
THE ECONOMIC ROLE OF

INVESTMENT BENCHMARKS

Candidate: Ksenya Rulik

Supervisor: Bernard Dumas

A thesis submitted to the PhD Program

in Comparative analysis of economics,

institutions and law

Università degli Studi di Torino

Torino, January 11, 2021



2



Abstract

Investment benchmarks are at the heart of the controversy surrounding the profession
of money managers. Benchmarks are hypothetical investment portfolios assembled
and managed using simple rules. Starting from the seminal paper of Jensen (1968),
empirical literature showed that professionally managed investment funds fail to
consistently outperform these hypothetical portfolios. These empirical findings, often
interpreted as a shortage of skill in the investment profession, are at odds with the
apparent success of the investment management as an industry over the past five
decades, and are a subject of an ongoing debate in the academia and among the
finance profession.

A less known controversy, which motivated the research for this thesis, is the one
that surrounds the investment benchmarks. While the benchmarks have become a
vital part of investing since the 1970s, academic research found no microeconomic
reasons for their use. On the contrary, when introduced in market models, invest-
ment benchmarks were shown to be ineffective in addressing agency frictions between
investors and managers (Bhattacharya and Pfleiderer (1985); Admati and Pfleiderer
(1997); Stoughton (1993)), to distort market efficiency (Roll (1992); Gomez and Za-
patero (2003); Cuoco and Kaniel (2011); Basak and Pavlova (2013); Vayanos and
Woolley (2016); Breugem and Buss (2018)), to reduce the investors’ welfare (Duarte
et al. (2015)) and to cause contagion across markets (Basak and Pavlova (2016)).
The disconnect between the theoretical inefficiency and the practical widespread use
of benchmarks in the investment industry is not a mere intellectual puzzle, it is an
important concern for policy makers because of the central role that financial markets
play in the economic activity.

In this thesis, we approach the problems of the skill of investment managers and
the economic role of investment benchmarks jointly, as the two controversies are re-
lated and are a result of the assumption that investment skill should be manifested
via an outperformance with respect to a benchmark. Based on the insights of Bhat-
tacharya and Pfleiderer (1985), Admati and Pfleiderer (1988), Admati and Pfleiderer
(1990), Allen (1990) and Ross (2005), we explore an alternative framework where
investment managers are not treated as agents entrusted by investors to perform an
investment task, but are rather sellers of private information to investors. In this
framework all agents, investors and managers alike, have the ability to trade in asset
markets and possess some private information. An investor, while trading actively in
asset markets on the own account, invests in funds managed by his peers to benefit
from their private information. In this framework professional investment industry
featuring multiple funds appears because the private information in the economy is
decentralized.
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The thesis consists of three parts. Part 1 presents a general model of delegated
asset management as a market for decentralized information. In this model agents
can buy the private information about future payoffs of the risky assets indirectly
by acquiring shares in investment portfolios of their peers. In equilibrium, agents
trade on their own accounts and invest a part of their wealth in funds. The overall
exposure to risky assets for each agent is larger in the presence of funds, compared
to an economy where agents trade only on their own private information. As a
consequence, more information gets incorporated into the asset prices, lowering the
equity premium and enhancing the information efficiency of asset markets.

Part 2 considers in greater detail the transaction between an investor and a man-
ager within the framework developed in Part 1. We show that the main concern for
investors is the discovery of the fund managers’ types and constraining the discretion
of the managers to alter their types in the future. Managers, in turn, are concerned
with the marketability of their funds to investors. Both concerns might be addressed
by introducing a benchmark portfolio in the transaction between an investor and a
manager. We then derive the implications of this setup. In particular, fund portfolios
based on private information do not necessarily outperform benchmark portfolios per
dollar invested. The structure of an appropriate benchmark might not be uniquely
fixed, but is a result of a social agreement.

Part 3 explores an economy where prices fully reveal the private information,
and agents might be better off investing directly in benchmarks than paying the
fees to active managers. In traditional models of asset trading the in the presence
of private information such fully revealing equilibria, though existing theoretically,
are not implementable. We show that when the institution of delegation, i.e. the
market for funds, is introduced, it might work as a stabilizing force supporting a fully
revealing equilibrium. Thus a market for funds could play a role of an implementation
mechanism for the aggregation of private information. A tension, however, arises
between the need to compensate fund managers and the incentive for investors to
get access to the optimal outcome by simply investing in the market portfolio for free.
We formulate this problem as a volunteer game, where the market for funds is treated
as a public good that benefits the whole economy by making asset prices efficient.
The game of privately supplying this public good might have equilibria where a part
of agents are paying for the good, and the rest are free-riding by investing in the
market benchmark. This provides a rationale for the observed coexistence of active
funds and index funds in the asset management industry.
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Introduction

... a major industry appears to be built largely on an illusion of skill...
Professional investors, including fund managers, fail a basic test of skill:
persistent achievement.

– David Kahneman, ”Thinking fast and slow” (2011)

A significant share of global wealth is delegated to investment managers.1 Yet,
as the quote above manifests, the economic research could not settle on a coherent
explanation of why the industry of money management exists. The heart of the
problem is the question about the performance of investment managers. Empirical
studies starting from the seminal paper of Jensen (1968) showed that only a small
minority of actively managed funds outperformed randomly selected stocks. The-
oretical arguments from the widely quoted book of Malkiel (1973), related to the
efficient market hypothesis of Fama (1970), showed that the superior performance of
active managers is elusive, and probably does not exist. French (2008) estimated that
active mutual funds underperform the benchmark indices by 0,67 % per year2. The
discouraging evidence notwithstanding, the demand for the services of investment
managers appeared to be robust with the money management industry thriving over
the past five decades.

The mainstream paradigm of investment industry is based the premise that pro-
fessional managers provide superior investment performance. With the empirical
evidence contradicting this view, theoretical research proposed several explanations
for the demand for asset management services. One possibility is to assume that
the superior performance exists but its benefits accrue to the managers themselves
due to a strong bargaining power, or the agency frictions. Another possibility is
that superior performance does not exist, but ”investors just cannot do it on their

1PwC estimates the total amount of assets under delegation to be 38.9% of total investable
wealth in 2015.

2See Cremers et al. (2019) for a recent review of the vast empirical literature on investment
performance of active managers.
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own”, because of restricted trading opportunities or behavioral biases. These efforts
produced a mosaic of partial explanations that do not integrate in a coherent picture
of professional investment management.

In this study we explore an alternative framework where investment managers are
treated not as performance-producing agents, but rather as intermediaries who sell
information to investors. All market participants in our study trade actively in asset
markets and regard investing in a managed fund as a way to acquire an input for their
trading activity. The fundamental reason for the professional managers to exist is the
decentralization of private information in the economy. In this framework all agents,
investors and managers alike, have ability to trade in asset markets and possess some
private information. Indeed, there is no need to separate agents into managers and
investors, as any agent might play both roles at the same time. No assumption
about a priori superior skills is needed either: all agents use the same investing
technology and the performance of their portfolios depends on the individual private
information.

A joint consideration of the downstream market (for assets) and the upstream
market (for investment funds) is naturally embedded in this framework. It allows to
study the flows and the aggregation of information in this joint market, and account
for the externality that exists because of the leakage of information through the asset
prices. On the one hand, this allows to draw the limits on the existence of investment
delegation: it would exist as long as the aggregate private information is not fully
revealed by the asset prices. On the other hand, it gives the way to understand how
the delegation changes the aggregation of private information and affects the asset
prices and their efficiency.

An investment industry model based on this paradigm has several key differences
with respect to the performance-based approach. Agents, acting as investors, do not
in general invest with only one manager, but assemble many complementary inputs
by investing in multiple funds. The reason to hire or not a particular manager de-
pends not on his superior performance, but on the private information he possesses.
Benchmarks, as we will argue in this study, could be seen as tools that help to struc-
ture the fund market in a way that facilitates the utilisation of private information
embedded in the investment funds.

0.1 A paradox of investment benchmarks

Benchmarks, which are hypothetical portfolios with a publicly known composition,
are used to analyse managers’ performance, to set investment objectives, to define
investment constraints and to structure the investment manager compensation. In
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fact, the use of benchmarks is so pervasive in the investment industry that the busi-
ness of creating and maintaining benchmarks have been experiencing an explosive
growth. As of October 2018 MSCI, one of the biggest providers of investment bench-
marks, maintained 200000 indices only for the stock market sector, with more than
USD 13.9 Trl in equity assets benchmarked to MSCI indices worldwide.

Despite the important role that the investment benchmarks play in the asset
management industry, they have a mixed reputation in the financial economics lit-
erature. On the one hand, empirical research is being mostly positive about bench-
marks. Benchmarks are a crucial tool for building portfolio performance measures.
Moreover, benchmarks are a basis of indexing, or passive investing, an approach to
investing that eliminates completely the manager’s discretion from the delegation re-
lationship. Passive investing enjoys a successful performance record, fuelling further
the industry debate about the value added by the active management3.

On the other hand, investment benchmarks are being consistently criticised in
the theoretical literature. It was shown that benchmarks are ineffective in address-
ing agency frictions between investors and managers( Bhattacharya and Pfleiderer
(1985); Admati and Pfleiderer (1997); Stoughton (1993)), distort market efficiency
(Roll (1992); Gomez and Zapatero (2003); Cuoco and Kaniel (2011); Basak and
Pavlova (2013); Vayanos and Woolley (2016); Breugem and Buss (2018)), reduce
the investors’ welfare (Duarte et al. (2015)) and provoke contagion across markets
(Basak and Pavlova (2016)). Overall, the theoretical literature has found no eco-
nomic efficiency grounds for the use of benchmarks in investment management.

Historically, investment benchmarks were long considered primarily as a tool to
structure the incentives of investment managers. The investor-manager contracts
are incomplete because of the asymmetric information about the manager’s effort or
the skill. The use of benchmarks as a basis for relative performance analysis came
after the Wharton report of 1962, along with the changes in the regulation of the
performance-related compensation of investment managers in the US. When left to
their own devices, managers and investors used to conclude contracts with bonus-like
performance sharing, where, in addition to a flat fee, managers were paid a share of
investment gains and did not participate in investment losses. The Securities and
Exchange Commission and the US Congress have opposed repeatedly these practices
as ”unfair” to investors and since 1970 restricted the options for contractual compen-
sation for registered investment advisors, requiring the performance sharing, if any,
to be symmetric around the performance of a benchmark index. The response of
the management industry to this regulatory requirement showed that managers are

3SPIVA scorecards, a yearly report published by Standard and Poor’s, show that a representative
panel of active managers fails consistently to outperform their benchmark indices.
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unwilling to share investment losses, even in relative terms. The progressive elimi-
nation of the performance fees in the market sectors where benchmarks are easy to
construct is one of the main stylized facts about the impact of benchmarks on the
investment industry.

This study takes an approach opposite to the view of benchmarks as an incentive
tool in agency problem. The historical origins of investment benchmarks indicate
that investment benchmarks have a role to play outside the agency setting. In fact,
the efforts to build first investable benchmarks were not related to the principal-agent
frictions (Sikorsky (1982)). It was rather related to the expansion of the US money
managers to the overseas asset markets and the need to coordinate the investment
across different portfolios within a firm. Moreover, the theoretical literature has
demonstrated that benchmarks as incentive tools are ineffective in the investment
management context (Stoughton (1993); Admati and Pfleiderer (1997)).

We thus build a framework of investment delegation without imposing a priori
frictions or reasons for opportunistic behaviour. All agents in the economy can freely
trade the risky securities and can invest an arbitrary amount of their wealth in multi-
ple funds. All agents have rational preferences and possess private information. The
delegation in this setup allows agents to build superior risky exposures by effectively
using the benefits of private information available to other agents. The demand for
delegation is formed endogenously in the equilibrium, and is driven by the diversity
and complementarity of private information. The model allows to study the impact
of delegation on the prices and the market efficiency, because delegation and asset
trading are interrelated decisions jointly made by the agents.

We then study a role that benchmarks might play in such a model. The intuition
behind the introduction of investment benchmarks is the following. In an ideal world
where agents have perfect knowledge of the informational characteristics of the fund
managers there is no need for benchmarks. When, instead, the knowledge of the
quality of the managers’ signals is incomplete, there is a scope to introduce a device
to signal the manager’s type to investors. Such a device could be structured using
a portfolio with a publicly known composition. The advantage of this approach is
that negative effects of the benchmarks could be weighted against their economic
benefits, which makes the model more appealing for policy experiments.

Another advantage of a model of delegation based on the market for private
information is the possibility to study the impact of the delegation contracts on the
aggregation of private information in the economy. Contrary to the conventional
view that asset markets should be inefficient in order for the delegation to exist
(Garleanu and Pedersen (2018)), we build an example of an efficient asset market
sustained by the presence of delegation. Being informationally efficient, the passive
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market portfolio is optimal in such a model, and a part of agents may rationally
choose to invest in this passive portfolio instead of investing in the funds of informed
managers.

0.2 Benchmarks in the theoretical literature

We now review briefly the theoretical literature that featured investment bench-
marks. This literature can be roughly divided into two waves, the agency models of
the 1980s and the general equilibrium models of the late 1990s and 2000s. The studies
of the late 1980s considered benchmarks using the principal-agent setting with moral
hazard. The use of the moral hazard partial equilibrium models of delegation was
inspired by the standard moral hazard models, such as Stiglitz (1974); Holmstrom
(1979). In particular, in other industries, such as agriculture, it was shown that the
linear performance sharing rule was second-best efficient Stiglitz (1974). Also, Holm-
strom (1979) showed that the principal could improve the linear performance sharing
by observing some extra information related to the agent’s effort, so it was hoped
that the performance of a suitable benchmark could be such a valuable information
in the investment delegation problem, and including the benchmark-related term in
the compensation contract might be an efficient response to the agency problem in
delegation.

Bhattacharya and Pfleiderer (1985) studied a partial equilibrium agency model
where the investment delegation was framed as information acquisition (principals
acquired fundamentals-related information from agents of heterogenous forecasting
ability). They showed that a linear performance sharing rule does not allow to
efficiently screen higher-ability agents, neither it does elicit truthful revelation of
the information by agents. Though Bhattacharya and Pfleiderer (1985) proposed a
benchmark-related compensation rule that allowed a truthful revelation of the signal,
this compensation was quadratic in relative performance and not linear as used in
the investment industry. The formulation of the problem here excluded the scope
for the principal to hire multiple agents, because it was assumed that the agents of
identical precision would receive identical signals.

Later Stoughton (1993) and Admati and Pfleiderer (1997) framed delegation as
a ”full service” problem where managers were in charge of the signal acquisition (re-
duced to a costly effort) as well as building the portfolio on behalf of the investor.
They concluded that the performance sharing rule does not provide portfolio man-
agers with an incentive to perform the effort (the so-called irrelevance result), and
that including a benchmark in the compensation does not motivate agents to un-
dertake effort, and is generally a distorting factor that leads to suboptimal portfolio
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choice and does not help to achieve optimal risk-sharing between the agent and the
principal.

A series of papers considered nonlinear performance sharing rules with bench-
marks, but reached the conclusion that the most widespread nonlinear contracts (the
performance-based bonuses) are actually inferior to the simple linear performance-
sharing, because the latter, albeit being non-optimal solution, at least aligned risk
attitudes of the agent and the principal. In addition, Allen and Gorton (1993) and
J. and Gorton (1997) showed that bonus-like contracts attract low-quality managers
and incentivize noise-trading by both low and high-quality managers. Roll (1992)
explored a quadratic investment objective, eliminating agency frictions and imposing
a tracking error constraint with respect to a benchmark on the portfolio manager.
He derived an exact composition of the tracking-error optimal portfolio and showed
that it is not mean-variance efficient.

The agency literature reached a consensus that the linear and bonus-like perfor-
mance sharing contracts are not optimal in the delegated portfolio management, and
that the benchmarks do not add value.

The next wave of the literature on benchmarks started in the 2000s and was
motivated by the growing importance of institutional investors in the markets (Stein
(2009)). Institutional investors are associated with benchmark-dependent investment
objectives, thus the literature began to study effects of benchmark-dependent utilities
on asset pricing in the context of general equilibrium models.

The majority of the early models (Brennan (1993), Gomez and Zapatero (2003))
considered a simple asset pricing model with no information asymmetry or agency
frictions, by simply relating investment objectives of some agents to externally im-
posed benchmarks. The studies suggested that a ”benchmark risk” is priced in the
market, lowering prices of the off-benchmark securities.

Richer general equilibrium models with asymmetric private signals and nontrivial
institution of delegation (including negotiating of delegation contracts, e.g. Kapur
and Timmermann (2005) and Cuoco and Kaniel (2011) found that delegated portfo-
lios have larger holdings of the benchmark asset, and the introduction of benchmarks
distorts asset prices in equilibrium.

The models of Basak-Pavlova (2013) and Buffa et al. (2014) extended the problem
to multiple risky assets and included wealth effects in the utility. In accordance with
the previous literature, they found an increased pressure on the prices of the stocks
that are constituents of the benchmark index. When the proportion of institutional
investors increases, the volatility of the benchmark assets increases.

Several papers studied the problem of contagion due to the benchmarks. Duarte
et al. (2015) showed that the trading by benchmark-dependent institutional investors
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impacts retail investors. Benchmarking incites institutional managers to overinvest in
stocks that are highly correlated with their benchmarks. The jumps in the benchmark
provoke firesales by the institutional investors. The firesales then propagate to the
non-benchmark asset and impact portfolio allocations.

A series of articles on the topic of financialization of commodities (for example,
Tang and Xiong (2012), Basak and Pavlova (2016)) pointed that the commodities
prices became highly correlated to financial indices due to the inclusion of the com-
modities futures in the diversified portfolio benchmarks.4

The recent literature started to include the informational efficiency aspects in
the models of economies with institutional investors. For example,Breugem and
Buss (2018) included information acquisition in a rational expectation equilibrium
model and jointly determined the portfolio choices and the choices to acquire private
information about the fundamentals in equilibrium. They showed that institutional
investors acquire less private information, and hence an increase in the proportion of
institutional investors in the economy brings a decline in the information efficiency
of prices. They also find that higher participation of institutional investors increase
price volatility. In contrast to the previous general equilibrium literature, they find
that benchmarking might lead to a decline of the prices of the securities that belong
to the benchmark, due to their lower informativeness.

In a nutshell, the above literature reached a variety of negative conclusions about
the effects of the benchmarks, using a mosaic of modelling approaches. Each model
highlighted some particular aspect of the problem and often used a reduced-form
formulation of the ingredients of delegation problem. In particular, the majority of
the models did not model explicitly the information structure in the economy and
the details of the delegation transaction (competition, compensation structure, ..).
In a majority of the papers investors are forbidden from investing directly in the
asset markets and the benchmarks are exogenous and are imposed as constraints.

0.3 The origins of investment benchmarks

Although stock indices existed since 1896, it was not until the 1970s that the wide
adoption of the benchmarks in investment industry began. There were three simul-
taneous developments that contributed to this shift.

4An influential report of OXFAM (Murphy et al. (2012)) questioned the role of investing in the
financialization of food prices and the adverse effect the investment funds might have on the supply
of food. Though benchmarks were not explicitly mentioned in the report, it had an immediate
impact on the benchmark industry, with managers of passive commodity funds switching to ”no-
grain” versions of the commodity benchmarks.
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The first was the Wharton report of 1962 commissioned by the US congress, which
analysed the contractual and compensation arrangements of mutual funds. Although
the report did not question the quality of financial advise (did not raise the problem
of ”good” versus ”bad” managers), it questioned the fairness of the compensation
arrangements of mutual funds and the contracting clauses observed in the industry,
in particular the practice of the funds sharing investment gains but not the losses. As
a result, Amendment to Investor Act in 1970 prohibited the performance fees for mu-
tual funds unless they were symmetric around an ’appropriate index’. The regulatory
prescription thus required sharing relative losses, while investment managers had a
rather strong preference for bonus-like performance-related compensation, although
no guidance was given as to what can serve as an appropriate index.

The second development was the movement towards rigorous performance mea-
surement and the introduction of relative performance by large investors, such as
pension funds. This was in part a consequence of the Wharton report and the reg-
ulatory pressure, and in part a result of the technological advances in computing
and to development by the academia of an array of performance measurement ratios
based on the insights of the modern portfolio theory.

The third development was equally important and highlights the role of fund
management firms in the development of investment benchmarks. Note, that until
1968 the stock indices existing in the market were of heterogeneous quality and were
not comparable to actual portfolios. In 1962 Capital International (CI), a Geneva
subsidiary of a financial services firm Capital Group and a manager of mutual funds,
decided to expand investment offer for their investors, creating funds invested in the
non-US markets. To assist the company to ”.. better understand the.. individual
markets and ... reinforce investment management capabilities” (Sikorsky (1982))
this US-based fund manager developed a suite of country stock indices to ”represent
faithfully the evolution of unmanaged portfolios” invested in the markets outside
the US. The main difference between the CI indices and the already existing coun-
try stock indices (for example, S&P 500) was the investability achieved through the
application of the Laspeyre’s concept of weighted average, of the chain linking of
the multi-period returns, and of the principles of dynamic management of the index
membership. Due to these technical innovations, CI indices were the first bench-
marks that could be compared to real-life investment portfolios. The fact that the
first investable benchmarks appeared as a coordination device within an investment
management firm, points to the possibility that investment benchmarks have a role
to play outside the principal-agent relationship.

We conclude that the origins of investment benchmarks are mixed. Undeniably,
the agency frictions played a role, and the movement towards ”fair compensation”
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of fund managers was an important driver for the adoption of benchmarks. On
the other hand, the technological origin of the first benchmarks indices as a tool to
enhance portfolio management capabilities within investment firms indicated that
benchmarks have a role to play outside the principal-agent relationship.

Since the 1970s the money management industry witnessed a progressive elim-
ination of performance fees in the majority of markets. This trend was especially
pronounced for funds investing in publicly traded securities where benchmarks are
easier to construct.

We conclude this section with a list of several characteristics of the investment
benchmarks.

• A benchmark represents more than a mere knowledge of the performance of a
portfolio, but also includes the list of constituents and the weights of different
constituents within the benchmark portfolio.

• Although the majority of the benchmark indices in the market are built on
publicly available information, and although the task of reconstructing any
particular index would require almost no resources, the business of creating
and maintaining indices is extremely concentrated. A handful of big index
providers, including MSCI (who inherited the original CI indices), Standard
and Poor’s, Russell, STOXX and FTSE supply the majority of the indices in
the stock markets. The concentration is explained by strong network effects in
the demand for indices: the more a particular index used in the industry, the
greater is the demand for it.

• Index providers do not possess any property right on a certain portfolio con-
struction method, but protect their index products by using a copyright, mean-
ing that index providers essentially are selling their brand name.

• Index providers are exempt from any liability related to the use of their indices,
including the case where the index provider makes a mistake in computing the
index value or the index composition.

• The indices do not exist in isolation but are bundled in families, with a typical
family covering all the investable public companies.

Summarizing, it is an empirical fact that benchmark does not exist in isolation,
that the demand for benchmarks exist in the market where exist a diverse set of active
managers, the benchmarks tend to be privately supplied, and benchmark providers
exercise a monopoly power.
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Understanding benchmarks means understanding how the relationship between
investors and managers work. Benchmarks have characteristics of both information
and technology.

The challenge is to build a model where benchmark indices having the above
characteristics could appear endogenously.
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PART 1: Fund management as a
market for private information

Delegated asset management plays a major role in modern financial markets. Accord-
ing to PwC, a consultancy, in 2015 the amount of assets under delegation was $78.7
Trl, or 38.9% of total investable wealth. Yet, despite a solid demand for its prod-
ucts, the added value of the asset management industry is difficult to define. Funds
managed by professional money managers do not consistently outperform passive
investment benchmarks, casting a doubt whether investors get value in return for
the managers’ fees.

One difficulty on the way of answering this question is a conceptual gap between
the characteristics we assign to agents trading in asset markets and to investors
delegating money to asset managers. Asset trading models are populated by ratio-
nal optimizing agents, possessing private information, forming rational expectations,
and trading freely. Models of delegation instead have routinely divided agents into
skilled rational managers and uninformed investors, the latter often having difficul-
ties in trading assets and in avoiding behavioral biases. As a consequence, a large
body of theoretical literature attributes the investors’ decision to delegate invest-
ing to managers to the constraints imposed on them, or to behavioral issues, such
as aversion to making decisions under ambiguity. Starting from the premises that
investors just cannot do it on their own, such models do not provide a coherent
framework for the understanding of the role of delegated management. One has to
take into account that the two markets, that for the assets and that for delegation,
are integrated and populated by the same agents. A challenge is thus to develop
an integrated framework where the decision to delegate, rather than being driven
by constraints, comes from the characteristics of the asset market and the investing
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technology.

Important steps in this direction were the recognition that delegated asset man-
agement is a vehicle for sharing private information among agents (Admati and
Pfleiderer (1988), Admati and Pfleiderer (1990)), and that endogenous formation of
delegation occurs in equilibrium (Ross (2005); Garcia and Vanden (2009); Garleanu
and Pedersen (2018)). We contribute to this literature by considering joint markets
for asset trading and delegation in the case of multiple risky assets and a generic
structure of the private information.

We develop a rational model of asset markets where privately informed agents
find it optimal to delegate investments one to another. Investment skills in this model
are given by a private noisy signal about the future payoffs of the risky assets. We
keep the information structure as general as possible, so the agents cannot be clearly
ranked from more informed to less informed, as they can specialize in different assets
and investment styles. The same continuum of agents interacts in two markets: the
downstream asset market where the agents invest directly in multiple risky assets
and a riskless asset, and the upstream delegation market where each agent can act
both as a manager of the own fund and an investor of any other fund, an individual
fund being an optimal risky portfolio given the fund manager’s private information.

The model has three stages. At date 0, agents decide what fees to charge for
their funds and how much to invest in the funds of the others. At date 1, agents
receive their private signals and trade in the asset market. The asset market clearing
prices are determined by matching the asset demands from the own-account and the
fund portfolios to the noisy asset supply. At date 2, assets pay liquidating dividends,
the funds distribute their trading profits, and all agents consume their final wealth.
We refer to date 0 as delegation stage, date 1 as asset trading stage, and date 2 as
consumption stage.

Under the assumptions of competitive upstream and downstream markets, and
assuming the agents form rational expectations, any agent who receives a private
signal can be manager in the upstream fund market, irrespective of the precision of
the signal. The demand for the funds comes from the complementarity among indi-
vidual funds, as the noise in the private signals is uncorrelated across fund managers.
Thus agents find it optimal to spread the delegated money among all the existing
funds. All agents, regardless of their informational characteristics, are also potential
fund investors in the upstream market. At asset trading stage, all agents continue to
invest directly in assets on their own accounts, notwithstanding the fact that they
have already an asset exposure through the funds.

