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the non-abelian D7 action, i.e. the term which stays finite in the limit α′ → 0 with gs fixed

that preserves the D(–1) effects. As a necessary consistency condition, we check that the

next order term in the non-abelian effective action vanishes on the SO(8) solution so that
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1 Introduction and motivations

The construction of “phenomenological” models of particle physics based on D-branes

embedded in supersymmetric string compactifications has become a major direction in the

development of String Theory (for reviews, see for instance [1–3]).

In these D-brane scenarios non-perturbative corrections arise from D-instantons and

wrapped Euclidean branes. In principle all instantonic branes which can be consistently

included may contribute to the low energy effective action. If the theory contains a gauge

sector realized on D(3 + n)-branes wrapped on a cycle C, then Euclidean branes E(n − 1)

– 1 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
6

wrapped on C correspond to the instanton sectors of the gauge theory.1 [4, 5] Other Eu-

clidean branes, for instance those wrapped on a cycle C′ 6= C, do not possess this inter-

pretation and have been referred to as “exotic” or “stringy” instantons; they have been

investigated over the last couple of years in a rapidly growing literature. This interest was

sparkled by the realization that exotic instantons might provide couplings which are forbid-

den in perturbation theory but necessary for phenomenological applications; for instance,

they have been pointed out as possible sources of neutrino masses [6, 7] or of certain Yukawa

couplings in GUT models [8, 9]. While the relation of “ordinary” instantonic branes to the

field-theoretical description of instantons in supersymmetric gauge theories (as reviewed,

for instance, in [10]) has been clarified in detail [11–13], the possibility of a field-theoretic

interpretation of the exotic instantonic branes is still an open issue, and constitutes the

main motivation of the present work.

In the ordinary cases, the spectrum and interactions of the moduli, i.e. of the physical

excitations of open strings with at least one end-point on the instantonic branes, reproduce

the ADHM construction of the moduli space of gauge theory instantons. In particular, let

us consider the NS sector of the open strings with one end on the D(3 + n) and the other

end on the E(n− 1)-brane. The world-sheet physicity condition has the form2

L0 −
1

2
= NX +Nψ +

3∑

i=1

θi
2

= 0 , (1.1)

where NX and Nψ are the occupation numbers for the bosonic and fermionic world-sheet

oscillators, while the (positive) angles 2πθi denote the twist eventually occurring in the

three complex internal directions. In writing (1.1) we have taken into account the 1/2

contribution to the zero-point energy from the four space-time directions, which are of

Neumann-Dirichlet type. Ordinary E(n−1)-branes impose, in the internal space, the same

boundary conditions as the gauge D(3+n)-branes do. All twists θi therefore vanish and the

ground state NX = Nψ = 0 is physical; being degenerate in the non-compact directions,

it corresponds to the moduli wα̇ of the ADHM construction. These bosonic mixed moduli

enter in an essential way in the ADHM constraints and, once these constraints are solved,

they contain in particular the size ρ of the instanton solution.

In the exotic cases, the E(n − 1)-branes do not coincide with the gauge branes in

the internal space, and the mixed strings have non-trivial twists θi. Then the mass-shell

condition (1.1) cannot be solved, and the bosonic mixed moduli wα̇ are absent. This

absence constitutes the main world-sheet hallmark of stringy instantons and has profound

consequences. For ordinary D(n+3)/E(n−1) systems the Higgs phase, in which a non-zero

vacuum expectation value of the w’s is turned on and a bound state at threshold is formed,

is the one which corresponds to the field theory instanton. This phase is not present in

exotic configurations.

Turning to the R sector of E(n − 1)/E(n − 1) strings, there are fermionic anti-chiral

moduli λα̇ which, in the moduli action, play the rôle of Lagrange multiplier for the fermionic

1The simplest case is represented by the D3/D(–1) system, corresponding to n = 0.
2In order to be explicit, we consider a toroidal orbifold situation, and assume that the branes in the

internal space are distinguished by their relative angles or magnetizations.
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ADHM constraints. In the exotic case the abelian part of such constraints, being propor-

tional to the wα̇ moduli, is absent and the abelian component of the λ’s represents a true

fermionic zero-mode. To get non-zero correlators it necessary to remove this zero-mode,

for instance by appropriate orientifold projections [14–16], or to lift it with closed string

fluxes [17–19] or by other mechanisms [20, 21].

In this paper we set out to identify the classical field configuration in a simple system

of branes which from the world-sheet point of view shares the characteristics of exotic

instantons, namely a system of D7 and D(–1)-branes in Type I′ theory compactified on

a torus T2, as described in section 2. In this system the D7/D(–1) strings have eight

Neumann-Dirichlet directions; this corresponds to θ1 = θ2 = 1/2 and θ3 = 0 in the

notation of (1.1). The bosonic moduli w are therefore non-physical. On the other hand,

the orientifold projects out the dangerous fermionic zero-mode λα̇, and thus the D(–1)’s

can contribute to the effective action. The gauge theory living on the D7’s is an eight-

dimensional theory: however, one could further compactify down to four dimensions, to

obtain a stringy instanton configuration composed of wrapped D7’s and D(–1)’s.

The eight-dimensional D7/D(–1) system is interesting by itself in many respects; to-

gether with the T-dual situation in which D9/E1 systems on T2 are considered, it provides

an important testing ground for the heterotic/Type I duality. Indeed, the BPS-saturated

t8F
4 terms in the effective Lagrangian, exactly known from the heterotic side, receive

non-perturbative corrections from D(–1)’s on the type I side, that would be important to

determine also from an explicit D-instanton calculus. The heterotic result has already been

reorganized so as to match the expected structure of D-instanton terms [22]–[27], but the

explicit integration, at all instanton numbers, over the moduli space of the D(–1)’s has

not yet been performed. The preliminary step of describing the spectrum of moduli of the

D7/D(–1) system and their action was already done in [28], whose analysis substantially

matches the one reported here in sections 3.1 and 3.2. In the present paper our focus

is on the identification of the classical solution corresponding to the D-instanton, rather

than on the explicit moduli space integration; however the form of the field-dependent

moduli action that we derive in section 3.3 represents a convenient starting point for the

computation of the non-perturbative effective action.

It is natural to expect that the D7/D(–1) system corresponds to some eight-dimensional

classical configuration analogous to the gauge instanton in four dimensions, whose prop-

erties and main features are spelled out in sections 3 and 4. In particular, considering

both tree-level and one-loop amplitudes with part of their boundary on the D(–1)’s, we

argue that the classical configuration represents an instanton of the quartic part of the

Non-Abelian Born-Infeld (NABI) action of the D7-branes. We then proceed in section 5

to review the properties of known eight-dimensional instantons available in the literature.

The study of generalizations of gauge instantons has a rather long history, and several types

of configurations have been individuated [29]–[38], depending on which feature of the four

dimensional case is extended to eight dimensions and taken as a definition of instantons.

We argue that the configuration which carries the appropriate symmetries to be associated

to a D(–1) inside a stack of D7-branes is the supersymmetric version of the so-called SO(8)

– 3 –
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instanton of Grossman et al. [32, 33]

Fµν = − 2ρ2

(x2 + ρ2)2
γµν . (1.2)

Here the γµν are the chiral gamma-matrices with two indices in d = 8, while the field

strength Fµν is in the adjoint of SO(8), the smallest gauge group for which a configuration

with non-trivial fourth Chern class can be obtained. Notice that in the Type I′ system we

consider, we have exactly N = 8 D7 branes at each orientifold plane, thus supporting an

SO(8) gauge theory.3

Reconsidering the moduli spectrum and the absence of emission diagrams for the gauge

field in the D7/D(–1) system related to the absence of the bosonic w moduli, we show in

section 6 that actually it is the limit ρ → 0 of the SO(8) instanton that corresponds to

the D(–1). We show then that the NABI action evaluated on the SO(8) instanton in this

limit reduces to its quartic term; this is not at all trivial, as it requires that all higher order

terms of the NABI action vanish identically already at finite ρ. In section 7 we will check

this explicitly for the quintic term, which is of order α′3 with respect to the quadratic one.

In the literature, different expressions of the quintic term in the NABI action have been

derived, starting from different guiding principles. We use the expression obtained in [40]

from the requirement that the NABI action should admit an off-shell supersymmetric ex-

tension. Other expressions in the literature [41]–[44] are equivalent to this one only up to

terms proportional to the Yang-Mills equations of motion; however the SO(8) instanton is

not a solution of the Yang-Mills equations in eight dimensions, but rather of those that fol-

low from the quartic action. Therefore, the fact that these alternative forms of the quintic

action do not vanish on the SO(8) instanton is not unexpected. We think that this observa-

tion can be relevant to the problem of determining which form of the NABI action should

be used to weight off-shell configurations. It is not possible at the moment to do further

checks, since no higher correction has been determined according to the principle of super-

symmetrizability used in [40]; nevertheless the fact that the quintic term vanishes on the

configuration (1.2) makes the conjecture that all higher terms vanish as well very plausible.

2 The D7/D(–1) system in Type I
′

We consider Type IIB string theory compactified on a 2-torus T2 and modded out by

Ω = ω (−1)FL I2 (2.1)

where ω is the world-sheet parity, FL is the left-moving world-sheet fermion number, and

I2 is the inversion along the two directions of T2. The resulting theory is an unoriented

string model with sixteen supercharges, called Type I′.

The action of Ω has four fixed-points on the torus where four O7-planes are placed.

A local cancellation of the R-R tadpoles produced by these O7-planes requires to place at

3In the heterotic/Type I context, the SO(8) instanton was already considered in [39] in the search for a

configuration of Type I representing the heterotic string.
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each fixed-point eight D7-branes. In the following we will concentrate on one fixed-point

and study the gauge theory produced by the massless modes of the unoriented open strings

attached to the eight D7-branes that are located there. This is an eight-dimensional gauge

theory with N = 1 supersymmetry and gauge group SO(8). A quick way to see this

is to observe that the vertex operators for the massless bosonic modes on N D7 branes

contain (in the 0 superghost picture) the following terms:4 VA ∼ Aµ ∂τX
µ eikνXν

and

Vφ ∼ φm ∂σX
m eikνXν

. They both change sign under Ω. If we assume that the action γ(Ω)

of the orientifold projection on the Chan-Paton factors is just a transposition, namely

Aµ → γ(Ω)Aµγ(Ω)−1 = tAµ , φm → γ(Ω)φmγ(Ω)−1 = tφm , (2.2)

we easily conclude that the vertex operators VA and Vφ survive the orientifold projection

only if Aµ and φm are N ×N anti-symmetric matrices. In our case (N = 8), we therefore

have an eight-dimensional vector Aµ and two real scalars φm which transform in the adjoint

representation of SO(8). A similar analysis in the fermionic massless sector of these unori-

ented strings leads to an eight-dimensional chiral fermion Λα plus its anti-chiral conjugate

Λα̇, which also transform in the adjoint representation of SO(8). Altogether, the fields

{
Aµ,Λ

α, φm
}

(2.3)

form the N = 1 vector multiplet in d = 8 in the adjoint representation of SO(8) and can

be assembled into a superfield as follows

Φ(x, θ) = φ(x) +
√

2 θΛ(x) +
1

2
θγµνθ Fµν(x) + · · · (2.4)

where φ = (φ9 + iφ10)/
√

2 (see appendix A for our conventions on γ matrices, etc.).

