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Abstract: Hadronic matrix elements involving tensor currents play an important rôle in
decays that allow to probe the consistency of the Standard Model via precision lattice QCD
calculations. The non-singlet tensor current is a scale-dependent (anomalous) quantity. We
fully resolve its renormalisation group (RG) running in the continuum by carrying out a
recursive finite-size scaling technique. In this way ambiguities due to a perturbative RG
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running and matching to lattice data at low energies are eliminated. We provide the total
renormalisation factor at a hadronic scale of 233 MeV, which converts the bare current into
its RG-invariant form.

Our calculation features three flavours of O(a) improved Wilson fermions and tree-
level Symanzik-improved gauge action. We employ the (massless) Schrödinger functional
renormalisation scheme throughout and present the first non-perturbative determination of
the Symanzik counterterm cT derived from an axial Ward identity. We elaborate on various
details of our calculations, including two different renormalisation conditions.

Keywords: Lattice QCD, Non-Perturbative Renormalization, Renormalization and
Regularization, Renormalization Group
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1 Introduction

The study of quantum chromodynamics (QCD), the fundamental theory of the strong
interaction, remains an active and very important area of research in elementary particle
theory. This is not only motivated by its most dramatic phenomenological consequences
(for example, the strong interaction directly determines the largest part of the mass of
baryons, and, as a consequence, accounts for most of the mass of visible matter in the
universe), but also by the non-trivial rôle it plays in problems related to the physics of
flavour, including rare decays of heavy mesons (see, for instance, refs. [1–6]), β-decays and
the neutron electric dipole moment [7–11], and so on. Even though these phenomena are
determined by the electroweak interaction, the fact that in the Standard Model (SM) the
quarks carry both colour and electroweak charges, and are confined within hadrons by the
strong interaction, makes a precise quantitative determination of the theoretical predictions
of QCD a crucial ingredient to test the SM against experimental results, with the potential
to disclose new-physics effects [12]. In view of the negative results of direct searches for
physics beyond the SM at the Large Hadron Collider [13], the motivation for such tests is
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currently strongest than ever, since they could reveal the existence of particles with masses
beyond the reach of present collider experiments.

The conventional framework to determine physical amplitudes involving hadronic states
is based on an effective weak Hamiltonian, whereby the effects of QCD are encoded in matrix
elements of effective quark field interactions. One type of such interaction terms, which will
be the main focus of the present work, is given by flavour non-singlet bilinear quark currents
with a tensor structure for the Dirac indices:

T aµν(x) = iψ̄(x)σµνT aψ(x) , (1.1)

where σµν = i
2 [γµ, γν ] acts on the spinor indices, while T a is a generator of the SU(Nf)

group acting on the flavour indices.
It is important to note that, while partial-current-conservation laws protect flavour

non-singlet vector and axial currents from ultraviolet renormalisation, tensor-like currents of
the form (1.1) are not constrained by such laws, and require an independent scale-dependent
renormalisation; in fact, the tensor current defined in eq. (1.1) is the only type of bilinear
operator whose evolution under renormalisation-group (RG) transformations cannot be
directly derived from that of quark masses. The anomalous dimension associated with this
current has been studied perturbatively both in continuum schemes [14, 15], where the most
recent results have been pushed to the four-loop order [16], and in lattice schemes [17].

While perturbative expansions are reliable at high energies, the non-perturbative character
of the strong interaction at the scales typical of hadrons requires an approach that does not
rely on any weak-coupling assumptions; this restricts the toolbox to derive the predictions
of QCD for processes taking place within hadronic states to numerical calculations in the
lattice regularisation (for an overview of the contributions lattice QCD can give in the study
of processes involving weak decays of heavy quarks and in the refinement of SM predictions,
see refs. [18, 19]), which is the formalism that we use here to study the renormalisation of the
tensor current. Among the different lattice discretisations for the Dirac operator, the Wilson
one [20] turns out to be a particularly convenient choice, since it offers various conceptual
as well as practical advantages. In particular, in the continuum limit (i.e., when the lattice
spacing a is sent to zero) it completely removes the effects of all fermion doublers, it is
strictly ultralocal, and it explicitly preserves flavour symmetry and the discrete symmetries
of continuum QCD, while being computationally much less demanding than other types of
regularisations for the Dirac operator (such as overlap or domain-wall fermions). The explicit
chiral-symmetry breaking introduced by the Wilson term, however, leads to additive mass
renormalisation for the quark fields and to the introduction of discretisation effects at O(a),
which reduce the convergence rate of simulation results towards the continuum limit. This
is an issue that affects both the fermion action and the fermion currents [21, 22], including
the ones that are the focus of this work. As will be discussed in detail in the present article,
this problem can be tackled in a systematic way by means of the Symanzik improvement
programme [23, 24] and defining the theory in the Schrödinger functional (SF) scheme [25–27]
according to the framework presented in refs. [28, 29]; this allows one to cancel the leading,
O(a), discretisation artifacts and to achieve O(a2) scaling towards the continuum limit [30].
In particular, the improvement of the fermion currents can be obtained by including additive
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dimension-4 counterterms (which take the form of discretised derivatives of vector currents),
with appropriately tuned coefficients, in their definition on the lattice.

This strategy, that here we apply on an ensemble of lattice configurations with Nf = 3
dynamical quark flavours generated by the ALPHA collaboration [31, 32], is then expected to
yield the same level of non-perturbative control of the tensor current renormalisation that has
been previously obtained for the quark masses [32–34] and to contribute to the programme
of non-perturbative improvement and renormalisation for flavour-non-singlet quark field
bilinears [32–45] and four-quark operators [46–53] pursued by the collaboration. For the
error analysis, in the present work we use the Γ-method approach [54–56] as implemented
in the pyerrors Python package [57].

Non-perturbative renormalisation of tensor currents has been carried out in RI′-MOM
schemes for many years, in simulations with different numbers of dynamical quark flavours
and using various types of discretisations [58–66]. The recent study in ref. [67], also using RI-
MOM, shares the same lattice regularisation as the present work. To our knowledge, however,
this is the first instance of a non-perturbative computation of the renormalisation group
running of non-singlet tensor currents in the whole range of energies relevant to SM physics.

The structure of this article is as follows. After discussing the pattern of renormalisation
and O(a) improvement of tensor currents in section 2, we present our non-perturbative
calculation of the tensor currents’ improvement coefficient in section 3 and the renormalisation
of the tensor current in section 4. Our main findings are then summarised and discussed in
section 5. Finally, the appendices include the covariance matrices of our fits (appendix A),
the detailed results for the tensor-current improvement coefficient (appendix B), and a set of
tables with the results for the step scaling of the renormalisation factor (appendix C).

Preliminary results of this work were presented in ref. [68], while a more extensive
discussion of the framework of our calculation can be found in ref. [69].

2 Renormalisation and O(a) improvement of tensor currents

Let µ denote the scale at which theory parameters and operators are renormalised. The
scale dependence of these quantities is given by their RG evolution. The Callan-Symanzik
equations satisfied by the gauge coupling and quark masses are of the form

µ
∂ḡ

∂µ
= β(ḡ(µ)) , (2.1)

µ
∂mi

∂µ
= τ(ḡ(µ))mi(µ) , (2.2)

respectively, with renormalised coupling ḡ and masses mi; the index i runs over flavour.
Starting from the renormalisation-group equation (RGE) for correlation functions, we can
also write the RGE for the insertion of a multiplicatively renormalisable local composite
operator O in an on-shell correlator as

µ
∂O(µ)
∂µ

= γO(ḡ(µ))O(µ) , (2.3)
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where O(µ) is the renormalised operator. The latter is connected to the bare operator
insertion O(g2

0) through

O(µ) = lim
a→0

ZO(g2
0, aµ)O(g2

0) , (2.4)

where g0 is the bare coupling, ZO is a renormalisation factor, and a is some inverse ultraviolet
cutoff –the lattice spacing in this work. We assume a mass-independent scheme, such that
both the β-function and the anomalous dimensions τ and γO depend only on the coupling
and on the number of flavours Nf (other than on the number of colours Nc); examples of
such schemes are the MS scheme of dimensional regularisation [70, 71], RI schemes [72], or
the SF schemes we shall use to determine the running non-perturbatively [25, 73]. The RG
functions then admit asymptotic expansions of the form:

β(g) g→0∼ −g3(b0 + b1g
2 + b2g

4 + . . .
)
, (2.5)

τ(g) g→0∼ −g2(d0 + d1g
2 + d2g

4 + . . .
)
, (2.6)

γO(g)
g→0∼ −g2(γ(0)

O + γ
(1)
O g2 + γ

(2)
O g4 + . . .

)
. (2.7)

The coefficients b0, b1 and d0, γ(0)
O are independent of the renormalisation scheme chosen.

In particular [74–80], we have

b0 = 1
(4π)2

(11
3 Nc −

2
3Nf

)
, (2.8)

b1 = 1
(4π)4

[34
3 N

2
c −

(13
3 Nc −

1
Nc

)
Nf

]
, (2.9)

and

d0 = 6CF

(4π)2 , (2.10)

where CF = N2
c −1

2Nc
is the eigenvalue of the quadratic Casimir operator for the fundamental rep-

resentation of the algebra of the SU(Nc) gauge group, i.e., CF = 4
3 in QCD with three colours.

The RGEs (2.1)–(2.3) can be formally solved in terms of the renormalisation-group
invariants (RGIs) ΛQCD, m̂i and Ô, respectively, as:1

ΛQCD = µ
[b0ḡ

2(µ)]−b1/2b2
0

e1/2b0ḡ2(µ) exp
{
−
∫ ḡ(µ)

0
dg
[ 1
β(g) +

1
b0g3 − b1

b2
0g

]}
, (2.11)

m̂i = mi(µ) [2b0ḡ
2(µ)]−d0/2b0 exp

{
−
∫ ḡ(µ)

0
dg
[
τ(g)
β(g) −

d0
b0g

]}
, (2.12)

Ô = O(µ)
[
ḡ2(µ)
4π

]−γ(0)
O /2b0

exp
{
−
∫ ḡ(µ)

0
dg
[
γO(g)
β(g) − γ

(0)
O
b0g

]}
≡ ĉ(µ)O(µ) . (2.13)

1Our choice for the normalisation of m̂i follows Gasser and Leutwyler [81–83], whereas for eq. (2.13) we
have chosen the most usual normalisation with a power of αs.
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While the value of the ΛQCD parameter depends on the renormalisation scheme chosen, m̂i

and Ô are the same for all schemes. In this sense, they can be regarded as meaningful physical
quantities, as opposed to their scale-dependent counterparts. The aim of the non-perturbative
determination of the RG running of parameters and operators is to connect the RGIs — or,
equivalently, the quantity renormalised at a very high energy scale, where perturbation theory
can be applied — to the bare parameters or operator insertions, computed in the hadronic
energy regime. In this way the three-orders-of-magnitude leap between the hadronic and weak
scales can be bridged without significant uncertainties related to the use of perturbation theory.

