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Preface

The research that I carried on during my Ph.D. program under the supervision of Prof. Roberto
Tateo is essentially centered around the investigation of classical and quantum aspects of particle physics
theories using the powerful tools provided by integrability. In a broad sense, integrable models are
usually referred to as “exactly solvable", meaning that all the physical observables can be found non-
perturbatively both in analytical form or by means of quadrature techniques. The exact solvabilitymakes
them perfectly suited laboratories

• to study simplified versions of complicated physical theories at full non-perturbative level;

• to get insight into interesting physical properties and mathematical structures which would be
inaccessible from other directions.

The latter two points represents the guidelines of my research program which is mainly divided into
two different projects.

The first project, which represented also my first contact with the universe of integrable systems,
concerns the investigation of the conformal spectrum of single trace-operators in the 3−dimensional
N = 6 super Chern-Simons theory at finite values of the coupling constant, using integrability
techniques. The outcomes of this research resulted in the publication of [1] and another work still
on-going.

The second project is, instead, related to the exploration of 2−dimensional Quantum Field Theories
through the study of some exactly solvable irrelevant deformations of QFTs. This dissertation will be
entirely based on the results obtained in this context, which led to the publication of [2], [3] and [4].
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Chapter 1

Introduction

1.1 The Space of Quantum Field Theories

Generally speaking, the long term goal of the research program summarised in this dissertation, is the
exploration of the “Space of 2−dimensional Quantum Field Theories (QFTs)”, here denoted by Σ

following the convention of [1], and of its associated geometric structure through the investigation of
some peculiar irrelevant deformations of QFTs which turn out to be exactly solvable.

The idea of equipping Σ with a geometric structure is concretely realised in the context of the
Renormalisation Group (RG) approach á la Wilson [2]. Following the path integral formulation, the
generic element of Σ is a QFT represented by a quasi-local action A[Φ], where Φ denotes a collection
of fundamental fields, taking values on a d−dimensional manifold M , together with their derivatives.
The whole information on the theory is encoded in the partition function

Z =

∫
DΦ e−A[Φ]/~ , (1.1)

from which the correlation functions between all the operators of the theory can be extracted. The
first step of the renormalisation procedure is to set a cut-off energy Λ0 and define a regularised partition
function

Z(reg.) =

∫
C∞(M)<Λ0

DΦ e−A[Φ]/~ , (1.2)

in which the path integral is restricted to the space of smooth functionsC∞(M)<Λ0 onM whose energy
is at most Λ0. Notice that ruling out the modes with energy higher than Λ0, we have automatically
prevented the emergence of UV divergences arising from any perturbative loop integral. Then, the
second step consists in integrating out the modes with energy between Λ0 and a generic scale Λ < Λ0.
This operation induces a flow in Σ, which can be abstractly written at the level of the action as

∂A
∂l

= B(A) , l = log Λ , (1.3)

with A|Λ=Λ0 = A(0) initial condition. Denoting by TAΣ the tangent space to Σ at the point A ∈ Σ,
then B(A) ∈ TAΣ represents the tangent vector which generates the so-called RG flow equation and
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1.1 The Space of Quantum Field Theories 7

the integral curves solution to it are referred to as RG trajectories. All the QFTs lying on the same RG
trajectory represent the same physical theory as observed at different scales.

To translate (1.3) into ordinary differential equations for some functions, one needs to parametrise the
generic element A ∈ Σ in terms of a set of coordinates {αk}k≥0. The usual way to do that, is to start
from a so-called fixed or critical point1 of the RG flow and add to it an infinite set of local operators2

{Ok(x)}k≥0 with classical mass dimension dk

A = A? +
∑
k≥0

αk

∫
dxOk(x) . (1.4)

where αk plays the role of coupling constant associated to Ok(x).

Observation 1. Due to quantum corrections, the classical mass dimension of the operator Ok(x) gets
modified and the overall scaling dimension ∆k becomes

∆k = dk + γk , (1.5)

where γk is the so-called anomalous dimension.

In the set of coordinates {αk}k≥0, the RG flow equation (1.3) becomes a set of ordinary differential
equations for the functions {αk(l)}k≥0

βk ({αj}) =
∂αk
∂l

= Bk ({αj}) , (k ≥ 0) , (1.6)

where Bk ({αj}) is the coordinate expression of B(A) and βk = ∂αk
∂l is the so-called β−function.

Observation 2. A theory represented by a set of coordinates {α?k}k≥0 is a fixed point of the RG flow if
the β− functions are all vanishing, i.e.

βk
({
α?j
})

= 0 . (1.7)

Close to a fixed point, i.e. the difference δαk = αk − α?k , (k ≥ 0) is small, the RG flow equations (1.6)
can be linearised as

βi ({αj}) = bij δαj +O
(
δα2
)
, (i ≥ 0) , (1.8)

where bij is a constant, infinite dimensional matrix, which is diagonalisable on the basis of eigenvectors
{σk}k≥0 with eigenvalues {∆k − d}k≥0. Therefore, in the basis {σk}k≥0, equation (1.8) becomes

∂σk
∂l

= (∆k − d)σk +O(σ2) , (k ≥ 0) , (1.9)

1The fixed or critical point is an element A? ∈ Σ which is invariant under the action of the RG flow, namely

∂A?

∂l
= 0 .

In d = 2 there is a theorem which states that all fixed points are CFTs, while for d > 2 the problem is still under debate. The
trivial fixed point is called Gaussian fixed point and it corresponds to the free theory, i.e. all the couplings are set to zero.

2The generic local operator Ok(x) is a monomial involving a number dk, i.e. the mass dimension, of powers of the
fundamental fields of the theory and their derivatives.
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which gives, at the first perturbative order

σk(Λ) =

(
Λ

Λ0

)∆k−d
σk(Λ0) . (1.10)

Expression (1.10) allows to classify the set of local operators related to a given critical point according
to the behavior of {σk(Λ)}k≥0 as the energy scale is lowered from the cut-off Λ0 to Λ < Λ0, namely as
we flow towards the IR:

• ∆k > d (irrelevant): as the energy scale Λ is lowered from the cut-off scale Λ0, the couplings σk(Λ)

become smaller and smaller. The corresponding local operator is called irrelevant since its inclusion in
the action (1.4) induces an RG flowwhich drives the theory back to the critical point in the IR. Notice
that, at fixed d, one can construct an infinite tower of irrelevant operators simply by adding powers of
fields and their derivatives. Therefore, any critical point is defined on an infinite-dimensional subspace
in the whole space of the theories, called critical surface, parametrised by the couplings of the irrelevant
operators.

• ∆k < d (relevant): contrary to the previous case, here the couplings σk(Λ) grow as the energy scale Λ

is lowered. The corresponding local operators are called relevant because their presence in the action
(1.4) drives the theory away from the critical surface in the IR, along a so-called renormalized trajectory,
which lead either to an other fixed point or to a limiting cycle. Since at fixed d, there is a finite amount
of relevant operators, it follows that the critical surface has finite co-dimension.

• ∆k = d (marginal): the couplings are unchanged under the RG flow transformation, and the
corresponding operators are called marginal. However, close to a generic critical point, quantum
corrections may produce logarithmic modifications of ∆k, transforming the marginal operator into
a marginally relevant or marginally irrelevant operator, depending on the sign of ∆k − d.

To remove the cut-off, sending it to infinity, one needs to apply the standard renormalisation
procedure (see, for example [3]), through the introduction of counterterms. When this cannot be done
sistematically (without changing the form of the action) the theory is said to be “non-renormalisable”.
Non-renormalisable theories still make sense provided the cut-off is kept finite, namely their validity
is limited to the low energies regime. Generically speaking, they are called E�ective Field Theories
(EFTs), typical examples being lattice-regularised models.

So far, the action has been taken as characterising element to uniquely identify a QFT. A different, yet
useful perspective is provided by the bootstrap formulation, in which the fundamental objects that define
a QFT are the set of local fields {Ok(x)}k≥0, which span the vector space F

F = span {Ok(x)}k≥0 , (1.11)

along with the set of all correlation functions{
〈Ok1(x1) . . .Okn(xn)〉 | {Ok(x)}k≥0 ∈ F

}
, (1.12)
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equipped with an Operator Product Expansion (OPE) algebra

Oi(x)Oj(x′) ∼
x→x′

Ckij(x− x′)Ok(x′) , (1.13)

which is specified by the set of real-valued functions
{
Ckij

}
(i,j,k)∈N

, called structure constants. Since the

generic element A ∈ Σ can be expressed in terms of local fields as in (1.3), it appears natural to identify
F with the tangent space TΣ, modulo the subspace ∂F consisting of local fields which are derivatives
of other local fields (since do not contribute to the dynamics)

F̂ = TΣ , F̂ = F/∂F . (1.14)

This identification may be used to translate the properties of local fields into geometric notions at the
level of Σ.

1.2 Irrelevant deformations, Effective Field Theories and holography

A good starting point for the exploration of Σ is provided by the subset ΣInt ⊂ Σ made of Integrable
Quantum Field Theories (IQFTs). Massive IQFTs initially emerged from the factorisable S-matrix
context [4]. Starting from the set of exact two-body amplitudes, integrability also provides powerful
tools for the study of the finite-size effects such as the Thermodynamic Bethe Ansatz (TBA) [5, 6] or the
Non-Linear Integral Equations (NLIEs) [7, 8]. Through conformal perturbation theory and the TBA
method, these scattering models were then interpreted as perturbations, by relevant operators, of
CFTs [6]. The deformation of a CFT, considered as the UV fixed point, by a relevant operator can
also lead to a model with a massless sub-sector [9], defining, therefore, a critical flow connecting the
initial fixed point to a second non-trivial CFT, in the IR. From the point of view of the ultraviolet
CFT, these relevant perturbations correspond to super-renormalizable interactions. An arbitrary
Green function can have primitive UV divergencies only in finitely many orders of CPT (see, for
example [10]).

In general, the situation is very different when it comes to deformations of CFTs or, more generally
QFTs, by an irrelevant operator, which usually lead to EFTs with finite UV cut-off, for which the
quantisation procedure is problematic. However, in the past three years, the study of irrelevant
deformations is experiencing a period of renewed interest thanks to the groundbreaking discoveries
of [1, 11] in which it has been found an exactly solvable perturbation generated by the irrelevant
operator TT̄, rigorously defined by A. B. Zamolodchikov in [12] for a generic QFT on flat
space-time. Besides laying the basis of the TT̄ deformation for a generic QFT, [1, 11] showed that, at
least for massive IQFTs, the exact solvability of this deformation is encoded in the introduction of a
specific Castillejo-Dalitz-Dyson (CDD) phase factor [13] in the exact S−matrix of the original theory.
Although the proper definition of TT̄ deformation has been given in recent times [1, 11], the
emergence of the TT̄ and other irrelevant deformations in relation with the CDD ambiguity dates
back to the beginning of the nineties. The first occurrence was in the study of the massless flow from
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tri-critical to critical Ising model pionereed by [9], in which the TT̄ operator – at the critical point1 –
appeared as leading attracting operator in the (EFT) action associated to the low energy IR regime.
The exploration of the IR fixed point led to the proposal of a possible connection between CDD
factors and irrelevant operators [14].
Several years later, A. B. Zamolodchikov [12] gave an off-critical definition of the TT̄ operator, up to
total derivative terms

lim
z′→z

T(z)T̄(z′)−Θ(z)Θ(z′) ≡ TT̄(z) + derivatives , (1.15)

which is valid for any 2−dimensional QFT on a flat space-time and with local translational and
rotational symmetry. In particular, he showed that the expectation value of the TT̄ operator on a
generic eigenvalue of the energy and momentum factorizes as

〈n|TT̄(z) |n〉 = 〈n|T(z) |n〉 〈n| T̄(z) |n〉 − 〈n|Θ(z) |n〉 〈n|Θ(z) |n〉 . (1.16)

The latter property is commonly referred to as factorisation property and it will prove to be fundamental
in the definition of the TT̄ deformation [1,11].
Another important step toward the identification of the TT̄ deformation was made in [15, 16] where
it was noticed that the energy levels of a c = n CFT2 modified by the inclusion of a non-trivial CDD
factor (cf. equation (1.19) below) take the same analytic form of the energy levels of an infinitely long
critical bosonic string, i.e. the Nambu-Goto string in 26 dimensions, which represents a simple theory
of quantum gravity. For this reason [15] referred to the CDD factor modification of the S−matrix
(1.19) as “gravitational dressing”.
Subsequently [17] adapted the analysis of [15, 16] to encompass the open string case and extended the
CDD deformation to a generic 2−dimensional CFT. Moreover, the authors of [17] interpreted the
results of [15,16] in terms of a TT̄ deformation and suggested a simple iterative scheme to generate the
action deformed by the TT̄ operator.
Finally, in 2016, [1, 11] merged together all these observations accumulated over time and, using the
factorisation property found in [12], formulated the TT̄ deformation of a generic QFT in terms of a
partial differential equation (PDE) for the energy levels {En(R, τ)}n≥0, i.e. an inviscid inhomogeneous
Burgers equation,

∂τEn(R, τ) = En(R, τ)∂REn(R, τ) +
1

R
P 2
n(R) , (1.17)

where τ is the deformation parameter associated to the TT̄ flow. At the same time, they provided a
classical geometric interpretation of the TT̄ deformation which is enclosed in a flow equation for the
classical action

∂τL(x, τ) = TT̄(x, τ) , (1.18)

where the TT̄ operator plays the role of tangent vector to the curve L(x, τ) as the parameter τ is varied.
Notice that equation (1.18) can be considered as the mathematical formulation of the iterative scheme

1The name “TT̄” comes precisely from its definition at the critical point in which it is just the product of the holomorphic
T and anti-holomorphic components T̄ of the stress-energy tensor. Conventionally, also its off-critical extension (1.15) is
still named TT̄, even if an additional term appears.

2Here n denotes the number of independent bosonic species.
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proposed in [17]. In [11], equation (1.18) has been explicitly solved for some simple cases. Interestingly,
starting from a theory of N non-interacting bosonic fields, the TT̄ deformation leads to the Nambu-
Goto Lagrangian in static gauge, giving further evidence in favour of the relation between TT̄ and
string theory. Furthermore, [1, 11] connected this irrelevant deformation with a specific CDD factor
which modifies the S−matrix by an amount

S(θ)→ S(θ) f(θ) , f(θ) = exp
(
iτ m2 sinh(θ)

)
. (1.19)

A different perspective of looking at the solvability of the TT̄ deformation was provided by [18]. In
fact, interpreting the modification of the partition function under an infinitesimal deformation as a
random fluctuation of the space-time geometry, [18] argued that the associated local action is a total
derivative of quasi-local fields, affecting therefore only the finite-size properties of the system (see also
the comment in [19] about prime forms). In addition, linear diffusion equations for the TT̄−deformed
partition functions on some simple geometries were derived. Further investigations on the partition
functions carried on in [20] showed that the partition function of a TT̄−deformed CFT on a torus
preserves interesting modular properties. Even more interestingly, [21] proved, under certain (weak)
assumptions, the uniqueness of the previous statement, namely that TT̄ is the only deformation of a
CFT that preserves modular properties of the torus partition function.
A further step in the direction marked by [18] was made by [22, 23] in which it has been proposed a
path integral formulation of the TT̄−deformed theory. The authors of [22] proved that the TT̄
deformation of a QFT can be equivalently interpreted as coupling it to a flat space-time
Jackiw-Teitelbolm (JT) like1 gravity. The ideas of [18, 22] are in spirit similar to the interpretation of
the TT̄ deformation – at classical level – as a field-dependent space-time coordinate
transformation [24], even though the precise link is still not completely transparent.
Shortly after [1, 11], [25] opened the way to a new perspective on the TT̄ deformation in the
framework of the AdS/CFT correspondence. Restricting the original theory to be a CFT, the
TT̄−deformed spectrum exhibits a square root whose argument depend on the energy levels of the
original CFT. Depending on the sign of the deformation parameter, as the volume is varied there is
either a finite number of complex energy levels (“good sign”), i.e. the ground state plus a finite number
of excited states, or an infinite number of complex energy levels plus a finite amount of them which is
real (“bad sign”).
The authors [25] pointed out that in the holographic dual, the TT̄ deformation of a CFT for the “bad
sign” behaves as a geometric cut-off which places the boundary of AdS at a finite radial distance in the
bulk. Afterwards, [26, 27] proposed a bulk interpretation of the TT̄ deformation of a CFT for the
“good sign” in terms of a marginal current-current deformation of the worldsheet on AdS3.
Motivated by these works, a lot of effort have been devoted so far to investigate the TT̄ deformation in
the AdS/CFT context.
Another interesting direction of research consists in the exploration of other solvable irrelevant
deformations. The first step was made in [1] in which it was pointed out the existence of a whole
family of irrelevant deformations generated by scalar local fields {Xs} ∈ F̂ with mass dimension

1For the path integral on the plane, the gravity theory is almost JT gravity, but for other geometries it is not anymore.
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ds = 2(s + 1) and Lorentz spin1 0, which preserve the integrability of the original IQFT, namely
{Xs} ∈ TΣInt. These operators are uniquely defined in terms of bi-linear combinations of the level−s
currents of the integrable hierarchy, up to total derivative terms, as

lim
z′→z

Ts+1(z)T̄s+1(z′)−Θs−1(z)Θ̄s−1(z′) ≡ Xs(z) + derivatives , (1.20)

where X1 coincides with the TT̄ operator. The authors of [1] proved that the introduction of the local
operators {Xs} in the action causes a modification of the original exact S−matrix S(θ) by a CDD factor
which generalises (1.19), i.e.

S(θ)→ S(θ)f(θ) , f(θ) = exp

(
i

∑
s

τ (s)γ2
s sinh (sθ)

)
, (1.21)

where
{
τ (s)
}
is a set of independent deformation parameters.

Afterwards, [28, 29] considered a Lorentz-breaking deformation of a CFT generated by the so-called
JT̄ operator, built out of a bi-linear combination of the anti-holomorphic component of the stress-
energy tensor and a U(1) current. Soon after, also the holographic dual of the JT̄ deformation has
been identified [30] and much of the work done for the TT̄ deformation was extended to this case (see
[21,31]). Along the same line, [32–36] investigated deformations generated by a combination of the TT̄
and JT̄ operators. More recently, it has started the exploration of new families of deformations involving
other symmetries that the original theory may eventually possess, such as supersymmetry [37–42] or
non-Noetherian symmetries, tipically present in the hierarchy of IQFTs [43–45].

1.3 Overview of the thesis

This thesis is a collection of the works [24, 43, 46] that I have done during my Ph.D. program at the
University of Turin under the supervision of Prof. Roberto Tateo. The main focus of the dissertation
is on the field theoretical aspects of irrelevant deformations of 2−dimensional QFTs, in particular in
relation with the integrable structures.

The first part is devoted to the investigation of classical and quantum aspects related to the TT̄
deformation of 2−dimensional QFTs. To make the contents as self contained as possible, in section 2.1
we introduce the TT̄ operator for a generic 2−dimensional QFT on flat spacetime and, reviewing the
result of [12], we show that, under broad assumptions, it is a well defined local operator, up to total
derivative terms. Then, in section 2.2 we move on to axiomatically define the action of the TT̄
operator on the quantised energy levels of the original QFT, which is taken as the definition of the
TT̄ deformation [1,11]. Exploiting the nice properties of the TT̄ operator found in [12], we show that
the evolution of the energy levels can be equivalently recast into a simple first order PDE, i.e. an
inviscid Burgers equation, and we derive explicitly the expressions of the TT̄−deformed spectra for

1The Lorentz spin of a local operator is defined as the difference between the total number of holomorphic derivative ∂z
and the total number of anti-holomorphic derivative ∂z̄ appearing in it. Since these operators are spin 0, the corresponding
deformations do not break the Lorentz invariance of the original theory.
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some particular theories [1,11]. In the framework of IQFTs, in section 3.4 we review the fundamental
results of [1, 11] in which the TT̄ deformation is interpreted as a modification of the exact and
factorisable S−matrix by a non-trivial CDD factor which preserves the Lorentz invariance of the
original theory. Starting from the Burgers equation as operational definition of the TT̄ deformation,
in section 2.3 we derive the evolution equations for the classical Hamiltonian and Lagrangian
densities [11, 46, 47] and we explicitly solve them for some specific models. This analysis allows to
extract useful information about the relation between the classical and quantum sides of the
deformation. Interestingly, the classical outcomes of section 2.3.5 also led to conjecture [46] the
partition function and heat-kernel of a generic 2−dimensional TT̄−deformed Yang-Mills theory (see
appendix B.1).
To make a more concrete step forward in the understanding of the classical structure of the
deformation, we restrict our attention to IFTs, and in particular to the sine-Gordon model, which it is
often used throughout the thesis as study case. In section 4.2, we prove that the TT̄−deformed
sine-Gordon theory admits a Lax pair representation [46], from which it automatically descends that
the TT̄ deformation preserves the classical integrability of the sine-Gordon model. Exploiting the well
known relation between the sine-Gordon equation and pseudo-spherical soliton surfaces embedded in
a 3−dimensional Euclidean ambient space (see also appendix C.1 for a brief introduction to the
subject), in section 4.4 we construct the soliton surfaces associated to the TT̄−deformed sine-Gordon
model [24]. Since the intrinsic properties of the surfaces, i.e. the Gaussian and mean curvatures, are
unchanged, we infer that the TT̄−deformation acts as a reparametrisation of the solitonic surfaces and,
at the level of the solutions, as a coordinate transformation. In section 4.5, we explicitly construct a
space-time coordinate transformation which maps the Equations of Motion (EoM) of the sine-Gordon
theory onto the TT̄−deformed one and viceversa [24]. From simple considerations, we show that the
coordinate transformation is easily generalisable to any bosonic theory and sigma models. From one
hand, this map provides a powerful tool to generate solutions to the deformed EoMs starting from the
original ones. In section 4.7, we explicitly compute the TT̄−deformed version of some simple
sine-Gordon soliton solutions and, in section 4.8, we comment on the emergence of singularities.
From the other hand, in section 4.6 we show that the coordinate transformation gives access to the full
integrable structure of the TT̄−deformed IFT, by means of a geometrical construction which allows
to derive the conserved charges of the deformed hierarchy [43]. With this technology, one can take
the coordinate transformation as an equivalent definition of the TT̄ deformation at the classical level.

Precisely this consideration opens the way to the second part of the thesis, concerning the investigation
of generalisations of the TT̄ deformation involving conserved currents of the hierarchy of a generic
classical Integrable Field Theory (IFT) with Lorentz spin different than 1. Inspired by the classical
geometric interpretation of the TT̄ deformation in terms of a coordinate transformation, in sections
5.1 and 5.2 we construct consistent coordinate transformations in which the components of the stress-
energy tensor are replaced by those of an arbitrary higher spin conserved current [43]. The setup is
also extended to encompass U(1)L × U(1)R conserved currents (section 5.3). By means of a simple
example, in section 5.4 we investigate the effect of these deformations on the Lorentz invariance of
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the original theory, which gets broken. Restricting for simplicity to deformations of the massless free
boson theory, in section 5.2.1 we explicitly derive the deformed integrable hierarchies using the method
previously developed in the TT̄ context. This classical analysis suggests that the quantisation of the
models associated to these generalised coordinate transformations is again generated by a modification
of the original S−matrix by a family of phase factors which, contrary to (1.21), are not CDD factors
and break explicitly the Lorentz invariance of the original theory. In section 6.1 we identify this class of
phase factors in the large volume approximation, then, in section 6.2 we perform a finite-size analysis in
the framework of the NLIEs and derive the evolution equations for the conserved charges, which turn
out to be much more complicated compared to the inviscid Burgers equation emerging in the TT̄ case.
In section 6.3 we compute the expressions of the conserved charges by explicitly solving the evolution
equations in the CFT limit and compare them with the classical outcomes finding agreement. Finally,
in section 6.5 we extend the setup to encompass deformations involving the topological charge. We
discuss various examples and, in particular, we provide the phase factor which generates the well-studied
JT̄ deformation of a CFT.
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Chapter 2

The TT̄ deformation: definition and
properties

In this introductory chapter we start by reviewing the fundamental results of [1, 11, 12]. We first
introduce the TT̄ operator for a generic QFT on a 2−dimensional Euclidean space-time and we prove
that it defines a local operator up to total derivative terms. Then, we show that its expectation value on a
generic eigenstate of the energy and momentum operators enjoys the fundamental factorisation property,
which leads to define the TT̄ deformation on the energy levels in terms of an inviscid inhomogenous
Burgers equation. From the latter definition, we derive the corresponding flow equation for the classical
Hamiltonian and Lagrangian densities. Finally, we explicitly compute the TT̄−deformed Hamiltonian
and Lagrangian densities for some simple theories and we comment on the relation between the classical
and quantum sides of the deformation.

2.1 The TT̄ operator

We start by considering the composite operator

O(z, z′) = T(z)T̄(z′)−Θ(z)Θ(z′) , (2.1)

defined using the point splitting, where
{
T(z), T̄(z),Θ(z)

}
are the chiral components of the

stress-energy tensor (cf. Appendix A) of a generic QFT defined on a flat 2−dimensional Euclidean
space-time with local translational and rotational symmetry.

We will work under the following assumptions:

1. The basis of eigenstates1 {|n〉}n∈N associated to the energy and momentum operators is non-
degenerate,

Ê |n〉 = En |n〉 , P̂ |n〉 = Pn |n〉 , (n ∈ N) , (2.2)
1We assume the normalisation 〈n|n〉 = 1.

16
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with
En = En′ and Pn = Pn′ ⇐⇒ n = n′ . (2.3)

2. The vector space F spanned by the set of local fields {Ok}k∈N ∈ F , is complete w.r.t. the Operator
Product Expansion (OPE), i.e.

Oi(z)Oj(z′) ∼
z→z′

Ckij(z− z′)Ok(z′) , (2.4)

and the structure constants are assumed to depend on z and z′ only through the difference (z−z′)

due to the local translational and rotational symmetry.

3. Assuming also global translational symmetry, the expectation value of any local field Ok ∈ F is a
constant independent of the coordinates

〈n| Ok(z) |n〉 = ck ∈ C , (k ∈ N) . (2.5)

Combining (2.5) with (2.4) one has

〈n| Oi(z)Oj(z′) |n〉 ∼
z→z′

Gij(z− z′) . (2.6)

4. There exists at least one space-time direction e = (e, ē) such that – for the vacuum state (n = 0)

– any 2-point function factorises when z and z′ are infinitely separated from each other along e,
i.e.

lim
t→∞
〈Oi(z + t e)Oj(z)〉 = 〈Oi(z)〉〈Oj(z)〉 . (2.7)

where we use the shorthand notation 〈0| ? |0〉 ≡ 〈?〉 to denote the expectation values on the
vacuum state.

Observation 3. While 2. is a local statement, assumptions 3. and 4. are global requirements which
restrict the QFT to be defined on a flat geometry, i.e. either an infinite plane or an infinitely long
cylinder. See [48] for the definition of the TT̄ operator on a generic curved manifold.

Theorem 2.1.1. Expression (2.1) defines a local operator up to total derivative terms in the collision limit
z′ → z.

Proof. First we differentiate (2.1) w.r.t. z̄

∂z̄O(z, z′) = (∂z̄T(z)) T̄(z′)− (∂z̄Θ(z)) Θ(z′) , (2.8)

then we use the continuity equations (A.13) in the rhs of (2.8) to trade ∂z̄T(z) with ∂zΘ(z)

∂z̄O(z, z′) = (∂zΘ(z)) T̄(z′)− (∂z̄Θ(z)) Θ(z′) +
[
Θ(z)

(
∂z′T̄(z′)− ∂z̄′Θ(z′)

)]
, (2.9)

where the additional term between square brackets in (2.9) is identically zero due to (A.13). Equation
(2.9) can be more conveniently rewritten as

∂z̄O(z, z′) = (∂z + ∂z′) Θ(z)T̄(z′)− (∂z̄ + ∂z̄′) Θ(z)Θ(z′) . (2.10)
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Analogously, the derivative of (2.1) w.r.t. z becomes

∂zO(z, z′) = (∂z + ∂z′) T(z)T̄(z′)− (∂z̄ + ∂z̄′) T(z)Θ(z′) . (2.11)

Using the OPEs between the components of the stress-energy tensor

T(z)Θ(z′) ∼
z→z′

∑
k≥0

Ak(z− z′)Ok(z′) , Θ(z)T̄(z′) ∼
z→z′

∑
k≥0

Bk(z− z′)Ok(z′) , (2.12)

Θ(z)Θ(z′) ∼
z→z′

∑
k≥0

Ck(z− z′)Ok(z′) , T(z)T̄(z′) ∼
z→z′

∑
k≥0

Dk(z− z′)Ok(z′) , (2.13)

the r.h.s of expressions (2.10)-(2.11) become

∂z̄O(z, z′) ∼
z→z′

∑
k≥0

Bk(z− z′)
(
∂z′Ok(z′)

)
−
∑
k≥0

Ck(z− z′)
(
∂z̄′Ok(z′)

)
, (2.14)

∂zO(z, z′) ∼
z→z′

∑
k≥0

Dk(z− z′)
(
∂z′Ok(z′)

)
−
∑
k≥0

Ak(z− z′)
(
∂z̄′Ok(z′)

)
. (2.15)

If we consider instead the OPE of (2.1)

O(z, z′) ∼
z→z′

∑
k≥0

Fk(z− z′)Ok(z′) =
∑
k≥0

(
Dk(z− z′)− Ck(z− z′)

)
Ok(z′) , (2.16)

and we differentiate it w.r.t. z and z̄ we get

∂z̄O(z, z′) ∼
z→z′

∑
k≥0

(
∂z̄Fk(z− z′)

)
Ok(z′) , (2.17)

∂zO(z, z′) ∼
z→z′

∑
k≥0

(
∂zFk(z− z′)

)
Ok(z′) . (2.18)

Comparing expressions (2.14)-(2.15) with (2.17)-(2.18) one realises that they are compatible i� the rhs
of (2.17)-(2.18) contain only coordinate derivatives of local operators. Therefore, the k−th coefficient
Fk(z−z′) in (2.16) must be a constant unlessOk itself is a coordinate derivative of another local operator.
We conclude that, up to total derivative terms, (2.1) defines a local operator which we refer to as TT̄

lim
z′→z
O(z, z′) ≡ TT̄(z) + derivatives . (2.19)

Theorem 2.1.2. The expectation value of (2.19) on a generic eigenstate |n〉 of the energy and momentum
operators fulfils

〈n|TT̄(z) |n〉 = 〈n|T(z) |n〉 〈n| T̄(z) |n〉 − 〈n|Θ(z) |n〉 〈n|Θ(z) |n〉 , (2.20)

which will be referred to as factorization property.

Proof. Consider the expectation value of (2.1) on the n−th eigenstate |n〉

Cn(z, z′) = 〈n| O(z, z′) |n〉 = 〈n|T(z)T̄(z′) |n〉 − 〈n|Θ(z)Θ(z′) |n〉 , (2.21)
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and differentiate it w.r.t. z̄

∂z̄Cn(z, z′) = 〈n| (∂z̄T(z)) T̄(z′) |n〉 − 〈n| (∂z̄Θ(z)) Θ(z′) |n〉

= 〈n| (∂zΘ(z)) T̄(z′) |n〉 − 〈n| (∂z̄Θ(z)) Θ(z′) |n〉 . (2.22)

where in the last line we used the continuity equations (A.13) to trade ∂z̄T(z) with ∂zΘ(z). Using
(2.6), we replace (∂z, ∂z̄) with (−∂z′ ,−∂z̄′) in (2.22) which becomes

∂z̄Cn(z, z′) = 〈n|Θ(z)
(
∂z′T̄(z′)

)
|n〉 − 〈n|Θ(z)

(
∂z̄′Θ(z′)

)
|n〉

= 〈n|Θ(z)
(
∂z′T̄(z′)− ∂z̄′Θ(z′)

)
|n〉 = 0 , (2.23)

where again we used (A.13). Following the same procedure one can show that

∂zCn(z, z′) = 0 , (2.24)

which proves that Cn(z, z′) is a constant. From this fact it immediately descends that (2.20) holds for
the vacuum state (n = 0). Indeed, from one hand we can take the limit

lim
z′→z
C0(z, z′) = 〈TT̄(z)〉 , (2.25)

where we used (2.19) and the fact that the expectation value of a total derivative is identically vanishing.
From the other hand, applying (2.7) leads to

lim
t→∞
C0(z + t e, z) = 〈T(z)〉〈T̄(z)〉 − 〈Θ(z)〉〈Θ(z)〉 . (2.26)

Since C0(z, z′) is constant, the expressions (2.25) and (2.26) coincide, therefore

〈TT̄(z)〉 = 〈T(z)〉〈T̄(z)〉 − 〈Θ(z)〉〈Θ(z)〉 . (2.27)

For n > 0, instead, there is an additional complication as the asymptotic factorization (2.7) no longer
holds. If fact, the generic 2−point functions 〈n| Oi(z)Oj(z′) |n〉 receive contributions from
non-diagonal matrix elements which exponentially grow as the points are taken infinitely apart.
Concretely, the spectral decomposition of the lhs of (2.21) – in cartesian coordinates x and
x′ =

(
x′1, x′2

)
– becomes

〈n|T(z)T̄(z′) |n〉 =
∑
n′≥0

〈n|T(z) |n′〉 〈n′| T̄(z′) |n〉 e(En−En′ )|x2−x′2|ei(Pn−Pn′ )|x
1−x′1|

= 〈n|T(z) |n〉 〈n| T̄(z′) |n〉+
∑
n′ 6=n
〈n|T(z) |n′〉 〈n′| T̄(z′) |n〉 e(En−En′ )|x2−x′2|ei(Pn−Pn′ )|x

1−x′1| ,

(2.28)

and similarly for 〈n|Θ(z)Θ(z′) |n〉, where in the last line we used the fact that the basis of eigenstates
{n}n∈N is non-degenerate. However, the sum over n′ 6= n in the last line of (2.28) needs to cancel out
with an analogous sum coming from the spectral decomposition of 〈n|Θ(z)Θ(z′) |n〉, to ensure that
Cn(z, z′) does not depend on the coordinates. This leads to

Cn(z, z′) = 〈n|T(z) |n〉 〈n| T̄(z′) |n〉 − 〈n|Θ(z) |n〉 〈n|Θ(z′) |n〉 , (2.29)

and equating the limit z′ → z in (2.21) and (2.29) we find (2.20).
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Observation 4. Applying the relations (A.7)-(A.8), the operator (2.1) in cartesian coordinates x (cf.
(A.1)) becomes

O(x,x′) = −π
2

2
εµλενρT

µν(x)T λρ(x′) , (2.30)

where εµν is the Levi-Civita tensor. Taking the limit x′ → x in (2.30), it descends that the TT̄ operator
in cartesian coordinates is proportional to the determinant of the stress-energy tensor

TT̄(x) = −π2 det [T µν(x)] , (2.31)

and the factorization property (2.20) becomes

〈n|det [T µν(x)] |n〉 = det [〈n|T µν(x) |n〉] . (2.32)

Observation 5. The results presented in this section can be straightforwardly generalised to the family
of composite operators [1]

Os(z, z′) = Ts+1(z)T̄s+1(z′)−Θs−1(z)Θ̄s−1(z′) . (2.33)

where
{
Ts+1,Θs−1, T̄s+1, Θ̄s−1

}
are the chiral components of the level−s conserved current of the

hierarchy (see appendix A).

2.2 The TT̄ deformation and the Burgers equation

In this section, we define the action of the TT̄ operator, i.e. the TT̄ deformation, on the energy levels
of a generic 2−dimensional QFT confined on an infinitely long cylinder of circumference R, i.e.

(x1, x2) ∼ (x1 +R, x2) , (2.34)

where x = (x1, x2) is a set of cartesian coordinates. Then, using the factorization property (2.20), we
write the evolution equation of the energy levels in terms of an inviscid Burgers equation.

