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Abstract

Objectives: Phenylalanine (Phe) hydroxylase (PAH) defi-
ciency leads to hyperphenylalaninemia (HPA) and tyrosine
(Tyr) depletion. We investigated Tyr homeostasis in pa-
tients with PAH deficiency and the effect of a slow-release
amino acids therapy in phenylketonuria (PKU).
Methods: We performed four complementary in-
vestigations: (1) Tyr concentrations were monitored in 114
patients (10.6 ± 11.9 years) with PKU on dietary treatment
supplemented with traditional amino acid formulations
(n=52, 1175 samples) or non-PKU HPA on a free diet (n=62,
430 samples); (2) Tyr metabolism in PKU was quantita-
tively evaluated in three patients by a simple Tyr oral
loading test (100 mg/kg); (3) diurnal and (4) long-term Tyr
concentrations were evaluated in 5 and 13 patients with
PKU, respectively, who switched from traditional to
slow-release amino acids therapy.
Results: 1) Tyr concentrations in the PKU population were
subnormal and significantly lower than in non-PKU HPA
(p<0.01); (2) the response to a Tyr loading test in PKU was
normal, with basal Tyr concentrations reached within 12 h;
(3) the diurnal metabolic profile in patients on slow-release
amino acids therapy revealed higher morning fasting and
nocturnal Tyr concentrations with respect to traditional
therapy (p<0.01); (4) this picture was confirmed at follow-
up, with normalization of morning fasting Tyr concentra-
tions in patients on slow-release amino acids therapy
(p<0.01) and unchanged Phe control (p=0.19).
Conclusions: Slow-release amino acids therapy can
improve Tyr homeostasis in PKU. If associated to optimized
Phe control, such a metabolic goal may allow long-term
clinical benefits in patients with PKU.
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Introduction

Phenylketonuria (PKU, OMIM 261600) is an autosomal
recessive disorder due to more than 1000mutations in the
gene encoding phenylalanine hydroxylase (PAH), the
hepatic enzyme converting phenylalanine (Phe) into
tyrosine (Tyr). Newborn screening enables early diagnosis
and treatment of PKU, allowing the prevention of irre-
versible brain damage due to severe persistent hyper-
phenylalaninemia (HPA). A low-Phe diet able to maintain
blood Phe concentrations within safe ranges is the
cornerstone of treatment of severe forms of PAH defi-
ciency, including classic and mild PKU, whereas no
dietary restriction is necessary in milder variants (non-
PKU HPA). In PKU, dietary treatment is recommended for
life [1]. Restriction of natural proteins is supplemented
with Phe-free medical foods, generally L-amino acid
mixtures, to prevent nutritional deficiencies and ensure
adequate growth and development [2–4]. As Tyr is pro-
moted to essential or semiessential amino acid in PKU,
artificial Phe-free amino acid formulations are generally
enriched in Tyr [5]. Few data are available on Tyr
homeostasis in PKU. Suboptimal and highly fluctuant Tyr
concentrations were reported in small cohorts of PKU
patients [6, 7]. This picture can be worsened by commonly
observed incomplete compliance to supplementation
with artificial amino acids (especially during the adoles-
cent and adult age), mainly related to their unpleasant
odor and taste [8–10]. Poor therapeutic compliance,
moreover, has been related to the late complications of
PKU [11–13]. Recently, new protein substitutes with
improved organoleptic characteristics and bioavailability
became available for treatment of PKU, including glyco-
macropeptide, large neutral amino acids mixtures, and
slow-release amino acid formulations [14–16]. As Tyr is
the key physiological substrate for the synthesis of
different metabolites (dopamine, epinephrine, thyroxin,
and melatonin), there are good theoretical reasons for
considering an improvement of Tyr homeostasis as an
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additional metabolic target in PKU, besides the primary
therapeutic goal of optimal Phe control.

In this study, we investigated Tyr metabolism in
health and in different forms of PAH deficiency. Addi-
tionally, we studied the effect of a new slow-release
amino acids therapy on diurnal and long-term Tyr
homeostasis in PKU.

Methods

Evaluation of Tyr concentration in PKU and non-PKU HPA

Blood Tyr concentration were evaluated in 1605morning fasting dried
blood spots collected in 114 patients (age 10.6 ± 11.9 years; 14.1 ± 24.4
samples per patient)with different formsof PAHdeficiency followedat
our center. Of them, 52 had classic or mild PKU (1175 samples) and
were treated with individualized low-Phe diet supplemented with
traditional Phe-free amino acid mixtures according to recommenda-
tions [1], and 62 subjects had non-PKU HPA (430 samples) on a free
diet.