In this work, we shall focus on the renormalisation of the tensor currents introduced in
eq. (1.1). The universal one-loop coefficient of the tensor anomalous dimension is

γ
(0)
T = 2CF

(4π)2 . (2.14)

In the two SF schemes we shall consider below, labelled by the superscripts f and k, the
two-loop anomalous dimension reads [29]

γ
(1),f
T = 0.0069469(8)− 0.00022415(5)×Nf , (2.15)

γ
(1),k
T = 0.0063609(8)− 0.00018863(5)×Nf , (2.16)

where the numbers in parentheses represent the uncertainty on the last significant figure.
As already done in the introduction, it is important to observe that the tensor current

is the only bilinear operator that evolves under RG transformation in a different way than
quark masses — whereas partial conservation of the vector and axial currents protects them
from renormalisation, and fixes the anomalous dimension of both scalar and pseudoscalar
densities to be −τ .

So far we have discussed the formal renormalised continuum theory. In practice, renor-
malisation is worked out by first introducing a suitable regulator, which in our case will
be a spacetime lattice with Wilson fermion action for quark fields. This implies leading
cutoff effects of O(a), which can be reduced down to O(a2) by implementing Symanzik’s
improvement programme. This requires both adding the Sheikholeslami-Wohlert term [84]
to the fermion action, and appropriate dimension-4 counterterms to fermion currents, with
coefficients tuned so as to cancel O(a) contributions. In the case of the flavour non-singlet
tensor currents (1.1), the only improvement term surviving the chiral limit has the form

(
T aµν

)I(x) = T aµν(x) + acT
(
∂̃µV

a
ν (x)− ∂̃νV

a
µ (x)

)
, (2.17)

where the flavour non-singlet local vector current is defined as

V a
µ (x) = ψ̄(x)γµT aψ(x) . (2.18)

The improvement coefficient cT was determined at one-loop order in perturbation theory
for the Wilson gauge action in refs. [28, 29]

c1−lp
T (g2

0) = 0.00896(1)× CF g
2
0 , (2.19)
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while for the Lüscher-Weisz gauge action one has [85]

c1−lp
T (g2

0) = 0.00741× CF g
2
0 . (2.20)

As in the remainder of this work all calculations are performed at zero momentum and
we always sum over spatial components, only the chromoelectric components require the
improvement term, while the chromomagnetic ones are automatically O(a) improved, viz.∑

x

(
T a0k
)I(x) =∑

x

(
T a0k(x) + acT∂̃0V

a
k (x)

)
, (2.21)∑

x

(
T aij
)I(x) =∑

x
T aij(x) . (2.22)

Renormalised tensor currents in the continuum limit can then be obtained from bare O(a)
improved currents as, e.g.,

T
a
0k(µ) = lim

a→0
ZT(g2

0, aµ)(T a0k)I(g2
0) , (2.23)

where ZT is the renormalisation factor obtained from some suitable renormalisation condition
and T a0k(g2

0) is a shorthand notation for the insertion of the tensor current in a bare correlation
function computed at bare coupling g2

0.
In the next two sections, we shall discuss the non-perturbative determination of the O(a)

improvement coefficient cT and the renormalisation constant ZT, to carry out the computation
of non-perturbatively renormalised tensor currents in the whole range of scales of interest
for SM physics. For the computation of cT and ZT we shall employ a SF setup [25, 27],
for which we shall adopt the conventions and notations introduced in ref. [30]. The SF
framework amounts to formulating QCD in a finite space-time volume of size L3 × T , with
inhomogeneous Dirichlet boundary conditions at Euclidean times x0 = 0 and x0 = T . The
boundary condition for gauge fields has the form

Uk(x)|x0=0 = P exp
{
a

∫ 1

0
dt Ck(x + (1− t)ak̂)

}
, (2.24)

where k̂ is a unit vector in the direction k, P exp denotes a path-ordered exponential, and
Ck is some smooth gauge field. A similar expression applies at x0 = T in terms of another
field C ′

k. Fermion fields obey the boundary conditions

P+ψ(x)
∣∣∣
x0=0

= ρ(x) , ψ̄(x)P−
∣∣∣
x0=0

= ρ̄(x) , P−ψ(x)
∣∣∣
x0=0

= ψ̄(x)P+
∣∣∣
x0=0

= 0 , (2.25)

P−ψ(x)
∣∣∣
x0=T

= ρ′(x) , ψ̄(x)P+
∣∣∣
x0=T

= ρ̄′(x) , P+ψ(x)
∣∣∣
x0=T

= ψ̄(x)P−
∣∣∣
x0=T

= 0 , (2.26)

with P± = 1
2(1± γ0). Gauge fields are periodic in spatial directions, whereas fermion fields

are periodic up to global phases,

ψ(x+ Lk̂) = eiθkψ(x) , ψ̄(x+ Lk̂) = ψ̄(x)e−iθk . (2.27)

The SF itself is the generating functional

Z[C, ρ̄, ρ;C ′, ρ̄′, ρ′] =
∫

D[U,ψ, ψ̄] e−S[U,ψ̄,ψ] , (2.28)
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where the integral is performed over all fields with the specified boundary values. Expectation
values of any product O of fields are then given by

⟨O⟩ =
{ 1
Z

∫
D[U,ψ, ψ̄]Oe−S[U,ψ̄,ψ]

}
ρ̄=ρ=ρ̄′=ρ′=0

, (2.29)

where O can involve, in particular, the “boundary fields”

ζ(x) = δ

δρ̄(x) , ζ̄(x) = − δ

δρ(x) , ζ ′(x) = δ

δρ̄′(x) , ζ̄ ′(x) = − δ

δρ′(x) . (2.30)

The Dirichlet boundary conditions provide an infrared cutoff to the possible wavelengths of
quark and gluon fields, which allows one to study the theory through simulations at vanishing
quark mass. The presence of non-trivial boundary conditions requires, in general, additional
counterterms to renormalise the theory [25, 86, 87]. In the case of the SF, it has been shown
in ref. [88] that no additional counterterms are needed with respect to the periodic case,
except for one boundary term that amounts to rescaling the boundary values of quark fields
by a logarithmically divergent factor, which is furthermore absent if ρ̄ = ρ = ρ̄′ = ρ′ = 0. It
then follows that the SF is finite after the usual QCD renormalisation.

3 Symanzik improvement of Tµν

It is well established that O(a) improvement coefficients (as well as scale-independent renormal-
isation constants) in lattice QCD with Wilson fermions can be non-perturbatively determined
by imposing chiral Ward identities, which are consequences of the invariance of the integration
measure in the QCD functional integral representation of expectation values under infinitesi-
mal iso-vector transformations, to hold on the lattice up to next-to-leading-order cutoff effects.
For applications of this approach to three-flavour QCD regularised with the same lattice action
as studied here, but in channels other than the tensor one, see, for instance, refs. [38, 43–45].

In case of the flavour non-singlet tensor currents, our starting point to derive an expression
fixing the improvement coefficient cT is the general continuum axial Ward identity in its
integrated form∫
∂R

d3x ⟨Aa0(x)Ob
int(y)Oc

ext(z)⟩ − 2m
∫
R
d4x ⟨P a(x)Ob

int(y)Oc
ext(z)⟩ = −⟨[δaAOb

int(y)]Oc
ext(z)⟩ ,

(3.1)
where Aa0 and P a denote the axial vector current and the pseudoscalar density, respectively,
which are defined as

Aa0(x) = ψ̄(x)γ0γ5T
aψ(x) , P a(x) = ψ̄(x)γ5T

aψ(x) . (3.2)

As before, T a are the anti-Hermitean generators of SU(Nf) acting in flavour space. In eq. (3.1),
the composite fields Oint (Oext) stand for polynomials in the basic field operators that are
localised in the interior (exterior) of a space-time region R with smooth boundary ∂R, i.e.,
that only have support inside (outside) R. Recalling that the iso-vector axial rotations
underlying this Ward identity imply the infinitesimal variations of the quark fields to read

δaAψ(x) ≈ iγ5T
aψ(x) , δaAψ̄(x) ≈ iψ̄(x)γ5T

a , (3.3)

– 7 –
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the behaviour of the tensor currents associated with these variations is worked out straightfor-
wardly using Leibniz’s rule (where our Lie algebra conventions are as in ref. [30, appendix A]):

δaAT
b
µν(x) = −ψ̄(x)T aγ5σµνT

bψ(x)− ψ̄(x)σµνγ5T
bT aψ(x)

= −ψ̄(x)γ5σµν(T aT b + T bT a)ψ(x)
= dabcT̃ cµν(x) , a ̸= b , (3.4)

δaAT̃
b
µν(x) = dabcT cµν(x) , a ̸= b . (3.5)

Here we introduced the dual tensor currents T̃µν as

T̃ aµν(x) ≡ iψ̄(x)γ5σµνT
aψ(x) = − i

2ϵµνρσψ̄(x)σρσT
aψ(x) , (3.6)

where the second equality follows from the property γ5σµν = −1
2ϵµνρσσρσ.

We now exploit the freedom of a suitable choice for the internal operator Oint in eq. (3.1)
to just set it to the dual tensor current, viz.∫
∂R

d3x ⟨Aa0(x)T̃ bµν(y)Oc
ext(z)⟩ − 2m

∫
R
d4x ⟨P a(x)T̃ bµν(y)Oc

ext(z)⟩ = −dabd⟨T dµν(y)Oc
ext(z)⟩ ,

(3.7)
which has non-vanishing r.h.s. for Nf ≥ 3 only. Using eq. (3.5) for a ̸= b (to avoid mixing
with the flavour-singlet tensor current), and in addition assuming µ = 0 and ν = k for
the Dirac indices, we obtain:∫

∂R
d3x ⟨Aa0(x)T̃ b0k(y)Oc

ext(z)⟩ − 2m
∫
R
d4x ⟨P a(x)T̃ b0k(y)Oc

ext(z)⟩ = −dabd⟨T d0k(y)Oc
ext(z)⟩ .

