-
tion of the dynamical twist-3 quark-gluon-quark correlator of type 
�̃α

A [15] and mq is the current quark mass.
Within the “Wandzura-Wilczek (WW) approximation” [42], 

namely assuming that the Ẽ , D̃⊥ FFs are negligible compared to 
the quark-quark FFs without the tilde, M j reduces to the current 
quark mass, as can be seen by setting Ẽ = 0 in Eq. (29) and us-
ing the sum rules (26) and (27). This suggests a decomposition of 
M j into the sum of the current quark mass and of an interaction-
dependent (or dynamical) mass mcorr

q generated by quark-gluon-
quark correlations, which we name “correlation mass”:

M j = mq + mcorr
q . (30)
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In analogy with the generation of the quark mass induced by 
dynamical chiral symmetry breaking [32,33], we expect mcorr

q =
O (�C Q D). For light quarks, therefore, M j might be substan-
tially larger than the current quark mass mq . Combining the sum 
rules (26) and (27) with Eq. (29) and (30) we obtain:∑
h Sh

∫
dzMh Ẽh(z) = mcorr

q , (31)

and one clearly sees that mcorr
q is generated by the interaction-

dependent quark-gluon-quark correlations encoded in the Ẽ func-
tion. Thus, Eq. (31) generalizes the sum rule 

∫
dzẼ = 0 discussed 

in Ref. [15] to the non-perturbative case.
The correlation mass vanishes when neglecting quark-gluon-

quark correlations, as in the already discussed WW approximation. 
However, when interactions are considered, the spectral represen-
tation (18) shows that mcorr

q and M j receive contributions from all 
possible propagating hadronic states, including baryons. As a con-
sequence, contrary to mq , we expect that mcorr

q and M j do not 
vanish even in the chiral limit. Therefore, they can also be con-
sidered order parameters for dynamical chiral symmetry breaking 
and are moreover experimentally accessible, at least in principle, 
via the mass sum rule for the E and Ẽ FFs.

Finally, combining the sum rules (26) and (28) with the D-type 
equation of motion in Eq. (29), we obtain:∑
h Sh

∫
dzM2

h D̃⊥ (1) h(z) = −
∑
h Sh

∫
dzz M2

h D(1) h
1 (z)

≡ −1

2
〈P 2

h⊥/z〉 . (32)

This new sum rule provides an experimental way of accessing 
the average squared transverse momentum acquired by unpolar-
ized hadrons fragmenting off an unpolarized quark, and probes 
the dynamical nature of the hadronization process in analogy with 
the way the sum rule for Ẽ probes dynamical chiral symmetry 
breaking. Indeed, the transverse momentum acquired during the 
hadronization is generated by the quark-gluon-quark correlations 
and would vanish in the absence of these, as it can be directly 
checked assuming the WW approximation. Similar sum rules in-
volving transversely polarized quarks or hadrons have been dis-
cussed in Refs. [36,43].

7. Summary and outlook

With the jet mass M j defined in Eqs. (13) and (16), we have 
for the first time proposed a gauge-invariant definition of a color-
screened dressed quark mass, which is furthermore experimentally 
accessible by using the proposed sum rules (27) and (31) for twist-
3 collinear FFs. In perturbation theory, M j is proportional to the 
current quark mass, but in the full theory it remains non-zero also 
in the chiral limit. Therefore we also recognize M j as an order pa-
rameter for dynamical chiral symmetry breaking. This provides a 
novel connection between hadronization and the dynamical gener-
ation of mass in QCD.

The dynamical component of the jet mass, quantified by the 
correlation mass mcorr

q in Eq. (30), is generated by the quark-gluon-

quark correlations encoded in the Ẽ fragmentation function. The Ẽ
FF, and thus the sum rule (31) connecting this to mcorr

q , can be 
experimentally accessed by looking at chiral odd observables at 
twist-3 level and higher in semi-inclusive hadron production in po-
larized electron-hadron scattering, electron-positron annihilation, 
and hadronic collisions. As proposed in Ref. [14,44], the correla-
tion mass itself may also directly contribute to the inclusive DIS g2
structure function at large Bjorken x, and to an analogous asymme-
try in electron-positron induced dihadron production. More gener-
ally, in scattering processes, the jet mass M j (rigorously defined 
as the trace of the gauge-invariant cut quark propagator) appears 
to play a similar phenomenological role to that of the constituent 
mass in quark models.

With the sum rule (32) we are also suggesting that the trans-
verse momentum acquired during the hadronization process is a 
fully dynamical quantity, namely it is generated by the quark-
gluon-quark correlations and it vanishes in the absence of these. 
However, like for Eq. (31), this interpretation needs to be corrobo-
rated by a study of the renormalization properties of the involved 
operators. Such a sum rule could be, in principle, experimentally 
accessed at twist-2 level through the TMD FF Dh

1, about which lim-
ited information is so far available [8,45–48].

Finally, we note that the master sum rule (25) and the calcula-
tional techniques we have introduced have a general applicability. 
In particular, we expect the convolutional spectral representation 
of the quark correlator to be also applicable to the study of the 
gauge invariance of other correlators, for example the recently in-
troduced virtuality-dependent parton distributions [49] that play 
an important role in the direct lattice QCD calculation of PDFs in 
momentum space [50,51]. Moreover, our methods are not limited 
to Wilson lines on the light-cone, making their domain of applica-
bility potentially wide.
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Appendix. Calculation of the α coefficient

We outline here the steps involved in the calculation of the γ −
projection of the correlator J in Eq. (10).

Using the definition of α given in Eq. (12) and the convolution 
representation for � in Eq. (4) and (7), we find:

α(k−) =
∫

dk+Disc
∫
M

d4 p
Trc

Nc
〈�|ŝ3(p2)p−W̃ (k − p)|�〉 (33)

= Disc
∫
R

dp2
∫
R

dp−

2

× Trc

Nc
〈�|ŝ3(p2)

∫
dξ+

2π
eiξ+(k−−p−)Wcoll(ξ

+)|�〉 ,

where the integration domain for p is the whole Minkowski space 
(M) and we decompose the integral as d4 p = dp2 d2 pT dp−/2p− . 
From the first to the second line we used Eq. (6) and performed 
the integrations over k+ and pT , fixing ξ− = 0 and ξ T = 0 so that 
the Wilson line reduces to the collinear Wilson line Wcoll(ξ

+) ≡
W (0+, 0−, 0T ; ξ+, 0−, 0T ). Accordingly, we lose any kT depen-
dence for the α coefficient, and the same argument applies to 
the calculation of the ζ coefficient. Next, we choose the light-cone 
gauge A− = 0 so that the collinear Wilson line reduces to the unity 
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matrix in color space. Finally, performing the integration over ξ+
we obtain:

α(k−) = Disc
∫
R

dp2
∫
R

dp−

2

Trc

Nc
〈�|ŝ3(p2)|�〉δ(k− − p−)

=
∫
R

dp2
∫
R

dp−

2
δ(k− − p−){(2π)−3ρ3(p2)θ(p2)θ(p−)}

(34)

= 1

2(2π)3

{ +∞∫
0

dp2ρ3(p2)

}
θ(k−) = θ(k−)

2(2π)3
,

where we have used the representation for the spectral operator 
ŝ3 given in Eq. (9), and in the last step we used the normaliza-
tion property for 

∫ +∞
0 dμ2ρ3(μ

2) = 1. We remark that the only 
dependence on k− resides in the theta function.
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