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Abstract. We investigate the Pompeiu property for subsets of the real
line, under no assumption of connectedness. In particular we focus our
study on finite unions of bounded (disjoint) intervals, and we emphasize
the different results corresponding to the cases where the function in
question is supposed to have constant integral on all isometric images,
or just on all the translation-images of the domain. While no set of the
previous kind enjoys the Pompeiu property in the latter sense, we provide
a necessary and sufficient condition in order a union of two intervals to
have the Pompeiu property in the former sense, and we produce some
examples to give an insight of the complexity of the problem for three-
interval sets.
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1. Introduction

The Pompeiu problem traces back to 1929, and has been one of the most
extensively investigated issues both in applied and abstract mathematics. Even
if the original formulation given by Pompeiu in his basic papers [5–7] included
some supplementary assumptions, nowadays the vague appellation of Pompeiu
problem may label any question which sounds like this:
Let D ⊆ R

n be a measurable set and f a continuous real-valued function on
R

n whose integral on every set “congruent” to D takes a constant value c.
Must then the function f be itself constant?

If a domain D ⊆ R
n is such that the above question is answered in the

positive for every continuous function f : Rn → R satisfying the assumption,
then D is said to have the Pompeiu property (of course, this depends also
on the definition of “congruent” we are considering). In the literature, at our
best knowledge, all papers devoted to the Pompeiu problem are concerned
with the case where D is convex, or at least connected. For example, it is
well-known that, when considering rigid motions (translations composed with
rotations), any ball in R

n fails to enjoy the Pompeiu property, while it holds
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for some classes of domains whose boundary is homeomorphic to S
n−1 (as

ellipses and regular polygons in the plane, see [1–3] and the survey paper [9]).
Before entering into the analysis of the present paper, let us mention that
the Pompeiu’s problem is interconnected with different recent research fields;
let us mention, for instance, the papers [4] and [8] where the regularity of
the boundary of a convex domain is linked to the presence of the Pompeiu’s
property for the same domain.

As far as only connected domains are investigated, the Pompeiu problem
is of no interest in R: clearly, for every bounded interval [a, b], the function
f(x) = sin

(
2π

b−ax
)

is non-constant and such that its integral is 0 on every subset
of R congruent to [a, b] (in fact, this is just a special case of the above-mentioned
result, that no ball in R

n may enjoy the Pompeiu property). However, once
the connectedness assumption is dropped, the one-dimensional case becomes
non-trivial, and this corresponds exactly to the kind of investigation carried
out in the present paper.

More specifically, our study has been focused on the following situation.
Let I be a finite union of disjoint bounded intervals of the real line and let
Iso(R) be the group of isometries of R (recall that every isometry from the
subset I to R is the restriction of some isometry from the whole of R (on)to
R). Denoting with Σ an arbitrary subgroup of Iso(R), we address the following
question: when is it true that for every continuous function f : R → R, the
implication

(

∃C ∈ R ∀σ ∈ Σ
∫

σ(I)

f = C

)

=⇒ f constant (1)

holds? (Notice, in passing, that if (1) fails for some constant C then it fails for
every constant C ′ ∈ R).

In our study, we have tackled question (1) in two cases: namely, Σ =
Tr(R), the set of all translations of the real line, and Σ = Iso(R). The results
obtained in the two cases have turned out to be quite different.

In Proposition 2.3 infra we prove that, whenever I is the union of two
bounded disjoint intervals, it fails to enjoy the Pompeiu property with respect
to Σ = Tr(R). In fact, the argument used for the proof outlines an induc-
tive procedure to obtain a non-constant real function whose integral on every
translation-image of I is constant. As we point out in Remark 2.4, the result
extends to any finite union of disjoint bounded intervals, by an analogous but
technically heavier (and tedious) proof.

On the other hand, when taking Σ = Iso(R), even for the union of two
disjoint intervals the situation appears to be multi-faceted, and the answer to
the basic question depends on the relationships between the three fundamental
quantities involved: the length of the two intervals and their gap. Theorem 2.12
infra gives a necessary and sufficient condition for I to enjoy the Pompeiu
property in this case; in particular, the statement emphasizes the crucial rôle
played by the rational or irrational character of some ratios related to the three
quantities above.



