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Cancer drug resistance, either intrinsic or acquired, often causes treatment failure and
increased mortality [1]. Multidrug resistance (MDR) is characterized by cross-resistance
to several anticancer drugs with distinct structures and mechanisms of action [2,3]. Multi-
disciplinary approaches are necessary to better understand MDR’s underlying mecha-
nisms [4–7] and identify predictive biomarkers [8], new therapeutic targets [9] and new
drugs and formulations [10,11].

The European COST (Cooperation in Science and Technology) Action STRATAGEM
“New Diagnostic and Therapeutic Tools against Multidrug-Resistant Tumors” was initiated
in April 2018, as a multidisciplinary open consortium studying the diagnostic, therapeutic
and toxicological challenges associated with MDR tumors. Indeed, multiple tools must
be used to overcome MDR, including molecular modelling [12], high-throughput bioin-
formatic analyses [9,13], biochemical and pharmacological assays together with advanced
technological tools [14], rational design and synthesis of new synthetic or natural bioactive
compounds [10,15,16] and preparation of formulations using nanocarriers to improve drug
solubilization, selectivity and anti-cancer action [11].

This Special Issue of Cancers publishes the latest innovative original research and
review articles from members of the STRATAGEM COST Action (CA17104) program. The
papers include four review articles and five original research articles.

Docetaxel, a microtubule-stabilizing taxane, is used in the treatment of metastatic
castration-resistant prostate cancer. However, resistance often occurs, limiting treatment
response [17]. Thus, the identification of acquired docetaxel resistance mechanisms in
prostate cancer is of utmost relevance. In the study of Lima et al. [18], docetaxel-resistant
prostate cancer cell lines were established and characterized, and genome-wide gene
expression profiling was performed, resulting in the identification of the presence of
multiple mechanisms of drug resistance. The authors suggest that counteracting these
mechanisms could provide an approach to re-sensitize docetaxel-resistant prostate cancer.

One major obstacle encountered in the eradication of MDR cells is the hyperactivation
of pro-survival pathways dependent on PI3K/Akt and anti-apoptotic proteins, as those of
Bcl-2 family (Bcl-2, Bcl-xL, Mcl-1), paralleled by the overexpression of mutated TP53, which
loses its function of inducer of pro-apoptotic genes, and of Inhibitors of Apoptosis Proteins
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(IAPs), as XIAP, c-IAP1 and c-IAP2, BRUCW, NAIP, ILP-2 and MLIAP, as extensively high-
lighted in the review by Neophytou et al. Notably, the authors underline as the extensive
deregulation of anti-apoptotic/pro-apoptotic proteins is not only a tumor-dependent event,
but also a tumor-microenvironment (TME)-dependent event. Indeed, cancer-associated
fibroblasts (CAFs) secrete interleukins or extracellular vesicles containing soluble factors
that activate anti-apoptotic pathways in MDR cancer cells. If the potent arsenal of anti-
apoptotic actors makes MDR cells harder to be eradicated by common chemotherapeutic
drugs, they also offer new therapeutic opportunities, since in recent years several small
molecules or natural products targeting Bcl-2, MDM2 or PI3K/mTOR axis have been suc-
cessfully developed and proved to restore the cytotoxic effects of chemotherapeutic drugs
in different solid cancers [19]. This research opens the way to test these new combinations
in clinical settings.

Resistance to small molecules is not limited to solid tumors; indeed, hematological
diseases, such as chronic myeloid leukemia (CML), showed a high degree of resistance to
some tyrosine kinase inhibitors (TKIs), such as Imatinib, Dasatinib, Nilotinib, Bosutinib
and Ponatinib [20]. The work of Alves et al. extensively reviewed the different mechanisms,
either dependent or independent on the BCR-ABL1 aberration, determining resistance
to TKI in CML. Several combinations based on TKIs and small molecules targeting other
pathways critical for CML cell survival are currently in clinical trials. Moreover, the study
also highlights the future possibilities of conceiving TKIs and/or combination treatments
effective against resistant cells, exploiting the most recent techniques in molecular profiling
(such as next-generation sequence and digital droplet PCR) and in artificial intelligence to
achieve a high-throughput in silico drug design [21].

It is known that some TKIs increase the sensitivity of MDR cancer cells to chemotherapy,
by interacting with ABC transporters, either as their substrates or inhibitors [22]. In a study
conducted by Podolski-Renić et al. [23], the potential of novel TKI pyrazolo[3,4-d]pyrimidines
and their prodrugs to inhibit P-glycoprotein (P-gp) was investigated. Interestingly, a
collateral sensitivity effect was observed in the MDR cell lines. The compounds inhibited
the ATPase activity of P-gp, with one of the prodrugs displaying the highest inhibition
effect. Importantly, prodrugs sensitized MDR cancer cells to doxorubicin and paclitaxel in
a concentration-dependent manner. Thus, this study provides an interesting strategy for
reversing P-gp-mediated MDR.