The part of the effective action which depends only on the gauge field strength Fµν
and its covariant derivatives is the NABI action for D7 branes, which can be organized in a

series of contributions with increasing powers of α′ and contains the following terms [45, 46]:

SD7 =
1

8πgs

∫
d8xTr

[
1

(2π
√
α′)4

FµνF
µν − 1

3 (2π)2
t8 F

4

]
+
α′

gs

∫
d8xL(5)(F,DF ) + · · ·

= SYM + S(4) + S(5) + · · · , (2.5)

where gs is the string coupling constant and

Tr
(
t8F

4
)
≡ 1

16
tµ1µ2···µ7µ8
8 Tr

(
Fµ1µ2 · · ·Fµ7µ8

)
(2.6)

= Tr
(
FµνF

νρF λµFρλ+
1

2
FµνF

ρνFρλF
µλ− 1

4
FµνF

µνFρλF
ρλ− 1

8
FµνFρλF

µνF ρλ
)
.

In the Yang-Mills action SYM = 1/(2g2
YM)

∫
d8xTr(F 2), there appears a dimension-

ful coupling

g2
YM ≡ 4πgs(2π

√
α′)4 , (2.7)

4Here, for simplicity, we only write terms that do not depend on the world-sheet fermions. The sym-

bols ∂τ and ∂σ denote, respectively, the world-sheet tangent and normal derivatives; k is the open string

momentum, and Greek (Latin) indices label the longitudinal (transverse) directions of the D7 branes with

Euclidean signature, i.e. µ, ν, . . . = 1, . . . , 8 and m, n, . . . = 9, 10.
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while the quartic action, which we write as

S(4) = − 1

4!λ4

∫
d8xTr

(
t8F

4
)
, (2.8)

bears in front a dimensionless coupling constant

λ4 ≡ 4π3gs . (2.9)

Finally, the last term in (2.5) is an O(α′) contribution whose expression and rôle will be

discussed in section 7.

As mentioned in the Introduction, we are interested in studying non-perturbative ef-

fects that are induced by k D(–1)-branes located at the same fixed point of the D7 branes.

The D-instantons are sources for the scalar field C0 of the closed string R-R sector, and

their classical action is

SD(−1) =
2π

gs
− 2πiC0 = −2πi τ , (2.10)

where

τ = C0 +
i

gs
(2.11)

is the standard axion-dilaton combination. The resulting D7/D(–1)-brane system is 1/2-

BPS and stable since the number of directions with mixed Dirichlet-Neumann boundary

conditions is eight. Even if there will be important differences, it is useful to analyze this

D7/D(–1)-brane system in analogy with the more familiar D3/D(–1)-brane system.

In the “standard” case of D3/D(–1) systems, the sector with k D(–1) branes corre-

sponds to the sector with instanton number k of the four dimensional gauge theory living

on the D3-branes [4, 5]. Indeed the part of the D3 action quadratic in the gauge field

reads5

S(2) =
1

8πgs

∫
d4xTr

(
F 2
)
− 2πiC0 c(2) , (2.12)

where c(2) is the second Chern number

c(2) =
1

8π2

∫
Tr
(
F ∧ F

)
. (2.13)

On an instanton configuration which saturates the Bogomolny bound with instanton num-

ber k = c(2), namely when
1

2

∫
d4xTr

(
F 2
)

= 8π2 c(2) , (2.14)

the action S(2) reduces to that of c(2) D-instantons:

S(2) = −2πi c(2) τ = c(2) SD(−1) . (2.15)

Instanton configurations satisfying (2.14) can be described through the ADHM con-

struction. They preserve the space-time SO(4) invariance, and in a supersymmetric context

represent 1/2-BPS states; both these features are to be expected if they must correspond to

5We assume for simplicity that the R-R field C0 is constant along the D3 world-volume.
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a D3/D(–1) configuration. In fact, the moduli of the D3/D(–1)-brane system and their ac-

tion account precisely for the ADHM construction of the instanton moduli space [11, 12].

The interpretation of the D(–1)’s as a classical configuration of action (2.12) is further

confirmed by the relation between instantonic one-loop amplitudes and gauge threshold

corrections to the quadratic action, as originally found in [47, 48]. Indeed, as discussed

in [49, 50], both instantonic one-loop amplitudes and gauge threshold corrections deter-

mine the one-loop running of the gauge coupling constant that is obtained by expanding

around two different backgrounds, respectively an instanton and a constant field. Finally,

it was shown in [12] that the D(–1)’s act as sources for the classical profile of the solution

through the emission of the gauge field from a “mixed” disk with its boundary attached

partly to the D(–1)’s and partly to the D3’s.

Let us now consider a system with D7 and D(–1) branes. The part of the Born-Infeld

action for D7 branes that is quartic in the gauge fields is given in (2.8) and, after adding to

it the quartic term from the the Wess-Zumino part, it can be rewritten in the following form

S(4) = − 1

4! 4π3gs

∫
d8xTr

(
t8F

4
)
− 2πiC0 c(4) (2.16)

where c(4) is the fourth Chern number

c(4) =
1

4! (2π)4

∫
Tr
(
F ∧ F ∧ F ∧ F

)
=

1

4! (2π)4

∫
d8xTr

(
ǫ8F

4
)
, (2.17)

with

Tr
(
ǫ8F

4
)
≡ 1

16
ǫµ1µ2···µ7µ8
8 Tr

(
Fµ1µ2 · · ·Fµ7µ8

)
. (2.18)

If the gauge field F satisfies

∫
d8xTr

(
t8F

4
)

= −1

2

∫
d8xTr

(
ǫ8F

4
)

= −4!

2
(2π)4 c(4) (2.19)

then the quartic action (2.16) becomes

S(4) = −2πi c(4) τ = c(4) SD(−1) , (2.20)

that is the action of c(4) D-instantons.

This argument suggests that, in analogy to the D3/D(–1) case, k D(–1)-branes inside

a stack of D7-branes should correspond to some classical “instanton” configuration that

satisfies (2.19) with k = c(4). In the rest of the paper, we will pursue this line of inquiry,

analyzing in turn the various aspects of such a relation that we recapitulated above in the

case of D3/D(–1) systems. Along the way we will point out analogies and differences.

3 Spectrum and interactions in the D7/D(–1) system

We begin by considering the tree-level aspects of the D7/D(–1) system; in particular we

describe the moduli spectrum corresponding to the allowed vertex operators and the action

resulting from their disk interactions.

– 7 –
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3.1 Moduli spectrum

The spectrum in the D7/D(–1) system consists of neutral moduli, associated to open

strings with both end-points on the D-instantons ((−1)/(−1) strings), and of charged

moduli, associated to open strings stretching between the gauge and the instantonic

branes (7/(−1) strings).

(–1)/(–1) strings. This is the neutral sector since it comprises states that do not trans-

form under the gauge group. The physical zero-modes are easily obtained by dimensionally

reducing the N = 1 supersymmetric gauge theory from ten to zero dimensions. Using an

ADHM-inspired notation, we denote the bosonic fields as aµ and χm, where the distinction

between the two is made by the presence of the D7-branes. Both aµ and χm are k× k ma-

trices and have canonical dimensions of (length)−1. In order to implement the orientifold

projection, we observe that since all directions have Dirichlet-Dirichlet boundary condi-

tions, the vertex operator for aµ (in the 0 superghost picture) is proportional to ∂σX
µ,

and not to ∂τX
µ, so that it is even under Ω. On the other hand, the vertex operator for

χm is proportional to ∂σX
m and is odd because of the reflection I2 of the coordinates Xm

transverse to the O7-planes. Furthermore, the consistency with the orientifold action (2.2)

on the D7-branes requires [51] that on the Chan-Paton factors of the (–1)/(–1) strings Ω

acts also as a transposition, i.e.

aµ → γ(Ω) aµγ(Ω)−1 = taµ , χm → γ(Ω)χmγ(Ω)−1 = tχm . (3.1)

Combining the behavior of the operator part of the vertex operators with that of their

Chan-Paton factors, we easily conclude that aµ is a k × k matrix transforming in the

symmetric representation of SO(k), while χm is a k × k matrix in the anti-symmetric

(adjoint) representation of SO(k).

Let us now turn to the fermionic sector. Adopting again an ADHM-inspired notation,

we denote the chiral and anti-chiral fermionic moduli as Mα and λα̇. They both have

dimensions of (length)−
3
2 and correspond to the following vertex operators (in the −1

2

superghost picture)6

VM = Mα SαS− e−
1
2
ϕ , Vλ = λα̇ S

α̇S+ e−
1
2
ϕ . (3.2)

Here ϕ is the bosonic field appearing in the bosonization of the superghost system, Sα
and S+ are the chiral spin fields in the first eight and last two directions respectively,

while Sα̇ and S− are their anti-chiral counterparts. The two combinations SαS− and

Sα̇S+ appearing in (3.2) arise upon splitting the (anti-chiral) spinor representation of

SO(10) under SO(8) × SO(2) as required by the presence of the D7 branes. On these spin

fields we can represent the orientifold projection Ω as minus the chirality operator in the

transverse directions to the D7-branes, or equivalently as the chirality operator along the

eight longitudinal directions.7 Thus SαS− is even while Sα̇S+ is odd under Ω. On the

6In these expressions we understand factors of (2πα′)
3

4 which are needed to make VM and Vλ dimen-

sionless.
7The choice of signs in these chirality operators corresponds to choose between instantons and anti-

instantons; here and in the following we choose signs that, in our conventions, are appropriate for instanton-

like configurations.
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other hand, in analogy with (3.1), the Chan-Paton factors transform as

Mα → γ(Ω)Mαγ(Ω)−1 = tMα , λα̇ → γ(Ω)λα̇γ(Ω)−1 = tλα̇ , (3.3)

so that VM and Vλ survive the orientifold projection only if Mα is a symmetric k×k matrix

of SO(k) and λα̇ is an antisymmetric k × k matrix of SO(k).

In the one D-instanton case (k = 1), sometimes also called the O(1) instanton, the

moduli χm and λα̇ are projected out and the only neutral zero-modes that survive are

aµ and Mα. These represent the bosonic and fermionic Goldstone modes of the (su-

per)translations of the D7-branes world-volume that are broken by the D-instanton and

thus can be identified with the bosonic and fermionic coordinates xµ and θα of the eight-

dimensional superspace. More precisely, we have

xµ = (2πα′) aµ , θα = (2πα′)Mα (3.4)

where the factors of α′ have been introduced to give xµ and θα the appropriate dimensions.

7/(–1) strings. This is the charged sector that accounts for open strings stretching

between the D7-branes and the D-instantons. Since there are eight directions with mixed

Dirichlet-Neumann boundary conditions, in the NS sector it is not possible to construct

vertex operators of conformal weight one and thus, according to (1.1), there are no physical

bosonic moduli in the spectrum. This is to be contrasted with what happens in the D3/D(–

1) system where, instead, one finds bosonic moduli wα̇ and w̄α̇ that are related to the gauge

instanton size. On the other hand, the absence of charged bosonic moduli is the distinctive

feature of the “exotic” instanton configurations mentioned in the Introduction, and thus,

at least from this point of view, our D7/D(–1) system is in the same class.

