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ABSTRACT Objective: Crosstalk in surface electromyogram (EMG) is an important open problem and
the common strategy of reducing it through spatial filters needs improvements. Methods: We evaluated
experimentally the optimal spatio-temporal filter (OSTF), i.e., a recent approach that adapts to the subject,
filtering different EMG channels both in time and space to emphasize the signal of a target muscle
discarding that of adjacent ones. EMGs were recorded by a high-density recording system from pronator
teres (target muscle) and flexor carpi radialis (crosstalk muscle) of 8 healthy subjects. OSTF was tested
in different conditions, considering one channel per muscle (either single or double differential, SD and
DD, respectively), changing the selectivity of detection (small electrodes close to each other, or large ones
with higher inter-electrode distance), the force applied by the muscles (whose EMGs were summed to
simulate different levels of crosstalk), and the duration of the signal to train the method. Results: OSTF
was less affected by crosstalk than SD and DD filters. Statistically significant improvements were obtained
in reducing the crosstalk-induced variations: for example, considering small electrodes, we obtained a
percentage error of 157.30±57.11 % and 38.54±10.47 % (mean±std) in the estimation of the average
rectified value (ARV), and an error of 23.57±3.92 % and 8.31±0.88 % in the estimation of the median
frequency (MDF), for SD and OSTF, respectively. Conclusion: The OSTF can be applied in real-time, is easy
to use, and is feasible even when using only few detection channels, as is customary in many applications.

INDEX TERMS Crosstalk, spatial filter, surface EMG.

I. INTRODUCTION
The surface electromyogram (EMG) is the electrical signal
generated by a muscle during its contraction and recorded
by electrodes placed over the skin [1]. These electrodes have
a large pick-up volume [2], [3], so they record a mixture
of contributions from the target muscle (i.e., the one to be
investigated) and nearby muscles [4], [5], [6]. The latter is
known as crosstalk [7]. Nowadays, crosstalk is still an open
problem in surface EMG: indeed, it may affect the estimation
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of muscle activity in different application studies, such as gait
analysis [8], control of myoelectric prosthesis [9], [10], [11]
and ergonomics for task evaluation [12].
Many authors investigated the effect of crosstalk, both

in simulation [13], [14], [15], [16], [17] and experimen-
tally [18], [19], [20], [21], [22], to better understand its
biophysical origin and to provide a quantification of it.
More specifically, some results showed that a quantification
through cross-correlation of the signals of target and crosstalk
muscles is not effective [23]. Furthermore, a temporal
filter was found to be not useful to reduce this undesired
contribution [6], [24].
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The easiest strategy to avoid this issue is through an
appropriate electrode positioning [25] in combination with
spatial filters [18], [20]. Indeed, far-field potentials have
an important common mode when recorded by different
electrodes, in contrast to propagating components [26], [27]:
thus, spatial filters removing efficiently common potentials
can attenuate crosstalk. However, there are some limitations:
type and dimension of electrodes used, physical properties of
the tissue and anatomy of the subject affect the contribution of
crosstalk, as demonstrated in simulated conditions [13], [14],
[15], [16], [17]. Moreover, when selective spatial filters are
used, only a small detection volume is analyzed, discarding
also most of the EMG from the target muscle. This could be
a problem if the recorded activity of the motor units (MU)
included in this small detection volume is not representative
of the whole muscle [28].

In literature, advanced strategies have also been introduced
to quantify and remove the EMG of crosstalk muscles: for
example, blind source separation (BSS) techniques [21],
inverse methods [27], [29] and decomposition algorithms
[30], [31]. However, these methods require high-density
recording systems that are not common in applications and
advanced processing, which probably limited their diffusion.