One strategy to overcome resistance to both target therapies and classical chemother-
apeutic agents is the design of new compounds, conceived to inhibit P-gp and to exert
other anti-cancer effects, either alone or combined with chemotherapy [10]. The work of
Szemerédi et al. follows this direction. Using a drug repurposing approach, i.e., starting
from phenothiazines combined with the selenoanhydride and selenoester moieties known
for their synergistic effects with substrates of Pgp, the authors synthesized two libraries of
ketone-containing and cyano-containing selenoesters. Notably, all compounds displayed
more cytotoxic activity against cancer cell lines, either sensitive or drug-resistant, than
on non-transformed cell lines, indicating a potentially good therapeutic window. Most
compounds are multi-target drugs, because, in addition to inhibiting P-gp, they induce
apoptosis and reduce cell migration, and specific keto-and cyanoesters were synergistic
with doxorubicin, confirming the effective overcoming of P-gp-mediated resistance [24].
This work is a good example of building new combination treatments against MDR tumors,
exploiting a drug repurposing approach.

One of the main causes of failure in the treatment of MDR cancers is specially related
to resistance to platinum coordination complexes commonly used in first-line treatments,
such as cisplatin or carboplatin. The development of new classes of compounds is there-
fore necessary to take advantage of multi-targeting mechanisms of action, different from
the well-known DNA-binding way of action of platinum agents. From this perspective,
bio-organometallic compounds have been widely studied and especially new metal com-
plex architectures based on chemically similar neighboring transition metals, such as
ruthenium [25] and iron [26]. Therefore, the article about organoruthenium complexes by
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Kladnik et al. [25] explores a new family bearing structurally modified pyrithione ligands
with extended aromatic scaffolds and their mechanism of action applied to ovarian cancer.
The nature of the monodentate site was confirmed to be crucial in the activation and the
mechanism of action appeared to be unique from that of cisplatin. The review of Idlas et al.
about ferrocifen-loaded nanocapsules [26] provides an overview of in vitro and in vivo
studies performed with ferrocifen-loaded lipid nanocapsules on several MDR cancers
(glioblastoma, breast cancer and metastatic melanoma). An original mechanism dependent
on redox properties and generation of active metabolites that can cause the disruption of
cell metabolism has been evidenced with these ferrocifens. In both papers, the cytostatic
nature of the complexes involving G1 cell cycle arrest, limited apoptosis and the inhibition
of thioredoxin reductase enzyme is discussed in a multi-targeting mechanism strategy to
combat drug resistance.

In another approach, for such hydrophobic molecules, formulation strategies need to
be considered. Lipid nanocapsules, as described in [26], have demonstrated their ability
to successfully encapsulate various hydrophobic therapeutic agents, offering the option
of surface modification and making it possible to adapt the pharmacological behavior of
the nanocarrier. In the research article of Pautu et al. [27], the lipid nanocapsule surface
was modified with novel copolymers of N-vinylpyrrolidone and vinylimidazole to impart
stealth properties and improve tumor cell entry under acidic conditions. Indeed, thanks to
this new coating, replacing the controversial polyethylene glycol (PEG), such nanoparticles
were protected from opsonization by complement activation and presented pH-responsive
properties, allowing the increase in drug delivery specificity. These stimuli-responsive
nanoparticles, which are able to provide various advantages such as a high active drug-
loading capacity, low toxicity, targeted delivery, increased uptake by tumor cells and
optimized pharmacokinetic patterns of traditional drugs, are expected to overcome MDR
in cancer therapy.

It is believed that 90% of drug candidates that enter clinical trials fail during those trials
and drug approval processes [28]. One of the challenges of antitumor drug development is
the lack of disease-relevant preclinical models [29], particularly models that recreate the
tumor complexity and interactions with the tumor microenvironment. The review written
by Barbosa et al. [30] highlights the impact of 3D cell culture models on cancer research and
drug screening, discussing their advantages and limitations, together with their compatibil-
ity with high-throughput drug/compound screenings. This review also offers insights into
the adequacy of available readouts provided by 3D cell culture models. In addition, this
work also emphasizes the importance of incorporating key microenvironmental elements
when designing 3D cell culture models, to improve the predictive value of drug efficacy
and safety.

In summary, this Special Issue brings together reviews and original research papers
that contribute to understanding and overcoming drug resistance in cancer.
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