The model yields two main insights. First, the model challenges the conventional
wisdom that investing in funds occurs because of the fund’s expected output, it’s
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performance. The demand for funds is driven instead by their role as an input in the
investment allocation. If the markets for the assets and for the funds are competitive,
and if the private information exhibits complementarity, an agent invests in multiple
funds to aggregate the information contained in any individual fund. As the aggre-
gated information is superior to any individual signal, the investor problem in the
fund market thus resembles more a problem of a firm managing multiple complemen-
tary inputs in a productive process (as described in Alchian and Demzets (1972)),
than a search for a fund manager with superior performance. As a consequence, any
agent possessing private information could become a manager and attract a posi-
tive investment. Complementarity in the demand for individual funds also creates
a power to charge fund fees above the marginal cost (which we assume to be zero),
similar to the case of monopolistic competition in Dixit and Stiglitz (1977).

The second insight related to the effect of delegation on the asset prices. We show
that in the presence of delegation and under certain assumptions (zero delegation
fees and perfect knowledge of the precisions of the others) the market-clearing prices
aggregate all private information, even in the presence of noise traders. It is well
known that, in an equilibrium with rational expectations and asymmetric informa-
tion, trading in asset markets leads to the revelation of private information through
equilibrium prices. Because equilibria with a full revelation of private information are
problematic (Grossman and Stiglitz (1980)), the rational expectations (REE) models
usually assume a source of market inefficiency, such as noise trading, which limits the
revelation of information and maintains the incentives for information acquisition.
In partially revealing REE models prices are semi-strong efficient, and agents with
differentiated information earn differentiated returns based on their own signal and
the information made public through prices. In our model noise trading, although
being necessary to create the demand for the funds, does not necessarily prevent the
full revelation of private information through prices.

The upstream delegation market allows agents to share their private information.
Indeed, as was noted by Admati and Pfleiderer (1988), Admati and Pfleiderer (1990),
Allen (1990), selling shares of an investment portfolio is an indirect way to sell the
signal used to build this portfolio. In this sense, the fund management represents a
market for information, which is an input for the downstream asset market. Thus
sharing of information in the fund market amplifies the aggregation of private in-
formation by the asset market and leads to more informative prices. Though the
fully revealing equilibria that we find are obtained under unrealistic assumptions,
they highlight the role of the delegation institution as a decentralized mechanism to
implement fully revealing allocations.
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1.1 Literature review

The first milestone in the understanding of the role of information in the asset mar-
kets was reached in the stream of literature on the markets with distributed informa-
tion. In a competitive economy with rational expectations asset prices aggregate pri-
vate information and make the economy informationally efficient (Grossman (1976,
1978)). Yet, since the aggregated information becomes available through prices to
all agents, the existence of equilibrium and the incentives to acquire private infor-
mation crucially depend on the presence of noise trading preventing the prices to
be fully revealing (Grossman and Stiglitz (1980); Diamond and Verrecchia (1981)).
In the noisy REE equilibrium, agents trade on their private information and gain
differential returns depending on the precision of their private signal (Hellwig (1980),
Admati (1985)).

The second milestone was the important insight that fund managers are nothing
but agents possessing private information. Uninformed agents investing in a fund
do it to acquire the manager’s private information, which they could use as an in-
put in the asset allocation. In their pioneering work in this direction, Admati and
Pfleiderer (1988, 1990) pointed that investing in funds and buying investment advise
(the signal) directly are essentially equivalent. Under an assumption that the mar-
ket for private information consists of a single monopolist, they also analyzed the
profits of the information seller in the presence of leakage of the information through
prices. Admati and Pfleiderer (1990) showed that selling the signal through funds is
in general more profitable for the monopolist, although they suggested that in the
case of many information sellers this way of information selling would become inef-
ficient because buyers could have difficulties in ”unbundling” different signals from
the individual fund portfolios.

While the papers of Admati and Pfleiderer (1988, 1990) were focused on the
optimal design of the vehicle for selling information, other studies explored the fric-
tions related to the selling of asymmetric information. Bhattacharya and Pfleiderer
(1985), in a partial equilibrium context, showed that the incentive to buy the signal
may be compromised by the adverse selection problem, when a manager misrepre-
sents the value and the precision of the signal. This paper considered the use of
compensation incentives to alleviate this problem and concluded that, while a linear
performance sharing is not efficient, a compensation being a quadratic function of
the performance deviation from an uninformed benchmark portfolio would induce
a truthful revelation. The problem of signal credibility was addressed differently in
Allen (1990), where information seller engaged in costly signalling of the information
quality, enlisting the help of intermediaries. In the framework of Allen (1990) fund
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managers are the intermediaries who have perfect knowledge of the signal quality are
able to credibly resell the signal.

In the general equilibrium context, the idea of a manager being an outside in-
formation seller was used in Garcia and Vanden (2009) and Garleanu and Pedersen
(2018) to build fund markets involving multiple fund managers. Garcia and Vanden
(2009) explored the issues of competition among managers in the presence of signal
complementarity and barriers of entry, and endogenized the information acquisition
in the presence of delegation. Garleanu and Pedersen (2018) analysed how the fric-
tions in the asset market and in the fund market affect the equilibrium, and argued
that a certain level of inefficiency, or noise, is needed for both in the asset market,
and in the fund market to function.

The third milestone was the insight of Ross (2005) that informed agents become
managers endogenously in equilibrium. He considered a population of agents who
are heterogeneously informed about the payoff of the single risky asset. Instead of
trading on their own signals, agents try to sell their signals by offering funds to other
agents, and at the same time get exposure to the risky asset by investing in the funds
of others. Ross (2005) showed that in equilibrium all agents, including the informed
ones, invest in funds. Thus the profession of fund manager appears endogenously.
The only viable funds are those managed by the agents with the high precision.
Ross (2005) also considered the problem of signal credibility and concluded that it is
difficult to separate truly informed agents from uninformed based on the performance
of their funds, suggesting that probably an important share of the managers in the
industry are uninformed.

The above models, despite each being tailored to investigate a specific question
about the market for fund management, have several recurring features. In particu-
lar, investing in funds is possible only in the presence of noise trading, as otherwise
the private information gets revealed through prices and no investor would pay the
fund fees. Noise trading limits the leakage of information through prices and sus-
tains a rational demand for funds. This problem of signal acquisition through funds
is a counterpart of the Grossman-Stiglitz paradox related to a direct information
acquisition. Another common feature of these models is the increase in the infor-
mation efficiency of asset prices in the presence of delegation. This feature appears
universally when delegation is introduced, although the rationale for the boost in
informational efficiency differs depending of the specific model of delegation.

The model in this chapter relates to the above literature. We consider a gen-
eral equilibrium in the joint market for assets and for funds as. Similar to Ross
(2005), we introduce the delegation institution endogenously and do not separate
agents into distinct groups such as ”households” and ”managers”, as do Garcia and
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Vanden (2009); Garleanu and Pedersen (2018). We do not a priori restrict the entry
in the fund market and the ability of agents to invest in multiple funds. As the
aforementioned papers, we abstract from agency frictions, by assuming a zero cost
of the private signals and a competitive large market for funds and for assets.

Our model differs from the previous literature in several important aspects. First,
we consider a richer structure of the market and of the private information. The
bulk of the previous literature on joint modelling of delegation and asset markets
was based on the extension of the model of Hellwig (1980); Grossman and Stiglitz
(1980). This model featured one risky asset and a common signal received by all
informed agents. Our model uses the economy of Admati (1985) for the downstream
asset market, featuring multiple risky assets, and a generic distribution of private
information. Second, we introduce residual uncertainty in the asset payoffs, which
affects the demand for funds. The concept of residual uncertainty has to do with the
ability of the aggregated private information to predict risky payoffs. Third, we do
not restrict agents from trading on their own account, even if they invest in funds.
The own-account trading turns out to play an important role in the fine-tuning the
overall risky exposure (that is, the sum of the exposure to risky assets coming from
investing in the funds and investing in the assets directly). This possibility to fine-
tune the risk by own-account trading has profound consequences on the demand
for funds, on the viability of the funds with low precision, and on the extent the
information gets aggregated in the economy. Thus our results rather than being
driven by the cost of the information or the market frictions, are driven by the
complementarity of private information, by the ability of market prices to aggregate
and reveal decentralized information, and by the monopolistic competition among
the managers who possess independent pieces of information.

This study also relates to a more general question of the properties of markets
for information, which is used as an input in a downstream market. A model of
delegation allows one to investigate the product choice and the profits of information
sellers, as a response to the structure of the competition and externalities in the
downstream market (Admati and Pfleiderer (1990); Bimpikis et al. (2019)).

Questions of the micro-economic origins of delegation and the effect of the dele-
gation on asset prices were studies disjointly in separate streams of literature. The
first stream includes the models of delegation that justify the decision to delegate on
the grounds of the superior technology of money managers (as in Berk and Green
(2004)). Our model is different from these papers, as we do not equip asset managers
with an ad-hoc production technology.

The stream of literature on the effects of delegation on the dynamic of asset
markets includes the so-called intermediary asset pricing models of He and Krishna-
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murthy (2012) and He and Krishnamurthy (2013), who develop a general equilibrium
framework of delegation when households have a limited access to the market of risky
assets. This framework differs from our study in that it limits the access of any agent
to the risky assets, includes agency frictions, and does not incorporate diverse private
information. As a result, the intermediary asset pricing models support investment in
only one fund, while in our model the presence of diverse private information makes
it optimal to invest in allocations of funds. Hence, the importance of the manager’s
stake in the fund and the role of the constraints on fund capital that plays a crucial
role in the intermediary asset pricing approach, is not supported by our model. The
intermediary asset pricing models might be more suited to describe the specialist
funds, such as hedge funds or structured products, while our model is more suited
to represent the market for mutual funds, where the sharing of profits and capital
requirements for fund managers are less of concern.

1.2 The model

We extend the asset market structure of Admati (1985), introducing residual uncer-
tainty in the payoffs of risky assets as in Wang (1994), and adding a preliminary
stage in the model where agents interact in the delegation market.

Our model has three dates, marking the transactions in the fund market, the
trading in the asset market and the final consumption. At date 0, agents meet in the
fund market and each agent makes two decisions: how many shares of each available
fund to purchase (an ”investor” decision), and what fee per share to charge the agents
that will invest in his own fund (a ”manager” decision). Then, at date 1 all agents
observe realizations of their private signals and submit own account demands to the
asset market. At the same date the agents perform their duty as managers and use
their signals to build fund portfolios and transmit to the asset market the demands
relative to the delegated money. At date 2 the final asset payoffs are determined,
agents receive the proceedings of their own-account and delegated investments and
consume their final wealth.
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Figure 1.1: The model timeline

0

DELEGATION

Fund fees are determined
Delegation decisions are made

1

ASSET INVESTING

Signals are realized
Own-account demands are submitted
Fund portfolio demands are submitted

2

CONSUMPTION

Payoff are realized
Final wealth is consumed

1.2.1 Agents

There is a continuum of agents in the economy, labelled by m ∈ [0, 1]. All agents
receive at date 0 the same initial endowment of the consumption good em0 . As in Ad-
mati (1985), we assume that agents have CARA exponential utility U = −exp(−ρx).
For simplicity we assume that, prior to receiving the private signal, the agents are
homogeneous, so em0 = e0, and ρm = ρ.

There is no consumption until the final date 2. Agents invest their entire en-
dowments at date 1, maximizing their expected utilities of the terminal wealth. We
assume there are no transaction costs for trading in asset markets.

1.2.2 Asset markets

There is one riskless asset in elastic supply. This asset costs 1 at date 1 and pays a
fixed payoff R at date 2. There are N risky assets, labeled i = 1, .., N . Risky asset i
pays a dividend Di at date 2. The unconditional distribution of the dividend vector
is a joint normal with the mean θ̄ and variance-covariance matrix V +VD. The prices
Pi are determined endogenously in the equilibrium at date 1.

Risky assets are in noisy supply z, assumed to come from noise traders. The
supply is distributed normally with the mean z̄ and covariance U . Random supplies
z are independent from random payoffs D.

All assets are traded at no cost. At the end of the period when the payoffs are
collected, the assets are liquidated and have no residual value.

We introduce here some notations. Denote by xmB is the number of shares of the
riskless asset held directly by agent m, and by xmi denote the number of shares of
risky asset i held directly by agent m. We will refer to the risky portfolio xmi as the

own-account portfolio of agent m. Then, we denote by x =
∫ 1

0
xmdm the aggregate

of own-account portfolios of all the agents. Note, that in the absence of delegation
the market clearing would imply x =

∫ 1

0
xm = z.
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1.2.3 Information Structure

Each investor knows the unconditional distributions of the random variables (z,D).
In addition, agents possess private information about the future payoffs of some or all
the assets. Here we do not restrict a priori the information structure, as in Admati
(1985). We also assume that there exists a residual uncertainty (VD > 0) in the asset
payoffs, following Wang (1994).

The future dividends have a structure:

D = θ + εD, θ ∼ N(θ̄, V ) εD ∼ N(0, VD), Cov(θ, εD) = 0 (1.1)

where all the parameters refer to unconditional distributions. The dividend is a
sum of two independent random variables. The first variable θ could be forecasted
by collecting private information. This would correspond to the part of the future
payoffs depending on the activities already realized by date 1, such as the produc-
tion, investment, and financing decisions already made by the company. The second
variable εD, which is a pure noise, represents a genuine uncertainty that cannot be
predicted before date 2. The analogue of this uncertainty would be an unforesee-
able regulatory decision affecting the company’s business, a natural disaster, or an
unexpected change in the demand.

The majority of existing models of asset markets with distributed private infor-
mation assumed no residual uncertainty in the asset payoffs (Grossman (1976, 1978);
Admati (1985); Ross (2005); Garcia and Vanden (2009)). In these models the aggre-
gate private information perfectly predicts the payoffs. The exception are the model
of Grossman and Stiglitz (1980) and its extensions, such as Garleanu and Pedersen
(2018), where all informed agents get the same signal and have the same signal error.
In such a case the signal error plays a role similar to that of the residual uncertainty.

Agents receive private signals only about the first component of the payoffs, θ:

sm = θ + εm (1.2)

where m labels different agents, and the signal noise is distributed as a multivari-
ate normal: εm ∼ N(0,Σm). The errors εm are independent on the other random
variables in the model, and are independent across investors:

Cov(εm, εD) = 0, Cov(εm, θ) = 0, Cov(εm, ε′m) = 0 (1.3)

We assume, as in Admati (1985), that agents, in aggregate, have the full infor-
mation about the variable θ: ∫ 1

0

smdm = θ (1.4)
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Following Admati (1985), we do not require any given agent to have signals for
all the risky assets, so matrices Σ−1

m could have zero entries on the diagonal. The
matrix Σm of an individual investor can thus be singular, and its inverse Σ−1

m might
not be positive definite. For a unique equilibrium solution to exist, it is required that
a sufficient fraction of investors have a ”full” signal, that is receive private signals on
all the assets with nonsingular error covariance. The inverse covariance matrices of
signal errors Σ−1

m are called precision matrices. The average of the precision matrices
in the economy is called Q =

∫
Σ−1
m dm. We assume that Q is nonsingular and is

known to all agents.
The following result about the private errors covariance matrices was assumed to

hold in Admati (1985): the average of the signal errors weighted by the corresponding
precision matrices is zero. ∫ 1

0

Σ−1
m εmdm = 0 (1.5)

In this paper we will use a generalized proposition:∫ 1

0

Nmε
mdm = 0 (1.6)

for any matrix-valued coefficients Nm that are bounded. This would follow from
the Law of Large Numbers (see Chung (1974), section 5.4), as the random variables
under the integral are independent with uniformly bounded variances.

According to the rational expectation hypothesis, agents also use the observed
asset prices P to make inferences about the payoff component θ. The conditional
distribution of the payoffs, given the signal and the publicly observed price, is gaus-
sian.

Following Admati (1985) we consider a linear price functional that depends on
the random variables that are realized at date 1(though not observed by all agents):

P = A0 +

∫ 1

0

A1ms
mdm− A2z = A0 + A1θ − A2z (1.7)

where the second equality follows from (1.2) and (1.6).

1.2.4 Equilibrium without delegation

Before introducing the fund market, we briefly review the equilibrium in the asset
market without delegation, and introduce some useful notations. The asset market
equilibrium extends the result of Admati (1985) by adding the residual uncertainty.
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We begin by deriving an optimal portfolio of agent m when there is no delegation
in the economy.

Agent m maximizes:

max
xmB ,x

m
E(Um(xm(D − PR)) | sm, P ), (1.8)

where (sm, P ) is an information set available to agent m. The maximization is subject
to the budget constraints (note that throughout the chapter we use matrix notations
and omit the sign of transposition):

xmB + xmP = e0 (1.9)

The solution to this optimization problem has a usual mean-variance form:

xm0 =
1

ρ
(Vm + VD)−1(E(θ | sm, P )− PR) (1.10)

where we define the conditional covariance and mean of the payoff component θ
as:

Vm = V ar(θ | sm, P ) = Σ−1
m + V −1 + A1A

−1
2 U−1A−1

2 A1 (1.11)

and

θmc = E(θ | sm, P ) = Vm(Σ−1
m sm + V −1θ̄ + A1A

−1
2 U−1A−1

2 P −
− A1A

−1
2 U−1A−1

2 A0 + A1A
−1
2 U−1z̄) (1.12)

We also obtain here a useful representation of the mean-variance portfolio xm0
as a combination of a speculative bet on the private signal sm and an uninformed
exposure to risky assets.

Let’s denote by Vu the conditional variance of an uninformed investor, and by xu0
the optimal portfolio of an uninformed investor:

xu0 =
1

ρ
(Vu + VD)−1(E(θ | P )− PR) (1.13)

Then one represent the optimal portfolio (3.5) of an informed investor with the
signal sm and precision Σ−1

m as:

xm0 = Om(sm − PR) + Emx
u
0 (1.14)
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where

Om =
1

ρ
(Vm + VD)−1VmΣ−1

m , Em = (1 + V −1
m VD)−1(1 + V −1

u VD) (1.15)

The first term in the decomposition is interpreted as a bet on the private signal. The
second, following Vives (2007), represents a market-making activity, i.e. exploiting
discrepancies between the public information and the fundamental value. Formula
(3.5) is a useful representation, allowing to separate the uninformed part of a portfolio
from the part containing the signal.

Note, that the expression Om in (1.15) is equal to the precision Σ−1
m if there

is no residual uncertainty (VD = 0). It is natural for the optimal portfolio to be
proportional to the signal precision, which represents the confidence of the agent in
the signal. Agents with higher precisions take larger bets on their signals. In the
presence of residual uncertainty, however, the bet on the signal is not identical to the
signal precision Σ−1

m because betting on the signal exposes the agent to the residual
uncertainty. Thus, in the presence of residual uncertainty the quantity Om has a
meaning similar to precision, as it generalizes the notion of a confidence in one’s
signal. We will often refer to Om, which in general is a nonlinear monotone function
of the signal precision, as simply a precision in this sense. The second term in (1.14)
is proportional to an uninformed portfolio. Note, that this term is exactly equal to
the uninformed portfolio (1.13) when there is no residual uncertainty. And, given
that Em is a decreasing function of the agent’s conditional precision V −1

m , and thus
is a decreasing function of the signal precision Σ−1

m , one can conclude that agents
with higher precision will participate less intensely in the market-making activity in
the presence of residual uncertainty. Note also, that from the point of view of the
peers of agent m, the uninformed part of his portfolio is known, as long as agents
in the economy have perfect knowledge of the precisions of others. This means that
any agent could, if needed, build a synthetic exposure to the signal of agent m, by
buying one share of his fund xm0 and selling short −Emxu0 of assets directly.

1.2.5 The market for funds

The market for funds is an institution that governs investing in portfolios of other
agents without revealing neither their private signals, nor their portfolio composition.
Any agent can hire as many ”managers” as he chooses to, can delegate any arbitrary
share of his own wealth, and can invest the residual in the assets directly. At the
same time, the same agent can set up his own fund and accept the delegated money.

Investment funds are the products exchanged in the delegation market. We as-
sume that a fund is a promise to return a payoff of a portfolio of risky assets condi-
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tional on the fund manager’s private signal, corresponding to xm
′

0 in (1.14). Running
a fund does not impose any costs on the manager. The signals are given exogenously
in our model, and their cost is sunk; there is no setup fee to establish a fund. With
the zero cost assumption the supply of fund shares is perfectly elastic. This corre-
sponds to the case of open-ended investment funds. We ensure that at any time the
total net holdings of the funds are equal to the supply of the risky assets minus the
net holdings of direct investment accounts.

To keep the delegation problem simple, we abstract here from the contract en-
forcement issues. This assumption is in line with the competitive nature of the
economy, as agents are too small to influence individually asset prices and to have
incentives to behave strategically. Moreover, as long as we assume that managing a
fund requires no additional investment or effort, that agents are perfectly informed
about the signal precisions of others, and that the fund fee does not contain a per-
formance sharing component, there is no ground for the moral hazard or adverse
selection issues. When taking the limit of the fund fees going to zero, a manager
becomes indifferent if to accept an additional investment in his fund. We assume
that in this case managers would continue to accept the delegated money. We rule
out the possibility of managers investing the delegated money in the funds managed
by others (no delegation of the delegated money).

When agent m delegates to a fund manager m′, he chooses the number of shares of
the fund to buy, which we denote by γmm

′
and will refer to as delegation quantities.

Agents are allowed to delegate any fraction of their wealth to a fund, implying
γmm

′ ∈ R+, ∀m′. As any private signal is informative, restricting the delegation
quantities to be nonnegative does not represent a restriction, as no agent would bet
against genuine information.

We make an important assumption about the vector of delegation quantities of
an agent m, requiring γmm

′
to be non-atomic and smoothly distributed across all

available funds. This assumption is motivated by the properties of the informational
structure, in particular by the fact that signal errors of different agents εm′ are
uncorrelated. Thus a smooth fund allocation would allow to completely diversify the
signal risk. To give the intuition, consider the number of shares of risky assets held
by an investor m indirectly through funds, and use the definitions (1.2, 3.5):

∫
m′ 6=m

γmm
′
xm
′

0 dm′ = (θ−PR)

∫
γmm

′
Om′dm

′+

∫
γmm

′
Om′ε

m′dm′+xu0

∫
γmm

′
Em′dm

′

(1.16)
The second term represents the aggregated signal error, and it vanishes if the

function γ(m′) is bounded and nonnegative, using the property (1.6). It is straight-
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forward to see that, in the case of zero fund fees ,the optimal fund allocations will
necessarily satisfy the smoothness assumption, because adding one more fund to
the allocation brings the benefit of diversifying the signal risk. We argue that this
conclusion will hold even in the presence of nonzero fund fees, because the comple-
mentarity of private information will ensure that the indifference curve representing
preferences for the funds will never cross the axes. Thus, the constraint on possible
values of delegation quantities γmm

′
essentially embeds the diversity-loving prefer-

ences for funds.
Funds are complementary products because spreading the investment across mul-

tiple funds diversifies the signal risk. In the conventional models of monopolistic
competition the product complementarity is explicitly introduced in the consumers’
utility function (e.g. Dixit and Stiglitz (1977)). In our case the demand for funds
will not contain a term representing the aggregate signal risk, as we assume it to be
always diversified away. The diversity-loving preferences for funds in our setup are
represented by the constraints on the delegation quantities γmm

′
. This setup is dif-

ferent from the model ofRoss (2005). He uses a model with a finite number of funds
and computes the derived utility function averaging over the signal errors explicitly
without imposing a restriction on possible values of γmm

′
as we do. As a result, the

derived utility function in his study depends explicitly on the aggregate signal risk.
Due to the difficulties involved in handling expectations over an infinity of individual
signal errors, we prefer to deal with a simpler version of the derived utility function,
where the term representing the signal risk is eliminated, and the complementarity
is handled via an optimization constraint.

The assumption of complete diversification of signal risk is analogous to the di-
versification of idiosyncratic risk in asset portfolios. As was shown by Stiglitz (1989),
when choosing a portfolio of risky securities, agents would diversify across all avail-
able securities. Thus, any security introduced in the market will be added to the
optimal portfolio. The observable limited variety of risky investments in the real
markets comes rather from the finite supply due to, for example, fixed costs of quot-
ing the security on the public market. As such fixed costs are absent in our model
of the fund market, the demand will exist for all the funds that could be potentially
introduced by informed agents.

We turn now to the assumptions about the pricing of the funds. Fund managers
set the fund fees. No explicit bargaining is introduced between the agents. We limit
the fund pricing schemes to a simple linear uniform fee km per share of the fund.
Then the profit from fund management is equal to:

Πm(km) = km
∫
m′ 6=m

γm
′mdm′ (1.17)
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We assume that fund managers are paid at the final date 2, and add the fee to their
final wealth.

Extensive literature is dedicated to the issues of moral hazard in fund manage-
ment, where managers exploit the sources of profits that are not explicitly bargained
for, or cannot be ruled out in the investment agreements (Mahoney (2004)). We as-
sume in this model that no such sources of profit exist. Given the model assumptions,
managers do not have a possibility to shirk or to lie about their signal precisions.
Given the absence of performance sharing, managers cannot profit by altering the
structure of their funds. The competition among the managers does not provide
incentives to distort their signals, as it would affect the complementarity between
the funds.

Finally, we make several assumptions about the knowledge requirements for build-
ing equilibria in this economy. In order for the fund market to be viable, agents should
be able to build expectations of the payoff from the delegated money. When agents
have perfect knowledge of informational characteristics of all their peers, given by
the set of precision matrices {Σ−1

m }, the calculation of the fund payoff expectation
is straightforward. Note, however, that the delegation market may function with
much weaker knowledge requirements. The minimal knowledge needed for delega-
tion is for agents to know the average precision of private information in the economy
Q =

∫
Σ−1
m dm. In this case agents cannot discriminate among managers, but have

still an incentive to invest in the funds by building a symmetric fund allocation, i.e.
by essentially treating all funds as having the average precision Q. An interesting
possibility is for agents to have probabilistic knowledge about the others’ precisions.
We leave this case for future research. Different knowledge requirements would pro-
duce different equilibria in the joint markets for the funds and for the assets.