NoDEA On the one-dimensional Pompeiu problem Page 3 of 16 51

Contrary to the results obtained for translations, when Σ = Iso(R) pass-
ing from two to three intervals considerably boosts the complexity of the prob-
lem. In this paper we do not investigate in detail the three-interval (nor the
more-interval) case. However, we prove that from every two-interval set (even
enjoying the Pompeiu property) we may always obtain, by adding a third in-
terval, a set for which the property does not hold; and we also give an example
of a situation where the opposite phenomenon happens. The former result ap-
pears, in particular, to be somehow anti-intuitive, as it could seem reasonable
that increasing the complexity of the set, the probability of getting the Pom-
peiu property increases as well. This should show how interesting and probably
twisted would be a systematic study of the Pompeiu problem for multi-interval
sets, when taking Σ = Iso(R).

2. The two-interval case

In this section we study conjecture (1) stated in the introduction, when we
deal with continuous functions and I is the disjoint union of two non-trivial
compact intervals.
In a first result we take into account the non-trivial subset Tr(R) ⊂ Iso(R)
of translations on the real line: in this case (1) is false, and we will prove
the existence on infinitely many non-constant functions satisfying the integral
condition. On the other hand, when also reflections are allowed, we will find a
necessary and sufficient condition on I in order to obtain a positive answer.

We start proving that the integral condition, when σ varies in the set of
translations Tr(R), is equivalent to a pointwise one.

Lemma 2.1. Let a < b < c < d and f ∈ C(R). Then the following two condi-
tions are equivalent:

(I) F (t) :=
∫ b+t

a+t

f(x)dx +
∫ d+t

c+t

f(x)dx is constant as t varies in R;

(P) f(a + t) + f(c + t) = f(b + t) + f(d + t), for every t ∈ R, i.e.

∀x ∈ R, f(x) = f(x + a − d) + f(x + c − d) − f(x + b − d). (2)

Proof. (I) ⇒ (P) Trivially follows deriving the constant function F .
(P) ⇒ (I) Let t′, t′′ ∈ R with t′ < t′′, and set, for the sake of simplicity
s := t′′ − t′, a′ := a + t′, b′ := b + t′, c′ := c + t′, d′ := d + t′ and

r′ :=
∫ b+t′

a+t′
f(x)dx +

∫ d+t′

c+t′
f(x)dx =

∫ b′

a′
f(x)dx +

∫ d′

c′
f(x)dx.

Our aim is to prove that

r′′ :=
∫ b+t′′

a+t′′
f(x)dx +

∫ d+t′′

c+t′′
f(x)dx = r′.
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Using assumption (2) and the definition of r′, we see that

r′′ =
∫ b′+s

a′+s

f(x)dx +
∫ d′+s

c′+s

f(x)dx

= r′ −
∫ a′+s

a′
f(x)dx +

∫ b′+s

b′
f(x)dx −

∫ c′+s

c′
f(x)dx

+

(∫ d′+s

d′
[f(x + a − d) + f(x + c − d) − f(x + b − d)]dx

)

.

(3)

Now, straightforward changes of variables show that
∫ d′+s

d′
f(x + a − d)dx =

∫ d′+s+a−d

d′+a−d

f(z)dz =
∫ a′+s

a′
f(z)dz,

∫ d′+s

d′
f(x + c − d)dx =

∫ c′+s

c′
f(z)dz,

∫ d′+s

d′
f(x + b − d)dx =

∫ b′+s

b′
f(z)dz,

and we conclude by replacing in (3). �

Remark 2.2. The previous lemma still holds when f ∈ L1
loc(R) if we read the

pointwise equality on R except a zero-measure set.

Proposition 2.3. Let I = [a, b]∪ [c, d], for some a < b < c < d, and Σ = Tr(R).
Then conjecture (1) is false in the realm of continuous functions.

Proof. Let C ∈ R and f0 ∈ C([a, d]) be such that

f0(d) = f0(a) + f0(c) − f0(b) and
∫

I

f0(x)dx = C.

We now consider the sequence of functions (fn)n≥1 defined by the recurrence
relation:

fn(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fn−1(x + b − a) − fn−1(x + c − a) + fn−1(x + d − a),
if x ∈ [a − n(b − a), a − (n − 1)(b − a)),

fn−1(x), if x ∈ [a − (n − 1)(b − a), d + (n − 1)(d − c)],
fn−1(x + a − d) + fn−1(x + c − d) − fn−1(x + b − d),

if x ∈ (d + (n − 1)(d − c), d + n(d − c)].