The Hilbert space of the theory is defined on constant−x2 slices, namely the energy and momentum
operators Ê and P̂ – and their corresponding eigenvalues {En}n∈N and {Pn}n∈N – depend only on the
compactified size R

Ê(R) |n〉 = En(R) |n〉 , P̂ (R) |n〉 = Pn(R) |n〉 , (2.35)

and the quantisation of the momentum implies

Pn(R) =
2π kn
R

, (kn ∈ Z) . (2.36)

In this setup, the expectation values of the Euclidean components of the stress-energy tensor on the
eigenstates of the energy and momentum operators are related to their eigenvalues as follows (cf. (A.15)
for s = 1)

En(R) = −R 〈n|T 22 |n〉 , ∂REn(R) = −〈n|T 11 |n〉 , Pn(R) = −iR 〈n|T 12 |n〉 , (2.37)



2.2 The TT̄ deformation and the Burgers equation 21

where we used the global translational invariance on the cylinder:

〈n|T µν |n〉 = 〈n|T µν(x) |n〉 =
1

R
〈n|
∫ R

0
T µν(x) dx1 |n〉 . (2.38)

Using (2.31)-(2.32) and (2.37)-(2.38) one finds

〈n|TT̄ |n〉 = −π2 det [〈n|T µν |n〉] = −π
2

R

(
En(R)∂REn(R) +

1

R
P 2
n(R)

)
, (2.39)

where again we denoted

〈n|TT̄ |n〉 =
1

R
〈n|
∫ R

0
TT̄(x) dx1 |n〉 . (2.40)

Let us consider an infinitesimal transformation in the small parameter τ whichmodifies the n−th energy
eigenvalue En(R) by an amount

En(R, τ) = En(R)− τ R
π2
〈n|TT̄ |n〉+O(τ2) , (2.41)

leaving the n−th momentum eigenvalue Pn(R) unchanged. Iterating (2.41) leads to the definition of
the TT̄ deformation – at finite values of τ – as

∂τEn(R, τ) = − R
π2 τ 〈n|TT̄ |n〉τ , (2.42)

where {|n〉τ}n∈N are the eigenstates of the deformed energy operator Ê(R, τ)

Ê(R, τ) |n〉τ = En(R, τ) |n〉τ , P̂ (R) |n〉τ = Pn(R) |n〉τ , (2.43)

and

τ 〈n|TT̄ |n〉τ =
1

R
τ 〈n|

∫ R

0
TT̄(x, τ) dx1 |n〉τ , (2.44)

has the geometrical interpretation of tangent vector to the curve described by En(R, τ) as τ varies.
Interestingly, using (2.39), the flow equation (2.42) can be recast into a PDE forEn(R, τ) in the variables
R and τ

∂τEn(R, τ) = En(R, τ)∂REn(R, τ) +
1

R
P 2
n(R) , (2.45)

which has the form of a 1−dimensional inviscid Burgers equation. The momentum quantisation (2.36)
implies

∂RP (R) = −P (R)

R
, (2.46)

from which it descends that (2.45) can be more conveniently rewritten as

∂τE(R, τ) =
1

2
∂R
(
E2(R, τ)− P 2(R)

)
, (2.47)

where we dropped the subscript n, since (2.45) has the same expression for all n. Using the method of
characteristics, it is possible to construct a general solution to (2.47) in implicit form as

E2(R, τ)− P 2(R) = E2(R0)− P 2(R0) , (2.48)
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with the additional constraint
∂τR R0=const. = −E(R, τ) , (2.49)

whereR0 is a redefinition of the size R which depends on the energy and momentum of the deformed
theory through

R2
0 = (R+ τE(R, τ))2 − (τP (R))2 . (2.50)

Observation 6. To verify that (2.48)-(2.50) is indeed solution to (2.47), we differentiate both sides of
(2.48) w.r.t. τ keepingR0 fixed and, thus, letting R depend on τ according to (2.50). The result of this
operation is

d

dτ

(
E2(R, τ)− P 2(R)

)
= 0 −→ ∂τE

2(R, τ) + (∂τR) ∂R
(
E2(R, τ)− P 2(R)

)
= 0 , (2.51)

which coincides with (2.47) provided (2.49) holds.

From (2.48)-(2.50) it descends that the spectrum of the TT̄−deformed theory is uniquely derived from
the spectrum of the original theory confined on a cylinder with a circumference modified according to
(2.50). For this reason, the TT̄ deformation is referred to as exactly solvable, even if the original theory
is not integrable. To see concretely the effect of the TT̄ deformation, now we explicitly compute the
TT̄−deformed energy levels of a CFT, reviewing the result previously obtained in [1,11].

2.2.1 TT̄ deformation of a CFT

Let us consider a CFT with central charge c defined on a cylinder of circumference R. In terms of the
holomorphic and anti-holomorphic weights

h(±) = h(±)

0 + n(±) ,
(
n(±) ∈ N

)
, (2.52)

h(±)

0 being the highest weights, the energies of the (anti)-holomorphic sectors are

I(±)

1 (R) =
2πa(±)

1

R
, a(±)

1 = h(±) − c

24
, (2.53)

and the total energy and momentum are

ECFT(R) = I(+)

1 (R) + I(−)

1 (R) =
2π

R

(
h(+) + h(−) − c

12

)
, (2.54)

P CFT(R) = I(+)

1 (R)− I(−)

1 (R) =
2π

R

(
h(+) − h(−)

)
. (2.55)

Using expressions (2.54)-(2.55) as τ = 0 initial condition for the energy and momentum, (2.48)-(2.50)
become a quadratic equation for ECFT(R, τ) from which one easily extract the solution

ECFT(R, τ) =
R

2τ

(
−1 +

√
1 +

4τ

R
ECFT(R) +

4τ2

R2
(P CFT(R))2

)
. (2.56)
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Observation 7. Restricting to the zero momentum case, i.e. h(+) = h(−) = h, formula (2.56) becomes

ECFT(R, τ) =
R

2τ

(
−1 +

√
1 +

8πCτ

R2

)
, C = 2h− c

12
. (2.57)

Notice that, as soon as τ 6= 0, the pole of (2.54) at R = 0 resolves into a pair of square root branch
points at R(?,±) = ±

√
−8πCτ . For Cτ < 0, one of the branch points moves from R = 0 rightwards

on the positive R−axis, producing a singularity at physical values of the radius such that the analytic
continuation of (2.57) to the region R(?,−) < R < R(?,+) is complex (see Figure 2.1a). Conversely, for
Cτ > 0, the branch points move away from R = 0 along the imaginary R−axis and no singularities
appear in the energy (see Figure 2.1b). Thus, there are either infinitely-many real energy levels and a
finite number of complex ones or viceversa, depending onwhether τ is positive or negative, respectively.

Observation 8. Setting c = D − 2, the square root term in (2.56) becomes

R

2τ

√
1 +

4τ

R
ECFT(R) +

4τ2

R2
(P CFT(R))2

=

√
R2

4τ2
+

2π

τ

(
h(+) + h(−) − D − 2

12

)
+

4π2

R2
(h(+) − h(−))2 , (2.58)

which has the same form of the quantised spectrum of the Nambu-Goto string in the critical
dimension.

As noticed in [1], adding to (2.54) a bulk term proportional to R

ETOT(R) = EBULK(R) + ECFT(R) , EBULK(R) = F0R , (F0 ∈ R) , (2.59)

and solving (2.48)-(2.50) using (2.55) and (2.59) as τ = 0 initial condition, one gets

ETOT(R, τ) = EBULK(R, τ) + ECFT(R, τ̃)

=
F0R

1− τF0
+
R

2τ̃

(
−1 +

√
1 +

4τ̃

R
ECFT(R) +

4τ̃2

R2
(P CFT(R))2

)
, (2.60)

where the bulk term transforms as

EBULK(R, τ) =
REBULK(R)

R− τEBULK(R)
, (2.61)

and τ̃ is a redefinition of the deformation parameter depending on F0

τ̃ = τ(1− τF0) . (2.62)

Observation 9. The deformed bulk term (2.61) introduces a Landau-type pole singularity at τLP = 1
F0

in the evolution of the energy levels.
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(a) (b)

Figure 2.1: The real part of the energy of a TT̄−deformed CFT for τ = 0.025 with C = − 1
2π (a) or

C = 1
2π (b). The blue dots in (a) represent the critical values R(?,±).

Observation 10. The presence of (2.61) allows to tune the deformation parameter τ such that (2.60)
becomes a pure square root without additional terms. There exists a unique value τ0 = 1

2F0
such that

(2.60) evaluated at τ = τ0 is

ETOT(R, τ0) =
R

2τ̃0

√
1 +

4τ̃0

R
ECFT(R) +

4τ̃2
0

R2
(P CFT(R))2 , τ̃0 = τ0(1− τ0F0) . (2.63)

In addition, the expectation value of the TT̄ operator becomes state- and size-independent at τ = τ0

τ0 〈n|TT̄ |n〉τ0 = − π
2

2R
∂R

((
ETOT(R, τ0)

)2 − (P CFT(R)
)2)

= −
(
π

2τ̃0

)2

. (2.64)

2.3 The classical TT̄ flow equation

Starting from the definition (2.42) of the TT̄ deformation, in this section we derive the corresponding
flow equation for the classical densities. For this purpose, we consider the theory confined on a torus
with characteristic lengths R and L using the identifications

(x1, x2) ∼ (x1 +R, x2 + L) , (2.65)

where the energy and momentum operator are defined on slices at fixed x2 with eigenvalue equations
(2.43), and

Ê(R, τ) =

∫ R

0
Ĥ(x, τ) dx1 , P̂ (R) =

∫ R

0
P̂(x) dx1 . (2.66)

The partition function of the deformed system is then

Z(R,L, τ) = Tr
[
e−LÊ(R,τ)

]
=
∑
n≥0

e−LEn(R,τ) , (2.67)
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where L is the inverse temperature. Multiplying both sides of (2.42) by the factor Le−LEn(R,τ) and
summing over n ≥ 0 yields

∂τZ(R,L, τ) = −Z(R,L, τ)

π2

〈∫ L

0
dx2

∫ R

0
dx1 TT̄(x, τ)

〉
ens.

, (2.68)

where 〈?〉ens. is the ensemble average defined as

〈F̂ 〉ens. =
1

Z

∑
n≥0

Fne
−LEn(R,τ) , (2.69)

{Fn}n∈N being the set of eigenvalues of the generic operator F̂ on the eigenstates {|n〉}n∈N of the
energy and momentum operators. Rewriting equation (2.68) as

∂τ logZ(R,L, τ) = − 1

π2

〈∫ L

0
dx2

∫ R

0
dx1 TT̄(x, τ)

〉
ens.

, (2.70)

we realise that the lhs of (2.70) can be expressed as an ensemble average

∂τ logZ(R,L, τ) = −L
Z

∑
n≥0

(∂τEn(R, τ)) e−LEn(R,τ) = −
〈∫ L

0
dx2

∫ R

0
dx1 ∂τ Ĥ(x, τ)

〉
ens.

. (2.71)

In conclusion, plugging (2.71) back in (2.70) we find〈∫ L

0
dx2

∫ R

0
dx1 ∂τ Ĥ(x, τ)

〉
ens.

=
1

π2

〈∫ L

0
dx2

∫ R

0
dx1 TT̄(x, τ)

〉
ens.

, (2.72)

which, in turn, implies that the corresponding classical densities fulfils, up to total derivative terms, the
following differential equation

∂τH(x, τ) =
1

π2
TT̄(x, τ) . (2.73)

Next, we want to prove that (2.73) implies a similar relation for the Lagrangian density L(x, τ). For
this purpose, we consider an Hamiltonian density H(x, τ) which depends on x through the set of
independent fields1 {φ(x), φ′(x), π(x)}, where φ′(x) = ∂x1φ(x) and π(x) is the conjugated
momentum. Since the fields do not depend on τ when considered off-shell, the dependence on τ in
(2.73) is only explicit, i.e.

d

dτ
H(x, τ) = ∂τH(x, τ) . (2.74)

Instead, the Lagrangian density L(x, τ) depend on x through the fields
{
φ(x), φ′(x), φ̇(x, τ)

}
, where

φ̇(x, τ) = ∂x2φ(x, τ), which are not independent. In fact, the relation

π =
∂L
∂φ̇

, (2.75)

1For simplicity, we consider a theory involving a single scalar field φ(x) and only first derivatives of φ(x). However, it is
easy to extend the argument to a generic field theory involving higher-derivatives.
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fixes φ̇(x, τ) as a function of the independent fields {φ(x), φ′(x), π(x)} and τ . Therefore, one has

d

dτ
L(x, τ) = ∂τL(x, τ) +

(
∂τ φ̇(x, τ)

)∂L
∂φ̇

. (2.76)

Differentiating both sides of the Legendre transform w.r.t. τ and using (2.74)-(2.76) one gets

d

dτ
H(x, τ) =

d

dτ

(
π(x) φ̇(x, τ)− L(x, τ)

)
−→ ∂τH(x, τ) = π(x)

(
∂τ φ̇(x, τ)

)
− ∂τL(x, τ)−

(
∂τ φ̇(x, τ)

)∂L
∂φ̇

= −∂τL(x, τ) . (2.77)

The latter result implies that the Lagrangian density fulfils, again up to total derivative terms, the
following differential equation

∂τL(x, τ) = − 1

π2
TT̄(x, τ) . (2.78)

The geometrical meaning of both (2.73) and (2.78) is transparent: the local operator TT̄(x, τ) is the
tangent vector to the curveH(x, τ) and L(x, τ) as τ varies. In the next section, we explicitly solve (2.78)
for a non-interacting massless scalar field, reviewing the result first obtained in [11]. Subsequently, we
generalise the result to sigmamodels and also to Yang-Mills theories [46]. For the extension to fermionic
theories we refer the reader to [47,49].

2.3.1 Massless free scalar field

Consider the action of a massless scalar field φ minimally coupled to gravity through a generic
2−dimensional metric tensor gµν . In cartesian coordinates x the action is

A [φ] =

∫
R2

Lg(x) dx1 ∧ dx2 , (2.79)

with Lagrangian density

Lg(x) =
1

4

√
g gµν∂µφ(x) ∂νφ(x) ,

√
g = det [gµν ] , ((µ, ν) ∈ {1, 2}) . (2.80)

To start, we first analyse the case of a flat Euclidean space-time, i.e. gµν = δµν , and we denote
L(x) = Lδ(x). At the end of the section, we extend the result to a generic curved background gµν . In
accordance with the notation of [11], we work in the set of complex coordinates z defined through
(A.1). Correspondingly the Lagrangian density L(x) becomes

L(z) = ∂zφ∂z̄φ . (2.81)

From now on, we drop the explicit dependence of the field on z.

The goal of this section is to solve the flow equation (2.78), namely to find the deformed Lagrangian
L(z, τ) using (2.81) as initial condition at τ = 0. Using the definition of the TT̄ operator (2.19), the rhs
of (2.78) becomes

∂τL(z, τ) = −4
(
T(z, τ)T̄(z, τ)−Θ2(z, τ)

)
, (2.82)
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where
{

T(z, τ), T̄(z, τ),Θ(z, τ)
}
are the rescaled chiral components of the stress-energy tensor of the

deformed theory, defined according to (A.9). For a generic Lagrangian theory involving a single scalar
field, they are obtained from the Lagrangian density through

T = −1

2

∂L
∂(∂z̄φ)

∂zφ , T̄ = −1

2

∂L
∂(∂zφ)

∂z̄φ ,

Θ =
1

4

(
∂L

∂(∂zφ)
∂zφ+

∂L
∂(∂z̄φ)

∂z̄φ− 2L
)
. (2.83)

Using the expressions (2.83), equation (2.82) becomes a PDE for the function L(z, τ) in the variables
(τ, ∂zφ, ∂z̄φ)

∂τL(z, τ) = −
(
∂L(z, τ)

∂(∂z̄φ)
∂zφ

)(
∂L(z, τ)

∂(∂zφ)
∂z̄φ

)
+

1

4

(
∂L(z, τ)

∂(∂zφ)
∂zφ+

∂L(z, τ)

∂(∂z̄φ)
∂z̄φ− 2L(z, τ)

)2

. (2.84)

To solve (2.84), we expand the solution L(z, τ) as a Taylor series around τ = 0 as

L(z, τ) =
∑
n≥0

L(n)(z) τn , (2.85)

where the coefficients
{
L(n)(z)

}
n∈N are functions of (∂zφ, ∂z̄φ) to be determined and L(0)(z) = L(z).

Plugging the ansatz (2.85) into (2.84) one finds the recurrence relation

L(n+1)(z) = − 4

n+ 1

n∑
m=0

T(m)(z) T̄(n−m)(z)−Θ(m)(z) Θ(n−m)(z) , (2.86)

with

T(n)(z) = −1

2

∂L(n)(z)

∂(∂z̄φ)
∂zφ , T̄(n)(z) = −1

2

∂L(n)(z)

∂(∂zφ)
∂z̄φ , (2.87)

Θ(n)(z) =
1

4

(
∂L(n)(z)

∂(∂zφ)
∂zφ+

∂L(n)(z)

∂(∂z̄φ)
∂z̄φ− 2L(n)(z)

)
, (2.88)

which furnishesL(n+1)(z) in terms ofL(n)(z). Solving iteratively (2.86) with initial conditionL(0)(z) =

L(z), one can fix the n−th coefficient L(n)(z) as

L(n)(z) =

(
1/2

n+ 1

)
22n+1

(
L(z)

)n+1
. (2.89)

From the latter expression, one finds that the series (2.85) admits the resummation

L(z, τ) =
1

2τ

(
−1 +

√
1 + 4τ L(z)

)
. (2.90)

Observation 11. Notice that the square root term in (2.90), i.e.

1

2τ

√
1 + 4τ ∂zφ∂z̄φ =

1

2τ

√
1 + τ ∂µφ∂µφ ,
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is equivalent to the 3−dimensional Nambu-Goto Lagrangian density1

LNG =
√

det [hµν ] , hµν = ηαβ ∂µX
α ∂νX

β , ((µ, ν) = {1, 2} , (α, β) = {1, 2, 3}) , (2.91)

with target space metric ηαβ = δαβ , upon a gauge choice called static-gauge, which constrains the
directions {Xµ}µ=1,2 to coincide with the worldsheet coordinates x and the transverse direction X3 –
w.r.t. to the worldsheet – to be proportional to the scalar field φ, in formulae

Xµ = xµ , X3 =
√
τφ , (µ = 1, 2) . (2.92)

Interestingly, also at the level of the classical action it emerges a connection between the TT̄
deformation and the Nambu-Goto theory.

From the latter observation it follows that (2.90) can bemore elegantly rewritten in cartesian coordinates
x as

L(x, τ) =
1

2τ

(
−1 +

√
det [δµν + τ ∂µφ∂νφ]

)
, (2.93)

which suggests a natural generalisation to the case of a theory coupled to a generic metric gµν

Lg(x, τ) =
1

2τ

(
−√g +

√
det [gµν + τ ∂µφ∂νφ]

)
. (2.94)

Indeed, it can be checked that (2.94) fulfils (2.78), provided the stress-energy tensor is computed via the
Hilbert construction as

T µν =
−2
√
g

∂Lg
∂gµν

. (2.95)

2.3.2 Interacting scalar field

In this section we will extend the result of 2.3.1 to the case of a scalar field φ interacting with a generic
potential term V depending on φ only2. The starting point is the action

AV [φ] =

∫
R2

LVg (x) dx1 ∧ dx2 , (2.96)

with Lagrangian density

LVg (x) =
√
g

(
1

4
gµν∂µφ∂νφ+ V

)
. (2.97)

Following the strategy of section 2.3.1, we first consider the case of a flat Euclidean space-time, i.e.
gµν = δµν and we denote LV (x) = LVδ (x). Afterwards, we generalise the results to an arbitrary curved
background gµν .

1The D−dimensional Nambu Goto theory describes the dynamics of a 2−dimensional surface, called worldsheet,
embedded in a D−dimensional target space. {Xα(x)}Dα=1 denotes the embedding of the worldsheet in the target space,
i.e. the parametrisation of the worldsheet, while hµν represents the metric induced on the worldsheet.

2We only require the potential not to depend on derivatives of φ.
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The PDE describing the evolution of the deformed Lagrangian is again (2.84)

∂τLV (z, τ) = −
(
∂LV (z, τ)

∂(∂z̄φ)
∂zφ

)(
∂LV (z, τ)

∂(∂zφ)
∂z̄φ

)
+

1

4

(
∂LV (z, τ)

∂(∂zφ)
∂zφ+

∂LV (z, τ)

∂(∂z̄φ)
∂z̄φ− 2LV (z, τ)

)2

, (2.98)

with τ = 0 initial condition
LV (z) = ∂zφ∂z̄φ+ V . (2.99)

To solve (2.98), we again expand the solution around τ = 0 as a Taylor series

LV (z, τ) =
∑
n≥0

L(n)(z) τn , (2.100)

with L(0)(z) = LV (z). Plugging (2.100) into (2.98), we arrive at the recurrence relation (2.86), from
which the coefficients

{
L(n)(z)

}
n∈N can be extracted in terms of L(z) = ∂zφ∂z̄φ and V as

L(1)(z) = −
(
L(z)

)2
+ V 2 ,

L(2)(z) = 2
(
L(z)

)3
+
(
L(z)

)2
V + V 3 ,

L(3)(z) = −5
(
L(z)

)4 − 4
(
L(z)

)3
V + V 4 ,

L(4)(z) = 14
(
L(z)

)5
+ 15

(
L(z)

)4
V + 2

(
L(z)

)3
V 2 + V 5 ,

L(5)(z) = −42
(
L(z)

)6 − 56
(
L(z)

)5
V − 15

(
L(z)

)4
V 2 + V 6 , (2.101)

... .

After some algebraic manipulations, one finds that
{
L(n)(z)

}
n∈N can be written in closed form as

L(n)(z) = V n+1 +
(−4)n√

π

Γ(n+ 1
2)

Γ(n+ 2)

(
L(z)

)n+1
3F2

(
1− n, 1− n

2
,−n

2
;
1

2
− n,−n;− V

L(z)

)
, (2.102)

and the series (2.100) becomes

LV (z, τ) =
V

1− τ V
+
∑
n≥0

L(n)(z, τ) , (2.103)

with

L(n)(z, τ) =
(−4)n√

π

Γ(n+ 1
2)

Γ(n+ 2)
τn
(
L(z)

)n+1
3F2

(
1− n, 1− n

2
,−n

2
;
1

2
− n,−n;− V

L(z)

)
. (2.104)

The expressions of
{
L(n)(z, τ)

}
n∈N are quite involved and it seems not to be possible to resum the

series
∑

n≥0 L
(n)(z, τ) appearing in (2.103). However, computing the partial sums
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Sm(z, τ) =
∑m

n=0 L
(n)(z, τ) for some values of m ≥ 0

S0(z, τ) = L(z) ,

S1(z, τ) = L(z)− τ
(
L(z)

)2
,

S2(z, τ) = L(z)− τ(1− τV )
(
L(z)

)2
+ 2τ2

(
L(z)

)3
,

S3(z, τ) = L(z)− τ(1− τV )
(
L(z)

)2
+ 2τ2(1− 2τV )

(
L(z)

)3 − 5τ3
(
L(z)

)4
,

S4(z, τ) = L(z)− τ(1− τV )
(
L(z)

)2
+ τ2(1− τV )2

(
L(z)

)3 − 5τ3(1− 3τV )
(
L(z)

)4
+ 14τ4

(
L(z)

)5
,

... , (2.105)

one realises that Sm(z, τ) can be expressed in closed form as

Sm(z, τ) = Rm(z, τ) +

m∑
n=0

(−4)n−1

√
π

Γ
(
n− 1

2

)
Γ (n+ 1)

τ̃n−1
(
L(z)

)n
, (2.106)

where
τ̃ = τ(1− τV ) , (2.107)

is a V−dependent redefinition of the deformation parameter and {Rm(z, τ)}m∈N are such that
limm→∞Rm(z, τ) = 0. Using (2.106), one has∑

n≥0

L(n)(z, τ) = lim
m→∞

Sm(z, τ) =
∑
n≥0

(−4)n−1

√
π

Γ
(
n− 1

2

)
Γ (n+ 1)

τ̃n−1
(
L(z)

)n
=

1

2τ̃

(
−1 +

√
1 + 4τ̃ L(z)

)
, (2.108)

consequently (2.103) becomes

LV (z, τ) =
V

1− τ V
+

1

2τ̃

(
−1 +

√
1 + 4τ̃L(z)

)
. (2.109)

Comparing (2.90) and (2.109) we notice that the presence of the potential causes a redefinition of the
deformation parameter (τ → τ̃) and the introduction of an additional term V

1−τ V .

It is then straightforward to generalise (2.109) to the case of an arbitrary metric gµν . In x coordinates
one has

LVg (x, τ) =
√
g

V

1− τ V
+

1

2τ̃

(
−√g +

√
det [gµν + τ̃ ∂µφ∂νφ]

)
, (2.110)

which indeed fulfils (2.78).

2.3.3 σ−models

In this section we extend the results of sections 2.3.1 and 2.3.2 to the general case of σ−models. The
starting point is the action

Aσ[φ] =

∫
R2

Lσg,G(x) dx1 ∧ dx2 , (2.111)



2.3 The classical TT̄ flow equation 31

with Lagrangian density

Lσg,G(x) =
√
g

(
1

4
gµνGij∂µφi ∂νφj + V

)
, (µ, ν = 1, 2 , i, j = 1, . . . N) , (2.112)

where φ = (φ1, . . . , φN ) is a set of independent scalar fields, Gij is an N ×N matrix which couples the
scalar fields, and V is a potential term which again depends on the fields φ only.

Putting together the results obtained in sections 2.3.1 and 2.3.2, it is natural to conjecture that the
deformed version of (2.112) is obtained from (2.110) replacing the matrix ∂µφ∂νφ with

hµν = Gij∂µφi ∂νφj , (2.113)

thus obtaining

Lσg,G(x, τ) =
√
g

V

1− τ V
+

1

2τ̃

(
−√g +

√
det [gµν + τ̃hµν ]

)
. (2.114)

Indeed, it is possible to check that (2.114) fulfils (2.78).

2.3.4 Hamiltonian description

Knowing the expression of the TT̄−deformed Lagrangian density for the most general bosonic field
theory, it is instructive to translate it in the Hamiltonian formalism. For simplicity, we restrict to the flat
case gµν = δµν and we setGij = δij . The Lagrangian densities (2.112) and (2.114) become, respectively

Lσ(x) ≡ Lσδ,δ(x, τ) =
1

4
∂µφ · ∂µφ+ V , (2.115)

and
Lσ(x, τ) ≡ Lσδ,δ(x, τ) =

V

1− τ V
+

1

2τ̃
(−1 + Sσ(x, τ)) , (2.116)

where we defined

Sσ(x, τ) =

√
1 + τ̃ ∂µφ · ∂µφ+

1

2
τ̃2 εµρ ενλ

(
∂µφ · ∂νφ

) (
∂ρφ · ∂λφ

)
, (2.117)

and “·” denotes the standard scalar product ofRN , i.e. v·w =
∑N

i=1 viwi ,
(
∀ v, w ∈ RN

)
. The conjugated

momenta π = (π1, . . . , πN ) associated to the fields φ are obtained through

π = i
∂Lσ(x, τ)

∂φ̇
, (2.118)

where again we adopt the shorthand notation φ̇ = ∂x2φ = (∂x2φ1, . . . , ∂x2φN ) and φ′ = ∂x1φ =

(∂x1φ1, . . . , ∂x1φN ). To compute the Hamiltonian density, we shall first express φ̇ in terms of φ′ and π
using (2.118). Inverting (2.118) one finds

φ̇ = −2

(
1 + τ̃

(
φ′ · π

)) (
π + τ̃ φ′

(
φ′ · π

))√
1 + 4τ̃

(
1
4 |φ
′|2 + |π|2

)
+ 4τ̃2

(
φ′ · π

)2 , (2.119)
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and the deformed Hamiltonian density is

Hσ(x, τ) = iπ · φ̇+ Lσ(x, τ) =
V

1− τ V
+

1

2τ̃

(
−1 +

√
1 + 4τ̃ Hσ(x) + 4τ̃2 (Pσ(x))2

)
, (2.120)

where
Hσ(x) =

1

4
|φ′|2 + |π|2 , Pσ(x) = −φ′ · π , (2.121)

are the Hamiltonian and momentum density of the original theory, defined according to (A.15).

Observation 12. The momentum density of the deformed theory coincides with the original one

Pσ(x, τ) = − i

2Sσ(x, τ)
φ′ · φ̇ = −φ′ · π = Pσ(x) , (2.122)

where in the second equality we used (2.119). It is interesting to notice that, the equivalence between
the original and the deformed momentum density becomes manifest only when we perform the
Legendre transformation.

From (2.120) we realise that the classical Hamiltonian density of a TT̄−deformed σ−model has the same
formal structure of the energy spectrum of a TT̄−deformed CFT with bulk term (2.60). In particular,
an expression analogous to (2.60) is formally obtained from (2.120) substituting the potential V with
the constant term F0 and replacing the Hamiltonian and momentum density with the corresponding
integrated quantities averaged over the volume R

(
Hσ(x, τ),Pσ(x, τ)

)
−→ 1

R

(
Eσ(R, τ), P σ(R, τ)

)
, (2.123)

and analogously for the τ = 0 quantities, where

Eσ(R, τ) =

∫ R

0
Hσ(x, τ) dx1 , P σ(R, τ) =

∫ R

0
Pσ(x, τ) dx1 . (2.124)

2.3.5 Yang-Mills theories

As a further example, we apply the TT̄ deformation to a 2−dimensional Yang-Mills theory with generic
gauge group G. The Yang-Mills action is

AYM[F ] =

∫
R2

LYM
g (x) dx1 ∧ dx2 , (2.125)

with Lagrangian density

LYM
g (x) =

1

4
Faµν Fµνa , Fµνa = gµρFρσ a gσν , (2.126)

where Faµν = ∂µAaν − ∂νAaµ + fabcAbµAbν are the components of the field-strength 2−form

F = dA = Faµν ta dx
µ ∧ dxν , A = Aaµ ta dx

µ , (2.127)
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and {ta}dim(g)
a=1 are the generators of the algebra g of G which fulfils

[ta, tb] = i f c
ab tc , (2.128)

where {f c
ab } are the structure constants.

The goal is to solve the flow equation (2.78) using LYM
g (x) as τ = 0 initial condition. For simplicity, let

us start our analysis from the flat case, i.e. gµν = δµν , and denote LYM(x) = LYM
δ (x).

First of all notice that, contrary to the cases discussed in the previous sections, here the stress-energy
tensor is not uniquely defined due to the presence of an internal symmetry. In fact, from one hand the
Noether procedure leads to the canonical stress-energy tensor

T µν
N =

∂LYM

∂(∂µAaρ)
Aνρa − δµνLYM , (2.129)

which is neither symmetric nor gauge invariant. From the other hand, using the Belinfante-Rosenfeld
procedure, one can add to (2.129) a total derivative term to construct a new symmetric and gauge
invariant object which can be shown to be equivalent to the Hilbert stress-energy tensor. In formulae

T µν ≡ T µν
H =

∂LYM

∂(∂µAaρ)
Fνρa − δµνLYM = 2

∂LYM

∂Faµρ
Fνρa − δµνLYM , (2.130)

where in the last equality we used

∂LYM

∂(∂µAaν)
=
∂LYM

∂Fbρσ

∂Fbρσ
∂(∂µAaν)

=
∂LYM

∂Fbρσ

(
δµρ δ

ν
σ − δµσ δνρ

)
δba = 2

∂LYM

∂Faµν
. (2.131)

Observation 13. In principle, one may expect that (2.129) and (2.130) give rise to different kind of
deformations at classical level and, a priori, there is no reason to choose one or the other. However, the
factorisation property (2.32) implies

〈n| det
[
T µν
H (x)

]
|n〉 = det

[
〈n|T µν

N (x) + derivatives |n〉
]

= 〈n|det
[
T µν
N (x)

]
|n〉 , (2.132)

since the expectation value of total derivative terms vanishes. Therefore, (2.129) and (2.130) generate
the same deformation at the quantum level. Equivalently, it should be possible to prove that the
deformed classical Lagrangians corresponding to (2.129) and (2.130) differ only by total derivative
terms, thus they are equivalent.

For simplicity, we will perform the computation using (2.130). Equation (2.78) becomes a PDE for the
function LYM(x, τ) in the variables

(
τ,
{
Faµν

})
∂τLYM(x, τ) =

1

2
εµρ ενσ

(
∂LYM(x, τ)

∂Faµλ
Fνλa − δµνLYM(x, τ)

)(
∂LYM(x, τ)

∂Faρλ
Fσλa − δρσLYM(x, τ)

)
.

(2.133)
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Setting up a perturbative computation, one can write the solution to (2.133) in closed form as

LYM(x, τ) =
3

4τ

[
−1 + 3F2

(
−1

2
,−1

4
,
1

4
;
1

3
,
2

3
;
256

27
τ LYM(x)

)]
. (2.134)

The Lagrangian (2.134) seems quite involved, however, as we shall see, the Hamiltonian associated to
it takes a very nice form. To perform the Legendre transform, we must first compute the conjugated
momenta

πµa = i
∂LYM(x, τ)

∂Ȧaµ
, Ȧaµ = ∂2Aaµ , (2.135)

and express
{
Faµν

}
in terms of {πµa}. Actually, due to the antisymmetry of

{
Faµν

}
in µ ↔ ν, for each

a = 1, . . . , dim(g) there is just one non-vanishing component Fa12 = −Fa21, thus the only non-trivial
conjugated momenta are

π1
a = iF12

a 3F2

(
1

2
,
3

4
,
5

4
;
4

3
,
5

3
;
128

27
τ Fb12F12

b

)
, (2.136)

since π2
a = 0. Inverting the relation (2.136) perturbatively around τ = 0, one finds

F12
a =

−iπ1
a(

1− 1
2τ δ

bc π1
bπ

1
c

)2 , (2.137)

and the deformed Hamiltonian density is then

HYM(x, τ) = iπ1
a Fa12 + LYM(x, τ) =

HYM(x)

1− τ HYM(x)
, (2.138)

where
HYM(x) =

1

2
δbc π1

bπ
1
c , (2.139)

is the Yang-Mills Hamiltonian density. As for the momentum density, both the original and the
deformed ones are identically zero, since T 12(x, τ) = T 21(x, τ) = 0

PYM(x, τ) = PYM(x) = 0 . (2.140)

Observation 14. The Hamiltonian transforms under the TT̄ flow in the same way as a potential term
depending on the field only (cf. sections 2.3.2 and 2.3.3). We interpret this fact as a consequence of
the quasi-topological nature of Yang-Mills theory in 2−dimensions. The latter feature also explains
the emergence in the Lagrangian density (2.134) of the same functional expression found in [50] in the
context of the deformation of a 1−dimensional free particle mechanical system generated by the square
of the stress-energy tensor, i.e. the square of the Hamiltonian. In fact, since the only non-vanishing
components of

{
Faµν

}
are {Fa12}, the stress-energy tensor is diagonal with coincident eigenvalues, i.e.

T 11(x, τ) = T 22(x, τ), thus the TT̄ operator is equivalent to the Hamiltonian squared.



Chapter 3

The CDD factor analysis

In this chapter we review the main result of [1,11], namely we show that, in the framework of massive
IFTs, the TT̄ deformation arises as a modification of the exact S−matrix by a non-trivial CDD factor.
Following [11], we carry on the explicit computation for the sine-Gordon model using the language
of the NLIE, although the same conclusions could be obtained using the TBA. Before going into the
details of the CDD factor modification, we first briefly review the sine-Gordon model and its associated
NLIE. For completeness, we also derive the massless limit which will be useful in the second part of the
thesis (see section 6.3).

3.1 The sine-Gordon model

The sine-Gordon model is a 2−dimensional relativistic field theory. In Minkowsky signature and using
the conventions of [46], the Lagrangian density in cartesian coordinates xM = (x, tx) ≡ (x, t) is

LsG(xM) =
1

4

(
(∂xφ)2 − (∂tφ)2

)
+ V sG , V sG =

4m2

β2
sin

(
βφ

2

)2

=
2m2

β2
(1− cos (βφ)) , (3.1)

Switching to light-cone coordinates x̃M = (x+, x−) according to (A.6), (3.1) becomes

LsG(x̃M) = ∂+φ∂−φ+ V sG . (3.2)

where we denoted ∂± = ∂x± . The Euler-Lagrange equation associated to (3.1) or, equivalently (3.2),
is the famous sine-Gordon equation, i.e.

∂2
xφ− ∂2

t φ =
4m2

β
sin (βφ) , (3.3)

in cartesian and
∂+∂−φ =

m2

β
sin (βφ) , (3.4)

in complex coordinates, respectively. A remarkable feature of the sine-Gordon equation is the
existence of soliton and multi-soliton solutions which, ultimately, reflects the integrability of the

35
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theory. A powerful tool to generate soliton solutions is provided by the so-called auto-Bäcklund
transform which relates two solutions φ and ϕ to equation (3.4) through∂+ϕ = ∂+φ+ 2ma

β sin
(
β
2 (ϕ+ φ)

)
∂−ϕ = −∂−φ+ 2m

βa sin
(
β
2 (ϕ− φ)

) , (a ∈ R) . (3.5)

Expression (3.5) can be used to create a 1−kink solution moving with velocity v starting from the
vacuum φ = 0 as follows

φ1-kink(xM) = 4 arctan

(
e

2m
β

x−vt√
1−v2

)
, v =

1− a2

1 + a2
, (3.6)

and, in turn, the 2−kink solution moving with velocities v1 and v2 can be obtained from the 1−kink
setting φ = φ1-kink,

φ2-kink(xM) = 4 arctan

a1 + a2

a2 − a1

e

2m
β

x−v1t√
1−v2

1 − e
2m
β

x−v2t√
1−v2

2

1 + e

2m
β

x−v1t√
1−v2

1 e

2m
β

x−v2t√
1−v2

2

 , vi =
1− a2

i

1 + a2
i

, (3.7)

and so on. The auto-Bäcklund transform allows to compute all the multi-kink solutions and can be
seen as a fingerprint of the integrability of the model.