1.3 Equilibrium definitions

An equilibrium in the joint market for assets and for funds has a complex structure,
with every agent playing simultaneously the roles of a trader, a fund investor and
a fund manager. In this section we prepare the ground for the derivation of the
equilibrium and introduce several concepts that will be useful to give a structure
to the agents’ behavior in equilibrium. In particular, we will give intuition about
how the exposure to funds modifies the agent’s wealth and risky allocation, how the
freedom to trade on the own account affects the decision to delegate, how agents deal
with the signal risk they assume via funds, and how agents separate their decision
of investing in the funds of others from the decision to price their own funds.
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For the sake of clarity in exposition, we consider here several separate partial
equilibrium problems:

1. Partial equilibrium at the asset trading stage, when investors take the delega-
tion decisions as exogenous.

2. The problem of optimal exposure to the funds given optimal own-account de-
cisions at the asset trading stage, and treating the fund fees as exogenous.

1.3.1 The effect of delegation on wealth

The final wealth of agent m is composed of the return on the risk-free investment,
the payoff of the own account risky portfolio, the payoff from delegated money minus
the fees due, and the profit from managing his own fund:

Wm
2 = xmBR + xmD +

∫ 1

0

γmm′x
m′

0 dm′D −
∫
γmm

′
km
′
dm′ + km

∫
γm
′mdm′ (1.18)

In what follows we will write the integral over the continuum of the invested funds
simply as

∫ 1

0
(..)dm′, omitting the mention m 6= m′. Since no investor ”is large” in

the economy the exclusion of one point in the interval (0,1) does not change the value
of the integral.

Using the agent’s budget constraint xmB +(xm+
∫
m′ 6=m γ

m
m′x

m′
0 dm′)P = e0 the final

wealth becomes:

Wm
2 = e0R+xm(D−PR)+

∫ 1

0

γmm′x
m′

0 dm′(D−PR)−
∫
γmm

′
km
′
dm′+km

∫
γm
′mdm′

(1.19)
At the asset trading stage the first and the two last terms in the wealth, related

to the initial endowment and the fund fees, are already fixed, thus the own account
optimal portfolio will be independent of the management fees.

Using the structure of the fund portfolio xm
′

0 (1.14), one can rewrite the wealth
as follows (we omit at this point the constant terms that are irrelevant for the opti-
mization at the asset trading stage):

Wm
2 ≡ x̃m(D−PR) + (θ−PR)Nm(D−PR) +

∫
γmm

′
εm
′
Om′dm′(D−PR) (1.20)

where we introduce the following notations:

x̃m = xm +

∫
γmm

′
Em′dm′xu0 (1.21)
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Nm =

∫
γmm

′
Om′dm

′ (1.22)

The first term the final wealth (1.20) is linear in the risky asset payoffs, being
composed of the return on the own account portfolio xm and the return from an
”uninformed” part of the managers’ portfolios, proportional to xu0 . The structure
of the linear exposure to the asset risk, denoted by x̃m and given by ex-expression
(1.21) suggest the following proposition.

Proposition 1. The own-account trading allows fund investors to offset the unin-
formed exposure contained in the fund portfolios.

The proof of proposition follows from the fact that, for exogenously given dele-
gation quantities γmm

′
the final wealth (1.20) depends on the own-account portfolio

xm only through x̃m. Thus, the optimal own-account exposure will always have the
form xm∗ = x̃m∗−

∫
γmm

′
Em′dm′xu0 . That is, the agent investing in funds will always

offset the uninformed exposure to risky assets coming from the funds. Q.E.D.
The offset of the uninformed fund exposure might be understood as follows. In-

vesting γmm
′

in funds and subtracting the quantity
∫
γmm

′
Em′dm′xu0 from the own-

account portfolio the agent builds a synthetic exposure to the signal-related part of
the fund portfolio. If the own-account trading is not prohibited, any uninformed
exposure within a fund will be then irrelevant to fund investors. This is logical if we
recall that funds in our model is are vehicles for selling the signals.

This feature of the own-account trading seems to be an insignificant mechanical
shift in the risky allocation, but turns out to have profound consequences for the
structure of the fund market. In the absence of own-account trading, any additional
share of the fund exposes investor to extra uninformed risk, and thus the optimal
demand for the fund shares would be a result of the trade-off between the desire of
investor to get exposure to the private information, and his tolerance to the unin-
formed risk that is bundled together with the private signal in the fund portfolio.
Consequently, the funds with higher precision become more valuable because, given
the structure of the funds portfolio (1.14), they allow to get a larger exposure to the
signal per unit of uninformed exposure. This is the case in the model of Ross (2005),
where agents do not trade in assets directly, and thus are constrained to invest only
in the funds with the highest precision. In the words of Ross, the low-precision funds
are not viable. The proposition shows that this non-viability is the consequence of
the model constrain on own-account trading. If this constraint is absent, agents have
incentives to invest in all funds, because adding an additional fund helps to diversify
the signal risk.
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Matrix Nm (1.22) appears in the portion of the final wealth (1.20) quadratic in
the payoff variables. This portion of the wealth represents a payoff from the agent’s
exposure to the noise-free private information via funds. We will refer to matrix Nm

as a delegation exposure. The effect of the delegation exposure on the wealth of an
agent is given by the following proposition:

Proposition 2. Investing in a fund transforms the risky exposure and the final wealth
of an agent in the same way as would have done an increase in the precision of his
private information.

To illustrate this proposition we consider a simple problem of peer-to-peer dele-
gation where one agent with the signal precision Σ−1 invests in a fund based on the
signal s̃ = θ+ ε̃ with precision Σ̄−1. We denote by γ̄ the amount of shares of the fund
bought, and assume for simplicity that there is no residual uncertainty (VD = 0) and
the fund has zero fees (k̄ = 0).

Fund investor knows the structure of the fund portfolio (1.14), which under the
assumption of no residual uncertainty simplifies to:

x̄ =
1

ρ
Σ̄−1(s̄− PR) + xu0 (1.23)

where xu0 denotes the portfolio of uninformed agents.
The end-of-period wealth of the fund investor is:

Wm
2 = e0R + (x+ γ̄xu0)(θ − PR) +

γ̄

ρ
(s̃− PR)Σ̃−1(θ − PR) (1.24)

In appendix (1.8) we show that the optimal own-account portfolio x and the
optimal delegation quantity γ̄ have the following form:

x∗ =
1

ρ
Σ−1(s− PR) + (1− γ̄)xu0 , (1.25)

γ̄∗ = 1, if Σ̄ <∞ (1.26)

The total exposure to risky assets for the delegating agent is composed of the optimal
own-account portfolio and the risky exposure via the fund:

Exposure = x∗ + γ̄∗x̄ =
1

ρ
Σ−1(s− PR) +

1

ρ
Σ̄−1(s̄− PR) + xu0 (1.27)

It is easy to show that this is an optimal own-account portfolio of a hypothetical agent
who would have observed both signals (s, s̄) and would benefit from the precision
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of the combined signal (Σ−1 + Σ̄−1). Thus, delegating to funds has the effect of
augmenting the precision of the agents, in the sense that it allows agents to construct
risky exposures corresponding to signal precisions that are higher than the precision
of their own signals. Q.E.D.

We introduce the following definition:

Definition 1. Implied conditional precision Gm is the precision that could be asso-
ciated with the risky exposure of agent m when the agent invests in funds.

Note, that in the case of peer-to-peer delegation, presented in appendix (1.8) we
showed that the agent with the precision of the own signal equal to Σ−1 who invests
an arbitrary amount of shares γ̃ in the fund with precision Σ̃−1 has the implied
precision given by: G = V −1 + Σ−1 + 2(γ̃ − 1

2
γ̃2)Σ̃−1. When the delegation quantity

is optimal γ̃∗ = 1, the implied precision reaches its maximum G∗ = V −1 +Σ−1 +Σ̃−1.
Note, however, that even suboptimal amounts of fund investment would increase the
agent’s conditional precision, provided that (γ̃ − 1

2
γ̃2) > 0.

The exact form of implied precision in the case of investing in multiple funds will
be given in the next section. We will show that, in general, implied conditional preci-
sion Gm is a function of the delegation exposure Nm. The consequence of proposition
2 is that agents view the problem of optimal fund investing as a problem of reaching
maximal possible implied conditional precision. Agents use the available funds to
build fund allocations that produce the optimal delegation exposure N∗m giving the
maximal implied conditional precision G∗m.

1.3.2 Diversification of the signal risk

The third term in the final wealth (1.20) represents an aggregated signal error of
the fund managers. In appendix 1.8 we showed that, when this term is present, the
benefit from delegation is necessarily bounded. In the simple case of peer-to-peer
investing the boost in the conditional precision, given by 2(γ̃ − 1

2
γ̃2)Σ̃−1, is a non-

monotonous function of the delegation quantity γ̃. Increasing this quantity above
1 is suboptimal, because beyond this point the marginal penalty coming from the
signal risk ε̃ outweighs the marginal benefit from the exposure to the noise-free part
of the signal.

It is easy to show that when an agent invests in several funds simultaneously, the
signal risk of the individual funds is partially compensated. We make an assumption
that in equilibrium all agents choose delegation strategies γmm

′
such as the signal
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risk is completely diversified away:∫
γmm

′
εm
′
Om′dm′ = 0 (1.28)

The constraint of perfect diversification of the signal risk (1.28) requires that
the random variables γmm

′
εm
′
Om′ have zero means and uniformly bounded variances

(Chung (1974), theorem 5.4.1).

E(γmm
′
εm
′
Om′) = γmm

′
E(εm

′
)Om′ = 0, if γmm

′ ≥ 0 (1.29)

V ar(γmm
′
εm
′
Om′) = (γmm

′
)2Om′Σm′Om′ <∞, | γmm′ |<∞ (1.30)

In other words, to satisfy (1.28) the delegation quantities γmm
′

should be non-
negative and finite. The latter requirement implies that delegation should be spread
across a continuum of funds, instead of being concentrated on a portion or a count-
able set of available funds. It is self-evident that the requirement (1.28) will be always
satisfied when delegation fees are the same for all funds. In such a case adding an ad-
ditional fund always gives a benefit of increased diversification of signal risk without
changing the total cost of delegation, thus smooth and bounded fund allocations will
be the only optimal strategies for fund investors. We would argue that this assump-
tion will not be restrictive even in the case of arbitrary configuration of fund fees.
As far as there is a continuum supply of potential funds, it is not possible to have an
equilibrium fee configuration where fund investors concentrate only on a portion of
available funds. Managers who are left out would always find it worthwhile to align
their fees with the rest of the fund market to attract investors.

The smoothness assumption (1.28) allows one to greatly simplify the calculation
of the expected utility function by discarding the third term in (1.20). Technically,
it means that the derived utility function (i.e. the ex-ante utility function optimized
by agents at date 0, where the optimal own-account trading decision at date 1 is
already taken into account) will not contain an explicit trade-off between the total
delegation fee and the diversification of signal errors. Rather the complementarity
among the funds will be embedded in the constraint (1.28). This will require some
extra attention at date 0 optimization.

1.3.3 Definition of the equilibrium at asset trading stage

At date 1 agent m maximizes:

max
{xm}

E(Um(Wm
2 ) | sm, P ), (1.31)
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where (sm, P ) is an information set available to the investor m, and xm is the agent’s
own-account portfolio. The wealth W2 is given by (1.20).

We showed in proposition 1 that the optimal risky portfolio xm will contain a
compensating term −

∫
γmm

′
Em′dm′xu0 , which offsets the uninformed exposure to

risky assets coming from the fund portfolios. From the point of view of a fund
investor, the uninformed portion of the fund xu0 increases the agent’s overall risk
without contributing to the increase of the agent’s implied conditional precision.
Thus the agent would always eliminate this exposure through own-account trading.

The own-account portfolio of agent m will also contain a part corresponding
to a bet on his private signal sm, unless the price P fully reveals all the private
information in the economy. This means that agents investing in funds will at the
same continue to trade on their own signals. Information structure where individual
signal errors can be diversified does not in general lead to binary ”delegate-all-or-
nothing” decisions, since some own-account investing is optimal even when one has
already delegated some wealth to the funds.

The market clearing condition in the presence of the own-account trading and
the investment in funds has the following form:∫ 1

0

(xm +

∫
m′ 6=m

γmm
′
xm
′

0 dm′)dm = z (1.32)

where xm are own-account portfolios, and xm0 are fund portfolios given by (1.14).
Using the fact that in a CARA-normal model the optimal own-account portfolios
and the fund portfolios depend linearly on the payoff random variables, the price
will be a linear functional of the aggregate private information

∫ 1

0
smdm = θ and the

risky supply z:
P = A0 + A1θ − A2z (1.33)

Let us define the equilibrium in asset markets at date 1, assuming that agents
have perfect knowledge of informational characteristics of all their peers.

Definition 2. Equilibrium in asset markets, given the public knowledge about the
informational characteristics of all the agents and the exogenously fixed delegation
quantities γmm

′
, is a competitive equilibrium with rational expectations, where prices

(1.33) aggregate private information coming from the optimal own-account portfolios
and from the funds, which together satisfy the market-clearing condition (1.32).

The equilibrium price will have the form (1.33) with the coefficients A0, A1, A2

depending on the delegation quantities:

A0 = A0(γmm
′
), A1 = A1(γmm

′
), A2 = A2(γmm

′
) (1.34)
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The own-account portfolio will have the structure:

xm = α(γmm
′
, Om′)(sm − PR)−

∫
γmm

′
Em′dm′xu0 (1.35)

where Om′ and Em′ are functions of signal precisions Σ−1
m′ given by (1.15), and α

denotes a functional form of the dependence, which will be fixed in the equilibrium.
We would like to highlight three features of the asset trading equilibrium that are

evident without performing further calculations. First, the noise in the risky asset
supplies z is crucial for the existence of equilibrium. Without noise traders the prices
would be fully revealing of the aggregate signal, which would contradict the rationale
for investing in funds: if agents could deduce the aggregate signal from prices at no
cost, they will not participate in the fund market in the first place. Second, in
the presence of the fund market the asset market will necessarily aggregate more
information than when it functions in isolation. In a joint market for funds and
assets any agent will have higher implied conditional precision, which will translate
in the increased intensity of trading on information. Third, the aggregated private
information is not necessarily revealed through prices. When the prices are noisy
A2 6= 0, agents can not perfectly reconstruct the payoff component θ even if the
prices aggregates the full information about it: A0 = 0, A1 = 1

R
.

1.3.4 Definition of the equilibrium at delegation stage

To determine the optimal demand for the available funds and the optimal fees for
the own funds, agents will use a derived utility function. The derived utility is the
expected ex-ante utility of the final wealth computed at date 0 by taking into account
the optimal own-account trading decisions at date 1. In the derived utility function
the profit from selling the shares of the own fund and the benefit from investing in
the funds of others will be separated, as illustrated by the following proposition:

Proposition 3. At delegation stage the optimization problem of any agent splits into
two independent sub-problems:

1. The investor problem, to find an optimal demands for delegation γmm
′
({km′})

taking as given the fees of other funds km
′
:

maxγmm′e
ρ
∫
γmm

′
km
′
dm′E(e−ρx

m∗(γmm
′
)(D−PR)−ρ

∫ 1
0 γ

mm′xm
′

0 dm′(D−PR) | sm, P )
(1.36)

where xm∗(γmm
′
) is the optimal own-account portfolio of agent m, given the

delegation quantities γmm
′
.

22



2. The manager problem, to set a fee for the own fund, given the demand of other
agents for the fund:

maxkmk
m

∫
γm
′m(km, k−m)dm′ (1.37)

where k−m stands for the average fee of all other fund managers.

The proof of Proposition 1 is straightforward, given the structure of the final
wealth of agent m (1.19) and the CARA utilities. Q.E.D.

According to this proposition, every agent in the fund market behaves as a fund
investor and as a fund manager at the same time. This follows from the property of
the CARA preferences, as well as from the model assumptions ruling out a possibility
to gain profits from fund management in ways other than selling of the signal.

Given the perfectly elastic supply of fund shares, individual solution to the in-
vestor problem (1.36) will be aggregated to provide the demand function for the
funds. Then the equilibrium in the fund market will be determined by the pricing
decisions of fund managers, given the aggregate demand structure. In their pricing
decisions managers will take into account the complementarity between the own pric-
ing decision and the average fee in the market. Each manager will take into account
the average fees charged by the others as an exogenous variable, and the equilibrium
fees will be a result of a Nash equilibrium in the pricing decisions.

Definition 3. Equilibrium in the fund market, provided the public knowledge of
the informational characteristics of all the agents, is given by the optimal delegation
quantities γmm

′
({km′}) and a collection of fees {km′}, which constitute a pure strategy

Nash equilibrium for the continuum of managers m′ ∈ (0, 1). Each fee is optimal in
the sense of (1.37).

We make no a priori assumptions about the set of fees km. In the case of publicly
known signal precisions the only a priori restriction on the fees appears for the
uninformed agents, who will not be able to attract demand for their funds at a
positive fee. Instead, they might become managers with nonzero fee in the cases when
the individual precisions are not publicly known, limiting fund investors, unable to
discriminate among individual managers, to use symmetric delegation strategies.

1.4 Equilibrium in the asset market

To find the general equilibrium we work the problem backwards, starting from date
1. Assuming a given delegation quantities γmm

′
, we find the partial equilibrium at
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the asset trading stage and give the expressions for the optimal own-account portfolio
of investor m and the market clearing prices P as a function of exogenously given
delegation quantities.

1.4.1 The structure of the expected utility

As we argued above, the problem of investing in funds could be reformulated as
a problem of selecting a delegation exposure Nm that gives the highest implied
conditional precision. The notion of implied conditional precision Gm was introduced
in definition 1; it plays a role of the agent’s inverse conditional variance of the
payoff component θ given the private signal, and the signal indirectly possessed via
delegation.

Proposition 4. The implied conditional precision Gm of agent m who invests in a
fund allocation γmm

′
satisfying the diversification constraint (1.28) is given by the

following expression:
Gm = V −1

m + 2Nm −NmVDN
m (1.38)

where V −1
m is the conditional precision of the agent in the absence of delegation, Nm

is the delegation exposure of agent m, given by (1.22), and VD is the variance matrix
of the residual uncertainty component of the risky asset payoffs.

The proof of the proposition is in appendix 1.9. Q.E.D.
Proposition 4 holds for any fund allocation γmm

′
, not necessarily for the opti-

mal one. In particular, when agent m does not delegate (γmm
′

= 0), the implied
conditional precision is the same as the inverse conditional covariance V −1

m .
It is obvious from proposition 4 that the effect of delegation on the implied

conditional precision, and, consequently, on the agent’s utility is not monotone in
the presence of residual uncertainty VD > 0. Intuitively, the effect of delegation
can be understood as a sum of a benefit and a penalty. The benefit, equal to the
additional term 2Nm > 0, increases the precision due to access to the manager’s
signals, while the penalty −NmVDNm comes from the fact that, in order to obtain an
additional benefit from the information contained in the signals, one has to increase
the exposure to risky assets, and hence assume a greater exposure to the residual risk
εD. This means that in the presence of residual uncertainty the optimal delegation
exposure Nm will be finite, and the utility has a satiation point. It is also obvious
that at the optimum det(Gm) ≥ det(V −1

m ): the optimal amount of delegation should
always improve precision.

To make the meaning of the implied precision even more straightforward, recall
that investment in funds is a form of information sharing (Admati and Pfleiderer
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(1988, 1990)). Investment in funds enlarges the agent’s information set, as would do
a direct acquisition of the signal. As a result, the precision of the agent improves the
following sense. The agent’s exposure to the risky assets when delegating optimally
would be identical to that of a person who observes the signal within the fund and
hence updates the conditional precision to Gm.

The structure of the implied precision (1.38) provides an insight about the de-
mand in the fund market. Given that the effect of delegation is that of improving
the agent’s precision, the demand for funds will exist as long as an additional share
of a fund improves the implied conditional precision Gm. One then should expect
the demand for funds to be potentially unlimited in the absence of residual uncer-
tainty, because the implied precision is unbounded from above. In the presence of
the residual uncertainty the demand for funds will exhibit a satiation point because
of the penalty term −NmVDNm.

Note also, that the implied conditional precision Gm is superior to the own con-
ditional precision of agents V −1

m , even if all agents have the same signal precision
to begin with. The boost in the individual conditional precision due to delegation
comes not from an exposure to more precise signals, but from aggregating the signals
of the funds in which the agent invests. Thus, even if all private signals in the econ-
omy have the same precision, the aggregated signal has much higher precision. The
only exception is the case when no complementarity among signals exist, as when all
agents have the same signal error. This is the case in the models of Grossman and
Stiglitz (1980) and Garleanu and Pedersen (2018).

Before deriving the expected utility at the asset trading stage we introduce several
useful notations. Let’s denote by tm the expected exposure of agent m to the risky
assets. This exposure is composed of the own-account portfolio and the expected
risky exposure of the fund allocation:

tm = xm +

∫
γmm

′
Em′dm

′xu0 +Nm(θmc − PR) (1.39)

where θmc is the vector of the expected payoff of assets conditional on the information
set of investor m (1.12), and Nm, given by formula (1.22), defines the risky exposure
due to delegation.

For conveniency, we also introduce the following notations:

Lm = 1−NmVD, (1.40)

I =

∫
e−

1
2

(θ−θmc )V −1
m (θ−θmc )dθ (1.41)
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J(Gm) =

∫
e−

1
2

(θ−θmc )Gm(θ−θmc )dθ (1.42)

Note that quantities Gm, Lm, and J(Gm) depend on the delegation quantities
γmm

′
through the delegation exposure matrix Nm. In the limit of no delegation

there is no risky exposure (Nm = 0), the implied conditional precision Gm = V −1
m ,

Lm = 1 and J(Gm) = I.

Proposition 5. Assuming perfect knowledge of agents’ precisions, the conditional
expected utility of final wealth (1.20) of an agent m who has delegated fixed quantities
γmm

′
is given by:

log(−E(U | sm, P )) = log(
I

J(Gm)
) +

1

2
ρ2tmVDt

m − ρtm(θmc − PR) + (1.43)

+
ρ2

2
(tmLTm + (θmc − PR)Nm)G−1

m (Lmt
m +Nm(θmc − PR))

The proof of the proposition is obtained by direct calculation of conditional ex-
pectations (see appendix 1.9 for details). Q.E.D.

In the limit of no delegation the expected utility (1.43) reduces to the familiar
mean-variance form:

log(−E(U | sm, P ))γ=0 =
ρ2

2
xm(VD + Vm)xm − ρxm(θmc − PR) (1.44)

To get more insight on how delegation affects the expected utility, let’s consider
the case of no residual uncertainty. In this case Lm = 1, and the matrix Gm simplifies
to Gm(VD = 0) = V −1

m + 2Nm. The expression (1.43) becomes:

log(−E(U | sm, P ))VD=0 = log(
I

J(Gm)
)− ρx̃m(θmc − PR) + (1.45)

+
ρ2

2
(x̃m + (θmc − PR)Nm)G−1

m (x̃m +Nm(θmc − PR))

Note, that the structure of the logarithm of the expected utility (1.45) is quadratic
in the asset demand x̃m, similar to the quadratic structure of the mean-variance
utility (1.44). Matrix Gm plays in (1.45) the role similar to that of conditional
precision of asset payoffs V −1

m plays in (1.44).
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1.4.2 Optimal own-account portfolios

Proposition 6. Given the exogenous delegation quantities γmm
′
, an asset trading

equilibrium exists. Optimal own account risky portfolios have the structure:

xm =
1

ρ
(VD + LTmG

−1
m Lm)−1LmG

−1
m V −1

m (θmc − PR)−
∫
γmm

′
Em′dm

′xu0 (1.46)

The market clearing price coefficients (A0, A1, A2) are given by a solution to the
following system of algebraic equations:

A−1
2 A1 =

γ

ρ
I3 − A−1

2 A1I4 (1.47)

R

ρ
(I3 + I1(V −1 + A1A

−1
2 U−1A−1

2 A1) +
ρ

1 + γ
A−1

2 A1I2)A2 =

= 1 +
1

ρ
I1VDA1A

−1
2 U−1 − A1A

−1
2

1 + γ
I2A1A

−1
2 U−1 (1.48)

R

ρ
(I3 + I1(V −1 + A1A

−1
2 U−1A−1

2 A1) +
ρ

1 + γ
A−1

2 A1I2)A0 =

= (
1

ρ
I1 −

A1A
−1
2

1 + γ
I2VD)(V −1θ̄ + A1A

−1
2 U−1z̄) (1.49)

The integrals definition is:

I1 =

∫ 1

0

(1 + V −1
m VD)−1dm

I2 =

∫ 1

0

γm(1 + VDV
−1
m )−1dm (1.50)

I3 =

∫ 1

0

(1 + V −1
m VD)−1Σ−1

m dm

I4 =

∫ 1

0

γm(1 + VDV
−1
m )−1Σ−1

m dm

The proof of the proposition follows from the straightforward maximization of
(1.43) and substituting the expression for optimal portfolios (1.46) into the market
clearing condition (see the appendix (1.10) for details). Q.E.D.

Conditions (1.48) and (1.49) are solved easily if the solution for the (1.47) is
available. Yet, since the integrals I1,I2, I3 and I4 depend non-linearly on A−1

2 A1, the
closed solution is not possible. The integrals depend on A−1

2 A1 via the conditional
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precision V −1
m defined by (1.11). Note, that if VD = 0 the integrals do not depend on

the price parameters anymore and the equilibrium solution A−1
2 A1 =

∫ 1

0
Σ−1
m dm = Q

follows.

Closed-form expressions are possible to obtain in a special case when VD = 0.
Then the integrals (I1, I2, I3, I4) do not depend on the price parameters anymore and

the solution A−1
2 A1 =

∫ 1

0
Σ−1
m dm = Q follows. In this case prices depend only on the

aggregate delegation quantities γ =
∫ ∫

γmm
′
dmdm′. In appendix 1.11 we provide

the exact expressions that allow one to study the behavior of the coefficients of prices
as functions of γ.

Delegation affects the own-account risky portfolios in two ways. First, a com-
pensating term −

∫
γmm

′
Em′dm

′xu0 is added to offset the risky exposure of the funds
that is unrelated to the managers’ private signals. What might seem as a pure tech-
nicality, the possibility to offload uninformed risky exposure has a profound effect on
the equilibrium in the fund market. It allows investors to get a larger exposure to
the funds, and makes it optimal to fully diversify away the signal risk. Without the
possibility to trade on the own account when delegating, as in Ross (2005), investors
limit their exposure to the funds by the amount of uninformed risk they are able
to tolerate. Indeed, in Ross (2005) investors have to limit their fund allocation by
investing in the funds of the most precise managers, because these allow to get a
higher exposure to the private signals per unit of uninformed exposure. As a conse-
quence, in the model of ?? some residual signal risk remained in the fund allocations
and the funds of less precise managers were not viable. In our model investors are
not deterred by the uninformed risk they take on when investing in fund portfolios,
because they can always offset it using the own-account trading.