Actually, for every n, fn is an extension of fn−1; it is then straightforward to
verify that each fn is well defined and continuous on [a−n(b−a), d+n(d−c)],
and that fn converges to some f ∈ C(R). Such limit function, by definition,
also verify the pointwise relation (2), hence, by Lemma 2.1, its integral on σ(I)
does not depend on the translation σ. We conclude observing that, when σ is
the identity

∫

I

f(x)dx =
∫

I

f0(x)dx = C.

�
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Remark 2.4. Both Lemma 2.1 and Proposition 2.3 still hold when I is the
disjoint union of more then two compact intervals, that is

I =
N⋃

i=1

[ai, bi], a1 < b1 < a2 < . . . < aN < bN .

We omit the proofs since they are the perfect analogue of the ones we have
proposed.

When the set Σ coincides with the set of all isometries of the real line
(i.e., translations, reflections and their compositions), then the situation turns
out to be quite different and, instead of the negative result of Proposition
2.3, we obtain a necessary and sufficient condition in order the Pompeiu’s
conjecture to hold. In a similar way to the statement of Proposition 2.3, in the
argument we are going to carry out we will consider a set I = [a, b] ∪ [c, d],
with a < b < c < d arbitrarily fixed real numbers. Since the problem is clearly
isometric-invariant, the fundamental quantities involved are the lengths of the
two intervals [a, b],[c, d] and of the hole between them. Thus, we define

� := b − a, H := c − b, L := d − c,

which yields the equality I = [0, �]∪[�+H, �+H+L]. Moreover, since reflections
are also allowed, it is not restrictive to assume that L ≥ �. Furthermore, given
α < β < γ < δ and a (measurable) function f : R → R, we define

[λ, ξ,Λ;α] = [λ, ξ,Λ;α]f :=
∫ β

α

f(x)dx +
∫ δ

γ

f(x)dx,

and similarly

[λ, ξ,Λ−;α] :=
∫ β

α

f(x)dx −
∫ δ

γ

f(x)dx, [λ−, ξ,Λ−;α] := −[λ, ξ,Λ;α],

whenever λ := β − α, Λ := δ − γ and ξ := γ − β. With this notation, for all
C ∈ R

(

∀σ ∈ Σ = Iso(R)
∫

σ(I)

f = C

)

⇐⇒ (∀x ∈ R [�,H,L;x] = [L,H, �;x] = C) . (4)

Lemma 2.5. If f : R → R is such that one of the two equivalent assumptions
of (4) holds (with �, L,H as above), then letting H ′ = 3H + L + � we have the
equalities

[�,H ′, L;x] = C = [L,H ′, �;x] for every x ∈ R.

Moreover,
L − �

L + H
∈ Q ⇐⇒ L − �

L + H ′ ∈ Q. (5)

Proof. On the one hand we have, for every x ∈ R,

[�,H,L;x] = C and [L,H, �; � + H + x] = C;
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Figure 1. Procedure to reduce to the case where H > L =
max(L, �)

hence, subtracting term by term the latter equation from the former one (we
refer to Fig. 1),

[�,H + L + H, �−;x] = 0 for every x ∈ R.

On the other hand, since [�,H,L; � + H + L + H + x] = C also holds for
any x ∈ R, then summing term by term we obtain the first of the required
equalities

[�,H + L + H + � + H,L;x] = C.

In a completely symmetric way, it is also proved the second one.
As for the equivalence displayed in (5), letting α = L−�

L+H′ and β = L−�
L+H

we see that α = β
3−β and β = 3α

1+α . �

From now on, f will be a (arbitrarily fixed) continuous function for which
one of the two equivalent conditions given by (4) holds. For the sake of sim-
plicity, in the next results we will also use the following labelling

(H1)
�

L
/∈ Q;

(H2)
L − �

2(L + H)
=

n

m
, with n and m coprime natural numbers;

(¬H2)
L − �

L + H
/∈ Q;

(H3)
L + �

H
/∈ Q.

Remark 2.6. Let us observe that when � = L assumption (H1) does not hold,
(H2) holds, while we can not say anything about (H3). In this case Lemma
2.7 does not give any information on the function f and Lemmata 2.8, 2.9 and
2.10 can not be applied. Nevertheless, Theorem 2.12 still holds since in this
case (¬H1) is satisfied and the proof is straightforward.