(3.8)
Inserting eq. (3.6) and keeping in mind that the chromomagnetic components of the tensor
currents do not require improvement, cf. eq. (2.22), the O(a) version of this lattice Ward
identity then turns into:

ϵ0kijZA

(∫
∂R

d3x ⟨
(
Aa0
)I(x)T bij(y)Oc

ext(z)⟩ − 2m
∫
R
d4x ⟨P a(x)T bij(y)Oc

ext(z)⟩
)

= 2dabd
(
⟨T d0k(y)Oc

ext(z)⟩+ acT⟨∂̃0V
d
k (y)Oc

ext(z)⟩
)
+ O(a2) . (3.9)

Note that in the chiral limit, in which we work in practice, the O(a) improved axial vector
current

(
Aaµ
)I(x) = Aaµ(x) + acA∂̃µP

a(x) receives finite multiplicative renormalisation via the
factor ZA(g2

0), while any renormalisation factors for the tensor currents and the (not yet
specified) external operator Oext appear on both sides of eq. (3.9) and thus cancel out.

Expression (3.9) relates expectation values involving chromomagnetic components of the
tensor current to an expectation value of its chromoelectric components. As only the latter
requires improvement in our specific setup, we can employ eq. (3.9) to determine cT(g2

0) non-
perturbatively. Even though this Ward identity holds for any tensor component separately,
we will numerically evaluate it by explicitly summing over the spatial components k.

3.1 Non-perturbative determination in the Schrödinger functional scheme

Our non-perturbative computation of the tensor currents’ improvement coefficient through
numerical simulations works with a lattice discretisation of QCD obeying Schrödinger func-
tional boundary conditions (i.e., periodic in space and Dirichlet in time). Thanks to the
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gap in the spectrum of the Dirac operator thus introduced, we do simulate the theory in
the very close vicinity of the chiral limit that is realised as the (unitary) point of vanishing
degenerate sea and valence quark masses, am = 0 in short.

For the external operator Oc
ext we now pick parity-odd Schrödinger functional boundary

fields [30]

Oc[Γ] = a6∑
u,v

ζ̄(u)ΓT cζ(v) , O′c[Γ] = a6∑
u,v

ζ̄ ′(u)ΓT cζ ′(v) , (3.10)

where we choose Γ = γk such that eq. (3.9) becomes (up to O(a2) effects)2

ϵ0kijZA

(∫
∂R

d3x ⟨
(
Aa0(x)

)I
T bij(y)Oc[γk]⟩ − 2m

∫
R
d4x ⟨P a(x)T bij(y)Oc[γk]⟩

)
= 2dabd

(
⟨T d0k(y)Oc[γk]⟩+ acT⟨∂̃0V

d
k (y)Oc[γk]⟩

)
. (3.11)

Another option for the Dirac structure would be to choose O[γ0γk] as the boundary interpo-
lator. However, because of the Schrödinger functional boundary conditions, the projection
operator P± = 1

2(1 ± γ0) mixes γk and γ0γk, which renders this choice ambiguous.
To express eq. (3.11) in terms of correlation functions and thereby make it accessible to

numerical calculation, we now define the Schrödinger functional (boundary-to-bulk) correlator
as kAσ(x0, y0) = − 1

(N2
f −1)6 d

abckabcAσ (x0, y0), where

kabcAσ (x0, y0) = − 1
2
a6

L3

∑
x,y

ϵ0kij⟨Aa0(x)ψ̄(y)σijT bψ(y)Oc[γk]⟩

= 1
2
a6

L3 ϵ0kijϵijl
∑
x,y

⟨Aa0(x)ψ̄(y)
(
σl 0
0 σl

)
T bψ(y)Oc[γk]⟩

= a6

L3 δkl
∑
x,y

⟨Aa0(x)ψ̄(y)
(
σl 0
0 σl

)
T bψ(y)Oc[γk]⟩

= a6

L3

∑
x,y

⟨Aa0(x)ψ̄(y)
(
σk 0
0 σk

)
T bψ(y)Oc[γk]⟩ , (3.12)

using σij = −ϵijl

(
σl 0
0 σl

)
in the first step. The analogous correlator kPσ in the pseudoscalar

channel only differs from kAσ by the fact that in kabcAσ (x0, y0) the temporal axial vector current
Aa0(x) is replaced with the pseudoscalar density P a(x). Altogether this finally leads to

ZA

(
kabcAσ (x0, y0)+acA∂̃0k

abc
Pσ (x0, y0)−2mk̃abcPσ (x0, y0)

)
= idabd

(
kdcT (y0)+acT∂̃0k

dc
V (y0)

)
, (3.13)

which can be solved for cT:

acT =
ZA

(
kabcAσ (x0, y0) + acA∂̃0k

abc
Pσ (x0, y0)− 2mk̃abcPσ (x0, y0)

)
− idabdkdcT (y0)

idabd∂̃0kdcV (y0)
, (3.14)

2Recall that renormalisation factors of the boundary quark fields, as well as of the tensor currents, cancel
between the two sides of this equation.
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up to O(a2) corrections. The definitions of the boundary-to-bulk correlators kT and kV are

kabT (x0) = −1
6
a3

L3

∑
x
⟨T a0k(x0,x)Ob[γk]⟩ , (3.15)

kabV (x0) = −1
6
a3

L3

∑
x
⟨V a
k (x0,x)Ob[γk]⟩ , (3.16)

with V a
k (x) = ψ̄(x)γkT aψ(x). The correlation functions k̃abcPσ (x0, y0) are defined in the same

way as kabcPσ (x0, y0), but incorporating a proper weight approximating the integration via the
trapezoidal rule (cf. [45, eq. (B.9)]) when translating eq. (3.11) to the lattice. Also note that
for the moment we have suppressed the implicit dependence of the l.h.s. of this equation
on the timeslice arguments x0 and y0; our specific choices for its numerical evaluation will
be detailed later. As external inputs for the computation of cT, the improvement coefficient
cA [37] and the renormalisation factor ZA of the axial vector current are required, for which
the non-perturbative three-flavour QCD determinations with the same lattice action (as
functions of g2

0) of refs. [38, 39] are available; the renormalisation factor is based on the
chirally rotated Schrödinger functional [39] and from now on referred to as ZχA .

Within a similar computation for O(a) improvement of the vector current [45] it was
found that the very precise results on ZχA appear to have a significant lattice spacing ambiguity
of O(a3), in addition to the leading O(a2) one. Whereas this is immaterial when one is
interested in matrix elements of the axial vector current, it can have a non-negligible impact
on the determination of cT. The reason lies in the fact that cT obtained from the identity
derived above arises as the difference of two terms, which are orders of magnitude larger
than their difference and where only one of the two is multiplied by ZχA . Therefore, a small
change in ZχA can propagate into a significant change in cT. While from the Symanzik
improvement programme point of view this is not worrisome — since the ambiguity in ZχA
is beyond the order in a we are interested in for cT — its absolute magnitude can still be
sizable [45]. In order to tame the potential influence of these higher-order effects, we hence
propose an alternative improvement condition for cT, which instead of ZχA takes the ratio
ZχA/Z

χ
V as an input, with ZχV the vector current’s renormalisation factor also known from

the chirally rotated Schrödinger functional study [39]. As a consequence, the O(a2) and
O(a3) ambiguities will cancel numerically in this ratio when using the parametrisations of
ZχA and ZχV in terms of g2

0 from ref. [39]. To reformulate eq. (3.14) so that it incorporates
ZχA/Z

χ
V , we make use of the vector Ward identity which, when implemented with Schrödinger

functional boundary fields (see, e.g., ref. [45]), yields an independent determination of the
vector current renormalisation constant ZV,

f1
fV(x0)

= ZV +O(a2) , (3.17)

with appropriate three-point and boundary-to-boundary Schrödinger functional correlation
functions

fV(x0) = − a3

2L6 iϵ
abc
∑

x

〈
O′a[γ5]V b

0 (x0,x)Oc[γ5]
〉
, (3.18)

f1 = − 1
2L6

〈
O′a[γ5]Oa[γ5]

〉
. (3.19)
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In practice, a renormalisation condition such as (3.17) is always understood to be numerically
evaluated for every timeslice and averaged over a certain plateau range, which completes the
definition of ZV. Then, in the O(a) improved theory, the ratio of ZV fixed in this fashion
and ZχV of ref. [39] is just unity up to O(a2) cutoff effects:

ZV

ZχV
= f1
ZχVfV(x0)

= 1 + O(a2) . (3.20)

To this order we thus can extend the prefactor of the first term in the numerator of eq. (3.14)
by 1 = f1/(ZχVfV) to arrive at an alternative improvement condition for cT,

acT,alt =
Zχ

A
Zχ

V

f1
fV(x0)

(
kabcAσ (x0, y0) + acA∂̃0k

abc
Pσ (x0, y0)− 2mk̃abcPσ (x0, y0)

)
− idabdkdcT (y0)

idabd∂̃0kdcV (y0)
, (3.21)

in which non-perturbative values on cA from ref. [37] and the ratio ZχA/Z
χ
V from ref. [39]

are to be inserted as external inputs.

3.2 Analysis and results

Our computations and analyses are based on gauge field ensembles generated by numerical
simulations of mass-degenerate three-flavour lattice QCD with non-perturbatively O(a)
improved Wilson quarks and tree-level Symanzik-improved gluons for earlier determinations
of improvement coefficients and renormalisation factors [37, 38, 89]. They satisfy Schrödinger
functional boundary conditions and describe a line of constant physics (LCP) defined by
a fixed physical L3 × T box of size L ≈ 1.2 fm ≈ 2T/3; its parameters are listed in table 6
of appendix B. The lattice spacings of these ensembles lie within 0.042 fm ≲ a ≲ 0.105 fm
and suitably match the range of lattice spacings that is typically accessible in large-volume
simulations, thereby making our results for cT useful for physics applications. For all further
technical and algorithmic details we refer to the aforementioned references; we only point
out that the known issue of topology freezing towards the continuum limit is accounted for
in a theoretically sound way by projecting all expectation values to the topologically trivial
sector by reweighting, and that for the error analysis we use the Γ-method [54] in the Python
implementation described in ref. [57], which includes effects of critical slowing down along
ref. [55] and automatic differentiation techniques as suggested in ref. [56].