Another important feature is that the sine-Gordon equation is equivalent to a Zero Curvature
Representation

∂+L
sG
− − ∂−LsG

+ =
[
LsG

+, L
sG
−
]
, (3.8)

for the su(2) connection Ω = LsG
+ dx

+ + LsG
− dx

− where the components

LsG
+(x̃M) =

β

2
∂+φu3 + imλ

[
cos

(
βφ

2

)
u1 − sin

(
βφ

2

)
u2

]
,

LsG
−(x̃M) = −β

2
∂−φu3 +

im

λ

[
cos

(
βφ

2

)
u1 + sin

(
βφ

2

)
u2

]
, (3.9)

form the so-called Lax pair and λ ∈ C is the spectral parameter. In (3.9), {ui}3i=1 are the generators of
su(2)

u1 =
1

2

(
0 i

i 0

)
, u2 =

1

2

(
0 −1

1 0

)
, u3 =

1

2

(
i 0

0 −i

)
, (3.10)

which fulfil the commutation relations

[ui,uj ] = ε k
ij uk . (3.11)

The existence of a Zero Curvature Representation is another evidence of the integrability of the sine-
Gordon model and allows to derive the infinite tower of conserved charges of the integrable hierarchy.
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3.2 The sine-Gordon NLIE

Integrability provides powerful tools to compute the finite-size spectrum of the sine-Gordon model
such as the TBA and the NLIE. Since in this thesis we will use only the second approach, we start
this section by introducing the NLIE of sine-Gordon. Following the notation of [51], we consider the
Lagrangian density

LsG(xM) =
1

8π

(
(∂tϕ)2 − (∂xϕ)2

)
+ 2µ cos(

√
2βϕ) ,

(
µ ∝ (m)2−2β2

)
, (3.12)

where m is the sine-Gordon soliton mass and β is the coupling constant. Confining the theory on
an infinite cylinder of circumference R, and imposing periodic boundary conditions on the field, i.e.
ϕ(x + R, t) = ϕ(x, t), it emerges the so-called quasi-momentum or vacuum parameter α0 ∈ [−1/2, 1/2]

[52, 53]. Due to the periodicity of the potential in (3.12), the Hilbert space splits into orthogonal
subspaces Hα0 labelled by α0, namely a shift of the field

ϕ→ ϕ+
2π√
2β

, (3.13)

which leaves (3.12) invariant, corresponds to a rotation

|Ψα0〉 → e2πiα0 |Ψα0〉 , ( |Ψα0〉 ∈ Hα0) , (3.14)

in the states of the Hilbert space.

The NLIE of the sine-Gordon model confined on an infinite cylinder of circumference R is [8,51,54–
56]

fν(θ) = ν(R,α0 | θ)

−
∫
C1
dθ′K(θ − θ′) log

(
1 + e−fν(θ′)

)
+

∫
C2
dθ′K(θ − θ′) log

(
1 + efν(θ′)

)
, (3.15)

where

1. fν(θ) is the counting function, which depend on the rapidity variable θ. It represents the unknown
function of the NLIE.

2. ν(R,α0 | θ) is the driving term, defined as

ν(R,α0 | θ) = 2πiα0 − imR sinh(θ) . (3.16)

For future convenience, we explicitly report the parametric dependence of ν on R and α0.

3. K(θ) is the kernel, defined as the logarithmic derivative of the sine-Gordon S−matrix S sG(θ)

K(θ) =
1

2πi
∂θ logS sG(θ) , (3.17)

with

logS sG(θ) = −i
∫

R+

dp

p
sin(pθ)

sinh (πp(ζ − 1)/2)

cosh (πp/2) sinh (πp ζ/2)
, ζ =

β2

1− β2
. (3.18)
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4. C1 and C2 are state-dependent integration contours in the θ complex plane. For the ground-state
in an arbitrary subspace Hα0 , one may choose them to be straight lines slightly displaced from
the real axis

C1 = R + i0+ , C2 = R− i0+ . (3.19)

Equations describing excited states have the same form [51, 53, 56, 57] but the integration
contours C1 and C2 encircle a certain number of singularities {θi} such that

(
1 + ef(θi)

)
= 0. In

the following we will ignore the subtleties related to the choice of the integration contours,
since the arguments we are going to present are not sensitive to them.

Observation 15. One may also consider twisted boundary conditions of the form

ϕ(x+R, t) = ϕ(x, t) +
2π√
2β
n , (n ∈ Z) , (3.20)

which correspond, in the infinite volume limit, to field configurations with non-trivial topological
charge

Qx =

√
2β

2π

∫ R

0
∂xϕdx . (3.21)

Energy levels in the twisted sectors are described by the same NLIE at specific values of α0.
Furthermore, α0 can also be related to a background charge (cf. equation (3.33)). Therefore, (3.15)
also describes minimal models of the Virasoro algebra,Mp,q perturbed by the operator Φ13 [58].

The eigenvalues
{
I(±)

k

}
k∈2N+1

of the quantum charges {Î(±)

k }k∈2N+1 of the sine-Gordon hierarchy, can
be obtained from the counting function as follows

I(±)

k (R,m) =

(
2π

R

)k b(±)

k (r)

Ck
, r = mR , (k ∈ 2N + 1) , (3.22)

with

b(±)

k (r) = −
∫
C1

dθ

2πi

(
±r

2
e±θ
)k

log
(

1 + e−fν(θ)
)

+

∫
C2

dθ

2πi

(
±r

2
e±θ
)k

log
(

1 + efν(θ)
)
, (3.23)

and

Ck =
1

2k

(
4π

β2

)k+1
2 Γ

(
k
2 (ζ + 1)

)
Γ
(
k+3

2

)
Γ
(
k
2ζ
)
Γ

(
1 + ζ

2

)
Γ
(

3+ζ
2

)
k

. (3.24)

From the previous definition, it follows that
{
I(±)

k (R)
}
k∈2N+1

fulfil the following reflection property

I(±)

−k (R) = I(∓)

k (R) , (k ∈ 2N + 1) , (3.25)

which allows to extend the range of values of k from 2N + 1 to 2Z + 1. To encompass also the negative
branch, we define a bold index k which takes values in k ∈ 2Z + 1, and we denote k = |k|, k′ = −|k|.
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Finally, let us introduce the alternative set of conserved charges1

Ek(R) = I(+)

k (R) + I(−)

k (R) , Pk(R) = I(+)

k (R)− I(−)

k (R) , (3.26)

whereE(R) = E1(R) and P (R) = P1(R) are the total energy and momentum of the state, respectively.

3.3 The CFT limit of the NLIE

The CFT limit of (3.15) results in a pair of decoupled NLIEs corresponding to the right- (+) and the
left- (−) mover sectors. They are obtained from (3.15) by sending simultaneouslym→ 0 and θ → ±∞
as

m = m̂ε , θ = θ̂ ± log(ε) , ε→ 0+ , (3.27)

such that m̂e±θ̂ remains finite. The resulting equations are identical to (3.15)

fν(±)(θ) = ν(±)(R,α(±)

0 | θ)

−
∫
C1
dθ′K(θ − θ′) log

(
1 + e−fν(±) (θ′)

)
+

∫
C2
dθ′K(θ − θ′) log

(
1 + efν(±) (θ′)

)
,

(3.28)

but for the driving term, in which m sinh(θ) is replaced by m̂
2 e

θ and − m̂
2 e
−θ, respectively

ν(±)(R,α(±)

0 | θ) = 2πiα(±)

0 ∓ im̂R
2

e±θ , (3.29)

and m̂ sets the energy scale. In (3.29), we also take into account for two independent vacuum parameters
α(±)

0 in the two chiral sectors.

Observation 16. The NLIEs (3.28) are, in principle, suitable for the description of twisted boundary
conditions and more general states in the c = 1 CFT, compared to the set strictly emerging from the
massless limit of the sine-Gordon model. For example, they can accommodate states with odd
fermionic numbers of the massless Thirring model, which require anti-periodic boundary conditions.

Observation 17. The integration contours C1, C2 are still state-dependent. In particular, they should
be deformed away from the initial ground-state configuration C1 = R + i0+, C2 = R − i0+ when the
parameters ±α(±)

0 are analytically extended to large negative values.

Similarly to the massive case, we define the eigenvalues of the quantum operators associated to the
conserved currents of the hierarchy as

I(±)

k (R) =

(
2π

R

)k b̂(±)

k

Ck
=

(
1

R

)k
2πa(±)

k , r̂ = m̂R , (k ∈ 2N + 1) , (3.30)

1The explicit dependence on some parameters, e.g. the massm, will be sometime omitted not to weigh down the notation.
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with

b̂(±)

k = −
∫
C1

dθ

2πi

(
± r̂

2
e±θ
)k

log
(

1 + e−fν(±) (θ)
)

+

∫
C2

dθ

2πi

(
± r̂

2
e±θ
)k

log
(

1 + efν(±) (θ)
)
, (3.31)

where the a(±)

k are state-dependent constants, i.e. they do not depend on R and m̂. Using again the
reflection property (3.25), we can extend the discussion to k ∈ 2Z + 1. Some of the state-dependent
coefficients I(±)

k (2π) can be found in [52]. In particular, the energy and momentum of a generic state
are

E(R) = I(+)

1 (R) + I(−)

1 (R) =
2π

R

(
n(+) − c(+)

0

24

)
+

2π

R

(
n(−) − c(−)

0

24

)
,

P (R) = I(+)

1 (R)− I(−)

1 (R) =
2π

R

(
h(+) − h(−)

)
, (3.32)

with effective central charges

c(±)

0 = 1− 24β2
(
α(±)

0

)2
= 1− 24h(±)

0 , (3.33)

where h(±)

0 are the (anti)-holomorphic highest weights and h(±) = h(±)

0 + n(±) , (n(±) ∈ N).

For the current purposes, it is convenient to think about the massless limit of the sine-Gordon model
as a relevant perturbation of the compactified free boson with Lagrangian given by (3.12) with µ = 0

(see [51] for more details) and twisted boundary conditions (3.20), where r = (
√

2β)−1 is the
compactification radius. Then, the highest weights are now labelled by a pair of integers (n, ñ), where
ñβ2
√

4π
is the quantised charge associated to the total conjugated momentum

Qt =

√
2

2πβ

∫ R

0
∂tϕdx =

2
√

2

β

∫ R

0
Π dx , (3.34)

and n is the winding number corresponding to the topological charge

Qx =

√
2β

2π

∫ R

0
∂xϕdx . (3.35)

The combinations
Q(±)

0 = π (Qx ±Qt) = π
(
n± ñβ2

)
, (3.36)

are the two different charges, associated to the U(1)L × U(1)R symmetry of the c = 1 compactified
boson. Notice thatQ(±)

0 differ from the standard Kac-MoodyU(1)L×U(1)R charges by a multiplicative
factor β which breaks explicitly the β ↔ 1/β symmetry. We adopted this unconventional definition for
the topological charges since, as a reminiscence of the sine-Gordon model, it emerges more naturally
from the current setup. The anagolous of the Bloch wave states in (3.14) are now created by the action
on the CFT vacuum state of the vertex operators

V(n,ñ)(z) = exp

( √
2

2πβ
Q(+)

0 φ(z) +

√
2

2πβ
Q(−)

0 φ̄(z̄)

)
, ϕ(z) = φ(z) + φ̄(z̄) , (3.37)
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with left and right conformal dimensions given by

h(±)

0 =
1

4π2β2

(
Q(±)

0

)2
=

1

4

(
n

β
± ñβ

)2

. (3.38)

Considering (3.33), in section 6.4 we will make the following identification:

Q(±)

0 = 2πα(±)

0 β2 . (3.39)

However, relation (3.39) is valid only at formal level since α(±)

0 are continuous parameters which can
also account, for example, for twisted boundary conditions while, at fixed β, the charges Q(±)

0 can only
assume the discrete set of values given in (3.36). Using (3.39) in (3.37) we find

V(n,ñ)(z) = exp
(√

2βα(+)

0 φ(z) +
√

2βα(−)

0 φ̄(z̄)
)
, (3.40)

which, for ñ = 0 and under the field-shift (3.20), display the same quasi-periodicity properties of the
finite volume sine-Gordon Bloch states.

3.4 The CDD factor and the TT̄ deformation

Following [1, 11], in this section we prove that, in massive IFTs, the TT̄ deformation acts as a twist of
the exact S−matrix by a non-trivial CDD factor. Even though the argument is expected to apply in
general, we carry out the explicit computation in the sine-Gordon model using the language of the
NLIE [11].

Let us modify the sine-Gordon S−matrix by

S sG(θ − θ′)→ S sG(θ − θ′) f(θ − θ′) , f(θ) = eiδ(θ) , (3.41)

with
δ(θ) = τ m2 sinh(θ) . (3.42)

The function f(θ) fulfils

f(θ)f(−θ) = 1 , f(iπ + θ)f(iπ − θ) = 1 , (3.43)

thus it represents a CDD factor. It is easy to show that the transformation (3.41) affects the kernel
K(θ − θ′) as

K(θ − θ′)→ K(θ − θ′) +
1

2π
∂θδ(θ − θ′) = K(θ − θ′) + τ

m2

2π
cosh(θ − θ′) . (3.44)

which, in turn, causes a modification of the driving term in (3.15)

ν = ν(R0, α0 | θ − θ0) , (3.45)
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where R0 and θ0 are defined through

R0 cosh (θ0) = R+ τE(R, τ) , R0 sinh (θ0) = τP (R) . (3.46)

and E(R, τ) = I(+)

1 (R, τ) − I(−)

1 (R, τ) denotes the energy of the deformed theory.1 Formula (3.45)
tells that the solutions of the deformed NLIE are obtained from the original ones simply by a
redefinition of the length R and by a rapidity shift.

Using the deformed counting function, we move on to derive the evolution equations for the conserved
charges. From the definitions (3.22)-(3.24), it follows immediately that the deformed level-k charges
are related to the original ones through

I(±)

k (R, τ) = e±kθ0I(±)

k (R0) , (3.47)

which, in terms of the combinations (3.26), can be recast into a Lorentz boost with rapidity kθ0(
Ek(R, τ)

Pk(R)

)
=

(
cosh (kθ0) sinh (kθ0)

sinh (kθ0) cosh (kθ0)

)(
Ek(R0)

Pk(R0)

)
. (3.48)

The conservation of the norm of the vector (Ek,Pk) leads to

E2
k(R, τ)− P2

k(R, τ) = E2
k(R0)− P2

k(R0) . (3.49)

Observation 18. Using (3.48) with k = 1 in (3.46) one can derive the following expressions for
cosh (θ0) and sinh (θ0)

cosh (θ0) =
R+ τE(R, τ)

R0
=
R0 − τE(R0)

R
, sinh (θ0) =

τP (R)

R0
=
τP (R0)

R
, (3.50)

which imply

(R0)2 = (R+ τE(R, τ))2 − (τP (R))2 , R2 = (R0 − τE(R0))2 − (τP (R0))2 . (3.51)

To find the evolution equations of the level−k energy and momentum Ek(R, τ) and Pk(R, τ), we
differentiate both sides of (3.47) w.r.t. τ keeping R0 fixed

∂τI
(±)

k (R, τ) +R′∂RI
(±)

k (R, τ) = ±kθ′0 I
(±)

k (R, τ) , (3.52)

with R′ ≡ ∂τR and θ′0 ≡ ∂τθ0. To determine R′ and θ′0 we rewrite (3.46) asR0 = Re−θ0 + 2τI(+)

1 (R0)

R0 = Reθ0 + 2τI(−)

1 (R0)
, (3.53)

and, differentiating both equations in (3.53) w.r.t. τ we obtain the following set of equations for R′ and
θ′0 0 = R′ e−θ0 −Rθ′0 e−θ0 + 2I(+)

1 (R0)

0 = R′ eθ0 +Rθ′0 e
θ0 + 2I(−)

1 (R0)
, (3.54)

1The deformed charges
{
I(±)

k (R, τ)
}
k∈2Z+1

are computed from (3.22)-(3.24) using the driving term (3.45).
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whose solution is
R′|R0=const. = −E(R, τ) , θ′0|R0=const. =

P (R)

R
. (3.55)

Plugging (3.55) into (3.52) we find the evolution equations for the level−k energy and momentum∂τEk(R, τ)− E(R, τ) ∂REk(R, τ) = k
R P (R)Pk(R, τ)

∂τPk(R, τ)− E(R, τ) ∂RPk(R, τ) = k
R P (R) Ek(R, τ)

. (3.56)

In particular, setting k = 1 in (3.56) and using (2.46) – which is equivalent to the momentum
quantisation – one has

∂τE(R, τ) =
1

2
∂R
(
E2(R, τ)− P 2(R)

)
, (3.57)

which coincide with the Burgers equation (2.47). Therefore, we proved that the modification (3.41) of
the S−matrix leads to the definition of the TT̄ deformation of the energy levels.



Chapter 4

The TT̄ deformation and integrability

As already discussed in the previous chapter, the TT̄ deformation preserves the integrability of the
original theory, both at classical and quantum level. The aim of this chapter is to investigate the
integrable structure of a TT̄−deformed IFT, using the sine-Gordon (sG) model as an example. We
start to look for the existence of soliton solutions in the TT̄−deformed model by explicitly solving the
deformed EoM [46]. Then, we construct the Zero Curvature Representation for the TT̄−deformed
theory [46], which definitively proves the integrability of the model. Finally, exploiting the unique
relation between integrable equations and surfaces embedded in N−dimensional ambient space (with
N ≥ 3), we infer that the TT̄ deformation acts, at the classical level, as a space-time coordinate
transformation depending non-trivially on the field configuration itself [24]. This geometric
interpretation gives a powerful tool to generate solutions to the TT̄−deformed EoMs [24] and to
construct the integrable structure of the deformed theory [43].

4.1 Simple soliton solution in TT̄−deformed sine-Gordon

From section 2.3.2, we know that the TT̄ deformation of (3.1) is (2.110), which we rewrite as

LsG(xM, τ) =
V sG

1− τV sG
+

1

2τ̃

(
−1 + S sG(xM, τ)

)
, (4.1)

with
S sG(xM, τ) =

√
1 + τ(1− τV sG)

(
φ2
x − φ2

t

)
, (4.2)

where hereafter we adopt the shorthand notation φx = ∂xφ and φt = ∂tφ to denote space and time
derivatives, respectively. The Euler-Lagrange equation associated to (4.1) is

∂x

(
∂LsG(xM, τ)

∂φx

)
− ∂t

(
∂LsG(xM, τ)

∂φt

)
=
∂LsG(xM, τ)

∂φ
, (4.3)

which explicitly gives the following EoM(
1− τV sG

)2
(φxx − φtt)− τ

(
1− τV sG

)3 (
φxx φ

2
t − 2φxt φx φt + φtt φ

2
x

)
=

1

2
τ(V sG)′

(
1− τV sG

) (
3 + 2S sG

) (
φ2
x − φ2

t

)
+
(
1 + S sG

)
(V sG)′ , (4.4)

44
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where (V sG)′ = dV sG

dφ .

The goal of this section is to find a class of soliton solutions to (4.4). We will proceed by parametrising
the field φ using three generic functions F , X and T as follows

F (φ) = X(x) + T (t) . (4.5)

Then, all the derivatives of φ can be expressed in terms of the derivatives of F , X , T as follows

φx =
Xx

F ′
, φt =

Tt
F ′

,

φxx =
Xxx

F ′
−X2

x

F ′′

F ′3
, φtt =

Ttt
F ′
− T 2

t

F ′′

F ′3
, φxt = −XxTt

F ′′

F ′3
, (4.6)

where F (k) = dF
dφ and F ′ = F (1), F ′′ = F (2). Using the relations (4.6), the EoM (4.4) becomes

(
1− τV sG

)2
F ′2 (Xxx − Ttt)− τ

(
1− τV sG

)3 (
XxxT

2
t + TttX

2
x

)
=
(
1− τV sG

)2
F ′′
(
X2
x − T 2

t

)
+

1

2
τ(V sG)′

(
1− τV sG

) (
3 + 2S sG

)
F ′
(
X2
x − T 2

t

)
+
(
1 + S sG

)
(V sG)′F ′3 , (4.7)

and (4.2) reads

S sG =

√
1 + τ

1− τV sG

F ′2
(
X2
x − T 2

t

)
. (4.8)

From (4.8), we extract the combination X2
x − T 2

t

X2
x − T 2

t =
(S sG)2 − 1

τ (1− τV sG)
F ′2 , (4.9)

then, we compute the second order derivatives Xxx and Ttt using the chain rule,1

Xxx = −Ttt

=
F ′
[
2S sG(S sG)′ (1− τV sG) + τ

(
(S sG)2 − 1

)
(V sG)′

]
+ 2F ′′

(
(S sG)2 − 1

)
(1− τV sG)

2τ (1− τV sG)2 F ′ , (4.10)

where (S sG)′ = ∂SsG
∂φ . Equation (4.10) implies Xxx = −Ttt = c0, with c0 ∈ R arbitrary constant which

we set to zero, i.e. c0 = 0. In this way one has

Xx = 2α1 , Tt = 2α2

X = 2α1x− 2kx , Tt = 2α2t− 2kt , (4.11)

with α1, α2, kx, kt ∈ R integration constants. Using (4.9), equations (4.7) and (4.10) become,
respectively

0 = 2
(
(S sG)2 − 1

) (
1− τV sG

)
F ′′ + τ(V sG)′F ′

(
S sG + 1

)2 (
2S sG − 1

)
, (4.12)

0 = 2
(
(S sG)2 − 1

) (
1− τV sG

)
F ′′ +

[
2S sG(S sG)′

(
1− τV sG

)
+ τ

(
(S sG)2 − 1

)
(V sG)′

]
F ′ ,

(4.13)
1This part relies fundamentally on the fact that the variables are separate.
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which can be combined to give

(S sG)′
(
1− τV sG

)
= τS sG

(
S sG + 1

)
(V sG)′ −→ S sG =

1− c
c− τV sG

, (4.14)

where c ∈ R is an arbitrary integration constant. Plugging expression (4.14) for S sG into (4.12), or
equivalently (4.13), we obtain the following equation

2
(
c− τV sG

) (
2c− 1− τV sG

)
F ′′ + τ

(
3c− 2− τV sG

)
(V sG)′F ′ = 0 , (4.15)

whose solution is
F ′(φ) = βk̃

c− τV sG

√
1− 2c+ τV sG

, (k̃ ∈ R) . (4.16)

Integrating further (4.16) one gets

F (φ) = 2kφ + βk̃
(1 + 4τκ) F

(
βφ
2 | −

m2

β2κ

)
− 8τκE

(
βφ
2 | −

m2

β2κ

)
2
√
τκ

, (4.17)

where kφ ∈ R is an integration constant, κ is related to c through c = 1
2 − 2τκ, and F(z|m), E(z|m)

are the incomplete elliptic integrals of the first and second kind, respectively.

Plugging (4.11) and (4.16) into (4.8) using (4.14), one gets the following equation(
1− c

c− τV sG

)2

= 1 + 4τ
(
1− τV sG

) (
α2

1 − α2
2

) 1− 2c+ τV sG

k̃2 (c− τV sG)2 , (4.18)

which allows to fix k̃ as
k̃ = ±2

√
τ

β

√
α2

1 − α2
2 . (4.19)

In conclusion, we found a class of moving soliton solutions φ(xM, τ) which fulfil the implicit relation

1√
κ

[
(1 + 4τκ) F

(
βφ(xM, τ)

2
− m2

β2κ

)
− 8τκE

(
βφ(xM, τ)

2
− m2

β2κ

)]
= ±2

α1x+ α2t− k√
α2

1 − α2
2

.

(4.20)
where k is a constant defined as k = kx+kt+kφ. They correspond to the TT̄ deformation of a particular
family of elliptic solutions to the sine-Gordon equation [59,60]

φ(xM) = ± 2

β
am

(
2
√
κ
α1x+ α2t− k√

α2
1 − α2

2

− m2

β2κ

)
, (4.21)

where am (x|k) is the amplitude of Jacobi elliptic function. Expressions (4.21) correspond to “staircase”
type solutions (see Figure 4.1a), in which the parameter κ is related to the amplitude of each step.

Probably the most physically interesting solution belonging to (4.20) is the TT̄ deformation of the sine-
Gordon 1−kink (3.6), which is recovered with an appropriate scaling of the parameters and it reads

8τ
m2

β2
cos

(
φ1-kink(xM, τ)

2

)
+ log

(
tan

(
φ1-kink(xM, τ)

4

))
=

2m

β

α1x+ α2t− k√
α2

1 − α2
2

. (4.22)
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In Figure 4.3 we represented (4.22) for different values of τ , setting m = β = 1 , α1 = 1 , α2 = 3
5 and

k = 0. Notice that for negative values of τ (Figure 4.3a) the solution stretches w.r.t the original one
(Figure 4.3b), while for positive values of τ (Figures 4.3c and 4.3d) it bends and becomes a multi-valued
function. The transition between the single- and the multi-valued regimes (Figure 4.3c) corresponds
to a shock wave singularity for the solution and it occurs at the critical value τ = τ?. To estimate τ?,
we consider the norm of the gradient of φ1-kink(xM, τ) and we look for the values of τ which make it
divergent. Setting m = β = 1, one has

|∇xφ1-kink(xM, τ)| =
√

(∂xφ1-kink(xM, τ))2 − (∂tφ1-kink(xM, τ))2 = ±
4 sin

(
φ1-kink(xM,τ)

2

)
1− 4τ [1− cos (φ1-kink(xM, τ))]

,

(4.23)
which is divergent if and only if the field configuration φ1-kink(xM, τ) fulfils

1− 4τ [1− cos (φ1-kink(xM, τ))] = 0 −→ φ1-kink(xM, τ) = arccos

(
4τ − 1

4τ

)
+ 2πn , (n ∈ Z) .

(4.24)
The fact that the solution φ1-kink(xM, τ) lies in the strip [2πn, 2π(1+n)] , (n ∈ Z), imposes the following
constraint

0 ≤ arccos

(
4τ − 1

4τ

)
≤ 2π −→ τ ≥ 1

8
, (4.25)

from which it descends that the critical value is τ? = 1
8 .

As for the general solution (4.20), from figure 4.1b we see that once the TT̄ deformation is turned on,
it displays a deformed shape similar to that observed for the 1−kink solution, with a shock-wave
singularities at τ? ' 1/8. In section 4.7, we will explicitly compute the critical value τ? from a
completely different perspective.

Observation 19. Switching to light-cone coordinates x̃M = (x+, x−) according to (A.6) and setting
m = β = 1, we notice that (4.22) fulfils

∂+φ1-kink(x̃M, τ) =
2a sin

(
φ1-kink(x̃M,τ)

2

)
1− 4τ + 4τ cos (φ1-kink(x̃M, τ))

∂−φ1-kink(x̃M, τ) =

2
a sin

(
φ1-kink(x̃M,τ)

2

)
1− 4τ + 4τ cos (φ1-kink(x̃M, τ))

, a =

√
1− v
1 + v

, (4.26)

which have the form of a first-step Bäcklund transformation from the vacuum solution.
Unfortunately, equations (4.26) do not contain much information and the complete form of the
Bäcklund transformation is expected to be very complicated.

4.2 TT̄−deformed sine-Gordon Lax pair

Let us now switch to Euclidean signature and use complex coordinates z = (z, z̄) defined through (A.6).
The Lagrangian density of TT̄ deformed sine-Gordon is (2.109), which we rewrite as

LsG(z, τ) =
V

1− τ V
+

1

2τ̃

(
−1 + S sG(z, τ)

)
, (4.27)
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τ = 0 , κ = 10-5
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Figure 4.1: The general solution (4.20) in the stationary limit (α1 = 1 , α2 = 0 , k = 0) for the
undeformed (a) and the deformed (b) theory, for small values of κ.

with
S sG(z, τ) =

√
1 + 4τ̃ ∂zφ∂z̄φ , τ̃ = τ(1− τ V sG) . (4.28)

The Euler-Lagrange equation associated to (4.27) is

∂z

(
∂LsG(z, τ)

∂(∂zφ)

)
+ ∂z̄

(
∂LsG(z, τ)

∂(∂z̄φ)

)
=
∂LsG(z, τ)

∂φ
, (4.29)

and, using

∂S sG(z, τ)

∂(∂zφ)
=

4τ̃ ∂z̄φ

2S sG(z, τ)
,

∂S sG(z, τ)

∂(∂z̄φ)
=

4τ̃ ∂zφ

2S sG(z, τ)
,

∂S sG(z, τ)

∂φ
=
τ2 (V sG)′

τ̃

1− (S sG(z, τ))2

2S sG(z, τ)
,

(4.30)
with (V sG)′ = dV sG

dφ , it can be recast into the following compact form

∂z

(
∂z̄φ

S sG(z, τ)

)
+ ∂z̄

(
∂zφ

S sG(z, τ)

)
=

(V sG)′

4S sG(z, τ)

(
1 + S sG(z, τ)

1− τV sG

)2

. (4.31)

Starting from (4.31), we look for a pair of su(2) matrices

LsG(z, τ) =

(
−a(z, τ) b(z, τ)

c(z, τ) a(z, τ)

)
, L̄sG(z, τ) =

(
ā(z, τ) b̄(z, τ)

c̄(z, τ) −ā(z, τ)

)
, (4.32)

such that the zero-curvature condition

∂zL̄
sG(z, τ)− ∂z̄LsG(z, τ) =

[
LsG(z, τ), L̄sG(z, τ)

]
, (4.33)
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is satisfied if and only if φ is a solution to (4.31). In terms of the Lax pair’s components, (4.33) is equivalent
to the following three equations

∂zā+ ∂z̄a = bc̄− cb̄ , (4.34a)

∂z̄b− ∂z b̄ = 2ab̄+ 2āb , (4.34b)

∂z c̄− ∂z̄c = 2ac̄+ 2āc . (4.34c)

where we dropped the explicit dependence of the functions a, b, ā and b̄. We choose (rather arbitrarily)
the first equation (4.34a) to match manifestly with the EoMs (4.31). A reasonable parametrisation is

a = γ
∂zφ

2S sG(z, τ)
, ā = γ

∂z̄φ

2S sG(z, τ)
, bc̄− cb̄ = γ

(V sG)′

8S sG(z, τ)

(
1 + S sG(z, τ)

1− τV sG

)2

, (4.35)

with γ ∈ C an arbitrary constant to be fixed, from which the equations (4.34) become

bc̄− cb̄ = γ
(V sG)′

8S sG(z, τ)

(
1 + S sG(z, τ)

1− τV sG

)2

, (4.36a)

∂z̄b− ∂z b̄ = γ
∂zφ

S sG(z, τ)
b̄+ γ

∂z̄φ

S sG(z, τ)
b , (4.36b)

∂z c̄− ∂z̄c = γ
∂zφ

S sG(z, τ)
c̄+ γ

∂z̄φ

S sG(z, τ)
c . (4.36c)

In order to determine the functions b, c, b̄ and c̄ which solve (4.36), one can perform a perturbative
expansion around τ = 0 trying to recognize some pattern in the terms. After some computations one
is lead to the following ansatz:

b = −m
[
µe−i

βφ
2 B+ + µ̃ ei

βφ
2 (∂zφ)2B−

]
, c = −m

[
1

µ̃
ei
βφ
2 B+ +

1

µ
e−i

βφ
2 (∂zφ)2B−

]
, (4.37a)

b̄ = −m
[
µ̃ ei

βφ
2 B+ + µ e−i

βφ
2 (∂z̄φ)2B−

]
, c̄ = −m

[
1

µ
e−i

βφ
2 B+ +

1

µ̃
ei
βφ
2 (∂z̄φ)2B−

]
, (4.37b)

where γ = − iβ
2 , B± are two unknown functions to be fixed and µ, µ̃ ∈ C are arbitrary complex

numbers, which can be regarded as two independent spectral parameters. Plugging the ansatz (4.37)
into (4.36), the functions B± are fixed as

B+ =
τ (1 + S sG(z, τ))2

8τ̃ S sG(z, τ)
, B− =

τ

2S sG(z, τ)
, (4.38)

and the Lax pair are

LsG(z, τ) =

 i
∂zφ

4SsG(z,τ)
−mµe−i

βφ
2 B+ −mµ̃ ei

βφ
2 (∂zφ)2B−

−m
µ̃ e

i
βφ
2 B+ − m

µ e
−iβφ

2 (∂zφ)2B− −i ∂zφ
4SsG(z,τ)

 ,

L̄sG(z, τ) =

 −i ∂z̄φ
4SsG(z,τ)

−mµ̃ ei
βφ
2 B+ −mµe−i

βφ
2 (∂z̄φ)2B−

−m
µ e
−iβφ

2 B+ − m
µ̃ e

i
βφ
2 (∂z̄φ)2B− i

∂z̄φ
4SsG(z,τ)

 . (4.39)
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Notice that there exist a global SL (2,C) transformation acting on (LsG, L̄sG) as

L̂sG(z, τ) = M−1LsG(z, τ)M , ˆ̄LsG(z, τ) = M−1L̄sG(z, τ)M , (4.40)

with

M =

( √
µ̃λ 0

0 1√
µ̃λ

)
≡

(
(µ̃µ)

1
4 0

0 (µ̃µ)−
1
4

)
∈ SL(2,C) , λ =

√
µ

µ̃
, (4.41)

such that (L̂sG, ˆ̄LsG) is a Lax pair representation equivalent to (LsG, L̄sG) and depending on a single
parameter λ. This implies that the two spectral parameters µ and µ̃ are not independent.

In conclusion, we found that a one-parameter Lax pair representation for the TT̄−deformed sine-
Gordon model is given by

LsG(z, τ) =

 i
∂zφ

4SsG(z,τ)
−mλe−i

βφ
2 B+ − m

λ e
i
βφ
2 (∂zφ)2B−

−mλei
βφ
2 B+ − m

λ e
−iβφ

2 (∂zφ)2B− −i ∂zφ
4SsG(z,τ)


=

β

2S sG(z, τ)
∂zφu3 + 2im

[
F+ cos

βφ

2
u1 − F− sin

βφ

2
u2

]
,

L̄sG(z, τ) =

 −i ∂z̄φ
4SsG(z,τ)

−m
λ e

i
βφ
2 B+ −mλe−i

βφ
2 (∂z̄φ)2B−

−m
λ e
−iβφ

2 B+ −mλei
βφ
2 (∂z̄φ)2B− i

∂z̄φ
4SsG(z,τ)


= − β

2S sG(z, τ)
∂z̄φu3 + 2im

[
F̄+ cos

βφ

2
u1 + F̄− sin

βφ

2
u2

]
, (4.42)

where {ui}3i=1 are the generators of the su(2) algebra defined in (3.10) and

F+ = λB+ +
1

λ
(∂zφ)2B− , F− = λB+ −

1

λ
(∂zφ)2B− ,

F̄+ =
1

λ
B+ + λ (∂z̄φ)2B− , F̄− =

1

λ
B+ − λ (∂z̄φ)2B− . (4.43)

As a consistency check one can easily verify that, in the τ → 0 limit, expression (4.42) correctly
reproduces the Lax pair of the sine-Gordon model (3.9).
The existence of a Lax pair representation for the TT̄−deformed sine-Gordon theory explicitly proves
that the sine-Gordon integrable structure is preserved along the TT̄ flow.

Observation 20. From (4.42), one can obtain the Lax pair of the TT̄-deformed sinh-Gordon (shG)
model, by a simple field redefinition φshG = −iφsG.

Observation 21. Taking the massless limit, i.e. m → 0, of the sine-Gordon Lagrangian one gets the
Lax pair of the TT̄−deformed massless scalar field

L(z, τ) =

(
i

∂zφ
4S(z,τ) 0

0 −i ∂zφ
4S(z,τ)

)
=

∂zφ

2S(z, τ)
u3 , (4.44)

L̄(z, τ) =

(
−i ∂z̄φ

4S(z,τ) 0

0 i
∂z̄φ

4S(z,τ)

)
= − ∂z̄φ

2S(z, τ)
u3 , (4.45)
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with
S(z, τ) =

√
1 + 4τ ∂zφ∂z̄φ . (4.46)

4.3 Classical integrable equations and embedded surfaces

It is a well known fact that integrable equations in 2 dimensions are related to surfaces embedded in an
N−dimensional ambient space. In this respect, the two oldest examples are the sine-Gordon and
Liouville equations, whose discovery dates back to the 19th century [61, 62]. They appear as the
Gauss-Mainardi-Codazzi (GMC) system of equations (C.13) for pseudo-spherical and minimal
surfaces embedded in R3, respectively. As proved by Bonnet [63], any surface embedded in R3 is
uniquely determined (up to its position in the ambient space) by two rank−2 symmetric tensors: the
metric tensor gµν (C.4) and the second fundamental tensor dµν (C.5). Their intuitive role is to
measure, respectively, the length of an infinitesimal curve and the displacement of its endpoint from
the tangent plane at the starting point. These two objects can be used to study the motion of a frame
anchored to the surface, which results in a system of linear differential equations, known as
Gauss-Weingarten equations (C.8, C.9). The GMC system appears then as the consistency condition
for this linear system, effectively constraining the “moduli space” consisting of the tensors gµν and dµν .