An alternative approach to both simple fixed spatial filters
and complicated methods mentioned above was proposed
in [32]: it is called optimal spatio-temporal filter (OSTF).
Being a filter, it can be easily applied and used in real-
time. Moreover, it requires simple recording systems (e.g.,
few EMG channels over target and crosstalk muscles). Only
a preliminary complication is needed, i.e., the recording of
selective signals from the target and the crosstalk muscles,
on the basis of which the filter is optimized before being
ready for application. Indeed, the OSTF should be adapted
to the specific conditions (i.e., detection system and volume
conductor anatomy, geometry and conductivity) in order to
emphasize the energy of the target EMG and discard the one
produced by crosstalk muscles. The method, which shares
some features with the common spatial pattern (CSP [33]),
is stable and was validated in simulation and with prelim-
inary experimental data [32]. Moreover, it provided better
performances than BSS techniques in a recent validation
on surface EMG from finger extensor muscles [34]. In this
work, we provide a deep experimental validation of theOSTF,
considering EMG from pronator teres (PT, target muscle) and
flexor carpi radialis (FCR, crosstalk muscle).

In the following sections, the theory of the method and its
experimental validation are presented.

II. METHODS
A. DESIGN OF THE OPTIMAL FILTER
Filter coefficients are chosen by training on selective
contractions of the target and crosstalk muscles. From now
on, EMG relative to target muscles will be named as ‘signal’
Si(t), whereas the rest as ‘crosstalk’ Ci(t). The index i =

1, 2 . . . ,M indicates the ith EMG channel, while t the time
samples. According to [35], an optimal spatial filter (OSF,

in the context of a brain-computer interface, BCI) can be
obtained by combining a set of weights wi that maximizes
the signal to crosstalk ratio (SCR)

SCR = 10log10
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where the sum of the weights {wi}i=1,··· ,M is equal to zero (in
order to remove the common mode). Notice that an arbitrary
scaling of the weights is possible without changing the SCR.

An analytical solution to the problem of maximizing the
SNR is obtained as follows. First, if monopolar signals are
used, the common mode should be removed by subtracting
the mean over channels. Notice that this is not required if
single differential (SD) or double differential (DD) signals
are chosen as input channels, as the common mode has
already been removed. Since the logarithm function in (1)
is monotonically increasing, it is sufficient to maximize its
argument. More in detail, the problem can be rewritten as the
maximization of the following functional

J (w) =
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where w = {wi} is the vector of weights, and RS and RC are
signal and crosstalk autocorrelation matrices, respectively.
Considering the arbitrary modulus of the vector of weights
(mentioned above), we can fix to 1 the norm of the filter
weights and write a constrained optimization problem, that
can be solved by studying the Lagrangian

LP =
1
2
wTRSw+

1
2
λ(1 − wTRCw) (3)

where λ is the Lagrange multiplier. Imposing the gradient
with respect to the weights to be zero, the following relation
is obtained [36]

RSw = λRCw → R−1
C RSw = λw (4)

The change of variable v = R1/2S w is then introduced,
obtaining the following problem

R1/2S R−1
C R1/2S v = λv (5)

ThematrixR1/2S R−1
C R1/2S is symmetric and positive definite so

that it can be diagonalized, the eigenvalues are positive real
numbers and the eigenvectors {vk} are orthogonal. Coming
back to the problem for the filter weights, we can consider
the following vectors corresponding to the eigenvectors {vk}:
wk = R−1/2

S vk .The functional evaluation of such vectors is

J (wk ) =
wTk RSwk
wTk RCwk

= λk (6)
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FIGURE 1. (a) Front view of the right forearm, with an indication of the investigated muscles: pronator teres (PT) and flexor carpi radialis (FCR). The
matrix of electrodes used for this experimental protocol is placed so that two columns of electrodes are distributed on each muscle. The
inter-electrode distance (IED) is equal to 8 mm. (b) Three-dimensional representation of the instrumentation used for the experimental protocol.
(c) Electrical connections between load cells included in (b), the two ADC converters HX711 and the Arduino® UNO board (connected to the
workstation via USB port). (d) Graphical resume of the experimental protocol. (e) Shot of the acquisition phase.

because wTk RSwk = 1 and wTk RCwk = 1/λk . In conclusion,
the weights that maximize the SCR defined in (1) are those
associated with the largest eigenvalue.