If one would redefine the fund structure 1.14 and eliminate the uninformed ex-
posure of the fund portfolios entirely, it would not alter the equilibrium. The only
effect of the redefinition of the fund structure would be a disappearance of the offset
term from the own-account investing. No material quantity defining the asset and
fund markets, such as the demand for delegation, or the equilibrium prices, would
be affected. If anything, redefining the fund portfolio by allowing only a signal-
related part would make the act of selling private information more straightforward.
However, after eliminating the uninformed part from the fund portfolio (the part
proportional to xu0), the portfolio will not be optimal conditional on the manager’s
information set. The suboptimality of the fund portfolio would be at odds with the
common belief that a fund manager should deliver an optimal portfolio. Such obli-
gation makes no sense in our model: the true mission of the manager is not to deliver
an efficient portfolio to investors, but to faithfully reflect his unique private signal
in the fund. Indeed, in the model of Admati and Pfleiderer (1988), who pioneered
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the concept of indirect sale of information via funds, fund portfolios were simply
proportional to the signal xm0 = sm.

The second way in which the own account portfolios are modified by delegation
relates to trading on the agent’s own signal. The first term in (1.46) represents a bet
on an agent’s private signal. When the agent invests in funds, this bet gets smaller,
but does not necessarily vanish. It is easy to see that there exists a special case
of delegation exposure, corresponding to the choice of γmm

′
such that Nm = 1

ρ
V −1
D ,

implying Lm = 0, when the own account portfolio is not sensitive anymore to the
private signal sm. Such delegation exposure is optimal, for example, if the fund fees
are negligible. It is easy to see that this choice of delegation quantities leads to
aggregation of the full private information. In such a case prices P become sufficient
statistic for the pair (sm, P ). Indeed, if this is the case, it follows from (1.43) that
the expected risky exposure x̃ disappears from the expectation and the optimum is
simply:

x̃m = V −1
D (θuc − PR) (1.51)

From the definition of x̃m it follows that in this case:

xm = −
∫
γmm

′
Em′dm

′xu0 (1.52)

the own-account portfolio is insensitive to the agent’s own private signal. The market
clearing price in this case is found from:

−
∫
xmdm+ V −1

D (θ − PR) +

∫
γmm

′
Em′dm

′xu0 = z

which implies:

P =
1

R
θ − ρ

R
VDz (1.53)

The market-clearing price here is exactly the same as one would obtain if the dividend
component θ is publicly known and the dividend D has probability distribution
with the mean θ and the variance VD. In such a case the full information about
the realization of θ is aggregated in the individual risky allocations without the
information being publicly revealed.

1.4.3 Aggregation of private information

The discussion in the previous section brings us to the important interpretation of
delegation as a mechanism that amplifies information aggregation in asset markets.
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Considering funds as vehicles to share private information, as pointed in Admati and
Pfleiderer (1988); Ross (2005); Garcia and Vanden (2009), it is immediately clear that
investing in funds will aggregate and incorporate in the prices more information than
does the own-account trading alone.

The observation of the increase in the informativeness of prices, and, consequently,
the decrease in the equity premium as a result of delegation, was a consistent find-
ing across a wide array of delegation models. It was reported in the literature on
performance-based contracts in asset management (see, for example, Kapur and Tim-
mermann (2005); Basak and Pavlova (2013)), as well as in the models of delegation
with rational expectations and information acquisition (for example, Ross (2005);
Garcia and Vanden (2009); Garleanu and Pedersen (2018)).

The explanations of the phenomenon of increased informational efficiency due to
delegation vary depending on the assumptions of individual models. In many cases
the increased information quality in the market was explained by the replacement
of less informed investors by more informed managers. In some cases the increase in
the price informativeness followed from the increase in the incentives for information
acquisition, in particular because in the presence of delegation information generates
additional profits in the form of fund fees.

We give here an alternative explanation of the phenomenon. In our model the
main channel responsible for the increase in the price informativeness is related to the
increase in the aggregate risk-bearing capacity of agents due to delegation. Indeed,
in our model the total amount of private information is fixed, all agents become
managers, and everybody is free to trade in asset markets. Thus prices could not
become more informative due to an external supply of additional information, or
because the low-precision agents stop trading. Rather, we explain the increase in
the price informativeness by the fact that each signal gets transmitted to the asset
market with greater trading intensity. Because of the trading in fund portfolios,
the total amount of trading according to each private signal is much greater than
the own-account bet by the signal owner, which is limited by the individual risk
aversion. Moreover, due to the aggregation of private information, an individual
agent has much higher implied precision and is able to tolerate larger exposure to
risky assets. Hence the total exposure to the individual signal is larger than it would
be without delegation.

We will continue the discussion on the full revelation of private information in
the next section where we will derive additional conditions that should be satisfied
for the delegation to be able to aggregate fully the private information. For now, we
only note that, if these conditions are not met, agents will always continue to trade
on their own signals, irrespective of the amount they delegate.
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1.4.4 The derived utility

Before turning to equilibrium in the fund market, we provide the form of the derived
utility that agents use at the date 0.

Proposition 7. At the delegation stage the agent’s derived utility (that is, the ex-
ante utility at date 0 taking into account the optimal own-account trading decision
at date 1) has the following form:

Um = −
√

det(G−1
m )

Im
e−ρ(θmc −PR)Mm(θmc −PR)+ρ

∫
km
′
γmm

′
dm′−ρkm

∫ 1
0 γ

m′mdm′ (1.54)

where Gm is given by (1.38), and Mm does not depend on the delegation quantities
γmm

′
:

Mm = V −1
m + V −1

D (1.55)

The proposition is derived by substituting the expression for the optimal own-
account portfolio (1.46) into the expected utility given by expression (1.43) and
adding the terms corresponding to the fund fees paid and received. Q.E.D.

A remarkable feature of the derived utility is that the benefits of delegation
for agent m are fully defined by the matrix Gm, which has an interpretation of
implied conditional precision. Recall, that all the expressions relative to delegation
are derived using the assumption of complete diversification of signal risk (1.28).
Hence the derived utility (1.54) does not contain the explicit trade-off between the
reduction of the signal risk and the cost of adding an additional unit of a fund.
The complementarity of different funds is rather embedded in the condition of non-
negativity and finiteness of the delegation quantities γmm

′
. Thus, as the delegation

stage, except in some special cases, one has to perform a constrained maximization
of the derived utility function, because an unconstrained optimization will not reflect
the variety-loving preferences for funds.

1.5 Costless delegation and full aggregation of pri-

vate information

We now turn to the construction of equilibrium at the delegation stage. Before
considering the complete equilibrium, we solve a partial equilibrium problem where
fund fees are forced to be zero. It will allow us to introduce useful concepts and
notations, and get some important insights about the demand for delegation.
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1.5.1 Demand for delegation in case of zero fees

When there are no fund fees, the investor optimization problem can be solved by
computing a first-order condition from the derived utility function (1.54), because
the constraint of bounded and positive γmm

′
will be automatically satisfied. Since

there are only benefits and no costs to spreading the delegation across more funds,
any concentrated fund allocation would be suboptimal.

The problem of finding the optimal fund allocation in the case of zero fund fees
simplifies to:

maxdet(Gm)γm
m′

= maxdetγmm′ (V
−1
m + 2ρNm − ρ2NmVDNm) (1.56)

The first order conditions with respect to the delegation quantities γmm
′

will have
the following structure:

−tr(G−1
m Om′Lm) = 0 (1.57)

where Om′ = dNm
dγm
m′

is given by (1.15), and Lm is defined by (1.40).

We state the following proposition:

Proposition 8. An optimal fund allocation, satisfying (1.57) can be obtained by
choosing the individual delegation quantities γmm

′
such as:

Nm =

∫ 1

0

γmm
′
Om′dm

′ =
1

ρ
V −1
D (1.58)

This allocation will be an optimum because all the entries of the matrix under the
trace in (1.57) will become zero and the condition will be satisfied. To demonstrate
the proposition we rely on the fact that, given infinitely many optimization variables
γm(m′), m′ ∈ [0, 1], one could find a function γ(m′) such that the k(k+1)/2 equalities
in (1.58) are satisfied1. Indeed, there might be many alternative configurations γ(m′)
that achieve this result.

A formal solution to (1.58) can be obtained in the form of a generalized inverse of
the matrix OmL where m is an index labelling investors, and L is the index counting
k(k+1)/2 entries of a symmetric matrix O for a fixed m. To rewrite (1.58) in matrix
notations, let’s call Γ a row of variables γ(m), and B a column formed from the
entries of the matrix 1

ρ
V −1
D (capital latin letters represent the index labelling all the

1The number of equalities follows from the fact that Nm is a symmetric matrix.
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distinct pairs (i,j) of a k-dimensional matrix). In these notations one can reformulate
(1.58) as:

Γm ·Om
L = BL (1.59)

The above is an underdetermined system of linear equations for the vector Γ. A
formal solution to (1.59) is given with the help of the generalized inverse of matrix
Om
L , denoted by O+ = (OTO)−1OT (the superscript T denotes a transposed matrix):

Γ = BT (OTO)−1OT + fT (I −OO+) (1.60)

where the second term is a member of the kernel of matrix O and vector function
f(m) is an arbitrary function.

Note, that we have already shown that the delegation solution (1.58) produces
an equilibrium in asset markets where the full private information is aggregated, and
where own-account portfolios do not contain private signals. It follows that when
delegation fees are forced to be zero, the fund market represents a mechanism that in
equilibrium allow to fully aggregate private information. Conversely, it is clear that
when nonzero fees are introduced, the information aggregation will remain partial,
because with the fees the demand for delegation will be lower.

The full revelation of private information could be also prevented by causes un-
related to the fees. Observing the structure of (1.58), it is clear that, as a system
of linear equations, it will be overspecified and admit no solution if matrices Om′ of
different managers are not diverse enough. For the solution to exist, one needs at
least n(n + 1)/2 distinct matrices Om′ . Let’s call a category of managers the set of
funds where every manager has the same precision of the private signal, and, as a
result, the same Om′ . If there happen to be too few categories of managers in the
economy, it is not possible to solve the system for arbitrary VD. The optimal delega-
tion quantities will be then determined by the first order condition (1.57), and the
resulting fund allocation will not lead to the full aggregation of private information.

In the next section we illustrate the solution concept in the case of a zero-fee
delegation when the asset market contains only one risky asset.

1.5.2 Delegation with zero fees in the case of one risky asset

In the case of one risky asset the solution to (1.60) is obtained by noting that index
L has just one possible value, so O is just a row vector:

Om = O(m) =
1

ρ

σ−2
m vm

vm + vD
, B =

1

ρ
v−1
D
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where v−1
m = σ−2

m + v−1
u , v−1

u is the inverse conditional variance of an uninformed
investor.

Let’s denote the constant:

H2 = (OTO) =
1

ρ2

∫ 1

0

v2
m′σ

−4
m′

(vm′ + vD)2
dm′

Then the generalized inverse O+ = (OTO)−1OT is a scalar function:

O+
m =

ρ

H2

vmσ
−2
m′

vm + vD

The solution (1.60) in the case of one risky asset is:

γmm
′
=

1

H2

vm′σ
−2
m′

vm′ + vD
v−1
D + f(m′)− 1

H2

(

∫ 1

0

f(n)
vnσ

−2
n

vn + vD
dn)

vm′σ
−2
m′

vm′+vD
(1.61)

Function f(m′) is arbitrary, and reflects the ambiguity of the solution. Every
investor is free to pick his own function fm(m′). If we assume that all investors
choose the same functional form of γ(m′), the amounts of delegation will not depend
on the delegating agent m. One possible fully aggregating equilibrium results if
agents demand identical fund allocations γmm

′
= γ(m′), irrespective of their own

signal precision.
In general, the solution (1.61) depends on the manager’s precision σ−1

m′ . Note,
however, that the function f can be always chosen such that the delegated amounts
γmm

′
become independent of the manager’s precisions:

γ(m′) = γ =
1

ρvD

1∫ 1

0
vnσ
−2
n

vm+vD
dn

The above particular solution can be obtained from the general solution above
by choosing w(m′) of the following form:

f(m′) =
1

vDH1

Assuming investors have sufficient information about the population distribution

of private precisions to evaluate the integral H1 =
∫ 1

0
vnσ
−2
n

vm+vD
dn, there is no need to

know individual precisions to extract the most value from delegation in the case of
one risky asset. Just delegating the same amount to each manager is enough to
achieve the optimal result. The fact that a simple average over the funds achieves
the first best result is quite remarkable, meaning no further improvements such as
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investment in learning precisions, would be justified in an economy with one risky
asset.

A similar conclusion, namely that the full aggregation of private information is
easy to achieve with just one source of ucertainty, occurs frequently in models of
information aggregation and social learning.2 Indeed, simple averaging across the
continuum of private signals will usually be enough to get rid of the signal risk.
With this in mind, one would rather have to explain why in some cases, namely for
asset markets with multiple risky assets, the private information could not be fully
aggregated by taking a simple average of funds.

1.5.3 Delegation with zero fees in the case of two risky assets

Assume there are two risky assets in the economy and that variance matrices V ,
VD and Σm are diagonal. Assume also, that the economy has two possible precision
categories: Σ−1

A and Σ−1
B . Agents m ∈ (0, 1−ω) belong to category A. We assume the

precision of category A to be a diagonal matrix Σ−1
A = σ−1

A 1. Agents m′ ∈ (1− ω, 1)
belong to category B, specializing exclusively in asset 2: (Σ−1

B )11 = 0. The funds
portfolios have mean-variance structure: xm = OA(Σ−1

A )(sm−PR) for m ∈ (0, 1−ω)
and xm = OB(Σ−1

B )(sm−PR) for m ∈ (0, 1−ω), where OA and OB are 2x2 diagonal
matrices. Note, that portfolios of the funds in the same category are not identical,
because the signal noise is individual for each fund.

Let’s denote by γA, γB the demands for shares of the funds of category A and B,
respectively. The solution to (1.58) in this case is:

ωγA =
1

ρOA11

V −1
D11, (1.62)

(1− ω)γB =
1

ρOB22

(V −1
D22 − V

−1
D11

OA22

OA11

) (1.63)

Because the delegation amount γB is not allowed to be negative, the full revelation
of private information in the economy is possible only if V −1

D22 > V −1
D11, i.e. if investors

of category B choose to specialize in the asset with a lower residual uncertainty.
This highlights the fact that the demand for funds does not depend exclusively on
the funds’ precisions OA(Σ−1

A ), OB(Σ−1
B ), as the amount of residual uncertainty in the

assets’ payoffs does also play an important role. High precision of a manager’s signal
does not necessarily motivate a large investment in his fund for two reasons. First,
a fund with high precision of signal invests more in the asset, so investor needs less

2I am grateful to Ignacio Monzon for pointing out this fact.
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shares of the fund to get a desired informed exposure to the asset. Second, an asset
with a good precision of the private information might be too risky to hold in large
amounts because of the residual uncertainty. Lastly, the demand for an individual
fund depends also on the mass of the funds in the category. More managers fall into
a category, less will be the individual amount of delegation to each of them.

The diversity of the precision matrices (which manager specializes in which asset)
and the relative residual uncertainty of the assets matter more for investors than the
magnitude of the precision of an individual manager. The relative irrelevance of fund
precisions is in agreement with the findings in the case of one risky asset considered
above, where it was possible to delegate optimally just by spreading the investment
equally across the managers.

The demand for delegation in the case of multiple risky assets has important
differences compared to the case of one risky asset. Even with a simple diagonal
structure of variances, the solution (1.60) does not always exist, and, as a result, a
fully aggregating fund allocation might not exist if the information structure is not
diverse enough.

1.6 Equilibrium in the delegation market

We have already mentioned that the derived utility function (1.54) does not charac-
terize the optimization problem of a fund investor completely, because we imposed a
constraint that delegation quantities γmm

′
should be nonnegative and bounded. To

handle the difficulty of dealing with an implicit constraint, we make a change of vari-
ables and split the problem into two tasks: finding an optimal delegation exposure
Nm, and then finding the quantities γmm

′
producing the optimal delegation exposure

at the lowest cost. We call this approach a two-step optimization procedure.

1.6.1 The two-step procedure

The solution procedure to the problem of fund investor (1.36) might be formulated,
noting that an investor cares not about the individual quantities γmm

′
, but about the

aggregate delegation exposure Nm and the total cost of delegation
∫ 1

0
km
′
γmm

′
dm′.

Therefore, the problem of finding the optimal fund allocation can be framed as a
two-step procedure, where the main decision variables are the components of the
delegation exposure Nm. The individual delegation densities γmm

′
are then found

from the requirement that the desired delegation exposure be achieved at the lowest
cost.
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Start with the investor optimization problem, which can be written as:

minγmm′ −
1

2
ln det(Gm) + ρ

∫ 1

0

km
′
γmm

′
dm′ (1.64)

The implied precision Gm depends on γmm
′

only through the integral Nm =∫
Om′γ

mm′dm′. In (1.60) we gave a general formula to reconstruct the individual
delegation quantities γmm

′
from the integral.

Adopting concatenated matrix notations, where capital latin labels L,K, .. denote
distinct pairs of indices (i, j), a matrix (Nm)ij becomes a vector (Nm)L for fixed m.
If the index m runs over the entire set of manager labels, NmL is a matrix. Similarly,
the collection of precision matrices Om

ij becomes a single matrix OmL. For any fixed

m, a quantity γmm
′

becomes a vector in infinite-dimensional space: Γm′ . For brevity
we use below the Einstein summation notations, when a summation is implied over
all the values of an index that is repeated twice in a single term. The definition of
the aggregate delegation exposure for a manager m in concatenated matrix notations
becomes:

Γm′Om′L = NL (1.65)

Here we omit the fixed manager label m, and do not write the symbol for inte-
gration, as it is implicitly assumed when indices m′ repeat.

The inversion of (1.65) gives:

Γm′ = NLO
+
Lm′ + fm′′(δm′′m′ −Om′′LO

+
Lm′) (1.66)

where fm′′ is an infinite-dimensional vector, and O+
Lm′ = (OTO)−1

LKO
T
Km′ is a gener-

alized inverse of matrix OLm′ . Any choice of fm′′ gives the same aggregate exposure
N , but in general at different cost:

Cost = Γm′k
m′ = NLO

+
Lm′k

m′ + fm
′′
(δm

′m′′ −O+
m′LO

T
Lm′′)km′ (1.67)

Below we outline the two-step procedure that fund investors might use in order
to solve the optimization problem:

1. Step 1: for every delegation exposure NL, find a form of the arbitrary function
fm′ that gives the lowest aggregate cost. This will give an expression for Γ as
a unique function of NL.

2. Step 2: insert the exact form of the individual delegation exposure found in
Step 1 into the investor’s optimization problem (1.64). Solve the optimization
problem using the components NL as decision variables.
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First, we give the solution to Step 1. Note that the matrix (δmm
′ − O+

mLO
T
Lm′)

is a symmetric matrix. Thus, if we choose fm′ = −ηkm′ , η > 0, the second term in
(1.66) will be strictly negative, represenitng a negative adjustment to the aggregate
delegation cost. The scaling factor η is to be fixed such that all individual delegation
quantities are nonnegative.

The minimal cost Γ is then given by:

Γminm′ = NLO
+
Lm′ − ηk

m′′(δm
′′m′ −Om′′LO

+
Lm′) (1.68)

Second, we can perform Step 2. Using the minimum cost individual delegation
quantities (1.68), the investor’s optimization problem (1.64) can be written as:

minNL − 1

2
ln det(Gm) + ρkm

′
O+
m′LN

m
L − ρηkm

′
(δm

′m′′ −O+
mLO

T
Lm′′)k

m′′ (1.69)

To find the optimal exposure Nm∗
L , let’s write and solve the first-order conditions

for the problem (1.69). We introduce the following definition:

Definition 4. Average precision-weighted cost ΩL represents an average fee weighted
by the generalized inverse of the managers’ precisions O+

m′L:

ΩL =
∂

∂NmL

(ρ

∫
km
′
O+
m′LNmL)dm′ = ρ

∫
km
′
O+
m′Ldm

′ (1.70)

Going back from concatenated matrix notations to ordinary matrix notations,
ΩL = Ωij is a N × N matrix. It has a complex dependence on precisions, but,
importantly, it does not depend on the delegation quantities γmm

′
and thus on the

delegation exposure Nm.
Now we are able to write down the full expression for the first order conditions

of the problem (1.69). In ordinary matrix notations it reads:

−ρ(G−1
m )T +

ρ2

2
(VDNmG

−1
m )T +

ρ2

2
(G−1

m NmV
D)T + Ω = 0 (1.71)

One can conveniently rewrite the above condition via matrix Lm, defined in (1.40).
Note, that since Gm is a symmetric matrix, we used (G−1)T = G−1:

−ρ
2

(G−1)TL− ρ

2
LT (G−1)T + Ω = 0 (1.72)

A solution to the investor’s optimal delegation problem is given by the following
proposition.
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Proposition 9. Optimal delegation exposure of investor m is given by the following
conditions:

N∗m =
1

ρ
V −1
D (1− 1

ρ
ΩG∗m) (1.73)

where optimal implied precision G∗m satisfies the following matrix equation:

Gm = V −1
m + V −1

D − 1

ρ2
GmΩV −1

D ΩGm (1.74)

To derive the proposition, one notes that a formal solution to the first order
condition (1.72) is given by:

Lm =
1

ρ
ΩGm (1.75)

Then, using the definitions (1.38) and (1.40) one can represent Gm in terms of Lm
as:

Gm = V −1
m + V −1

D − LTmV −1
D Lm (1.76)

Substituting (1.75) into (1.76) one gets the nonlinear matrix equation for (1.74).

The optimal delegation exposure (1.73) can be obtained easily by inverting (1.40)
that satisfies (1.75). Q.E.D

Proposition 9 shows that optimal delegation exposure N∗m and implied precision
G∗m decrease when delegation fees increase. The full aggregation of private informa-
tion is possible only if Ω = 0, which implies Lm = 0 and corresponds to the no-fees
solution (1.58).

The condition (1.74) is a quadratic matrix equation, known as the Algebraic
Riccati Equation (ARE). We solve it using the standard technique, as outlined, for
example, in Kucera (1973). Before deriving a general form of the solution we specify
two useful limits where the solution to (1.74) can be obtained immediately.

1. Ω = 0, which corresponds to zero fund fees. As was shown above, it results in
the full aggregation of private information. Here the (1.73) and (1.74) admit a
trivial solution:

G∗m = V −1
m + V −1

D , N∗m =
1

ρ
V −1
D (1.77)
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2. VD = 0, which corresponds to zero residual uncertainty. The solution is ob-
tained trivially from (1.74) by noting that VD = 0 implies L = 1, and thus:

G∗m = ρΩ−1, N∗m =
1

2
Ω−1 − 1

2ρ
V −1
m (1.78)

Note, that the implied conditional precision G∗m is bounded when delegation
fees are nonzero, because the delegation exposure Nm∗ becomes bounded in the
presence of fees. It is easy to see from (1.78) that agents with high conditional
precision V −1

m > ρΩ−1 will not invest in funds. For these agents the fund fees
are too high and outweigh the benefits of delegation.

An ARE equation may possess a variety of solutions, including no solution and
infinitely many solutions. Under certain regularity conditions for matrices VD,Ω, Vm,
a solution can be shown to exist. Since a nonlinear equation (1.74) admits in general
several solutions, we would be interested in those compatible with the limiting cases
considered above.

A general solution to equation (1.74) is given in the following proposition.

Proposition 10. The optimal implied precision G∗m has the following form:

G∗m = Y D̃−1Y −1(V −1
m + V −1

D ) (1.79)

where D̃ is a diagonal matrix containing eigenvalues of the Hamiltonian M of di-
mension (2n × 2n):

M =

[
−1

2
1 − 1

ρ2
ΩV −1

D Ω

V −1
m + V −1

D −1
2
1

]
(1.80)

And Y is a matrix the columns of which are the lower parts of the eigenvectors of
matrix M:

Mai = λiai, i = 1, .., 2n

ai =

[
xi
yi

]
The above structure of matrix M implies that the eigenvalues λ will have the

structure:

λ±i = ±
√

1

4
+ ξi, i = 1, .., n (1.81)

where ξ = λ2 − 1
4
, are the eigenvalues of (n × n) matrix H:

H = ΩV −1
D Ω(V −1

m + V −1
D ) (1.82)
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Proof of proposition is given in appendix 1.12. Q.E.D.
In the following sections we illustrate the solution to (1.73) and (1.74) in the case

of one risky asset and two risky assets.

1.6.2 Optimal delegation demand with one risky asset

Here we apply the general solution procedure outlined in proposition 1.12 in the
simplest case of one risky asset. For one risky asset, the determinant in (1.69) can
be omitted, and the concatenated matrix notation coincides with the regular matrix
notation. Thus, one can solve the problem directly, without applying the solution
technique of the matrix Riccati equation. Still, for the sake of exercise, we follow the
matrix procedure to derive the solution.

Let’s denote the one-dimensional matrix G by g . Similarly, denote by small latin
and greek letters the other variables: b stands for B, q stands for Q, ω for Ω, vD for
VD. By definition:

b2 =
ω2

vDρ2
, q =

1

vm
+

1

vD
The matrix M for one risky asset has the form:

M =

[
−1

2
−b2

−q 1
2

]
The characteristic equation −(1

4
− λ2)− b2q = 0 gives the solution:

λ± = ±
√
b2q +

1

4
(1.83)

The general solution for g, according to (1.133) is:

g∗ = q(
1

2
− λ−)−1 =

q

1
2

+
√
b2q + 1

4

(1.84)

Rewriting explicitly b and q in terms of vD, ω and vm gives:

g∗ =
v−1
m + v−1

D

1
2

+
√

ω2

ρ2
v−1
D (v−1

m + v−1
D ) + 1

4

(1.85)

The optimal solution for delegation exposure n∗ is:

n∗ =
1− 1

ρ
ωg∗

vDρ
=

1

ρvD
− ω(v−1

m + v−1
D )

ρ2vD(1
2

+
√

ω2

ρ2
v−1
D (v−1

m + v−1
D ) + 1

4
)

(1.86)
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The two limits discussed above give:

vD = 0 → g∗m = ρω−1, n∗m =
1

2ρω
− 1

2ρvm

ω = 0 → g∗m = (v−1
m + v−1

D ), n∗m =
1

ρ
v−1
D

The second limit (ω = 0) was already discussed above in detail. We discuss now
the optimal solutions for the first limit (vD = 0). With no residual uncertainty,
the optimal matrix g∗m = ρω−1 is the same for all agents who choose to delegate,
irrespective of their own signal precisions. The delegation exposure n∗m, however, is
not the same for different agents and depends on the agent’s own precision via v−1

m .
Agents with higher precision delegate less. An agent with a precision σ−1 will stop
delegating if the cost variable ω is equal to ω = 1

2
vm = 1

2
(vu + σ). Hence for any

given ω, only a portion of agents with the precisions smaller than σmax = 2ω − vu
will invest in funds.