The search for a general correspondence originated in the works of Lund, Regge, Pohlmeyer and
Getmanov [64–66] and was subsequently formalised by Sym [67–71] who showed that any integrable
system whose associated linear problem is based on a semi-simple Lie algebra g can be put in the form
of a GMC system for a surface embedded in a N-dimensional ambient space,1 with N = dim(g). In
this section, we will shortly review Sym’s results for the general setup and then we will focus on the
case of the sine-Gordon model. We will use the following conventions

z = (z1, z2) = (z, z̄) , ∂µf(z) ≡ ∂

∂zµ
f(z) , (∀f : C→ R , µ = 1, 2) .

Let us consider a generic 2−dimensional system of non-linear partial differential equations for a set of
real fields {φi(z)}. We assume that this system admits a Zero Curvature Representation (ZCR) for a pair
of functions (L1, L2) taking values in a d-dimensional representation of a semi-simple Lie algebra2 g

∂2L1 − ∂1L2 + [L1, L2] = 0 , (4.47)

where the functions (L1, L2) depend on z through the fields {φi(z)} and their derivatives w.r.t. z

Lµ ≡ Lµ(z|λ) ≡ Lµ ({φi(z)} , {∂νφi(z)} , . . . |λ) , (µ = 1, 2) , (4.48)

and they additionally depend on a real spectral parameter λ. The ZCR can be interpreted as the
compatibility condition for a system of first-order linear partial differential equations involving an

1An interesting additional result of Sym concerns the existence of the same kind of connection for spin systems and
σ-models.

2Here we abuse notations by denoting with g both the algebra and its d-dimensional representation. The same applies
for the associated Lie Group G.
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auxiliary d× d matrix-valued function Φ ≡ Φ(z|λ)

∂µΦ = LµΦ , (µ = 1, 2) , (4.49)

commonly known as associated linear problem. Assuming Φ(z0|λ) ∈ G as initial condition, G being
the Lie group associated to g, equation (4.49) allows, in principle, to recover a single-valued function
Φ(z|λ) ∈ G , ∀z ∈ R2. This function can then be used to construct the following object

r(z|λ) = Φ−1(z|λ)
∂

∂λ
Φ(z|λ) , (4.50)

which is interpreted as the coordinate description of a λ−family of surfaces embedded into the N-
dimensional affine space g. Moreover, equipping gwith a non-degenerate scalar product, i.e. the Killing
form of the semi-simple Lie algebra, we can transform g into an N−dimensional flat space. In other
words, we can find a basis

{
ei
}N
i=1

of g orthonormal w.r.t. the Killing form and then extract the
coefficients {ri}Ni=1 from the identity

r(z|λ) =
N∑
i=1

ri e
i = Φ−1(z|λ)

∂

∂λ
Φ(z|λ) . (4.51)

The row vector r = (r1, r2, . . . , rN )T represents the position vector of a family of surfaces embedded
in an N-dimensional flat space,1 parametrised by λ. These are called solitonic surfaces and satisfy the
following properties:

1. their GMC system reduces to the ZCR (4.47). This means that any integrable system whose
EoMs can be represented as a ZCR depending on a spectral parameter λ, can be associated to a
particular class of surfaces;

2. they are invariant w.r.t. λ−independent gauge transformation of the pair (L1, L2). This fact
provides a way to prove the equivalence of distinct soliton systems up to gauge transformations
and independent coordinate redefinitions, see [70];

3. their metric tensor (induced by the flat space g) is explicitly computed from the pair (L1, L2) as

gµν = Tr
[
Ad
(
∂Lµ
∂λ

)
Ad
(
∂Lν
∂λ

)]
, (4.52)

where Ad denotes the adjoint representation of the algebra g. Consequently, any intrinsic
property of the soliton surface is determined uniquely by the ZCR.

4.4 Embedded surfaces and the TT̄ deformation

Let us now consider the specific case of the sine-Gordon equation (3.4). The functions (L1, L2) for this
model takes values in a 2−dimensional representation of the Lie algebra su(2) and corresponds to the

1The signature of this space depends on the real form chosen for the algebra; for example sl (2) ' so (2, 1) give rise to
surfaces in Minkowski space R2,1.
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Lax pair (3.9)

LsG
1 (z) = LsG(z) =

β

2
∂zφ u3 + imλ

[
cos

(
βφ

2

)
u1 − sin

(
βφ

2

)
u2

]
, (4.53)

LsG
2 (z) = L̄sG(z) = −β

2
∂z̄φ u3 +

im

λ

[
cos

(
βφ

2

)
u1 + sin

(
βφ

2

)
u2

]
. (4.54)

Since dim (su (2)) = 3, the solitonic surfaces corresponding to the sine-Gordon model are embedded
in the Euclidean plane R3 (su(2) is compact). As mentioned in section 4.3, Bonnet theorem [63] tells us
that any surface in R3 is completely specified (modulo its position) by its first and second fundamental
quadratic forms which are (see appendix C.1)

IsG(z) = gsGµν(z) dzµdzν = 2m2

[
dz2 − 2

λ2
cos (βφ) dz dz̄ +

1

λ4
dz̄2

]
, (4.55)

IIsG(z) = d sG
µν(z) dzµdzν = 2m2

√
2

λ
sin (βφ) dz dz̄ . (4.56)

From (4.55) and (4.56) one can then extract the Gaussian and the mean curvatures using (C.7):

K sG = Det
[
d sG
µρ

(
gsG
)ρν]

= −λ
2

2
, H sG = d sG

µν

(
gsG
)νµ

=
λ√
2

cot (βφ) , (4.57)

with gsGµν (gsG)νρ = δρµ. Since K sG is constant negative, the solitonic surfaces we are dealing with are
pseudo-spherical, with the spectral parameter λ playing the role of Gaussian curvature. In figure 4.2,
we reported examples of pseudo-spherical surfaces corresponding to 1−kink, 2−kink and stationary
breather solutions of the sine-Gordon model.
Let us now apply the Sym formalism sketched above to the TT̄-deformed sine-Gordon model [46]
and derive the geometric properties of the associated surfaces. The starting point is the Lax pair of the
TT̄-deformed theory (4.42)

LsG
1 (z, τ) = LsG(z, τ) =

β

2S sG(z, τ)
∂zφu3 + 2im

[
F+ cos

(
βφ

2

)
u1 − F− sin

(
βφ

2
φ

)
u2

]
,

LsG
2 (z, τ) = L̄sG(z, τ) = − β

2S sG(z, τ)
∂z̄φu3 + 2im

[
F̄+ cos

(
βφ

2

)
u1 + F̄− sin

(
βφ

2

)
u2

]
,

(4.58)

which again belongs to a 2−dimensional representation of the algebra su(2) and thus the resulting
solitonic surfaces are embedded in R3. Going through the computation of the first and second
fundamental forms, one finds

IsG(z, τ) = gsGµν(z, τ) dzµdzν =
m2

2 (S sG(z, τ))2

(
S sG(z, τ) + 1

1− τV sG

)2

ĝµν dz
µdzν , (4.59)

IIsG(z, τ) = dsGµν(z, τ) dzµdzν =
m2 sin (βφ)√
2λ (1− τV sG)

(
S sG(z, τ) + 1

S sG(z, τ)

)2

d̂µν dz
µdzν , (4.60)

where the matrices ĝµν and d̂µν are

ĝµν =

 (
SsG+1

2 − SsG−1
2λ2

∂zφ
∂z̄φ

)2
+ (SsG)2−1

4λ2
β2V sG

m2
∂zφ
∂z̄φ

(SsG)2−1
4

(
∂z̄φ
∂zφ

+ 1
λ4

∂zφ
∂z̄φ

)
− (SsG)2+1

2λ2 cos (βφ)

(SsG)2−1
4

(
∂z̄φ
∂zφ

+ 1
λ4

∂zφ
∂z̄φ

)
− (SsG)2+1

2λ2 cos (βφ)
(
SsG+1

2λ2 − S
sG−1
2

∂z̄φ
∂zφ

)2
+ (SsG)2−1

4λ2
β2V sG

m2
∂z̄φ
∂zφ


µν

,
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(a) (b) (c) (d)

Figure 4.2: Pseudo-spherical solitonic surfaces associated to kink and breather solutions. Figure 4.2a
represents the Dini surface, corresponding to a moving kink, while in Figure 4.2b the famous Beltrami
pseudo-sphere is represented. The latter surface is obtained fromDini’s surface by taking the stationary
limit of the kink solution. Figures 4.2c and 4.2d correspond to the pseudo-spherical surfaces associated
to a stationary breather and to a two-kink solution, respectively.

d̂µν =

 τ (∂zφ)2 (SsG)2+1

4(1−τV sG)
(SsG)2+1

4(1−τV sG)
τ (∂z̄φ)2


µν

. (4.61)

One easily verifies that, in the τ → 0 limit, IsG(z, τ) and IIsG(z, τ) correctly reduces to the fundamental
forms of sine-Gordon

IsG(z, τ) →
τ→0

2m2

(
1 − 1

λ2 cos (βφ)

− 1
λ2 cos (βφ) 1

λ4

)
µν

dzµdzν = IsG(z) , (4.62)

IIsG(z, τ) →
τ→0

m2

√
2

λ
sin (βφ)

(
0 1

1 0

)
µν

dzµdzν = IIsG(z) . (4.63)

Quite remarkably, although the dependence of the matrices (4.61) on τ is complicated, they recombine
in such a way that the Gaussian and mean curvature do not depend explicitly on it. In fact, these two
geometric invariants in the TT̄−deformed theory are exactly the same as in the original sine-Gordon
model

K sG(z, τ) = −λ
2

2
= K sG(z) , H sG(z, τ) =

λ√
2

cot (βφ) = H sG(z) . (4.64)

Therefore, the solitonic surface corresponding to a particular solution of the TT̄-deformed
sine-Gordon EoM is the same as the one associated to the solution of the original EoM. We conclude
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that the net effect of the TT̄ deformation is to change the parametrisation of the surface, without
affecting its intrinsic properties. At the level of the solutions, instead, the deformation acts as a
non-trivial space-time coordinate transformation. As we have already seen in section 4.1 and shall see
in section 4.7, the TT̄−deformed solutions generally possess critical values in τ corresponding to
shock-wave phenomena, i.e. branching of the solutions. Examples of shock-wave phenomena and
square root-type transitions in the classical energy – similar to the Hagedorn transition at quantum
level – will be discussed in sections 4.7 and 4.8 for specific solutions of the deformed sine-Gordon
model.

4.5 Coordinate transformation

We have inferred that there must exist a reference frame w = (w1, w2) = (w, w̄) in which the
components of the first and second fundamental forms of the TT̄−deformed sine-Gordon model
becomes trivially the ones of the original theory. Therefore, we look for a space-time coordinate
transformation of the form

ΨsG
τ : C→ C : z→ w = ΨsG

τ (z) , (4.65)

such that

gsGµν(w) dwµdwν = gsGµν(z, τ) dzµdzν =⇒ gsGρσ
(
ΨsG
τ (z)

) ∂wρ
∂zµ

∂wσ

∂zν
= gsGµν(z, τ) , (4.66)

dsGµν(w) dwµdwν = dsGµν(z, τ) dzµdzν =⇒ dsGρσ
(
ΨsG
τ (z)

) ∂wρ
∂zµ

∂wσ

∂zν
= dsGµν(z, τ) . (4.67)

where J µν = ∂wµ

∂zν are the components of the Jacobian of the transformation (4.65). Using the
expression (4.55)-(4.56) and (4.59)-(4.61), it is now a matter of simple algebraic manipulations to
obtain the following expressions for J µν in the coordinates z

∂zw ≡
∂w1

∂z1
=

(S sG(z, τ) + 1)2

4S sG(z, τ) (1− τV sG)
, ∂z̄w̄ ≡

∂w2

∂z2
=

(S sG(z, τ) + 1)2

4S sG(z, τ) (1− τV sG)
, (4.68)

∂z̄w ≡
∂w1

∂z2
=

τ

S sG(z, τ)
(∂z̄φ)2 , ∂zw̄ ≡

∂w2

∂z1
=

τ

S sG(z, τ)
(∂zφ)2 . (4.69)

The latter expressions allows one to write the partial derivatives of the field φ in the coordinates w in
terms of those in the coordinates z and viceversa. In fact, starting from(

∂zφ

∂z̄φ

)
= J

(
∂wφ

∂w̄φ

)
, (4.70)

one arrives at the following set of algebraic equations4S sG(z, τ)(1− τV sG)(∂zφ) = (S sG(z, τ) + 1)2 (∂wφ) + 4τ(1− τV )(∂w̄φ)(∂zφ)2

4S sG(z, τ)(1− τV sG)(∂z̄φ) = (S sG(z, τ) + 1)2 (∂w̄φ) + 4τ(1− τV )(∂wφ)(∂z̄φ)2 ,
(4.71)

which can be easily solved for (∂wφ, ∂w̄φ) as∂wφ = 2(1−τV sG)
SsG+1

∂zφ

∂w̄φ = 2(1−τV sG)
SsG+1

∂z̄φ
. (4.72)
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Finally the latter expression can be inverted for (∂zφ, ∂z̄φ) as(∂wφ)2 (S sG(z, τ))2 = (−∂wφ+ 2(1− τV sG) ∂zφ)2

(∂w̄φ)2 (S sG(z, τ))2 = (−∂w̄φ+ 2(1− τV sG) ∂z̄φ)2
−→

∂zφ = ∂wφ
1−τLsG(w)

∂z̄φ = ∂w̄φ
1−τLsG(w)

, (4.73)

where we used (4.28) and LsG(w) = ∂wφ∂w̄φ+V sG. Using (4.73), we can now derive the expression of
S sG(z, τ) in the coordinates w

S sG
((

ΨsG
τ (w)

)−1
, τ
)

=

√
1 + 4τ̃

L(w)

(1− τLsG(w))2 =
1 + τ (L(w)− V sG)

1− τ LsG(w)
, L(w) = ∂wφ∂w̄φ ,

(4.74)
from which we can write the Jacobian J and its inverse J −1 in the coordinates w as

J =
1

(1− τV sG)2 − (τL(w))2

(
1− τV sG τ (∂wφ)2

τ (∂w̄φ)2 1− τV sG

)
, (4.75)

J −1 =

(
1− τV sG −τ (∂wφ)2

−τ (∂w̄φ)2 1− τV sG

)
, (4.76)

where the components of J −1 are
(
J −1

)µ
ν

= ∂zµ

∂wν . Using (4.75) we express the partial derivatives w.r.t.
z in terms of partial derivatives w.r.t. w as(

∂zf

∂z̄f

)
= J

(
∂wf

∂w̄f

)
−→

∂zf = 1
1−τLsG(w)

∂wf

∂z̄f = 1
1−τLsG(w)

∂w̄f
, ∀ f : C→ R . (4.77)

Applying the latter result to the EoMof the TT̄−deformed sine-Gordon theory (4.31) we get, separately
for the lhs and the rhs , respectively

∂z

(
∂z̄φ

S sG(z, τ)

)
+ ∂z̄

(
∂zφ

S sG(z, τ)

)
=

2 ∂w∂w̄φ

(1 + τ (L(w)− V sG))2

− 2τ
(V sG)′

(1− τV sG)2 − (τ L(w))2

L(w)

(1 + τ (L(w)− V sG))
,

(4.78)
(V sG)′

4S sG(z, τ)

(
S sG(z, τ) + 1

1− τV sG

)2

=
(V sG)′

(1− τV sG)2 − (τL(w))2 . (4.79)

and equating (4.78) to (4.79) yields

2 ∂w∂w̄φ− (V sG)′

(1 + τ (L(w)− V sG))2 = 0 . (4.80)

Since the determinant of the inverse Jacobian in coordinates w is

det [J −1] =
(
1− τV sG

)2 − (τL(w))2 =
(
1− τLsG(w)

) (
1 + τ

(
L(w)− V sG

))
, (4.81)

it follows that, for any field configuration φ(w) such that det [J −1] 6= 0, the denominator appearing
in (4.80) is automatically non-vanishing and (4.80) gives exactly the EoM of the sine-Gordon theory.
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Therefore, the field-dependent coordinate transformation (4.65) maps solutions of the TT̄−deformed
sine-Gordon theory into solutions of the original theory. Naturally, it is also possible to show that the
viceversa holds. To do that, we must prove that the sine-Gordon EoM in the coordinates w is mapped
into (4.31). Therefore, we need to express the partial derivatives w.r.t. w in terms of partial derivatives
w.r.t. z. Using (4.72) we can write J and J −1 in the coordinates z as

J =

 1− τ
[
τ̃(∂zφ∂z̄φ)2

SsG

(
2

1+SsG

)2
+ V sG

1−τV sG

]
τ (∂zφ)2

SsG

τ (∂z̄φ)2

SsG 1− τ
[
τ̃(∂zφ∂z̄φ)2

SsG

(
2

1+SsG

)2
+ V sG

1−τV sG

]
 ,

(4.82)

J −1 =

 1− τV sG − 1
4τ

(
−1+SsG
∂z̄φ

)2

− 1
4τ

(
−1+SsG
∂zφ

)2
1− τV sG

 . (4.83)

Expression (4.83) allows us to express the partial derivatives w.r.t. w in terms of partial derivatives w.r.t.
z as follows(

∂wf

∂w̄f

)
= J −1

(
∂zf

∂z̄f

)
−→

∂wf = (1− τV sG) ∂zf − 1
4τ

(
−1+SsG(z,τ)

∂z̄φ

)2
∂z̄f

∂w̄f = (1− τV sG) ∂z̄f − 1
4τ

(
−1+SsG(z,τ)

∂zφ

)2
∂zf

, (4.84)

∀ f : C→ R. Plugging the latter result separately into the lhs and the rhs of the sine-Gordon EoM (3.4)
in the coordinates w one gets, respectively

∂w∂w̄φ =

[
(1− τV sG) ∂z −

1

4τ

(
−1 + S sG

∂z̄φ

)2

∂z̄

][
(1− τV sG) ∂z̄φ−

1

4τ

(
−1 + S sG

∂zφ

)2

∂zφ

]
,

(4.85)
1

2
(V sG)′ =

1

2
(V sG)′ , (4.86)

and equating (4.85) to (4.86), after some computations one finds

1

2
S sG(z, τ) det [J −1]

[
∂z

(
∂z̄φ

S sG(z, τ)

)
+ ∂z̄

(
∂zφ

S sG(z, τ)

)
− (V sG)′

4S sG(z, τ)

(
1 + S sG(z, τ)

1− τV sG

)2
]

= 0 .

(4.87)
Exactly as before, since the determinant of the inverse Jacobian in the coordinates z is

det [J −1] =
S sG(z, τ) (S sG(z, τ)− 1)

(
(S sG(z, τ))2 + S sG(z, τ)− 2

)
4τ ∂zφ∂z̄φ

, (4.88)

for any field configuration φ(z, τ) such that det [J −1] 6= 0, the factor in front of the square brackets in
(4.87) is non-vanishing, therefore (4.87) is equivalent to (4.31).
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Observation 22. Altough the coordinate transformation has been obtained exploiting the unique
relation between integrable equations and embedded surfaces, we never used the explicit form of the
potential in transforming the sine-Gordon EoM into the TT̄−deformed one and viceversa. In other
words, the coordinate transformation (4.65) with Jacobian (4.75)-(4.76) is valid for any scalar field
theory consisting of a single scalar field interacting with a potential V depending on the field only.
For this reason, from now on we will drop the superscript “sG”, unless we explicitly refer to the
sine-Gordon model.

Observation 23. The components of the inverse Jacobian in the coordinates w (4.76) and the Jacobian
in the coordinates z (4.82), depend on the chiral components of the stress-energy tensor of the original
and the TT̄−deformed theory, respectively

J −1 =

(
1 + 2τ Θ(w) 2τ T(w)

2τ T̄(w) 1 + 2τ Θ(w)

)
, (4.89)

J =

(
1− 2τ Θ(z, τ) −2τ T(z, τ)

−2τ T̄(z, τ) 1− 2τ Θ(z, τ)

)
, (4.90)

with
T(w) = −1

2
(∂wφ)2 , T̄(w) = −1

2
(∂w̄φ)2 , Θ(w) = −1

2
V , (4.91)

and

T(z, τ) = − (∂zφ)2

2SV (z, τ)
, T̄(z, τ) = − (∂z̄φ)2

2SV (z, τ)
,

Θ(z, τ) = −1

2

[
τ̃ (∂zφ∂z̄φ)2

SV (z, τ)

(
2

1 + SV (z, τ)

)2

+
V

1− τV

]
, (4.92)

where SV (z, τ) is obtained from S sG(z, τ) replacing V sG → V . From (4.89)-(4.90), it follows that the
Hessian matrix associated to the coordinate transformation (4.65) is symmetric if and only if the field
configuration φ is evaluated on-shell. In fact, the second mixed partial derivatives coincide if and only
if the continuity equations are fulfilled

∂w̄ (∂wz) = 2τ ∂w̄Θ(w) ≡
EoMs (w)

2τ ∂wT̄(w) = ∂w (∂w̄z) , (4.93)

∂w̄ (∂wz̄) = 2τ ∂w̄T(w) ≡
EoMs (w)

2τ ∂wΘ(w) = ∂w (∂w̄z̄) , (4.94)

and, analogously

∂z̄ (∂zw) = −2τ ∂z̄Θ(z, τ) ≡
EoMs (z)

−2τ ∂zT̄(z, τ) = ∂z (∂z̄w) , (4.95)

∂z̄ (∂zw̄) = −2τ ∂z̄T(z, τ) ≡
EoMs (z)

−2τ ∂zΘ(z, τ) = ∂z (∂z̄w̄) . (4.96)

Observation 24. Expressions (4.89)-(4.90) suggest a natural generalisation of the coordinate
transformation to the case of N bosonic fields and sigma-models. In fact, considering the Lagrangian
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densities (2.115) and (2.116) in the coordinates w and z, respectively, it is possible to prove that the
coordinate transformation (4.65) with Jacobian and inverse Jacobian given by (4.90) with

T(w) = −1

2

N∑
i=1

(∂wφi)
2 , T̄(w) = −1

2

N∑
i=1

(∂w̄φi)
2 , Θ(w) = −1

2
V , (4.97)

and

T(z, τ) = − 1

2Sσ
N∑
i=1

(∂zφi)
2 , T̄(z, τ) = − 1

2Sσ
N∑
i=1

(∂z̄φi)
2 , (4.98)

Θ(z, τ) =
−1 + Sσ − 2τ̃

∑N
i=1 ∂zφi ∂z̄φi

4τ̃Sσ
− 1

2

V

1− τV
, (4.99)

maps the EoMs associated to (2.115) and (2.116) one into the other.

Observation 25. Moving from complex to cartesian coordinates according to (A.1) and using (A.7)
and (A.9), we can translate expressions (4.89)-(4.90) in cartesian coordinates as

J −1 =

(
1 + 2τ T 22(y) −2τ T 12(y)

−2τ T 12(y) 1 + 2τ T 11(y)

)
, (4.100)

J =

(
1− 2τ T 22(x, τ) 2τ T 12(x, τ)

2τ T 12(x, τ) 1− 2τ T 11(x, τ)

)
, (4.101)

which can be more compactly written in components as(
J −1

)µ
ν

=
∂xµ

∂yν
= δµν + τ T̃ µ

ν(y) , J µν =
∂yµ

∂xν
= δµν − τ T̃ µ

ν(x, τ) , (4.102)

with
T̃ µ
ν(y) = −gµδεδρ εσν T ρσ(y) , T̃ µ

ν(x, τ) = −gµδεδρ εσν T ρσ(x, τ) . (4.103)

Observation 26. The Lagrangian density (2.116) transforms under the coordinate transformation
(4.65) as

Lσ
(

(Ψσ
τ )−1 (w), τ

)
=

V

1− τV
+
−1 + Sσ

(
(Ψσ

τ )−1 (w), τ
)

2τ̃

=
Lσ(w) + 4τ

(
T(w)T̄(w)−Θ2(w)

)
det [J −1]

, (4.104)

where
det [J −1] = 1− 2τV − 4τ2

(
T(w)T̄(w)−Θ2(w)

)
, (4.105)

and
{

T(w), T̄(w),Θ(w)
}
are the components of the original stress-energy tensor defined in (4.97).

Therefore, the action transforms as∫
C
Lσ(z, τ) dz ∧ dz̄ =

∫
C
Lσ
(

(Ψσ
τ )−1 (w), τ

)
det [J −1] dw ∧ dw̄

=

∫
C

[
Lσ(w) + 4τ

(
T(w)T̄(w)−Θ2(w)

)]
dw ∧ dw̄

=

∫
C

[
Lσ(w) +

τ

π2
TT̄(w)

]
dw ∧ dw̄ .
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which in conclusion leads to∫
C
Lσ(z, τ) dz ∧ dz̄ =

∫
C

[
Lσ(w) +

τ

π2
TT̄(w)

]
dw ∧ dw̄ . (4.106)

Analogously, one can prove that also the viceversa holds, namely∫
C
Lσ(w) dw ∧ dw̄ =

∫
C

[
Lσ(z, τ)− τ

π2
TT̄(z, τ)

]
dz ∧ dz̄ . (4.107)

The validity of the latter statements can be extended to any theory [40].

4.6 TT̄-deformed integrable hierarchy

The aim of this section is to introduce an efficient method, based on the field-dependent coordinate
transformation derived in section 4.5, to reconstruct the local Integrals of Motion (IMs) associated to
the TT̄ deformation of a generic IFT. Let us consider the following pair of conjugated 1-forms

Ik = Tk+1(z) dz + Θk−1(z) dz̄ , Īk = T̄k+1(z) dz̄ + Θ̄k−1(z) dz , (k ∈ N) , (4.108)

where
{

Tk+1(z),Θk−1(z), T̄k+1(z), Θ̄k−1(z)
}
are the rescaled chiral components of the level−k higher

conserved currents of the integrable hierarchy (see appendix A). Using (A.13), it is easy to check that
(4.108) are closed forms1,

dIk =
(
∂Θk−1 − ∂̄Tk+1

)
dz ∧ dz̄ = 0 , dĪk =

(
∂T̄k+1 − ∂̄Θ̄k−1

)
dz ∧ dz̄ = 0 . (4.109)

Therefore, for any given integration contour C in the complex plane of z, the following integrals∫
C
Ik ,

∫
C
Īk , (4.110)

define local IMs, since they do not depend on smooth deformations of C which keep the end-points
fixed. The set of conserved charges are then obtained from (4.110) by fixing a given Cauchy surface,
i.e. dx2 = 0 and dz = dz̄ = dx1, and integrating over a finite strip C = [0, R] along the direction x1

Ik(R) = −
∫ R

0
[Tk+1(x) + Θk−1(x)] dx1 =

∫ R

0
Ik(x) dx1 ,

Īk(R) = −
∫ R

0

[
T̄k+1(x) + Θ̄k−1(x)

]
dx1 =

∫ R

0
Īk(x) dx1 , (4.111)

according to the definitions (A.17) and (A.19).

From their very definition, differential forms are intrinsic objects which do not depend on the set of
coordinates chosen on the manifold. Since they remain closed under any coordinate transformations,
the idea is to construct the local IMs of the TT̄-deformed theory starting from those of the original
theory, using the change of coordinates introduced in [22,24]. The strategy is the following:

1Thus they are locally exact by the Poincaré lemma.
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1. Start from the 1-forms (4.108) expressed in w coordinates

Ik = Tk+1(w) dw + Θk−1(w) dw̄ , Īk = T̄k+1(w) dw̄ + Θ̄k−1(w) dw ; (4.112)

where
{

Tk+1(w),Θk−1(w), T̄k+1(w), Θ̄k−1(w)
}

are the rescaled chiral components of the
level−k conserved currents of the original theory which fulfil the continuity equations

∂w̄Tk+1(w) = ∂wΘk−1(w) , ∂wT̄k+1(w) = ∂w̄Θ̄k−1(w) . (4.113)

2. Use the explicit expressions of
{

T(w), T̄(w),Θ(w)
}
in terms of the fundamental fields of the

theory to explicitly invert the map z =
(
Ψ−1
τ

)
(w) at differential level. Then, using the fact that

the basis dw = (dw, dw̄) transforms into dz = (dz, dz̄) as(
dw

dw̄

)
= J T

(
dz

dz̄

)
, (4.114)

with J given by (4.90), expressions (4.112) become

Ik =
Tk+1

(
Ψτ (z)

)
+ 2τ

[
Tk+1

(
Ψτ (z)

)
Θ
(
Ψτ (z)

)
−Θk−1

(
Ψτ (z)

)
T
(
Ψτ (z)

)]
∆
(
Ψτ (z)

) dz

+
Θk−1

(
Ψτ (z)

)
+ 2τ

[
Θk−1

(
Ψτ (z)

)
Θ̄
(
Ψτ (z)

)
− Tk+1

(
Ψτ (z)

)
T̄
(
Ψτ (z)

))
∆
(
Ψτ (z)

) dz̄ , (4.115)

where F
(
Ψτ (z)

)
indicates that the fundamental fields in w coordinates involved in an arbitrary

function F , have been replaced with fundamental fields in z coordinates according to the map
w = Ψτ (z).

3. Read the TT̄-deformed higher conserved currents as components of (4.115) in z coordinates:

Tk+1(z, τ) =
Tk+1

(
Ψτ (z)

)
+ 2τ

(
Tk+1

(
Ψτ (z)

)
Θ
(
Ψτ (z)

)
−Θk−1

(
Ψτ (z)

)
T
(
Ψτ (z)

))
∆
(
Ψτ (z)

) ,

Θk−1(z, τ) =
Θk−1

(
Ψτ (z)

)
+ 2τ

(
Θk−1

(
Ψτ (z)

)
Θ̄
(
Ψτ (z)

)
− Tk+1

(
Ψτ (z)

)
T̄
(
Ψτ (z)

))
∆
(
Ψτ (z)

) .

(4.116)

By definition, the integrals (4.110) are invariant under coordinate transformations, provided the
integration contour C is mapped into C ′ accordingly∫

C
Tk+1(z) dz + Θk−1(z) dz̄ =

∫
C′

Tk+1(z, τ) dz + Θk−1(z, τ) dz̄ ,∫
C

T̄k+1(z) dz + Θ̄k−1(z) dz̄ =

∫
C′

T̄k+1(z, τ) dz + Θ̄k−1(z, τ) dz̄ . (4.117)

Since the contours C and C ′ are not, in general, homotopically equivalent, at finite volume R one has

Ik(R) =

∫ R

0
Ik(x) dx1 6=

∫ R

0
Ik(x, τ) dx1 = Ik(R, τ) ,

Īk(R) =

∫ R

0
Īk(x) dx1 6=

∫ R

0
Īk(x, τ) dx1 = Īk(R, τ) , (4.118)
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where we defined

Ik(z, τ) = − [Tk+1(x, τ) + Θk−1(x, τ)] , Ī(z, τ) = − [Tk+1(x, τ) + Θk−1(x, τ)] . (4.119)

according to the definition (A.17). Therefore, the deformation of the conserved charges arises from the
fact that we are integrating the deformed densities (4.119) over the same contour of integration of the
original theory.

Observation 27. The Lax pair representation (L, L̄) can be written covariantly in terms of a Lie
algebra-valued differential form as

Ω = L(z) dz + L̄(z) dz̄ , (4.120)

and the ZCR (4.33) translates into the Maurer-Cartan equation for Ω

dΩ = Ω ∧ Ω . (4.121)

Being components of Ω, we can apply the same strategy discussed above for the conserved currents to
derive the Lax pair of the TT̄−deformed theory from the original ones.

In order to make the construction of the deformed hierarchy more concrete, in the following section
we perform the explicit computation for the massless free boson theory and comment on more general
cases.

4.6.1 The massless free boson

Consider the Lagrangian of a single massless boson field φ in complex coordinates w

L(w) = ∂wφ∂w̄φ . (4.122)

The EoMs are
∂w∂w̄φ = 0 , (4.123)

therefore, without further external constraints, there exists an infinite number of options for the choice
of the basis of conserved currents. For example, both

T
(POW)
k+1 (w) = −1

2
(∂wφ)k+1 , Θ

(POW)
k−1 (w) = 0 , (k ∈ N) , (4.124)

and1

T
(KG)
k+1 (w) = −1

2

(
∂

1+k
2

w φ
)2

, Θ
(KG)
k−1 (w) = 0 , (k ∈ 2N + 1) , (4.125)

1The set of currents (4.125) can be obtained as the massless limit of the Klein-Gordon hierarchy:

T
(KG)
k+1 (w) = −1

2

(
∂

1+k
2

w φ
)2
, Θ

(KG)
k−1 (w) = −m

2

2

(
∂

k−1
2

w φ
)2
, (k ∈ 2N + 1) ,

with Lagrangian L(KG)(w) = ∂wφ∂w̄φ+m2φ2.
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are possible sets of higher conserved currents since they fulfil (4.113) on-shell. In general, any linear
combination of the form

T
(GEN)
k+1 (w) =

k+1∑
j=0

c
(k)
j (∂wφ)k+1−j ∂jwφ , Θ

(GEN)
k−1 (w) =

k−1∑
j=0

c̄
(k)
j (∂w̄φ)k−1−j ∂jw̄φ , (4.126)

automatically defines a conserved current with spin k.

For simplicity, we will consider the sets (4.124)-(4.125) separately instead of the generic combinations
(4.126). Considering the set of currents (4.124), namely setting Tk+1 = T

(POW)
k+1 , Θk−1 = Θ

(POW)
k−1 and

the same for their complex conjugates in (4.116), and replacing the derivatives of φ in w coordinates
with those in z coordinates according to (4.84)

∂wf = ∂zf −
1

4τ

(
−1 + S
∂z̄φ

)2

∂z̄f , ∂w̄f = ∂z̄f −
1

4τ

(
−1 + S
∂zφ

)2

∂zf , ∀ f : C→ R , (4.127)

with S defined in (4.46), one finds

T
(POW)
k+1 (z, τ) = −(∂zφ)k+1

2S

(
2

1 + S

)k−1

, Θ
(POW)
k−1 (z, τ) = −τ (∂zφ)k+1(∂z̄φ)2

2S

(
2

1 + S

)k+1

,

(4.128)
which coincides with the result first obtained in [11] through perturbative computations.

For the set of currents (4.125), we can again derive exactly the associated TT̄-deformed currents,
however their analytic expressions are more and more involved as k increases and we were unable to
find a compact formula valid for arbitrary spin k ∈ N. We report here, as an example, the level k = 3

deformed current of the hierarchy (4.125):

T4(z, τ) = −(∂zφ)2

2S

(
(S − 1)4∂2

z̄φ− 16τ2(∂z̄φ)4 ∂2
zφ

4τ(S − 1) (S2 + 1) (∂z̄φ)3

)2

,

Θ2(z, τ) = −(S − 1)2

8τ S

(
(S − 1)4∂2

z̄φ− 16τ2(∂z̄φ)4 ∂2
zφ

4τ(S − 1) (S2 + 1) (∂z̄φ)3

)2

. (4.129)

Finally, it is important to stress that the method presented in this section is completely general and can
be applied to a generic integrable model, provided the stress-energy tensor and the conserved currents
are known in terms of fundamental fields. We have explicitly computed the TT̄-deformed conserved
currents with k = 3, 5 for the sine-Gordon model. Again the resulting expressions are extremely
complicated and we will not present them here.

4.7 TT̄-deformed soliton solutions in the sine-Gordon model

The aim of this section is to develop a procedure to construct either analytically or numerically (in
cases where the analytic solution is out of reach) solutions to the TT̄−deformed EoMs for a bosonic
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theory by means of the coordinate transformation Ψτ . Notice that we can directly write a solution to
the TT̄−deformed EoM, i.e. φ0(z, τ),

∂z

(
∂z̄φ

SV (z, τ)

)
+ ∂z̄

(
∂zφ

SV (z, τ)

)
=

V ′

4SV (z, τ)

(
1 + SV (z, τ)

1− τV

)2

, (4.130)

in terms of the corresponding solution to the original EoM, i.e. φ0(z), as

φ0(z, τ) = φ0

(
Ψτ (z)

)
. (4.131)

Now, setting z as a function of τ such that d
dτΨτ (z) = 0 and differentiating both sides of (4.131) w.r.t.