In addition, it is possible to include past values of EMG
data to be linearly combined by the filter, in order to increase
further the SCR. This means including also delayed signals
in the sum operations in the definition of the SCR given by
Equation (1). This way, both a spatial and a temporal filter
are applied. To get the optimal combination of weights, the
solution described above is still valid: the only difference
is that additional signals (i.e., the delayed versions of EMG
data) are included. The optimal spatio-temporal filter (OSTF)
is thus obtained.

A tuning of the delay between subsequent samples (in the
range of 1 to 10) and temporal filter order (up to 5) have
been conducted on a validation dataset (i.e., a portion of data
different from the training one, as detailed below), with the
aim to get maximal SCR and avoid over-fitting.

Notice that delayed data could have a high mutual
correlation, which implies a great condition number of
autocorrelation matrices RS and RC . That is true especially if
the delay is small and the length of the temporal filter is large.
To avoid this problem, the autocorrelation matrices have been
regularized as

R̂S = RS + 10−4λSmaxI (7)

R̂C = RC + 10−4λCmaxI (8)

where λSmax and λCmax are the maximum eigenvalues of the
matrices RS and RC , respectively, and I is the identity matrix.

In this way, the maximum conditional number has been set in
the order of 104.

B. EXPERIMENTAL PROTOCOL
Two muscles have been studied in this work: PT and FCR.
They are placed anatomically one close to the other in the
distal part of the arm (see Fig. 1(a)) and their contractions
enable different movements of the wrist: pronation and
flexion, respectively. Because of their anatomical proximity,
the issue of crosstalk is relevant in EMG acquisitions,
determining a bias in the estimation of amplitude and spectral
indexes.

Selective isotonic and isometric contractions of the target
and crosstalk muscles have been obtained through a specific
instrument designed and realized for this study, shown in
Fig. 1(b). It consists of a forearm support, to which two
plates are connected, forming a ‘handle’ in which the hand is
inserted. The wrist is immobilized through bands fixed to the
instrument. The physical connection between the elements
has been obtained through two load cells (manufacturer
Hxastlp, model TAL220, capacity of 20 kg), which quantify
the forces applied to the handle during the experiment.

Analog signals produced by the previous sensors were
amplified, sampled at 10 Hz and digitalized with a 24-bit
ADC (through two acquisition boards HX711 by OOTDTY,
one for each transductor). The resulting digital signal was
then processed through an Arduino® UNO board. The
electrical connections between the previous components
are reported in Fig. 1(c). Signals were then sent to a
workstation (2.3 GHz, dual-core CPU and 8-GB of RAM),
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that processed the acquired data through MATLAB®.
Since each load cell produces a signal depending on its
deformation, this experimental set-up allows to distinguish
flexion and pronation of the wrist analyzing the phase
of signals produced. Indeed, when a flexion occurs their
ideal phase is 0, whereas during a twist the phase is
180 degrees.

Eight healthy volunteers (six males and two females;
mean±standard deviation: age 28.1±7.5 years, height
176.8±7 cm, weight 71±11.2 kg) participated in this study.
The experiments were conducted in the venues of the
University of Turin, and in accordancewith theDeclaration of
Helsinki. The study was approved by the Ethical Committee
of the University of Turin (approval number 510190).

Before electrode placement, the muscles of interest were
identified by palpation during a selective contraction. The
skin was then slightly abraded with abrasive paste and
a matrix of electrodes (13 rows and 5 columns) with
inter-electrode distance (IED) of 8 mm was placed with the
long side inclined about 45 degrees to the forearm, assuming
that two columns were over the pronator teres (PT), two on
the flexor carpi radialis (FCR) and the central one in between,
as shown in Fig. 1(a). Then instructions on the experiment
were given to each subject and some free trials were made.
During the experiment, visual force feedback was provided to
the subject, representing the average of the absolute readings
of the load cells. Since this signal needed to be provided
as additional input to the EMG amplifier (Quattrocento,
OT Bioelettronica, Turin, Italy), including software for visual
feedback, a new digital-to-analog conversion was executed.
Specifically, the analog signal was obtained by filtering the
pulse-widthmodulation (PWM)wave, generated from the D9
pin of the Arduino® UNO board, through a second-order low
pass filter, with cut off frequency of 10 Hz.