The fermionic R sector instead is not empty. In fact, we can construct the following

vertex operators for the fermionic moduli µ and µ̄ (of canonical dimensions of (length)−
3
2 )

Vµ = µ∆S+ e−
1
2
ϕ , Vµ̄ = µ̄ ∆̄S+ e−

1
2
ϕ (3.5)

where ∆ and ∆̄ are the (bosonic) twist operators for the eight directions with mixed

boundary conditions.8 They are conformal fields with conformal dimension 1/2 and refer

to the two orientations of the string stretching between the D7-branes and the D-instantons.

Fixing the chirality for the spin field in the last two directions is a GSO projection; the

choice of the positive chirality made in (3.5) is, in our conventions, the appropriate one

for instanton-like configurations.9 Under the orientifold action the two vertex operators Vµ
and Vµ̄ are mapped into each other; indeed

Vµ
Ω−→ − tµ ∆̄S+ e−

1
2
ϕ , Vµ̄

Ω−→ − tµ̄∆S+ e−
1
2
ϕ (3.6)

where the minus sign is due to the fact that Ω acts as minus the chirality operator on the

spin fields in the last two directions. Thus µ and µ̄ are not independent of each other but

are related as follows

µ̄ = − tµ (3.7)

8In (3.5) we have understood factors of (2πα′)
3

4 .
9We note in particular that the vertex operators (3.5) are mutually local with the supercurrents of the

supersymmetry conserved by the D7/D(–1) system.

– 9 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
6

Remember that µ and µ̄ are, respectively, N × k and k ×N matrices (with N = 8 in our

specific case); the above identification is therefore consistent with this structure.

We conclude by stressing again that the content of the charged sector of the D7/D(–1)

moduli spectrum is similar to that of the charged sector in exotic instanton configurations

(see for example [6, 7, 15, 16]), or to that of the flavored sector in D3/D(–1) systems that

realize N = 1 or N = 2 SQCD models (see for example [49, 50] for details). Therefore, we

can proceed like in these cases and work with rescaled moduli [12]

µ′ =
2πα′

√
gs
µ (3.8)

which carry dimensions of (length)
1
2 .

3.2 Moduli action

The D-instanton moduli action can be derived by computing scattering amplitudes of

moduli fields on disks with at least part of their boundary on the D(–1)-branes; we refer

to [11, 12] for details and we recall here only the most significant results for our purposes.

First of all, the contribution S0 to the moduli action of a disk with no moduli inser-

tion is [52]

S0 =
2πk

gs
=

k

2π2α′2g2
0

(3.9)

where g0 is the Yang-Mills coupling constant in zero dimensions and k is the multiplicity

of the disk boundary. Note that S0/k is nothing else than the (topological) normalization

of any disk amplitude with D(–1) boundary conditions (denoted as C0 in [12]): clearly

this normalization is always the same since the D(–1)-branes are objects which exist

independently of whether the surrounding space-filling branes that support the gauge

theory are D7 or D3-branes.

Next, we have the contribution S1 of the neutral moduli which is obtained from disk

amplitudes involving the vertex operators of the (–1)/(–1) strings. The result of these

computations is formally similar to the one discussed in [12], and for our present case it is

explicitly given by

S1 =
1

g2
0

tr

{
iλα̇γ

α̇β
µ [aµ,Mβ] −

i√
2
λα̇[χ, λα̇] − i√

2
Mα[χ̄,Mα]

− 1

4
[aµ, aν ][a

µ, aν ] − [aµ, χ][aµ, χ̄] +
1

2
[χ, χ̄]2

} (3.10)

where χ ≡ (χ9 + iχ10)/
√

2, χ̄ ≡ (χ9 − iχ10)/
√

2.

Finally, we have the contribution of the charged moduli that arises from mixed disc

amplitudes involving the boundary changing vertex operators (3.5). In our case this con-

tribution is simply

S2 = − i

g2
0

tr
(
tµµχ

)
= −iπ tr

(
tµ′ µ′ χ

)
(3.11)

where in the last step we have introduced the rescaled moduli defined in (3.8).
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In the one-instanton case (k = 1) there are drastic simplifications; indeed both

terms (3.10) and (3.11) vanish, and after including the contribution of the tadpole for

the R-R scalar C0, one is simply left with the D-instanton action SD(−1) given in (2.10).

If one considers also the interactions among the charged moduli and the 7/7 strings, this

action gets replaced by

SD(−1)(Φ) = −2πi τ + iπ tµ′ Φ(x, θ)µ′ (3.12)

where Φ is the superfield defined in (2.4). The second term in (3.12) can be understood by

computing a string amplitude on mixed disks with two charged moduli and a scalar field

of the 7/7 sector, plus its supersymmetric partners.

The moduli action of our D7/D(–1) system is much simpler than the corresponding

one for the D3/D(–1) systems, even in the one-instanton case: the number of moduli is

smaller, there are no bosonic charged moduli like wα̇ or w̄α̇ and no ADHM-like constraints.

This last feature makes a crucial difference: indeed, the D7 and D(–1)-branes do not form a

bound state, while by imposing the ADHM constraints in the D3/D(–1) case it is possible

to obtain a bound state at threshold.

3.3 Integration over moduli and scaling to the quartic theory

The previous analysis shows that in the case of a single D-instanton the moduli space is

parametrized by the following zero-modes:

Mk=1 =
{
xµ, θ

α, µ′
}

(3.13)

and that the superspace coordinates appear in the moduli action only through the dynam-

ical gauge fields on the D7-branes. From the scaling dimensions of the moduli (3.13) we

easily prove that the dimension of the measure for the moduli space integral corresponding

to this configuration is given by
[
dMk=1

]
= ℓ

(nx−
1
2
nθ−

1
2
nµ′)

s = ℓ
8−N

2
s (3.14)

where we have used the string length ℓs =
√

2πα′ as unit of measure, and denoted by nx,

nθ and nµ′ the numbers of x, θ and µ′’s. This calculation can be generalized to the case of

an arbitrary number k of D-instantons and the result is10

[
dMk

]
= ℓ

k(8−N)
2

s . (3.15)

Therefore, in order to compensate for these dimensions the overall normalization of the

instanton measure must contain a factor of ℓ
k(N−8)

2
s which, together with the classical ac-

tion (3.9), implies that the non-perturbative contributions of this D7/D(–1) system are

proportional to

ℓ
k(N−8)

2
s e−

2πk
gs . (3.16)

10Notice that for arbitrary k it is necessary to introduce suitable auxiliary moduli that disentangle the

quartic interactions in the action (3.10) of the neutral moduli. It turns out that the only dimensionful

new parameters that are introduced in this way are seven auxiliary moduli Di (i = 1, . . . , 7) which have

dimensions of (length)−2 and transform in the anti-symmetric representation of SO(k). These Di’s play in

the present case the same role that the three auxiliary moduli Dc play in the D3/D(–1) system [12].
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In general, the contribution to the D7-brane effective action from the sector with k

D-instantons is obtained, as usual, by integrating over the moduli with an exponential

weight given by the field-dependent moduli action:

S
(k)
eff (Φ) = ℓ

k(N−8)
2

s

∫
d8x d8θ

∫
dM̂k e2πiτk+S1+S2+iπtr (tµ′Φµ′) , (3.17)

where M̂k denotes the centred moduli (i.e. all moduli but x and θ) and the last term in

the exponent is the generalization of the field-dependent part of (3.12) to arbitrary k. For

N = 8, by simple dimensional analysis the non-perturbative effective action (3.17) takes

the schematic form

S
(k)
eff (Φ) = ck e2πiτk

∫
d8x d8θ [Φ4](k) (3.18)

where ck are numerical coefficients and the symbol [Φ4](k) denotes a gauge-invariant combi-

nation quartic in the superfield Φ arising in the k-instanton sector. The explicit expression

of such invariant and the coefficients ck are determined by the integration over the centred

moduli M̂k. Performing this integration and translating the result in heterotic variables

would give a stringent test of the duality between the Type I′ theory and the heterotic

string compactified on T2 [22]–[27]. We leave this task for future work.

As is clear from (3.15), for N = 8 the measure dMk is always dimensionless. The

N = 8 case resembles thus the N = 4 SYM theory in d = 4, where the ADHM instanton

measure is dimensionless for any instanton number. Since this property of the ADHM

measure is strictly related to the vanishing of the β-function and hence to the conformal

invariance at the quantum level of the N = 4 SYM theory, we are naturally led to conjecture

that the dimensionless character of dMk points to the fact that the D-instantons inside

the D7-branes of Type I′ describe non-perturbative configurations of an eight-dimensional

conformal gauge theory. The relevant action for this theory cannot be the usual SYM

action, which in d = 8 is not even conformal at the classical level, but an obvious candidate

exists: it is the quartic action S(4) given in (2.16) plus its supersymmetric completion.

This term appears naturally in the expansion in powers of α′ of the non-Abelian Born-

Infeld (NABI) action of D7-branes, as shown in (2.5); it has a coupling constant λ, given

in (2.9), which is dimensionless, and it is conformal at the classical level. On this basis

we can therefore argue that the correct scaling with α′ to be considered for a field theory

interpretation of the D7/D(–1)-brane system is the one in which the dimensionless coupling

λ of the t8F
4 term, and not the Yang-Mills coupling gYM, is held fixed.

4 One-loop amplitudes

In order to support the interpretation of the D(–1)-branes as a particular configuration of

the gauge theory living on the D7-branes, and in particular of the quartic action (2.16),

we perform two calculations.11 First, in section 4.1 we compute the one-loop vacuum

energy due to the open strings with at least one-end point on k D-instantons and find

agreement with the calculation of the scaling dimension of the measure on the moduli

11For simplicity in this section we set C0 = 0.
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a) b)

Figure 1. a) The annulus with D(–1) boundary conditions, indicated by the dashed line. b) The

Möbius diagram obtained with the insertion of the O7 projection Ω.

space of the D7/D(–1) system given in (3.15); second, in section 4.2 we compute the one-

loop vacuum energy of N D7-branes in a constant background field F and, after extracting

the contribution proportional to F4 we find a perfect matching with the instantonic one-

loop amplitude previously determined. From these calculations we are able to extract also

the renormalization properties of the quartic coupling λ defined in (2.9) and show that it

does not run for N = 8.

4.1 Type I ′ instantonic amplitudes

The one-loop vacuum energy ΓD(−1) of k D-instantons in presence of N D7-branes

is given by

ΓD(−1) = ZD(−1) + ZD(−1)/D7 + ZD7/D(−1) (4.1)

where ZD(−1) is the contribution of the unoriented open strings attached to the k D(–1)-

branes, while ZD(−1)/D7 and ZD7/D(−1) are the contributions of the open strings stretching

between the D-instantons and the D7-branes or viceversa.

The one-loop vacuum energy ZD(−1) has the following schematic form

ZD(−1) =

∫ ∞

0

dt

2t
TrD(−1)

(
1 + Ω

2
PGSO q

L0

)
=

1

2

(
AD(−1) + MD(−1)

)
, (4.2)

where PGSO is the GSO projector, q = exp(−2πt) and the trace TrD(−1) is computed over

all open string states with D(–1) boundary conditions. As usual, we can decompose the

unoriented amplitude ZD(−1) as the sum of an annulus diagram, depicted in figure 1a),

AD(−1) =

∫ ∞

0

dt

2t
TrD(−1)

(
PGSO q

L0
)
, (4.3)

and of a Möbius diagram, represented in figure 1b),

MD(−1) =

∫ ∞

0

dt

2t
TrD(−1)

(
ΩPGSO q

L0
)
, (4.4)

which we now evaluate in turn.