τ one gets

d

dτ
φ0(z, τ) = 0 −→ ∂τφ0(z, τ) + (∂τz) ∂zφ0(z, τ) + (∂τ z̄) ∂z̄φ0(z, τ) = 0 . (4.132)

To fix the derivatives ∂τz and ∂τ z̄, we first integrate the inverse Jacobian as expressed in (4.89), getting

z = w(z) + 2τ

w=Ψτ (z)∫
T̄(w) dw̄+ Θ̄(w) dw , z̄ = w̄(z) + 2τ

w=Ψτ (z)∫
T(w) dw+ Θ(w) dw̄ . (4.133)

Then, using the definition (4.112) and the coordinate independence property of differential forms, we
arrive to

∂τz = 2

∫ z

Ī1 , ∂τ z̄ = 2

∫ z

I1 . (4.134)

In conclusion, a generic solution to the TT̄−deformed EoM (4.130) fulfils the following differential
equation

∂τφ0(z, τ) + 2

(∫ z

Ī1

)
∂zφ0(z, τ) + 2

(∫ z

I1

)
∂z̄φ0(z, τ) = 0 . (4.135)

Again we consider the sine-Gordon model as a study case, and we try to reconstruct the deformed
versions of some typical soliton configurations. The idea is to start from a specific solution of the
sine-Gordon EoM in the coordinates w, i.e. φ0(w), and implement the coordinate transformation to
get the corresponding TT̄−deformed version in the coordinates z according to (4.131).

For this strategy to work, we need to derive the map w = ΨsG
τ (z) evaluated on the solution φ0. To do

this, we first solve the sets of differential equations
∂z(w)
∂w = 1− τV sG

0

∂z(w)
∂w̄ = −τ (∂w̄φ0)2

,


∂z̄(w)
∂w = −τ (∂wφ0)2

∂z̄(w)
∂w̄ = 1− τV sG

0

, V sG
0 = V sG (φ0) , (4.136)

for the functions z in the variables w, which gives the inverse map z = (ΨsG
τ )−1 (w). Then by

inverting the latter relation we find the desired map w = ΨsG
τ (z).

Although this strategy has general validity, the integration of (4.136) and the inversion of the map
cannot be done analytically for all the solutions. In the following sections, we shall apply this method
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to some of the simplest soliton solutions, namely the 1−kink, the two-kink and the stationary
breather. As we will see, while for the 1−kink solution both the integration and the inversion
processes can be easily done in analytic way, for the others the inversion of the map must be
performed numerically. For configurations involving more than two solitons, the situation is even
more complicated and not even the integration of (4.136) is anymore feasible analytically.

Observation 28. Throughout the following sections, all the computations will be carried on in
Minkowsky signature using light-cone coordinates x̃M = (x+, x−) and ỹM = (y+, y−). Instead, the
plots are displayed in cartesian coordinates xM = (x, tx) = (x, t). Moving from Euclidean to
Minkowsky signature, equations (4.136) become

∂x+(ỹM)
∂y+ = 1− τV sG

0

∂x+(ỹM)
∂y− = −τ

(
∂φ0

∂y−

)2 ,


∂x−(ỹM)
∂y+ = −τ

(
∂φ0

∂y+

)2

∂x−(ỹM)
∂y− = 1− τV sG

0

. (4.137)

4.7.1 The 1−kink solution

Let us start with the 1−kink solution moving with velocity v. In light-cone coordinates ỹM it is

φ1-kink(ỹM) = 4 arctan
(
e
m
β (a+y++a−y−)

)
, a± = a±1 , a =

√
1− v
1 + v

. (4.138)

With the identification φ0(ỹM) = φ1-kink(ỹM), equations (4.137) can be easily integrated yielding

x±(ỹM) = y± − 4τa±
m

β
tanh

[
m

β

(
a+y

+ + a−y
−)] , (4.139)

where the constants of integration are fixed in a way such that the map reduces to the identity at τ = 0,
i.e. x̃M = (ΨsG

0 )−1 (ỹM) = ỹM. Using the fact that

m

β

(
a+y

+ + a−y
−) = log

(
tan

(
φ1-kink(ỹM)

4

))
, (4.140)

which descends immediately from (4.138), expressions (4.139) become

x±(ỹM) = y± + 4τa∓
m

β
cos

(
φ1-kink(ỹM)

2

)
, (4.141)

which are easily inverted as

y±(x̃M) = x± − 4τa∓
m

β
cos

(
φ1-kink (x̃M, τ)

2

)
. (4.142)

Finally, plugging (4.142) into (4.138) we find

m

β

(
a+x

+ + a−x
−) = 8τ

m2

β2
cos

(
φ1-kink(x̃M, τ)

2

)
+ log

(
tan

(
φ1-kink(x̃M, τ)

4

))
, (4.143)

which is exactly the same implicit relation defining the deformed 1−kink solution found in section 4.1
by explicitly solving the EoM of the TT̄−deformed sine-Gordon model.
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(a) (b)

(c) (d)

Figure 4.3: The TT̄-deformed moving 1−kink solution (m = β = 1 , a = 2), for different values of the
perturbation parameter τ . Figure 4.3b represents the undeformed solution. Figure 4.3a corresponds to
τ = −1/4, while Figures 4.3c and 4.3d correspond to τ = 1/8 and τ = 1/3, respectively. Notice that
at τ = 1/8 a shock-wave singularity occurs.

Observation 29. The coordinate transformation provide an interesting way to look at the emergence
of the critical value τ? = 1

8 , derived in section 4.1. In fact, it can be seen to arise as a singularity of the
determinant of the Jacobian. Setting m = β = 1, one has

det [J ] =
(
1− τV sG(φ1-kink(ỹM))

)2 − (τ ∂φ1-kink
∂y+

(ỹM)
∂φ1-kink
∂y−

(ỹM)

)2

= 1− 8τ sech 2
(
a+y

+ + a−y
−) , (4.144)

which implies

det [J ] = 0 ⇐⇒ a+y
+ + a−y

− = ± arccosh
(√

8τ
)

=⇒ τ ≥ 1

8
, (4.145)

imposing the reality of the argument function a+y
+ + a−y

−. In conclusion we find again τ? = 1
8 .
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4.7.2 The two-kink solution

Let us consider now the solution which describes the scattering between two kinks moving with
velocities v1 and v2

φ2-kink(ỹM) = 4 arctan

(
a1 + a2

a2 − a1

e
m
β (a1,+y++a1,−y−+k1) − e

m
β (a2,+y++a2,−y−+k2)

1 + e
m
β

(a1,+y++a1,−y−+k1)
e
m
β

(a2,+y++a2,−y−+k2)

)
, (4.146)

where again ai,± = a±1
i , ai =

√
1−vi
1+vi

, (i = 1, 2) , and ki ∈ R , (i = 1, 2), are constant phases.
Plugging φ0(ỹM) = φ2-kink(ỹM) in (4.137), one immediately realises that the resulting sets of
differential equations are more complicated to integrate compared to the 1−kink case.

To simplify the computation, it is useful to parametrise the solutions x̃M(ỹM) of (4.137) in terms of the
combinations

ui(ỹM) =
m

β

(
ai,+y

+ + ai,−y
− + ki

)
, (i = 1, 2) . (4.147)

Performing the change of variables u(ỹM), with u = (u1, u2), one has
∂x±

∂u1 = β
m

a1

a2
1−a2

2

(
∂x±

∂y+ − a2
2
∂x±

∂y−

)
∂x±

∂u2 = − β
m

a2

a2
1−a2

2

(
∂x±

∂y+ − a2
1
∂x±

∂y−

) , (4.148)

and plugging (4.137) into (4.148) with the identification φ0(ỹM) ≡ φ2-kink(ỹM), we obtain two sets of
differential equations which can be solved for x̃M(u), giving

x±(u) = ± β
m

a1a2

(
a2,∓u

1 − a1,∓u
2
)

a2
1 − a2

2

± 4τ
m

β

(a2
1 − a2

2)
(
a1,∓ tanhu1 − a2,∓ tanhu2

)
a2

1 + a2
2 − 2a1a2

(
sechu1 sechu2 + tanhu1 tanhu2

) .
(4.149)

As in the previous section, the constants of integration in (4.149) are fixed by imposing that the map
reduces to the identity at τ = 0, i.e. x̃M = (ΨsG

0 )−1 (ỹM) = x̃M. The last step to complete is the inversion
of the relations (4.149) for u(z). Since this is analytically very complicated, we resort to numerical
inversion. In Figure 4.4 the deformed solution φ2-kink (z, τ) is reported for different values of τ . The
picture is quite similar to the 1−kink case. In fact, for negative values of τ (Figure 4.4a) the solution
stretches w.r.t. the undeformed one (Figure 4.4b), while for positive values of τ (Figures 4.4c and 4.4d)
it bends and again it becomes multi-valued. Unlike the 1−kink case, here it is not possible to find
analytically the critical value of τ corresponding to the shock singularity.

4.7.3 The stationary breather

Another interesting solution is the stationary breather, i.e. the envelope speed is v = 0,

φbreather(ỹM) = 4 arctan

tanψ
sin
(
−m
β (y+ − y−) cosψ + k−

)
cosh

(
m
β (y+ + y−) sinψ + k+

)
 , (4.150)
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(a) (b)

(c) (d)

Figure 4.4: The TT̄-deformed two-kink solution (m = β = 1 , a1 = 2 , a2 = 3), for different values of
the perturbation parameter τ . Figure 4.4b represents the undeformed solution. Figure 4.4a corresponds
to τ = −1/4, while Figures 4.4c and 4.4d correspond to τ , i.e. τ = 1/10 and τ = 1/6, respectively.

where ψ is a parameter related to the period T of one full oscillation via T = 2π
cosψ and k± are constant

phases. Following the same strategy used in the two-kink case, we parametrise the solutions x̃M(ỹM) of
(4.137) in terms of the combinations

v±(ỹM) = ±m
β

(y+ ± y−) sinψ + k± . (4.151)

Performing the change of variables v(ỹM), with v = (v+, v−) one finds
∂x±

∂v+ = β
m

1
2 sinψ

(
∂x±

∂y+ + ∂x±

∂y−

)
∂x±

∂v− = β
m

1
2 cosψ

(
−∂x±

∂y+ + ∂x±

∂y−

) , (4.152)

and again plugging (4.137) into (4.152) with the identification φ0(ỹM) = φbreather(ỹM), one gets two
sets of differential equations which can be solved for x̃M(v) giving

x±(v) =
β

m

(
v+

2 sinψ
∓ v−

2 cosψ

)
−8τ

m

β
sinψ

cos v−

cosh v+

sec v− sinh v+ ± sech v+ sin v− tanψ

1 +
(
tanψ sin v− sech v+

)2 , (4.153)
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(a) (b)

(c) (d)

Figure 4.5: The TT̄-deformed stationary breather solution with envelope speed v = 0 (m = β =

1 , ψ = 2
5π), for different values of the perturbation parameter τ . Figure 4.5b represents the undeformed

solution, Figure 4.5a corresponds to τ = −1/2, while Figures 4.5c and 4.5d correspond to τ = 1/10

and τ = 1/5, respectively.

where the constants of integration in (4.153) are again fixed according to the τ = 0 initial condition.
As in the two-kink case, also here the inversion of the relations (4.153) to get v(x̃M) is performed
numerically. The deformed solution φbreather(x̃M, τ) is displayed in Figure 4.5 for different values of τ .
The result is similar to the previous cases: the solution stretches for negative values of τ (Figure 4.5a)
and it bends for positive values of τ (Figure 4.5c and 4.5d) w.r.t. the undeformed one (Figure 4.5b).
However, notice that in this case the wave-breaking occurs in both positive and negative directions of
τ , and consequently the solution becomes multi-valued (Figures 4.5a and 4.5d) for |τ | sufficiently large.

4.8 Critical phenomena in the classical solutions

In this section we will discuss the emergence of critical phenomena in the classical solutions, i.e. the
shock-wave singularity and the Hagedorn transition, and comment on the relations among them, using
as a guide example the TT̄-deformed elliptic solution (4.20) of the sine-Gordonmodel derived in section
4.1. For simplicity, we consider the stationary case (α = 1 , β = 0) and we set ρ = 1/κ > 0 and
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m = β = 1. The solution (4.20) is then

x =
1

2
√
ρ

[
(ρ+ 4τ) F

(
φ(x)

2
− ρ
)
− 8τ E

(
φ(x)

2
− ρ
)]

. (4.154)

Due to the following properties of the elliptic functions

F(z + nπ |γ) = F(z |γ) + 2nK(γ) ,

E(z + nπ |γ) = E(z |γ) + 2nE(γ) , (z, γ ∈ C , n ∈ Z) , (4.155)

whereE(z) andK(z) are complete elliptic integrals of the first kind, the solution φ(x) can be interpreted
as a stationary 1-kink with twisted boundary conditions

φ(x+R) = φ(x) + 2π , (4.156)

living on a cylinder of radius R, which depend on ρ and τ through

R =
1
√
ρ

(
(ρ+ 4τ) K (−ρ)− 8τ E (−ρ)

)
. (4.157)

The strategy is to keep fixed the cylinder on which the solution is defined, and to consider ρ = ρ(τ,R)

as a function of τ and R, defined implicitly through (4.157). Differentiating both sides of (4.157) w.r.t.
τ and R, and solving for ∂τρ and ∂Rρ one finds

∂τρ = −
8ρ (1 + ρ)

(
2E (−ρ)−K (−ρ)

)
(ρ+ 4τ) E (−ρ)

, ∂Rρ =
2ρ3/2 (1 + ρ)

(ρ+ 4τ) E (−ρ)
. (4.158)

Let us now compute the total energy of the solution (4.20) on the cylinder. First of all, the components
of the Hilbert stress-energy tensor Tµν(x, τ) are

T 22(x, τ) ≡ H(x, τ) =
V sG

1− τV sG
+

1 + τ(1− τV sG)φ2
x − S sG

2S sG τ(1− τV sG)
=

2 (2 + ρV sG)

ρ (1− 2τV sG)− 4τ
,

(4.159)

T 12(x, τ) = T21(x, τ) ≡ P(x, τ) = −φt φx
2S sG

= 0 , (4.160)

T 11(x, τ) = − V sG

1− τV sG
− 1− τ(1− τV sG)φ2

t − S sG

2S sG τ(1− τV sG)
=

4

ρ+ 4τ
, (4.161)

where we used the following expressions for φt and φx derived from (4.154)

φt = 0 , φx =
2
√
ρ
√

4 + ρV sG

ρ (1− 2τV sG)− 4τ
, (4.162)

and
S sG =

√
1 + τ(1− τV sG)

(
φ2
x − φ2

t

)
=

ρ+ 4τ

ρ (1− 2τV sG)− 4τ
. (4.163)
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Notice that the apparent pole singularity at τ = 1
V sG in T 11(x, τ) and T 22(x, τ) disappears once (4.162)

is used in (4.159) and (4.161). Finally the energy and momentum at finite volume R are

E(R, τ) =

∫ x0+R

x0

H(x, τ) dx =

∫ φ(x0+R)=2π

φ(x0)=0

H(x, τ)

φx
dφ =

4
√
ρ

(
2 E(−ρ)−K(−ρ)

)
,

(4.164)

P (R, τ) =

∫ x0+R

x0

P(x, τ) dx =

∫ φ(x0+R)=2π

φ(x0)=0

P(x, τ)

φx
dφ = 0 , (4.165)

K(R, τ) =

∫ x0+R

x0

T 11(x, τ) dx =

∫ φ(x0+R)=2π

φ(x0)=0

T 11(x, τ)

φx
dφ =

4R

ρ+ 4τ
, (4.166)

where x0 = 0 (modR). From (4.158), (4.164) and (4.166) one can prove that the energy fulfils the
Burgers equation (2.45) with Pn = 0

∂τE(R, τ) =
1

2
E(R, τ) ∂RE(R, τ)

= − 1

R
det

[∫ x0+R

x0

Tµν(x, τ) dx

]
= −

∫ x0+R

x0

det [Tµν(x, τ)] dx , (4.167)

where the last equality in (4.167) is the classical analogous of the factorization property (2.32) of the
TT̄ operator.

Since the energyE(R, τ) fulfils a Burgers equation, it is expected to have a square root-type singularity.1

The critical radius Rc(τ) corresponds to a value of R such that the first derivative of E(R, τ) w.r.t. R
diverges. One easily checks that

∂RE(R, τ) = − 4

ρ+ 4τ
, (4.169)

which is divergent at the radius Rc(τ) defined through the equation

ρ
(
τ,Rc(τ)

)
= −4τ . (4.170)

According to (4.157) and (4.164), the critical radius and the corresponding energy turn out to be

Rc(τ) = 4
√
−τ E (4τ) , Ec(τ) ≡ E(Rc, τ) =

2√
−τ

(
K(4τ)− 2 E(4τ)

)
. (4.171)

To find the behavior of E(R, τ) as a function of R close to the branch singularity Rc, we first expand
R and E(R, τ) in powers of the small quantity ε = ρ+ 4τ

R−Rc =
Rc

128τ2 (1− 4τ)
ε2 +O(ε3) ,

E(R, τ)− Ec(τ) =
Rc

16τ2 (1− 4τ)
ε+O(ε2) , (4.172)

1It is worth to notice that the unperturbed energy E(R) displays the following divergent behavior for small R

E(R) =
π2

R
+ 2R− R3

2π2
+O

(
R7) , (4.168)

which resembles that of a CFT.
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Figure 4.6: The kink solution to the TT̄-deformed sG model on a cylinder of radius R (a) and the
corresponding energies as functions of R (b).

then, removing ε, one finds

E(R, τ)− Ec(τ) = ±
√
Rc

τ
√

2− 8τ

√
R−Rc +O (R−Rc) , (4.173)

which gives a square root branch point at Rc for the energy.

Now we move on to discuss briefly the effect of the shock-wave singularities of the deformed solution
on the Hamiltonian density. First of all, we must determine the critical values of τ at which the shock-
wave singularities appear. In analogy with the computation performed for the 1−kink solution in
section 4.7.1, we identify the zeros of Det

[
J −1

]
:

Det
[
J −1

]
= 0 ⇐⇒ x =

√
ρ

2
dn−1

(
±
√
ρ+ 4τ

8τ
− ρ

)
, (4.174)

where dn−1
(z |γ) is the inverse of the Jacobi elliptic function dn(z |γ). From the reality properties of

dn−1
(z |γ) it follows that x is real for

ρ > 0 and τ∗1 =
ρ

4 + 8ρ
< τ <

ρ

4
= τ∗2 , (4.175)

where the critical values1 τ∗1 and τ∗2 corresponds to shock-wave singularities of the solution at φ = π

and φ = 0, 2π, respectively. The Hamiltonian density (4.159) is indeed singular when

τ =
ρ

4 + 2ρV
=

ρ

4 + 8ρ sin2 (φ/2)
, (4.176)

1Notice that, in the ρ → ∞ limit, one recovers the 1-kink solution, and the critical range reduce to τ > τ∗1 = 1
8
, since

τ∗2 →∞.
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which corresponds to the range of singular values of τ (4.175) as φ interpolates from 0 to 2π. However,
it is important to stress that these branching singularities do not affect the total energy (4.164), which
remains smooth in τ , since the singularities cancel out when dividing by φx in (4.164). In Figure 4.6
we displayed the behaviour of φ(x) (Figure 4.6a) and E(R, τ) (Figure 4.6b) for various values of τ . We
see that the shock-wave phenomenon in the classical solution and the square root-type singularity in
the total energy occur at positive and negative values of τ , respectively, therefore they are not related.
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Chapter 5

Generalised coordinate transformations

In this chapter, we introduce a family of irrelevant deformations which extend the TT̄ deformation in
the framework of IFTs. They are built from the higher conserved charges belonging to the hierarchy
of a generic IFT and, to construct them, we adopt a different perspective compared to the TT̄
example. In fact, in section 5.1, we define the action of these deformations at classical level, through a
change of coordinates which generalises that associated to TT̄. The main advantage of this geometric
construction is the possibility to reconstruct the whole integrable structure of the deformed theories
using the method described in section 4.6. Assuming that the theory is invariant under a parity
transformation, in section 5.1, we consider a second complementary family of deformations which,
due to the simpler structure, turns out to be extremely useful to identify the phase factors that
generate both these family of deformations at the quantum level. Finally, in section 5.3, extending this
general setup also to conserved charges associated to U(1)L × U(1)R Kac-Moody symmetry, we
manage to include the JT̄ deformation.

5.1 Generalised coordinate transformations: the s > 0 case

From section 4.5, we know that the TT̄ deformation can be interpreted, at the classical level, as a
coordinate transformation which involve the components of the stress-energy tensor (see (4.89)-(4.90)).
In addition we showed that the Hessian matrix associated to the coordinate transformation is symmetric
on-shell, thus implying the commutativity of the second mixed partial derivatives. A somehow natural
way to generalise the coordinate transformation Ψτ , is the following

Ψ(s)
τ : C→ C : z→ w = Ψ(s)

τ (z) , s = |s| > 0 , (5.1)

with associated Jacobian and inverse Jacobian given by

J (s) =

(
∂w ∂w̄

∂̄w ∂̄w̄

)
=

1

∆(s)(w)

(
1 + 2τ Θs−1(w) −2τ Ts+1(w)

−2τ T̄s+1(w) 1 + 2τ Θ̄s−1(w)

)
, (5.2)

(
J (s)

)−1
=

(
∂wz ∂wz̄

∂w̄z ∂w̄z̄

)
=

(
1 + 2τ Θ̄s−1(w) 2τ Ts+1(w)

2τ T̄s+1(w) 1 + 2τ Θs−1(w)

)
, (5.3)
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where we defined

∆(s)(w) = det
[(
J (s)

)−1
]

=
(
1 + 2τ Θs−1(w)

)(
1 + 2τ Θ̄s−1(w)

)
− 4τ2 Ts+1(w) T̄s+1(w) , (5.4)

and s = 1 corresponds to the TT̄ deformation, i.e. J (1) = J .

Observation 30. The coordinate transformation (5.1) descends directly from (4.65) with the
substitution T → Ts (see appendix A), which, in terms of the rescaled chiral components translates
into {

T,Θ, T̄,Θ
}
≡
{

T2,Θ0, T̄2,Θ0

}
→
{

Ts+1,Θs−1, T̄s+1, Θ̄s−1

}
. (5.5)

Notice that, in the definition of (5.2)-(5.3), we performed the substitution (5.5) only at the level of the
original theory. Later on, we will prove in specific cases that (5.2) can be written in terms of the
deformed chiral components exactly as (4.90), with the replacements (5.5).

Using the continuity equations (4.113) in (5.3), one finds that the second mixed partial derivatives again
coincide when evaluated on the EoMs

∂w̄ (∂wz) = 2τ ∂w̄Θ̄s−1(w) ≡
EoMs (w)

2τ ∂wT̄s+1(w) = ∂w (∂w̄z) ,

∂w̄ (∂wz̄) = 2τ ∂w̄Ts+1(w) ≡
EoMs (w)

2τ ∂wΘs−1(w) = ∂w (∂w̄z̄) , (5.6)

therefore, the coordinate transformation (5.1) is well defined on-shell.

Now we want to derive the integrable structure associated to the deformation induced by Ψ(s)
τ . To do

that, we use the same strategy described in section 4.6, namely, we perform the coordinate
transformation in the 1−forms (4.112). Using(

dw

dw̄

)
=
(
J (s)

)T( dz

dz̄

)
, (5.7)

in (4.112) we obtain

Ik = T(s)

k+1(z, τ) dz + Θ(s)

k−1(z, τ) dz̄

=
Tk+1

(
Ψ(s)
τ (z)

)
+ 2τ

[
Tk+1

(
Ψ(s)
τ (z)

)
Θs−1

(
Ψ(s)
τ (z)

)
−Θk−1

(
Ψ(s)
τ (z)

)
Ts+1

(
Ψ(s)
τ (z)

)]
∆(s)

(
Ψ(s)
τ (z)

) dz

+
Θk−1

(
Ψ(s)
τ (z)

)
+ 2τ

[
Θk−1

(
Ψ(s)
τ (z)

)
Θ̄s−1

(
Ψ(s)
τ (z)

)
− Tk+1

(
Ψ(s)
τ (z)

)
T̄s+1

(
Ψ(s)
τ (z)

)]
∆(s)

(
Ψ(s)
τ (z)

) dz̄ ,

(5.8)

from which we read off directly the components of the deformed currents

T(s)

k+1(z, τ) =
Tk+1

(
Ψ(s)
τ (z)

)
+ 2τ

[
Tk+1

(
Ψ(s)
τ (z)

)
Θs−1

(
Ψ(s)
τ (z)

)
−Θk−1

(
Ψ(s)
τ (z)

)
Ts+1

(
Ψ(s)
τ (z)

)]
∆(s)

(
Ψ(s)
τ (z)

) ,

Θ(s)

k−1(z, τ) =
Θk−1

(
Ψ(s)
τ (z)

)
+ 2τ

[
Θk−1

(
Ψ(s)
τ (z)

)
Θ̄s−1

(
Ψ(s)
τ (z)

)
− Tk+1

(
Ψ(s)
τ (z)

)
T̄s+1

(
Ψ(s)
τ (z)

)]
∆(s)

(
Ψ(s)
τ (z)

) ,

(5.9)
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which fulfil the continuity equations

∂z̄T
(s)

k+1(z, τ) = ∂zΘ
(s)

k−1(z, τ) , ∂zT̄
(s)

k+1(z, τ) = ∂z̄Θ̄
(s)

k−1(z, τ) . (5.10)

Then, following the convention (A.16), the level-k Hamiltonian and momentum density are1

H(s)

k (z, τ) = I(s)

k (z, τ) + Ī(s)

k (z, τ)

=
1

∆(s)
(
Ψ(s)
τ (z)

)[Hk(Ψ(s)
τ (z)

)
+ 2τ

(
T+,k

(
Ψ(s)
τ (z)

)
T̄−,s

(
Ψ(s)
τ (z)

)
+ c.c.

)]
, (5.11)

P (s)

k (z, τ) = I(s)

k (z, τ)− Ī(s)

k (z, τ)

=
1

∆(s)
(
Ψ(s)
τ (z)

)[Pk(Ψ(s)
τ (z)

)
+ 2τ

(
T−,k

(
Ψ(s)
τ (z)

)
T̄−,s

(
Ψ(s)
τ (z)

)
− c.c.

)]
, (5.12)

where we defined the combinations

T±,n = Tn+1 ± Θ̄n−1 , T̄±,n = T̄n+1 ±Θn−1 , (5.13)

Integrating (5.11) and (5.12) over the whole volume we find∫
H(s)

k (z, τ) dz ∧ dz̄ =

∫ [
Hk(w) + 2τ

(
T+,k(w) T̄−,s(w) + c.c.

)]
dw ∧ dw̄

=

∫
Hk(w) dw ∧ dw̄ − 2τ

∫
(Ik + Īk) ∧ (Is − Īs) , (5.14)

∫
P (s)

k (z, τ) dz ∧ dz̄ =

∫ [
Pk(w) + 2τ

(
T−,k(w) T̄−,s(w)− c.c.

)]
dw ∧ dw̄

=

∫
Pk(w) dw ∧ dw̄ − 2τ

∫
(Ik − Īk) ∧ (Is − Īs) . (5.15)

We now interpret the result (5.14) as follows: H(s)

k (z, τ) dz ∧ dz̄ coincides with the corresponding bare
quantity Hk(w) dw ∧ dw̄ deformed by the operator

Φk,s(w) dw ∧ dw̄ = −2 (Ik + Īk) ∧ (Is − Īs) , (5.16)

Φk,s(w) = 2
(
T+,k(w) T̄−,s(w) + T̄+,k(w) T−,s(w)

)
, (5.17)

together with a non-trivial dressing given by the change of variables (5.1). In the s = 1 case, i.e. the
TT̄ example, the operator (5.17) associated to the k = 1 Hamiltonian becomes

Φ1,1(w) = T(w) T̄(w)−Θ2(w) , (5.18)

which, but for the change of coordinates, coincides with the bare TT̄ operator. In analogy with the
TT̄ result [22, 24], one may be tempted to interpret (5.17) as the perturbing operator of the level-k
Hamiltonian. However, the coordinate transformation (5.1) also introduces O(τ) corrections which

1In the following, “c.c.” denotes the replacement {Tk+1,Θk−1} → {T̄k+1, Θ̄k−1} and viceversa.
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can, in principle, completely spoil this naive picture. In addition, even when the initial theory is a CFT
and the bare operator (5.17) is completely symmetric in s and k

Φk,s(w) = Tk+1(w) T̄s+1(w̄) + T̄k+1(w̄) Ts+1(w) , (5.19)

the change of variables spoils the s↔ k symmetry, since it involves only the level-s currents. Examples
of this phenomena will neatly emerge from the study of the s < 0 deformations of the free massless
boson theory.

5.2 Generalised coordinate transformations: the s < 0 case

To gain precise information about the spectrum, it turns out to be particularly convenient to first extend
the current setup to the s < 0 cases. We consider another coordinate transformation

Ψ(s′)
τ : C→ C : z→ w = Ψ(s′)

τ (z) , s′ = −|s| < 0 , (5.20)

whose associated Jacobian and inverse Jacobian are obtained from (5.2)-(5.3) with the replacement
s→ s′, which results in

J (s′) =
1

∆(s′)(w)

(
1 + 2τ T̄s+1(w) −2τ Θ̄s−1(w)

−2τ Θs−1(w) 1 + 2τ Ts+1(w)

)
, (5.21)

(
J (s′)

)−1
=

(
1 + 2τ Ts+1(w) 2τ Θ̄s−1(w)

2τ Θs−1(w) 1 + 2τ T̄s+1(w)

)
, (5.22)

where s = |s| and

∆(s′)(w) = det

[(
J (s′)

)−1
]

=
(
1 + 2τ Ts+1(w)

)(
1 + 2τ T̄s+1(w)

)
− 4τ2 Θs−1(w) Θ̄s−1(w) .

(5.23)

We arrived to (5.21)-(5.22) using the reflection relations (A.11), which corresponds to the following
reflection property at the level of the 1-forms

Is′ = Īs , Īs′ = Is , (5.24)

or, equivalently,
Is′ = Īs , Īs′ = Is . (5.25)

Using the continuity equations (4.113), it is easy to verify that (5.22) fulfils again the conditions (5.6),
therefore (5.20) is a consistent coordinate transformation on-shell.

Repeating the computations (5.8)-(5.15) using (5.21)-(5.22) one finds that (5.1) become

T(s′)
k+1(z, τ) =

Tk+1

(
Ψ(s′)
τ (z)

)
+ 2τ

[
Tk+1

(
Ψ(s′)
τ (z)

)
T̄s+1

(
Ψ(s′)
τ (z)

)
−Θk−1

(
Ψ(s′)
τ (z)

)
Θ̄s−1

(
Ψ(s′)
τ (z)

)]
∆(s′)

(
Ψ(s′)
τ (z)

) ,

Θ(s′)
k−1(z, τ) =

Θk−1

(
Ψ(s′)
τ (z)

)
+ 2τ

[
Θk−1

(
Ψ(s′)
τ (z)

)
Ts+1

(
Ψ(s′)
τ (z)

)
− Tk+1

(
Ψ(s′)
τ (z)

)
Θs−1

(
Ψ(s′)
τ (z)

)]
∆(s′)

(
Ψ(s′)
τ (z)

) ,

(5.26)
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while (5.14)-(5.15) become∫
H(s′)
k (z, τ) dz ∧ dz̄ =

∫ [
Hk(w)− 2τ

(
T+,k(w) T̄−,s(w) + c.c.

)]
dw ∧ dw̄

=

∫
Hk(w) dw ∧ dw̄ + 2τ

∫
(Ik + Īk) ∧ (Is − Īs) , (5.27)

∫
P (s′)
k (z, τ) dz ∧ dz̄ =

∫ [
Pk(w)− 2τ

(
T−,k(w) T̄−,s(w)− c.c.

)]
dw ∧ dw̄

=

∫
Pk(w) dw ∧ dw̄ + 2τ

∫
(Ik − Īk) ∧ (Is − Īs) , (5.28)

which are formally equal to (5.14)-(5.15), except for the sign of τ . However, the positive and negative
spin sectors are not simply related by a change of sign in the coupling constant τ as the comparison
between (5.14)-(5.15) and (5.27)-(5.28) would naively suggests. By studying in detail the s < 0

deformations of the massless free boson model (see section 5.2.1 below), the difference w.r.t. the s = 1

perturbation, i.e. the TT̄, clearly emerges.

5.2.1 The classical Burgers-type equations

In this section, we consider deformations of the massless free boson theory induced by the coordinate
transformations (5.20), and we derive the higher conserved currents of the deformed models. As
already discussed in section 4.6, the most general level-k current of the hierarchy can be expressed in
the form (4.126). While the structure of the deformed currents does not emerge clearly by working
with the general combination (4.126), we observed that the subset (4.124) is analytically much easier
to treat since it does not mix with the others. This property allows to obtain compact expressions for
the deformed currents which are formally identical to the exact quantum results of section 6.3.

Using (4.124) in (5.21)-(5.22), the coordinate transformations read explicitly

J (s′) =

(
1

1−τ (∂wφ)s+1 0

0 1
1−τ (∂w̄φ)s+1

)
, (5.29)

(
J (s′)

)−1
=

(
1− τ (∂wφ)s+1 0

0 1− τ (∂w̄φ)s+1

)
. (5.30)

Repeating the same computation performed in section 4.6.1, we first express (∂wφ, ∂w̄φ)T in terms of
(∂zφ, ∂z̄φ)T, by solving the set of equations(

∂zφ

∂z̄φ

)
= J (s′)

(
∂wφ

∂w̄φ

)
←→

∂zφ = ∂wφ

1−τ(∂wφ)s+1

∂z̄φ = ∂w̄φ

1−τ(∂w̄φ)s+1

. (5.31)

The solutions to (5.31) can be written in terms of generalized hypergeometric functions for any value
of s′ = −s as

∂wφ = F̃s

(
−2τ

(s+ 1)s+1

ss
(∂zφ)s+1

2

)
∂zφ , ∂w̄φ = F̃s

(
−2τ

(s+ 1)s+1

ss
(∂z̄φ)s+1

2

)
∂z̄φ , (5.32)
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with

F̃n(x) = nFn−1

(
1

n+ 1
, . . . ,

n

n+ 1
;

2

n
, . . . ,

n− 1

n
,
n+ 1

n
;x

)
, (n ∈ N− {0}) . (5.33)

Plugging (5.32) into (
∂wf

∂w̄f

)
=
(
J (s′)

)−1
(
∂zf

∂z̄f

)
, ∀ f : C→ R , (5.34)

one finds the differential map

∂wf = F̃s

(
−2τ

(s+ 1)s+1

ss
(∂zφ)s+1

2

)
∂zf , ∂w̄f = F̃s

(
−2τ

(s+ 1)s+1

ss
(∂z̄φ)s+1

2

)
∂z̄f . (5.35)

Combining (5.35) and (5.7) (with s′ → s), we can derive the Lax pair of the deformed theory starting
from the original one according to the observation 27. One finds

L(s′)(z, τ) =
1

2

F̃s

(
−2τ (s+1)s+1

ss
(∂zφ)s+1

2

)
∂zφ

1− τ
[
F̃s

(
−2τ (s+1)s+1

ss
(∂zφ)s+1

2 ∂zφ
)]s+1 u3 =

∂zφ

2
u3 = L(z) ,

L̄(s′)(z, τ) = −1

2

F̃s

(
−2τ (s+1)s+1

ss
(∂z̄φ)s+1

2

)
∂z̄φ

1− τ
[
F̃s

(
−2τ (s+1)s+1

ss
(∂z̄φ)s+1

2 ∂z̄φ
)]s+1 u3 = −∂z̄φ

2
u3 = L̄(z) ,

(5.36)

where we simply used the fact that (5.32) is a solution to (5.31). Since the deformed Lax pair coincide
with the original one, it follows that the dynamics is unchanged, namely the EoM of the deformed
theory is

∂z∂z̄φ = 0 , (5.37)

which reflects the fact that the s < 0 perturbations of CFTs do not mix the holomorphic and anti-
holomorphic derivatives, as already emerged from (5.31). We conclude that the deformed Lagrangian
density coincides with the original one

L(s′)(z) = ∂zφ∂z̄φ = L(z) . (5.38)

Using the technique described in section 4.6, we can now derive the deformed currents. Plugging the
differential map (5.35) into (5.26), we obtain

T(s′)
s+1(z, τ) = − s

2τ (s+ 1)

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
(∂zφ)s+1

2

)]
, Θ(s′)

s−1(z, τ) = 0 ,

T̄(s′)
s+1(z, τ) = − s

2τ (s+ 1)

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
(∂z̄φ)s+1

2

)]
, Θ̄(s′)

s−1(z, τ) = 0 ,

(5.39)

with

Fn(x) = nFn−1

(
− 1

n+ 1
,

1

n+ 1
, . . . ,

n− 1

n+ 1
;

1

n
,

2

n
, . . . ,

n− 1

n
;x

)
, (n ∈ N− {0}) , (5.40)
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where we used the following relation between generalised hypergeometric functions1

Fn(x) =
1

n

−1 +
(n+ 1)n+2

(n+ 1)n+1 + nn x
(
F̃n(x)

)n+1

 , (5.41)

to trade F̃n(x) with Fn(x). From (5.37), it follows that φ(z, τ) = ϕ(z, τ) + ϕ̄(z̄, τ) and therefore
T(s′)
s+1(z, τ) and T̄(s′)

s+1(z, τ) depend only on z and z̄, respectively.