The experimental protocol, briefly summarised in
Fig. 1(d), included the acquisitions of three maximal
voluntary contractions (MVC) and a series of submaximal
contractions for each muscle. Monopolar signals were
acquired during the experiment choosing as reference one
electrode placed on the elbow. Each subject performed the
MVCs for 5 s, with a rest of 120 s between them. The highest
value among MVCs was chosen as valid. Then, two sets
of exercises were requested from the subjects, consisting
of five isometric contractions of PT and FCR, as selective
as possible, at different force levels: from 10% to 50%
MVC of the respective muscle, each lasting 20 s. Between
the acquisitions, a rest of 60 s has been observed. The
order of force levels for the tasks was determined randomly,
to avoid cumulative effects. The EMG signals were then
amplified, band-pass filtered (-3 dB bandwidth, 10-500 Hz),
sampled at 2048 Hz, and converted to digital form with a
resolution of 16-bit. During the experiments we monitored
the phase of the signals produced by the load cells and the
acquisitions that did not meet the phase requirements (0◦

and 180◦ during flexion and pronation, respectively) were
repeated.

C. OSTF PERFORMANCE TESTS
The performance of the OSTF was assessed in different
conditions and compared to those of traditional spatial filters.
The following parameters were varied:

• The source of input (only in case of small electrodes):
SD or DD.

• The selectivity of the acquisition, depending on the type
of electrodes. Either small physical electrodes or large
square electrodes (simulated by summing the potentials
from more physical electrodes) were considered, the
first with an IED of 8 mm, and the latter with an IED
of 16 mm.

• The duration of the epochs used for training the OSTF;
starting from 125 ms to 2000 ms doubling at each step
the temporal length of the signal.

In order to work on stationary data, the first and last
5 seconds of the recordings were discarded; indeed, during
the first seconds of acquisition, the subject reached the force
level to be studied, while during the final ones, there could be
variations due to fatigue (possibly reducing the selectivity of
the contractions). Therefore, the central 10 seconds of each
contraction were considered.

The data provided during the training phase were obtained
by concatenating epochs at increasing force levels. The
epochs were 2 seconds long as default and shorter when
investigating the effect of the train duration on the perfor-
mances of the OSTF. The validation set, through which the
tunings of delay and filter order have been conducted, was
created with the same structure and temporal length of epochs
concatenated. The remaining EMGs were used as a test set,
to evaluate the performances of the OSTF.

Different levels of crosstalk have been simulated, by sum-
ming EMG epochs of the crosstalk muscle to the selective
contraction of PT at specific force levels. This could be con-
sidered as an approximate simulation of the co-contraction of
the two muscles: from the physiological viewpoint, there are
problems, as a real co-contraction would encompass sensory
feedback that would couple the activities of the two muscles;
however, from the technical viewpoint, the ability of a filter
to reduce crosstalk is not related to the specific recruitment
of MUs, so that we expect that reliable information can be
obtained from our tests. In this way, different SCRs could be
simulated. Moreover, we could use as reference the original
signals (i.e., those obtained from the selective contractions of
PT), comparing the amplitude and spectral indexes extracted
before and after corrupting them with crosstalk EMGs. The
average rectified value (ARV) was used as the amplitude
indicator and the median frequency (MDF) was selected as
the spectral index, both estimated in epochs of 0.5 s.