Dynamic study of Tyr metabolism and disposal in health
and PKU

The outcome of a simple Tyr oral loading test (100 mg/kg) was
compared in four healthy subjects and in three patients with classic
PKU (genotypes IVS10-11G>A/IVS4+5G>T, IVS10-11G>A/R158Q, and
IVS10-11G>A/R158Q). The loading tests were performed after an
overnight fast following the procedures already reported for the
simple Phe loading test with some modifications [17, 18]. In
particular, (a) duration of the tests was 24 h after Tyr administra-
tion; (b) a normocaloric nonprotein diet was administered during
the test to avoid additional Phe and Tyr intake; (c) blood Tyr
concentration was measured at 0, 1, 3, 6, 12, and 24 h after the oral
loading.

Diurnal Tyr profile in PKU on traditional or slow-release
amino acids therapy

Diurnal Tyr concentrations on dried blood spots in five patients with
classic PKU (genotypes R158Q/P211Hfs*130, R158Q/P211Hfs*130,
R282W/E280 K, I283F/Y356X, and IVS4+5G>T/IVS10-11G>A) were
assessed both before and after a therapeutic switch from traditional
amino acid formulations (Tyr content 5.6 ± 1.5 mg/100 g) to a slow-
release amino acid formulation (Tyr content 7.8 mg/100 g). In all pa-
tients, the switch was due to unsatisfactory palatability of the tradi-
tional mixtures. Amino acid formulations were administered
0.9 ± 0.1 g/kg/day subdivided in three administrations at main meals.
The employed slow-release product was a sodium alginate amino acid
granulate formulation, characterized by an absorption rate similar to
natural protein and neutral odor and taste (Afenil Micro 3H, PIAM).
Sampleswere collected beforemeals (h 8.00, 12.00, and 20.00) and 3 h
after dinner (h 24.00).

Longitudinal comparison of Tyr concentrations in PKU
patients on traditional or slow-release amino acids
therapy

Morning fasting Tyr concentrations were compared in 13 patients with
PKU (seven classic PKU, sixmild PKU, age 20.6 ± 9.0 years) before and
after a switch from traditional to slow-release amino acid formulation.
In all patients, the therapeutic switch was due to unsatisfactory
palatability of the traditional products. For both therapeutic regimens,
a 6-month follow-up period was considered (traditional therapy: 66
samples; slow-release therapy: 63 samples). As the slow-release
formulation only contains amino acids, patients on this formulation
required additional supplementation with multivitamins and
minerals.

Biochemical and statistical analyses

All biochemical measurements were performed on dried blood spots
by tandem mass spectrometry.

Statistical analysis was performed with R: A Language and
Environment for Statistical Computing (R Foundation for Statistical
Computing, Vienna, Austria). The Shapiro–Wilk test was used for
testing normality of data distribution. Differences between groups
were established using the Student’s t-test or the Mann–Whitney U
test. Statistical significance for all calculations was considered ach-
ieved when the two-tailed p-value was less than 0.05. The study was
conducted according to the World Medical Association Declaration of
Helsinki regarding ethical conduct of research involving human
subjects.

Results

Tyr concentration in PKU patients on traditional amino
acids supplementation was subnormal and significantly
lower than in subjects with non-PKU HPA on a free diet
(p<0.01); Tyr concentration in non-PKUHPAwaswithin the
normal range (40–150 μmol/L) (Figure 1). Phe concentra-
tion in PKUwas higher than in non-PKU HPA (263 ± 266 vs.
153 ± 90 μmol/L, p<0.01).

In PKU patients, the time course of Tyr absorption,
distribution, and disposal after an oral Tyr loading test was
normal. In particular, basal Tyr concentrations were
reachedwithin 12 h after the Tyr loading both in health and
in PKU (Figure 2).

A diurnal metabolic profile in PKU patients revealed
higher morning fasting and nocturnal Tyr concentrations
while on slow-release amino acids therapy with respect to
traditional treatment (p<0.01) and overlapping Tyr con-
centrations during the day (h 12.00, p=0.71; h 20.00,
p=0.94) (Figure 3).

Diurnal Phe concentrations on traditional and slow-
release therapy were not different (h 8.00, 224 ± 127 vs.
236 ± 141 μmol/L, p=0.93; h 12.00, 167 ± 139 vs.
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224 ± 164 μmol/L, p=0.70; h 20.00, 236 ± 166 vs.
164± 159μmol/L,p=0.66;h24.00,343±33vs. 175± 178μmol/
L, p=0.30)

At longitudinal follow-up, slow-release amino acids
therapy was associated with significantly higher Tyr con-
centrations in PKU patients with respect to traditional
formulations (p<0.01, Figure 4) and unchanged Phe con-
centrations (379 ± 260 vs. 448 ± 332, p=0.19). In particular,
PKU patients on slow-release amino acids therapy showed
normal Tyr concentration (Figure 4).

Discussion

A substrate reduction therapy through a low-Phe diet is the
mainstay of treatment of PKU, allowing the prevention of
neurotoxicity of severe persistent HPA and the achieve-
ment of normal cognitive development. Dietary restriction
of natural protein in PKU should be integrated with artifi-
cial Phe-free amino acids mixtures to prevent nutritional
deficiencies and ensure adequate Tyr supply [1].