The total delegation exposure over the continuum of agents is:∫ 1

0

n∗mdm =
1

ρ
(1− 1

ρ
ω

∫ 1

0

g∗mdm)v−1
D

The solution in terms of individual delegation quantities in a market with one
risky asset is obtained from (1.68) as:

γmm
′
=

n∗mom′∫ 1

0
o2
m′dm

′
− η

∫ 1

0

km
′′

(
δm
′′m′ − om′′om′∫ 1

0
o2
m′′dm

′′

)
dm′′ (1.87)

Or, using the definition of ω (1.70), one can rewrite the delegation quantities as:

γmm
′
=

(n∗m + η
ρ
ω
∫ 1

0
o2
m′′dm

′′)om′∫ 1

0
o2
m′dm

′
− ηkm′ (1.88)

The (1.70) for one risky asset simplifies to:

ω = ρ

∫ 1

0
km
′
om′dm

′∫ 1

0
o2
m′dm

′
(1.89)

The optimal delegation quantities γmm
′

grow with the manager’s precision om
′

and
the depend on delegation fees through the aggregate cost quantity ω, as well as
through the individual delegation fee km

′
. The coefficient η determines the level of
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penalty that investors impose on managers who quote fees higher than the average
(or, more precisely, higher than the precision-weighted average). The penalty pa-
rameter has a special role in shaping the competition between managers. Indeed,
when η = 0 the demand for funds is not sensitive to individual fees, providing man-
agers with unbounded incentives to increase individual fees. With a penalty η 6= 0,
the demand is comprised of an inelastic term and a term sensitive to the individual
fee, providing a balance between the incentive to increase the fee to profit from the
inelastic part of the demand and to lower the fee to mitigate the penalty.

1.6.3 The equilibrium fee structure

One can easily solve the manager’s problem of finding optimal fee km (1.37), given
the general form of the investor’s optimal delegation quantities (1.68). The problem
becomes:

maxkm km
∫
Nm′

L dm′O+
Lm − ηk

2
m + η

∫
km
′
Om′LO +Lm dm

′km (1.90)

Note, that Nm′
L depends on the fees only through the aggregates, and thus is not

sensitive to an individual fee km.
The first order condition gives:∫

Nm′

L dm′O+
Lm − 2ηkm + η

∫
km
′
Om′LO

+
Lmdm

′ = 0 (1.91)

It gives a linear equation for km, which admits the following solution:

km∗ =
1

2η

∫ 1

0

(Nm′

L + ηkm
′
Om′L)dm′O+

Lm (1.92)

Expression (1.92) represents the condition for the Nash equilibrium, as the optimal
fee of manager m depends on the average fee of other managers. The optimal fees
are proportional to the generalized inverse of the manager’s precision matrix: km∗ =
aLO

+
Lm. Note that the scaling coefficient aL = 1

2η

∫ 1

0
(Nm′

L +ηkm
′
Om′L)dm′ is the same

for all managers.
The fee structure (1.92) exhibits a strategic complementarity in the managers’

pricing decisions: the higher the average precision-weighted fee Ω, the higher is the
fee an individual managers demands. Conversely, higher individual fees km drive
up the average precision-weighted fee Ω. The fees will grow exponentially, however,
because the demand is reduced when the aggregate fee gets higher.
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To find the equilibrium, we have to derive the equilibrium condition for the
precision-weighted average cost:

aL = ρ

∫ 1

0

kmOmLdm (1.93)

Proposition 11. In equilibrium the average precision-weighted fee is proportional to
the aggregate delegation exposure:

a∗L =
ρ

η

∫ 1

0

N∗m
′

L dm′ (1.94)

To derive the proposition, we multiply both sides of (1.92) by Om and integrate
over m. Q.E.D.

Substituting the solution for N∗ (1.73, 1.133) into (1.94), we derive the explicit
condition on aL that one has to solve in order to obtain the equilibrium:

a∗L =
1

η
(V −1

D − 1

ρ
V −1
D Ω(a)

∫ 1

0

Y D̃−1(a)Y −1(V −1
u + Σ−1

m′ + V −1
D )dm′) (1.95)

The terms Ω and D̃ depend on aL. While the dependence of Ω(a) is linear ΩL =
(OTO)−1

LKaK , the diagonal matrix D̃(a) depends on the aggregate fee in a nonlinear
way, as the components of the matrix are functions of eigenvalues. In what follows,
we will solve (1.94) explicitly in some dimensions, but cannot provide a general
closed-form solution.

One important qualitative result that follows from (1.94) is the existence of
nonzero delegation fees in equilibrium. Indeed, the only way to get zero fees is
to drive the aggregate delegation exposure

∫
N∗mdm to zero, which means that all

agents stop delegating. In order to investigate the properties of the equilibrium quan-
tities and their dependence on the economy parameters, we derive explicit solutions
for the economies with one risky asset and two risky assets.

1.6.4 Equilibrium fees in the case of one risky asset

In the case of one risky asset we use small letters instead of capital letters to represent
matrices: om for Om, ω for Ω, ecc.. The precision-weighted average cost is denoted
as a = ρ

∫ 1

0
km
′
om′dm

′ and is a scalar. Thus we have:

ω =
a∫ 1

0
o2
m′dm

′
, km

′
=

aom′

ρ
∫ 1

0
o2
m′′dm

′′
=

1

2η

∫ 1

0

(nm
′′

+ ηkm
′′
om′′)dm

′ om′∫ 1

0
o2
m′′dm

′′
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The condition (1.94), using the solution (1.85) becomes:

a =
1

η
v−1
D −

1

ρη
v−1
D

a∫ 1

0
o2
m′dm

′

∫ 1

0

v−1
u + σ−1

m′ + v−1
D

1
2

+
√

a2

ρ2
(
∫ 1

0
o2
m′′dm

′′)−2v−1
D (v−1

u + σ−1
m′ + v−1

D ) + 1
4

dm′

(1.96)
To solve (1.96) one needs to specify a distribution of the precisions in the economy.

Below we will consider two cases:

1. Uniform precisions: σm = σ, and

2. Heterogeneous precisions distributed uniformly between σmin and σmax.

Constant precisions

Start with the first case. In the case of constant precisions equation (1.96) can
be reduced to a cubic equation:

−η
2

ρ
vDa

3 + 2
η

ρ
a2 + (

v−1
u + σ−1

ρ
+ o2ηvD)a− o2 = 0 (1.97)

The easiest way to derive (1.97), is to use the definition g = v−1
m + 2ρn− ρ2n2vD

instead of g∗ = w
v−1
u +σ−1+v−1

D

1
2

+

√
a2

ρ2
o−4v−1

D (v−1
u +σ−1+v−1

D )+ 1
4

, and substitute a for η
ρ
n. where variable

o can be expressed via vD, σ, vu as:

o =
1

ρ

v−1
D σ−1

v−1
D + v−1

u + σ−1
=

1

ρ

(v−1
u + σ−1)−1σ−1

(v−1
u + σ−1)−1 + vD

We are interested in the behavior of a as a function of (vD, σ, η, vu). Since the explicit
form of the cubic roots of (1.97) is quite complicated, we start by deriving an explicit
form of a∗ in the case of vD = 0, and then present a graphical analysis of the numeric
solution in the case of vD 6= 0.

For vD = 0, equation (1.97) reduces to a quadratic equation for a, the solution
to which reads:

a∗(vD = 0) =
1

4η
v−1
m

(√
1 +

8

ρ
σ−2ηv2

m − 1

)
(1.98)

where we used the expression o = 1
2
σ−1.
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The solution (1.98) shows that, as expected, the average fee a is nonzero when
the penalty coefficient η > 0 is introduced. Thus price competition among managers
does not lead to the Bertrand result when a penalty is imposed by investors. When
there is no penalty, the inelastic demand for individual funds would lead managers to
bid up the fees up to a point where the total delegation exposure will be zero n∗ = 0.
Such behaviour happens when η = 0. When the penalty is introduced, the managers
increasing their fees above the average have to balance the benefit from the increase
of the fee with the loss from the penalty. Conversely, if the average fee happens to
be too high, there is a marginal incentive for managers to lower fees to earn some
income from the penalty term, up to a point when it balances exactly the loss from
the inelastic part of the demand. The optimal delegation exposure in equilibrium is:

n∗ =
1

4ρ
v−1
m

(√
1 +

8

ρ
σ−2ηv2

m − 1

)
(1.99)

Out of the equilibrium the cost that investor m has to pay for delegation has the
following form:

Inv. costm =

∫ 1

0

γmm
′
km
′
dm′ = n∗k̄o− η(

∫ 1

0

k2
m′dm

′ − k̄)2 (1.100)

The penalty (η > 0) allows investors to reduce the total cost of delegating by the
quantity proportional to the dispersion of fees across managers. Yet, as can be seen
from substituting the equilibrium expressions for n∗ and km = k̄ = a

ρo
, the penalty

term disappears in equilibrium, and the cost expression becomes:

Inv. costm =
1

2ρ
− v−2

m

8ησ−2

(√
1 +

8

ρ
σ−2ηv2

m − 1

)
(1.101)

Let’s plot the average fee, the total delegation exposure n∗, and the total cost in-
vestors have to pay for different values of η to appreciate the impact of the penalty
on these quantities.
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Figure 1.2: Effect of the penalty on delegation in equilibrium.
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As is evident from Fig.1.2, the penalty coefficient η plays an important role in
equilibrium. There are two limiting cases: η = 0 and η = ∞. When η = 0 (no
penalty), the demand for the funds is inelastic in individual fees, and managers
increase the fees to a point where delegation becomes too expensive for investors.
As is the case in the tragedy of the commons, individual incentives do not take into
account the aggregate effect of the fees on the demand. In the other limiting case,
η → ∞, the demand for individual funds becomes infinitely elastic with respect to
the changes in the fund’s fee. As a result, a perfect competition ensues and the
equilibrium fee goes to zero. At the same time, the delegation exposure goes to
infinity, consistent with the no-fee demand derived earlier. The equilibrium reveals
fully the private information. (Yet, a difference exists with the no-fee case. The total
fee that investors pay managers is nonzero even for infinite demand for funds. Hence
managers capture some value from selling funds. But the aggregate fee is finite and
is divided between an infinite number of managers.). For intermediate values of η
the penalty acts as an equilibrating force, preventing managers from increasing fees
excessively, but also allowing nonzero profits.

Investors have a clear incentive to increase the parameter η as much as possible.
Yet, it is obvious from (1.68) that large values of η would violate the constraint
of nonzero delegation quantities γ. In equilibrium, individual fees have a structure
that forces the penalty term in the demand for delegation (1.68) to vanish, so one
does not have to worry about γmm

′
going negative in equilibrium. Off equilibrium,

however, the application of a punishment with large η is not optimal for an investor,
as it might exclude from his delegating portfolio a substantial mass of funds, thus
not allowing to diversify the idiosyncratic signal error. As a consequence, the off-
equilibrium penalty strategy cannot be credibly implemented. Since in equilibrium
here is no mechanism to determine the optimal value η, its value will likely depend
on the initial dispersion of the fees in the economy, or on the investor’s expectations
of the dispersion.

Let’s examine the effect of other parameters (ρ, σ−1, and v−1
u ) on the equilibrium.

Below we plot the impact of risk aversion ρ on the equilibrium quantities:

48



Figure 1.3: Effect of the risk aversion on delegation in equilibrium.
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One sees from Fig.1.3 that high risk aversion suppresses delegation. Despite the
fact that the average fee is a decreasing function of risk aversion, investors delegate
less as their risk aversion grows. The reluctance to delegate at high risk aversion
creates a counterintuitive situation: risk averse investors could have benefited from
delegation at low fees; after all, when all idiosyncratic risk is gone, the gains from
delegation are surely positive. But highly risk averse investors are not willing to pay
for it. It seems controversial, because when there is no residual uncertainty (vD = 0)
one could use delegation to get exposure to the perfect signal without uncertainty,
so why does risk aversion still matter? In turns out that, even if all information
is aggregated in a delegation portfolio, there still remains an uncertainty about the
value of the future gain (or, better, of the future marginal gain), because investors
cannot observe the value of the signal. Thus they face a risk that the fee might be
higher than their future gain.

Finally, we discuss the dependence of the equilibrium on the variable σ−1, the
precision of the agents’ private information. The average fee and the delegation ex-
posure grow with σ−1 almost linearly (except for some small values of the precision).
Asymptotically, when σ−1 >> v−1

u , the equilibrium becomes:

avD=0 →
σ−1

4η
(

√
1 +

8η

ρ
− 1), nvD=0 →

σ−1

4ρ
(

√
1 +

8η

ρ
− 1)

The delegation cost grows even more quickly with the precision σ−1. Asymptot-
ically, σ−1 >> v−1

u , the cost grows as const ∗ σ−2. When the precision gets smaller,
the cost decreases, approaching zero when there is no private information.

Now, we look at the full solution of (1.97). We plot the equilibrium average fee a∗,
the equilibrium delegation exposure n∗ and the total cost of delegation for investors.
First, we fix the other variables and show the behavior of these quantities with vD,
and after compare the dependence on ρ, η and σ−1 for several values of vD.
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Figure 1.4: Effect of the residual uncertainty on delegation in equilibrium.

51



It is clear from the plots on Fig.1.4 that the presence of residual uncertainty
greatly reduces the levels of delegation. For a modest value of vD = 0.5, which is
comparable to other variance parameters vm and σ used to produce the plots, equi-
librium delegation exposure n∗ is only a fraction of the level it has when vD = 0. The
delegation cost reduction is even more drastic, it is from 3 to 6 times smaller than the
reference fee at vD = 0. Interestingly, a variation of the penalty parameter produces
significant changes in the delegation exposure and in the aggregate delegation cost,
but the differences become almost indistinguishable for the average fee. The sensi-
tivity of the delegation exposure to the fee ∂n

∂a
is large when vD, and in equilibrium

even small changes in the average fee produce large effect on the delegation demand.
So, when one varies η, it produces small changes in the average fee a , but much
larger changes in n and in the total delegation cost. As a consequence, even if the
average fee appears to be insensitive to the penalty parameter η in the presence of
aggregate uncertainty, there are still small differences that are manifested through
other delegation quantities.

Heterogeneous precisions

We examine now the case when precisions are heterogeneous and distributed uni-
formly within an interval σ−1

m ∈ [σ−1
min, σ

−1
max]. Without loss of generality, we assume

that σ−1
min = 0. Also, we assume that managers do not make inferences from prices,

and their portfolio structure om depends only on v−1 + σ−1
m . To simplify notations,

denote the precision σ−1 as x, and σ−1
max as xmax.

Using the optimal delegation exposure in 1 dimension (1.86), one can write the
equation for the average fee a as:

a =
ρ

η

∫ 1

0

n∗mdm =
ρ

η

∫ x(ω)

0

n∗m(x)dx (1.102)

Note, that we perform integration not up to xmax, but up to x(ω) = min(xmax,
ρ
ω
−

v−1
u ), taking into account the fact that each investor stops delegating when the ag-

gregate fee coefficient ω reaches a critical level for this investor. The higher the own
precision, the lower the critical fee. It is straightforward to derive a bound on the
precision from the identity n∗m = 0, yielding a solution ωcritical = ρvm.

After a straightforward integration the equilibrium condition becomes:

a =
ρ

η

∫ 1

0

n∗mdm =
x(ω)

ηvDxmax
+

ρ

2ωη

x(ω)

xmax
− (1.103)

− 2

3ηv
1/2
D xmax

(
v−1
D + v−1 +

ρ2vD
4ω2

)3/2
(1 +

x(ω)

v−1
u + v−1

D + ρ2vD
4ω2

)3/2

− 1


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It gives an equation for ω, provided that:

ω =
a∫ 1

0
o2
mdm

, x(ω) = min(xmax,
ρ

ω
− v−1

u )

where the constant
∫ 1

0
o2
mdm in the case of uniformly distributed precisions takes the

form: ∫ 1

0

o2
mdm =

1

ρ2v2
D

(
2 + z

1 + z
− 2

z
ln(1 + z)

)
(1.104)

with z = xmax
v−1
D +v−1 . The condition (1.104) is nonlinear. In the case vD = 0, it simplifies

to:

η

3ρ2
ω =

ρ
ω
− v−1

u

2x3
max

( ρ
ω
− v−1

u

)
, if

ρ

ω
− v−1

u < xmax (1.105)

η

3ρ2
ω =

xmax
2x3

max

( ρ
ω
− v−1

u

)
, if

ρ

ω
− v−1

u > xmax (1.106)

The condition (1.105) defines an equilibrium where only a part of investors del-
egates, while (1.106) corresponds to the solution where the fees are low enough for
all investors to delegate. The only nonnegative solution to the condition (1.106) is:

ω =
3ρ2

2η

(
− v−1

u

2x2
max

+

√
v−2
u

4x4
max

+
2η

3ρ

)
The above solution represents an equilibrium if the following condition on the

economy parameters is met: (
v−1
u

xmax

)2

> 1− 2η

3ρ

Thus in equilibrium everybody delegates either when v−1
u

xmax
is greater than 1 (the

maximal signal precision is lower than the precision of the unconditional payoff dis-
tribution), or when the economy parameters satisfy 2η

3ρ
> 1. The latter condition

means that in some economies the penalties for deviation from the average fee η
are quite high, or the risk aversion ρ is quite low, ensuring that in equilibrium all
investors delegate.

1.6.5 Equilibrium fees in the case of two risky assets

In the case of two risky assets the closed-form solution to the investor optimiza-
tion problem can be found by working out the general-form expressions (1.133) and
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(1.130). Contrary to the case of one risky asset, here several solutions to (1.74) exist.
One can show that they can be represented in an explicitly symmetric matrix form
as follows:

G = −1

2
(BBT )−1 + (BT )−1XB−1 (1.107)

where B = Ω(VD)1/2, and matrix X satisfies the following simple algebraic Riccati
equation:

XX =
1

4
1 +BT (V −1

m + V −1
D )B (1.108)

In appendix 1.13 we construct explicit solutions of a simple matrix equation XX = Q
and show how to select a maximal symmetric solution, which is positive definite and
the difference between this solution and any other symmetric solution is positive
definite.

Using the results of appendix 1.13 one can show that the maximal solution for
(1.108) in two dimensions has the form:

X∗ =
(λ1 − λ2)

D

(
1

4
1 +BT (V −1

m + V −1
D )B +

[
λ1λ2 0

0 λ1λ2

])
(1.109)

where:

λ1,2 =

√
tr(1

4
+BT (V −1

m + V −1
D )B)±D

2
,

and

D =
√
tr(BT (V −1

m + V −1
D )B)2 − 4 detBT (V −1

m + V −1
D )B

The corresponding solution for the implied conditional precision G, using (1.107),
is:

G∗m = amΩ−1VDΩ−1 + bm(V −1
m + V −1

D ) (1.110)

where

am =

(
(λ1 − λ2)

D
(
1

4
+ λ1λ2)− 1

2

)
, bm =

(
(λ1 − λ2)

D
(
1

4
+ λ1λ2)− 1

2

)
and the optimal delegation exposure for investor m is:

N∗m =
1

ρ
V −1
D − amΩ−1 − bm

ρ2
V −1
D Ω(V −1

m + V −1
D )
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To derive the optimal delegation quantities γmm
′

and the equilibrium in the del-
egation market one has first to specify an explicit form of the distribution of agents’
precision. It will allow to compute explicitly the quantities such as O+

m, which in-
volves integration over the continuum of funds.

We explore here a configuration of the information structure where several cate-
gories of precisions exist. It is a generalization of the example of constant precisions
to the case of multiple risky assets. Indeed, while with one risky asset it was enough
to have a single category of precisions σ−1

m = σ−1 to obtain first-best fund allocations,
in the case of two risky assets one category would be quite limiting. For example,
we showed above that with only one category of precisions there is no possibility to
construct a fully aggregating solution in the case of zero fees. One needs at least
n(n+ 1)/2 categories of precisions for such a solution to exist.

Consider, as a toy example, an economy with three categories of precisions given
by three matrices Σ−1

i , i = 1, 2, 3. Let’s denote the proportions of agents having
precision Σ−1

i as fi, where f1 + f2 + f3 = 1.

Σ−1
1 =

[
σ−1

1 0
0 0

]
, Σ−1

2 =

[
0 0
0 σ−1

2

]
, Σ−1

3 =
σ−1

3

1 + σ−1
3

[
1 1/2

1/2 1

]
(1.111)

The above choice of precision matrices can be interpreted as follows. Agents
in category 1 have private information about only the first risky asset, agents in
category 2 about the second. The third category agents specialize in both assets,
seeking information on a common factor that drives the payoffs of both assets. Off-
diagonal terms in Σ−1

3 are nonzero because the signal errors are correlated, as the
signals for both assets are derived from the same forecast of the common factor. Also,
the infinite precision in the factor forecast σ−1

3 does not lead to an infinite precision
in forecasting the payoffs.

Note, that despite the fact that agents in category 1 and 2 get each a signal
only on one asset, their fund portfolios might in general invest in both assets. The
correlation in the ”discoverable” uncertainty, represented by covariance V is not a
sufficient condition for agents of categories 1 and 2 to invest in both assets, neither it
is a necessary condition. What matters, is the presence of the residual uncertainty.
Indeed, if VD = 0, managers in categories 1 and 2 will invest only in one asset in which
they specialize, even if the asset is correlated to other assets in the economy. Instead,
if there is a residual uncertainty, VD 6= 0, and even if it is diagonal, managers will
start investing in a second asset. Inclusion of the non-core asset in the fund portfolio
might look at first as an act of passive investing for the sake of diversification. It is
not. Recall, we assumed that managers do not implement the passive part of their
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portfolios, because investors can easily construct such exposures by themselves. The
inclusion of the second asset has instead informational grounds. Bayesian updating
makes agents to update their beliefs on the assets they have no private information
about, because the payoffs are correlated to the payoff of the assets of their private
signal (cov(θ2, s1) 6= 0 ). Why then in the case without residual uncertainty the
signal-related portfolio does not contain asset 2? It turns out that in the absence
of residual uncertainty the benefit of extending the forecast to an additional asset is
precisely offset by the correlation between the ”extended” forecast and the forecast
of the original asset. To understand how the situation changes when one introduces
the residual uncertainty, let’s consider two distinct cases:

1. Correlated assets V12 6= 0 and uncorrelated residual uncertainty (VD)12 =
0.

The update of the forecast θc ∼ V1Σ−1
1

[
s1

0

]
reads:

θc1 =
V11σ

−1
1

V11σ
−1
1 + 1

s1, θc2 =
V12σ

−1
1

V11σ
−1
1 + 1

s1

where s1 is the signal on asset 1. Asset 2, despite the absence of the private
signal, has its forecast updated if V12 6= 0. The exposure of this agent to asset
2 is given by the second component of:

(VD+V1)−1V1Σ−1
1

[
s1

0

]
=

(
σ−1
1 (det(V)+V11 VD22)

A
0

σ−1
1 (V12 VD11)

A
0

)[
s1

0

]
=

[
σ−1
1 (det(V)+V11 VD22)

A
s1

σ−1
1 (V12 VD11)

A
s1

]

whereA = det(V)+det(VD)+V11 VD22+V22 VD11+V11 det(VD)σ−1
1 +VD11 det(V)σ−1

1 .

It follows that investment in asset 2 is positive if the signal on the first asset
is positive, and if the two assets are positively correlated. Such situation is
quite unusual from the point of view of diversification, because the correlation
normally reduces the exposure to the asset. The exposure is nonzero only if
(VD)11 > 0, and grows with VD11. At the same time, exposure to asset 1 is
dependent on VD22. We interpret it as follows: residual uncertainty motivates
extending the signal bet on other assets, especially if these are correlated with
the original asset and have less severe residual uncertainty. The ratio of the
first asset to the second in the portfolio will be det(V )+V11VD22

V12VD11
. If, for example,

VD11 is quite large, and VD22 is small, then the exposure to the second asset will
be relatively much more important than to the first asset. Indeed, the second
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asset, being much less volatile, serves as a proxy to get an exposure to the first
asset. An agent who possesses a signal on the first asset prefers to speculate
on it using the second asset that is safer. Such use of a proxy asset might be
a known phenomena in trading on private information. For the moment, until
we find the relevant references, we will refer to it as signal tunnelling.

2. Uncorrelated assets V12 = 0 and correlated residual uncertainty (VD)12 6=
0.

Here we explore a configuration where the discoverable components of assets’
payoffs θ are uncorrelated, so that V12 = 0. Then the forecast for the first asset
does not generate a forecast for the second asset:

θc ∼ V1Σ−1
1

[
s1

0

]
=

[
V11σ

−1
1

V11σ
−1
1 +1

0

0 0

][
s1

0

]
=
[

V11σ
−1
1

V11σ
−1
1 +1

s1 0
]

The exposure to the assets is:

(VD + V1)−1V1Σ−1
1

[
s1

0

]
=

(
V11σ

−1
1 (V22+VD22)

B
0

−V11 VD12σ
−1
1

B
0

)[
s1

0

]
=

[
V11σ

−1
1 (V22+VD22)

B
s1

−V11 VD12σ
−1
1

B
s1

]

where

B = det(V )+V11 VD22 +V22 VD11 +det(VD)+V11 V22 VD11σ
−1
1 +V11 det(VD)σ−1

1

Here the exposure to asset 2 is negative if the signal for asset 1 is positive and
the residual uncertainty components of the assets are positively correlated. The
exposure is large if V11 is large, yet the ratio of the exposure to the two assets
does not depend on V11, but is instead − (V22+VD22)

VD12
. In what looks more like a

signal hedging, asset 2 is added to the portfolio to partially hedge the position
in asset 1.

When both V12 6= 0 and V11 6= 0 the two effects: signal tunnelling and signal
hedging, are present at the same time.