Observation 31. Using (5.35) in (5.29), the Jacobian can be rewritten in terms of the deformed
components (5.39) as

J (s′) =

(
1− 2τ T(s′)

s+1(z, τ) −2τ Θ̄(s′)
s−1(z, τ)

−2τ Θ(s′)
s−1(z, τ) 1− 2τ T̄(s′)

s+1(z, τ)

)
, (5.42)

which confirms what we anticipated in the observation 30, at least in this particular case.

In terms of the combinations (A.17) we can more transparently rewrite the result as

I(s′)
s (z, τ) =

s

2τ (s+ 1)

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
Is(z)

)]
,

Ī(s′)
s (z, τ) =

s

2τ (s+ 1)

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
Īs(z)

)]
. (5.43)

Quite remarkably, the latter expressions arise as solutions to simple algebraic equations of the form

I(s′)
s (z, τ) =

Is(z)(
1 + 2τ I(s′)

s (z, τ)
)s , Ī(s′)

s (z, τ) =
Īs(z)(

1 + 2τ Ī(s′)
s (z, τ)

)s . (5.44)

In general, one can show that the combinations I(s′)
k (z, τ) and Ī(s′)

k (z, τ) of the generic level-k deformed
currents are

I(s′)
k (z, τ) = Ik(z)

{
1 +

s

s+ 1

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
Is(z)

)]}−k
,

Ī(s′)
k (z, τ) = Īk(z)

{
1 +

s

s+ 1

[
−1 + Fs

(
−2τ

(s+ 1)s+1

ss
Īs(z)

)]}−k
, (5.45)

and fulfil the following equations

I(s′)
k (z, τ) =

Ik(z)(
1 + 2τ I(s′)

s (z, τ)
)k , Ī(s′)

k (z, τ) =
Īk(z)(

1 + 2τ Ī(s′)
s (z, τ)

)k , (5.46)

which generalise (5.44).

Before moving to the next section, let us make a few important remarks:
1Relation (5.41) can be easily checked expanding both sides in powers of x around x = 0.
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Observation 32. The net effect of the s < 0 deformations is to generate a τ−dependent flow in the
conserved currents of the hierarchy without affecting the dynamics. In fact the Lagrangian associated
to the deformed theories coincides with the original one (cf. eq. (5.38)) and the associated canonical
Hamiltonian structure is generated by

H(s′)(x) = iΠφt + L(s′)(x) =
1

4
φ2
x + Π2 , Π = 2iφt . (5.47)

The level−1 momentum andHamiltonian density derived directly from the coordinate transformation1

P (s′)(x, τ) = I(s′)
1 (x, τ)− Ī(s′)

1 (x, τ) , H(s′)(x, τ) = I(s′)
1 (x, τ) + Ī(s′)

1 (x, τ) , (5.48)

and, in particular, the corresponding integrated quantities

P (s′)(R, τ) =

∫ R

0
P (s′)(x, τ) dx , E(s′)(R, τ) =

∫ R

0
H(s′)(x, τ) dx , (5.49)

do not coincide with the generators of translations in space and time, respectively, which are represented
by the momentum and energy of the original theory

P (s′)(R) =

∫ R

0
P (s′)(x) dx = P (R) , E(s′)(R) =

∫ R

0
H(s′)(x) dx = E(R) . (5.50)

where P(s′)(x) = −πφx is the conserved momentum density of the original theory. In general the
deformed charges

P (s)

k (R, τ) =

∫ R

0
P (s)

k (x, τ) dx , E(s)

k (R, τ) =

∫ R

0
H(s)

k (x, τ) dx , (5.51)

are conserved in t, but they evolve the system along “generalised space-time” directions, which differ
from the original ones for k 6= s.

Observation 33. The TT̄ and the JT̄ examples discussed in [28, 72] suggest that, at least formally, the
evolution equations for the quantised spectra already emerge at classical level after replacing the classical
densities with the corresponding integrated quantities averaged over the volume R:

Ik(x) −→ Ik(R)

R
=
I(+)

k (R)

R
, Īk(x) −→ Īk(R)

R
=
I(−)

k (R)

R
,

I(s)

k (x, τ) −→
I(s)

k (R, τ)

R
=
I(s,+)

k (R, τ)

R
, Ī(s)

k (x, τ) −→
Ī(s)

k (R, τ)

R
=
I(s,−)

k (R, τ)

R
.

(5.52)

where

I(s)

k (R, τ) =

∫ R

0
I(s)

k (x, τ) dx , Ī(s)

k (R, τ) =

∫ R

0
Ī(s)

k (x, τ) dx , (5.53)

1When we change the argument of the currents from z to x, we implicitly move from complex to cartesian coordinates
and express everything in terms of φx and Π.
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and the labels (+) and (−) stand for the right and left light-cone component of the conserved charges,
respectively (cf. section 3.3). Implementing (5.52) in (5.46) gives

I(s′,±)

k (R, τ) =
Rk I(±)

k (R)(
R+ 2τ I(s′,±)

s (R, τ)
)k , (5.54)

which coincides with the CFT quantum result (6.50) of section 6.3.

Observation 34. Although (5.54) were derived for the s < 0 case, it is natural to conjecture that they
can be extended also to s ≥ 0. From the reflection property (5.25), we find:

I(s,±)

k (R, τ) =
Rk I(±)

k (R)(
R+ 2τ I(s,∓)

s (R, τ)
)k , (5.55)

which again match the s > 0 CFT quantum result quoted in (6.56).

Observation 35. It is straightforward to check that (5.54)-(5.55) are solutions to the evolution equations

∂τI
(s,±)

k (R, τ) = 2I(s,∓)
s (R, τ) ∂RI

(s,±)

k (R, τ) , (s > 0) ,

∂τI
(s′,±)

k′ (R, τ) = 2I(s′,±)

s′ (R, τ) ∂RI
(s′,±)

k′ (R, τ) , (s′ = −s < 0) . (5.56)

In addition,they are also solutions to the more general equations (6.33) (with (6.36)) for the deformed
quantum spectrum, which hold also for massive models. In Appendix D.1, we show that indeed
equations (6.33) (with (6.36)) reduce to (5.54)-(5.55) in the CFT limit.

Observation 36. The result (5.37) shows that the coordinate transformation (5.29)-(5.30) is, on the
plane, an automorphism of the space of classical solutions of the free boson theory.

5.3 s = 0 deformations and JT̄-type models

So far, we described possible extensions of the TT̄ coordinate transformation involving conserved
currents of the hierarchy with Lorentz spin s 6= 0. The s = 0 case is somehow special since a spin zero
current is not present in any IFT1. In this section we restrict to the massless free boson model and
consider deformations generated by the spin zero currents generated by the U(1)L × U(1)R

symmetry. In complex coordinates w, the chiral components of these currents are

J+(z) = −2iT1(z) = i ∂zφ , J−(z) = −2iΘ−1(z) = 0 ,

J̄+(z) = 2i T̄1(z) = −i ∂z̄φ , J̄−(z) = 2i Θ̄−1(z) = 0 , (5.57)

where
{

T1(z),Θ−1(z), T̄1(z), Θ̄−1(z)
}
correspond to the case k = 0 in (4.124), while the additional

factor i in (5.57) is used to write the holomorphic and anti-holomorphic components of the stress-
energy tensor in Sugawara form (see [29])

T(z) =
1

2
(J+(z))2 , T̄(z) =

1

2

(
J̄+(z)

)2
. (5.58)

1In the sine-Gordon model, for example, there is no s = 0 current.
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Expressions (5.57) can again be interpreted as components of the closed 1-forms

I0 = J+(w) dw + J−(w) dw̄ , Ī0 = J̄+(w) dw̄ + J̄−(w) dw . (5.59)

The cartesian components of the U(1) currents are related to (5.57) through

J1 = J+ − J− , J2 = i
(
J+ + J−

)
,

J̄1 = J̄+ − J̄− , J̄2 = −i
(
J̄+ + J̄−

)
, (5.60)

and they fulfil the continuity equations

∂µJµ(x) = 0 , ∂µJ̄µ(x) = 0 . (5.61)

From (5.61), it follows that the quantities

Q(R) =

∫ R

0
J2(x) dx , Q̄(R) =

∫ R

0
J̄2(x) dx , (5.62)

are the conserved charges associated to the U(1)L × U(1)R symmetry.

Following the same spirit of the s 6= 0 deformations discussed in sections 5.1 and 5.2, we want to
construct a coordinate transformation built out of the currents (5.57). The most general choice giving
rise to a well defined coordinate transformation, i.e. the associated Hessian matrix is symmetric, is the
following 4−parameters transformation

Ψ(0)

~τ : C→ C : z→ w = Ψ(0)

~τ (z) , ~τ =
(
τ (1), . . . , τ (4)

)
, (5.63)

with Jacobian and inverse Jacobian given by

J (0) =
1

∆(0)(w)

(
1 + τ (4) ∂w̄φ −τ (2) ∂wφ

−τ (3) ∂w̄φ 1 + τ (1) ∂wφ

)
, (5.64)

(
J (0)

)−1
=

(
1 + τ (1) ∂wφ τ (2) ∂wφ

τ (3) ∂w̄φ 1 + τ (4) ∂w̄φ

)
, (5.65)

where we defined

∆(0)(w) = 1 + τ (1) ∂wφ+ τ (4) ∂w̄φ+
(
τ (1)τ (4) − τ (2)τ (3)

)
∂wφ∂w̄φ . (5.66)

Since the general case is quite cumbersome to treat, we restrict our analysis to some particular limits.

Case τ (1) = τ (4) = 0 | τ (2) = τ (3) = −τ

With this choice of the parameters, expressions (5.64)-(5.65) become

J (0) =
1

1− τ2 ∂wφ∂w̄φ

(
1 τ ∂wφ

τ ∂w̄φ 1

)
, (5.67)

(
J (0)

)−1
=

(
1 −τ ∂wφ

−τ ∂w̄φ 1

)
, (5.68)
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which correspond to the limit s → 0 in (5.2)-(5.3). Following the procedure described in detail in
section 4.5, one can easily derive the differential map

∂wf = ∂zf −
τ ∂zφ

1 + τ ∂z̄φ
∂z̄f , ∂w̄f = ∂z̄f −

τ ∂z̄φ

1 + τ ∂zφ
∂zf , ∀ f : C→ R , (5.69)

from which the deformed EoMs are

∂z∂z̄φ = τ
∂zφ∂

2
z̄φ (1 + τ ∂zφ) + ∂z̄φ∂

2
zφ (1 + τ ∂z̄φ)

1 + τ (∂zφ+ ∂z̄φ) + 2τ2 ∂zφ∂z̄φ
. (5.70)

Setting s = 0 in (5.1) and using (5.69), we can access to the full deformed integrable hierarchy. In
particular, we are interested in the expression of the deformed level−0 and level−1 currents. One finds

T(0)

1 (z, τ) = −1

2

∂zφ (1 + τ ∂zφ)

1 + τ (∂zφ+ ∂z̄φ)
, Θ(0)

−1(z, τ) = −1

2

τ ∂zφ∂z̄φ

1 + τ (∂zφ+ ∂z̄φ)
, (5.71)

and

T(0)(z, τ) = −1

2

(∂zφ)2 (1 + τ ∂zφ)

(1 + τ ∂z̄φ) (1 + τ (∂zφ+ ∂z̄φ))
,

Θ(0)(z, τ) = −1

2

τ ∂z̄φ (∂zφ)2

(1 + τ ∂z̄φ) (1 + τ (∂zφ+ ∂z̄φ))
. (5.72)

Observation 37. Plugging (5.69) into (5.67), we notice that the Jacobian can be rewritten in terms of
the deformed level-0 currents (5.71) as

J (0) =

(
1− 2τ Θ̄(0)

−1(z, τ) −2τ T(0)

1 (z, τ)

−2τ T̄(0)

1 (z, τ) 1− 2τ Θ(0)

−1(z, τ)

)
, (5.73)

which again confirms the statement made in observation 30.

Writing (5.71) and (5.72) in terms of the combinations (A.17), one finds the following relations

I(0)

0 (z, τ) =
1

2
∂zφ = I0(z) , Ī(0)

0 (z, τ) =
1

2
∂z̄φ = Ī0(z) ,

I(0)

1 (z, τ) =
1

2

(∂zφ)2

1 + τ ∂z̄φ
=

I1(z)

1 + 2τ Ī(0)

0 (z, τ)
, Ī(0)

1 (z, τ) =
1

2

(∂z̄φ)2

1 + τ ∂zφ
=

Ī1(z)

1 + 2τ I(0)

0 (z, τ)
.

(5.74)

Case τ (1) = τ (4) = −τ | τ (2) = τ (3) = 0

With this choice of the parameters, (5.64)-(5.65) become

J (0) =
1

(1− τ ∂wφ) (1− τ ∂w̄φ)

(
1− τ ∂w̄φ 0

0 1− τ ∂wφ

)
, (5.75)

(
J (0)

)−1
=

(
1− τ ∂wφ 0

0 1− τ ∂w̄φ

)
, (5.76)
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which corresponds to the limit s′ → 0 in (5.21)-(5.22). Following the usual procedure, we derive the
differential map

∂wf =
1

1 + τ ∂zφ
∂zf , ∂w̄f =

1

1 + τ ∂z̄φ
∂z̄f , f : C→ R , (5.77)

from which it descends that the deformed EoMs coincide with the undeformed one

∂z∂z̄φ = 0 , (5.78)

consistently with what we found for the s < 0 deformations in section 5.2.1. Setting s′ = 0 in (5.26)
and using (5.77), we can again derive the whole deformed integrable hierarchy, however we restrict
our attention to the deformed level-0 currents and level−1 currents, which are

T(0)

1 (z, τ) = −1

2
∂zφ , Θ(0)

−1(z, τ) = 0 , (5.79)

T(0)(z, τ) = −1

2

(∂zφ)2

1 + τ ∂zφ
, Θ(0)(z, τ) = 0 , (5.80)

Observation 38. Plugging (5.77) into (5.75), the Jacobian can be expressed in terms of the deformed
level−0 currents (5.79)

J (0) =

(
1 + 2τ T̄1(z, τ) −2τ Θ̄−1(z, τ)

−2τ Θ−1(z, τ) 1 + 2τ T1(z, τ)

)
, (5.81)

which once again confirms the statement made in observation 30.

Writing (5.79) and (5.80) in terms of the combinations (A.17), one finds

I(0)

0 (z, τ) =
1

2
∂zφ = I0(z) , Ī(0)

0 (z, τ) =
1

2
∂z̄φ = Ī0(z) ,

I(0)

1 (z, τ) =
1

2

(∂zφ)2

1 + τ ∂zφ
=

I1(z)

1 + 2τ I(0)

0 (z, τ)
, Ī(0)

1 (z, τ) =
1

2

(∂z̄φ)2

1 + τ ∂z̄φ
=

Ī1(z)

1 + 2τ Ī(0)

0 (z, τ)
.

(5.82)

Case τ (1) = τ (3) = δ | τ (2) = τ (4) = τ

In this case (5.64)-(5.65) reduce to

J (0) =

(
1− δ ∂zφ −τ ∂zφ
−δ ∂z̄φ 1− τ ∂z̄φ

)
,

(
J (0)

)−1
=

(
1 + δ ∂wφ τ ∂wφ

δ ∂w̄φ 1 + τ ∂w̄φ

)
, (5.83)

which corresponds to a change of variables Ψ(0)

δ,τ of the form

Ψ(0)

δ,τ : C→ C : z→ w = Ψ(0)

δ,τ (z) =
(
z − δφ(z), z̄ − τφ(z)

)
. (5.84)
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Observation 39. In section 4.7, we observed that the solutions to the TT̄-deformed EoM fulfil the
non-linear evolution equation (4.135). Repeating the same derivation, it is easy to see that its extension
to the generalised coordinate transformations Ψ

(s)
τ is

∂τφ
(s)

0 (z, τ) + 2

(∫ z

Īs

)
∂zφ

(s)

0 (z, τ) + 2

(∫ z

Is

)
∂z̄φ

(s)

0 (z, τ) = 0 . (5.85)

The multi-parameter variant of (5.85) associated to the coordinate transformation (5.64) is, instead

∂τ (i)φ
(0)

0 (z, ~τ) +
(
∂τ (i)z

)
∂zφ

(0)

0 (z, ~τ) +
(
∂τ (i) z̄

)
∂z̄φ

(0)

0 (z, ~τ) = 0 . (5.86)

In general, equations (5.85)-(5.86) cannot be explicitly integrated, however, in the case of the coordinate
transformation (5.84), equations (5.86) become a set of inviscid Burgers equations for the function φ0

in the variables (z, z̄, τ, δ)

∂τφ0(z, z̄, τ, δ) +
1

2
∂z̄φ

2
0(z, z̄, τ, δ) = 0 , ∂δφ0(z, z̄, τ, δ) +

1

2
∂zφ

2
0(z, z̄, τ, δ) = 0 , (5.87)

whose solution can be expressed, in implicit form, as

φ0(z, z̄, τ, δ) = φ0(z − δφ, z̄ − τφ) . (5.88)

Using the method discussed in sections 4.5, we can write down the deformed EoM, i.e.

∂z∂z̄φ = −τ ∂zφ∂
2
z̄φ (1− δ ∂zφ) + δ ∂z̄φ∂

2
zφ (1− τ ∂z̄φ)

1− δ ∂zφ− τ ∂z̄φ+ 2τδ ∂zφ∂z̄φ
, (5.89)

and the tower of deformed higher conserved currents from the original hierarchy. In particular, the
components of the deformed U(1) currents (5.57) are

J (0)

+ (z, τ, δ) = i ∂zφ
1− δ ∂zφ

1− δ ∂zφ− τ ∂z̄φ
, J (0)

− (z, τ, δ) = −i δ ∂zφ∂z̄φ

1− δ ∂zφ− τ ∂z̄φ
,

J̄ (0)

+ (z, τ, δ) = −i ∂z̄φ
1− τ ∂zφ

1− δ ∂zφ− τ ∂z̄φ
, J̄ (0)

− (z, τ, δ) = i
τ ∂zφ∂z̄φ

1− δ ∂zφ− τ ∂z̄φ
, (5.90)

while the components of the deformed stress-energy tensor are

T(0)(z, τ, δ) = −1

2
(∂zφ)2 1− δ ∂zφ

(1− δ ∂zφ− τ ∂z̄φ)2
, Θ(0)(z, τ, δ) =

1

2

δ (∂zφ)2 ∂z̄φ

(1− δ ∂zφ− τ ∂z̄φ)2
,

T̄(0)(z, τ, δ) = −1

2
(∂z̄φ)2 1− τ ∂z̄φ

(1− δ ∂zφ− τ ∂z̄φ)2
, Θ̄(0)(z, τ, δ) =

1

2

τ (∂z̄φ)2 ∂zφ

(1− δ ∂zφ− τ ∂z̄φ)2
.

(5.91)

Therefore, the deformed Hamiltonian and momentum density are

H(0)(z, τ, δ) = I(0)

1 (z, τ, δ) + Ī(0)

1 (z, τ, δ)

= −∂zφ∂z̄φ (δ ∂zφ+ τ ∂z̄φ)− (∂zφ)2(1− δ ∂zφ)− (∂z̄φ)2(1− τ ∂z̄φ)

2 (1− δ ∂zφ− τ ∂z̄φ)2 , (5.92)

P (0)(z, τ, δ) = I(0)

1 (z, τ, δ)− Ī(0)

1 (z, τ, δ)

=
(∂zφ+ ∂z̄φ) (∂zφ (1− δ ∂zφ)− ∂z̄φ (1− τ ∂z̄φ))

2 (1− δ ∂zφ− τ ∂z̄φ)2 , (5.93)
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and the corresponding deformed Lagrangian1 is

L(0)(z, τ, δ) =
∂zφ∂z̄φ

1− δ ∂zφ− τ ∂z̄φ
. (5.94)

Observation 40. The EoM associated to (5.94) coincide with (5.89) which has been derived directly
from the coordinate transformation. Therefore, in this case, the integrals over the space of the level−1

currents (5.92) and (5.93) are the generators of time and space translations, respectively, in the
deformed theory.

Notice that, while the deformed action is mapped exactly into the undeformed one under (5.84), the
integral of (5.92) transforms with an additional term∫

H(0)(z, τ, δ) dz ∧ dz̄ =

∫ [
H(w) + i (δ − τ)

(
J+(w) T̄2(w)− c.c.

)]
dw ∧ dw̄ .

In order to unambiguously identify the perturbing operator – at least at the first perturbative order –
we must Legendre transform (5.92). First of all, we switch from complex z to cartesian coordinates
x = (x1, x2) = (x, t) according to the convention (A.1). Then, inverting the Legendre map one finds

Π = i
∂L(0)(x, τ, δ)

∂φt
,

φt = i

(
1 + 2 Π (τ − δ)

)(
−2 + (τ + δ)φx

)
+ 2
√(

1 + 2 Π (τ − δ)
)(

1− τ φx
)(

1− δ φx
)

(τ − δ)
(
1 + 2 Π (τ − δ)

) . (5.95)

Plugging (5.95) in (5.92)-(5.93), or equivalently, performing the canonical Legendre transformation,
one gets

H(0)(x, τ, δ) = I(0)

1 (x, τ, δ) + Ī(0)

1 (x, τ, δ) = iΠφt + L(0)(x, τ, δ)

= −

(
1 + Π (τ − δ)

)(
−2 + (τ + δ)φx

)
+ 2
√(

1 + 2 Π (τ − δ)
)(

1− τ φx
)(

1− δ φx
)

(τ − δ)2
,

(5.96)

and
P (0)(x, τ, δ) = I(0)

1 (x, τ, δ)− Ī(0)

1 (x, τ, δ) = −Πφx = P(x) . (5.97)

which implies that the momentum density is unaffected by the deformation. Finally, expanding (5.96)
at the first order in τ and δ, we can identify the perturbing operator at first order

H(0)(x, τ, δ) ∼
τ→0
δ→0

H(x) + 2
(
τ J2(x) T̄(x) + δ J̄2(x) T(x)

)
+O(τδ) , (5.98)

1A straightforward way to obtain the Lagrangian (5.94) from the Hamiltonian (5.92), is to start from a formal series
expansion of L(0)(z, τ, δ) around τ = δ = 0 and fix the unknown coefficients by matching the Legendre transformation of
L(0)(z, τ, δ) with (5.92).
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where H(x) = I1(x) + Ī1(x) = Π2 + 1
4 φ

2
x is the undeformed Hamiltonian and

I1(x) = −T(x) =
1

8
(2 Π− φx)2 , Ī1(x) = −T̄(x) =

1

8
(2 Π + φx)2 , (5.99)

are the holomorphic and anti-holomorphic components of the undeformed stress-energy tensor,
respectively. In (5.98), the cartesian components of the undeformed chiral currents Jµ(x) follows from
the definition (5.60)

J1(x) = J+(x)− J−(x) =
i

2
(−2Π + φx) ,

J2(x) = i
(
J+(x) + J−(x)

)
=

1

2
(2Π− φx) ,

J̄1(x) = J̄+(x)− J̄−(x) =
i

2
(−2Π− φx) ,

J̄2(x) = −i
(
J̄+(x) + J̄−(x)

)
=

1

2
(−2Π− φx) . (5.100)

In a similar way, we denote the cartesian components of the deformed chiral currents as

J (0)

1 (x, τ, δ) = J (0)

+ (x, τ, δ)− J (0)

− (x, τ, δ) , J (0)

2 (x, τ, δ) = i
(
J (0)

+ (x, τ, δ) + J (0)

− (x, τ, δ)
)
,

J̄ (0)

1 (x, τ, δ) = J̄ (0)

+ (x, τ, δ)− J̄ (0)

− (x, τ, δ) , J̄ (0)

2 (x, τ, δ) = −i
(
J̄ (0)

+ (x, τ, δ) + J̄ (0)

− (x, τ, δ)
)
, (5.101)

which again fulfil the continuity equations

∂µJ
(0)
µ (x, τ, δ) = 0 , ∂µJ̄

(0)
µ (x, τ, δ) = 0 . (5.102)

From (5.102), it follows that the quantities

Q(R, τ, δ) =

∫ R

0
J (0)

2 (x, τ, δ) dx , Q̄(R, τ, δ) =

∫ R

0
J̄ (0)

2 (x, τ, δ) dx . (5.103)

are the conserved charges associated to the U(1)L × U(1)R symmetry in the deformed theory.

Case τ (1) = τ (3) = 0 | τ (2) = τ (4) = τ

This case can be easily retrieved from the previous one by sending δ → 0. It corresponds to the
coordinate transformation associated to the JT̄ deformation (see [28, 29]). First we notice that, setting
δ = 0 in (5.90)-(5.91), the deformation preserves the Sugawara construction for the holomorphic sector

T(JT̄)(z, τ) ≡ T(0)(z, τ, 0) = −1

2

(∂zφ)2

(1− τ ∂z̄φ)2
=

1

2

(
J

(JT̄)

+ (z, τ)
)2

, J
(JT̄)

+ (z, τ) = J (0)

+ (z, τ, 0) ,

(5.104)
but this is not true for the anti-holomorphic sector. Then, we observe that the Lagrangian (5.94) reduces
to

L(JT̄)(z, τ) ≡ L(0)(z, τ, 0) =
∂zφ∂z̄φ

1− τ ∂z̄φ
, (5.105)

and the corresponding Legendre transformed Hamiltonian (5.96) becomes

H(JT̄)(x, τ) ≡ H(0)(x, τ, 0) = P(x) +
2

τ2

((
1 + τ J2(x)

)
− S(JT̄)

)
, (5.106)
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where
S(JT̄) =

√(
1 + τ J2(x)

)2 − 2τ2 Ī1(x) . (5.107)

Writing (5.106) as H(JT̄)(x, τ) = I(JT̄)

1 (x, τ) + Ī(JT̄)

1 (x, τ) with

I(JT̄)

1 (x, τ) = −
(

T
(JT̄)

2 (x, τ) + Θ
(JT̄)

0 (x, τ)
)

= P(x) +
1

τ2

((
1 + τ J2(x)

)
− S(JT̄)

)
,

Ī(JT̄)

1 (x, τ) = −
(

T̄
(JT̄)

2 (x, τ) + Θ̄
(JT̄)

0 (x, τ)
)

=
1

τ2

((
1 + τ J2(x)

)
− S(JT̄)

)
, (5.108)

we find that
J

(JT̄)

2 (x, τ) = −1

τ

(
1 + S(JT̄)

)
= J2(x)− τ Ī(JT̄)

1 (x, τ) . (5.109)

As already discussed in section 2.3.4 for the TT̄ deformation of a generic bosonic theory, we argue that
also for the JT̄ deformation of the massless boson field theory the energy density of the right and left
movers (5.108) has the same formal expression of the quantised spectrum obtained in [30] (cf. (6.89)),
where the classical densities are replaced by the corresponding integrated quantities averaged over the
volume (up to rescalings). In addition, also the deformation of the chiral current density (5.109) admits
a straightforward generalisation at the quantum level (cf. (6.91)). Analogous considerations apply to the
case τ (1) = τ (1) = τ , τ (1) = τ (4) = 0 , which corresponds to the TJ̄ deformation.

Case τ (1) = τ (2) = τ (3) = τ (4) = τ

All the equations (5.83)-(5.96) can be obtained setting δ = τ . In this case, the square root in (5.96)
disappears, and the Hamiltonian takes the simple form

H(0)(x, τ) ≡ H(0)(x, τ, τ) =
H(x) + τ P(x)

(
J2(x) + J̄2(x)

)
+ τ2 P2(x)

1 + τ
(
J2(x)− J̄2(x)

) . (5.110)

Again, we split the Hamiltonian as H(0)(x, τ) = I(0)

1 (x, τ) + Ī(0)

1 (x, τ) with

I(0)

1 (x, τ) = −
(
T(0)(x, τ) + Θ(0)(x, τ)

)
=
I1(x) + τ J2(x)P(x) + τ2

2 P
2(x)

1 + τ
(
J2(x)− J̄2(x)

) ,

Ī(0)

1 (x, τ) = −
(
T̄(0)(x, τ) + Θ̄(0)(x, τ)

)
=
Ī1(x) + τ J̄2(x)P(x) + τ2

2 P
2(x)

1 + τ
(
J2(x)− J̄2(x)

) . (5.111)

Finally, the deformed chiral currents fulfil

J (0)

2 (x, τ) = J2(x) + τ P(x) , J̄ (0)

2 (x, τ) = J̄2(x) + τ P(x) . (5.112)

In section 6.5 we will argue that the quantum version of this perturbation (cf. (6.95)-(6.97)) can be
obtained by introducing two different scattering factors in the NLIEs (3.28).
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5.4 Deformed classical solutions

The method described in section 4.7 to obtain solutions to the TT̄− deformed EoMs from the
corresponding original solutions can be straightforwardly applied to the case of the generalised
coordinate transformations discussed in this chapter.

For the s > 0 case, we compute the relation between the sets of coordinates w and z by integrating
(5.3) 

∂z(s)(w)
∂w = 1 + 2τ Θ̄s−1(w) ,

∂z(s)(w)
∂w̄ = 2τ T̄s+1(w) ,


∂z̄(s)(w)
∂w = 2τ Ts+1(w) ,

∂z̄(s)(w)
∂w̄ = 1 + 2τ Θs−1(w) ,

(5.113)

where we denoted z(s)(w) = (z(s)(w), z̄(s)(w)) =
(
Ψ(s)
τ

)−1
(w). The components of the higher charges

Ts+1(w), Θs−1(w) along with their complex conjugates are implicitly evaluated on a specific field
configuration φ0(w) solution to the original EoMs. Inverting the relation z(s) =

(
Ψ(s)
τ

)−1
(w), we find

the deformed solution as
φ(s)

0

(
z, τ
)

= φ0

(
Ψ(s)
τ (z)

)
. (5.114)

Analogously, for the s ≤ 0 case we should integrate (5.22)
∂z(s′)(w)

∂w = 1 + 2τ Ts+1(w) ,

∂z(s′)(w)
∂w̄ = 2τ Θs−1(w) ,


∂z̄(s′)(w)

∂w = 2τ Θ̄s−1(w) ,

∂z̄(s′)(w)
∂w̄ = 1 + 2τ T̄s+1(w) ,

(5.115)

and repeat the same procedure described above.

The purpose of this section is to highlight the difference between the TT̄ perturbation and those
corresponding to spins s 6= 1, through the study of a simple example. Since perturbations with higher
spins should break explicitly Lorentz symmetry, it is convenient to start from a solution of the Laplace
equation which is particularly symmetric under rotations, i.e. the “spiral staircase” solution of [73]:

φ0(w) = d log

(
w + ξ

w̄ + ξ̄

)
, (ξ, ξ̄ ∈ C , d ∈ R) , (5.116)

where w and w̄ are complex conjugated variables. Using

∂w̄
1

w + ξ
= −π δ(w + ξ) , ∂w

1

w̄ + ξ̄
= −π δ(w̄ + ξ̄) , (5.117)

one can show that (5.116) is indeed solution to the undeformed EoM, i.e. ∂w∂w̄φ = 0.

For sake of brevity, we will only consider perturbations involving the set of charges (4.125), since the
deformations associated to (4.124) can be obtained from the results described here through a simple
redefinition of the coupling τ . Integrating (5.113) using the set of charges (4.125) evaluated on the
solution (5.116) we obtain

z(s)(w) = w + τ
Γ
(
s+1

2

)2
s

d2

(w̄ + ξ̄)s
, z̄(s)(w) = w̄ + τ

Γ
(
s+1

2

)2
s

d2

(w + ξ)s
. (5.118)
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The latter equations cannot be explicitly inverted, for generic spin s > 1, as w = Φ(s)
τ (z). However, for

s = 1, i.e. the TT̄ deformation, (5.118) can be written as

z + ξ = (w + ξ)

[
1 + τ

d2

(w + ξ)(w̄ + ξ̄)

]
, z̄ + ξ̄ = (w̄ + ξ̄)

[
1 + τ

d2

(w + ξ)(w̄ + ξ̄)

]
, (5.119)

with z = z(1)(w), from which

φ0(w) = d log

(
w + ξ

w̄ + ξ̄

)
= d log

(
z + ξ

z̄ + ξ̄

)
= φ0(z) . (5.120)

Therefore, the solution (5.116) is a fixed point of the TT̄ flow. To clearly see how the s 6= 1 perturbations
affect the solution (5.116), we shall restrict to the s < 0 perturbations, where the deformed solutions
can be found explicitly. Integrating (5.115) using the set of charges (4.125), again evaluated on (5.116),
we find

z(s′)(w) = w + τ
Γ
(
s+1

2

)2
s

d2

(w + ξ)s
, z̄(s′)(w) = w̄ + τ

Γ
(
s+1

2

)2
s

d2

(w̄ + ξ̄)s
. (5.121)

Comparing (5.118) with (5.121) we see that the difference between the s > 0 and s < 0 perturbations
lies in the substitution w + ξ ↔ w̄ + ξ̄ in the term proportional to τ , which implies that, for s < 0,
there is no mixing between holomorphic and anti-holomorphic components.

Since holomorphic and anti-holomorphic parts are completely decoupled, we can integrate explicitly
(5.121) for w and w̄. The result is

w
(
z(s′)

)
= z(s′) +

s

1 + s

[
−1 + Fs

((
1 + s

s

)1+s

Γ

(
1 + s

2

)2 τ d2(
z(s′) + ξ

)1+s

)](
z(s′) + ξ

)
,

w̄
(
z(s′)

)
= z̄(s′) +

s

1 + s

[
−1 + Fs

((
1 + s

s

)1+s

Γ

(
1 + s

2

)2 τ d2(
z̄(s′) + ξ̄

)1+s

)](
z̄(s′) + ξ̄

)
,

(5.122)

Finally, the deformed solutions are recovered by plugging (5.122) into (5.116)

φ(s′)(z, τ) = d log

(
z + ξ

z̄ + ξ̄

)
+ d log

1 + s Fs

((
1+s
s

)1+s
Γ
(

1+s
2

)2 τ d2

(z+ξ)1+s

)
1 + s Fs

((
1+s
s

)1+s
Γ
(

1+s
2

)2 τ d2

(z̄+ξ̄)1+s

)
 . (5.123)

Let us discuss in detail the case s = −1 of (5.123),

φ(−1)(z, τ) = d log

(
z + ξ

z̄ + ξ̄

)
+ d log

1 +
√

1− 4τ d2

(z+ξ)2

1 +
√

1− 4τ d2

(z̄+ξ̄)2

 . (5.124)

We observe that, as soon as the perturbation is switched on, a pair of square root branch points appears
at z = ±2d

√
τ − ξ. Considering for simplicity ξ, ξ̄ ∈ R, they form a branch cut on the real axis of the

complex plane of z
C =

(
−2d
√
τ − ξ; +2d

√
τ − ξ

)
, (5.125)
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(a) s = 1 (b) s = −1 (c) s = −3

Figure 5.1: Analytic structure of the deformed solution (5.123) in the complex plane of z for different
values of s, with ξ = ξ̄ = 0. The black lines correspond to the square root branch cuts connecting the
singularities (5.130), while the red lines correspond to the logarithmic cuts.

i.e. the black line in Figure 5.1b. Instead, the logarithmic singularity of the undeformed solution (5.116)
at w = −ξ cancels out with the singularities coming from the additional term in (5.124). Therefore,
the logarithmic cut of (5.116) which runs, in our convention, along the real axis from w = −∞ to
w = −ξ, now connects z = −∞ on the first sheet to z = −∞ on the secondary branches reached by
passing through C (see the red line in Figure 5.1b). This implies that the behaviour of (5.124) at z =∞
is different according to the choice of the branch. On the first sheet one has

φ(−1)(z, τ) ∼
z→∞

(1-th sheet)

d log

(
z + ξ

z̄ + ξ̄

)
+O(z0) , (5.126)

while, on the second sheet, flipping the + sign in front of the square roots in (5.124) into a − sign one
finds

φ(−1)(z, τ) ∼
z→∞

(2-nd sheet)

−d log

(
z + ξ

z̄ + ξ̄

)
+O(z0) . (5.127)

In Figure 5.2, is represented the Riemann surface of the solution (5.124) (Figure 5.2b) together with
that of the bare solution (Figure 5.2a), which coincides with the TT̄ deformed solution. Notice that the
analytic structure of (5.124) can be read out from the implicit map (5.121). In fact, for s = −1, equation
(5.121) reduces to the Zhukovsky transformation

z + ξ = (w + ξ) + τ
d

(w + ξ)
, z̄ + ξ̄ = (w̄ + ξ̄) + τ

d

(w̄ + ξ̄)
, (5.128)

from which we see that z = ∞ on the first sheet is mapped into w = ∞, while z = ∞ on the second
sheet is mapped into w = −ξ. Moreover (5.128) captures the large z behaviour of the solution. In fact,

d log

(
w + ξ

w̄ + ξ̄

)
∼

w→∞
d log

(
z + ξ

z̄ + ξ̄

)
, d log

(
w + ξ

w̄ + ξ̄

)
∼

w→−ξ
−d log

(
z + ξ

z̄ + ξ̄

)
. (5.129)

Let us now consider the generic solution (5.123). The hypergeometric functions appearing in (5.123)
are of the form p+1Fp(a1, . . . , ap+1; b1, . . . , bp;x), with coefficients {ai}p+1

i=1 , {bj}
p
j=1 ∈ Q. Generally,

these hypergeometric functions have branch points at x =∞ and x = 1, which in our case are mapped
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(a) (b)

Figure 5.2: Riemann surface of the deformed solution φ(s)(z, τ) , (ξ = ξ̄ = 0), in the complex plane of
z for s = 1 (a), and s = −1 (b).

into z = 0 and z = xn, respectively, with

xn =
1 + s

s

[
dΓ

(
1 + s

2

)] 2
1+s

τ
1

1+s e
2πi
1+s

n − ξ , (n = 0, . . . , s) . (5.130)

The branch points (5.130) are all of square root type. In conclusion, roughly speaking, starting from
a rotational-symmetric solution, the perturbations with s < 0 have explicitly broken the original U(1)

symmetry down to a discrete Z2s.