The lattice setup to extract cT realised here ensures that the initial chiral Ward identity,
and thereby also the improvement condition formulae (3.14) and (3.21) implied by it, are
imposed on an LCP, along which all physical length scales in correlation functions are kept
constant and only the lattice spacing a changes when the bare coupling g0 is varied. According
to Symanzik’s local effective theory of cutoff effects, the resulting estimates of improvement
coefficients such as cT are then supposed to exhibit a smooth dependence on g2

0 = 6/β. As a
consequence, any remaining ambiguities in them that could emerge through another choice of
LCP or from a different improvement condition will asymptotically disappear towards the
continuum limit (a→ 0) at a minimum rate ∝ a. We thus expect our final results for cT(g2

0) to
be potentially affected by O(a) corrections only; however, in view of eq. (2.17), the latter are
beyond the order one is sensitive to in the O(a) improved theory. Equivalently, any effects of
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Figure 1. Euclidean time dependence of the two determinations of cT for ensemble B1k4 (β = 3.512).
The dashed vertical lines enclose the average region, the horizontal lines with shaded bands correspond
to the average values and their respective uncertainties.

these unavoidable O(a) ambiguities in hadronic matrix elements or other quantities involving
improved (and renormalised) tensor currents will extrapolate to zero in the continuum limit.

The details of our analysis closely follow the similar investigation [45] of O(a) improvement
in the vector channel. Following our experiences there, eqs. (3.14) and (3.21) are evaluated
with two different operator positions t1 = T − t2 ∈ {T/4, T/3} and averaged over the two
central values of x0, where cA(g2

0) is taken from ref. [37], while for the axial and vector
currents’ normalisation constants we employ ZχA and ZχV calculated within the chirally
rotated Schrödinger functional [39], as explained in section 3.1. The x0-dependence of the
improvement coefficient on an exemplary ensemble is displayed in figure 1. Although the
local estimator as a function of x0 does not develop a plateau, as was also observed in similar
studies [41, 45], our Ward-identity approach (formulated on the operator level) in conjunction
with the LCP setup guarantees that any choice of x0 and t1 within the x0-region furthest
from the boundaries is allowed, as long as all physical length scales are kept constant among
the different ensembles. As T is odd in our simulations, we do not have direct access to
an estimator for cT at x0 = T/2. However, the x0-dependence is linear in all cases and a
symmetric average about x0 = T/2 thus produces a good estimator for its value.

Figure 2 shows an exemplary extrapolation of cT to the chiral limit (amPCAC → 0) for
the case of the improvement condition yielding c{T/3}

T (i.e., the value of cT obtained when the
operator is inserted at t1 = T/3), once with the explicit mass term (see eq. (3.14)) and once
without it. Note that our quark mass definition, including the chiral limit as the point of
zero sea (and valence) quark masses, is the one based on the partially conserved axial current
(PCAC) relation; see eq. (4.10) in section 4.2 for its explicit lattice prescription. The mass
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Figure 2. Example of a chiral extrapolation of cT, here for c{T/3}
T at β = 3.676, with and without the

mass term in the Ward identity (3.14). The dashed lines indicate linear fits to the data, with shaded
bands corresponding to the uncertainties of the fits. The open symbol marks the value in the chiral
limit.

dependence of the data in figure 2 illustrates very distinctly that accounting for the mass
term in the evaluation of the Ward identity entails an almost flat quark mass dependence
and hence a very stable extrapolation. The chirally extrapolated results for the considered
variants to extract cT are compiled for all ensembles in table 7 of appendix B.

In figure 3 we compare the different sets of results of cT from this work with the one-loop
prediction for cT of ref. [85] for the tree-level Symanzik-improved (namely, the Lüscher-Weisz)
gauge action. All of our non-perturbative determinations strongly deviate from perturbation
theory and approach the one-loop prediction only as g0 → 0. In particular, these four variants
agree within errors for the two smallest lattice spacings, while they exhibit larger (albeit
monotonic) spreads for the coarser ones. This behaviour reinforces that, as argued above, the
intrinsic O(a) ambiguities between determinations based on different improvement conditions
vanish smoothly towards the continuum limit, i.e., for β = 6/g2

0 → ∞.
In order to settle on a final one among the different, equally admissible determinations

labelled as c{T/4,T/3}
T and c{T/4,T/3}

T,alt , we consulted the behaviour in the region of weaker
couplings: this is motivated by the fact that cT is also to be applied in the present context of
non-perturbatively solving the scale-dependent renormalisation problem of the tensor current
via step-scaling methods in section 4. For this purpose of evaluating the renormalisation factor
ZT(g2

0, aµ), we specifically need the improvement coefficient at bare couplings 1 ≲ g2
0 ≲ 1.7

considerably smaller than the ones covered by the data discussed so far. Therefore, we
have performed an additional simulation at β = 8 and volume (L3 × T )/a4 = 163 × 24
(allowing relaxation of the LCP condition in this almost perturbative regime), which is to
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Figure 3. Different determinations of cT as a function of the squared bare coupling, g2
0 , in comparison

to one-loop perturbation theory [85].

be included as a further constraint in a later interpolation formula for cT(g2
0). In figure 4

we illustrate the resulting timeslice dependence of the (standard) improvement condition in
comparison to the one-loop perturbative prediction [85]. While the general picture is very
similar to what is encountered in the stronger coupling region, an important observation
is that the determination with operator insertion point t1 = T/4 nicely agrees with the
perturbative prediction, whereas t1 = T/3 shows a significant deviation. Although this is
not in disagreement with the theoretical expectation (rather, it must be seen as an O(a)
ambiguity), we eventually chose c{T/4}

T,alt as our preferred estimator of cT, since it exhibits closer
agreement with perturbation theory in the weak-coupling regime.

Figure 5 presents the results of our preferred determination of the improvement coefficient
of the tensor currents, together with the perturbative prediction and the continuous interpo-
lation of these final non-perturbative results in terms of g2

0. The fit formula is inspired by
the leading term in the perturbative relation between the lattice spacing and the β-function,
b0 = 9/(4π)2 being the corresponding universal coefficient for Nf = 3, constrained by one-loop
perturbation theory [85] as g2

0 → 0. The g2
0-dependence in the range covered by the data

is best represented by a parametrisation of the form

cT(g2
0) = 0.00741CFg

2
0

[
1 + exp

{
− 1/(2b0g

2
0)
}(
p1 + p2g

2
0
)]
, (3.22a)

with

(pi) =
(
−1.232
+1.203

)
· 103 , cov(pi, pj) =

(
+17.3880 −10.2809
−10.2809 +6.09472

)
· 104 . (3.22b)

It describes the five data points at stronger couplings and the weak-coupling data point
(β = 8) with χ2/d.o.f. = 0.851. Let us stress again that this parametrisation and the one-loop
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Figure 4. Timeslice dependence of cT at β = 8 compared to the one-loop perturbation theory
prediction of ref. [85] (dashed horizontal line). Solid horizontal lines and surrounding shaded areas
display the averages and errors of the two non-perturbative estimators with t1 = T/4 and t1 = T/3,
respectively. The corresponding current quark mass vanishes within error. The impact of these two
choices is very much the same for our alternative scheme.

β 3.34 3.4 3.46 3.55 3.7 3.85

cT 0.143(5) 0.125(3) 0.110(3) 0.091(2) 0.067(2) 0.051(3)

Table 1. cT-results for the inverse gauge couplings β employed in the Nf = 2+1 CLS calculations [90,
92, 93]. The errors are the statistical uncertainties propagated from the interpolation formula (3.22),
except for β = 3.85, which is slightly outside of the coupling range covered by our data. We thus add
50% of the size of the statistical error in quadrature as a systematic uncertainty to account for this.

behaviour agree almost perfectly up to bare couplings of g2
0 ≈ 1, whereas at larger ones a

significant departure from perturbation theory is clearly visible.
The interpolation formula (3.22) holds for three-flavour lattice QCD with O(a) improved

Wilson fermions and a tree-level Symanzik-improved gauge action, as also partly employed in
the present work. In particular, the bare lattice couplings used here largely overlap with those
of the Nf = 2 + 1 QCD gauge field configuration ensembles by the CLS collaboration [90–94],
which were generated with exactly this discretisation and provide a broad landscape of pion
masses and lattice spacings, aimed to various phenomenological lattice QCD applications. In
order to make our results usable within future computations on the CLS ensembles involving
O(a) improved tensor currents, we finally also interpolate (for β = 3.85: slightly extrapolate)
our results to the CLS values of β. These estimates for cT are collected in table 1.
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Figure 5. Interpolation formula (3.22) of our preferred determination of cT in comparison to one-loop
perturbation theory [85].

4 Renormalisation of Tµν

4.1 Renormalisation schemes and strategy

Next, we discuss the renormalisation of the tensor current. Our strategy follows the stan-
dard non-perturbative renormalisation and running setup by the ALPHA collaboration, in
particular in the context of Nf = 3 QCD. We define the RGI tensor current following eq. (2.13),

T̂µν = Tµν(µ)
[
g2(µ)
4π

]−γ(0)
T /2b0

exp
{
−
∫ g(µ)

0
dg
[
γT(g)
β(g) − γ

(0)
T

b0g

]}
, (4.1)

where Tµν(µ) is the renormalised tensor current in the continuum, g(µ) is some renormalised
coupling, β and γT are the β-function and the tensor anomalous dimension, respectively, and
b0, γ

(0)
T their leading perturbative coefficients. We shall employ two different mass-independent,

finite-volume renormalisation schemes, defined by the renormalisation conditions

Zf
T(g2

0, a/L) ·
kI

T(T/2)√
f1

= kI
T(T/2)√
f1

∣∣∣∣∣
tree-level

, (4.2)

Zk
T(g2

0, a/L) ·
kI

T(T/2)√
k1

= kI
T(T/2)√
k1

∣∣∣∣∣
tree-level

, (4.3)

where

kI
T(x0) = kT(x0) + acT∂0kV(x0) , (4.4)
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and the correlation functions kT ≡ 1
N2

f −1k
aa
T and kV ≡ 1

N2
f −1k

aa
V have been introduced in

eqs. (3.15) and (3.16). The boundary-to-boundary correlator k1, similar to f1 introduced
in eq. (3.19), is given by

k1 = − 1
6L6 ⟨O

′a[γk]Oa[γk]⟩ . (4.5)

Having at our disposal these non-perturbative renormalisation constants serves two
purposes: we can renormalise the tensor current at any given scale µ = 1/L through
eq. (2.23), then trace the renormalisation-group evolution of the current by introducing
the step-scaling functions

σT(u) ≡ lim
a→0

ΣT(u, a/L) ≡ lim
a→0

ZT(g2
0, a/(2L))

ZT(g2
0, a/L)

∣∣∣∣∣
u=g2(1/L)

= exp
{∫ ḡ((2L)−1)

ḡ(L−1)
dgγT(g)

β(g)

}
. (4.6)

By computing Σf
T(u, a/L) and Σk

T(u, a/L) at several values of u and a/L it is possible to
obtain the respective continuum versions σf/k

T (u), and hence γf/k
T , non-perturbatively for a

wide range of scales. Recall that the step-scaling function is a particular case of the general
solution of the RGE (2.3) in terms of an RG evolution operator U(µ2, µ1), viz.