Lemma 2.7. If (H3), then f is (L − �)-periodic.
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Figure 2. the picture at left represents the procedure to ob-
tain the H-periodicity for the function ϕ; at right, the one for
the (H + L + �)-periodicity

Proof. Let us define the auxiliary function

ϕ(x) :=
∫ x+(L−�)

x

f(s)ds, for every x ∈ R;

we are then reduced to prove that ϕ is a constant function. By assumption,
for every x ∈ R, there holds

[L,H, �;x] = C and [�,H,L;x] = C,

hence, subtracting the second equation from the first one (the reader can
visualize such a procedure in Fig. 2), we obtain

[L − �,H − (L − �), (L − �)−;x + �] = 0, for every x ∈ R,

or, equivalently,

ϕ(x) = ϕ(x + H), for every x ∈ R.

On the other hand, the assumption can be read as

[L,H, �;x] = C and [�,H,L;x + (L − �)] = C,

implying [L − �,H + 2�, (L − �)−;x] = 0, for every x ∈ R, or, equivalently,

ϕ(x) = ϕ(x + H + L + �), for every x ∈ R.

Since (H + L + �)/H is not rational, and the continuous function ϕ is at the
same time H-periodic and (H +L+�)-periodic, then ϕ is necessarily constant.

�

Lemma 2.8. If (H1) and (H2) then (H3).

Proof. By assumption (H2) we have H = (m−2n)L−m�
2n and

L + �

H
= 2n

L
� + 1

(m − 2n)L
� − m

,

that is not a rational number if (and only if) (H1) holds. �

Lemma 2.9. If (¬H2), then f is (L + �)-periodic.
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Figure 3. procedure to obtain the (L + H)-periodicity of ψ

Proof. Thanks to Lemma 2.5, we may assume (up to replacing H with H ′ =
3H + L + �) that H > L; notice, in particular, that H ′ still satisfies (¬H2)
once H does.

Let us define the auxiliary function

ψ(x) :=
∫ x+(L+�)

x

f(s)ds, for every x ∈ R :

we claim that ψ is at the same time 2(L + H)- and 2(� + H)-periodic. Since
assumption (¬H2) is equivalent to �+H

L+H /∈ Q (just write �+H
L+H = 1 − L−�

L+H ), we
will then conclude that ψ is a constant function, hence f is (L + �)-periodic.

By assumption, we see that

[L,H, �;x] = C and [�,H,L;x + L] = C, for every x ∈ R;

taking into account that H > L, we may sum both terms of the above equalities
(see Fig. 3) to obtain

[L + �,H − �, L + �;x] = 2C, for every x ∈ R. (6)

By translating of L+H the above equality and changing the sign, we see that

[(L + �)−,H − �, (L + �)−;x + L + H] = −2C, for every x ∈ R; (7)

again, summing both terms of (6) and (7), it follows that

[L + �, 2H + L − �, (L + �)−;x] = 0, for every x ∈ R,

which is equivalent to the 2(H + L)-periodicity of ψ.
Swapping L with � we obtain the 2(H + �)-periodicity of ψ. �

Lemma 2.10. If (H1) and (H2) then f is 2(L + H)-periodic.

Proof. Since, by Lemmata 2.7 and 2.8, f is (L − �)-periodic, there exists a
constant k ∈ R such that

(∫ x+L−�

x
f(s)ds

)
/(L − �) = k, for any x ∈ R. Let

us define the (L − �)-periodic function

g(x) = f(x) − k, x ∈ R.
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By definition,
∫ x+L−�

x
g = 0 for any x ∈ R; furthermore g satisfies (4), indeed

(since f satisfies such an assumption for some constant C ∈ R)
∫

σ(I)

g(s)ds =
∫

σ(I)

f(s)ds − k(L + �) = C − k(L + �).

We term Cg = C−k(L+�) and we plan to prove that g (and, as a consequence,
f) is 2(L + H)-periodic.