The calculation of the annulus amplitude is completely standard and the result is

AD(−1) =
k2

2

∫
dt

2t

[(
−2π

θ3(0|it)
θ′1(0|it)

)4

−
(
−2π

θ4(0|it)
θ′1(0|it)

)4

−
(
−2π

θ2(0|it)
θ′1(0|it)

)4
]
W(t) . (4.5)
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Here θa(z|it) (a = 1, . . . , 4) are the Jacobi θ-functions, θ′1(0|it) ≡ ∂zθ1(z|it)
∣∣
z=0

, and W(t)

represents the sum over the winding modes in the two compact transverse directions,

given by

W(t) =
∑

(r1,r2)∈Z2

e
−2πt

|r1+r2U|2T2
U2 (4.6)

with U = U1+iU2 and T = T1+iT2 being, respectively, the complex and Kähler structure of

the 2-torus. The three terms in the square brackets of (4.5) are the contributions of the non-

zero modes in the NS, NS(−1)F and R sectors; furthermore the average over the two orien-

tations of the (−1)/(−1) strings has been explicitly taken into account in writing the overall

coefficient. Due to the aequatio identica satis abstrusa obeyed by the θ-functions, we have

AD(−1) = 0 . (4.7)

Also the contribution of the Möbius diagram (4.4) can be easily computed, but some

care must be used in evaluating the contribution of the R(−1)F sector. Indeed, since

the orientifold reflection is due to orientifold O7 planes, the fermionic zero-modes of the

(−1)/(−1) strings contribute to the odd spin structure [53]; in particular, they give opposite

results for the two string orientations, as explained in detail in [49, 50]. Taking all this into

account, we have

MD(−1) = −k
2

∫
dt

2t





1

2



16

(
θ4(0|it+ 1

2)

θ2(0|it+ 1
2)

)4

− 16

(
θ3(0|it + 1

2)

θ2(0|it + 1
2)

)4

− 1



W(t)

+
1

2



16

(
θ4(0|it+ 1

2)

θ2(0|it+ 1
2)

)4

− 16

(
θ3(0|it + 1

2 )

θ2(0|it + 1
2 )

)4

+ 1



W(t)




 .

(4.8)

The two lines above correspond to the two different orientations, the three terms in the

square brackets refer, respectively, to the NS, NS(−1)F and R(−1)F sectors, and the factors

of 16 are introduced to compensate the 24 factors brought by (θ2)
4. Summing the various

terms in (4.8) and using the abstruse identity, we have12

MD(−1) = 8k

∫
dt

2t
W(t) . (4.9)

Let us now consider the contributions to the one-loop vacuum energy of the open

strings stretching between the N D7 branes and the k D-instantons, located at the same

orientifold fixed point.13 These contributions correspond to the mixed annuli diagrams

represented in figure 2.

12When interpreted in the closed string channel, the Möbius amplitude (4.8) receives contributions from

the exchange between the D(–1) boundary states and the crosscaps located at all the four orientifold fixed

points. Thus, from this point of view this expression does not possess a truly local interpretation.
13The complete and fully consistent expression of the instantonic vacuum amplitude should include also

the annuli with one boundary attached to the D7 branes located at the other fixed points. These are

important for the infrared properties in the closed string channel, but do not affect the infrared divergence

in the open string one.
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+

Figure 2. The one-loop diagrams with different conditions on the two boundaries. Both orienta-

tions, exchanged by Ω, contribute. The solid line indicates the D7 boundary.

In such diagrams the open strings have mixed ND boundary conditions along the eight

non-compact directions and DD boundary conditions along the two compact ones. For one

string orientation the vacuum energy has the following schematic form

ZD7/D(−1) =

∫ ∞

0

dt

2t
TrD7/D(−1)

(
1 + Ω

2
PGSO q

L0

)
. (4.10)

Since Ω maps a state of the 7/(–1) sector into one of the (–1)/7 sector, it does not contribute

to the trace in (4.10), and we left with just one half of the annulus contribution. In this

amplitude the odd spin structure must be carefully evaluated, along the lines of [49, 50] to

which again we refer for details, and we find

ZD7/D(−1) =
Nk

2

∫
dt

2t

{
1

2

[(
θ2(0|it)
θ4(0|it)

)4

−
(
θ3(0|it)
θ4(0|it)

)4

− 1

]
W(t)

}
(4.11)

The three terms inside the square brackets correspond respectively to the NS, R and

R(−1)F sectors, while there is no contribution from the NS(−1)F sector. For the other

orientation, we find instead

ZD(−1)/D7 =
Nk

2

∫
dt

2t

{
1

2

[(
θ2(0|it)
θ4(0|it)

)4

−
(
θ3(0|it)
θ4(0|it)

)4

+ 1

]
W(t)

}
(4.12)

which is zero due to the abstruse identity of the θ-functions. Adding the two ampli-

tudes (4.11) and (4.12), and using again the abstruse identity, we find

ZD7/D(−1) + ZD(−1)/D7 = −Nk
2

∫
dt

2t
W(t) . (4.13)

Summing the various contributions, we easily find that the total one-loop vacuum

energy (4.1) is given by

ΓD(−1) =
k(8 −N)

2

∫
dt

2t
W(t) (4.14)

which vanishes for N = 8. This result is in perfect agreement with the calculation of the

scaling dimension of the measure on the instanton moduli space of the D7/D(–1) system,

presented in section 3.3. Furthermore, from (4.14) we can read that the one-loop action of

the brane system in the background of a single D-instanton is

S1−loop
D(−1) ≡ −ΓD(−1)

∣∣∣
k=1

=
N − 8

2

∫ ∞

0

dt

2t
W(t) . (4.15)
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This is to be regarded as the one-loop correction to the tree-level classical instanton ac-

tion (2.10) at C0 = 0, which in the sequel we will denote by Stree
D(−1).

4.2 Background fields vs D-instantons

We now consider the D7-branes in another gauge configuration which is tractable at the

string level, namely an abelian constant background. To remain general, we consider

here an SO(N) configuration, even if in the specific applications we have in mind we set

N = 8 for local tadpole cancellation, as discussed in section 2. We thus turn on a constant

magnetic field along, say, the directions 2 and 3, and take

F23 = −F32 ≡ F , Fµν = 0 for µ, ν 6= 2, 3 . (4.16)

In color space, this field can be diagonalized in the form

F =
1

2πα′
diag

(
if1, if2, . . .

)
, (4.17)

with the eigenvalues fi (i = 1, . . . N) being paired into couples of opposite value. We have

therefore

TrF =
i

2πα′

∑

i

fi = 0 , TrF2 = − 1

(2πα′)2

∑

i

f2
i ,

TrF3 = − i

(2πα′)3

∑

i

f3
i = 0 , TrF4 =

1

(2πα′)4

∑

i

f4
i . (4.18)

For such a configuration, the expression (2.6) simplifies to

Tr
(
t8F

4
)

=
3

2
TrF4 , (4.19)

while the topological term (F ∧ F ∧ F ∧ F ) vanishes, so that the quartic action (2.16)

reduces to

Stree
(4) (F) = − V8

16λ4
TrF4 = − V8

64π3gs
TrF4 (4.20)

where V8 is the (regularized) world-volume of the D7-branes. Recalling the expression of

the classical instanton action, we can write the following relation

Stree
(4) (F) = − V8

128π4
TrF4 Stree

D(−1) . (4.21)

In the following we will extend such a relation at the one-loop level. To this end we first

compute the one-loop vacuum energy of N D7-branes of Type I′ in the background (4.17).

This vacuum energy is schematically given by

ZD7(F) =

∫ ∞

0

dt

2t
TrF

(
1 + Ω

2
PGSO q

L0

)
(4.22)

where the trace TrF is computed over the space of all open string states attached to the D7-

branes in the presence of the field F . Such a space separates into N2 sectors with boundary

conditions at σ = (0, π) determined by the values (fi, fj). These boundary conditions are
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of NN type in the directions 1,4,5,6,7,8, and of DD type in the directions 9,10, while in

the complex direction x = (x2 + ix3)/
√

2 where there is the background field the string

coordinate x(z, z̄) obeys this twisted boundary conditions

∂x|σ=0 = e2πiνi ∂̄x|σ=0 , ∂x|σ=π = e2πiνj ∂̄x|σ=π , (4.23)

where πνi,j = − arctan fi,j. The field x(z, z̄) can be expressed as

x(z, z̄) = x0 +
1

2

[
X(z) + e2πiνiX(z̄)

]
(4.24)

in terms of a twisted chiral bosonic field X(z) satisfying

X(e2πiz) = e2πiνijX(z) , with νij = νi − νj . (4.25)

Similarly we can treat the corresponding world-sheet fermionic field ψ = (ψ2 + iψ3)/
√

2,

in its NS or R sector (see, for instance, [54] for details).

Since world-sheet parity acts by exchanging the boundary conditions, according to

Ω : (νi, νj) → (−νj,−νi) , (4.26)

the term in (4.22) with the Ω insertion contributes to the trace only when νj = −νi, that

is when fj = −fi. The free energy Z(F) can thus be rewritten as

ZD7(F) =
1

2

(
∑

i,j

A(fi, fj) +
∑

i

M(fi,−fi)
)
, (4.27)

having denoted by A(fi, fj) and M(fi,−fi), respectively, the annulus and the Möbius

diagrams in a specific sector.

The calculation of the annulus amplitudes in an external field is completely standard

(see for instance [55]) and its explicit expression is

A(fi, fj) ≡
∫ ∞

0

dt

2t
Tr(fi,fj)

(
PGSO q

L0
)

(4.28)

=
iV8

(8π2α′)3
fi − fj
4π2α′

∫ ∞

0

dt

2t4

[
1

2

4∑

a=2

sa
θa(iνijt|it)
θ1(iνijt|it)

(
−2π

θa(0|it)
θ′1(0|it)

)3
]
W(t) ,

with a = 2, 3, 4 corresponding, respectively, to the R, NS and NS(−1)F sectors (hence

s2 = −1, s3 = 1 and s4 = −1). In the above expression, the θ-functions represent the

contribution of the non-zero modes of the various string fields; on the other hand a factor

of 1/(8π2α′t)3 arises from the momentum integration over the six NN directions, while the

non-commutativity of the zero-modes in the twisted directions leads in the end to a factor

of i(fi − fj)/(4π
2α′). The last term W(t) is as in (4.6) and represents the contribution of

the winding modes along the two compact DD directions.

