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Milstein Scheme Applied to Stochastic Point Kinetics
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Neiva, Huila, Colombia
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Abstract: The Milstein’s iterative scheme is presented for the solution of stochastic point equations which are
a set of non-linear and strongly coupled stochastic differential equations. The proposed method considers an
attenuation factor in the covariance matrix and an approximation to the derivative of the covariance matrix. The
implementation is carried out under different initial conditions, several groups of precursors, time steps and
constant reactivities. The results are accurate in the calculation of the mean values for neutron density and
concentration of precursors compared with other methods reported in the literature.
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INTRODUCTION

The production of nuclear energy is carried out in a
nuclear reactor based on a controlled chain reaction of
heavy materials such as some isotopes of uranium or
plutonium by processes named nuclear fission, that will
occur in the atomic nucleus of the isotope of these
elements. Nuclear reactors allow the production and
maintenance   of   nuclear   fission   in   a   controlled
manner, guaranteeing the production of energy (Stacey,
2018).

The dynamics of the nuclear reactor are physically
described by the point kinetics equations which facilitate
the understanding of the temporary evolution of
parameters such as neutron density, concentration of
precursors and reactivity. However, these equations are
deterministic, therefore, they do not involve the random
and probabilistic nature of the events that modify the
neutron  population  in  the  reactor  core.  Therefore,  a
need  to  perform  a  statistical  study  of  this  physical 
system   based   on   stochastic   differential   equations,
thus, resulting in stochastic point kinetics (Hayes and
Allen, 2005):
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where,   |P(t),   is   the   vector   of   random   variables 
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where, n is the density of neutrons, Cm is the
concentration of precursors of m+1 group, ρ is the
reactivity which accounts for the production of neutrons,
β is the total fraction of delayed neutron precursors,Λ is
the average neutron generation time, λm is the decay
constant of class m of delayed neutron precursors, q is the
magnitude of the external neutron source, ωm are Wiener
processes that are characterized by stochastic processes of
continuous time and independent stationary increments.
The elements of matrix  are described as follows:�B

(7) 
m

i i
i 1

ξ γ n t λ C (t) q(t)


  

(8) 2
1 ρ υ 1 β 2β

γ
Λ

    


(9)
 

 m

m m m

β ν 1 β 1
a n t λ C (t)

Λ

    

(10) 
2
m

m m m

ν β
r n t λ C (t)

Λ
 

(11)i 1 j 1
i, j

νβ β
b n(t)

Λ
 

where, υ is the average number of neutrons generated per
fission event. Equation 1 corresponds to stochastic point
kinetics and consists mathematically of a set of m+1 non-
linear and strongly coupled stochastic differential
equations of Itô, involving m+2 random variables
(neutron density, m precursor groups and reactivity). The
aforementioned reveals a nonexistent analytical solution
of the system of equations. However, an approximate
numerical solution is possible by iterative schemes. In this
work we propose Milstein’s iterative scheme that
originated  from  the  truncation  of  the  expansion  of 
the Itô-Taylor series, this expansion being a
generalization of the well-known Taylor series. The
Milstein scheme is obtained by truncate the Itô-Taylor
expansion  and  has  a  convergence  order  of  1.0
(Kloeden and Platen, 1992).

It is important to note that for  in Eq. 1,�B

deterministic point kinetics is obtained; therefore, Eq. 1 is
considered as a model that generalizes the point kinetics
equation.