D. STATISTICAL ANALYSIS
The percentage errors (i.e., absolute of difference with
respect to crosstalk-free condition) of ARV and MDF of
EMGs recorded over PT were estimated considering the
sum of crosstalk signals from FCR at different contraction
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FIGURE 2. Signals recorded over PT using small electrodes with IED of 8 mm and produced by the contractions of PT (50 % MVC) and FCR (20 % MVC).
The sum of the two signals (PT+FCR) is also shown as a simulation of a signal corrupted by crosstalk. On the right side of the image, the power spectral
densities (PSDs, estimated by Welch method, considering sub-epochs of 0.5 s, overlap of 50% and zero padding to get 0.5 Hz resolution; they are
normalized with respect to the maximum of the PSD of the EMG of PT) are shown. ARV and MDF of the signals are reported. a) Electrodes chosen for
estimating the two single differential (SD) signals. The channels included in the light green boxes are used for determining the SDs provided to OSTF as
input. The coloured arrow indicates which SD was used for the comparison in b) and d). b) Single differential signals. c) Output of OSTF obtained with SD
signals (OSTFSD configuration). d) PSD and MDF of the signals reported in b). e) PSD and MDF of the signals shown in c). f)-j) Same as a)-e) (respectively),
but considering DD signals for both the comparison and source for OSTF (OSTFDD configuration).

FIGURE 3. Same as Fig. 2, but considering a signal from another subject.

levels. We conducted a series of repeated measure three-way
ANOVAs for ARV and MDF percentage errors with filter

(source vs OSTF, trained with the same source), target force
level (10, 20, 30, 40, and 50 %), level of crosstalk (10, 20, 30,
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40 and 50 %) as within-subject factors. We also investigated
the effect of training time (125, 250, 500, 1000 and 2000 ms)
on ARV and MDF percentage errors. More specifically,
we conducted three separate ANOVAs through the software
JASP (JASP Team, Version 0.17.3):

1) OSTF based on selective SD channels (indicated with
OSTFSD) compared with selective SD signals,

2) OSTF using selective DD channels as inputs (indicated
with OSTFDD) compared with DD signals,

3) OSTF applied to not-selective SD channels, i.e., with
large electrodes and IED (indicated with OSTFLESD)

compared to not-selective SD data (labelled as SDLE).

The Greenhouse-Geisser correction was adopted when
sphericity was violated. The effect size was determined using
partial η2.

III. RESULTS
Examples of signals from two subjects and power spectral
densities (PSD) are shown in Fig. 2 and 3. EMGs filtered
by the OSTF (using either SD or DD as input source) are
compared with those recorded by SD and DD channels
placed over the target muscle, both in the presence and
absence of crosstalk. More specifically, SDs were obtained
by combining the first two electrodes in the light green
boxes of Fig. 2(a), while DDs were estimated considering
the first three electrodes in the dark green boxes of Fig. 2(b).
Processing the SD signals recorded from the two muscles by
the OSTF, the OSTFSD was obtained; using the DDs, the
OSTFDD was developed. The activity of PT at 50% MVC
has been corrupted with a contraction of FCR at 20% MVC,
to simulate crosstalk. The OSTF shows a better rejection
of crosstalk with respect to the other filters in both cases,
reducing the bias in estimating both amplitude and spectral
properties. Comparing the PSDs obtained with the OSTFs
in Fig. 2(e) and 2(j) and Fig. 3(e) and 3(j), it is possible
to appreciate the ability of the filter of emphasizing the
bandwidth of the signals where the SCR is higher, in order
to suppress crosstalk; in the two considered subjects, the
selected bandwidths are very different.

Fig. 4 shows the effect of crosstalk on the estimation of
amplitude and spectral features from data recorded using
different filters. In this figure, all the subjects participating
in the experiment were considered. The performances were
evaluated in terms of the percentage absolute difference with
respect to the ARV and MDF estimated on the original
EMG of the PT without the corruption given by adding the
crosstalk from the FCR. Different acquisition conditions are
considered, with small and large electrodes. As a reminder,
the big square electrodes have been simulated by summing
potentials from 4 physical electrodes and doubling the IED
(see the inner scheme of Fig. 4(c)). The OSTF has been
developed using the spatial filters to which it is compared:
either SD (OSTFSD) or DD (OSTFDD) from small electrodes,
or the bipolar detection with large electrodes (OSTFLESD),
using one channel from each muscle (i.e., the target