We showed that low blood Tyr concentration is com-
mon in PKU patients on treatment with traditional Phe-free
mixtures and that subjectswith non-PKUHPAon a free diet
have normal Tyr availability. Our findings in a large PKU
population are consistent with previous observations in

Figure 1: Tyrosine (Tyr) concentration in 1175 samples from 52
patients with phenylketonuria (PKU) on dietary treatment
supplementedwith traditional amino acidsmixtures (withe box) and
in 430 samples from 62 patients with non-PKU HPA on a free diet
(dotted box). Boxes represent 75% of measurements with medians;
error bars are the 1st and 99th percentiles. Dotted line represents
the lowest normal Tyr concentration.

Figure 2: Tyrosine (Tyr) concentrations (medians with ranges) after
a simple Tyr oral loading (100 mg/kg) in four healthy subjects
(continuous line, black circles) and in three patients with
phenylketonuria (PKU, dotted line, white circles).

Figure 3: Diurnal tyrosine (Tyr) concentrations (medians with
ranges) in five patients with phenylketonuria (PKU) while on
traditional aminoacids therapy (white circles) or slow-release amino
acids therapy (gray circles).

Figure 4: Tyrosine (Tyr) concentrations in 13 patients with
phenylketonuria (PKU) while on traditional (withe box) or slow-
release amino acids supplementation (grey box). Boxes represent
75% of measurements with medians; error bars are the 1st and 99th
percentiles. Dotted line represents the lowest normal Tyr
concentration.
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smaller cohorts [6, 7], straightening the opportunity of
longitudinal Tyr monitoring and the need of new thera-
peutic approaches to improve Tyr homeostasis in PKU [19].
Although peripheral Tyr deficiency has nonobvious clin-
ical effects in PKU, different pathophysiological consider-
ations address the opportunity of its correction. As Phe has
the highest affinity for the blood–brain barrier counter-
transporter for large neutral amino acids (LAT1), peripheral
HPA leads not only to increased brain Phe levels (which
directly inhibit both Tyr and tryptophan hydroxylases) but
also to reduced brain influx of Tyr and tryptophan, the key
substrates for the synthesis of L-Dopa and serotonin,
respectively [20, 21]. In this context, suboptimal peripheral
Tyr concentration can worsen Tyr deficiency at the central
level, withmultiple potential metabolic derangements [22].
Different experimental observations are in agreement with
this pathophysiological hypothesis. First, brain uptake of
F-dihydroxyphenylalanine, a substance carried by the
LAT1, is reduced in PKU [23]. Second, low neurotransmitter
levels were reported in PKU patients either on good or poor
Phe control and regarded as a determinant of brain damage
[21, 24–26]. Third, specific Tyr deficiency into the brain of
PKU patients was demonstrated both in vivo and post
mortem [27, 28] and related to impaired cerebral protein
synthesis [29].

Therapeutic supplementations with high-dose Tyr
(100 mg/kg/day) were attempted in PKU patients with
inconsistent results, being not currently recommended in
the clinical practice [30]. In this study, we showed that Tyr
deficiency in PKU patients is not due to accelerated
disposal, suggesting that high-dose Tyr supplementation
is unnecessary in PKU. This finding is in agreement with
the observed normal Tyr availability in non-PKU HPA and
with previous observations on Tyr metabolism after oral
Phe loadings with or without tetrahydrobiopterin and in
PKU heterozygotes [17, 31]. Moreover, we showed that a
continuous rather than pulsatile amino acids absorption
through a slow-release technology can substantially
improve peripheral Tyr availability in PKU, with potential
long-term benefits in affected patients. Actually, func-
tional deficits in PKU appear more strictly related to the
combination of both HPA and low Tyr concentration with
respect to HPA alone [19, 32]. However, the simple use of
the Phe/Tyr ratio for the biochemical monitoring of PKU
patients can be misleading, due to the critical importance
of HPA with respect to Tyr deficiency [33]. By this
approach, indeed, either safe or unsafe HPA could be
theoretically associated to the same ratio depending on
Tyr concentration, with potential perpetuation of inade-
quate Phe control. To avoid this risk, we suggest that
blood Phe monitoring should remain the primary

indicator of metabolic control in PKU, whereas Tyr
monitoring (facilitated by dried blood spots analysis by
tandem mass spectrometry) should be considered an
ancillary test, normalization of which should be endeav-
ored as a complementation of adequate Phe control. The
use of slow-release amino acids therapy to supplement
Phe dietary restriction tailored to individual Phe tolerance
can be functional to this purpose. In particular, the
described Phe and Tyr concentration ranges in non-PKU
HPA, virtually not associated to clinical complications
[34], could likely represent a combined therapeutic target
for PKU patients.

In conclusion, slow-release amino acids therapy can
improve Tyr homeostasis in patients with PKU, with po-
tential long-term clinical benefits if associated to optimized
Phe control.
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