Chapter 6

Generalised phase factors

This final chapter is devoted to the quantisation of the classical deformations associated to the generalised
coordinate transformations introduced in chapter 5. The first step consists in the identification of the
phase factors which generate the modification of the S−matrix. Subsequently, following the strategy
adopted in the TT̄ case, we derive the evolution equations for the conserved charges of the hierarchy
in the framework of the NLIE.

6.1 Identification of the phase factors

Although we arrived to (5.54) by considering a particular model – a massless scalar field theory – and
only a very specific set of conserved currents, in the following we assume the general validity of (5.54)
and of (5.55), obtained from (5.54) using the reflection property (5.25). Naturally, in order to put this
argument on a more solid foundation, it would be very important to extend the proof of (5.54) to the
set of conserved currents (4.126) and also to massive theories.

Consider first the quantum version of (5.54), where the holomorphic and anti-holomorphic sectors
are not coupled together by the interaction. Then, the level-k Hamiltonian and momentum operators
factorise as

Ê(s′)
k (R, τ) = Î(s′,+)

k (R, τ)⊗ 1 + 1⊗ Î(s′,−)

k (R, τ) , (6.1)

P̂ (s′)
k (R, τ) = Î(s′,+)

k (R, τ)⊗ 1− 1⊗ Î(s′,−)

k (R, τ) , (6.2)

and their action on a generic multi-particle state

|N (+), N (−)〉τ = |N (+)〉τ ⊗ |N
(−)〉τ = |θ(+)

1 , θ(+)

2 , . . . , θ(+)

N(+)〉τ ⊗ |θ
(−)

1 , θ(−)

2 , . . . , θ(−)

N(−)〉τ , (6.3)

is determined by 1

Î(s′,±)

k (R, τ) |N (±)〉τ =
γ̂k
2

N(±)∑
i=1

e±kθ
(±)
i

 |N (±)〉τ , (6.4)

1We have adopted here the convention of [9], where the single particle energy and momentum for right (+) and left (−)

movers are parametrised as
(
m̂
2
e±θ,± m̂

2
e±θ

)
.
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in the large R limit. Notice that, in the massless boson theory under consideration, there is only one
species of elementary excitations and the set of rapidities

{
θ(±)

i

}
completely characterises an asymptotic

quantum state. In addition

Î(±)

k (R) |N (±)〉0 =

(
γ̂k
2

)(
2

m̂

)k N(±)∑
i=1

(
2πn(±)

i

R

)k
|N (±)〉0 ,

({
n(±)

i

}
∈ Z+

)
, (6.5)

where m̂ = γ̂1 and we used the fact that the original theory is free. Assuming that, at least in the large
R limit the deformed charges are commuting

[Î(s′,±)

k (R, τ), Î(s′,±)

k′ (R, τ)] = 0 , (6.6)

then, from (5.54) it follows

0 〈N (±)| Î(s′,±)

k (R, τ)
(
R+ 2τ Î(s′,±)

s (R, τ)
)k
|N (±)〉τ = 0 〈N (±)| Î(±)

k (R) |N (±)〉τ R
k, (6.7)

and using (6.4)-(6.5) one hasN(±)∑
i=1

e±kθ
(±)
i

R+ 2τ
γ̂s
2

N(±)∑
j=1

e∓s
′θ

(±)
j

k

=

(
2

m̂

)k N(±)∑
i=1

(
2πn(±)

i

)k
, (∀k ∈ Z) . (6.8)

The only consistent solutions to (6.8) are

±Rm̂
2
e±θ

(±)
i ± τ m̂

2
γ̂s′

N(±)∑
j=1

e
±
(
θ
(±)
i −s′θ(±)

j

)
= ±2πn(±)

i , (i = 1, 2, . . . , N (±)) , (6.9)

i.e. the asymptotic Bethe Ansatz (BA) equations for our models. The two body scattering amplitudes
involving right- and left-movers are

δ(s′)
(±,∓)(θ, θ

′) = 0 , δ(s′)
(±,±)(θ, θ

′) = ±τ m̂
2
γ̂s′ e

±(θ−s′ θ′) , (s′ = −|s| < 0) . (6.10)

Similarly, starting from (5.55) we find

δ(s)

(±,∓)(θ, θ
′) = ±τ m̂

2
γ̂s e

±(θ−s θ′) , δ(s)

(±,±)(θ, θ
′) = 0 , (s = |s| > 0) . (6.11)

The arguments presented in this section, strongly support the idea that the classical theories introduced
in chapter 5 through a field dependent coordinate transformation can be consistently quantised within
the exact S−matrix approach through the introduction of specific Lorentz-breaking phase factors. The
natural generalisation of (6.10) and (6.11) to a massive field theory is

δ(s)(θ, θ′) = τ mγs sinh(θ − s θ′) , (6.12)

with asymptotic BA equations

Rm sinh(θi) + τ mγs

N∑
j=1

sinh(θi − s θj) = 2πni , (ni ∈ Z , i = 1, 2, . . . , N) . (6.13)
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Summing over all the rapidities we see that, apart for s = 1, the kinetic total momentum is not quantised,
i.e.

P (R, τ) = P (s)

1 (R, τ) =
N∑
i=1

m sinh(θi) 6=
2π

R
n , n =

N∑
i=1

ni , (s 6= 1) . (6.14)

Since translational invariance is not broken at classical level, this result suggests that the deformed
momentum P do not coincide, in general, with the generator of space translations P̌ , in agreement
with the discussion of section 5.2.1. From (6.13) it follows that the natural definition of a quantised
momentum is, in the large R limit

P̌ (R) = P (R, τ) +
τ

R

[
P (R, τ)E (s)

s (R, τ)− E(R, τ)P (s)
s (R, τ)

]
=

2π

R
n , (n ∈ Z) , (6.15)

with

E (s)

k =
N∑
i=1

γs cosh(k θi) , P (s)

k =
N∑
i=1

γs sinh(k θi) , E = E (s)

1 . (6.16)

Relation (6.15) can also be written as

P̌ = P̌ (+) − P̌ (−) , P̌ (±) = I(s,±)

1 +
2τ

R
I(s,±)

1 I(s,∓)
s . (6.17)

Observation 41. The quantisation of P on a circle would be preserved by taking symmetrised versions
of the scattering phases (6.10)-(6.11) or (6.12). In the massive case, for example, the combination

δ′(s̃,s)(θ, θ′) =
τ

2
mγs

(
sinh(s̃ θ − s θ′) + sinh(s θ − s̃ θ′)

)
, (6.18)

with s̃ = 1 guarantees the quantisation of P . This is not, however, the phase factor that our classical
analysis suggests for the spectrum of the deformed charges (5.51). There are concrete evidences [74] in
support of the fact that the phase factors (6.18), with arbitrary integers s̃ and s, correspond instead to
the deformations generated by operators of the form

Ts+1T̄s̃+1 + T̄s+1Ts̃+1 −Θs−1Θ̄s̃−1 − Θ̄s−1Θs̃−1 , (6.19)

which have been discussed in [32].

Observation 42. The phase factors

δ̃(s)(θ, θ′) = τ mγs sinh(s θ − θ′) , (6.20)

appears to be related, instead, to the spectrum of the corresponding mirror deformed Hamiltonians1 of
the models under consideration [74].

1See [75] for a rigorous definition of mirror theory in a similar, non relativistic invariant, Bethe Ansatz context
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6.2 Generalised spectral flow equations

Motivated by the results of section 6.1, we are led to conjecture that the classical deformations arising
from the generalised coordinate transformations described in sections 5.1 and 5.2, correspond to a
modification of the original S−matrix by a phase factor

S(θ, θ′)→ S(θ, θ′) f(θ, θ′) , f(θ, θ′) = exp

(
i

∑
s

δ(s)(θ, θ′)

)
, (6.21)

where
δ(s)(θ, θ′) = τ (s)γ1γs sinh(θ − s θ′) , (6.22)

with {τ (s)} independent coupling parameters and

γs =
(2πm)s

Cs
, γ1 = m , (6.23)

Observation 43. The function f(θ) do not fulfil (3.43), hence it is not a CDD factor. Moreover it
explicitly breaks the Lorentz invariance of the original theory, contrary to the family of CDD factors
(1.21) considered in [1].

In principle the sum in (6.22) runs over all the positive and negative odd integers. However, since the
whole analysis can be straightforwardly analytically extended to arbitrary values of s, in the following
we shall relax this constraint, at least to include the case s = 0 and the set of non-local conserved charges
[76]. The phase factor (6.22) leads to multi-parameter deformations of the original QFT spectrum
which, due to the intrinsic non-linearity of the problem, can effectively be studied only on the case-by-
case basis. A detailed analytic and numerical study of specific multi-parameter deformations of a massive
QFT, such as the sine-Gordon model, is a very challenging long-term objective. Most of the checks
have been performed considering CFTs deformed (explicitly at leading order) by a single irrelevant
composite field. For simplicity, we restrict the analysis to phase factors with a single non-vanishing
irrelevant coupling. Setting τ ≡ τ (s) in (6.22) and performing the transformation

S(θ, θ′)→ S(θ, θ′) eiδ
(s)(θ,θ′) , (6.24)

the kernel appearing in the NLIE (3.15) gets modified as

K(θ − θ′)→ K(θ − θ′) +
1

2π
∂θδ

(s)(θ − s θ′) = K(θ − θ′) + τ m
γs
2π

cosh(θ − s θ′) . (6.25)

Inserting (6.25) in (3.15), after simple manipulations, we find that the deformed version of fν(θ) fulfils
(3.15) with

ν = ν
(
R(s)

0 , α0 | θ − θ(s)

0

)
, (6.26)

where R(s)

0 and θ(s)

0 are defined through

R(s)

0 cosh
(
θ(s)

0

)
= R+ τ E (s)

s (R, τ) , R(s)

0 sinh
(
θ(s)

0

)
= τ P (s)

s (R, τ) , (6.27)
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with R0 ≡ R(1)

0 and θ0 ≡ θ(1)

0 . Equations (6.27) imply

(
R(s)

0

)2
=
(
R+ τ E (s)

s (R, τ)
)2 − (τ P (s)

s (R, τ)
)2

. (6.28)

The quantities E (s)

k (R, τ) and P (s)

k (R, τ) denote the k-th higher conserved charges of the theory
deformed with the s-th perturbation

E (s)

k (R, τ) = I(s,+)

k (R, τ) + I(s,−)

k (R, τ) , P (s)

k (R, τ) = I(s,+)

k (R, τ)− I(s,−)

k (R, τ) , (6.29)

and I(s,±)

k are again defined through (3.23)-(3.24) but with the deformed driving term (6.26).
Formula (6.26) shows that the solutions of the deformed NLIE are modified simply by a redefinition
of the length R and by a rapidity shift which, in contrast to the analogous formula (3.45) found in the
TT̄ context, here involve the generic level−s charges.

Putting together (6.29) and the relation between the deformed and the original charges (see equation
(3.47))

I(s,±)

k (R, τ) = e±kθ
(s)
0 I(±)

k

(
R(s)

0

)
, (6.30)

one finds the same Lorentz-type transformation (3.48) derived for the TT̄−deformed charges(
E (s)

k (R, τ)

P (s)

k (R, τ)

)
=

(
cosh

(
kθ(s)

0

)
sinh

(
kθ(s)

0

)
sinh

(
kθ(s)

0

)
cosh

(
kθ(s)

0

) )( Ek (R(s)

0

)
Pk
(
R(s)

0

) ) . (6.31)

which implies (
E (s)

k (R, τ)
)2 − (P (s)

k (R, τ)
)2

=
(
Ek
(
R(s)

0

))2 − (Pk (R(s)

0

))2
, (6.32)

To find the generalisations of the flow equations (3.56) describing the evolution of the level−k charges
under the TT̄ deformation, we follow the same strategy of section 3.4. First, we differentiate both sides
of (6.30) w.r.t. τ at fixed R(s)

0

∂τI
(s,±)

k (R, τ) +R′∂RI
(s,±)

k (R, τ) = ±k(θ(s)

0 )′I(s,±)

k (R, τ) . (6.33)

then we determine ∂τR = R′ and ∂τθ(s)

0 = (θ(s)

0 )′. To do that, we rewrite (6.27) asR
(s)

0 = Re−θ
(s)
0 + 2τ e(s−1)θ

(s)
0 I(+)

s

(
R(s)

0

)
R(s)

0 = Reθ
(s)
0 + 2τ e−(s−1)θ

(s)
0 I(−)

s

(
R(s)

0

) , (6.34)

then we differentiate both equations in (6.34) w.r.t. τ which gives the following set of algebraic
equations for R′ and (θ(s)

0 )′0 = R′e−θ
(s)
0 −Re−θ

(s)
0 (θ(s)

0 )′ + 2e(s−1)θ
(s)
0 I(+)

s

(
R(s)

0

)
+ 2τe(s−1)θ

(s)
0 (s− 1) (θ(s)

0 )′ I(+)
s

(
R(s)

0

)
0 = R′eθ

(s)
0 +Reθ

(s)
0 (θ(s)

0 )′ + 2e−(s−1)θ
(s)
0 I(−)

s

(
R(s)

0

)
− 2τe−(s−1)θ

(s)
0 (s− 1) (θ(s)

0 )′ I(−)
s

(
R(s)

0

) ,

(6.35)
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whose solution is

∂τR = R′ = −E (s)
s (R, τ) +

(s− 1)τ
(
P (s)
s (R, τ)

)2
(s− 1)τ E (s)

s (R, τ)−R
,

∂τθ
(s)

0 = (θ(s)

0 )′ = − P (s)
s (R, τ)

(s− 1)τ E (s)
s (R, τ)−R

. (6.36)

The equations for the level−k total energy and momentum are then


∂τE (s)

k (R, τ)− E (s)

s (R, τ)∂RE (s)

k (R, τ) = −P (s)

s (R, τ)
(s− 1)τ P (s)

s (R, τ) ∂RE (s)

k (R, τ) + kP (s)

k (R, τ)

(s− 1)τ E (s)
s (R, τ)−R

∂τP (s)

k (R, τ)− E (s)

s (R, τ)∂RP (s)

k (R, τ) = −P (s)

s (R, τ)
(s− 1)τ P (s)

s (R, τ) ∂RP (s)

k (R, τ) + kE (s)

k (R, τ)

(s− 1)τ E (s)
s (R, τ)−R

.

(6.37)
Contrary to (3.57), the equations for the energy and momentum, i.e. E(R, τ) = E (s)

1 (R, τ) and
P (R, τ) = P (s)

1 (R, τ), obtained setting k = 1 in (6.37), are intrinsically coupled to the evolution
equations for E (s)

s (R, τ) and P (s)
s (R, τ)

∂τE (s)

s (R, τ)− E (s)

s (R, τ)∂RE (s)

s (R, τ) = − (P (s)

s (R, τ))
2 (s− 1)τ ∂RE (s)

s (R, τ) + s

(s− 1)τ E (s)
s (R, τ)−R

∂τP (s)

s (R, τ)− E (s)

s (R, τ)∂RP (s)

s (R, τ) = −P (s)

s (R, τ)
(s− 1)τ P (s)

s (R, τ) ∂RP (s)
s (R, τ) + s E (s)

s (R, τ)

(s− 1)τ E (s)
s (R, τ)−R

.

(6.38)

Observation 44. As already observed in section 6.1 when we discussed the large R limit, here again
we find that the deformed momentum P , defined through (6.37) is not always quantized for τ 6= 0,
as it flows according to the complicated non-linear equations (6.37)-(6.38). One can argue (see for
example [77]) that a quantised object is

P̌ (R) =
1

2πR

(∫
C1
dθ p(θ) log

(
1 + e−fν(θ)

)
−
∫
C2
dθ p(θ) log

(
1 + efν(θ)

))
, (6.39)

with
p(θ) = ∂θν

(
R(s)

0 , α0 | θ − θ(s)

0

)
= −imR(s)

0 cosh
(
θ − θ(s)

0

)
. (6.40)

Using (6.27) and (6.40) in (6.39), we find

P̌ = P (R) = P (R, τ) +
τ

R

(
P (R, τ)E (s)

s (R, τ)− E(R, τ)P (s)
s (R, τ)

)
, (6.41)

which coincides with (6.15) obtained in section 6.1 from BA considerations.

6.3 The CFT limit

In this section, we discuss the CFT limit of the NLIE derived in section 6.2. In particular, we explicitly
compute the expressions of the charges of the deformed hierarchy. We refer the reader to section 3.3
for the derivation of the CFT NLIEs obtained as a massless limit of the sine-Gordon NLIE.
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In the CFT limit, the τ−dependent phase factor (6.22) (with τ ≡ τ (s)) splits, for s > 0, into

δ(s)

(±,∓)(θ, θ
′) = ±τ m̂

2 γ̂s e
±(θ−s θ′) , δ(s)

(±,±)(θ, θ
′) = 0 , (6.42)

with
γ̂s =

(2πm̂)s

Cs
, γ̂1 = m̂ , (6.43)

breaking conformal invariance by explicitly introducing a coupling between the right- and the left-
mover sectors. The resulting NLIE is identical to (3.28) with driving term ν(±)

(
R(s,±)

0 , α0 | θ
)
, where

we set
R(s,±)

0 = R+ 2τ I(s,∓)
s (R, τ) . (6.44)

For s < 0, instead, the two chiral sectors remain decoupled

δ(s′)
(±,∓)(θ, θ

′) = 0 , δ(s′)
(±,±)(θ, θ

′) = ±τ m̂
2
γ̂s′ e

±(θ−s′ θ′) , (s′ = −|s| < 0) , (6.45)

and, due to the reflection property I(s′,±)
s = I(s′,∓)

s′ , the corresponding NLIE is again (3.28) with driving
term ν(±)

(
R(s′,∓)

0 , α0 | θ
)
. In turn, the length redefinition (6.44) implies

I(s,±)

k (R, τ) = I(±)

k

(
R(s,±)

0

)
, (s > 0) , (6.46)

I(s′,±)

k (R, τ) = I(±)

k

(
R(s′,∓)

0

)
, (s′ = −s < 0) , (6.47)

which are solutions to the evolution equations (5.56), deduced at classical level. In appendix D.1 it is
shown that equations (5.56) indeed are contained in the more general equations (6.33).

Observation 45. Using the scaling property of the CFT charges (3.30), we can eliminate from (5.56)
the derivative w.r.t. R of the charges, obtaining further simplified expressions

∂τI
(s,±)

k = −
2k
(
R− 2τ (s− 1) I(s,±)

s

)
I(s,±)
s I(s,∓)

k

2τ
(
R− 2τ (s2 − 1) I(s,+)

s

)
I(s,−)
s +R

(
R+ 2τI(s,+)

s

) , (s > 0)

∂τI
(s′,±)

k = −
2k I(s′,±)

k I(s′,±)
s

R+ 2τ (s+ 1) I(s′,±)
s

, (s′ = −s < 0) . (6.48)

Notice that, setting k = s = 1 in the first equation of (6.48) we get

∂τI
(±)

1 =
−2 I(+)

1 I(−)

1

R+ 2τ
(
I(+)

1 + I(−)

1

) , (6.49)

which matches with the TT̄ result quoted in [78].

The next step is to explicitly solve the algebraic equations (6.46)-(6.47). Afterwards, we will consider
the s→ 0 limit starting from the massive case.

Deformations with s < 0
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Since the generic k−th charges of a CFT scale as1 R−k according to (3.30) and the corresponding
deformed charges I(s′,±)

k (R, τ) fulfil the same equation with R→ R(s′,±)

0 , then

I(s′,±)

k (R, τ) = I(s′,∓)

k′ (R, τ) =
Rk I(∓)

k′ (R)(
R(s′,±)

0

)k =
2π a(∓)

k′(
R(s′,±)

0

)k , (6.50)

where a(±)

k = a(∓)

k′ , k
′ = −k, s′ = −s, and R(s′,±)

0 is defined in (6.44).

In order to find the solution to (6.50) for generic k, one must first solve (6.50) for k = s (k′ = s′). In
this case, the solution can be reconstructed perturbatively as

I(s′,±)
s (R, τ) = I(s′,∓)

s′ (R, τ) =
∞∑
j=0

(−1)j

j + 1

(
j(1 + s) + (s− 1)

j

)
(2τ)j

(
2π a(±)

s

)j+1

Rj(1+s)+s
. (6.51)

This expression can be resummed for various values of s as

• s = −1 :

I
(−1,±)
1 (R, τ) =

R

4τ

−1 +

√
1 + 8τ

2π a(±)

1

R2

 . (6.52)

Both the classical (see the s′ = −s = −1 case in (5.43)) and quantum results suggest that the leading
perturbing operator corresponds to the Lorentz breaking operator typically appearing in effective
field theories for discrete lattice models [80].

• s = −2 :

I
(−2,±)
2 (R, τ) =

4R

6τ
sinh

[
1

3
arcsinh

(
3
√

3

2

(
2τ

2π a(±)

2

R3

)1/2
)]

. (6.53)

For generic spin s < 0 the result can bewritten in terms of a single generalised hypergeometric function:

I(s′,±)
s (R, τ) = I(s′,∓)

s′ (R, τ) =
sR

2τ (1 + s)

[
−1 + Fs

(
−2τ

(1 + s)1+s

ss
2π a(±)

s

R1+s

)]
, (6.54)

where Fs(x) is the same hypergeometric function defined in (5.40). The total momentum and energy
are

E(R) = I(s′,+)

1 (R, τ) + I(s′,−)

1 (R, τ) , P (R) = I(s′,+)

1 (R, τ)− I(s′,−)

1 (R, τ) , (6.55)

where I(s′,±)

1 (R, τ) are obtained by solving (6.50) with k′ = −k = −1 using (6.54).

Observation 46. Even spin charges do not, in general, correspond to local conserved currents in the
sine-Gordon model. They can occasionally emerge from the set of non-local charges, at specific
rational values of β2. The results concerning the exact quantum spectrum can be smoothly deformed
in s, therefore they formally also describe deformations of the sine-Gordon model by non-local

1Separately, the NLIEs in (3.28), with generic parameters β and α(±)

0 can be also associated to the quantum KdV theory,
as extensively discussed in [52,79]. The coefficients ak for k = 3, 5 can be recovered from [52].
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currents [81]. Moreover, there are many integrable systems with extended symmetries where even
spin charges appear. The sign of the corresponding eigenvalues depends on the internal flavor of the
specific soliton configuration considered. Since the flow equations (6.36) (with (6.38)), should
properly describe the evolution of the spectrum driven by analogous deformations in a very wide class
of systems, perturbations by currents with s even, may lead to interesting quantum gravity toy models
where the effective sign of the perturbing parameter τ depends on the specific state under
consideration.

Deformations with s > 0

In the case s > 0, the left- and right-mover sectors are now coupled and the solution to the generalised
Burgers equations become equivalent to the set of equations

I(s,±)

k (R, τ) =
2π a(±)

k(
R+ 2τ I(s,∓)

s (R, τ)
)k . (6.56)

While, for models with P (s)

k = I(s,+)

k (R, τ) − I(s,−)

k (R, τ) = 0 the left- and right-mover sectors are
completely symmetric and the relations (6.56) formally reduce to the equations (6.50), for P (s)

k 6= 0 the
solution to (6.56) for k = s are

I(s,±)
s (R, τ) =

2π a(±)
s

Rs

[
1 + 2π a(∓)

s

∞∑
k=1

k−1∑
l=0

1

l + 1

(
(k − l)s+ l − 1

l

)

×

(
(l + 1)s+ k − l − 1

k − l

)(
2π a(±)

s

)l (
2π a(∓)

s

)k−l−1 (−1)k(2τ)k

R(s+1)k

]
. (6.57)

We were not able to find a general compact expression of (6.57), except for the already known (s = 1)
TT̄-related result

E (1)

1 (R, τ) =
R

2τ

−1 +

√√√√1 +
4τ

R

(
2π
(
a(+)

1 + a(−)

1

)
R

)
+

4τ2

R2

(
2π
(
a(+)

1 − a(−)

1

)
R

)2
 ,

P (1)

1 (R) =
2π
(
a(+)

1 − a(−)

1

)
R

. (6.58)

Deformations with s→ 0

As anticipated, we shall perform the limit s → 0 starting from the massive case. Sending γs → 0 and
simoultaneously rescaling τ , we can recast the driving term in the form

ν(R,α0 | θ) = 2πiα0 − imR sinh(θ) + iτG cosh(θ) , (6.59)

where
G = −1

2

(∫
C1

dθ

2πi
log
(

1 + e−fν(θ)
)
−
∫
C2

dθ

2πi
log
(

1 + efν(θ)
))

. (6.60)
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Figure 6.1: The formation of the plateau in g(θ) = − 1
2π Im

[
log
(

1 + e−fν(θ+i0+)
)]

as m → 0 at
β2 = 1/2, α0 = 1/6. For this choice of the parameters, the height of the plateau of g(θ) is 1/3.

Notice that, in the m→ 0 limit, the leading contribution to G in (3.31) is coming from a large plateau
of the integrand g(θ) (see figure 6.1) of height

− ifν(θ) ∼
m→0

4πα0β
2 , (6.61)

and width growing as ∼ 2 log(mR/2). In conclusion, we have

G ∼
m→0

log

(
mR

2

)
2α0β

2 . (6.62)

The emergence of the plateau can be deduced analytically from the NLIE (see for example [6] for
a related discussion in the TBA context). Therefore, at fixed finite R, after a further rescaling τ →
τπ/ log(mR/2), as m tends to zero, we obtain for the driving terms in the NLIEs

ν(±) = ν(±)(R(±)

0 , α0 | θ) = 2πiα0 ∓ i
m̂

2
e±θR(±)

0 , (6.63)

with
R(±)

0 = R∓ τQ0 , Q0 = 2πα0β
2 . (6.64)

Thus, perturbing the theory with the phase factor (6.22) with s = 0 is equivalent, in an appropriate
scaling limit, to a constant shift of the volume R. At fixed normalisation of the deformation parameter
τ , the shift turns out to be directly proportional to the topological charge Q0. We see, from (6.63) that
the left- and right-mover sectors remain decoupled also at τ 6= 0. However, starting directly from the
CFT limit, one can argue that there exist less trivial ways to couple the two sectors. The most general
variant involves four different coupling constants {τ (a|b)}

(a,b)∈{+,−}

R(±)

0 = R∓
(
τ (±|+)Q(+)

0 + τ (±|−)Q(−)

0

)
, Q(±)

0 = 2πα(±)

0 β2 . (6.65)

Notice that in (6.65) we allowed the possibility for two different topological charges Q(±)

0 , associated to
the U(1)R×U(1)L symmetry of the c = 1 free (compactified) boson model, corresponding to the CFT
limit of the sine-Gordon theory.



6.4 Further deformations involving the topological charge 105

6.4 Further deformations involving the topological charge

A further, natural extension of the quantum models studied in section 6.3, corresponds to scattering
phase factors of the form

δ(s̃,s)(θ, θ′) = τ γs̃γs sinh(s̃ θ − s θ′) . (6.66)

Deforming the kernel according to (6.25) and using (6.66) instead of (6.22), the driving term of (3.15)
becomes

ν = ν(R,α0 | θ)− iτ s̃ γs̃
(
es̃ θI

(s̃,s,−)
s (R, τ)− e−s̃ θI(s̃,s,+)

s (R, τ)
)
, (6.67)

where I(s̃,s,±)
k (R, τ) are defined through (3.30) and (3.31) with the deformed driving term (6.67). The

cases with s̃ = ±1, have been extensively discussed in the previous sections, they all correspond to
gravity-like theories, where the effect of the perturbation can be re-absorbed into a redefinition of the
volumeR plus a shift in the rapidity θ, according to (6.26). From equation (6.67), we see that for generic
values of s̃ 6= ±1 it is no longer possible to re-absorb the perturbation in the same fashion. However,
an interesting possibility is recovered in the scaling limit {s̃, γs̃,m} → {0, 0, 0}, such that the product
s̃γs̃ remains finite. In the following we shall set s̃γs̃ = 2π. This situation corresponds to the standard
massless limit where, in the original (τ = 0) NLIE, the right- (+) and the left-mover (−) sectors are
completely decoupled, while a residual interaction between the two sectors is still present at τ 6= 0. In
fact, the deformed versions of fν(±)(θ) fulfil (3.28) with

ν(±) = ν(±)
(
R,α(±)

0 − α(s,±) | θ
)
, α(s,±) =

(
τ (±)I(s,−)

s (R,~τ)− τ (∓)I(s,+)
s (R,~τ)

)
, (6.68)

where the charges I(s,±)

k are defined through (3.31) with driving term (6.68), and {τ (−), τ (+)} = ~τ are
two coupling parameters defined as

τ (±) = τe±σ , ±σ = lim
θ→±∞
s̃→0+

s̃ θ . (6.69)

Therefore, the contributions of the non-trivial interaction can be formally re-absorbed in a redefinition
of the vacuum parameters α(±)

0 . In turn, this affects the value of the effective central charges as

c(s,±) = c(±)

0 + 24β2(α(±)

0 )2 − 24β2
(
(α(±)

0 )2 − α(s,±)
)2

, c(±)

0 = c− 24β2(α(±)

0 )2 . (6.70)

Considering the formal identification Q(±)

0 = 2πα(±)

0 β2 made in (6.64), the redefinition (6.68)
corresponds to the following dressing of the topological charges

Q(s,±)(R,~τ) = Q(±)

0 − κ

4π

(
τ (−)I(s,−)

s (R,~τ)− τ (+)I(s,+)
s (R,~τ)

)
, (6.71)

with
κ = 8π2β2 . (6.72)

Let us focus on the s = 1 case. The equations for the spectrum are

I(±)

1 (R,~τ) =
2π

R

(
n(±) − c(±)

24

)
,
(
I(±)

1 = I(1,±)

1 , c(±) = c(1,±)
)
, (6.73)
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which can be solved exactly for I(±)

1 (R,~τ) at any values of the parameters τ (±). However, since the
general analytic expressions for I(±)

1 are very cumbersome, we will restrict the discussion to specific
scaling limits:

Case τ (+) = τ (−) = τ

I(+)

1 (R, τ)− I(−)

1 (R, τ) = P (R) =
2π

R

(
h(+) − h(−)

)
, (6.74)

I(+)

1 (R, τ) = I(+)

1 (R) + τ
Q(±)

0

R
P (R) + τ2 κ

8πR
P 2(R) , (6.75)

with h(±) = h(±)

0 + n(±) and (6.71) becomes

Q(±)(R, τ) = Q(±)

0 + τ
κ

4π
P (R) . (6.76)

Surprisingly, with the replacement

I(±)

1 (R, τ) =
2π

R

(
h(±)(τ)− c

24

)
, (6.77)

equations (6.74) and (6.75) lead to exact expressions for the conformal dimensions h(±)(τ), which match
precisely the form of the (left) conformal dimension in the JT̄ model, as recently shown in [31]:

h(±)(τ) = h(±) + τ
Q(±)

0

2π
P + τ2 κ

16π2
P 2 . (6.78)

As we will shortly see, this is the first instance among many that link the phase factor (6.66) with
s = 1, in the scaling limit (6.69) to the quantum JT̄ model.

Case τ (+) = 0 | τ (−) = τ

the two sectors (±) are completely decoupled

I(±)

1 (R, τ) = I(±)

1 (R)± τ Q
(±)

0

R
I(±)

1 (R, τ) + τ2 κ

8πR

(
I(±)

1 (R, τ)
)2

, (6.79)

Q(±)(R, τ) = Q(±)

0 ± τ κ
4π

I(±)

1 (R, τ) , (6.80)

and the solutions to (6.79) are

I(±)

1 (R, τ) =
4π

κτ2

(
R∓ τQ(±)

0 −
√(

R∓ τQ(±)

0

)2 − τ2κ
(
h(±) − c

24

))
. (6.81)

We notice that (6.79) can be rewritten as

I(±)

1 (R, τ) =
2π
(
h(±) − c

24

)
R− τ

(
±Q(±)

0 + τ κ
8π I

(±)

1 (R, τ)
) , (6.82)

which suggests that, in this limit, the perturbation has a dual geometric description, since it can be
interpreted as a redefinition of the length R. The dual deformation of the NLIE corresponds to a
deformed version of fν(±)(θ) which fulfils (3.28) with

ν(±) = ν(±)
(
R(±)

0 , α0 θ
)
, R(±)

0 = R− τ
(
±Q(±)

0 + τ
κ

8π
I(±)

1 (R, τ)
)
. (6.83)
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Expressions (6.81) are trivially solutions of two decoupled Burgers-like equations

∂τI
(±)

1 (R, τ)±Q(±)(R, τ) ∂RI
(±)

1 (R, τ) = 0 . (6.84)

Therefore, I(±)

1 (R, τ) fulfils a Burgers-type equation analogous to (2.47), where Q(±)(R, τ) play the
role of velocities.

6.5 The quantum JT̄ model

Formula (6.81) strongly resembles the expression of the right-movers energy of a JT̄−deformed CFT
derived in [29,30]. However, as we shall show below, the JT̄ deformation originates from an asymmetry
in the (±) sectors. For s = 1, a possible asymmetric generalisation of (6.68) with four free parameters
~τ = {τ (a|b)}

(a,b)∈{+,−} is

ν(±) = ν(±)
(
R,α(±)

0 − α(±)(~τ) | θ
)
,

α(±)(~τ) =
(
τ (±|−)I(−)

s (R,~τ)− τ (∓|+)I(+)
s (R,~τ)

)
, (6.85)

where we also allowed for the possibility of having two different initial values of the twist parameters
α(±)

0 in the two sectors. From (6.85), the JT̄ model is recovered with the choice

τ (±|−) = 0 , τ (∓|+) = τ , α(+)

0 = α(−)

0 = α0 . (6.86)

Correspondingly, relations (6.85) become

ν(±) = ν(JT̄,±)
(
R,α0 − α(JT̄,±) θ

)
, α(JT̄,±) = −τ I(JT̄,+)(R, τ) . (6.87)

Observation 47. Alternatively, the (+) sector can be equivalently described with a redefinition of the
length R as

ν(+) = ν(+)
(
RJT̄, α0 θ

)
, RJT̄ = R− τ

(
Q0 + τ

κ

8π
I(JT̄,+)(R, τ)

)
. (6.88)

The right-moving solution in (6.81) and the topological charge become

I(JT̄,+)(R, τ) =
4π

κτ2

(
R− τQ0 −

√
(R− τQ0)2 − τ2κ

(
h(+) − c

24

))
, (6.89)

I(JT̄,+)(R, τ)− I(JT̄,−)(R, τ) = P (R) =
2π

R

(
h(+) − h(−)

)
, (6.90)

Q(+)(R, τ) = Q(JT̄,+)(R, τ) = Q0 + τ
κ

4π
I(JT̄,+)(R, τ) . (6.91)

Therefore, Q0 = 2πα0β
2 and κ = 8π2β2 have been again consistently identified with the topological

charge and the chiral anomaly, respectively. The results described here are in full agreement with [30]
and the classical results presented in section 5.3.
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6.6 A simple example involving a pair of scattering phase factors

As already discussed, in principle one may introduce several scattering phase factors to deform the
NLIEs. In this section we will consider a particular combination of s→ 0 and s̃→ 0 scattering factors
which allows us to match with the classical results (5.111)-(5.112). We consider a double deformation
made of a length redefinition (6.65) with τ (±|+) = ∓τ and τ (±|−) = ±τ , together with a shift of the
twist parameter (6.85) with τ (∓|+) = +τ and τ (±|−) = +τ . The corresponding deformed driving term
is then

ν(±) = ν(±)
(
R(±)

0 , α(±)

0 − α(±)(R, τ) θ
)
, (6.92)

with

α(±)(R, τ) = −τ P (R) ,

R(±)

0 = R+ τ
(
Q(+)(R, τ)−Q(−)(R, τ)

)
= R+ τ

(
Q(+)

0 −Q(−)

0

)
, (6.93)

where in the last equality we used the fact thatQ(±)(R, τ) = 2π β2
(
α(±)

0 − α(±)(R, τ)
)
. Since the central

charges are affected by the deformation as

c(±)(R, τ) = c+ 24β2
(
α(±)

0

)2 − 24β2
(
α(±)

0 − α(±)(R, τ)
)2

, (6.94)

one finds

I(±)

1 (R, τ) =
2π

R(±)

0

(
n(±) − c(±)(R, τ)

24

)
=
RI(±)

1 (R) + τ Q(±)

0 P (R) + κ
8π τ

2 P 2(R)

R+ τ
(
Q(+)

0 −Q(−)

0

) , (6.95)

I(+)

1 (R, τ)− I(−)

1 (R, τ) = P (R) , (6.96)

Q(±)(R, τ) = Q(±)

0 + τ
κ

4π
P (R) , (6.97)

which match exactly with the results (5.111)-(5.112) obtained at the classical level for the corresponding
densities.