MATERIALS AND METHODS

Milstein’s  scheme:  The  iterative  scheme  proposed  in
this  study  is  obtained  by  truncating  the  expansion  of

Itô-Taylor in the fourth term and is named Milstein. The
Milstein  scheme  written  in  discrete  form  can  be  seen
in Eq. 12. It should be noted that if b = 0, Euler’s
deterministic   scheme   is   obtained,   the  Milstein
scheme  is  therefore  considered  to  be  a  generalization
of   the   Euler   scheme,   in   addition   to   having   the
same order of convergence (1.0) (Kloeden and Platen,
1992):
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Where:

Δ = tn+1-tn (13)

Δω = ωn+1-ωn (14)

Equation 14 presents a Wiener process. This is
characterized as being a continuous time stochastic
process of independent stationary increments, ωt = 0 = 0
with  probability  1  and  ωt-ωs~א(0,t-s)  for  0<s<t  where,
denotes normal distribution with an expected (µ, σ2)א
value µ and variance σ2 (Le Gall, 2016), with the property
presented in Eq. 15 which is useful for simulation:
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Milstein in stochastic point kinetics: Applying the
iterative  scheme  proposed  in  this  study,  described  in
Eq. 12, to the stochastic point kinetics described by Eq. 1,
we obtain:
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As can be seen in Eq. 16 this scheme requires the
derivative of the square root of the variance matrix,
therefore in this research, we propose to approximate this
derivative in the following way:
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where, ΔP = (A(P)P+Q)Δ+B1/2 (P)Δω this expression is
the discrete version of Eq. 1, therefore, Eq. 22 can be
written in the following way:

(23) 1/2 1/2 1/2 1/2d
(AP Q) B (P) ω B (P) B P P B (P)

dP
         

Replacing Eq. 15 in Eq. 23, we can write:
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The iterative scheme proposed in this study given by
Eq. 26 is implemented using MATLAB Software where
multiple simulations are performed involving different
initial conditions, groups of precursors, time steps and
constant reactivities. To model the Wiener processes, the
MATLAB state command was used which generates
pseudo-random numbers by means of a seed which for
this research is 231-1. Since, the approximation proposed
in Eq. 25 can generate greater standard deviation of the
expected values for neutron density and concentration of
precursors, it is proposed to attenuate this by means of a
constant  factor  δ  that  multiplies  the  parameter  γ

defined in Eq. 8, the values of δ will be 1, 0.5 and 0. The
results obtained  are  presented  in  the  following  section:

(26)

 
   

1/2
k 1 k k k k k k

1/2 1/2
2k k k

k

P P A P Q B ω

B P P B (P )
Δω Δ

2

       

     

The following section presents the results obtained by
scheme (Eq. 26) for the different values of factor δ and
are compared with methods reported in the literature and
with the Deterministic Model (DM).

RESULTS AND DISCUSSION

Various numerical experiments are presented, using
one and six groups of different precursors, initial
conditions, time steps, constant reactivities and values of
the δ factor. The results obtained by the numerical
experiments are compared on average with the
Deterministic Model (DM) of point kinetics which is
calculated by the implicit Euler scheme, since, the
deterministic formulation does not have values of
standard deviation in the tables represented by No Apply
(NA). They will also be compared on average and
standard deviation with other stochastic schemes reported
in literature such as Stochastic Piecewise Constant
Approximation   (SPCA)   and   Monte   Carlo   (MC)
(Hayes  and  Allen,  2005),  Euler  Maruyama  (EM)  and
T 1.5 (Taylor 1.5) (Ray, 2012), Fractional Stochastic
Point Kinetic Equations (FSNPK) (Ray and Patra, 2013),
Simplificated Stochastic Point Kinetics Equations (SSPK)
(Ayyoubzadeh and Vosoughi, 2014), Analytical
Exponential Model (AEM) (Nahla and Edress, 2016),
Double   Diagonalization-Decomposition   Method
(Double DDM) (Da Silva et al., 2016), Efficient
Stochastic Model (ESM) (Nahla and Edress, 2016ab),
(IEM) Implicit Euler Maruyama (Suescun-Diaz et al.,
2018). The values reported in the literature have been
written with four significant figures, in cases where fewer
numbers are reported, this has been completed with zeros.