O(µ2) = U(µ2, µ1)O(µ1) ; U(µ2, µ1) = exp
{∫ ḡ(µ2)

ḡ(µ1)
dgγO(g)

β(g)

}
, (4.7)

so that σT(u) = U(ḡ((2L)−1), ḡ(L−1)) with u = ḡ2(L−1) and the appropriate anomalous
dimension γT of the tensor operator used in eq. (4.7).

In order to determine the anomalous dimension, we shall follow the same strategy as for
quark masses [32]. Using the notation in eqs. (2.3) and (4.7), we factorise eq. (2.13) as

T̂µν = ĉ(µhad)Tµν(µhad)
= ĉ(µPT)︸ ︷︷ ︸

PT

U(µPT, µ0/2)︸ ︷︷ ︸
SF

U(µ0/2, µhad)︸ ︷︷ ︸
GF

Tµν(µhad) , (4.8)

where µhad is a low-energy scale of the order of ΛQCD, µPT is some high-energy scale, of
the order of the electroweak scale, where perturbation theory is safe (next-to-leading-order
predictions are available in our case), µ0 is an intermediate scale of the order of 4GeV, and the
factors labelled “GF” and “SF” are computed using gradient-flow and SF non-perturbative
couplings, respectively (see ref. [32] for a detailed explanation, a full reference list, and any
unexplained notation). The key points in the whole setup are that each of these factors,
except for the first one, can be computed non-perturbatively and taken to the continuum
limit with fully controlled systematics, and that the connection to the RGI allows one to
match the result to any other renormalisation scheme convenient for phenomenology.

4.2 RG running at high energies

In the high-energy regime we have performed simulations at eight values of the renormalised
SF coupling

uSF = {1.1100, 1.1844, 1.2656, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120} , (4.9)

– 17 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
9

ns nρ ĉf(µ0/2) χ2/d.o.f.

2 2 1.1324(64) 19.77 / 15
2 3 1.1213(74) 11.30 / 14
3 2 1.1093(97) 10.31 / 14
3 3 1.112(11) 10.03 / 13

ns nρ ĉk(µ0/2) χ2/d.o.f.

2 2 1.1670(55) 15.95 / 15
2 3 1.1586(63) 8.96 / 14
3 2 1.1498(84) 8.96 / 14
3 3 1.1532(96) 8.43 / 13

Table 2. Different fits of the anomalous dimension and the resulting values of the running factor
ĉ(µ0/2), cf. eq. (2.13). We quote results for both the f-scheme (left) and the k-scheme (right), with
our preferred fit result highlighted.

using the Wilson plaquette action [95] and an O(a)-improved Wilson fermion action [30],
with the non-perturbative value for csw from ref. [96] and one-loop [97] and two-loop [98]
values for the boundary improvement coefficients c̃t and ct, respectively. Simulations are
performed at three different values of the (inverse) lattice spacing L/a = 6, 8, 12, except
for the strongest coupling uSF = 2.012 where a fourth, finer lattice spacing L/a = 16 is
used (L is implicitly fixed through u). The three quarks in all simulations are tuned to be
massless by demanding that the PCAC mass,

m(g2
0, κ) =

1
2(∂∗0 + ∂0)fA(x0) + acA∂

∗
0∂0fP(x0)

2fP(x0)

∣∣∣∣∣
x0=T/2

, (4.10)

vanishes, using the improvement coefficient cA(g2
0) = −0.005680(2)CFg

2
0 to one-loop order in

perturbation theory [28, 97]. All simulations were performed with a variant of the openQCD
code [99].

Since our computation of the improvement coefficient cT is available only for tree-level
Symanzik-improved gauge action, we use its one-loop value for the plaquette gauge action,
determined in ref. [28]. Note that this is not expected to have a major impact, since the
lattices employed in the high-energy region are very close to the continuum limit and the
residual O(ag4

0) cutoff effects should be highly suppressed. Furthermore, the step-scaling
functions ΣT obtained from these simulations are corrected by subtracting the cutoff effects
computed to one loop, that is, to leading order in g2

0 and to all orders in a, as described
in ref. [29, section 4.2].

4.2.1 Determination of the anomalous dimension

To determine the anomalous dimension of the tensor current in the high-energy regime we
make use of a global fit procedure which combines the continuum extrapolation at individual
values of the strong coupling with a direct fit to the anomalous dimension constrained by
the expectation from perturbation theory. Both our starting expression, and the fitting
strategy, follow a similar reasoning as the one discussed at length in ref. [32] for the similar
case of the running quark mass.

Our starting expression to model ΣI
T is

ΣI
T(u, a/L) = exp

(∫ √
σ(u)

√
u

dxγT(x)
β(x)

)
+
( nρ∑
n=2

ρnu
n

)(
a

L

)2
, (4.11)
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where σ(u) denotes the step-scaling function of the coupling, cf. ref. [31]. The last term
models the leading cutoff effects; note that our results for ΣT are non-perturbatively improved
in the low-energy regime, while in the high-energy regime, where we use the one-loop value
of cT, lattice spacings are extremely small and residual O(ag4

0) terms can be expected to
be negligible within our precision. For the continuum anomalous dimension, we use the
asymptotic expansions (2.7) as our ansatz,

γT(x) = −x2
ns∑
n=0

tnx
2n . (4.12)

We try fitting with different values for ns and nρ and find consistent results as detailed
in table 2. For our final result, we quote the fits with ns = 2, nρ = 3. For the scheme
labelled f the parameters are given by

tf0 = 8
3(4π)2 ≡ γ

(0)
T , tf1 = 0.00627445 ≡ γ

(1),f
T , tf2 = +0.00073(25) , (4.13)

with χ2/d.o.f. = 0.807, while for the scheme labelled k we obtain

tk0 = 8
3(4π)2 ≡ γ

(0)
T , tk1 = 0.00579501 ≡ γ

(1),k
T , tk2 = −0.00022(21) , (4.14)

with χ2/d.o.f. = 0.640.
In figure 6 the non-perturbative anomalous dimensions are compared to the corresponding

one-loop and two-loop perturbative predictions. For the scheme labelled k the non-perturbative
result agrees with the two-loop prediction within errors while the discrepancy for the scheme
labelled f corresponds to several standard errors.

Having determined the anomalous dimension, which is constrained by construction to
make contact with two-loop perturbation theory at high energies, it is then possible to
determine directly the factor ĉ(µ0/2) = ĉ(µPT)U(µPT, µ0/2) in eq. (4.8), in a way that makes
it insensitive to any specific prescription for µPT — see ref. [32] for details. We quote for
our two schemes

ĉf(µ0/2) = 1.1213(74) , ĉk(µ0/2) = 1.1586(63) . (4.15)

4.3 RG running at low energies

Below the matching scale µ0/2 we employ the GF scheme, for which we have performed
simulations at bare parameters such that the GF coupling is close to one of the following
seven values

uGF ≈ {2.12, 2.39, 2.73, 3.20, 3.86, 4.49, 5.29} . (4.16)

These simulations are performed at three lattice spacings L/a = 8, 12, 16, again using non-
perturbatively O(a) improved Wilson fermions but now with a tree-level Symanzik-improved
gauge action [100]. The value of csw has been determined in ref. [101]. The chiral point
is tuned as in the SF regime via the PCAC relation in eq. (4.10), with the corresponding
non-perturbative value of cA [37]. In this case, our non-perturbative results for cT from
section 3 are actually utilised to O(a) improve the tensor current. All computations are
carried out at fixed topological charge Q = 0 by projecting onto the trivial topological
sector, as explained in ref. [31].
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Figure 6. Non-perturbative anomalous dimension of the tensor current in the two SF schemes in the
high-energy region. Perturbative expectations are shown for comparison.

4.3.1 Boundary improvement

One relevant source of systematic uncertainty comes from the fact that the O(a) improvement
coefficients ct and c̃t, associated to boundary counterterms in the SF setup, are only known
within perturbation theory. For the tree-level Symanzik-improved gauge action they are
actually only known to one-loop from refs. [102, 103]. While the impact of the perturbative
truncation is negligible at small values of u, it may become relevant in the low-energy region
of the running. This effect was studied in ref. [32] for the case of the running mass, and turned
out to be negligible within statistical uncertainties in the computation of the renormalisation
constant ZP. However, in the case of the dependence on c̃t, to which fermionic correlation
functions are most sensitive, an accidental cancellation pushes the perturbative truncation
effect on ZP one order further in g2

0. This does not happen in the case of ZT, meaning that
we have to reassess the issue here.

To that effect, we have performed additional simulations at u = 4.4901 and L/a = 8,
where we vary ct and c̃t independently. For ct we find a very mild dependence on the value
used in the simulation, and proceed to neglect that source of uncertainty. However, for c̃t
we find a fairly strong dependence, as can be seen from figure 7. In order to account for
this effect by including an estimate of the systematic uncertainty incurred in, we follow the
same reasoning as in ref. [32]: linear error propagation suggests that the effect of a shift
δc̃t on the value of ZT will have the form

δc̃tZT ≈
∣∣∣∣∂ZT

∂c̃t

∣∣∣∣ δc̃t . (4.17)

The slope ∂ZT/∂c̃t at u = 4.4901 can be extracted from a linear fit to our L/a = 8 data,
as depicted in figure 7. In order to estimate the effect at a different value of u and/or
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Figure 7. Dependence of the tensor renormalisation constant ZT on c̃t for the f-scheme (circles) and
the k-scheme (diamonds) at uGF = 4.4901 on L/a = 8 lattices.

L/a, we posit the scaling law

∂ZT

∂c̃t
≈ ξu

a

L
, (4.18)

where ξ is some constant coefficient. The rationale is that the slope has a leading behaviour
proportional to g2

0 in perturbation theory, and, the effect being associated to an O(a)
improvement counterterm, it is expected to vanish linearly in a at small values of the lattice
spacing. By applying this to the result of our linear fit, we estimate:

ξf = −0.601(25) , ξk = −0.502(19) . (4.19)

Finally, in order to apply eq. (4.17) we conservatively use a value of the shift δc̃t corresponding
to 100% of the one-loop perturbative deviation from the tree-level value c̃t = 1. Note that, at
the level of the step-scaling function ΣT, our modelling of the uncertainty leads to

δc̃tΣT

ΣT
≈
∣∣∣∣ σ(u)
2ZT(2L)

− u

ZT(L)

∣∣∣∣ |ξ| aLδc̃t , (4.20)

which implies that the uncertainty affecting the values of ZT that enter the ratio undergoes a
partial cancellation, making ΣT less sensitive to this effect than ZT itself.