1.7 Conclusion

In this Part we developed a tractable framework for the analysis of the structure of
a joint market for the assets and for the funds. Our model extends the literature on
fund management in the presence of asymmetric private information (Ross (2005),
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Garcia and Vanden (2009), Garleanu and Pedersen (2018)) by introducing multiple
risky assets and heterogeneously informed agents.

Delegation in our model is motivated by the presence of diverse private informa-
tion and represents an indirect information sharing. Unlike the vast majority of the
models of fund management, we do not introduce separate groups of managers and
investors and let the institution of delegation to form endogenously in equilibrium.
In this respect our model is similar to Ross (2005), but we obtain a qualitatively
different equilibrium structure of the fund market compared to his model, because
we impose no restriction on the simultaneous investing in funds and own trading in
the risky assets.

We show that, when agents of heterogeneous quality of private information are
present, more informed agents might invest in funds of less informed ones as long the
the signal errors of the agents are not perfectly correlated. Any agent who decides
to invest in funds, will favor fund allocations including all available funds, where the
signal risk is completely diversified. Thus the behavior of a fund investor in our model
is different from the common assumption that investors should invest only in the
funds with the highest precision, which are assumed to provide a better investment
performance. Rather, fund investor sees individual funds as complementary inputs
to the risky allocation, and investing in several funds produces always a superior
performance than just selecting the highest precision manager.

It is optimal for fund investors to offset any uninformed exposure to risky assets
present in the funds, which is possible when fund investors are allowed to trade on
their own account. We show that own-account trading is an important factor in
building fully aggregating fund allocations. Investor building such as allocation will
fully diversify the signal risk, and will achieve the ex-post risky exposure and wealth
of someone with the perfect knowledge of all private information.

Private information might be fully aggregated despite the presence of noise traders.
Our model shows that it is possible to build fund allocations that fully reveal private
information dispersed in the economy, meaning that the indirect sale of information
via funds is not inherently suboptimal to the direct sale of signals, contrary to the
intuition of Admati and Pfleiderer (1990). Investors are capable of unbundling the
signals contained in the funds and assemble optimal allocations, exactly s they would
do if they would acquired the signal and assembled the risky asset portfolio of as-
sets. But no competitive fully aggregating equilibrium exists when the access to the
private information of others is costly. .

Price informativeness depends on the aggregated trading intensity of agents (Vives
(2007)). Thus the prices become more informationally efficient when the delegation
is introduced, because it results in the increased willingness of agents to hold risky
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assets. The rationale for the increase in the price informativeness in our model differs
from the previous literature, because it does not involve a substitution of uninformed
investors by informed managers, is not driven by the increased incentives to acquire
information, or is not explained by the risk-sharing effect of performance-based con-
tracts.

Fund fees are nonzero in equilibrium, even in the case of infinitely large and
competitive market for funds. The power to charge nonzero fees comes from the
strategic complementarity in the managers’ pricing decisions.

1.8 Appendix 1.A: Peer-to-peer Delegation

Here we analyse a partial equilibrium problem of one agent delegating investment
to another one. We assume that the agent considering delegation is informed about
the precision matrix Σ̃ of the other investor, but cannot observe his signal s̃:

s̃ = θ + ε̃

Conditional expectation of the signal of the peer agent is equal to the conditional
expectation of the payoff, given that the signal errors are independent across agents:

E(s̃ | s, P ) = E(θ + ε̃ | s, P ) = E(θ | s, P )

Assuming the absence of the residual risk (VD = 0), the structure of the fund
portfolio is:

x̃ =
1

ρ
Σ̃−1(s̃− PR) + xu0 (1.112)

where xu0 denotes a portfolio of uninformed agent given by (1.13).
The end-of-period wealth of the agent is:

W2 = e0R + (x+ γ̃xu0)(θ − PR) +
γ̃

ρ
(s̃− PR)Σ̃−1(θ − PR) (1.113)

The full expression for the expected conditional utility is:

E(−e−ρW2 | s, P ) = −
∫
e−ρ(x+γ̃xu0 )(θ−PR)−γ̃(θ−PR)Σ̃−1(θ−PR)−γ̃ε̃Σ̃−1(θ−PR) ×

× e−
1
2

(θ−θc)V −1
c (θ−θc)− 1

2
ε̃Σ̃−1ε̃dθdε̃ (1.114)

where θc and Vc are expectation and variance of the risky payoffs conditional on the
information set (P, s), given by the formulae (1.12, 1.11).
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Integrating over ε̃ one gets:3

E(−e−ρW2 | s, P ) = −
∫
e−ρ(x+γ̃xu0 )(θ−PR)−(γ̃− 1

2
γ̃2)(θ−PR)Σ̃−1(θ−PR) ×

× e−
1
2

(θ−θc)V −1
c (θ−θmc )dθ (1.115)

The integration over θ gives:

E(U | sm, P ) = −J(γ̃)

I
e−t(θc−PR)+(γ̃− 1

2
γ̃2)(θc−PR)Σ̃−1(θc−PR)+ 1

2
t(V −1

c +2(γ̃− 1
2
γ̃2)Σ̃−1)−1t

(1.116)
where

t = ρ(x+ γ̃xu0) + 2(γ̃ − 1

2
γ̃2)Σ̃−1(θc − PR)

The resulting utility structure suggests that there is a gain in precision by delegat-
ing due to the improvement of the conditional precision V −1

c → V −1
c +2(γ̃− 1

2
γ̃2)Σ̃−1.

The first order conditions of the problem of maximization of (1.116) read:

∂
∂t

: (θc − PR)− (V −1
c + 2(γ̃ − 1

2
γ̃2)Σ̃−1)−1t = 0 (1.117)

∂
∂γ̃

: (1− γ̃)tr

(
V −1
c Σ̃ + 2(γ̃ − 1

2
γ̃2)

)−1

= 0

The first condition gives the following structure of the own-account portfolio:

x∗ =
1

ρ
Σ−1(s− PR) + (1− γ̃)xu0 (1.118)

The solution to the second condition in (1.117) is:

γ̃ = 0, if Σ̃ =∞
γ̃ = 1, otherwise (1.119)

The surprising result is that an agent with a good own precision of the private
signal (i.e. a high Σ−1) will be willing to buy one share of a peer portfolio with
arbitrary precision Σ̃−1 > 0.

3 The explicit integration over ˜epsilon gives the following result:∫
e−γ̃ε̃Σ̃

−1(θ−PR)− 1
2 ε̃Σ̃

−1 ε̃dε̃ = e
1
2 (γm)2(θ−PR)Σ̃−1(θ−PR)

60



1.9 Appendix 1.B: Solution to the optimization

problem at the asset trading stage

Under the assumption of fully diversified signal risk the final wealth (1.20) simplifies
to:

Wm
2 = x̃m(D − PR) + (θ − PR)Nm(D − PR) (1.120)

To compute the expected utility −E(e−ρW
m
2 | sm, P ) we first take an integral over

the variable εD. The part of the expectation containing the residual uncertainty is
integrated using the formula:

EεD(e−ρ(x̃m+(θ−PR)Nm)εD) = EεD(ehεD) = e
1
2
hVDh (1.121)

where h = −ρ(x̃m + (θ − PR)Nm.
The effect of conditioning on the information set (sm, P ) is the Bayesian update in

the probability distribution of the payoff component θ. The integration over θ, z, εm

is reduced to taking an expectation over a conditional random variable θ | sm, P with
conditional distribution N(θmc , V

m), where the mean and the variance are given by
(1.12 , 1.11). Inserting the result in the expectation one obtains:

−E(e−ρW
m
2 | sm, P ) =

1

I

∫
e−ρx̃

m(θ−PR)−ρ(θ−PR)Nm(θ−PR)+ 1
2
ρ2(x̃m+Nm(θ−PR))VDx̃

m+Nm(θ−PR) ×

× e−
1
2

(θ−θmc )V −1
m (θ−θmc )dθ (1.122)

where I =
∫
e−

1
2

(θ−θmc )V −1
m (θ−θmc )dθ. After simplifying the expression in the exponent

one gets:

−E(e−ρW
m
2 | sm, P ) =

1

I
e

1
2
ρ2x̃mVDx̃

m−ρx̃m(θmc −PR)

∫
e(−ρx̃mLTm−(θmc −PR)Nm)(θ−θmc )− 1

2
(θ−θmc )Gm(θ−θmc )dθ

(1.123)
where matrix Lm is just a compact notation for the matrix expression Lm =

(1− VDNm) and the quantity Gm is:

Gm = V −1
m + 2Nm −NmVDN

m (1.124)

The above quantity is the implied conditional precision introduced in proposition 4,
which represents a boost in the conditional precision of an agent who invests in an
allocation of funds γmm

′
resulting a delegation exposure Nm, defined in (1.22).
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It is easy to see that the integral (1.123) could be transformed by a change of
variables in the expectation over a random variable having normal distribution with
the mean θmc and variance Gm:

1

I

∫
et(θ−θ

m
c )− 1

2
(θ−θmc )Gm(θ−θmc )dθ =

J(Gm)

I
e

1
2
t(Gm)−1t

where J(Gm) =
∫
e−

1
2

(θ−θmc )Gm(θ−θmc )dθ.
Using the above formula and simplifying the expression one obtains the condi-

tional expectation of the logarithm of the agent’s utility in closed form:

log(−E(U | sm, P )) = log(
I

J(Gm)
) +

1

2
ρ2tmVDt

m − ρtm(θmc − PR) + (1.125)

+
ρ2

2
(tmLTm + (θmc − PR)Nm)G−1

m (Lmt
m +Nm(θmc − PR))

where tm = x̃m +Nm(θmc − PR).

1.10 Appendix 1.C: Optimization solution at asset

trading stage

The appendix is in progress.

1.11 Appendix 1.D: Equilibrium prices in the case

of no residual uncertainty

The appendix is in progress.

1.12 Appendix 1.E: General solution to Algebraic

Riccati Equation

Following Kucera (1973), a general form of a matrix Riccati equation is:

−GBBTG+GA+ ATG+Q = 0 (1.126)

In our case,
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B =
1

ρ
Ω(V −1

D )1/2, A = −1

2
1, Q = V −1

m + V −1
D

A matrix Riccati equation may possess a variety of solutions, including no solu-
tion and infinitely many solutions. Under certain regularity conditions for matrices
A,B,Q, a solution can be constructed in the following way.

Define a matrix M of dimensions (2n x 2n), where n is the number of risky assets:

M =

[
A −BBT

Q −A

]
=

[
−1

2
1 −BBT

−Q 1
2
1

]
(1.127)

Consider eigenvalue problem for matrix M:

Mai = λiai, i = 1, .., 2n

ai =

[
xi
yi

]
Theorem 1 from Kucera (1973) defines a general solution of Riccati equation as:

G = Y ·X−1 (1.128)

where X, Y are matrices of dimension (n x 2n) constructed from the upper and
lower portions of eigenvectors ai:

X = [x1, .., x2n], Y = [y1, .., y2n]

From the definition of eigenvalue problem one has:[
−1

2
1 −BBT

−Q 1
2
1

] [
xi
yi

]
= λi

[
xi
yi

]
, i = 1, .., 2n

It follows:

−Qxi + (
1

2
− λi)1yi = 0

xi = Q−1(
1

2
− λi)1yi

or, in matrix notations:

X = Q−1Y D̃ (1.129)
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where D̃ is (2n x 2n) matrix:

D̃ =


1
2
− λ1 0 . . . 0
0 1

2
− λ2 . . . 0

0 0
. . . 0

0 0 . . . 1
2
− λ2n

 (1.130)

X−1 = D̃−1Y −1Q (1.131)

and where Y −1 is a right-inverse of Y : Y Y −1 = 1, and Y, Y −1 should be defined such
as X−1 exists, and, in addition, satisfy the following condition:

−ZD̃−1ZD̃Z + Z = 1 (1.132)

where Z = Y −1Y .
The solution is:

G = Y D̃−1Y −1Q (1.133)

It is easy to check now that the Riccati equation (1.126) is satisfied with (1.133).

−Y D̃−1Y −1QBBTY D̃−1Y −1Q− Y D̃−1Y −1Q+Q = 0

−Y D̃−1Y −1QBBTY D̃−1Y −1 − Y D̃−1Y −1 + 1 = 0

From the eigenvalue problem one has:

X = −BBTY D = Q−1Y D̃

where

D =


1

1
2

+λ1
0 . . . 0

0 1
1
2

+λ2
. . . 0

0 0
. . . 0

0 0 . . . 1
1
2

+λn


and one has D−1 = 1− D̃.

Y D̃−1Y −1Y (1− D̃)Y −1Q− Y D̃−1Y −1Q+Q = 0

−Y D̃−1Y −1Y D̃Y −1 + 1 = 0

64



From here we obtain the condition, replacing Y −1Y by Z. Note, that Z−1 does not
exist. By construction, Z is a projector: ZZ = Z.

Now we have all elements to derive solutions for the optimal G∗ in arbitrary
dimension. Before doing so, we study the two limiting cases, Ω = 0 and VD = 0.

1/ When Ω = 0, a no-fee solution is easily obtained by putting B = 0. Matrix
M has two roots with multiplicity n each: λ+ = 1/2 and λ− = −1/2. Matrix D̃ has
the form:

D̃ =


0 0 . . . 0
0 0 . . . 0
0 0 1 0
0 0 . . . 1


is not invertible.

Let’s denote by y+, x+ components of eigenvectors corresponding to eigenvalue
λ+, and y−, x− components of eigenvectors corresponding to eigenvalue λ−.

From the eigenvalue problem with B = 0 it follows that:

x+ = 0, x− − arbitrary, y+ − arbitrary, y− = Qx−

X = [0, x−], Y = [y+, Qx−]

We cannot define X−1 via Y −1 in this case, because D̃−1 does not exist. In
general:

X−1 =

[
b
x−1
−

]
We have also to require that y+ = 0, otherwise the solution Y X−1 = Q + y+b

does not satisfy (1.126) for B = 0.
2/ The second case VD = 0 cannot be solved using a Riccati equation (??),

because the matrices B and Q become infinite in the limit. To solve it, we note that
from L = ΩG = 1 one immediately gets : G∗ = Ω−1.

Then, one cannot use L to reconstruct N . But from the definition of G via N :
G = V −1

m + 2Nm, one gets the solution for N∗ = 1
2
(Ω−1 − V −1

m ).
Now, we give the form of the characteristic equation of matrix M and specify the

structure of its eigenvalues.

det(M − λ1) = 0
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We can reduce the determinant of (2n x 2n) matrix to a determinant of a smaller,
(n x n) matrix using Schur’s lemma:

det

(
A B
C D

)
= det(D) · det(A−BD−1C)

det

[
(−1

2
− λ)1 −ΩV −1

D Ω
−(V −1

m + V −1
D ) (1

2
− λ)1

]
= det

(
(λ2 − 1

4
)1− ΩV −1

D Ω(V −1
m + V −1

D )

)
= 0

Defining ξ = λ2− 1
4
, and H = ΩV −1

D Ω(V −1
m +V −1

D ) one has the following eigenvalue
problem for the matrix of dimension (n x n):

det(H − ξ1) = 0, H = ΩV −1
D Ω(V −1

m + V −1
D ) (1.134)

The above structure of matrix M implies that eigenvalues λ will have the form:

λ±i = ±
√

1

4
+ ξi, i = 1, .., n (1.135)

The matrix of eigenvectors Y and the matrix D̃ are then naturally represented
as:

Y = [Y+, Y−], D̃ =

[
D̃+ 0

0 D̃−

]
=

[
(1

2
− λ+i) 0

0 (1
2

+ λ+i)

]
An explicit calculation shows that in order to satisfy the requirement−ZD̃−1ZD̃Z+

Z = 0 one has to restrict Y −1 to be:

Y −1 =

[
0
Y −1
−

]
The above condition will ensure that:

Y D̃−1Y −1 = Y−D̃
−1
− Y −1

−

In the last expression, all matrices are quadratic (n x n) and the inverse of Y −1
− Y−

exists.

To determine the eigenvalues ξ, one has to solve the corresponding eigenvalue
problem, which requires the specification of the matrix Ω. We will do it explicitly in
dimensions 1 and 2.
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1.13 Appendix 1.F: Solutions to Algebraic Riccati

Equation in two dimensions

Just for the sake of exercise we explore all the solutions of a Riccati equation:

XX = Q

The objective is to understand how to pick from the multiple solutions the only
one that is positive definite and ”bigger” than other solutions, in the sense that the
difference between the maximal solution and any other one is positive definite.

We start, as usual, by writing down the Hamiltonian for XX = Q:

H =

[
0 −1
−Q 0

]
H has four distinct eigenvalues that satisfy:

λ4 − tr(Q)λ2 + det(Q) = 0

And the eigenvector for any particular λi has a form:

H

(
ui
vi

)
= λi

(
ui
vi

)
,

vi = −λiui
Qui = −λivi

vi = −λiui
Qui = λ2

iui

So, the lower part of eigenvector ui is itself an eigenvector of matrix Q with an
eigenvalue λ2

i .
The four eigenvalues are:

(λ+
1 = λ1, λ

−
1 = −λ1, λ

+
2 = λ2, λ

−
2 = −λ2)

where

λ2
1 =

tr(Q) +
√
tr(Q)2 − 4 det(Q)

2
, λ2

2 =
tr(Q)−

√
tr(Q)2 − 4 det(Q)

2

Eigenvector u is a two-dimensional column and has a form:

(ui)1 = − Q12a

Q11 − λ2
i

, (ui)2 = a

Let’s now lost all the four full eigenvectors of H. Note, that each is parametrized
by an arbitrary scalar a, b, c, d.
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[
u+

1

v+
1

]
=


− Q12

Q11−λ21
a

a

λ1
Q12

Q11−λ21
a

−λ1a

 ,
[
u−1
v−1

]
=


− Q12

Q11−λ21
b

b

−λ1
Q12

Q11−λ21
b

λ1b

 ,
[
u+

2

v+
2

]
=


− Q12

Q11−λ22
c

c

λ2
Q12

Q11−λ22
c

−λ2c

 ,
[
u−2
v−2

]
=


− Q12

Q11−λ22
d

d

−λ2
Q12

Q11−λ22
d

λ2d


Now, we construct and compare four solutions: (1, 2), (1,−2), (−1, 2), (−1,−2).
Start with (1, 2).

[
u12

v12

]
=


− Q12

Q11−λ21
a − Q12

Q11−λ22
c

a c

λ1
Q12

Q11−λ21
a λ2

Q12

Q11−λ22
c

−λ1a −λ2c


u−1

12 =

X12 = v12u
−1
12 =

(λ2 − λ1)

D

(
Q11 + λ1λ2 Q12

Q12 Q22 + λ1λ2

)
where D =

√
tr(Q)2 − 4 det(Q)

det(X12) = λ1λ2

But X12 is not positive definite because (X12)11 < 0 (because λ2 < λ1). So, X12 is
not a maximal solution.

Now try (1, -2).

[
u1,−2

v1,−2

]
=


− Q12

Q11−λ21
a − Q12

Q11−λ22
d

a d

λ1
Q12

Q11−λ21
a −λ2

Q12

Q11−λ22
d

−λ1a λ2d


X1,−2 = v1,−2u

−1
1,−2 =

(λ2 + λ1)

D

(
−Q11 + λ1λ2 −Q12

−Q12 −Q22 + λ1λ2

)
where D =

√
tr(Q)2 − 4 det(Q)

The solution X1,−2 is not positive definite, because the two diagonal terms cannot
be both positive simultaneously.
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Now try (-1, 2).

[
u−1,2

v−1,2

]
=


− Q12

Q11−λ21
b − Q12

Q11−λ22
c

b c

−λ1
Q12

Q11−λ21
b λ2

Q12

Q11−λ22
c

λ1b −λ2c


X−1,2 = v−1,2u

−1
−1,2 =

(λ2 + λ1)

D

(
Q11 − λ1λ2 Q12

Q12 Q22 − λ1λ2

)
where D =

√
tr(Q)2 − 4 det(Q) Idem, one of the diagonal elements of X(1,2) is always

negative, so the solution is not positive definite.
The last solution: X(−1,−2):

[
u−1,2

v−1,2

]
=


− Q12

Q11−λ21
b − Q12

Q11−λ22
d

b d

−λ1
Q12

Q11−λ21
b −λ2

Q12

Q11−λ22
d

λ1b λ2d


X−1,−2 = v−1,−2u

−1
−1,−2 =

(λ1 − λ2)

D

(
Q11 + λ1λ2 Q12

Q12 Q22 + λ1λ2

)
By construction, λ1 > λ2, and the solution X−1,−2 has positive determinant and
positive diagonal elements, so it is the maximal solution. To check, compute the
differences: (X−1,−2 −X−1,2) ecc and verify that these are positive definite.
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PART 2: Knowledge asymmetry in
the fund market

The model of a joint market for assets and funds in Part 1 is built on a rather
stringent assumption: the structure of every fund portfolio is required to be fixed
(1.14) and known to all agents in the economy. Such knowledge is possible only if
agents know perfectly the informational characteristics of all private signals and are
able to tell which covariance matrix of the signal error belongs to which manager. In
real markets agents do not possess such an overwhelming quantity of knowledge, and
thus they will find it difficult to form expectations about the payoffs of individual
funds. In addition, the impossibility of observing the fund composition leads to the
problem of enforcement: the fund structure, even if agreed upon by investor and
manager, is problematic to enforce when investors cannot observe the actual fund
portfolios. Thus real markets equilibria will differ from the ideal equilibrium in the
joint market for securities and funds described in Part 1. In Part 2 we relax the
assumption of perfect knowledge and investigate how the demand for funds could
be sustained when agents have only a limited knowledge about each other’s private
information.

In is known that the market for assets might reach equilibrium without the com-
mon knowledge of the informational characteristics of the agents, even in presence of
diverse private information. Agents, if they refrain from using rational expectations,
or are not allowed to observe prices, might be able to coordinate their demands using
public information only, such as the commonly known unconditional distribution of
the securities payoffs. A somewhat greater amount of common knowledge is needed
in the models with rational expectations (Hellwig (1980); Admati (1985)): in order
to deduce the informational content of asset prices the agents need to know at least
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the average precision of private signals in the economy.

When the fund market is introduced, the transaction between an investor and
a manager is usually deemed possible if the pattern of the manager’s behaviour is
known, i.e. when it is clear how a manager will incorporate the private signal in
the fund portfolio. That is why the models of the market for funds often assume
the maximal knowledge, when every investor knows with certainty the precision
matrix of every manager (Ross (2005); Garcia and Vanden (2009); Garleanu and
Pedersen (2018)). Without the knowledge about the signal precision of a manager
the investor cannot evaluate the expected utility of investing in the manager’s fund,
and thus would not have a basis for the investing decision. It turns out, however,
that investing in funds remains possible even in the absence of detailed knowledge
about funds.

In this Part we will show that the fund market might be viable with the minimal
knowledge requirements. Since investors in our model care about building fund allo-
cations rather that about selecting one manager, it is sufficient to know the behaviour
of managers in aggregate, without having to be able to distinguish one manager from
another. The simplest example of an aggregate is a symmetric allocation of funds,
which amounts to investing in the average fund portfolio. Building such an alloca-
tion requires from investor a mere knowledge of the average precision of the private
information in the economy, which is exactly the requirement needed to sustain asset
trading in the economy with rational expectations. Although the minimal common
knowledge turns out to be sufficient to sustain the market for funds, the level of
investment in the funds will be lower than in the case of perfectly known precisions,
and agents will gain less benefit from delegating.

To realize fully the surplus from investment delegation, investors are motivated to
learn informational characteristics of their peers. A portion of the extra surplus might
be also captured by managers, either in the form of additional profits coming from
the increase in the demand for funds, or from higher fees a manager might command
after the revelation of the precisions to investors. As a consequence, both investors
and managers will have incentives to increase and refine the common knowledge
about signal precisions.

Several strategies are adopted in the markets to learn and signal fund charac-
teristics related to the value-adding private information. Agents spend resources
on marketing their funds and on performing due diligence of the funds of others.
Investors pay third parties to categorize the existing funds and create performance
labels (such as Morningstar’s star awards). An alternative strategy is to assign to
each fund a suitable benchmark portfolio with a benchmark composition being com-
mon knowledge between an investor and a manager. We show in this study how the

72



latter rule helps shaping the investors’ expectations about the future performance of
the fund portfolio, and, importantly, how it creates a piece of common knowledge
between an investor and a manager, which serves as the basis for the the enforcement
of their transaction. Based on the possibility to use benchmarks as a substitute for
learning the fund precisions, we suggest that the primary role of investment bench-
marks is a social device that facilitates the diffusion of common knowledge between
agents and helps to extract more gains from the investor-manager transaction.

Being a social institution used to separate managers in types, benchmarks do
not exist in isolation. Different benchmarks are needed to signal distinct types of
private information, which explains the great variety of existing benchmark indices.
Although a particular benchmark should have certain properties to be more or less
reliably associated to a certain type of funds, its portfolio structure is not entirely
fixed, but is a result of a social agreement. We show that, within the framework
where funds are vehicles for private information, the arbitrariness in the benchmark
structure does not affect neither the demand for funds, nor the equilibrium fees
charged by fund managers. The intuition is that the demand for funds and the fund
fees depend only on the characteristics of private information, and are not affected
by the addition to the fund portfolio of a ”piece” with a publicly known composition.

Investor-manager transactions with asymmetric knowledge have been a subject
of extensive research. The main focus in the literature, which we review later in this
Part, was on the agency frictions resulting from the imperfect knowledge of managers’
types and unobservability of their actions. The asymmetric knowledge was shown to
motivate strategic behavior of managers who tend in this case to undersupply effort
and misrepresent the quality of their services.

Our analysis differs from the agency literature, because, instead of focusing on
the possibility for strategic behavior, we focus on how investors navigate the com-
plexity of the fund market. Using the terminology from industrial organisation, we
consider the problem of horizontal differentiation of managers (identifying managers
as belonging to distinct types, without one type being superior to the other), instead
of vertical differentiation (separating ”good” managers from ”bad”). The horizon-
tal differentiation was largely absent from the previous literature because, due to
tractability concerns, the models were often restricted to contain only one risky as-
set (Ross (2005)), or to introduce only one type of informed managers in the economy
(Garcia and Vanden (2009)), where the horizontal differentiation was not possible.