First example: A group of precursors and the following
physical parameters are considered: reactivity ρ = -1/3,
time  of  neutron  generation  Λ  =  2/3,  decay  constant
λ1  =  0.1  (sG1),  fraction  of  delayed  neutron  precursors
β = 0.05, average of neutrons generated per fission event
υ = 2.5, external neutron source q(t) = 200, initial
condition n(0) = 400, C(0) = 300. This example is carried
out with 40 iterations in a time of [0, 2] sec using 5000
Wiener processes. Table 1 shows the density of neutrons
and concentration of precursors together with their
standard deviations for the different values of factor δ
obtained by the stochastic model as well as the values of
neutron density and the concentration of precursors of the
Deterministic Model (DM). At the same time, Table 2
compares the results obtained by the proposed scheme
(M) with δ equal to zero and those reported in literature.
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Deterministic model
Stochastic model with  = 1.0
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Fig. 1: Neutron density for the stochastic model for the different values of and the Deterministic Model (DM) with
reactivity

Table 1: Stochastic model with different values of and Deterministic
Model (MD)

Parameters E[n(2s)] σ[n(2s)] E[C(2s)] σ[C(2s)]
δ
1 400.1646 32.4124 299.9876 10.2709
0.5 399.9962 25.4137 299.9674 10.0973
0 400.0257 14.4789 299.7923 9.4074
DM 400.0000 NA 300.0000 NA

Table 2: Comparison of results, proposed scheme, reported in the
literature and deterministic model

Method E[n(2s)] σ[n(2s)] E[C(2s)] σ[C(2s)]
SPCA 395.3200 29.4110 300.6700 8.3564
MC 400.0300 27.3110 300.0000 7.8073
EM 412.2300 34.3910 315.9600 8.2656
T 1.5 412.1000 34.5190 315.9300 8.3158
FSNPK 412.2300 34.3918 315.9690 8.2656
AEM 396.2800 31.2120 300.4200 7.9576
Double DDM 402.3500 28.6100 305.8400 7.9240
ESM 396.6200 0.9199 300.3900 0.0016
IEM 399.7100 31.4310 299.7700 7.9411
IEM* 399.9874 0.5439 299.8730 6.8405
M 400.0257 14.4789 299.7923 9.4074
DM 400.0000 NA 300.0000 NA

In Table 1, it can be seen that as the value of the
attenuating factor diminishes, so does the standard
deviation of the variables in the study, the most notable
aspect being that for the density of neutrons where the
expected value in time t = 2 sec is closer to the
deterministic value; this behavior can be seen in Fig. 1.
However, the expected value of the concentration of
precursors moves slightly away from the deterministic
value, even though its standard deviation decreases. The
results obtained by the proposed scheme are in agreement
with other methods reported in literature as can be seen in
Table 2 with satisfactory precision in the mean value of
the neutron density and the concentration of precursors
and in the standard deviation. It is significant that the 

proposed scheme turns out to be that which comes closest
to the deterministic value of neutron density but that
which presents the highest standard deviation for the
concentration of precursors.

For the next two examples, two groups of precursors
with  similar  physical  parameters  will  be  considered:
The generation time of neutrons Λ = 0.00002(s), decay
constants λi = [0.0127, 0.0317, 0.1150, 0.3110 1.4000,
3.8700] (sG1), the fraction of delayed neutron precursors
of the i-th group βi = [0.000266, 0.001491, 0.001316,
0.002849, 0.000896, 0.000182], the total fraction of
delayed neutron precursors β = 0.007, the average of
neutrons generated per fission event υ = 2.5, external
neutron source q(t) = 0, initial condition:
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T 61 2
1 2 6