The resulting systematic uncertainty induced in ΣT is quoted as the second number
in parentheses in the relevant tables of appendix C. Note that it is largely subdominant
with respect to the statistical uncertainty, save for a few L/a = 8 → 16 steps where it is
still smaller but of comparable size. In the case of ZT, on the other hand, the systematic
uncertainty can be sizeable, which will be commented upon below when the matching at
a hadronic scale is discussed.
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4.3.2 Determination of the anomalous dimension

To determine the anomalous dimension in the low-energy region we once again make use
of a global fit procedure, which in this case is strictly necessary as the values of the GF
coupling uGF are not exactly tuned to a constant for different values of L/a. The ratios
of RG functions are parametrised as

f(x) = γT(x)
β(x) = 1

x

nr∑
n=0

fnx
2n , (4.21)

and we perform a global fit to the relation

ΣT(u, a/L) = exp
(∫ √

Σ(u,a/L)
√
u

dxf(x)
)
+

 nρ,stop∑
n=nρ,start

ρnu
n

 (a/L)2 (4.22)

= exp

[f0 log(x) +
nr∑
n=1

fn
x2n

2n

]√Σ(u,a/L)

√
u

+

 nρ,stop∑
n=nρ,start

ρnu
n

 (a/L)2 , (4.23)

to obtain the parameters fn. For our best fits with nr = 2, nρ,start = 1 and nρ,stop = 2
we obtain the running factors

Uf(µ0/2, µhad) = 0.6475(59) , Uk(µ0/2, µhad) = 0.7519(45) . (4.24)

With these parameters, we can also reconstruct the anomalous dimension via the relation

γT(ḡ) = −ḡ2
∑nr
n=0 fnḡ

2n∑kt
k=0 pkḡ

2n
, (4.25)

where the β-function is parametrised as in eq. (4.12) of ref. [31]. For our best fits we obtain

ff
0 = 0.326(63) , ff

1 = 0.050(31) , ff
2 = +0.0035(34) , (4.26)

with χ2/d.o.f. = 0.831, and

fk
0 = 0.298(47) , fk

1 = 0.043(22) , fk
2 = −0.0021(24) , (4.27)

with χ2/d.o.f. = 1.130. The corresponding covariance matrices can be found in appendix A.1.
The curves obtained from these fits are shown in figure 8, together with those derived in
the high-energy regime, and with the one-loop prediction. A clear feature in figure 8 is the
discontinuity in γT at the scale µ0/2 where the scheme for the coupling is switched from
SF to GF: since the values of ḡ2

SF(µ) and ḡ2
GF(µ) at any given µ are different, plotting an

anomalous dimension as a function of the value of the coupling ḡ will lead to this effect, since
the function that RG equations force to be continuous is γT(ḡ(µ)), where the independent
variable is µ. Indeed, the relevant matching condition — which our fits fulfill within errors —
is γT(ḡ2

SF(µ0/2)) = γT(ḡ2
GF(µ0/2)).

The overall effect of the systematic error related to c̃t to the total squared error of the
running factor in the low-energy regime, taken into account via the procedure described in
section 4.3.1, corresponds to about 4% for both schemes.
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Figure 8. Non-perturbative anomalous dimension of the tensor current in the two schemes. The
perturbative one-loop expectation is shown for comparison. See figure 6 for a close-up of the SF region.

4.4 Matching at a hadronic scale

As the final step in our renormalisation strategy, we need to compute the renormalisation
constant ZT at a fixed hadronic scale µhad = 1/Lhad for changing bare couplings g2

0 which
match the couplings used in large-volume simulations. In practice, we aim at the interval
β ∈ [3.40, 3.85] used by the CLS consortium. The hadronic scale is fixed by a L/a = 20 lattice
with β = 3.79, resulting in uhad = 9.25. Using the scale setting of ref. [91], this corresponds
to an energy scale µhad = 233(8)MeV. Lattices with L/a = 24, 16, 12, 10 were then tuned
to match this scale covering the range of CLS couplings.

The full set of simulations in the hadronic regime is summarised in tables 3 and 4. The
tuning in both the coupling uGF and the mass Lm is only precise up to a few standard
deviations; we account for this effect by performing a combined fit of the data as a function
of g2

0, uGF and Lm, in order to extract ZT(g2
0, aµhad) on our line of constant physics defined

by uhad = ḡ2(µhad) = 9.25, Lm = 0. As a model for our data we use the fit form

ZT(g2
0, uGF, Lm) = ZT(g2

0, aµhad) + t10 (uGF − uhad) + t01 Lm ,

ZT(g2
0, aµhad) = z0 + z1(β − β0) + z2(β − β0)2 .

(4.28)

For the free coefficients we obtain

zf
0 = 1.4178(75) , zf

1 = 0.263(38) , zf
2 = −0.21(10) , (4.29)

with χ2/d.o.f. = 0.621, and

zk
0 = 1.1748(58) , zk

1 = 0.191(21) , zk
2 = −0.043(55) , (4.30)

– 23 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
9

L/a β κ uGF Lm Zf
T(g2

0, aµhad) Nms

10 3.400000 0.136804 9.282(40) −0.0236(35) 1.308(6)(15) 2489
10 3.411000 0.136765 9.290(31) +0.0189(22) 1.276(4)(15) 4624
12 3.480000 0.137039 9.417(43) −0.0115(31) 1.328(7)(12) 1868
12 3.488000 0.137021 9.393(40) +0.0035(24) 1.329(6)(12) 2667
12 3.497000 0.137063 9.118(51) −0.0102(28) 1.318(8)(12) 1491
16 3.629800 0.137163 9.638(35) −0.0062(12) 1.3955(81)(90) 6362
16 3.649000 0.137158 9.417(36) −0.0024(14) 1.4016(91)(88) 4837
16 3.657600 0.137154 9.169(43) −0.0039(15) 1.3818(90)(85) 3262
16 3.671000 0.137148 9.045(54) +0.0009(24) 1.371(12)(8) 1553
20 3.790000 0.137048 9.256(36) −0.00053(99) 1.4105(75)(66) 4305
24 3.893412 0.136894 9.370(61) −0.00001(100) 1.471(14)(5) 3008
24 3.912248 0.136862 9.132(49) +0.00010(76) 1.430(12)(5) 5086

Table 3. Results for ZT in the hadronic matching region (f-scheme). The first error is statistical, the
second is systematic due to the use of a one-loop result for the improvement coefficient c̃t.

L/a β κ uGF Lm Zk
T(g2

0, aµhad) Nms

10 3.400000 0.136804 9.282(40) −0.0236(35) 1.109(4)(12) 2489
10 3.411000 0.136765 9.290(31) +0.0189(22) 1.089(3)(12) 4624
12 3.480000 0.137039 9.417(43) −0.0115(31) 1.116(4)(10) 1868
12 3.488000 0.137021 9.393(40) +0.0035(24) 1.117(3)(10) 2667
12 3.497000 0.137063 9.118(51) −0.0102(28) 1.1141(44)(98) 1491
16 3.629800 0.137163 9.638(35) −0.0062(12) 1.1546(32)(75) 6362
16 3.649000 0.137158 9.417(36) −0.0024(14) 1.1586(37)(73) 4837
16 3.657600 0.137154 9.169(43) −0.0039(15) 1.1527(39)(71) 3262
16 3.671000 0.137148 9.045(54) +0.0009(24) 1.1452(48)(70) 1553
20 3.790000 0.137048 9.256(36) −0.00053(99) 1.1697(37)(55) 4305
24 3.893412 0.136894 9.370(61) −0.00001(100) 1.2060(66)(45) 3008
24 3.912248 0.136862 9.132(49) +0.00010(76) 1.1905(50)(44) 5086

Table 4. Results for ZT in the hadronic matching region (k-scheme). The first error is statistical, the
second is systematic due to the use of a one-loop result for the improvement coefficient c̃t.

with χ2/d.o.f. = 0.437. The corresponding functions and data points are presented in figure 9
and their covariances can be found in appendix A.2. In table 5 we quote the values of ZT

at µhad for the values of β where CLS ensembles have been simulated.
Note that, as hinted before, the systematic uncertainty due to the use of a one-loop result

for the improvement coefficient c̃t, that we conservatively estimate via eq. (4.17), turns out
to be substantial. It is indeed dominant with respect to the statistical uncertainty, except
for the largest L/a = 24 lattices. At the level of fit coefficients, the error on the zeroth fit
parameter is dominated by the systematic error estimate (77% for f and 88% for k) while
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Figure 9. Tensor current renormalisation factor at the hadronic matching point uhad = 9.25 in the
f-scheme (circles) and the k-scheme (diamonds). Dashed lines indicate the bare gauge couplings used
in CLS simulations.

the contribution is subleading for the remaining parameters (10% and 5% for f, 24% and
11% for k). Note also that systematic uncertainties are 100% correlated by construction, and
should be treated in that way when the values of ZT quoted are employed.

4.5 Total running and renormalisation factors

We are now in a position to quote our final results. The total running factors relating RGI
operator insertions to renormalised insertions at µhad are given by the products of the two
running factors in eqs. (4.15) and (4.24). They are found to be

ĉf(µhad) = 0.7260(81)(14) , ĉk(µhad) = 0.8711(70)(11) , (4.31)

where the first error is statistical and the second is the systematic error resulting from the
fact that we only know the boundary O(a) improvement coefficients perturbatively. We stress
that these are continuum quantities, where the only dependence left is in the renormalisation
scheme. We also stress that, as in the case of the values of ZT at µhad, systematic uncertainties
are 100% correlated by construction, and should be treated in that way when the values
of the above running factors are used.

By combining the running factors in eq. (4.31) with the renormalisation constants at
µhad discussed in section 4.4, it is furthermore possible to introduce a total renormalisation
factor that connects bare and RGI operator insertions, viz.

ẐT(g2
0) ≡ ĉ(µhad)ZT(g2

0, aµhad) . (4.32)

This is a divergent quantity as a → 0, which depends on the bare coupling only, since the
dependence on the hadronic matching scale µhad cancels by construction up to cutoff effects.
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β Zf
T(g2

0 , aµhad) Zk
T(g2

0 , aµhad)

3.40 1.283(4)(15) 1.094(3)(12)
3.46 1.308(3)(13) 1.107(2)(11)
3.55 1.342(3)(11) 1.1265(18)(90)
3.70 1.3924(37)(78) 1.1573(19)(65)
3.85 1.4328(50)(59) 1.1861(25)(49)

Table 5. Results for ZT(g2
0 , aµhad) at CLS β-values for both schemes. The first error is statistical,

the second is systematic due to the use of a one-loop result for the improvement coefficient c̃t.
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Figure 10. Comparison of the total renormalisation factors ẐT(g2
0) at the CLS couplings for both

schemes. Note that the errors are highly correlated as all values for a given scheme share the running
factor ĉ, whose uncertainty is dominant.