Chapter 7

Conclusions and outlook

The purpose of this thesis is to review some of the recent results concerning irrelevant deformations of
2−dimensional QFTs, including the publications [24, 43, 46] by the present author. In the first part of
the work, we described the content of [24,46], where a thorough investigation of the effect of the TT̄
deformation on the classical integrable setup was performed. The second part of the thesis contains,
instead, the results of [43], in which an infinite family of irrelevant deformations – including TT̄ and
JT̄ as particular representatives – was introduced and studied both at classical and quantum level.
Many new interesting physical phenomena have emerged from the study of this relatively new
research field. However, there are still important long-standing open problems associated with
irrelevant perturbations which certainly deserve further investigation.

• integrable structure: from the point of view of pure integrability, these exactly solvable deformations
furnish a large variety of integrable models which would be interesting to address using rigorous
methods such as Hirota, Bäcklund and Inverse Scattering. For example, they would enable a systematic
analysis of multi-soliton solutions.

• generalised CDD deformations: As largely discussed in this dissertation, irrelevant deformations
of IQFTs are related to the inclusion of phase factors in the S−matrix of the original theory. In
particular, the most general family of CDD factors is given by (1.21), which can bemore conveniently
rewritten in the representation [1]

f(θ) =
N∏
p=1

Bp − i sinh(θ)

Bp + i sinh(θ)
, (7.1)

where ∪N {Bp}Np=1 constitute a set of parameters alternative to {τ (s)} in (1.21). It would be important
to perform a systematic numerical exploration of the finite-size spectrum of a simple model deformed
through (7.1), to understand how the UV behaviour is affected.

• Correlation functions: Most of the exact quantum results obtained in this field concern the
spectrum. It would be nice to continue the study, along the lines of [19], of correlation functions of
local operators which contain off-shell information on the theory. These studies might shed some
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light on the properties of these models in the deep UV regime and clarify issues related to
non-locality and entanglement entropy [82]. An important step in this direction was made in [19],
where exact evolution equations for correlation functions were proposed. It would be nice to check
the correctness of the proposal of [19] using, for example, a perturbative approach.

• Extension to higher dimensions: The TT̄ deformation and its higher-spin variants are all defined
in 2−dimensions. It is natural to look for consistent generalisations in higher dimensions which
retain some of the special features displayed by the TT̄ operator. For example, the factorisation
property and a universal flow equation for the finite-size spectrum. An interesting proposal, based
on holography-related arguments, appeared in [83]. Starting from a completely different
perspective, the authors of [24] noted that the classical Maxwell Born-Infeld theory of non-linear
electrodynamics in 4 dimensions, arises as a deformation of the Maxwell theory (without matter
fields) generated by the square root of the determinant of the Hilbert stress-energy tensor (see
appendix E.1). It is currently unclear whether or not it exists a connection between the ideas of [83]
and [24]. Although the observation made in [24] involves a specific model of non-linear field theory
which enjoys unique features (see, for example [84] and references therein), it would be beautiful to
find an exact flow equation for its finite-volume spectrum, or at least for the Casimir energy.



Appendix A

A.1 Space-time conventions

Throughout the thesis, we deal with classical field theories defined on a 2−dimensional flat Euclidean
space-time. Depending on the situation, we parametrise it using cartesian or complex coordinates.
We consider the two sets of cartesian coordinates x = (x1, x2) and y = (y1, y2) related to the sets of
complex coordinates z = (z, z̄) and w = (w, w̄), respectively, throughz = x1 + ix2

z̄ = x1 − ix2
,

w = y1 + i y2

w̄ = y1 − i y2
, (A.1)

The line element ds2 in cartesian and complex coordinates reads

ds2 = (dx1)2 + (dx2)2 = dz dz̄ , ds2 = (dy1)2 + (dy2)2 = dw dw̄ , (A.2)

since the basis of the cotangent space dz = (dz, dz̄), dw = (dw, dw̄), dx = (dx1, dx2) and dy =

(dy1, dy2) transform as dz = dx1 + i dx2

dz̄ = dx1 − i dx2
,

dw = dy1 + i dy2

dw̄ = dy1 − i dy2
. (A.3)

Instead, the basis of the tangent space ∂z = (∂z, ∂z̄), ∂w = (∂w, ∂w̄), ∂x = (∂x1 , ∂x2) and ∂y = (∂y1 , ∂y2)

transform as ∂z = 1
2 (∂x1 − i ∂x2)

∂z̄ = 1
2 (∂x1 + i ∂x2)

,

∂w = 1
2

(
∂y1 − i ∂y2

)
∂w̄ = 1

2

(
∂y1 + i ∂y2

) . (A.4)

Eventually, we will move from Euclidean to Minkowski signature by means of a Wick rotation

x2 ≡ −i tx , y2 ≡ −i ty , (t ∈ R) , (A.5)

where xM = (x, tx) , yM = (y, ty) , (x ≡ x1 , y ≡ y1), are the cartesian coordinates in the 2−dimensional
Minkowski space-time. In some cases, we will switch from cartesian xM = (x, tx) , yM = (y, ty) to light-
cone coordinates x̃M = (x+, x−) , ỹM = (y+, y−) respectively, according to

x± = x± tx , y± = y ± ty , (A.6)

which are obtained from (A.1) by applying the Wick rotation (A.5).
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A.2 Local conserved currents

Local translational and rotational symmetry of the theory reflects, according to the Noether’s theorem,
into the existence of a conserved current, i.e. the stress-energy tensor T ∈ F . In IFTs there exists
an infinite set of local conserved currents {Ts}s∈Z ∈ F , which do not descend from a Noetherian
symmetry. The symbol s is the so-called rank or Lorentz spin and, in general, it takes values in Z. Local
currents are generically polynomials in the field and its derivatives and |s| counts the total number of
∂z derivatives minus the total number of ∂z̄ derivatives. Notice that the stress-energy tensor represents
the rank−1 current of the hierarchy, i.e. T ≡ T1. Formally, Ts is a rank−2 tensor and its components
in the set of coordinates x and z are related through

(Ts)11 = (Ts)zz + (Ts)z̄z̄ + (Ts)zz̄ + (Ts)z̄z ,

(Ts)12 = i
[
(Ts)zz − (Ts)z̄z̄ − (Ts)zz̄ + (Ts)z̄z

]
,

(Ts)21 = i
[
(Ts)zz − (Ts)z̄z̄ + (Ts)zz̄ − (Ts)z̄z

]
,

(Ts)22 = − (Ts)zz − (Ts)z̄z̄ + (Ts)zz̄ + (Ts)z̄z , (A.7)

where (Ts)xµxν = (Ts)µν , ((µ, ν) ∈ {1, 2}), and {(Ts)zz , (Ts)z̄z̄ , (Ts)zz̄ , (Ts)z̄z} denote the chiral
components, which are normalized according to the standard CFT convention [85]

Ts+1 = −2π (Ts)zz , T̄s+1 = −2π (Ts)z̄z̄ , Θs−1 = 2π (Ts)zz̄ , Θ̄s−1 = 2π (Ts)z̄z . (A.8)

In line with the conventions of [24, 43], throughout the text we mainly use the rescaled chiral
components

Ts+1 = − (Ts)zz =
Ts+1

2π
, T̄s+1 = − (Ts)z̄z̄ =

T̄s+1

2π
,

Θs−1 = (Ts)zz̄ =
Θs−1

2π
, Θ̄s−1 = (Ts)z̄z =

Θ̄s−1

2π
. (A.9)

As already mentioned at the beginning of this appendix, s can be both a positive and a negative integer.
However, assuming that the theory is invariant under parity transformation, the currents are symmetric
under the exchange s ↔ −s. For this reason, we split the set {s} = {s′} ∪ {0} ∪ {s} into a positive
({s}) and a negative subset ({s′}) using the notation

s = |s| > 0 , s′ = −|s| < 0 , (∀ s 6= 0) . (A.10)

The case s = 0 is quite special and therefore it is considered separately. Starting from the level−s
rescaled chiral components {Ts+1,Θs−1}, the corresponding level−s′ components {Ts′+1,Θs′−1} are
obtained through the following reflection

Ts′+1 = Θ̄s−1 , Θs′−1 = T̄s+1 . (A.11)

The conservation of Ts is represented by the continuity equations, namely

∂µT
µν
s (x) = 0 , (ν = 1, 2) , (A.12)
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in cartesian coordinates x with ∂µ = ∂
∂xµ , and

∂z̄Ts+1(z) = ∂zΘs−1(z) , ∂zT̄s+1(z) = ∂z̄Θ̄s−1(z) , (A.13)

in complex coordinates z, using the rescaled components (A.9). From (A.12), it follows that the
quantities

Qµs =

∫
C
T 2µ
s (x) dx1 , (µ = 1, 2) , (A.14)

do not depend on x2 if we assume that T 1µ
s (x) vanish at the boundary of the domain C ⊆ R. Since Qµs

do not evolve in time, we refer to them as conserved charges. Using the standard convention for Ts in
cartesian coordinates, we have

T 21
s = iPs , T 22

s = −Hs , (A.15)

whereHs(x) and Ps(x) are the level−s Hamiltonian and momentum density, respectively. In terms of
the rescaled chiral components, they are written as

Ps = Is − Īs , Hs = Is + Īs , (A.16)

where we defined
Is = − (Ts+1 + Θs−1) , Īs = −

(
T̄s+1 + Θ̄s−1

)
. (A.17)

Therefore

Q1
s = i

∫
C
Ps(x) dx1 = iPs = i

(
Is − Īs

)
, Q2

s = −
∫
C
Hs(x) dx1 = −Es = −

(
Is + Īs

)
, (A.18)

where Es and Ps are the level−s total energy and momentum, integrated over the domain C, and
analogously

Is =

∫
C
Is(x) dx1 , Īs =

∫
C
Īs(x) dx1 . (A.19)



Appendix B

B.1 Partition function of a TT̄−deformed Yang-Mills theory

In this appendix we review a result of [46], in which the partition function and heat kernel for a
TT̄−deformed Yang-Mills theory were conjectured. In support of the conjecture, several consistency
checks are provided.

The partition function of a Yang-Mills theory with generic gauge group G on a 2−dimensional
orientable manifoldM with genus p and metric gµν is [86–89]

ZM(A) =

∫
DAµ e

− 1
4g̃2

∫
M dx2√gTr[FaµνF

µν
a ]

=
∑
R
d2−2p
R e−

g̃2

2
AC2(R) , (B.1)

where

• g̃ is the Yang-Mills coupling constant;

• A is the total area ofM;

• the index R in the sum
∑
R runs over all the equivalence classes of irreducible representations R of

the gauge group G;

• dR is the dimension of R;

• C2(R) is the quadratic Casimir in the representation R.

The generalization of (B.1) to a manifold with genus p and n boundaries corresponds to the so-called
heat kernel:

ZM(g1, . . . , gn|A) =
∑
R
d2−2p−n
R χR(g1) . . . χR(gn)e−

g̃2

2
AC2(R) , (B.2)

where gi are the Wilson loops evaluated along the boundaries, and χR denotes the Weyl character of
the representation R.

According to (2.138), it is natural to conjecture that the TT̄ contribution to the partition function and
heat kernel consists in a simple redefinition of the eigenvalues of the quadratic Casimir operator

C2(R)→ C2(R, τ) =
C2(R)

1− τ g̃2

2 C2(R)
. (B.3)
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Since (B.2) depends only on the surface area A of the manifold, the deformed version
ZM(g1, . . . , gn; τ |A) fulfils

−∂τZM(g1, . . . , gn; τ |A) = A∂2
AZ
M(g1, . . . , gn; τ |A) . (B.4)

With the prescription (B.3), all the diffusion-type relations introduced in [18] (see also [20,23]) for the
partition functions on various geometries are automatically fulfilled:

• Cylinder: The cylinder partition function ZCyl(g1, g2|A) corresponds to the n = 2, p = 0 case of
(B.2). Setting A = RL, and implementing the prescription (B.3), ZCyl(g1, g2; τ |A) trivially satisfies
Cardy’s equation:

− ∂τZCyl(g1, g2; τ |A) = (∂L − 1/L)∂RZ
Cyl(g1, g2; τ |A) . (B.5)

• Torus: The partition function on the torus, ZT(A) corresponds to the n = 0, p = 1 case of (B.2) with
A = L1L

′
2 − L2L

′
1, while the consistency equation for the deformed partition function is:

− ∂τZT(τ |A) =

[
∂L1∂L′2 − ∂L2∂L′1 −

1

A

(
L1∂L1 + L′1∂L′1 + L2∂L2 + L′2∂L′2

)]
ZT(τ |A) . (B.6)

• Disk and Cone: In the case of a disk, or more in general of a cone with opening angle X , the
deformed partition function ZCone(g1; τ |A) corresponding to n = 1, p = 0 and area A = 1

2 XR
2

satisfies
− ∂τZCone(g1; τ |A) =

1

R
X∂X

(
1

X
∂RZ

Cone(g1; τ |A)

)
. (B.7)

The modification (B.3) in (B.2) is expected to hold in general for any value of p and n, possibly leading
to a consistent deformation of the whole Yang-Mills setup. The authors of [90] investigated thoroughly
the partition function of TT̄−deformed Yang-Mills on a sphere, showing that the Douglas-Kazakov
phase transition still persists for a range of values of τ .



Appendix C

C.1 Short review on surfaces embedded in R3

In this appendix we briefly review the basics of the classical theory of surfaces embedded in R3

following the standard constructive approach which can be found, for example, in [91].

Let us consider a surface Σ and the vector-valued function

r : R2 → R3 : z = (z1, z2) ∈ R2 → r(z) =
(
r1(z), r2(z), r3(z)

)
∈ R3 , (C.1)

which defines the embedding in R3. The vectors

rµ =
∂

∂zµ
r , (µ = 1, 2) , (C.2)

span the tangent plane TPΣ to the surface at any non-critical point P ∈ Σ.1 For simplicity, we disregard
the presence of critical points, hence we assume that r1(z) 6= r2(z) , ∀ z ∈ dom(r). The basis of the
tangent plane can be promoted to a basis σ of R3 by adding to (C.2) the unit normal vector n

σ = {r1, r2,n} , n =
r1 × r2

|r1 × r2|
. (C.3)

The surface Σ inherits a metric structure from the ambient space R3 and its line element, also known as
first fundamental quadratic form, is

I ≡ ds2 = dr · dr = gµν dz
µdzν , gµν = rµ · rν , (C.4)

and the tensor gµν is called first fundamental tensor or metric tensor of the surface Σ. Then, we define the
so-called second fundamental quadratic form as

II = −dr · dn = dµν dz
µdzν , dµν =

(
∂

∂zµ
rν

)
· n , (C.5)

where the tensor dµν describes the projection of the vectors ∂
∂zµ rν on the normal direction at each

point P ∈ Σ and measures how much the surface curves away from the tangent space in an
infinitesimal interval around P . According to the classical theorem by Bonnet [63], these two objects

1We say that Pc ∈ Σ is a critical point if r1(zc) = r2(zc), where zc is such that r(zc) = Pc.
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uniquely define, up to isometries, the embedding of a surface in a flat 3−dimensional space.

From gµν and dµν , we define a new object

sνµ = dµρ g
ρν , gµρ g

ρν = δνµ , (C.6)

known as shape or Weingarten operator, whose eigenvalues κ1 and κ2 are the principal curvatures of the
surface Σ. The latter quantities are geometric invariants, meaning that they do not change under
reparametrisations of the surface. Usually, κ1 and κ2 are combined into the Gauss and mean curvatures

K = κ1κ2 = det
[
sνµ
]
, H =

κ1 + κ2

2
=

1

2
sµµ . (C.7)

The tensors gµν and dµν determine the dynamics of the frame σ along the surface, which is encoded in
the Gauss equations

∂

∂zµ
rν = Γρµν rρ + dµν n , (C.8)

and the Weingarten equations
∂

∂zµ
n = sνµ rν , (C.9)

where we introduced the Christo�el symbols

Γρµν =
1

2
gρσ

(
∂

∂zν
gµσ +

∂

∂zµ
gνσ −

∂

∂zσ
gµν

)
. (C.10)

Observe that the Gauss-Weingarten equations can be recast into the following linear system

∂

∂zµ
σ = Uµ σ , (C.11)

with1

U1 =

 Γ1
11 Γ2

11 d11

Γ1
12 Γ2

12 d12

−s1
1 −s2

1 0

 , U2 =

 Γ1
12 Γ2

12 d12

Γ1
22 Γ2

22 d22

−s1
2 −s2

2 0

 . (C.12)

These structural equations are subject to a set of compatibility conditions calledGauss-Mainardi-Codazzi
(GMC) system, which takes the form of a ZCR for the matrices {Uµ}2µ=1

∂2U1 − ∂1U2 + [U1, U2] = 0 . (C.13)

However, notice that the matrices {Uµ}2µ=1 do not form a Lax pair in the usual sense, since no spectral
parameter is present and they do not belong to a semi-simple Lie algebra. Working out this general
construction for the sine-Gordon model, we will show how to build a proper Lax pair out of {Uµ}2µ=1.

1Note that Γρµν = Γρνµ and dµν = dνµ.
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As a first example, let us consider a pseudo-spherical surface, i.e. the Gauss curvature is K = −µ2 <

0 , (µ ∈ R). In this case, one can choose as parametric curves the asymptotic lines, for which d11 =

d22 = 0. Setting ∆2 = det [gµν ], we see that

K = −d
2
12

∆2
. (C.14)

After some manipulations [91], it can be shown that in this case the GMC system implies

Γ1
12 = Γ2

12 = 0 =⇒ ∂

∂z2
(g11) =

∂

∂z1
(g22) = 0 . (C.15)

Defining the angle ω between the parametric lines as

cosω =
g12√
g11g22

, sinω =
∆

√
g11g22

, (C.16)

we have the following expression for the fundamental forms

I = g11

(
dz1
)2

+ 2
√
g11g22 cosω dz1dz2 + g22

(
dz2
)2

, II = 2µ
√
g11g22 sinω dz1dz2 . (C.17)

Now, given the (anti-)holomorphicity of g11 and g22, we can define the rescaled variables z′µ =
√
gµµ z

µ

(no summation over repeated indices here) in terms of which one has1

I =
(
dz′1

)2 − 2 cosω dz′1dz′2 +
(
dz′2

)2
, II = 2µ sinω dz′1dz′2 . (C.18)

It is possible to show that the GMC system (C.13) reduces to the sine-Gordon equation

∂

∂z′1
∂

∂z′2
ω = µ2 sinω . (C.19)

Let us now consider the matrices {Uµ}2µ=1

U1 =

 ω1 cotω −ω1 cscω 0

0 0 µ sinω

µ cotω −µ cscω 0

 , U2 =

 0 0 µ sinω

−ω2 cscω ω2 cotω 0

−µ cscω µ cotω 0

 , (C.20)

where ωµ = ∂
∂zµω. As already mentioned, the matrices (C.20) do not form a Lax pair since they do

not belong to a semi-simple Lie algebra – in this case we would expect su (2) due to the appearence of
the sine-Gordon EoMs – and do not contain a spectral parameter. We can fix these apparent problems
with the following considerations. First we notice that the triple σ = {r1, r2,n} is not orthonormal.
However, the rotation

σ −→ σ̃ = Mσ , M =

 1 0 0

− cotω cscω 0

0 0 1

 , (C.21)

1This corresponds to a parametrisation of the surface by arc-length along the asymptotic lines.
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which corresponds to a gauge transformation on the matrices {Uµ}2µ=1

Uµ −→ Ũ = (∂µM)M−1 +MUµM
−1 , (C.22)

leaves the compatibility equation – the sine-Gordon equation – invariant and maps (C.20) into

Ũ1 =

 0 −ω1 0

ω1 0 µ

0 −µ 0

 , Ũ2 =

 0 0 µ sinω

0 0 −µ cosω

−µ sinω µ cosω 0

 , (C.23)

which belong to the su (2) algebra. Finally, the spectral parameter can be recovered by noticing that
the sine-Gordon equation is invariant under the following transformation

(
z′1, z′2, µ

)
=

(
αz̃1, βz̃2,

1√
αβ

m

)
, (∀α, β ∈ C) . (C.24)

Choosing α =
√

2m , β =
√

2m
λ2 and writing ω = βφ, we obtain

I = 2m2

((
dz̃1
)2 − 2

λ2
cos (βφ) dz̃1dz̃2 +

1

λ4

(
dz̃2
)2)

, II = 2
√

2
m2

λ
sin (βφ) dz̃1dz̃2 , (C.25)

which coincide with the quadratic forms (4.55)-(4.56).

Finally, as another interesting example of integrablemodel associated to embedded surfaces, let us briefly
discuss a surface with constant mean curvature. In this case one can choose conformal coordinates, in
which the fundamental forms simplify to

I =
2

H2
eωdz1dz2 , II =

1

H

[
A1

(
dz1
)2

+ 2eωdz1dz2 +A2

(
dz2
)2]

. (C.26)

Some simple computations show that the GCM equations are equivalent to the system

∂

∂z1

∂

∂z2
ω = eω −A1A2 e

−ω ,
∂

∂z2
A1 =

∂

∂z1
A2 = 0 , (C.27)

which is known as modified sinh-Gordon equation. Its Gauss curvature is

K = H2
(
1−A1A2 e

−2ω
)
. (C.28)

Rescaling the field as ω → ω+ 2 logH , the functions {Ai}2i=1 as Ai → HAi and sending H → 0, yields
a minimal surface and reduces the GMC system to the Liouville equation

∂

∂z1

∂

∂z2
ω = Keω , K = −A1A2 e

−2ω . (C.29)

C.2 Computation of the fundamental quadratic forms from
sine-Gordon ZCR

While in appendix C.1 we presented the derivation of soliton equations starting from the basic
geometric data of some particular surface, here we follow the reverse path and explicitly show how to
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obtain the forms (4.55)-(4.56) starting from the sine-Gordon ZCR (4.53)-(4.54). First of all we need
to find a basis of su (2) w.r.t. the Killing form

(a, b)K = Tr [Ad(a)Ad(b)] ,
(
a, b ∈ su(2)

)
. (C.30)

In the adjoint representation one has ti = Ad
(
ui
)
, (i = 1, 2, 3), with

t1 =

 0 1 0

−1 0 0

0 0 0

 , t2 =

 0 0 −1

0 0 0

1 0 0

 , t3 =

 0 0 0

0 0 1

0 −1 0

 , (C.31)

and (
ti, tj

)
K

= −2δij . (C.32)

The orthonormal basis is easily found to be

ei =
i√
2
ui , (C.33)

and we see that for a pair of matrices A and B belonging to the 2−dimensional representation of su(2),
one has

(A,B)K = 4 Tr [AB] . (C.34)

To compute the metric tensor gµν we need the partial derivatives of r (4.50). One finds

∂r

∂zµ
= Φ−1 ∂

∂λ
(LµΦ)− Φ−1LµΦΦ−1 ∂

∂λ
Φ = Φ−1∂Lµ

∂λ
Φ . (C.35)

where in the first equality we used the linear system ∂µΦ = LµΦ, from which gµν results

gµν =

(
∂r

∂zµ
,
∂r

∂zν

)
K

= 4 Tr

[
∂r

∂zµ
∂r

∂zν

]
= 4 Tr

[
∂Lµ
∂λ

∂Lν
∂λ

]
. (C.36)

Inserting the expressions (4.53)-(4.54) we obtain

gµν = 2m2

(
1 − 1

λ2 cos (βφ)

− 1
λ2 cos (βφ) 1

λ4

)
µν

. (C.37)

To compute the second fundamental tensor dµν , instead, we need the second derivatives of r and the
unit normal vector. One finds

∂

∂zµ
∂

∂zν
r = Φ−1

(
∂

∂zν
∂Lµ
∂λ

+

[
∂Lµ
∂λ

, Lν

])
Φ . (C.38)

while the matrix version of the unit normal is

n =
3∑
i=1

nit
i =

1

2
√

2

[
∂r
∂z1 ,

∂r
∂z2

]√
det
[[

∂r
∂z1 ,

∂r
∂z2

]] . (C.39)

where

det

[[
∂r

∂z1
,
∂r

∂z2

]]
=

(
m2

2λ2
sin (βφ)

)2

. (C.40)



C.2 Computation of the fundamental quadratic forms from sine-Gordon ZCR 121

Putting all together, the second fundamental tensor results

dµν =

(
∂

∂zµ
∂

∂zν
r, n

)
K

=
1√
2

λ2

m2 sin (βφ)
Tr

[[
∂L1

∂λ
,
∂L2

∂λ

](
∂

∂zν
∂Lµ
∂λ

+

[
∂Lµ
∂λ

, Lν

])]
. (C.41)

and using (4.53)-(4.54) it explicitly reads

dµν =

√
2m2

λ
sin (βφ)

(
0 1

1 0

)
. (C.42)



Appendix D

D.1 Spectral flow equations in the CFT limit

In this appendix we prove that the general Burgers equations (6.33), which we report here for
convenience

∂τI
(s,±)

k (R, τ) +R′∂RI
(s,±)

k (R, τ) = ±kθ′0I
(s,±)

k (R, τ) , (D.1)

with R′ and θ′0 defined through (6.36), reduce to

∂τI
(s,±)

k (R, τ) = 2I(s,∓)
s (R, τ) ∂RI

(s,±)

k (R, τ) , (s > 0) , (D.2)

∂τI
(s′,±)

k′ (R, τ) = 2I(s′,±)

s′ (R, τ) ∂RI
(s′,±)

k′ (R, τ) , (s′ = −s < 0) , (D.3)

in the CFT limit.

Let us begin with the s < 0 case. From the implicit relation (6.47)

I(s′,±)

k′ (R, τ) = I(s′,±)

k′

(
R(s′,∓)

0

)
, (D.4)

using (6.44), we have

I(s′,±)

k′ (R, τ) =
2πak′(

R+ 2τI(s′,±)

s′ (R, τ)
)k . (D.5)

Differentiating (D.5) w.r.t. R for k′ = s′ (k = s), we first express I(s′,±)

s′ (R, τ) as a function of
∂RI

(s′,±)

s′ (R, τ) as

I(s′,±)

s′ (R, τ) = −
R∂RI

(s′,±)

s′ (R, τ)

2τs(1 + s) ∂RI
(s′,±)

s′ (R, τ)
. (D.6)

Then, differentiating again (D.5) w.r.t. R for generic k′ (k) and using (D.6), we express I(s′,±)

k′ (R, τ) as
a function of ∂RI(s′,±)

s′ (R, τ) and ∂RI(s′,±)

k′ (R, τ) as follows

I(s′,±)

k′ (R, τ) = − s
k

R ∂RI
(s′,±)

k′ (R, τ)

2τs(1 + s) ∂RI
(s′,±)

s′ (R, τ)
. (D.7)

Finally, using (D.7), it is a matter of simple algebraic manipulation to show that

−R′∂RI(s′,±)

k′ (R, τ) + k′θ′0I
(s′,±)

k′ (R, τ) = 2I(s′,±)

s′ (R, τ) ∂RI
(s′,±)

k′ (R, τ) , (D.8)
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which proves that (6.33) for k = k′ and s = s′ reduce to (D.3).

Considering the s > 0 case, from the implicit relation (6.46)

I(s,±)

k (R, τ) = I(s,±)

k

(
R(s,±)

0

)
, (D.9)

using (6.44), we have

I(s,±)

k (R, τ) =
2πak(

R+ 2τI(s,∓)
s (R, τ)

)k . (D.10)

Repeating the same procedure as in the s < 0 case, we express I(s,±)

k (R, τ) as a function of ∂RI(s,±)

k and
∂RI

(s,±)
s as follows

I(s,±)

k = − s
k

R ∂RI
(s,±)

k

(
2τs ∂RI

(s,±)
s − 2τ∂RI

(s,∓)

k + s
)

s2
(
1 + 2τ ∂RI

(s,+)
s + 2τ ∂RI

(s,−)
s

)
+ 4 (s2 − 1) τ2 ∂RI

(s,+)
s ∂RI

(s,−)
s

, (D.11)

Again, using (D.11), one can show that the following relation holds

−R′∂RI(s,±)

k (R, τ) + kθ′0I
(s,±)

k (R, τ) = 2I(s,∓)
s (R, τ) ∂RI

(s,±)

k (R, τ) , (D.12)

which proves that (6.33) for k = k and s = s reduce to (D.2).



Appendix E

E.1 Maxwell-Born-Infeld electrodynamics in 4−dimensions

Two-photon plane wave scattering in 4−dimensional Maxwell-Born-Infeld (MBI) electrodynamics
was considered by Schrödinger and others in pre-QED times (see, for example, [84] for a nice
historical review on the early period of non-linear electrodynamics theories). Later on, in [92, 93] it
was shown that the scattering of two plane waves in MBI electrodynamics can be mapped onto a
specific solution of the 2D bosonic Born-Infeld EoMs, the N = 2 model in equations (2.116). In
particular, it is extremely suggestive that the resulting phase-shift can be nicely interpreted as being
the classical analog of the TT̄-related scattering phase. Compare, for example, the results of [92, 93]
with the discussion about the classical origin of the time delay in [94].

Motivated by these observations, in [46] 4−dimensional MBI theory of electrodynamics was
investigated and interestingly it was shown that it shares a lot of common aspects with the
2−dimensional bosonic models studied in section 2.3. In particular, in this appendix we show that it
arises as a deformation of the 4−dimensional Maxwell theory induced by the square root of the
determinant of the Hilbert stress-energy tensor.

Consider the MBI Lagrangian in 4−dimensions minimally coupled to a generic background metric gµν
as

LMBI
g (x, τ) =

−
√
|det [gµν ] |+

√
det
[
gµν +

√
2τFµν

]
2τ

, ((µ, ν) ∈ {1, 2, 3, 4}) , (E.1)

where Fµν = ∂µAν(x) − ∂νAµ(x) is the field strength associated to the abelian gauge field Aµ, in
accordance with the notation of section 2.3.5. Restricting for simplicity to Euclidean space-time, i.e.
gµν = δµν and LMBI

δ = LMBI, one has

LMBI(x, τ) =
−1 +

√
1− τ Tr [F 2] + τ2

4

(
Tr[FF̃ ]

)2

2τ
, (E.2)

where F and F̃ denote the matrices with elements Fµν and F̃µν = 1
2εµνρσF

ρσ, respectively, F̃µν being
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the Hodge dual field strength. Expanding (E.2) in powers of τ around τ = 0

LMBI(x, τ) = −1

4
Tr[F 2] +

τ

16

(
Tr[F 2]2 − 4Tr[F 4]

)
+O(τ2)

= LM + τ
√

det[TM] +O(τ2) , (E.3)

one recognizes that the order O(τ0) coincides with the Maxwell Lagrangian

LM(x) =
1

4
FµνFµν = −1

4
Tr[F 2] , (E.4)

while the O(τ) contribution is related to the determinant of the Hilbert stress-energy tensor of the
Maxwell theory TM(x), which can be computed from the Noether theorem by adding the Belinfante-
Rosenfeld improvement to make it symmetric and gauge invariant (cf. 2.3.5), i.e.

(TM)
µν ≡ ∂LM

∂ (∂µAρ)
F νρ − ηµνLM = FµρF νρ − ηµνLM . (E.5)

Formula (E.3) hints that LMBI may arise from a deformation of Maxwell electrodynamics effected by the
operator O ≡

√
det[TMBI] according to the flow equation

∂τLMBI =
√

det[TMBI] , (E.6)

where TMBI is the Hilbert stress-energy tensor associated to the MBI Lagrangian. Using the general
definition

(TMBI)
µν

=
−2
√
g

δLMBI
g

δgµν
,
√
g ≡

√
| det[gµν ]| , (E.7)

it is possible to show that, in euclidean spacetime (gµν = ηµν), the following relation holds

O =
−1 + SMBI(x, τ)− 2τ LM(x)

2τ2SMBI(x, τ)
= ∂τLMBI , SMBI(x, τ) ≡

√
det
[
ηµν +

√
2τFµν

]
, (E.8)

thus proving the validity of (E.6).

As noticed in section 2.3.5, the presence of an internal symmetry (in the current case the U(1) gauge
symmetry) makes the definition of the stress-energy tensor ambiguous. As already appears at the
perturbative level in (E.3), here the symmetric and gauge invariant Hilbert stress-energy tensor seems
to be the natural choice to get the MBI Lagrangian as a deformation of the Maxwell electrodynamics.
However let us point out that there is no reason to rule out a priori a deformation induced by the
Noether stress-energy tensor, which is neither symmetric nor gauge invariant. Moreover, the two
stress energy tensors might give rise to completely different deformations. In fact, it is not known if
relation (2.132), or equivalently the factorisation property, holds in dimension d > 2.

Interestingly, solving perturbatively the flow equation (E.6) using as initial condition

LM,V (x) = LM(x) + V , (E.9)
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where V is a potential depending on the fields Aµ only, one get the following solution

LMBI,V (x, τ) =
V

1− τ V
+

1

2τ̃

(
−1 +

√
det
[
δµν +

√
2τ̃Fµν

])
, (E.10)

where τ̃ = τ(1− τV ) is the same (local) redefinition of the deformation parameter found also in section
2.3.2 in bosonic interacting theories. A posteriori, it is easy to check that LMBI,V (x, τ) is indeed solution
to (E.6), i.e.√

det[TMBI,V ] = −S
MBI(x, τ̃)(2τ̃ V − 1)− (2τ V − 1) (1 + 2τ̃ LM(x))

2τ̄2 SMBI(x, τ̄)
= ∂τLMBI,V (x, τ) . (E.11)

Following the logic of section 2.3.4, it is interesting to perform a Legendre transformation on
LMBI,V (x, τ) to get the Hamiltonian density HMBI,V (x, τ). Again, using a shorthand notation for the
time derivative Ȧµ = ∂4Aµ, the conjugated momentum is

Πi =
∂LMBI,V (x, τ)

∂Ȧi
, Π4 ≡ 0 , (i = 1, 2, 3) , (E.12)

and the Hamiltonian density takes the form

HMBI,V (x, τ) =
V

1− τ V
+

1

2τ̃

(
−1 +

√
1 + 4τ̃ HM(x) + 4τ̃2 |~PMBI(x)|2

)
, (E.13)

where HM(x) = −1
2ΠiΠ

i + 1
4FijF

ij = −TM
44(x) is the Hamiltonian density of the Maxwell theory and

PMBI
i (x) = iTMBI

4i (x, τ) , (i = 1, 2, 3) , is the i-th component of the conserved momentum density of
the deformed theory. Notice that HMBI,V (x, τ) is formally identical to the Hamiltonian density
reported in Section (2.3.4) for the 2−dimensional bosonic theories.

Here we found that a 4−dimensional theory arises as a deformation induced by a power 1/2 of the
determinant of the stress-energy tensor. This result apparently does not agree with the generalization
to higher dimensions proposed in the first version of [18], from which one would expect a power
1/(D − 1) = 1/3 instead. Interestingly, notice also that the operator

√
det[TMBI] can be written in this

form √
det[TMBI] =

1

4

(
1

2
Tr [TMBI]

2 − Tr
[
(TMBI)

2
])

, (E.14)

which strongly resembles the generalization of the TT̄ operator to higher dimensions recently proposed
in [83], except for the factor 1/2 in front of Tr [TMBI]2 instead of 1/(D − 1) = 1/3. Although in this
Sectionwe have pointed outmany similarities at the classical level between the 4DMaxwell-Born-Infeld
model and the 2−dimensional bosonic theory discussed in section 2.3.4, the situation at the quantum
level is in principle much more complicated. However it would be remarkable if a structure similar to
the 2−dimensional case could emerge for the quantised energy spectrum.
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