and the crosstalk muscle). Concerning the small electrode
configuration, the percentage errors in ARV estimation were
157.30±57.11 % (mean±std), 38.54±10.47 % for SD and
OSTFSD, respectively; percentage errors of 131.67±47.16 %
and 39.39±8.47 % were obtained considering DD and
OSTFDD configurations, respectively. As regards MDF,
we obtained an estimation error of 23.57±3.92 % and
8.31±0.88 % for SD and OSTFSD conditions, whereas they
were 20.20±1.21 % and 12.46±0.96 % when considering
DD and OSTFDD, respectively. In the case of large simulated
electrodes, the percentage errors in ARV estimation were
243.22±86.73 % and 70.84±26.75 %, for SDLE and
OSTFLESD, respectively. Moreover, we obtained the following
percentage errors in the estimation of MDF for the SDLE and
OSTFLESD configurations: 18.59±3.28 % and 10.20±0.96 %.

The details of the statistical analysis are reported in
Table 1. Notice that the error is always reduced by using the
OSTF, with statistically significant differences with respect
to using the classical filters in all conditions except for
two cases: MDF with DD and ARV when using large
electrodes (however, in this latter case, notice that the
interaction of ‘‘Filter x Crosstalk’’ has p = 0.050, reflecting
an improvement when the crosstalk level is high).

Fig. 5 investigates the effect of the duration of the signals
used for training the OSTF. The same configurations of
electrodes (small and large) and filters (SD and DD) as
before were considered. The OSTFs were trained considering
concatenated signal epochs of different durations: 125, 250,
500, 1000 and 2000 ms, respectively. The percentage errors
in estimating ARV and MDF are shown. Table 2 reports the
detailed statistical analysis. The statistics show that reducing
the duration of the signal used for training has only marginal
effects, which are not statistically significant. Therefore, the
OSTF can be trained even with signals lasting hundreds of
ms, still guaranteeing a low bias due to crosstalk in ARV and
MDF estimation.

IV. DISCUSSION
Crosstalk is an undesired contribution due to the contraction
of adjacent muscles that may occur when EMG is acquired
over a target muscle of interest [9], [12], [32], [37]. Nowadays
there are several methods to attenuate crosstalk [21], [27],
[29], [30], [34], [37]; however, simple ones (both in terms
of the recording system and data processing) are preferred
in applications; for this reason, the most popular approach
consists in using spatial filters [18], [20]. Indeed, with a
linear combination of signals recorded over the target muscle
(e.g., in SD or DD configuration), it is possible to reduce
crosstalk, with the compromise that only a small detection
volume is considered. However, this solution is not optimal
in all conditions. In fact, the performances of those filters
are strongly influenced by subject anatomy [13]; moreover,
selective spatial filters decrease the amount of crosstalk by
reducing the detection volume, so that they explore only a
small portion of the target muscle and the activity of the
MUs included into it may not actually be representative of
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FIGURE 4. Percentage error (i.e., absolute of difference with respect to crosstalk-free condition) in ARV and MDF estimations with different filters and
levels of crosstalk (from 10% to 50% MVC). OSTF has been applied to different sources to evaluate the behaviour of the method in different conditions
of acquisition. In each figure, OSTF has been compared with the source recorded over PT (indicating with an arrow of a different colour the channels for
obtaining it). a) Percentage error in ARV estimation using the detection system recording an SD channel over the PT and another over the FCR, obtained
using physical electrodes with IED of 8 mm (OSTFSD configuration). b) Percentage error in ARV estimation using the detection system recording a DD
channel over the PT and another over the FCR, obtained using physical electrodes with IED of 8 mm (OSTFDD configuration). c) Percentage error in ARV
estimation using the detection system recording an SD channel over the PT and another over the FCR, obtained using large electrodes (simulated as the
sum of the potentials from 4 physical electrodes) with IED of 16 mm (OSTFLESD configuration). d) Error in MDF estimation using the detection
configuration in a). e) Error in MDF estimation using the detection configuration in b). f) Error in MDF estimation using the detection configuration in c).