We derive the implications of the investment delegation in presence of private
information for the task of performance measurement. According to the common
premise in investing, a superior information should manifest itself via an abnormal
performance of the informed portfolio. The abnormal performance is often defined
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with respect to a benchmark, and thus is sensitive to the choice of the benchmark
portfolio composition. We show that in the presence of private information an in-
formed portfolio does not necessarily outperform any uninformed benchmark. The
absence of outperformance does not indicate though that informed managers do not
add value: fund portfolios are valued by investors as inputs to their overall alloca-
tion of risky assets rather than sources of individual performance. Delegation benefits
investors mainly by increasing their implied conditional precision (introduced by def-
inition 1 in Part 1), which enables them to invest more in the risky securities and
realize greater expected total gains. Thus, when it comes to performance analysis,
investors should focus on detecting the presence of a private signal, rather than on
ascertaining the persistence of outperformance of the fund with respect to a bench-
mark, as such outperformance is problematic because of the signal error and of the
eventual residual uncertainty in asset returns.

Our findings are consistent with the literature on performance measurement in
the presence of private information (Admati and Ross (1985); Grinblatt and Titman
(1989)), in that the relative performance measures often fail to capture the presence
of private information, and the benefit to investor from delegation is manifested
via the gross payoff of the fund. We extend their results by adding the residual
uncertainty, and by explicitly introducing a benchmark portfolio in the performance
analysis. The sensitivity of the fund performance evaluation to the choice of the
benchmarks is also consistent with the empirical literature (for example, Lehman
and Modest (1987)).

Another model that provides a rational explanation to the absence of abnormal
performance in the fund market and introduces a benchmark index is Berk and
Green (2004). They use a reduced-form modelling of investment skill with no explicit
trading in securities, and featuring risk-neutral agents, which is different from our
setup. The explanation of the absence of abnormal performance in Berk and Green
(2004) is based on the scale diseconomies in producing investment performance,
on the monopoly power of managers in their own markets, and on the freedom of
managers to alter the investment portfolios unilaterally. Instead, our results derive
from the complementarity among funds that makes them compete monopolistically.

2.1 Knowledge requirements and viability of the

fund market

The endogenous creation of the institution of delegation presented in the model
in Part 1 is based on the overwhelming knowledge requirements: the precisions of
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all private signals in the economy should be common knowledge. Unlike trading
in securities, where publicly observed prices are generally sufficient to coordinate
actions of agents and to reach equilibrium, investing in individual funds is possible
only when investors could form beliefs about the future payoffs of their investments.
As a fund’s payoff depends on the information of the manager and on his actions, a
minimal amount of knowledge required for the investor-manager transaction includes
the informational characteristics of the manager’s private signal and the knowledge
of the pattern of the manager’s behaviour given his information and compatible with
his incentives. Without this knowledge, an investor cannot take a rational action.

To avoid confusion, in what follows we will use the term asymmetric informa-
tion to denote the existence of private signals about the assets payoffs, while we
will call asymmetric knowledge the situation where investors do not have determin-
istic knowledge about the manager’s precisions. While asymmetric information is
the fuel of investment delegation, as investors buy fund shares precisely because of
the diversity of the private information, asymmetric knowledge is often the factor
compromising delegation. Investors limit their levels of investment in funds because
asymmetric knowledge usually gives managers an incentive to behave strategically,
or simply because investors cannot evaluate the benefit of their investment in funds.

Asymmetric knowledge problem is not unique to investment delegation. Indeed,
the principal-agent frictions due to asymmetric knowledge are present in other in-
dustries that were a subject of extensive academic research, such as sharecropping
in agriculture. For example, the seminal paper of Holmstrom (1979) established the
theoretical framework to treat the problem of moral hazard in agency setting and
include. Holmstrom (1982) considered the case when the delegated task is split be-
tween several agents who act as a team. These classical models of moral hazard
suggested that the asymmetric knowledge frictions could be mitigated by sharing
the outcome between the agent and the principal, and by conditioning the agent’s
compensation on the signals correlated with the effort.

There is a vast theoretical literature addressing the adverse effects of asymmet-
ric knowledge in investment delegation (see, for example, a comprehensive review of
Stracca (2006)). An important stream of literature considers the problem of moral
hazard, where managers pursue own rational incentives in detriment to the outcome
for investors. Moral hazard models are often applied to delegated investments be-
cause actions of the managers are unobservable and provide a scope for strategic
behavior, such as undersupplying effort (Buffa et al. (2014)), or pursuing objectives
different from that of the investor’s.

The compensation sharing agreements were considered in the literature on del-
egated investment management as a tool to alleviate the asymmetric knowledge
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problem. Yet, the findings from the traditional agency models were shown to be
not applicable to money managers. The performance sharing compensation in the
investment delegation tends to generate strategic behavior by managers, who find
ways to ”undo” the incentives created by performance sharing (Stoughton (1993);
Admati and Pfleiderer (1997); J. and Gorton (1997); Das and Sundaram (2001)).

Indeed, investment managers are well-known for not sharing any investment losses
with investors, which prevents them from internalizing the externality generated by
asymmetric knowledge. Performance-based compensation, when allowed by regula-
tion, tended to take a form of a performance bonus. A nonlinear bonus produces
quite different incentives compared to a linear sharing rule (Starks (1987)). The his-
torical analysis shows that, when unregulated, investor-manager contracts tended to
include a bonus related to the fund performance. Once the performance based com-
pensation were required by 1940 and 1970 regulation to be strictly symmetric around
an index, managers progressively discontinued the use performance sharing fee and
opted instead for a flat fee for their services. The evolution of the compensation
of investment managers is thus at odds with the theoretical result stating that the
performance sharing and the use of the signals related to managers’ effort (the bench-
mark index performance for example) improves the level of effort supplied. Even if
investors would abandon the idea to use performance-sharing as an incentive, and
would focus instead on performance monitoring, for example comparing performance
to a benchmark, the result will be suboptimal. The contracts between investors and
managers stipulating a limit on tracking error produce incentives for managers to
hold suboptimal portfolios (Roll (1992); Brennan (1993)). Moreover, the choice of
the benchmark in this case will be important for the final result, with a wise choice
of benchmark being the optimal mean-variance portfolio. Yet, to make such a choice
investor would need to possess a lot of knowledge about the distribution of the assets
payoffs. It is unclear why, having all this knowledge, one would delegate in the first
place.

Another stream of literature on signalling focused on the case where the effort is
not relevant, and the outcome depends on the agent’s type, which is unobservable
by the principal. Agents of the inferior type thus are keen to misrepresent their
type to get hired and to get rewarded as the agents of superior type. Such adverse
selection problem might disrupt the market for goods (G. (1978)). Credible signalling
by agents usually takes a form of costly commitment tied to the outcome, such as,
once again, performance sharing, co-investing with the principal, or participating in
losses of the principal (franchise). The success of signalling strategies depends on the
existence of separating equilibria in the signalling game. If only pooling equilibria
are possible, the principal might invest in learning the agents’ types.
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Credible signalling of the manager’s type was explored in Bhattacharya and Pflei-
derer (1985); Allen (1990). This literature is closer to our model, because the scope
for moral hazard is limited when, as in our model, the own private signal is obtained
at no cost, and the profit of the strategic behavior is negligible because of the as-
sumption of a large market. Bhattacharya and Pfleiderer (1985) showed that, while
a linear performance sharing is not effective in separating more informed managers
from less informed, a compensation based on a quadratic deviation from the bench-
mark index could attract managers of the superior type. Allen (1990) showed that
credibility of the signal might be supported by the own-account bet of the signal seller
on his signal. The main impediment for the signalling strategy is the risk aversion of
the seller, so there might be a scope for an intermediary who has perfect knowledge
about the quality of the signal and has lower risk aversion than the seller, to step in
and assume the risk of the signalling commitment upon compensation. Allen (1990)
calls this leasing of risk tolerance the origins of financial intermediation. More re-
cently, in the model of Ross (2005) which is the most relevant to our study, explored
the possibility of separating agents by types in the context of investment delegation.
Ross concluded that pooling equilibria were to prevail, and there are probably many
professional managers in the investment industry who are truly uninformed.

We show in this study that, while learning the manager type and signalling have
a scope in fund market, there exists a demand for delegation even without signalling.
Contrary to the majority of agency models with adverse selection, where a principal’s
problem is to pick one agent, in our setup agents invest in all available funds. Hence
the investment outcome depends on the average characteristics of funds, rather than
on that of individual managers. As a result, even in the case when no knowledge
about the types of individual managers is available, there always exists a possibility
to delegate symmetrically, investing the same amount with every manager, provided
that the average precision of private information is known. Such minimal knowledge
requirement is the same minimal amount of knowledge that guarantees the existence
of equilibrium in asset markets with private information without delegation (Admati
(1985)). Indeed, the knowledge of the average quality of the private signals in the
economy is exactly the information that allow agents to form rational expectations
of the informational content of the asset prices.

In this Part we present a case of symmetric delegation demand and show that
investors might consider investing in funds even if they do not know precisions of
individual managers. We further show that symmetric delegation provides inferior
outcome for investors, compared to the delegation with known precisions. Investors
are able to evaluate the benefit from learning individual precisions, and will be in-
clined to incur expenses to learn precisions, such as paying due diligence costs, remu-

77



nerating of third parties for certifying the managers’ quality, or, eventually, paying
a fee to license a benchmark index.

2.2 Investment delegation with minimal knowl-

edge requirements

Here we derive the equilibrium in the absence of public information about the signal
errors of individual agents (i.e. neither the signal realizations sm, nor the signal error
covariances Σm are known). Funds are thus portfolios with unknown composition and
unknown structure. As a result, investors are not able to form expectations about
the performance and risk of individual funds. Despite of the uncertainty, delegation
can be made meaningful as long as certain aggregate characteristics of broad fund
allocations could be defined.

The minimal knowledge requirement turns out to be the knowledge of the average
precision of private information, which is enough to deduce the probability distri-
bution of a symmetric allocations of funds. The solution for individual delegation
quantities γmm′ will be symmetric, i.e. the delegation quantities γmm

′
will not depend

on the precisions of individual managers m′. We show below how to derive such
solution if the fund structure is assumed to be identical to the own-account portfolio
of the manager:

νm
′
= xm

′
(2.1)

The above definition of the fund structure is different from the definition used
in Part 1. There we assumed that a manager m has to deliver to investors the
performance of a no-delegation portfolio (1.14). The two portfolios, xm and xm0 , are,
in general, different, because xm0 is optimal given the private information of agent m
in an economy with no delegation, while xm is optimal in the presence of delegation.
In particular, the direct investment in securities xm offsets the uninformed risks
that agent m assumes via the fund allocation. Yet, in the present case of minimal
knowledge requirements, the two definitions of fund structure can be shown to lead
to the same demand for delegation. We chose to define the fund portfolio as (2.1)
to make it more explicit that no additional knowledge about the economy is needed
to introduce a viable market for funds, beyond the standard knowledge required to
build a rational expectation equilibrium in asset market.

To formulate the agent’s optimization problem one needs to evaluate the terminal
wealth given by (1.19), where the fund structure xm

′
0 is replaced with xm

′
. In the

absence of any information to discriminate among the available funds xm
′
agents will
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look for a symmetric delegation solution:

γmm
′
= γm, ∀ m′ (2.2)

That is, the agent m chooses to buy the same amount of units of every fund m′.

Proposition 12. When signal precisions of individual managers are unknown, the
optimization problem admits a symmetric solution (2.2) and the expression for the
final wealth (1.19) simplifies to:

W1 = e0R + xm(D − PR) + γm
z

1 + γ
(D − PR) (2.3)

The proof rests on the fact that a symmetric delegation to a continuum of avail-
able funds is the same as investing in the aggregate active portfolio x:∫

m′ 6=m
γmxm

′
dm′ = γm(

∫ 1

0

xm
′
dm′) = γm · x (2.4)

Due to the market clearing (1.32), in the case of symmetric delegation (2.2),
the random variable x has the same probability distribution as the stochastic asset
supply z:

z =

∫ 1

0

(xm +

∫ 1

0

γmxm
′
dm′)dm = x+

∫ 1

0

γmdm · x = x(1 + γ) (2.5)

where the aggregate number of shares invested in the funds is:

γ =

∫ 1

0

γmdm (2.6)

In what follows, we will also refer to the parameter γ as the total amount or the
total level of delegation in the economy. Q.E.D.

Note, that the symmetric solution does not require the number of shares delegated
to be the same for all agents, in general γm 6= γm

′
. So, the symmetric solution allows

for variability of the delegation quantities γm across investors.
Thus we showed that the minimal knowledge about the asset market structure and

the average precision of private information is sufficient to form expectations about
the behaviour of a simple fund allocation (2.2). The symmetric allocation shares
an important property with the full-knowledge fund allocations built using known
individual precisions: it diversifies completely the signal risk of individual managers.
In the following section we derive several other properties of the symmetric allocation
and show that it is in general suboptimal from the point of view of the full private
information, and inferior to the allocation built with the knowledge of individual
precisions.
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2.2.1 Properties of the symmetric fund allocation

The agent’s optimization problem consists in splitting the investment between the
own conditional portfolio xm and the market portfolio z:

max
xm,γm

E(Um(xm(D − PR) + γm
z

1 + γ
(D − PR)) | sm, P ) (2.7)

The market portfolio z is unobserved, but the investor can still perform the
optimization using the conditional distribution of the variables θ and z that are
related to the observables sm and P via the linear expressions (1.2) and (1.33):

z = A−1
2 A0 + A−1

2 A1θ − A−1
2 P (2.8)

The result does not change in the presence of the delegation structure1.
In an economy with no delegation (γm = 0), the optimal allocations have a

usual mean-variance form (3.5). If delegation is allowed, the quadratic structure of
uncertainty in the terminal wealth allows to derive a closed-form expression for the
expected utility (2.7).

Recall, that in the case of known precisions we introduced several useful defini-
tions. Matrix Nm (1.22), referred in our study as delegation exposure, represents
an indirect exposure to risky assets via delegation; matrix Gm (1.38), referred to as
implied conditional precision, has the meaning of the conditional precision of agent
m, modified by his risky delegation exposure Nm. The symmetric solution could also
be conveniently expressed via these quantities, together with the quantities Vm, θmc
and Lm introduced in Part 1 (1.12, 1.11, 1.21, 1.40).

Proposition 13. CARA-expected conditional utility of the terminal wealth (2.3) in
the case of a symmetric fund allocation is given by:

E(U | sm, P ) =
I

J(Gm)
e

1
2
ρ2x̃mVDx̃

m−ρx̃m(θmc −PR)+ 1
2

˜̃xmLTmG
−1
m Lm ˜̃xm (2.9)

where the boost in implied precision coming from delegation depends on matrix
Nm:

Nm = 2
γmρ

1 + γ
A−1

2 A1 (2.10)

1The coefficients of the price functional Ai do depend on the aggregate levels of delegation,
but since the aggregate levels cannot be affected by actions of one investor, the investor treats the
coefficients Ai as constants in the portfolio optimization problem.
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Proof: To compute the expectation in (2.7) we first take the integral over variable
εD. The relevant part of the expectation in (2.7) is:

const

∫
e−ρ(xm+γm z

1+γ
)εD− 1

2
εDV

−1
D εDdεD = EεD(etεD) = e

1
2
tVDt (2.11)

where t is the negative of investor’s risky exposure t = −ρ(xm + γm z
1+γ

).

Using the relation (2.8) one can eliminate the variable z and reduce the expecta-
tion to an integral over the variable θ:

E(U | sm, P ) = const

∫
e

1
2

(ρx̃m+ 1
2
Nm(θ−θmc ))VD(ρx̃m+ 1

2
Nm(θ−θmc )−ρx̃m(θ−PR) ×

= ×e−
1
2

(θ−θmc )Nm(θ−PR)− 1
2

(θ−θmc )V −1
m (θ−θmc )dθ (2.12)

Here several quantities are the same as in the previously studied case of known
precisions: the implied conditional precision Gm is given by (1.38), the conditional
expectation of the dividend θmc is given by (1.12) and the conditional variance matrix
Vm is given by (1.11).

The variable x̃m has the meaning of the conditional expected risky exposure:
x̃m = xm + γm zmc

1+γ
, and zmc is the conditional expectation of the risky stock supplies

z: zmc = A−1
2 (A0 − P ) + A−1

2 A1θ
m
c .

After simplifying the expression in the exponent one gets:

E(U | sm, P ) = conste
1
2
ρ2x̃mVDx̃

m−ρx̃m(θmc −PR)

∫
e(−ρx̃mLTm− 1

2
(θmc −PR)Nm)(θ−θmc )− 1

2
(θ−θmc )Gm(θ−θmc )dθ

(2.13)

Taking the integral over dθ and simplifying the expression one obtains the con-
ditional expectation of investor’s utility (2.9) in a closed form. Q.E.D

The derived utility (2.9) is a mirror of the result (1.43) in Part 1. The main
difference is that the delegation exposure Nm in the symmetric case is limited to the
structure (2.10) possessing only one degree of freedom, while in the case of known
precisions agents had more flexibility in shaping their delegation exposure Nm. As
a result, the delegation exposure built with the knowledge of precisions allows the
investors to extract more value from delegation.

The expression for the optimal value of x̃m and equilibrium prices have the same
form in the symmetric case as in proposition 6. For simplicity, assume that the fund
fees are zero. Then the optimization problem of fund investor is given by (1.56),
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where the only optimization variable is γm. The only first order condition provides
the equation to find the optimal delegation quantity γm:

−tr(G−1
m A−1

2 A1Lm) = 0 (2.14)

The variable γm enters (2.14) via the quantities Gm and Lm, which depend on Nm

given by (2.10). We do not have a closed form solution to problem (2.14), unless the
residual uncertainty is eliminated (VD = 0). But without the residual uncertainty
in the asset payoffs the delegation incentives become unbounded and lead to infinite
individual and aggregate delegation γm∗ = γ∗ →∞.

When the residual uncertainty is present, the optimal solution will be bounded,
because matrix Gm given by (1.56) is required to be positive definite. Hence investors
will choose a finite amount of delegation in the presence of the residual uncertainty,
the individual level of delegation depending on the private precision on each agent.

To summarize, when allowing delegation in economies with residual uncertainty
and with no common knowledge about individual precisions, agents delegate sym-
metrically (i.e., buy the same number of shares of every existing fund, which amounts
to investing in the market portfolio). The level of symmetric delegation exposure de-
pends on the investor’s precision, and is inferior to the level of delegation in the
economies with no residual uncertainty.

2.2.2 Fully revealing symmetric allocations

Without the residual uncertainty in the economy, the first order condition of the
delegation problem (2.14) is trivial, because Lm = 1 is independent on the optimiza-
tion variable γm. Hence the only way to have a vanishing trace G−1

m A−1
2 A1, is to

require the implied conditional precision Gm to approach infinity. A full aggregation
of private information will follow, which, in the absence of residual uncertainty, will
imply that the securities payoffs become certain. In such a case the delegation incen-
tives become unbounded leading to an infinite individual and aggregate delegation
γm∗ = γ∗ →∞.

Although the divergent equilibrium given by a symmetric costless delegation with-
out residual uncertainty has no practical relevance, it illustrates an important feature
of the aggregation of private information. If a naive symmetric fund allocation is
sufficient to build a fully revealing solution, no value could be added by acquiring
more precise information about individual funds. In other words, in an economy
where the full information about the securities’ payoffs is dispersed in the economy,
a symmetric allocation could achieve the first best, and incentives to learn individual
precisions are absent.
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There is another case when a symmetric allocation is sufficient to build a first-
best delegation exposure: when there is only one risky security in the economy. With
only one risky asset the optimization problem (1.56) becomes:

maxγmv
−1
m + 2aγm − a2vD(γm)2 (2.15)

The solution is the same for all investors, regardless of their private conditional
precision v−1

m :

(γm)∗ = a−1v−1
D , a =

ρ

1 + γ
A1A

−1
2 (2.16)

Here, as in the case of the symmetric solution with no residual uncertainty, the
pattern of delegation is uniform, all investors have the same solution for the optimal
amount of delegation irrespective of their own precisions. As a result, in the case of
one risky asset, delegation is equally appealing to investors of all precisions, informed
as well as uninformed.

The implied precision for any investor then becomes:

G∗m = v−1
m + v−1

D

In the case of one risky asset simply delegating the same quantity to each fund
produces a fully revealing outcome, notwithstanding the presence of the residual
uncertainty and the presence of noise traders.

In the cases when a symmetric fund allocation is sufficient to reveal the full
private information, learning precisions of individual managers will change only the
bargaining power between the managers and the investors, without creating added
value in the economy. On the contrary, when learning the managers’ precisions
gives rise to more optimal fund allocations, there exist extra gains that could be
split between investors and managers. In the remaining part of this section we are
concerned with such cases, where learning managers’ precisions will give investors
access to a better technology of investing, a more efficient way of using private
information embedded in the funds.

The majority of literature on delegation has limited the analysis to only one risky
asset (Ross (2005); Garleanu and Pedersen (2018)), assumed the absence of residual
uncertainty (Ross (2005), Admati (1985)) or imposed a constant precision for all
managers (Garcia and Vanden (2009)). In such cases, as we argued above, there is
a limited scope to spend resources on learning. Thus, the potential for the market
models to embed learning strategies and tools, such as investment benchmarks, has
been so far largely unexplored.
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2.3 Investment benchmarks as a mechanism to

signal precisions

To extract the maximal surplus from delegation agents need to have some knowledge
of the informational characteristics of individual managers. When the structure of
the market and the private information is sufficiently complex, investors are con-
fronted with two learning tasks: (i) identification of the manager’s type, and (ii)
estimating the magnitude of the managers’ precisions. The notion of the type is
similar to the concept of horizontal quality in models of industrial production of het-
erogenous goods. Horizontal quality means that all consumers do not rank the goods
the same way from the lowest quality to the highest. An example is the location of
a shop, which does not have a universal value to all consumers, but depends on the
distance of the shop to their home. Similarly, managers in general are not universally
comparable. They might specialize in different securities and follow various invest-
ment styles. In mathematical terms it means that, given two precision matrices, one
does not necessarily dominate the other, unless their difference is positive definite.

Roughly speaking, identifying a manager’s type is akin to assigning the manager
to a category defined by a certain structure of covariance matrix of the signal error:

Σm = aImΣI

where I labels the categories of managers. With a continuum of agents, we will often
assume that there is a finite number of types I, and an infinite number of managers
within each type. Within a particular type I, managers can be ranked by the value
of their precision scale aIm, from the lowest to the highest, as in the case of vertical
product differentiation. We will show that any desired delegation exposure could be
built by investors given only the knowledge of the types of the managers and the
average precision scales āI within each type.

Learning managers’ types is achieved by many means in the markets. Regulators
require fund managers to indicate their investment styles and to list the securities
they might invest in; investors run due diligence to know the investment strategy of
potential managers; and third party data providers maintain classifications of funds,
such as the Morningstar’s style box. Finally, managers could self-declare their type
by picking an investment benchmark. Among all the learning and signalling tools
in the market for funds, the use of investment benchmarks developed in a veritable
institution.

The role of institution, as argue O’Driscoll and Rizzo (1996), is in transmitting
the knowledge among the market participants. The information about the managers’
types is the kind of knowledge that could make sense to transmit via an institution,
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as it represents an information about a persistent pattern of manager’s behaviour.
Besides, the characteristics of the private information might be subject to uncer-
tainty, for example might change in time. It is also plausible that managers simply
cannot communicate or even articulate the exact precision they possess. As argue
O’Driscoll and Rizzo (1996), there is a scope for promoting and following a set of
rules that would remain static in time, and direct individual behavior in a pattern.

We argue in this section that the primary role of investment benchmarks might
be that of an institution providing a stable basis for the transactions between in-
vestors and managers. The benchmark institution appeared endogenously, when,
after the 1970s, the financial services industry diversified its product range, with
the fund promoters building fund complexes (Frankel and Laby (2015)), and offering
investors the exposure to securities outside the domestic market (Sikorsky (1982)).
The fact that the supply of benchmarks is private, and the business of benchmark
calculation and diffusion is profitable, indicates that benchmark providers, alongside
with consultants and providers of fund data, captured a portion of the gains in utility
that investors derive from learning the managers’ types. The main distinction of the
benchmarks from the other strategies to learn precisions is the explicit creation of a
common knowledge in the investor-manager transaction. Such common knowledge
is important because, according to the principles of the contract law, a transaction
between the parties will be enforced only if it was based on the common understand-
ing, the meeting of minds. The manager’s obligations relative to a benchmark, such
as trading only the securities included in the benchmark portfolio, or respecting the
maximal level of risk relative to the benchmark, represent enforceable promises.

2.3.1 Utility gains from learning precisions

Here we argue that both investors and managers have incentives to establish an insti-
tution transmitting the knowledge of investment types. The amount of resources in-
vestors would be willing to spend on learning the manager’s characteristics is bounded
from above by the maximal gain in utility that exists between the symmetric alloca-
tion and the allocation with known precisions.

Proposition 14. In the economies with more than one risky asset, with at least
several distinct categories of managers, and in the presence of residual uncertainty,
the social gain from learning the managers’ precisions exists.

Proof:One can compute the maximal gain in utility from learning the peers’ pre-
cisions as a logarithm of ratios of utilities corresponding to the symmetric allocation
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and the allocation with known precisions. Below we evaluate the gain in utility as a
certainty equivalent:

c = −1

ρ
ln
E(Um)knownprecisions
E(Um)symmetric

= −1

ρ
ln det(Gm(V −1

m + V −1
D )−1) (2.17)

Given that the maximal possible value of Gm is V −1
m + V −1

D , the logarithm in the
expression is negative, meaning that the gain from learning the precisions is positive,
as long as det(Gm) is smaller than det(V −1

m + V −1
D ). As we’ve shown in the previous

section, this condition is met when there is at least one risky asset, several categories
of managers, and the residual uncertainty. Q.E.D.

An institution based on voluntary transmission of knowledge from managers to
investors could not be workable if managers have incentives to misrepresent their
characteristics. A lot of empirical and theoretical literature, as well as concerns voiced
by investors and regulation authorities, highlight strong incentives for opportunistic
behaviour of managers. Truthful revelation of private information is problematic
to establish because less informed managers tend to exaggerate the quality of their
information. There is a consensus in the literature that signalling schemes based
on performance sharing between investor and manager (the so-called performance
fees) do not lead to separating equilibria and fail to attract high quality managers
(Bhattacharya and Pfleiderer (1985); Ross (2005)).

We argue here that, contrary to the conventional wisdom about the opportunistic
signalling behaviour, managers could have incentives to reveal a part of their infor-
mational characteristics, namely, their type. When investors could learn the types
correctly, they would be able to invest more across the funds belonging to all types,
thus bringing higher profits to all the managers.