1 2 6

ββ β
n 0 ,C t ,C t , ,C t 100 1, , , ,

λ Λ λ Λ λ Λ

 
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 

and using 5000 Wiener processes. These examples
represent reactivities for real nuclear reactors. The second
example uses a subcritical reactivity ρ = 300 pcm in a
time of [0,0.1] sec and using 40 iterations 40 iterations
while the third example uses a critical reactivity ρ = 700
pcm in a time interval of [0,0.001] sec and using 40
iterations. Table 3 presents the density of neutrons and
concentration of precursors together with their standard
deviations for the different values of factor obtained for
the stochastic model as well as the values of neutron
density and the concentration of precursors of the
Deterministic Model (DM) for the subcritical and critical
reactivities. Table 4 and 5 compare the results obtained by
the proposed scheme (M) with equal to zero and those
reported in literature for the subcritical and critical
reactivities.
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Table 3: Stochastic model with different values of and Deterministic Model (MD) for subcritical and critical reactivities
Methods E [n (0.1s)] σ [n (0.1s)] E [C (0.1s)] σ [C (0.1s)]
ρ = 300 pcm
δ
1 175.2304 332.3661 4.4886 3.2125
0.5 166.2755 210.8827 4.4858 2.1493
0 179.9952 18.0870 4.4886 0.3407
DM 179.9485 NA 4.4888 NA
ρ = 700 pcm E [n (0.001s)] σ [n (0.001s)] E [C (0.001s)] σ [C(0.001s)]
δ
1 134.1748 98.5048 4.4636 30.9602
0.5 134.3667 69.1494 4.4636 25.4569
0 134.9782 7.6689 4.4636 14.6566
DM 135.0010 NA 4.4636 NA

Table 4: Comparison of results, proposed scheme, reported in the literature and Deterministic Model (DM) for subcritical reactivity
Methods E [n (0.1s)] σ [n (0.1s)] E [C (0.1s)] σ [C (0.1s)]
ρ = 300 pcm
SPCA 186.3100 164.1600 4.4910x 1.9172x
MC 183.0400 168.7900 4.4780x 1.4957x
EM 208.6000 255.9500 4.4980x 1.2333x
T 1.5 199.4080 168.5470 4.4970x 1.2188x
FSNPK 208.5990 255.9540 4.4981 x 1.2333 x
SSPK 184.8000 186.9600 4.4890x 0.9826x
ρ = 700 pcm
AEM 186.3000 164.1400 4.4900x 1.9119x
Double DDM 187.0500 167.8300 4.4880x 1.4756x
ESM 179.9300 10.5550 4.4890x 0.0947x
IEM 178.2700 165.1100 4.4886x 1.2536x
IEM* 179.9461 0.2178 4.4888x 0.0604x
M 179.9952 18.0870 4.4886x 0.3407
DM 179.9485 NA 4.4888x NA

Table 5: Comparison of results, proposed scheme, reported in the literature and Deterministic Model (DM) for critical reactivity
Methods E [n (0.001 s)] σ [n (0.001 s)] E [C (0.001 s)] σ [C (0.001s)]
SPCA 134.5500 91.2420 4.4640x 19.4440
MC 135.6700 93.3760 4.4640x 16.2260
EM 139.5680 92.0420 4.4630x 6.0710
T 1.5 139.5690 92.0470 4.4630x 18.3370
AEM 134.5400 91.2340 4.4640x 19.2350
Double DDM 135.8600 93.2100 4.4630x 17.8450
ESM 134.9600 6.8527 4.4640x 2.5290
IEM 134.0200 93.2730 4.4636x 18.7760
IEM* 134.9218 5.9661 4.4636x 6.0686
M 134.9782 7.6689 4.4636x 14.6566
DM 135.0010 NA 4.4636x NA

In the previous examples, it can be observed that the
proposed method using the Milstein scheme obtains good
results by decreasing the value of the attenuating factor δ,
as shown in Table 3 with an exception in the subcritical
reactivity for δ = 0.5. For critical reactivity, the best
approximation to the deterministic value is achieved by
the proposed scheme in comparison with the methods
reported in the literature as can be seen in Table 5.