Let us consider the set

Δ = {mL + n(L − �) : m,n ∈ Z} ;

since, by assumption, L
L−� is not rational, the set Δ is dense in R. It turns out,

as we will show later, that for every m,n ∈ Z, denoting t = mL+n(L− �) the
corresponding element in Δ, there holds

∫ x+t

x

g(s)ds +
∫ x+L+H+t

x+L+H

g(s)ds = mCg, for every x ∈ R. (8)

Differentiating by x the previous equation, we obtain, for every x ∈ R, that
the continuous function

hx(t) := g(x + t) − g(x) + g(x + L + H + t) − g(x + L + H), t ∈ R,

vanishes on the dense set Δ ⊂ R, hence it vanishes on the whole of R and we
conclude that

g(x+L+H+t)−g(x+L+H) = − [g(x + t) − g(x)] , for every t, x ∈ R. (9)

From the last equation, we deduce, for every t, x ∈ R, the following integral
relation,

∫ x+L+H+t

x+L+H

[g(s) − g(x + L + H)]ds

=
∫ x+t

x

[g(s′ + L + H) − g(x + L + H)]ds′

=
∫ x+t

x

[g((s′ − x) + x + L + H) − g(x + L + H)]ds′

= −
∫ x+t

x

[g(s′) − g(x)]ds′

that can be written as
∫ x+L+H+t

x+L+H

g(s)ds +
∫ x+t

x

g(s)ds

= [g(x + L + H) + g(x)]t, for every t, x ∈ R.

We now deduce the 2(L + H)-periodicity of g comparing the previous relation
with equation (8). Indeed, for every x ∈ R and t = mL + n(L − �) ∈ Δ there
holds

[g(x + L + H) + g(x)]t = mCg;

choosing m = 0 and n �= 0 we see that g(x + L + H) = −g(x) for every x ∈ R,
whence g(x + 2(L + H)) = −g(x + L + H) = g(x).
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Thus, we are left to prove equation (8). To this end, we will use “induction”
on Z.

When m = 0 the equation follows from the fact that
∫ a+L−�

a
g = 0, for

every a ∈ R. If m ≥ 0 and we assume (8) holds for that m, then we have the
equalities
∫ x+L+H+(m+1)L+n(L−�)

x+L+H

g(s)ds =
∫ x+L+H+mL+n(L−�)

x+L+H

g(s)ds

+
∫ x+L+H+(m+1)L+n(L−�)

x+L+H+mL+n(L−�)

g(s)ds

= −
∫ x+mL+n(L−�)

x

g(s)ds

+ mCg +
∫ x+L+H+(m+1)L+n(L−�)

x+L+H+mL+n(L−�)

g(s)ds.

Thus we will be done if we can prove that
∫ x+L+H+(m+1)L+n(L−�)

x+L+H+mL+n(L−�)

g(s)ds = Cg +
∫ x+mL+n(L−�)

x

g(s)ds

−
∫ x+(m+1)L+n(L−�)

x

g(s)ds

= Cg −
∫ x+(m+1)L+n(L−�)

x+mL+n(L−�)

g(s)ds,

which is equivalent to (replacing a = x + mL + n(L − �))
∫ a+L+H+L

a+L+H

g(s)ds +
∫ a+L

a

g(s)ds = Cg.

Since g has vanishing integral on intervals with length L − �, the first integral
in the previous equality is

∫ a+L+H+�

a+L+H
g(s)ds; the equality holds true by the

definition of the constant Cg. To conclude our proof we still have to consider
the case where m < 0. Replacing x′ = x + mL + n(L − �) the left hand side of
equation (8) reads as

−
∫ x′−mL−n(L−�)

x′
g(s)ds −

∫ x′+L+H−mL−n(L−�)

x′+L+H

g(s)ds,

which is equal to −(−mCg) = mCg using what we have already proved for
positive values of m. �
Corollary 2.11. If (H1) and (H2) with m even, then f is (L + H)-periodic.

Proof. By Lemmata 2.7, 2.8 and 2.10 the function f is at the same time
(L − �)− and 2(L + H)-periodic. Let k ∈ N be such that m = 2k, then,
by assumption (H2), n is odd and we conclude writing

L + H = k(L − �) +
1 − n

2
2(L + H).