By the same reason, and because the RGI is unique, the values of ẐT computed through the
two schemes can only differ by cutoff effects; in particular, Ẑf

T(g2
0)/Ẑk

T(g2
0) = 1+O(a2) (up to

logarithmic corrections). The value of ẐT within the range in g2
0 covered by our simulations

can be obtained trivially by multiplying the coefficients in eqs. (4.29) and (4.30) by the
corresponding factors in eq. (4.31). Figure 10 shows a comparison of the total renormalisation
factor in both schemes as a function of the bare gauge coupling. The same comments as
above regarding the correlation of systematic uncertainties apply.
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5 Conclusions

In the present work, we computed the renormalisation and running of non-singlet quark
bilinears with tensorial Lorentz structure, thereby addressing the last missing non-trivial
anomalous dimensions of two- and four-quark operators within the ALPHA collaboration’s
Nf = 3 renormalisation programme. Our approach, which is based on step scaling in the
Schrödinger functional and gradient flow schemes, allowed us to non-perturbatively compute
the operator anomalous dimension from the hadronic scale µhad = 233(8)MeV all the way
up to electroweak energies, in two different renormalisation schemes. As an accessory step,
we computed non-perturbatively the improvement coefficient cT, required to obtain O(a)
improved tensor currents in the chiral limit, which is also relevant for computations of O(a)
improved amplitudes involving the latter. In this procedure all error sources, statistical
and systematic, are kept under control.

The main results provided in the text are:

• The non-perturbative values of the improvement coefficient cT(g2
0) for a non-perturbati-

vely O(a) improved fermion action and a tree-level Symanzik improved gauge action, in
a large range of values of the bare gauge coupling that includes those employed in large
volume simulations (cf. eq. (3.22) and table 1).

• The RG running factor connecting amplitudes of tensor currents at the hadronic scale
µhad and the corresponding RGI value, eq. (4.31). These are continuum quantities,
that only depend on the renormalisation scheme. Results are provided in two different
SF schemes for better control of the systematics, with a ballpark 1% precision. It is
important to point out that the running factors are in the continuum limit, and can
therefore be applied to continuum results obtained with any lattice action.

• The renormalisation constants of the improved currents in the range of couplings relevant
for CLS simulations, as well as the total renormalisation factor relating bare and RGI
hadronic matrix elements (cf. eq. (4.28), table 5). These results are regularisation
dependent, but still wide-ranging, since any computation based on CLS ensembles can
benefit from them.

Some interesting aspects of our results are worth stressing. One is that the non-
perturbative anomalous dimensions of tensor currents seem to have generally larger values,
and more sizeable deviations from low-order perturbation theory, than the other independent
anomalous dimension in the two-quark sector — that is, the one of quark masses. This
makes an interesting potential case for the impact of non-perturbative renormalisation on the
systematic uncertainties of computations of tensor amplitudes. Another relevant observation
is that a non-negligible source of uncertainty comes from the lack of knowledge beyond
one-loop perturbation theory about the O(a) improvement coefficients related to the SF
boundary. This is a qualitative difference with respect to the computation of renormalised
quark masses in ref. [32], where an accidental suppression first noticed in ref. [104] makes
the relevant renormalisation constants much less sensitive to the effect. Efforts to suppress
this source of uncertainty are thus part of the methodological improvements required by
future, higher-precision computations.
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A Covariance matrices for fit parameters

A.1 Running at low energies

cov(ff
i , f

f
j ) =

 3.985 436× 10−3 −1.884 666× 10−3 2.017 869× 10−4

−1.884 666× 10−3 9.483 937× 10−4 −1.039 767× 10−4

2.017 869× 10−4 −1.039 767× 10−4 1.187 704× 10−5

 , (A.1)

cov(fk
i , f

k
j ) =

 2.182 060× 10−3 −1.004 780× 10−3 1.040 076× 10−4

−1.004 780× 10−3 4.946 745× 10−4 −5.266 863× 10−5

1.040 076× 10−4 −5.266 863× 10−5 5.713 030× 10−6

 . (A.2)

A.2 Matching at a hadronic scale

cov(zf
i , z

f
j ) =

 5.671 542× 10−5 −4.288 534× 10−5 1.410 911× 10−4

−4.288 534× 10−5 1.436 836× 10−3 2.966 136× 10−3

1.410 911× 10−4 2.966 136× 10−3 1.011 492× 10−2

 , (A.3)

cov(zk
i , z

k
j ) =

 3.351 458× 10−5 −4.802 689× 10−5 9.309 619× 10−5

−4.802 689× 10−5 4.458 109× 10−4 6.658 459× 10−4

9.309 619× 10−5 6.658 459× 10−4 3.038 084× 10−3

 . (A.4)
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B Computation of cT

This appendix collects the simulation parameters of the Schrödinger functional gauge field
ensembles employed for the determinations of the tensor current improvement coefficient cT

(table 6) as well as the associated results for the PCAC quark mass am and cT from the
variants of Ward identity extractions discussed in section 3 (table 7).

ID L3 × T/a4 β κ MDU P (Q = 0) τexp[MDU]

A1k1 123 × 17 3.3 0.13652 20480 0.365 8.33(46)
A1k3 123 × 17 3.3 0.13648 6876 0.357 8.33(46)
A1k4 123 × 17 3.3 0.1365 96640 0.366 8.33(46)

E1k1 143 × 21 3.414 0.1369 38400 0.353 10.2(8)
E1k2 143 × 21 3.414 0.13695 57600 0.375 10.2(8)

B1k1 163 × 23 3.512 0.137 20480 0.389 22.2(3.3)
B1k2 163 × 23 3.512 0.13703 8192 0.341 22.2(3.3)
B1k3 163 × 23 3.512 0.1371 16384 0.458 22.2(3.3)
B1k4 163 × 23 3.512 0.13714 27856 0.402 22.2(3.3)

C1k1 203 × 29 3.676 0.1368 7848 0.334 63(17)
C1k2 203 × 29 3.676 0.137 15232 0.450 63(17)
C1k3 203 × 29 3.676 0.13719 15472 0.645 63(17)

D1k2 243 × 35 3.81 0.13701 6424 0.457 154(31)
D1k4 243 × 35 3.81 0.137033 85008 0.696 154(31)

Table 6. Simulation parameters’ summary for the gauge field configuration ensembles labeled by ‘ID’.
MDU denotes the total length of the Markov chain for each ensemble in molecular dynamics units.
P (Q = 0) gives the fraction of configurations, for which the topological charge Q vanishes. τexp is the
exponential autocorrelation time used for the tail in the statistical data analysis (cf. ref. [55]), which
is estimated from the integrated autocorrelation time of the correlation function f1 on the longest
Markov chain for each value of β. All measurements are separated by 8 MDU except for ensembles
A1k3 (4) and D1k4 (16). The range of lattice spacings covered by the ensembles D through A is
0.042 fm ≲ a ≲ 0.105 fm.
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ID am c{T/4}
T c{T/3}

T c{T/4}
T,alt c{T/3}

T,alt

A1k1 −0.00287(61) 0.117(10) 0.114(8) 0.146(10) 0.143(8)
A1k3 +0.00105(95) 0.132(13) 0.114(9) 0.160(13) 0.142(9)
A1k4 −0.00119(33) 0.113(6) 0.114(4) 0.142(6) 0.143(4)

0 0.121(8) 0.114(5) 0.150(8) 0.143(5)

E1k1 +0.00270(20) 0.105(5) 0.088(4) 0.118(5) 0.101(4)
E1k2 +0.00042(13) 0.108(5) 0.089(4) 0.123(5) 0.105(4)

0 0.108(6) 0.089(5) 0.124(6) 0.105(5)

B1k1 +0.00552(20) 0.084(5) 0.076(5) 0.085(5) 0.077(5)
B1k2 +0.00435(28) 0.075(10) 0.072(8) 0.078(10) 0.075(8)
B1k3 +0.00157(18) 0.099(7) 0.088(5) 0.107(7) 0.096(5)
B1k4 −0.00056(16) 0.093(5) 0.074(4) 0.102(5) 0.083(4)

0 0.094(4) 0.078(3) 0.103(4) 0.087(3)

C1k1 +0.01322(17) 0.070(6) 0.059(5) 0.044(6) 0.032(5)
C1k2 +0.00601(11) 0.072(5) 0.066(4) 0.061(5) 0.055(4)
C1k3 −0.00110(11) 0.063(5) 0.061(4) 0.066(5) 0.063(4)

0 0.065(4) 0.062(3) 0.066(4) 0.063(3)

D1k2 +0.00073(15) 0.052(7) 0.052(4) 0.051(8) 0.051(6)
D1k4 −0.00007(3) 0.055(2) 0.049(2) 0.056(3) 0.049(2)

0 0.055(2) 0.049(2) 0.055(2) 0.049(2)

Table 7. Results for the PCAC quark mass am and different determinations of the tensor current
improvement coefficient cT, as described in section 3, on the individual gauge field ensembles of table 6
and in the chiral limit (am→ 0). The errors of individual ensemble results are statistical, while the
ones in the chiral limit follow from the orthogonal distance regression procedure of ref. [105]. Our
preferred determination c{T/4}

T,alt is highlighted in boldface.