TABLE 1. Statistical analysis results for Fig. 4. The factor ‘‘Filter’’ and the interactions ‘‘Filter x Target Force Level’’ (abbreviated as ‘‘Filter x Target’’), ‘‘Filter
x Crosstalk’’, and ‘‘Filter x Target x Crosstalk’’ are reported. The table has been divided into two parts, for ARV and MDF estimation errors, respectively. The
OSTFSD - SD condition is relative to Fig. 4 (a) and (d), the OSTFDD - DD condition is associated to Fig. 4 (b) and (e), while the OSTFLESD - SDLE combination is
relative to Fig. 4 (c) and (f). Bold values in the table indicate statistically significant differences ( p < 0.05 ).

the entire muscle [28]. Furthermore, if the recording system
has a great IED, the selectivity of the filters decreases and
crosstalk may be included [13].

In this study, we experimentally evaluated a method that
can overcome most of the limitations presented above.
Indeed, the OSTF has been meant to emphasize the EMG
reflecting the activity of the target muscle, while discarding
that of adjacent muscles, adapting to the anatomy of the
subject. The method is data-driven and could work regardless
of the type of recording system used.

The core of the method consists of a training phase,
in which selective contractions of target and crosstalk

muscles are considered. During this phase, the linear combi-
nation of signals defining the filter is chosen to maximize the
SCR; the filter weights take into account both the anatomy
(that we suppose as constant since data were recorded in
the same conditions during the experimental protocol) and
spatial-temporal recruitment of the MUs involved during
the selective contractions. The optimization problem that
characterizes the training phase guarantees that the filter
is optimal on such data (in the mean squared sense).
Therefore, problems may occur if EMGs provided to the
filter differ consistently from the ones used for training.
However, if the volume conductor and the recording system
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FIGURE 5. Percentage error in ARV (a-b-c) and MDF (d-e-f) estimation, varying the levels of crosstalk and different temporal length of the signal
used to train the OSTF. Different temporal lengths have been explored: 125, 250, 500, 1000 and 2000 ms, respectively. In addition, various sources
provided as input to OSTF were considered: SD and DD obtained with small electrodes (OSTFSD and OSTFDD conditions) and SDLE obtained
through large sensors (OSTFLESD ).

TABLE 2. Statistical analysis of the results of Fig. 5. The factor ‘‘Timing’’ and the interactions ‘‘Timing x Target Force Level’’ (abbreviated as ‘‘Timing x
Target’’), ‘‘Timing x Crosstalk’’, and ‘‘Timing x Target x Crosstalk’’ are reported. The table has been divided into two parts, for ARV and MDF estimation
errors respectively. The OSTFSD - SD condition is relative to Fig. 5 (a) and (d), the OSTFDD - DD condition is associated to Fig. 5 (b) and (e), while the
OSTFLESD - SDLE one is relative to Fig. 5 (c) and (f). Bold values in the table indicate statistically significant differences (p < 0.05).

are maintained constant, the performances of the filter
should be stable: indeed, simulations indicated that only
marginal decrements of OSTF performances were observed
by activating new MUs only in the generation of the test
signals or considering myoelectric fatigue effects only during
the test [32]. Thus, we can expect that problems can arise
only if there are important changes in recorded data: for
example, this could happen in dynamic contractions if
the range of movement varies during the test or in the
case in which the electrode contact impedance changes
drastically. However, in the present study, isometric and iso-
tonic contractions in controlled conditions were considered,
thus avoiding those problematic situations (left for future
studies).

In order to avoid overfitting, the lag between delayed data
and the order of the temporal filter were tuned on a different
dataset (validation set).