We are interested in the expansion of A(fi, fj) up to quartic order in the f ’s. To obtain

it we first expand the even θ-functions appearing in (4.28) in powers of νij , namely

θa(iνijt|it) = θa(0|it) −
1

2
ν2
ijτ

2θ(2)
a (0|it) +

1

4!
ν4
ijt

4θ(4)
a (0|it) + · · · (4.29)
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where θ
(n)
a denotes the n-repeated derivative of θa with respect to its first argument. When

we substitute this expansion into (4.28), we immediately see that the terms proportional

to θa give rise to an expression proportional to the abstruse identity

4∑

a=2

sa θa(0|it)4 = 0 ; (4.30)

we can therefore forget about them. Similarly, the terms proportional to θ
(2)
a enter in (4.28)

only through a combination which vanishes identically due to the following θ-function

identity (see appendix C):

4∑

a=2

sa θ
(2)
a (0|it) θa(0|it)3 = 0 . (4.31)

We are then left with only the terms involving θ
(4)
a , which are already of quartic order in

the f ’s since νij = −(fi − fj)/π + O(f3). This means that in (4.28) we can make the

following replacement

i (fi − fj)
θa(iνijt|it)
θ1(iνijt|it)

→ − t3(fi − fj)
4

4!π3

θ
(4)
a (0|it)
θ′1(0|it)

+O(f5) , (4.32)

thus getting, up to quartic order in f ,

A(fi, fj) =
V8

128π4

(
fi − fj
2πα′

)4 ∫ ∞

0

dt

2t

[
1

6

4∑

a=2

sa
θ
(4)
a (0|it) θa(0|it)3

θ′1(0|it)4

]
W(t) . (4.33)

Using the θ-function identity, shown in appendix C,

4∑

a=2

sa θ
(4)
a (0|it) θa(0|it)3 = 3 θ′1(0|it)4 , (4.34)

we see that the quantity in square brackets reduces to 1/2, so that we finally have

A(fi, fj) =
V8

256π4

(
fi − fj
2πα′

)4 ∫ ∞

0

dt

2t
W(t) . (4.35)

The sum of annuli amplitudes appearing in (4.27) can then be rewritten in terms of the

traces of the matrix F using (4.18), getting

∑

i,j

A(fi, fj) =
V8

128π4

[
N TrF4 + 3

(
TrF2

)2]
∫ ∞

0

dt

2t
W(t) . (4.36)

Let us now consider the Möbius diagrams M(fi,−fi). The action of Ω on the oscillators

of the string which has νj = −νi and twist 2νi is the same as in the standard NN directions.

As a result, the insertion of Ω has the net effect of sending q = e−2πt → −q, or equivalently
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it → it + 1
2 , so that from the annulus amplitude (4.28) we can immediately obtain the

corresponding Möbius expression, namely

M(fi,−fi) ≡
∫ ∞

0

dt

2t
Tr(fi,−fi)

(
ΩPGSO q

L0
)

(4.37)

= − iV8

(8π2α′)3
2fi

4π2α′

∫ ∞

0

dt

2t4

[
1

2

4∑

a=2

sa
θa(2iνit|it+ 1

2 )

θ1(2iνit|it+ 1
2)

(
−2π

θa(0|it+ 1
2)

θ′1(0|it+ 1
2)

)3
]
W(t)

where the overall sign has been chosen to be consistent with the action of Ω on the Chan-

Paton factors of the 7/7 strings as given in (2.2). The shift it → it + 1/2 in the second

argument of the θ-functions does not affect in any way the manipulations we performed

in evaluating the annulus amplitudes: indeed, both the expansion in powers of f and

the θ-function identities to be used refer only to their first arguments. We can therefore

immediately write, up to O(f5),

M(fi,−fi) = − V8

256π4

(
2fi

2πα′

)4 ∫ ∞

0

dt

2t
W(t) . (4.38)

Summing over all Möbius diagrams and using the trace formulas (4.18) gives us

∑

i

M(fi,−fi) = − V8

16π4
TrF4

∫ ∞

0

dt

2t
W(t) . (4.39)

Inserting the annulus and the Möbius amplitudes (4.35) and (4.39) into (4.27), we have

ZD7(F) =
V8

256π4

[
(N − 8)TrF4 + 3

(
TrF2

)2]
∫ ∞

0

dt

2t
W(t) +O(f5) . (4.40)

We get therefore the following one-loop contribution to the single trace quartic action

S1−loop
(4) (F) ≡ −ZD7(F)

∣∣∣
quartic

= − V8

256π4
(N − 8)TrF4

∫ ∞

0

dt

2t
W(τ) . (4.41)

Comparing this expression to the one-loop action of the D7-branes in the background of a

single D-instanton derived in the previous section (see eq. (4.15)), we obtain

S1−loop
(4) (F) = − V8

128π4
TrF4 S1−loop

D(−1) , (4.42)

which is the one-loop extension of the tree-level result written in (4.21). What we have

found is a generalization to the quartic term of the relation between instantonic one-loop

amplitudes and gauge threshold corrections to the quadratic action, originally found in [47,

48] and further elaborated in [49, 50]. The relations (4.21) and (4.42) express the equality

of the quartic coupling λ computed in two different backgrounds: the constant background

F and the D(–1)-background. Furthermore, adding the one-loop contribution (4.41) to

the corresponding tree-level expression (4.20) amounts to renormalize the coupling of the

quartic action (2.16) according to

1

λ4
→ 1

λ4
+
N − 8

16π4

∫ ∞

0

dt

2t
W(t) . (4.43)
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The integral appearing in the one-loop contribution is divergent both in the IR region,

t → ∞, and in the UV one, t→ 0. It can be treated as described, for instance, in appendix

A of [49], along the lines indicated in [56]. The divergence for t→ 0 is associated to massless

exchanges in the closed channel, reached upon Poisson resummation, and is absent when

tadpole cancellation holds (which is actually the case when N = 8). Here, we are interested

in the IR divergence, due to the massless open string states circulating in the loop, which

we regularize in terms of a mass scale µ obtaining
∫ ∞

0

dt

2t
W(t) → −1

2
log(α′µ2) + · · · (4.44)

eq. (4.43) can therefore be interpreted as a definition of the running coupling λ(µ):

λ(µ)4 =
λ4

1 + 8−N
32π4 λ4 log(α′µ2)

, (4.45)

with the original coupling λ being defined at the scale 1/
√
α′. The one-loop β-function

corresponding to (4.45) reads

βλ ≡ ∂ log λ(µ)

∂ log µ
= −8 −N

64π4
λ(µ)4 (4.46)

and we can introduce a renormalization group invariant scale Λ at which the running

coupling diverges given by

Λ =
1√
2πα′

e
− 16π4

(8−N)λ4 = ℓ−1
s e

− 4π
(8−N)gs . (4.47)

Thus we can conclude that the prefactor (3.16) appearing in the instanton calculus with D7

and D(–1)-branes can be expressed in terms of this renormalization group invariant scale as

Λ
8−N

2
k , (4.48)

in strict analogy with the usual instanton calculus with D3 and D(–1)-branes. Clearly

for N = 8 all dimensional factors drop out and one is left with only the classical factor

e
− 2πk

gs (or e2πiτk when C0 6= 0), similarly to what happens for the instanton contributions

in N = 4 SYM theory.

In conclusion, we have shown that the one-loop renormalization of the quartic coupling

λ can be computed alternatively either utilizing a constant background field or assuming

that the D-instanton represents the string realization of a classical configuration for which

the quartic action S(4) reduces to the instanton action SD(−1).

5 Eight-dimensional instantons

As discussed in sections 2 and 3, the D(–1)-branes in our system are related to some

instanton-like gauge configuration in eight dimensions that satisfies the relation (2.19)

between the quartic action and the fourth Chern number. Here we briefly review the known

solutions to this constraint and argue that the SO(8) instanton discovered in [32, 33] is

singled out for our purposes.
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5.1 Linear instantons

One possibility to impose the constraint (2.19) is to exploit the relation between t8, ǫ8
and the octonionic projectors P±

1 and P±
2 discussed in appendices A and B. In particular,

consider the relation (see eq. (B.9))

tµ1······µ8
8 =

1

2
ǫµ1······µ8
8 −

(
P+

2 − P+
1

)µ1µ2

ν1ν2
· · ·
(
P+

2 − P+
1

)µ7µ8

ν7ν8
ǫν1······ν88 , (5.1)

and take a gauge field F belonging to Ker(P+
1 ), namely such that

(
P+

1

)µ1µ2

ν1ν2
Fµ1µ2 = 0 ,

(
P+

2

)µ1µ2

ν1ν2
Fµ1µ2 = Fν1ν2 . (5.2)

Then, from (5.1) we obtain

tµ1······µ8
8 Fµ1µ2 · · ·Fµ7µ8 =

1

2
ǫµ1······µ8
8 Fµ1µ2 · · ·Fµ7µ8 − ǫν1······ν88 Fν1ν2 · · ·Fν7ν8 , (5.3)

from which the relation (2.19) immediately follows. Using the explicit expressions of the

projectors P+
1 and P+

2 given in (A.9), we can rewrite the conditions (5.2) as

Fµν +
1

2
C+
µνρσ F

ρσ = 0 (5.4)

where C+
µνρσ is the anti-symmetric four-index tensor constructed from the octonionic struc-

ture constants. This is precisely the equation solved by the Fubini-Nicolai instanton [30].

This is an instanton-like configuration with a SO(7) rotational symmetry and, if embedded

in a supersymmetric context, it preserves 1/16 of supersymmetry as shown in [38]. These,

however, are not the symmetries of the D7/D(–1) system we are considering, which is

SO(8) invariant and 1/2-BPS. Thus, even if it satisfies the required constraint (2.19), the

Fubini-Nicolai instanton is not related to a D-instanton inside a D7 brane.

It is worth to point out that eq. (5.4) is just an example of more general linear relations

of the type

Fµν +
1

2
TµνρσF

ρσ = 0, (5.5)

where T is a constant anti-symmetric tensor, which were studied in [29] as analogues

in d > 4 of the standard self-duality relation satisfied by the usual gauge instantons

in d = 4.14 These linear instantons satisfy the Yang-Mills field equations DµFµν = 0

as a consequence of the Bianchi identity, and in general they may be classified by the

unbroken rotational symmetry and the possibly unbroken supersymmetry. As shown

in [38], besides the SO(7)-invariant Fubini-Nicolai instanton we have mentioned above, in

d = 8 there exist other linear instanton configurations that satisfy the constraint (2.19):

these configurations are ν-BPS, with ν = N/16 for N = 2, . . . , 6, and are invariant under

SO(N) ⊗ SO(8 − N). Also in these cases, the unbroken (super)symmetries do not match

those of the D7/D(–1)-brane system.

Another possibility to solve the constraint (2.19) is to consider a gauge field that be-

longs to Ker(P+
2 ), so that the relation (5.3) is still satisfied. This is again a linear instanton

14In d = 4 the usual gauge (anti)instantons satisfy (5.5) with Tµνρσ = ±ǫµνρσ.
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configuration of the type (5.5) with Tµνρσ = −1
3 C

+
µνρσ. This background breaks the SO(8)

rotational symmetry and, according to the arguments of [38], it cannot be promoted to a

BPS configuration in a supersymmetric context. Nevertheless, it is interesting to point out

that in this case the 4-form (F ∧ F ) is self-dual, i.e.

(
F ∧ F

)µ1µ2µ3µ4 =
1

4!
ǫµ1······µ8
8

(
F ∧ F

)
µ5µ6µ7µ8

= ∗
(
F ∧ F

)µ1µ2µ3µ4 . (5.6)

This observation suggests that in order to impose the constraint (2.19) one may look for

gauge field configurations that satisfy the self-duality relation (5.6), which is another way

to generalize to d = 8 what happens for the usual gauge instantons in d = 4. This is what

we will describe in the next subsection.