The fourth example considers a group of precursors
for a TRIGA reactor with the following physical
parameters: Reactivity ρ = 300 pcm, neutron generation
time Λ = 0.0001 sec, decay constant λ1 = 0.077(sG1),
fraction of delayed neutron precursors β = 0.0079,
average   of    neutrons   generation   per   fission   event
υ = 2.432, external source of neutrons q(t) = 10000, initial

condition n(0) = 0, C(0) = 0. This example is carried out
with  100  iterations  in  a  time  interval  of  [0,0.1]  sec,
using  10000  Wiener  processes.  For  this  example,  the
time   step   has   been   increased   by   a   factor   of   104

with  respect  to  the  value  with  reported  by
Ayyoubzadeh and Vosoughi (2014), evidencing how the
proposed method using the Milstein scheme provides
good approximations as seen in Table 6 and 7.

In  this  last  example,  which  is  presented  in
(Ayyoubzadeh and Vosoughi, 2014) and carried out only
by three methods (SPCA, MC and SSPK), the proposed
scheme in this study is the better approaching to the
expected  values  of  the  study  variables,  in  comparison
with the deterministic model, even when the time step has
been  modified  to  a  larger  one.  The  change  in neutron 

111



J. Eng. Applied Sci., 15 (1): 107-113, 2020

Deterministic model
Stochastic model with  = 1.0
Stochastic model with  = 0.5
Stochastic model with  = 0.0
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Fig. 2: Neutron density for the stochastic model for the different values of and the Deterministic Model (DM) with
reactivity 

Table 6: Stochastic model with different values of and Deterministic Model (MD) for the TRIGA reactor
Parameters E [n (0.1 s)] σ [n(0.1 s)] E [C (0.1 s)] σ [C(0.1 s)]
δ
1 192.7425 191.5812 1.1964 749.4708
0.5 200.1817 134.9196 1.2524 531.8888
0 204.0507 18.6307 1.2827 102.8441
DM 203.9027 NA 1.2861 NA

Table 7: Comparison of results, proposed scheme, reported in the literature and deterministic model for the TRIGA reactor
Methods E [n (0.1s)] σ [n (0.1s)] E [C (0.1s)] σ [C (0.1s)]
SPCA 204.5200 174.0300 1.2940x 620.6800
MC 199.1500 152.6300 1.2545x 613.9400
SSPK 208.1400 174.3000 1.2932x 622.1200
M 204.0507 18.6307 1.2827 102.8441
DM 203.9027 NA 1.2861x NA

density and its standard deviation as the attenuating factor
changes is seen in Fig. 2 as having the same behavior as
in the previous three numerical experiments.

In this study, various numerical experiments have
been presented using different initial conditions, precursor
groups, time steps, constant reactivities and δ factor
values. Milstein’s iterative scheme is used for the first
time in literature, producing good average value results,
with respect to other reported schemes. When using the
attenuating factor δ, the standard deviation of the study
variables is considerably reduced, however, this
modification is not sufficiently strong as those presented
in (Nahla and Edress, 2016) and in (Suescun et al., 2018)
modifying the matrix of variances and the matrix of
expected values, respectively. This is due to the fact that
the method used in the present study only modifies a
matrix element, while in the aforementioned two works,
more terms are modified.

CONCLUSION

In this study, the equations of stochastic point
kinetics have been presented and solved numerically
using the Milstein scheme. The random variables on the
part of the stochastic model with respect to the
deterministic model, model in a more real way the
behavior   of   the   neutron   population   in   the   reactor.
The numerical results obtained by the proposed scheme
using the approximation of the first derivative of the
variances  matrix  and  with  the  attenuating  factor  δ,
present  good  approximations  to  the  deterministic
model,  as  well  as  a  notable  decrease  of  standard
deviation. The results are in agreement with the other
methods  reported  in  the  literature.   Thus,  it  is
determined   that   the   iterative   scheme   proposed   in
this research  can  be  used  in  the  solution  of  stochastic
point kinetics.
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