Different acquisition modalities have been considered for
the validation of OSTF: using small electrodes placed close
to each other (IED of 8 mm, see Figure 4 (a) and (b)),
or large electrodes (simulated by summing the potentials from
4 electrodes in the matrix), where the IED became 16 mm
(see Figure 4 (c)). Therefore, according to the source used,
we obtained three configurations: OSTFSD and OSTFDD for
small electrodes and OSTFLESD for large ones.

We acquired the EMGs at different force levels of
two muscles: PT and FCR. We expect that the acquired
contractions were not perfectly selective, especially at high
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levels of force (40 and 50 % MVC). However, this does not
prevent the application of our method. In fact, OSTF can
provide superior SCRs than those of SD and DD even in these
conditions [32]. Concerning the spectral estimation, OSTF is
less sensible to crosstalk, as reported in Fig.2 and 3. Notice
that the bandwidth of OSTF output can be much different
from those of SD and DD; that is because OSTF empathizes
the (subject-specific) band of frequencies where the signal
prevails over crosstalk.

Two EMG indexes (ARV and MDF) were estimated
through OSTF outputs and compared with those obtained
from SD and DD. The estimation of these indexes was com-
pared when applied to the original signals or to those obtained
by adding the crosstalk with different levels. The differences
between filters in ARV estimation increase with the level
of crosstalk, regardless of the modality of acquisition, i.e.,
considering small electrodes area or big square sensors with a
double IED, as reported in Fig. 4 (a), (b) and (c). Significant
improvements have been recorded also in MDF estimation
when using SD signals (see Fig. 4 (d) and (f)), whereas the
mean improvement observed when comparing with DD was
not significant (Fig. 4 (e); this is possibly due to the small size
of our sample; however, when increasing the contraction level
of the crosstalk muscle, the improvement of the OSTF was
more evident, showing that its usefulness emerges in difficult
conditions).

The duration of the epochs used to train the OSTF is
an important feature to be considered. Results show that it
does not influence much the performances in the estimation
of EMG indexes (at least if the duration is reasonable: the
shortest considered epochs were 125 ms long). Therefore, the
training and tuning phases can be conducted rapidly and with
a few seconds of signals. This result is particularly significant
if only few selective contractions are available.

In conclusion, the OSTF provides good rejection of
crosstalk, without penalizing the information recorded from
the target muscle. It needs only a few seconds of signals for
the training. It can be applied even with a single channel over
each muscle of interest (one channel over the target and one
on the crosstalk muscle were considered here). Therefore, the
method can find several applications in conditions in which
simple detection systems are applied (e.g., from gesture
recognition [38] to gait cycle analysis [25]) employing few
electrodes and classical spatial filtering.

As a limitation, our study includes a small dataset, that
could be increased in the future. Moreover, further works
may be focused on assessing the performance of the method
when dynamic contractions are executed, since here only
isometric conditions were evaluated. Fatiguing contractions
could also be studied (even if simulations provided in [32]
already provide some confidence that the method is not much
affected by myoelectric fatigue). Moreover, changes in the
tuning phases may be taken into consideration. For example,
if the user is interested in a specific EMG index, the tuning
phase may be focused on selecting parameters which reduce
its estimation error in the presence of crosstalk. Finally,

an alternative strategy of training can be adopted, e.g., a force
ramp contraction for each muscle instead of concatenating
EMGs at increasing force levels.

V. CONCLUSION
In this paper, we experimentally validated a method to
reduce crosstalk in surface EMG based on an optimal
spatio-temporal filter (OSTF) adapted to the subject.
It requires a training phase in which few seconds of
(even not perfectly) selective contractions can be used. The
performances of ARV and MDF estimations are influenced
by the detection system, the level of crosstalk and the type of
input signals (SD or DD); however, they are always superior
to spatial filters used to record the data. Moreover, good
performances are achieved even when the duration of the data
used for training is very short (in the order of hundreds of
ms). The method can be applied in real-time conditions and
employed even with data recorded with few electrodes placed
on target and crosstalk muscles.
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