5.2 The SO(8) instanton

The so-called SO(8) instanton [32, 33] corresponds to the following field configuration in

d = 8:15

[
Aµ(x)

]αβ
=

(γµν)
αβ xν

r2 + ρ2
(5.7)

where ρ is an arbitrary parameter representing the instanton size and r2 = xµx
µ. Notice

that the anti-symmetric pair αβ of spinor indices label the adjoint representation of SO(8),

but, for simplicity, they will be often omitted in the sequel. Notice also the complete

similarity between (5.7) and the SU(2) instanton in d = 4 in the regular gauge: the only

differences are in the range of the space-time indices and in the group structure since in the

four-dimensional case one finds the chiral spinorial generators of SU(2) ⊂ SO(4) in place

of those of SO(8). The field strength corresponding to (5.7) is

Fµν(x) = ∂µAν(x) − ∂νAµ(x) −
[
Aµ(x), Aν(x)

]
= − 2 ρ2

(r2 + ρ2)2
γµν , (5.8)

and satisfies
(
F ∧ F

)
= ∗

(
F ∧ F

)
as a consequence of the self-duality relation of the γµν

matrices (see eq. (A.24)). The covariant derivative of this field strength reads

DµFνρ(x) = ∂µFνρ(x) −
[
Aµ(x), Fνρ(x)

]

=
4ρ2

(r2 + ρ2)3
(2xµγνρ − xνγρµ + xργνµ + δµνγρσx

σ − δµργνσx
σ) ,

(5.9)

from which, in d dimensions, it immediately follows that

DµFµν(x) =
4(d− 4)ρ2

(r2 + ρ2)3
γµνx

ν . (5.10)

Thus, the eight-dimensional SO(8) instanton (5.8) is not a solution of the Yang-Mills

equations, in contrast to the linear instantons considered in the previous subsection.

15For an anti-instanton one has to replace γµν with γ̄µν . In the following, for definiteness we will consider

only the instanton case.
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In a supersymmetric context, the SO(8) instanton describes a 1/2-BPS configura-

tion [39]; in fact by evaluating the gaugino supersymmetry transformation

δΛ =
1

2
Fµν Γµν ε (5.11)

in the background (5.8) and taking into account its chirality, one finds

δ(Λγ)
αβ ∝ ρ2

(r2 + ρ2)2
(
δαγ ε

β − δβγ ε
α
)

, δ(Λγ̇)
αβ = 0 . (5.12)

The supersymmetry transformations associated to anti-chiral parameters εα̇ are then un-

broken while those associated to chiral parameters εα are broken. The field configura-

tion (5.8) has then the same (super)symmetries of the D7/D(–1)-brane system of Type I′

we have described in the previous sections, and is naturally singled out for our purposes.

Notice that the expression (5.11) is the supersymmetric variation for the usual Yang-

Mills action and that it is corrected when the quartic action is taken into account. However

on the SO(8) instanton background it is the full answer as shown in [39]. This instanton

solution was originally proposed in [32, 33] as a classical configuration that minimizes the

quartic action
∫
d8xTr(F ∧ F )2. Later it was realized [34, 39] that it also minimizes the

quartic action S(4) given in (2.16) or equivalently that it satisfies the constraint (2.19). To

see this, let us start from the relation (see eq. (B.7))

t8 = −1

2
ǫ8 + t+ , (5.13)

and exploit the properties of the γµν matrices (see in particular eq. (B.10)) to show that

tµ1······µ8
+ Fµ5µ6Fµ7µ8 = 0 , (5.14)

which in turn implies that

t8F
4 = −1

2
ǫ8F

4 . (5.15)

Let us now evaluate the quartic action on this instanton configuration. Working for-

mally in d dimensions, after some straightforward algebra we have

Tr
(
t8F

4
)

=

(
− 2ρ2

(r2 + ρ2)2

)4(
−1

8
d(d− 1)(d − 4)(7d − 11)

)(
2d/2−1

)
. (5.16)

The three factors above arise, respectively, from the fourth power of the instanton form

factor, the algebra of the γµν matrices, and the trace over the gauge indices which, with

the Ansatz (5.7) correspond to those of a Weyl spinor in d dimensions. Using

Id =

∫
ddx

ρ8

(r2 + ρ2)8
=
πd/2 Γ

(
8 − d/2

)

7!
ρd−8 , (5.17)

and setting d = 8, we finally obtain

− 1

4!λ4

∫
d8xTr

(
t8F

4
)

=
2π

gs
, (5.18)
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which together with (2.19) implies that c(4) = 1. We can thus conclude that for the

SO(8) instanton

S(4) = SD(−1) . (5.19)

Let us now briefly discuss the rôle of the fermionic sector of this instanton configuration.

As one can see from the supersymmetry transformations (5.12), there is a non-trivial profile

only for the chiral part of the gaugino and this is given by

(Λγ)
αβ =

ρ2

(r2 + ρ2)2
(
δαγ η

β − δβγ η
α
)

(5.20)

where η is an arbitrarily normalized fermionic parameter carrying a chiral spinor index

which can be taken to label the fundamental representation of SO(8). We then consider

the fermionic terms which supersymmetrize the quartic action S(4). Among them, the

relevant one for our purposes is

i
c

λ4

∫
d8xTr

(
FµνF

µνΛ
[
φ,Λ

])
, (5.21)

where the complex scalar φ is the lowest component of the chiral superfield Φ defined

in (2.4) and c is a numerical coefficient. We observe that (5.21) descends from the term

Tr
(
FMNF

MNχΓPDPχ
)

in the NABI action in d = 10, which is usually not written since

it is proportional to the Dirac equation of motion. However, we know that this term is

present and has a non-vanishing coefficient c since it is found in the abelian Born-Infeld

action. Despite the fact that the ten-dimensional term is vanishing on-shell, it can give

a non-zero contribution in d = 8 if one considers a constrained instanton for which the

Dirac equation (or its dimensionally reduced counterpart) does not hold. This is indeed

what happens when we take the SO(8) instanton in presence of a non-vanishing vacuum

expectation value for φ, i.e. 〈φαβ〉 = φαβ0 . If we now insert the gauge field and gaugino

profiles (5.8) and (5.20) in the action (5.21), we get, up to a numerical factor which we

absorb in a redefinition of c,

i
c

λ4
tη φ0 η

∫
d8x

ρ8

(r2 + ρ2)8
. (5.22)

Evaluating the integral using (5.17) for d = 8 we see that all dependence on ρ drops out,

and clumping again all numerical factors in c, we finally have

iπ
c

gs

tη φ0 η . (5.23)

Writing η =
√

(gs/c) µ
′ we can put this term in precisely the same form of the fermionic

part of the D-instanton moduli action derived in section 3.2. We therefore conclude that the

SO(8) superinstanton completely accounts for the D(–1) action SD(−1)(Φ) given in (3.12),

when the vacuum expectation value φ0 is promoted to the full-fledged superfield Φ(x, θ).
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µ

µ̄

φ

D7

b)

w

w̄

Aµ

D3

a)

Figure 3. a) The emission of the gauge field from a mixed disk in the D3/D(–1) system explains

the classical profile of the instanton. b) In the D7/D(–1) system, no emission diagram for the gauge

field is found, owing to the absence of the w moduli. There is only an emission diagram for the

scalar φ, involving the fermionic moduli µ.

6 An almost vacuum configuration

The SO(8) instanton we described in the previous section has a free parameter ρ cor-

responding to its size. In the four dimensional case, the size is one of the parameters

encoded in the moduli wα̇ of the ADHM construction. As we have discussed in section 3.1,

the D7/D(–1) string does not possess the vertex operators corresponding to these mod-

uli. In this section we consider the consequences of this absence on the field configuration

associated to the D(–1)-branes.

In the D3 case, the correspondence between D-instantons and gauge instantons is

made very explicit by the fact that the D(–1)’s represent the source for the classical

instanton solution [12]. From the diagram represented in figure 3a), one gets (in the SU(2)

case, for c(2) = 1)16

[
Aµ(x)

]uv
= w u

α̇ (σ̄µν)
α̇
β̇
w̄β̇ v

xν

r4
= ρ2 (σ̄µν)

uv x
ν

r4
. (6.1)

In the second step above, using the ADHM constraints, the moduli dependence has been

re-expressed in terms of the size ρ, which is related to the w and w̄ moduli by

2ρ2 = w̄α̇uw
u
α̇ . (6.2)

Eq. (6.1) represents the leading behaviour for large distances, i.e. for r2/ρ2 → ∞, of

the instanton solution in the singular gauge

Aµ(x) =
ρ2 σ̄µν x

ν

r2(r2 + ρ2)
. (6.3)

Subleading orders of the large-distance expansion are provided by considering more and

more source terms of this kind.

In absence of the source represented by the diagram in figure 3a), no classical instanton

profile of the D3 gauge field would be associated to the D-instanton. This, however, is

16We use the same notations adopted in [12].

– 25 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
6

exactly the situation which occurs in the D7/D(–1) system: there are no bosonic moduli

w and w̄ from the NS sector of mixed D7/D(–1) strings, and no emission diagram for the

gauge field like the one of figure 3a) can be constructed. The only diagram describing the

emission of a D7/D7 field is the one in figure 3b): it acts as a source for the scalar φ and

contains only fermionic moduli.

This simple fact seems to imply that the classical instantonic configuration of the gauge

field on the D7 branes associated to a D(–1) vanishes, except at the location of the D(–1)

itself. The only possibility is that the sought-for configuration is represented by the zero-

size limit ρ→ 0 of the SO(8) instanton configuration we singled out in the previous section.

7 The field theory limit and the vanishing of higher α
′ corrections

To complete our analysis we now discuss the interplay between the zero-size limit ρ → 0

of the SO(8) instanton configuration and the limit α′ → 0.

At the string level, the effective action of the D7-branes is the full NABI action: this

is organized as a series of contributions with increasing powers of α′, the first few of which

are given in eq. (2.5) that we rewrite here for convenience:

SD7 =
1

128π5α′2 gs

∫
d8xTr

(
F 2
)
− 1

96π3gs

∫
d8xTr

(
t8 F

4
)
+
α′

gs

∫
d8xL(5)(F,DF ) + · · · .

(7.1)

In order to keep the quartic term and describe the effects of the D-instantons in the field

theory limit, we should take the limit α′ → 0 with gs fixed. This is dangerous because

the quadratic Yang-Mills term in (7.1) naively explodes being proportional to 1/(α′)2.