– 30 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
9

C Computation of ZT

u L/a β κ Zf
T(L/a) Zf

T(2L/a) Σf
T(L/a)

1.110000 6 8.540300 0.132336 0.98266(36) 0.99491(44) 1.02140(59)
1.110000 8 8.732500 0.132134 0.98490(34) 1.00060(77) 1.02145(86)
1.110000 12 8.995000 0.131862 0.99054(54) 1.01015(94) 1.0224(11)

1.184400 6 8.217000 0.132690 0.98413(38) 0.99453(46) 1.02008(62)
1.184400 8 8.404400 0.132477 0.98528(38) 1.0034(10) 1.0242(11)
1.184400 12 8.676900 0.132172 0.99164(63) 1.0131(10) 1.0244(12)

1.265600 6 7.909100 0.133057 0.98417(40) 0.99643(53) 1.02265(68)
1.265600 8 8.092900 0.132831 0.98595(40) 1.00415(92) 1.0248(10)
1.265600 12 8.373000 0.132492 0.99432(65) 1.0152(11) 1.0240(13)

1.362700 6 7.590900 0.133469 0.98440(42) 0.99982(60) 1.02668(76)
1.362700 8 7.772300 0.133228 0.98703(43) 1.0098(13) 1.0299(14)
1.362700 12 8.057800 0.132854 0.99313(71) 1.0203(13) 1.0306(15)

1.480800 6 7.261800 0.133934 0.98478(46) 1.00221(68) 1.02970(85)
1.480800 8 7.442400 0.133675 0.98821(47) 1.01361(80) 1.03314(95)
1.480800 12 7.729900 0.133264 0.99550(76) 1.0255(12) 1.0336(14)

1.617300 6 6.943300 0.134422 0.98740(50) 1.00684(69) 1.03284(88)
1.617300 8 7.125400 0.134142 0.98899(49) 1.0173(14) 1.0367(15)
1.617300 12 7.410700 0.133699 1.00020(94) 1.0318(18) 1.0355(20)

1.794300 6 6.605000 0.134983 0.98851(58) 1.01104(97) 1.0375(12)
1.794300 8 6.791500 0.134677 0.99287(55) 1.0258(17) 1.0422(18)
1.794300 12 7.068800 0.134209 1.0034(10) 1.0423(19) 1.0430(22)

2.012000 6 6.273500 0.135571 0.99359(64) 1.0206(11) 1.0437(13)
2.012000 8 6.468000 0.135236 0.99594(65) 1.0374(13) 1.0519(15)
2.012000 12 6.729950 0.134760 1.00663(100) 1.0557(16) 1.0536(19)
2.012000 16 6.934600 0.134412 1.02042(91) 1.0702(24) 1.0515(25)

Table 8. Results for step scaling of Zf
T in the high-energy region.
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u L/a β κ Zk
T(L/a) Zk

T(2L/a) Σk
T(L/a)

1.110000 6 8.540300 0.132336 0.96712(31) 0.97995(38) 1.02104(51)
1.110000 8 8.732500 0.132134 0.97094(30) 0.98628(64) 1.02048(73)
1.110000 12 8.995000 0.131862 0.97784(47) 0.99617(80) 1.02089(96)

1.184400 6 8.217000 0.132690 0.96694(33) 0.97824(39) 1.01997(53)
1.184400 8 8.404400 0.132477 0.96993(32) 0.98748(88) 1.02310(97)
1.184400 12 8.676900 0.132172 0.97778(53) 0.99729(87) 1.0222(11)

1.265600 6 7.909100 0.133057 0.96528(34) 0.97841(44) 1.02249(59)
1.265600 8 8.092900 0.132831 0.96913(34) 0.98685(78) 1.02363(88)
1.265600 12 8.373000 0.132492 0.97856(56) 0.99798(98) 1.0223(12)

1.362700 6 7.590900 0.133469 0.96347(36) 0.97949(50) 1.02623(65)
1.362700 8 7.772300 0.133228 0.96829(36) 0.9896(11) 1.0278(12)
1.362700 12 8.057800 0.132854 0.97642(59) 1.0008(11) 1.0276(13)

1.480800 6 7.261800 0.133934 0.96152(39) 0.97923(57) 1.02887(73)
1.480800 8 7.442400 0.133675 0.96726(39) 0.99067(66) 1.03050(80)
1.480800 12 7.729900 0.133264 0.97665(61) 1.00320(97) 1.0301(12)

1.617300 6 6.943300 0.134422 0.96084(42) 0.98022(57) 1.03162(75)
1.617300 8 7.125400 0.134142 0.96540(40) 0.9910(11) 1.0334(13)
1.617300 12 7.410700 0.133699 0.97828(77) 1.0063(15) 1.0318(17)

1.794300 6 6.605000 0.134983 0.95796(48) 0.98000(79) 1.03577(98)
1.794300 8 6.791500 0.134677 0.96539(46) 0.9949(13) 1.0382(15)
1.794300 12 7.068800 0.134209 0.97859(86) 1.0123(16) 1.0380(18)

2.012000 6 6.273500 0.135571 0.95747(52) 0.98284(88) 1.0409(11)
2.012000 8 6.468000 0.135236 0.96411(53) 0.9998(10) 1.0457(12)
2.012000 12 6.729950 0.134760 0.97782(81) 1.0186(12) 1.0457(15)
2.012000 16 6.934600 0.134412 0.99194(73) 1.0329(19) 1.0435(21)

Table 9. Results for step scaling of Zk
T in the high-energy region.
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u Σu(L/a) L/a β κ Zf
T(L/a) Zf

T(2L/a) Σf
T(L/a)

2.1293(24) 2.4226(49) 8 5.371500 0.133621 1.00494(58) 1.0365(19) 1.0314(20)(12)
2.1213(21) 2.5049(70) 12 5.543070 0.133314 1.01804(72) 1.0603(29) 1.0415(29)(8)
2.1257(25) 2.5356(57) 16 5.700000 0.133048 1.02923(87) 1.0706(27) 1.0402(28)(5)

2.3910(26) 2.7722(63) 8 5.071000 0.134217 1.00956(69) 1.0490(22) 1.0391(23)(15)
2.3919(25) 2.8985(82) 12 5.242465 0.133876 1.02424(89) 1.0765(33) 1.0510(33)(9)
2.3900(30) 2.9375(70) 16 5.400000 0.133579 1.0373(11) 1.0886(23) 1.0494(25)(6)

2.7353(31) 3.2650(79) 8 4.764900 0.134886 1.01494(73) 1.0640(25) 1.0484(26)(17)
2.7371(38) 3.406(11) 12 4.938726 0.134508 1.0341(14) 1.0953(34) 1.0592(36)(11)
2.7359(35) 3.485(11) 16 5.100000 0.134169 1.0484(12) 1.1160(33) 1.0645(34)(7)

3.2046(37) 3.968(11) 8 4.457600 0.135607 1.02479(96) 1.0909(36) 1.0645(36)(21)
3.2051(47) 4.174(13) 12 4.634654 0.135200 1.0437(15) 1.1266(48) 1.0795(48)(13)
3.2029(52) 4.263(15) 16 4.800000 0.134821 1.0649(16) 1.1482(41) 1.0782(42)(9)

3.8619(45) 5.070(16) 8 4.151900 0.136326 1.0381(12) 1.1315(39) 1.0900(39)(26)
3.8725(60) 5.389(23) 12 4.331660 0.135927 1.0648(21) 1.1815(64) 1.1096(64)(16)
3.8643(63) 5.485(21) 16 4.500000 0.135526 1.0861(18) 1.2284(62) 1.1310(60)(11)

4.4870(56) 6.207(23) 8 3.947900 0.136747 1.0584(13) 1.1791(51) 1.1141(49)(31)
4.4945(76) 6.785(34) 12 4.128217 0.136403 1.0858(23) 1.2638(74) 1.1640(72)(19)
4.4901(77) 6.890(47) 16 4.300000 0.136008 1.1159(22) 1.291(11) 1.1567(99)(12)

5.3040(88) 7.953(44) 8 3.754890 0.137019 1.0825(19) 1.280(12) 1.183(11)(4)
5.300(11) 8.782(47) 12 3.936816 0.136798 1.1221(27) 1.428(25) 1.273(23)(2)
5.301(13) 9.029(61) 16 4.100000 0.136473 1.1511(36) 1.433(16) 1.244(15)(1)

Table 10. Results for step scaling of Zf
T in the low-energy region. The notation Σu refers to the

value of the coupling in the 2L/a lattice.
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u Σu(L/a) L/a β κ Zk
T(L/a) Zk

T(2L/a) Σk
T(L/a)

2.1293(24) 2.4226(49) 8 5.371500 0.133621 0.97888(47) 1.0055(15) 1.0272(16)(11)
2.1213(21) 2.5049(70) 12 5.543070 0.133314 0.99238(58) 1.0270(22) 1.0349(23)(6)
2.1257(25) 2.5356(57) 16 5.700000 0.133048 1.00324(70) 1.0387(21) 1.0354(22)(5)

2.3910(26) 2.7722(63) 8 5.071000 0.134217 0.97952(56) 1.0120(18) 1.0332(19)(12)
2.3919(25) 2.8985(82) 12 5.242465 0.133876 0.99398(72) 1.0361(25) 1.0424(26)(8)
2.3900(30) 2.9375(70) 16 5.400000 0.133579 1.00709(88) 1.0472(20) 1.0398(21)(5)

2.7353(31) 3.2650(79) 8 4.764900 0.134886 0.97949(61) 1.0183(19) 1.0396(20)(15)
2.7371(38) 3.406(11) 12 4.938726 0.134508 0.9985(11) 1.0464(27) 1.0480(29)(9)
2.7359(35) 3.485(11) 16 5.100000 0.134169 1.01212(93) 1.0642(25) 1.0514(27)(6)

3.2046(37) 3.968(11) 8 4.457600 0.135607 0.98135(78) 1.0322(27) 1.0519(28)(18)
3.2051(47) 4.174(13) 12 4.634654 0.135200 1.0010(12) 1.0617(31) 1.0606(34)(11)
3.2029(52) 4.263(15) 16 4.800000 0.134821 1.0203(12) 1.0809(29) 1.0594(31)(7)

3.8619(45) 5.070(16) 8 4.151900 0.136326 0.98448(94) 1.0506(27) 1.0672(28)(22)
3.8725(60) 5.389(23) 12 4.331660 0.135927 1.0096(15) 1.0869(46) 1.0766(48)(13)
3.8643(63) 5.485(21) 16 4.500000 0.135526 1.0296(13) 1.1274(43) 1.0950(44)(9)

4.4870(56) 6.207(23) 8 3.947900 0.136747 0.9934(11) 1.0700(32) 1.0770(33)(25)
4.4945(76) 6.785(34) 12 4.128217 0.136403 1.0185(17) 1.1292(50) 1.1088(52)(14)
4.4901(77) 6.890(47) 16 4.300000 0.136008 1.0455(16) 1.1508(62) 1.1007(62)(9)

5.3040(88) 7.953(44) 8 3.754890 0.137019 1.0028(14) 1.1163(51) 1.1133(53)(29)
5.300(11) 8.782(47) 12 3.936816 0.136798 1.0368(20) 1.1907(91) 1.1484(90)(16)
5.301(13) 9.029(61) 16 4.100000 0.136473 1.0611(24) 1.2034(68) 1.1341(68)(10)

Table 11. Results for step scaling of Zk
T in the low-energy region. The notation Σu refers to the

value of the coupling in the 2L/a lattice.
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