�
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Theorem 2.12. Let I = [a, b] ∪ [c, d] for some a < b < c < d, and Σ = Iso(R).
Then conjecture (1) holds for f ∈ C(R) if and only if

(H1) ∧
( (

(¬H2) ∧ (H3)
) ∨ (

(H2) with m even
))

. (10)

Proof of the necessary condition. Assume (10) fails. As is easy to check, this
means that

¬(H1) ∨ (
(H2) with m odd

) ∨
(
¬(H3) ∧ ¬(

(H2) with m even
) )

. (11)

In order to disprove (1) suppose first that (H1) fails. Then there exist s > 0
and n1, n2 ∈ N such that

L = n1s and � = n2s;

letting f to be any s-periodic, non-constant continuous function, there exists
C ∈ R such that

∀x ∈ R

∫ x+s

x

f(t)dt = C, (12)

hence
∫

σ(I)

f(x)dx = (n1 + n2)C,

for every σ ∈ Iso(R).
Suppose now that (H2) holds for some odd value of m: this means that

L−�
2(L+H) = n

2h+1 for some n ∈ N
+ and h ∈ N. Therefore, there is s > 0 such

that L − � = ns and 2(L + H) = (2h + 1)s—equivalently, L + H = hs + s
2 . In

this case,

f(x) = sin
(

2π

s
x

)

turns out to be the required non-constant function which contradicts (1). In-
deed, notice first that f is an s-periodic function such that its integral on every
interval whose length is an integer multiple of s is 0, and with the supplemen-
tary property that f

(
x + s

2

)
= −f(x) for every x ∈ R. Then we see that, for

every a ∈ R,
∫ a+L

a

f(x)dx +
∫ a+L+H+�

a+L+H

f(x)dx =
∫ a+L

a

f(x)dx +
∫ a+L+H+�

a+L+H

f(x)dx

+
∫ a+2L+H

a+L+H+�

f(x)dx

=
∫ a+L

a

f(x)dx +
∫ a+hs+ s

2+L

a+hs+ s
2

f(x)dx

=
∫ a+L

a

f(x)dx +
∫ a+L

a

f
(
x + hs +

s

2

)
dx

=
∫ a+L

a

f(x)dx +
∫ a+L

a

−f(x)dx = 0.
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Symmetrically, since the interval [a−L+ �, a] has length L− � = ns, for every
a ∈ R we see that:
∫ a+�

a

f(x)dx +
∫ a+�+H+L

a+�+H

f(x)dx =
∫ a

a−L+�

f(x)dx +
∫ a+�

a

f(x)dx

+
∫ a+�+H+L

a+�+H

f(x)dx

=
∫ a+�

a−L+�

f(x)dx +
∫ a+�+hs+ s

2

a−L+�+hs+ s
2

f(x)dx

=
∫ a+�

a−L+�

f(x)dx +
∫ a+�

a−L+�

f
(
x + hs +

s

2

)

dx = 0.

Finally, if ¬(H3) holds, then L + � + H = n1s and H = n2s for some
s ∈ R and n1, n2 ∈ N. Then for any non-constant s-periodic function f we see
that

∫
σ(I)

f(x)dx = (n1 − n2)C for every σ ∈ Iso(R), where C has the same
definition as in (12). �

Proof of the sufficient condition. On the one hand, if (H1), (¬H2) and (H3)
hold then, by Lemmata 2.7 and 2.9, f is both (L − �)- and (L + �)-periodic.
Since, by assumption (H1), L−�

L+� /∈ Q, f is necessarily a constant function. On
the other hand, if (H1) and (H2) with m even hold then, by Corollary 2.11,
f turns out to be (L + H)-periodic; hence g (the translation of f defined in
the proof of Lemma 2.10) is also (L + H)-periodic, and from equation (9) we
obtain that g (hence f) is necessarily constant. �

Remark 2.13. Assumptions (H1) and (H2) are completely unrelated to each
other. Since the quantity H does not appear in the statement of (H1), it
is easy to realize that for every L, � ∈ R with L > � > 0, there exist
H ′,H ′′,H ′′′ > 0 such that L−�

L+H′ /∈ Q, L−�
2(L+H′′) = n

m with m odd (n,m co-
prime), and L−�

2(L+H′′′) = n
m with m even (n,m coprime).

As for (H3), it turns out that its validity is often (but not always) deter-
mined by that of (H1) and (H2). Indeed, besides Lemma 2.8, it is not hard to
show that

(¬(H1) ∧ ¬(H2)
) ⇒ (H3) and that

(¬(H1) ∧ (H2)
) ⇒ ¬(H3).