However, it is easy to show that on a solution like the SO(8) instanton which is localized

within a region of size ρ, the Yang-Mills action vanishes in the zero-size limit. Indeed,

inserting the field strength (5.8) into SYM and formally working in d dimensions, we get

2d/2−1

32π5α′2 gs
d(d− 1)

∫
ddx

ρ4

(r2 + ρ2)4
. (7.2)

For d → 8 the integral is divergent and we have to regulate it. For instance, using an

explicit cut-off R, we get a result proportional to

ρ4

α′2 gs
log
(
ρ/R

)
, (7.3)

whereas if we use dimensional regularization setting d = 8 − 2ǫ, up to numerical factors

we obtain
ρ4

α′2 gs

(
1

ǫ
+ finite

)
. (7.4)

In both cases, we clearly see that by taking the limit ρ→ 0 before removing the regulator,

the Yang-Mills contribution vanishes. It is interesting to note that the same thing happens

also for the quadratic fermionic terms which supersymmetrize the Yang-Mills action. In

fact, by inserting in
∫
d8xTr

(
Λ
[
φ,Λ

])
the gaugino profile (5.20) and giving a vacuum

expectation value to the scalar field φ, we obtain the same integral as in (7.2), so that also

the quadratic fermionic contribution vanishes in the limit ρ→ 0.
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This analysis of the Yang-Mills action shows that in order to associate a classical field

configuration to the D7/D(–1)-brane system, one has first to take the limit ρ → 0 of the

SO(8) (super)instanton, and then take the limit α′ → 0 (with gs fixed). Of course, this

limiting procedure has to be consistent also on the other terms of the NABI action. As

discussed in section 5, the quartic term does not create any problem in this respect because

it produces structures which depend neither on α′ nor on ρ. On the other hand, by simple

dimensional analysis, the contributions to the NABI action (7.1) of higher order in α′,

when calculated on the SO(8) instanton, give rise (in d dimensions) to a series of the form

ρd−8
∞∑

n=1

an

(
α′

ρ2

)n
, (7.5)

where for instance the coefficient a1 is determined by evaluating the integral of the quintic

Lagrangian L(5)(F,DF ) on the instanton solution. Since we have to take the point-like limit

ρ → 0 before the field-theory limit α′ → 0, for the consistency of the whole construction

it is necessary that the coefficients an be zero, i.e. it is necessary that all higher order

contributions in the NABI action vanish when evaluated on the SO(8) solution. However,

as the NABI action is not known in a closed form, one can only check the first coefficients

of the expansion (7.5).

Before performing such checks, it is worth recalling a few facts about the structure of

the NABI action. The quartic term in (7.1), which is of order O(α′2) with respect to the

Yang-Mills one, was computed long time ago by Tseytlin [45] starting from the evaluation of

4-point string amplitudes. In this seminal paper it is clearly discussed how the identification

of the effective action through on-shell amplitudes is inherently ambiguous with respect

to the presence of terms proportional to DµFµν . The structure Tr
(
t8F

4
)

of the quartic

Lagrangian corresponds to a “minimal” scheme in which terms of this type are absent,

and can be related to other schemes by field redefinitions. This same ambiguity obviously

persists in the subsequent higher-order terms. A way to fix this ambiguity can be to insist

that the bosonic NABI action should admit an off-shell supersymmetric extension; this

indeed singles out the minimal form of the quartic Lagrangian Tr
(
t8F

4
)

as shown in [57–

59]. This procedure has been extended in [40] also to the terms of O(α′3), i.e. to the quintic

Lagrangian L(5)(F,DF ) appearing in (7.1), which in this way is determined to be

L(5) =
ζ(3)

2
Tr
{
4
[
Fµ1µ2 , Fµ3µ4

][[
Fµ1µ3 , Fµ2µ5

]
, Fµ4µ5

]
(7.6)

+ 2
[
Fµ1µ2 , Fµ3µ4

][[
Fµ1µ2 , Fµ3µ5

]
, Fµ4µ5

]
+ 2
[
Fµ1µ2 ,Dµ5Fµ1µ4

][
Dµ5Fµ2µ3 , Fµ3µ4

]

− 2
[
Fµ1µ2 ,Dµ4Fµ3µ5

][
Dµ4Fµ2µ5 , Fµ1µ3

]
+
[
Fµ1µ2 ,Dµ5Fµ3µ4

][
Dµ5Fµ1µ2 , Fµ3µ4

]}
.

It is natural to consider this quintic Lagrangian as the first string correction to the minimal

quartic Lagrangian Tr
(
t8F

4
)
, since its structure is fixed using the same guiding principles.

For this reason the Lagrangian (7.6) is singled out among the various proposals for L(5)

existing in the literature.

Plugging the instanton profiles (5.8) and (5.9) into α′

gs

∫
d8xL(5) and working formally

in d dimensions, after straightforward algebraic manipulations that we performed with the
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help of the XCadabra program [60, 61], from (7.6) we find

α′ ζ(3)

gs
2d/2+9

(
− d(d− 1)(d − 2)(d − 4)

∫
ddx

ρ10

(r2 + ρ2)10

+ (d− 1)(d − 2)(d− 4)(d + 2)

∫
ddx

ρ8 r2

(r2 + ρ2)10

)
.

(7.7)

The first line represents the contribution of the F 5 terms, while the second stems from the

(DF )2F 2 ones. Performing the integrations, in the end we remain with

α′ ζ(3)

gs
2d/2+9 π

d/2 Γ(9 − d/2)

9! ρ10−d
(d− 1)(d− 2)(d − 4)

(
−d
(

9 − d

2

)
+ (d+ 2)

d

2

)
, (7.8)

so that the coefficient a1 in (7.5) takes the form

a1 ∝ d(d− 1)(d − 2)(d− 4)(d − 8) . (7.9)

We therefore see that the O(α′) corrections vanish on the instanton Ansatz (5.7) for d = 8.

We believe that this is a very non-trivial check of the consistency of our picture in which

the zero-size limit of the SO(8) instanton is identified as the field theoretical counterpart

of the D7/D(–1)-brane system.

It is curious to notice that the coefficient a1 vanishes for d = 1, 2, 4, 8 which are

the dimensions of the four division algebras over the reals, namely the real, complex,

quaternionic and octonionic algebras. These algebras are related to the four fundamental

Hopf maps, which physically describe, respectively, the kink solution of the Sine-Gordon

equation, the Dirac monopole, the Yang-Mills gauge instantons in four dimensions and the

SO(8) instanton in eight dimensions [32, 33].

We remark that in the literature there are different forms for the O(α′3) Lagrangian

L(5), which have been determined by fixing the field redefinition ambiguity mentioned

above by focusing on different guiding principles. For instance, in [41, 43] the Lagrangian

is derived from superfield loop computations, while in [44] it is obtained from superstring

amplitudes. In [42], instead, the requirement is that a particular class of BPS solutions

of the Yang-Mills equations, called holomorphic instantons, remain solutions also of the

NABI action. Such solutions correspond to the usual gauge instantons in d = 4, but do

not correspond to the SO(8) instanton in d = 8 which is the relevant one for the D7/D(–1)

system under consideration. As stated in the literature, all proposed forms of L(5) agree

among each other up to terms proportional to the Yang-Mills field equations. Indeed, when

evaluated on the Ansatz (5.8), we find that the corresponding actions all vanish in d = 4,

where the Yang-Mills equations are satisfied; they however disagree in the d = 8 case,

where only the supersymmetrizable action corresponding to (7.6) vanishes.

As mentioned above, we believe that the expression compatible with off-shell super-

symmetry is the one that should be used in order to weight configurations such as the

eight-dimensional instanton which is “off-shell” because it does not satisfy the Yang-Mills

field equations. Finally, we observe that the O(α′4) correction to the NABI action has been

derived in [62], extending the same philosophy used in [42] for the O(α′3) term. We can
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therefore expect that it coincides with the off-shell supersymmetrizable expression only up

to terms proportional to DµFµν which are not negligible on our instanton solution. So,

even if it would be highly desirable to be able to check the vanishing of the action also to

O(α′4), and hence of the coefficient a2 in (7.5), this does not seem to be possible at the

moment. Nevertheless, we believe that the vanishing of the first coefficient a1 is already a

highly non-trivial test of our proposal.

Concluding remarks. We think that the results and techniques of this paper can be

further developed in several directions. In particular, in the eight-dimensional context, it

would be obviously very interesting to perform explicitly the moduli integral in (3.17) to

determine the coefficients ck of (3.18) and compare them to those derived from the duality

with the heterotic string on T2. Regarding our starting motivation, namely the relation

with so-called exotic instantons, one could repeat the analysis of this paper upon further

compactification on, say, a T4. The resulting systems of wrapped D7’s and D(–1)’s represent

four-dimensional exotic instantons, albeit within a system with N = 4 supersymmetry; it

would be nice to understand if they possess a field-theoretic interpretation related to a

compactification of the zero-size limit of the eight-dimensional SO(8) solution, and if some

similar interpretation can be found also in cases with reduced supersymmetry.
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A Octonions and SO(8) Γ-matrices

A.1 Octonions

An octonion can be defined as q = qµ eµ, where the eight components qµ are real numbers,

and the eight basis vectors are e8 = 1 and ei (i = 1, 2, . . . , 7), such that

ei ej = −δij + cijk ek (A.1)

with c a totally antisymmetric tensor whose only non-zero elements can be taken to be

c127 = c163 = c154 = c253 = c246 = c347 = c567 = 1 . (A.2)

One can easily verify that the tensor c obeys, among others, the following identities

cijk ckℓm = δiℓ δjm − δim δjℓ +
1

3!
ǫijℓmnpq cnpq ,

cijk cjkℓ = 3! δiℓ ,

cijk =
1

4!
ǫijℓmnpq cnpq ckℓm . (A.3)
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The tensor c can be embedded into two totally antisymmetric four-index tensors C±
µνρσ in

d = 8 by means of

C±
ijk8 = cijk , C±

ijkℓ = ± 1

3!
ǫijkℓmnp cmnp (A.4)

From (A.2) we see that, up to permutations of the indices, the only non-vanishing compo-

nents of C± are

C±
1278 = C±

1638 = C±
1548 = C±

2538 = C±
2468 = C±

3478 = C±
5678 = +1 , (A.5)

C±
1234 = C±

1256 = C±
1357 = C±

1647 = C±
3267 = C±

4257 = C±
3456 = ±1 . (A.6)

The two tensors C± obey the following (anti)self-duality relations in d = 8

C±µ1µ2µ3µ4 = ± 1

4!
ǫµ1······µ8
8 C±

µ5µ6µ7µ8
(A.7)

and thus transform respectively in the representations 35 and 35′ of SO(8).

The identities satisfied by c, like the ones in (A.3), can be re-expressed as identities on

C±. In particular, we find useful to mention the following ones

1

2
C±µνλτ C±

λτρσ = 3 δµνρσ ± 2C±µν
ρσ ,

1

3!
C±µρστ C±

νρστ = 7 δµν ,

1

4!
C±µνρσ C±

µνρσ = 14 , (A.8)

where we have used the notation δµνρσ = δµρ δνσ − δνρδ
µ
σ . Following [63], we can exploit the

properties of C± to define the operators

(
P±

1

)µν
ρσ

=
1

8

(
δµνρσ ± C±µν

ρσ

)
,
(
P±

2

)µν
ρσ

=
3

8

(
δµνρσ ∓ 1

3
C±µν
ρσ

)
(A.9)

which act as orthogonal projectors on the 28-dimensional space of the (8×8) anti-symmetric

matrices. Indeed, using (A.8) it is easy to check that

P±
1 · P±

1 =P±
1 , P±

2 · P±
2 =P±

2 ,

P±
1 · P±

2 =P±
2 · P±

1 = 0, P±
1 + P±

2 =
1

2
δ , (A.10)

where we have used the notation
(
A · B

)µν
ρσ

= Aµνλτ B
λτ
ρσ , and understood all indices. Thus,

any anti-symmetric tensor of rank two can be decomposed into two independent pieces,

one annihilated by P±
1 and one annihilated by P±

2 . Since the C± tensors are traceless, the

dimensionalities of the two eigenspaces can be easily obtained by computing the trace of

the two projectors, and one finds

dim
[
Ker(P±

1 )
]

= 21 , dim
[
Ker(P±

2 )
]

= 7 . (A.11)

The octonion structure constants can be used also to construct an explicit realization

of the Clifford algebra in d = 7. Indeed, it is easy to check that the seven (8× 8)-matrices

τ i (i = 1, . . . , 7) with elements

(τ i)αβ = δi8αβ + C− i8
αβ (α, β = 1, . . . , 8) (A.12)
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satisfy the following relations

{
τ i, τ j

}
αβ

= −2δij δαβ ,

(τ ij)αβ ≡ 1

2

[
τ i, τ j

]
αβ

= −δijαβ − C− ij
αβ . (A.13)

Furthermore, by direct computation or by using the properties of the C− tensor, one can

show that

τ1τ2τ3τ4τ5τ6τ7 = − 1l8 (A.14)

where 1l8 is the (8 × 8) identity matrix.

A.2 SO(8); Γ-matrices

The eight Γ-matrices of SO(8), satisfying
{
Γµ,Γν

}
= 2δµν , can be described as

Γi = iτ i ⊗ σ1 , Γ8 = −1l8 ⊗ σ2 (A.15)

where the σ’s are the usual Pauli matrices and the τ ’s are the seven matrices defined

in (A.12). This is a Weyl representation, since the chirality matrix is

Γ ≡ Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8 = 1l8 ⊗ σ3 . (A.16)

Note that in this realization all Γ-matrices are anti-symmetric. From (A.15) we easily find

that the commutators of two Γ’s are

Γij ≡ 1

2

[
Γi,Γj

]
= −τ ij ⊗ 1l2 , Γi8 ≡ 1

2

[
Γi,Γ8

]
= τ i ⊗ σ3 ; (A.17)

thus they all are block diagonal, namely

Γµν =

(
γµν 0

0 γ̄µν

)
(A.18)

with the chiral blocks (α, β = 1, . . . , 8) given by

(γij)αβ = −(τ ij)αβ = δijαβ +C− ij
αβ , (γi8)αβ = (τ i)αβ = δi8αβ + C− i8

αβ , (A.19)

and the anti-chiral blocks (α̇, β̇ = 1, . . . , 8) given by

(γ̄ij)α̇β̇ = −(τ ij)α̇β̇ = δij
α̇β̇

+ C− ij

α̇β̇
, (γ̄i8)α̇β̇ = −(τ i)α̇β̇ = −δi8

α̇β̇
− C− i8

α̇β̇
. (A.20)

Notice that the chiral matrices γµν can be written in a covariant way with respect to both

the vector and the spinor indices, namely

(γµν)αβ = δµναβ + C−µν
αβ . (A.21)

On the contrary, this is not possible for γ̄µν . However, by using the octonionic tensor C+,

and splitting the anti-chiral spinor indices as α̇ = (ȧ, 8̇), one can show that

(γ̄µν)ȧḃ = δµν
ȧḃ

− C+µν

ȧḃ
, (γ̄µν)ȧ8̇ = −δµν

ȧ8̇
+ C+µν

ȧ8̇
. (A.22)
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This formulation is covariant only in the vector indices but not in the spinor indices.

Eq.s (A.21) and (A.22) are useful to establish a connection between the matrices γµν and

γ̄µν and the projection operators P±
1 and P±

2 defined in (A.9). Indeed, one has

1

4
(γµν)αβ =

(
P−

2 − P−
1

)µν
αβ
,

1

4
(γ̄µν)ȧḃ =

(
P+

2 − P+
1

)µν
ȧḃ
,

1

4
(γ̄µν)ȧ8̇ = −

(
P+

2 − P+
1

)µν
ȧ8̇
. (A.23)

Finally, we recall that the matrices γµν satisfy the following relations

γµ1µ2 γµ3µ4 = δµ1µ4δµ2µ3 − δµ1µ3δµ2µ4 +
1

2
[γµ1µ2 , γµ3µ4 ] + γµ1µ2µ3µ4 ,

[γµ1µ2 , γµ3µ4 ] = 2 δµ2µ3 γµ1µ4 + 2 δµ1µ4 γµ2µ3 − 2 δµ2µ4 γµ1µ3 − 2 δµ1µ3 γµ2µ4 ,

γµ1µ2µ3µ4 = +
1

4!
ǫµ1······µ8
8 γµ5µ6µ7µ8 . (A.24)

Similar relations hold for the matrices γ̄µν , but with ǫ8 replaced by −ǫ8 in the last one.

Furthermore, we have

(γµν)αβ (γµν)γδ = 8 δαβ,γδ , (γ̄µν)α̇β̇ (γ̄µν)γ̇δ̇ = 8 δα̇β̇,γ̇δ̇ . (A.25)

B The t8 tensor

The explicit expression of the totally anti-symmetric 8-index tensor t8 can be read from

the definition (2.6). It turns out that t8 can be written as

t8 =
1

2

(
T(1) − T(2)

)
(B.1)

where T(1) and T(2) are the following single and double trace anti-symmetric tensors

T µ1···µ4

(1) µ5···µ8
= δ

[µ2

[µ5
δ
[µ3

µ6]δ
µ4]
[µ7
δ
µ1]
µ8] + permutations ,

T µ1···µ4

(2) µ5···µ8
= δ

µ1µ2

µ5µ6
δ
µ3µ4

µ7µ8
+ permutations . (B.2)

In d = 8 the tensor t8 can be given another representation, as explained for example in

appendix 9.A of ref. [64]. Let us introduce the chiral and anti-chiral zero-mode operators

Sα0 and S̄α̇0 such that

TrS0

(
Sα1α2

0 Sα3α4
0 Sα5α6

0 Sα7α8
0

)
= ǫα1······α8

8 ,

TrS̄0

(
S̄α̇1α̇2

0 S̄α̇3α̇4
0 S̄α̇5α̇6

0 S̄α̇7α̇8
0

)
= ǫα̇1······α̇8

8 , (B.3)

and define the bi-linear operators

Rµν =
1

4
(γµν)αβS

α
0 S

β
0 , R̄µν =

1

4
(γ̄µν)α̇β̇ S̄

α̇
0 S̄

β̇
0 . (B.4)
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Then let us consider the following anti-symmetric 8-index tensors

tµ1µ2···µ7µ8
+ = TrS0

(
Rµ1µ2Rµ3µ4Rµ5µ6Rµ7µ8

)

=
1

28
(γµ1µ2)α1α2(γ

µ3µ4)α3α4(γ
µ5µ6)α5α6(γ

µ7µ8)α7α8 ǫ
α1······α8
8 ,

tµ1µ2···µ7µ8
− = TrS̄0

(
R̄µ1µ2R̄µ3µ4R̄µ5µ6R̄µ7µ8

)

=
1

28
(γ̄µ1µ2)α̇1α̇2(γ̄

µ3µ4)α̇3α̇4(γ̄
µ5µ6)α̇5α̇6(γ̄

µ7µ8)α̇7α̇8 ǫ
α̇1······α̇8
8 . (B.5)

Being completely anti-symmetric invariant tensors of SO(8), both t+ and t− must be linear

combinations of ǫ8 and of the single and double trace tensors T(1) and T(2) defined in (B.2).

Indeed, using the explicit expressions (A.21) and (A.22) for the matrix elements of γµν and

γ̄µν , with straightforward algebra one can prove that

t± = ±1

2
ǫ8 +

1

2
T(1) −

1

2
T(2) , (B.6)

from which, using (B.1) it follows that

t8 = ∓1

2
ǫ8 + t± . (B.7)

By using the relations (A.23) in (B.5), we can obtain yet another representation of the t8
tensor, namely

tµ1µ2···µ7µ8
8 = −1

2
ǫµ1······µ8
8 +

(
P−

2 − P−
1

)µ1µ2

α1α2
· · ·
(
P−

2 − P−
1

)µ7µ8

α7α8
ǫα1······α8
8 ,

tµ1µ2···µ7µ8
8 = +

1

2
ǫµ1······µ8
8 −

(
P+

2 − P+
1

)µ1µ2

α̇1α̇2
· · ·
(
P+

2 − P+
1

)µ7µ8

α̇7α̇8
ǫα̇1······α̇8
8 . (B.8)

Finally, by exploiting the triality among the SO(8) representations, we can write also the

following relations

tµ1µ2···µ7µ8
8 = ∓1

2
ǫµ1······µ8
8 ±

(
P∓

2 − P∓
1

)µ1µ2

ν1ν2
· · ·
(
P∓

2 − P∓
1

)µ7µ8

ν7ν8
ǫν1······ν88 . (B.9)

There are also useful identities involving the tensors t± and the γ-matrices. In partic-

ular one has

tµ1······µ8
+ γµ5µ6γµ7µ8 = 0 , tµ1······µ8

− γ̄µ5µ6 γ̄µ7µ8 = 0 (B.10)

which follows from (B.5) and (A.25).

C θ-function identities

Let us consider the Riemann identity of the Jacobi θ-functions,17 which, in the notation of

the main text, is

4∑

a=2

sa θa(z|it)
3∏

i=1

θa(zi|it) = θ1(z|it)
3∏

i=1

θ1(zi|it) − 2 θ1(z
′|it)

3∏

i=1

θ1(z
′
i|it) (C.1)

17For the Jacobi θ-functions we use the standard conventions given, for instance, in [64].
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where s2 = −1, s3 = 1, s4 = −1, and

z′1 =
1

2
(−z1 + z2 + z3 + z), z′2 =

1

2
(−z2 + z1 + z3 + z) ,

z′3 =
1

2
(−z3 + z1 + z2 + z), z′ =

1

2
(−z + z1 + z2 + z3) . (C.2)

When computed at z1 = z2 = z3 = 0, the identity (C.1) reduces to

4∑

a=2

sa θa(z|it) θa(0|it)3 = 2 θ1(z/2|it)4 . (C.3)

By taking (multiple) derivatives of this identity with respect to z, we can obtain other

identities. For instance, applying the second derivative, we get

4∑

a=2

sa θ
(2)
a (z|it)θa(0|it)3 = 6 θ1(z/2|it)2 θ′1(z/2|it)2 + 2 θ1(z/2|it)3 θ(2)

1 (z/2|it) , (C.4)

which at z = 0 reduces to
4∑

a=2

sa θ
(2)
a (0|it) θa(0|it)3 = 0 . (C.5)

This is the identity (4.31) used in the main text. Analogously, by considering the fourth

derivative of (C.1) we get

4∑

a=2

sa θ
(4)
a (z|it) θa(0|it)3 = 3 θ′1(z/2|it)4 + θ1(z/2|it)

[
· · ·
]
, (C.6)

which at z = 0 becomes

4∑

a=2

sa θ
(4)
a (0|it) θa(0|it)3 = 3 θ′1(0|it)4 (C.7)

namely the identity (4.34) of the main text.
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[7] L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton

effects, JHEP 03 (2007) 052 [hep-th/0609213] [SPIRES].
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