However, when (H1) holds while (H2) fails, then (H3) can equally well be true
or false. Consider, for the former case, the values L =

√
2, � = 1 and H = 1,

and, for the latter case, the values L =
√

2, � = 1 and H =
√

2+1. This shows
that the (somehow convoluted) characterization provided in the statement of
Theorem 2.12 cannot be replaced by a simpler one involving only assumptions
(H1) and (H2).

Remark 2.14. Let us observe that conjecture (1) holds whenever the length of
the hole between the two intervals coincide with one of their lengths, whose
ratio is irrational (i.e. �/L /∈ Q and H ∈ {�, L}).
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Figure 4. procedure to prove that function f in Example
3.3 is constant

3. One more interval, much more complexity

Proposition 3.1. Let Σ = Iso(R), f ∈ C(R) and let �, L,H,L > 0 be such that

� + L + L
H

∈ Q.

Then conjecture (1) does not hold for the three-interval set

I = [0, �] ∪ [� + H, � + H + L] ∪ [� + L + 2H, � + L + L + 2H].

Proof. By assumption, there exist s ∈ R and n1, n2 ∈ N such that

� + L + L = n1s and H = n2s;

choosing an arbitrary (non-constant) s-periodic function f , there exists C ∈ R

such that
∫ s

0

f(x)dx =
C

n1
.

For any σ ∈ Σ the following identity holds
∫

σ(I)

f(x)dx =
∫ xσ+�+L+L+2H

xσ

f(x)dx −
∫ yσ+H

yσ

f(x)dx −
∫ zσ+H

zσ

f(x)dx

for suitable xσ, yσ, zσ ∈ R, hence
∫

σ(I)

f(x)dx = (n1 + 2n2)
C

n1
− 2n2

C

n1
= C.

�

Remark 3.2. Let us observe that, given �, L,H > 0, there exist infinitely many
L > 0 satisfying the assumption of the previous proposition. This fact implies,
in particular, that given any two-interval set (for which the Pompeiu conjecture
may fail or not) we can add a third interval to obtain a set for which the
conjecture (1) does not hold.

We conclude with an example of a three-interval set for which the Pom-
peiu conjecture holds; notice that the first two intervals of such a set constitute
a domain which does not enjoy the Pompeiu property.
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Example 3.3. Let us consider �, L > 0 such that �
L /∈ Q, and the three-interval

set

I = [0, �] ∪ [2�, 3�] ∪ [4�, 4� + L].

Let f be a continuous function such that its integral on every σ(I), σ ∈ Iso(R),
is constantly equal to C, for some C > 0. For the sake of simplicity, we extend in
a natural way the notation for the two-interval set, introduced in the previous
section, to the three-interval case. Since Σ = Iso(R) we obtain, for every x ∈ R,

[�, �, �, �, L;x + L] = C and [L, �, �, �, �;x] = C

hence summing term by term (see Fig. 4, first and second lines)
∫ x+4�+2L

x

f(s)ds = 2C, ∀x ∈ R,

which implies that f is (4� + 2L)-periodic.
On the other hand since, for every x ∈ R,

[�−, �, �−, �, L−;x + � + L] = −C and [L, �, �, �, �;x] = C

we obtain [L, 5�, L−;x] = 0, for every x ∈ R (see Fig. 4, third and second lines),
which implies that the function

ϕ(x) =
∫ x+L

x

f(s)ds, x ∈ R

is not only (4�+2L)-periodic (as f is), but also (5�+L)-periodic. Since �
L /∈ Q,

not even 4�+2L
5�+L does, ϕ is constant and f is �-periodic. Since 4�+2L

� /∈ Q, f is
constant.
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within the CRUI-CARE Agreement.

Data availability No datasets were generated or analysed during the current
study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from



NoDEA On the one-dimensional Pompeiu problem Page 15 of 16 51

the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Brown, L., Kahane, J.-P.: A note on the Pompeiu problem for convex domains.
Math. Ann. 259(1), 107–110 (1982)

[2] Brown, L., Schnitzer, F., Shields, A.L.: A note on a problem of D. Pompeiu.
Math. Z. 105, 59–61 (1968)

[3] Brown, L., Schreiber, B.M., Taylor, B.A.: Spectral synthesis and the Pompeiu
problem. Ann. Inst. Fourier (Grenoble) 23(3), 125–154 (1973)

[4] Caffarelli, L.A., Karp, L., Shahgholian, H.: Regularity of a free boundary with
application to the Pompeiu problem. Ann. Math. 151(1), 269–292 (2000)
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