To support the above intuition, we give below an example of a simple economy
with two risky assets and two categories of managers having the average precision
Q = ωΣ−1

1 + (1− ω)Σ−1
2 . We calculate the delegation levels and the profits of both

categories of managers with two assumptions about the common knowledge: the
minimal knowledge when only the matrix Q is known, and the knowledge of the
precision matrices Σ−1

1 and Σ−1
2 . For simplicity, we assume that the fund fees are

fixed in both cases and equal to k. Then it is enough to show that the demand for
funds of type 1 and type 2, γ1 and γ2 is greater than the symmetric demand for funds
γ1 > γ, and γ2 > γ.

To prove the possibility of truthful type revelation one should consider a game
when managers have a possibility to misrepresent their type and earn the profits of
investors of the opposite type and to demonstrate that a Nash equilibrium of truthful
type revelation exists. We leave this topic for future research.
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To the contrary, the self-revelation of the precision scale within a type (i.e.
whether the precision is high or low compared to other funds of the same type)
is problematic, because the ”vertical” information would not increase the overall lev-
els of delegation by investors, but will be used by investors to reduce delegation costs
by discriminating better among the managers of a certain type. Thus, within one
type, managers would not truthfully reveal their precision scale.

In principle, investors could attempt to solve the problem of estimation of the
precision scales using past performances (Admati and Ross (1985)). For example,
if a manager m has precision Σ−1

m and his fund portfolio is given by (1.14), then
performance of the fund m over the period t will be given by:

pmt = (smt − PtR)Om(Dt − PtR) + Emx
u
0(Dt − PtR) = (2.18)

= (θt − PtR)Om(θt − PtR) + Emx
u
0(θt − PtR) + δt(εDt, ε

m
t )

A regression of the fund performance on the past realizations of the variable (θ−PR)
could in principle reveal the full precision matrix. The task is even easier if the
category of the manager is known: Σm = amIΣ

−1
I : the only slope coefficient to

estimate is the precision scale amI .
Active efforts to reveal precision scales are taking place in the fund market con-

stantly. Investors collect past performances of the funds, invest in the services of third
parties, such as investment consultants, establish fund rankings and recommended
lists. There is no clear consensus if such activity adds value, as little evidence of
the persistence in past performance (Carhart (1997)) is difficult to reconcile with
the demand for the performance analysis. The search for a, alternative performance
analysis approach relevant in the context of diverse private information would be a
step forward and was advocated by Admati and Ross (1985); Grinblatt and Titman
(1989).

Adding to the existing literature, we would like to highlight two more reasons
why persistent investment performance might be not easy to detect by the traditional
performance measures or by the regressions like (2.18). First, as we will argue below,
a fund portfolio need not be an optimal portfolio with respect to any particular
information set, as long as the primary role of the fund is to truthfully incorporate
the manager’s private signal. The second reason is that the precision matrix, which
is a mathematical abstraction, does not exist in reality, and thus cannot be perfectly
formulated even by the manager himself, especially if we allow for the inevitable
changes in time of the manager’s environment and knowledge. Thus, some drift in
the precisions is inevitable from one period to another, which further complicates
the performance comparison.
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In the next section we formally introduce a mechanism of sharing the precision
type between a manager and an investor with the help of benchmark portfolios.

2.3.2 The role of benchmarks in horizontal differentiation of
funds

The problem of learning the manager’s type might be formulated as a problem of
credibly communicating the type covariance matrix Σ−1

I to investors. As we com-
mented above, the precision matrix is a mathematical abstraction that is useful in
market models but could not be formulated and publicly announced by the manager.
Thus managers have found alternative ways of signalling their type.

One way to signal the type is to provide investors with a description of the
investment strategy, the list of securities on the manager’s watch list, ecc. Such an
approach might potentially transmit rich information to investors, but its drawback is
in the subjectivity of the description of each manager (managers in the same category
might describe differently the same investment approach), and in the subjectivity of
interpretation by investors.

Another way to reveal the type is to rely on a third party to classify managers
based on the publicly available information on their style and investment universe.
Many investors rely on market data providers and consultants to learn about the
fund types. Yet, it seems that the service of revealing the fund type by a third party
is always bundled with a service of revealing the precision scales within a class. In
other words, it is possible that a service of revealing only types is not profitable and
should be complemented with a more lucrative business of selling recommendations
about the ”best-in-class” managers to pick.

Finally, since the 1970s, a new institution to signal the managers’ types have
evolved. Instead of relying on managers’ own description of their type, families of
benchmark portfolios were introduced to represent the type. A benchmark portfolio
is a portfolio with a fixed composition, which is made a common knowledge to all
market participants. Each benchmark portfolio is restricted to a subset of available
securities (the benchmark’s investment universe), so that together a family of bench-
marks covers all the securities in the market. A manager with precision amIΣ

−1
I picks

securities from the investment universe of benchmark BI and promises to deliver the
performance of a portfolio:

xBm = amIΣ
−1
I (sm − PR) +BI (2.19)

which would have a certain variability around the benchmark portfolio BI , mea-
sured, for example, with the help of a tracking error or downside risk limit. Thus,
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instead of communicating the type’s precision matrix, the manager communicates
how his investment approach would on average deviate from the appropriate bench-
mark portfolio.

For example, in the toy model of two risky assets considered in Part 1, where
managers belonged to three categories given by precision matrices (1.111), three
benchmark portfolios could be introduced to signal their types:

B1 = b1

(
1
0

)
, B2 = b2

(
0
1

)
, B3 = b3

(
1
1

)
(2.20)

If asset 1 is interpreted as large-capitalisation stock, and asset 2 as small cap stock,
then the manager types will be interpreted, accordingly, as a large-cap manager, a
small cap manager and a manager holding a broad portfolio.

The promise (2.19) is a credible commitment, because a manager could be sued
for the breach of contract or for negligence if ex-post his portfolio would be shown
to contain off-benchmark securities or to have contained bets incompatible with the
tracking error announced (see, for example, Perold et al. (2003) for the account of
the lawsuit Unilever Superannuation Fund v Merrill Lynch for negligence on the
basis that the fund had 8% deviation from the benchmark performance given the
contractual limit of 3%).

Note, that the portfolio definition (2.19) does not prevent uninformed managers
with amI = 0 from selecting a benchmark and marketing their funds. The ex-post
deviation from the benchmark will be either negligible, which is consistent with
the phenomenon of closet indexing (Petajisto (2013)), or will come from random
deviations of the fund portfolio from the benchmark, if the manager tries to imitate
a signal sm with a pure noise.

The above definition (2.19) did not fix the exact composition of the benchmark
portfolio BI . In the market, such a decision is made by the index provider, an
independent third party. Often the benchmark indices are built by including all
existing shares of the securities in the benchmark’s investment universe, although
some benchmark indices have historically used a different approach to the securities
weighting (notably, the Dow Jones Industrial Average, which is one of the oldest
market indices).

Proposition 15. The weighting of securities inside a benchmark portfolio is irrele-
vant for the levels of delegation.

Proof: The proof of the proposition relies on the ability of fund investors to
offset the exposure to any uninformed portion of the fund portfolio via own account
trading. Indeed, if the composition of portfolio BI is perfectly known to investor, his
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own account trading xm will adjust such as to keep x̃ the sum of the own account
positions and the fixed exposure of the manager’s positions, on the mean-variance
frontier defined by the investor’s information set, as in (1.21):

x̃m = xm + γIBI (2.21)

As a consequence, the delegation quantities γI and the equilibrium fees in the
economy will not change if the composition of the benchmark indices changes in a
predictable way. Q.E.D.

As we assumed that the main role of investment managers is to sell their signals,
any addition to the fund of a fixed-composition portfolio unrelated to the signal does
not affect the value of the manager’s services, and, hence, leaves the demand for
delegation and the managers’ profits unchanged.

The definition of benchmarks as signalling tools for the managers’ types is consis-
tent with the observed facts about the benchmark uses. Benchmark indices are not
created in isolation: every index provider offers a family of indices, providing col-
lectively a coverage of the whole market of securities. Every time a new investment
style appears, a new index is created to offer a benchmark for this investment style.
The qualities of the indices are primarily the transparency, stability of their compo-
sition, sound governance rules in the index maintenance, and broad recognition of
the indices in the investing community (think of creating the common knowledge).
The weighting of the securities within a benchmark is not a quality criteria or a
competitive edge for index providers. Indeed, all major index providers use almost
identical principles of index composition. These stylized facts are consistent with
our hypothesis about the role of benchmark indices.

We painted a rough picture of how the knowledge of managers’ characteristics
could be transmitted through benchmarks. There exist other ways to transmit the
detailed knowledge about individual funds (description of the investment process,
professional certifications of the fund analysts credentials, etc). The question of
whether benchmarks represent a better or an optimal way to convey this information
is difficult to answer. According to the intuition of O’Driscoll and Rizzo (1996),
in order to justify an institution as optimal, one would need to know the ”..very
information whose discovery is the object of that institution”. As O’Driscoll and
Rizzo (1996) put it: ”Were individuals to know enough to rationalize the rule, they
would generally know enough to abandon it.”
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2.4 Performance measurement in the presence of

private information

In this section we explore how the performance of different managers compares one
to another and to the benchmarks in the context of an economy with private infor-
mation, and in the presence of residual uncertainty.

Measuring investment performance in the presence of asymmetric information
presents distinct challenges, as highlighted by Admati and Ross (1985). The man-
ager and the observer/investor do not share the same information set, hence it is
not possible to detect superior information by the conventional risk-return mea-
sures, such as unconditional Sharpe ratio. Portfolios of informed managers will not
lie on the mean-variance frontier of uninformed (or differently informed) investors.
Grinblatt and Titman (1989) highlighted that the widespread measure of abnormal
performance, the Jensen’s alpha, fails to detect the superior information in portfolios
employing market timing.

We would like to add to the above another difficulty. As we showed in previous
sections, the fund portfolio need not be an optimal portfolio with respect to any
particular information set. The only essential requirement for the fund is to truth-
fully incorporate the manager’s private signal. For example, Admati and Pfleiderer
(1990) study indirect sale of private information via a fund assuming that the fund
composition does not have mean-variance structure but is instead equal to the sig-
nal itself. Investor m could always account for the particular structure of the fund
portfolio m′ by adjusting his decision variables γmm

′
. If the structure of the fund

is known to the investor, it’s not important whether the fund portfolio satisfies any
risk-return objectives, as long as it faithfully incorporates the signal. A suboptimal
portfolio structure makes it difficult though to associate the performance of the fund
to any measure of abnormal return.

Admati and Ross (1985) proposed to assess the informational content of portfolios
directly by estimating the components of the precision matrix Σ−1. Such estimation
could be done in principle by regressing ex-post portfolio returns against realized
values of (θ, P ), similar to the example we used in the previous section (2.18). If
the quadratic terms in the regression are significant, then one might conclude that
private information is present in the portfolio. Admati and Ross (1985) show that
performance of any two portfolios is not comparable if they have arbitrary precision
matrices. If two portfolios could be compared, that is, if the difference of the pre-
cision matrices is positive definite, the performance of the portfolio with superior
information is greater ex-post than the performance of the one with inferior informa-
tion. In such a case there exists a possibility of vertical differentiation of managers
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within the same type, in complement to the horizontal differentiation into types that
we discussed in the previous section.

We extend the approach of Admati and Ross (1985) to the economy with the
presence of residual uncertainty, and compare the performance of fund portfolios to
fixed-composition benchmark portfolios.

Contrary to their result, we find that portfolios with superior information are not
guaranteed to have superior ex-post performance as standalone investments in the
presence of residual uncertainty εD. A superior precision of private information will
lead to larger bets on the signal, and, as a consequence, to more important exposure
to the residual uncertainty. The absence of abnormal performance does not diminish
though the value of the informed portfolio as an input into the fund allocation; it’s
just complicates the task of marketing the fund.

2.4.1 Ex-post performance of a fund portfolio

Let’s parametrize a generalized portfolio in the following way:

x = G1(θ̄ − PR) +G2(θ − PR) +G3ε
m (2.22)

The above general parametrization covers all meaningful portfolios that appear in
an economy with asymmetric information:

• Conditional portfolios of informed investors (the funds) xm0 :

G1 =
1

ρ
Em, G2 =

1

ρ
Om, G3 =

1

ρ
Om

• Portfolios corresponding to the aggregate signal of informed investors, which
fully reveals the variable θ:

G1 = 0, G2 =
1

ρ
V −1
D , G3 = 0

• Unconditional portfolios of uninformed investors xu0 :

G1 = (V + VD)−1, G2 = G3 = 0

The term G3 represents the signal error that is present in portfolios that do not
aggregate all the available private information. Such a term is absent in the portfolios
that diversify completely the signal risk, or in the unconditional uninformed portfolio
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that does not contain any private information. If the term G3 is absent and the term
G2 6= 0, then the portfolio diversifies away the idiosyncratic signal signal risk and
aggregates all the available information.

Below we derive expected utility of the generalized portfolio (2.22) for CARA
preferences, conditional on the values of (θ, P ).

E(U(x) | θ, P ) = −E(e−ρx(θ−PR+εD) | θ, P ) = (2.23)

= − e
ρ2

2
(θ̄−PR)G1ṼDG1(θ̄−PR)︸ ︷︷ ︸

(1)

× e−ρ(θ̄−PR)G1(1−ρṼD(G2−ρG3ΣmG3))(θ−PR)︸ ︷︷ ︸
(2)

×

× e−ρ(θ−PR)(G2− 1
2
ρG3ΣmG3− 1

2
ρ(G2−ρG3ΣmG3)ṼD(G2−ρG3ΣmG3))(θ−PR)︸ ︷︷ ︸

(3)

×

× det(ṼD)

det(VD)︸ ︷︷ ︸
(4)

where Ṽ −1
D = V −1

D − ρ2G3ΣmG3.
The four terms in (2.23) can be interpreted as follows:

1. The first term has a strictly negative contribution to the utility related to the
portfolio term G1.

2. The second contribution to the utility is also related to the term G1 and has an
ambiguous sign. Intuitively, sometimes a ”wrong” portfolio can appear ”right”
for some specific realizations of θ (”right for the wrong reasons”). So, the term
G1 6= 0 introduces suboptimality through contribution (1), and ambiguity in
the comparison via contribution (2).

3. The third contribution comes from the aggregate signal G2 and also depends
on the signal error G3. If the error is absent G3 = 0, the term in the exponent
simplifies to −1

2
ρ2(θ−PR)G2VDG2(θ−PR). The optimal value of G2 = 1

ρ
V −1
D

gives the greatest contribution to the utility, which corresponds to a portfolio
conditional on the aggregate private information.

4. The fourth term reduces utility when the errors G3 are present. So, the con-
tribution of G3 - error term, is always negative for the utility.

From the analysis of the decomposition (2.23) one could reach several tentative
conclusions. First, any informed investors has inferior performance compared to the
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aggregate fund allocation, since individual informed portfolios contain the term G3

that is detrimental to the utility. Second, contrary to the result of Admati and Ross
(1985) that the informational edge is sufficient to compare portfolios (the more signal
is pooled, the better), we find that some portfolios that do not contain signal risk
(and, hence pool all the signal) might still be suboptimal and will make ambiguous
yardsticks for performance comparison, because, notably, of their term G1. Third,
the unconditional portfolio of uninformed investors xu0 , while being an attractive
candidate for a benchmark against which to measure informational content of other
portfolios, does not provide a unique result for performance comparison because the
term (2) in (2.23) has ambiguous sign.

2.4.2 Extraction of precision matrices from realized perfor-
mances

As shown in Admati and Ross (1985), the performance measurement goal in an
economy with asymmetric information is to assess a persistent pattern in portfolio
payoffs as reliably as possible and associate each portfolio with a certain precision
matrix. The knowledge of individual precision matrices, as we showed in Part 1,
allows to build optimal fund allocations when delegation is introduced.

Suppose that one has collected detailed information about portfolio performance,
as well as the asset payoffs and prices, during several rounds of asset trading t =
1, ..., T . The collected data allows to formulate a regression problem to detect the
precision matrices of individual portfolios. Possible regression routines were discussed
in Admati and Ross (1985) in the case when aggregate uncertainty was absent. Below
we extend their result to the case where aggregate uncertainty in the assets’ payoffs
is present (εD 6= 0).

For a portfolio that has a structure (2.22), the realized performance during the
round t can be written as:

perft = (θ̄ − PtR)G1(θt − PtR + εDt ) +

+ (θt − PtR)G2(θt − PtR + εDt ) +

+ εmt G3(θt − PtR + εDt ) (2.24)

When G3 = 0, the expression above represents a system of linear equations, where
the components of G1 and G2 could be retrieved if one has enough observation points
t. With G3 6= 0 one has a regression with the error term εmt G3(θt − PtR + εDt ) to
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build estimates Ĝ1 and Ĝ2.2

To lay out the linear specification of the regression and the properties of the
regression estimates, let’s introduce the following notations:

x1
t = θt − PtR, (2.25)

x2
t = θ̄ − PtR, (2.26)

x3
t = θt − PtR + εDt , (2.27)

νt = εmt G3x
3
t (2.28)

Now, one can rewrite (2.24) as a linear regression with the regressors defined in
the following way:

z1
ij = x2

i · x3
j , z2

ij = x1
i · x3

j , i, j = 1, ..., N (2.29)

That is, individual regressors will be xa and their products.

perft = tr(G1z
1
t ) + tr(G2z

2
t ) + νt (2.30)

The linear regression could be performed using the standard OLS techniques,
since the error term satisfies the exogeneity condition:

E(νt | z1
t , z

2
t ) = 0 (2.31)

given that εm is conditionally independent on θ and εD.
The property (2.31) implies that unconditional expectation of the error term is

zero. It also implies the orthogonality condition:

E(νtz
1
t ) = 0, E(νtz

2
t ) = 0 (2.32)

E(νtzt) = E(E(νtzt | zt)) = 0

The residuals νt are not homoskedastic since the residuals conditional variance
changes with t:

E((νmt )2 | x1
t , x

2
t , x

3
t ) = G3ijx

3
tjG3klx

3
tlΣ

m
ik (2.33)

Thus one has to use the tools for heteroskedastic OLS estimation, and, in addition,
to account that the regressors z1

ij and z2
ij are in general correlated.

2The value of the matrix G3 itself cannot be retrieved from regression, unless it is known, for
example, that G3 = G2
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There is a caveat in implementing the regression routine discussed above. It is
built on the assumption that the split of the past dividend Dt in components θt and
εDt is known for all t. Generally, the components of Dt are not observed separately.
Below we discuss possible strategies to retrieve such past information.

Let’s try a reverse exercise and ask if, knowing only Dt and past portfolio perfor-
mances, one could reconstruct the vector θt for every t. The equivalent is to ask if
one can reconstruct from the past performances how much private information was
incorporated into the market prices.

There are two ways to approach the problem. The first is to argue that, if
the market prices were equilibrium prices at each round t, and if one knew the exact
relation between the prices and θ, then the vector of θ could be deduced from prices or
from the market clearing condition directly. For example, if we know that portfolios
have the structure xm = Gm

2 (θ − PR) +Gm
3 ε

m, then the market clears as:∫ 1

0

Gm
2 dm(θ − PR)dm = z, θ = PR− (

∫ 1

0

Gm
2 dm)−1z (2.34)

Such a reverse-engineering of the predictable payoff θ will not be possible, how-
ever, if the supplies z are noisy and unobservable, or if the prices are not equilibrium
prices.

In principle, one should be able to reconstruct the private information from per-
formance realizations because only what is reflected in investors’ portfolios can be
defined as private information. If something was not reflected in the portfolio com-
position, it is as if it did not exist; the private signal exists as long as somebody acts
on it.

The exercise of reconstruction is different from a regression in time. Retrieving
private information necessitates cross-sectional, instead of time, tools. We would like
to argue here that in order to retrieve θ from the past data, the minimal requirement
is to know the full distribution of precisions in the economy. Knowing the full
distribution of precisions is different from knowing which investor has which precision,
so the cross-sectional study may give us the reconstruction of θ even if we do not
know the individual Gm

2 matrices.

In particular, one can define a cross-sectional random variable:

C = (θ − PR)Gm
2 (θ + εD − PR) + εm(θ + εD − PR)

The sources of cross-sectional variability are Gm
2 and εm. Then, one can compute

N moments of the distribution of this variable using the distribution function of
precisions F(Q).
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In conclusion, the assumption that superior performance should follow from su-
perior information is not appropriate in the presence of asymmetric information and
of the residual uncertainty. An informed portfolio should be rather judged by the
quality of its input, i.e. the presence of an authentic private signal, than by its per-
formance as a standalone investment. However, because of the traditional focus of
the investment industry on measuring the superior performance, the efforts to create
a coherent framework to account for asymmetric private information in performance
measurement has been so far limited.

2.4.3 Benchmarks in performance measurement

In a world of asymmetric information investors do not agree on an optimal portfolio.
The economy is a collection of separate CAPM models with each agent having an
own optimal portfolio. Portfolios of peers, al long as they contain unknown signals,
are not on the agent’s mean-variance frontier and the market portfolio is in general
not efficient. The only portfolio with a commonly known composition is the port-
folio of unformed investors. In several delegation models a benchmark was defined
in such a way: as a portfolio of an uninformed investor (Garleanu and Pedersen
(2018)). In markets with frictions, this portfolio serves as a low-cost fund of inferior
quality that some categories of agents prefer. The transaction cost-based paradigm
for the introduction of benchmarks is different from our approach. With a multitude
of complex phenomena related to the use of benchmarks, the cost-saving and the
knowledge-transmitting functions of benchmarks might be both present and the rel-
ative importance of one of these functions might change depending on the context.
For example, in Garleanu and Pedersen (2018) agents possessed perfect knowledge of
the informational characteristics of managers, so there was no need for a benchmark
to signal the managers’ type.

The notion of a common benchmark is natural in the context of models with
public-only information, but it is at odds with the concept of abnormal performance.
When private information is introduced in a model, the notion of a unique benchmark
loses its conventional meaning. Below we will introduce a benchmark in the task of
performance measurement using the definition given in the previous section, where
we call a benchmark any unmanaged portfolio with publicly known composition
(2.19) that is agreed between the investor and the manager.

Introduction of a benchmark facilitates the estimation of precision matrix from
the regression in the following ways. First, it eliminates from the fund structure any
dependence on the unconditional distribution moments of the payoff components θ
and εD. Thus, investors and managers do not have to worry that they have the same
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interpretation of public information. The payoff difference of the fund portfolio and
the benchmark portfolio becomes:

perft−BtI(Dt−PtR) = amI(θt−PtR)Σ−1
I (Dt−PtR)+amIε

m
t Σ−1

I (Dt−PtR) (2.35)

The matrix Σ−1
I is fixed by the choice of the benchmark portfolio BI , thus the

regression will contain only one unknown parameter to estimate: amI . Communi-
cating a narrow benchmark means that private signal of the manager is limited to a
subset of assets, which further facilitates the estimation task.

The expected performance difference, conditional on the observed values (θt, Pt)
in (2.35) is positive for any realization of θ and P :

E(perft −BtI(Dt − PtR) | θt, Pt) = amI(θt − PtR)Σ−1
I (θt − PtR) (2.36)

We showed, however, using (2.23), that an informed portfolio will not necessarily
generate a higher utility than the benchmark, as it might assume too much residual
risk.

2.4.4 Comparison of performance in terms of rates of return

The performance analysis considered so far in our study was based on the portfolio
payoff, while the conventional practice is to compare rates of return of investments,
i.e. returns generated per dollar invested. The latter are easier to construct and
compare, as they do not depend on the size of investments. Note, however, that
rates of return do not produce the same assessment of the value added as payoffs,
especially in the case of asymmetric information. To give an intuition, consider
the case of one risky asset. An informed manager will have higher precision of his
conditional distribution about the asset’s payoff and thus will make a larger bet on
the asset, generating superior expected payoff. In relative terms, however, both the
manager and any uninformed investor invest in the same asset and have identical
relative returns per dollar invested. For this reason some studies advocate the use of
gross fund payoffs in performance measurement (Berk and van Binsbergen (2015)),
to correctly assess the value added by superior asset timing.

Below we contribute to this line of reasoning by showing that, while a fund portfo-
lio defined as (2.19) has larger expected payoff than its benchmark, their performance
comparison in relative terms is ambiguous.

We formulate the problem of relative return comparison in a slightly more general
way, as a problem of performance comparison between two fund portfolios of the same
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type Σ−1:

xi = aiΣ
−1(θ − P ) +B, i = 1, 2, a1 > a2 (2.37)

For simplicity, we omit the error terms from the portfolio composition, and assume
that there is no residual uncertainty (εD = 0).

The difference in gross payoffs is given by:

∆ = (a1 − a2)(θ − P )Σ−1(θ − P ) (2.38)

Fund 1 with higher precision generates larger payoff.
The comparison in relative terms is as follows:

∆rel =
a1θΣ

−1(θ − P ) + θB

a1PΣ−1(θ − P ) + PB
− a2θΣ

−1(θ − P ) + θB

a2PΣ−1(θ − P ) + PB
=

= (a1 − a2)

(
θΣ−1(θ − P )

PΣ−1(θ − P )
− θB

PB

)
(2.39)

Relative performance of two fund managers of the same type depends on the relative
performance of a manager of their type with respect to the relative performance of a
benchmark. One can immediately see that in the case of one risky asset the difference
in relative performance is zero, irrespective of the structure of the benchmark B.

Let’s now rewrite the relative performance of the manager and of the benchmark
in relative terms, defining:

ri =
θi − Pi
PI

,
θΣ−1(θ − P )

PΣ−1(θ − P )
= w1r1 + w2r2,

θB

PB
= b1r1 + b2r2 (2.40)

where
For simplicity, let’s assume that there are two risky assets, and all the matrix

Σ−1 is a unity matrix.

wi =
(θi − Pi)Pi

P1(θ1 − P1) + P2(θ2 − P2)
, bi =

BiPi
B1P1 +B2P2

, i = 1, 2 (2.41)

One can show with a simple algebraic manipulations that the difference (2.39) can
be reduced to:

∆rel = (a1 − a2)
(r1 − r2)(r1b2P

2
1 − r2b1P

2
2 )

r1P 2
1 + r2P 2

2

(2.42)
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The sign of ∆rel depends on the composition of the benchmark. If the benchmark
structure is such that the asset that happened to have higher return was largely over-
weighted, then the relative return of the benchmark will be higher than the relative
return of a perfectly informed portfolio. As a consequence, a portfolio with higher
precision a1 could underperform a portfolio with lower precision a2. Thus, a biased
benchmark structure may lead to incorrect conclusion that the investment skill is
absent. Such benchmark misspecification argument was used by some recent studies
(reviewed, for example in Cremers et al. (2013)), to critique the earlier empirical
performance studies of fund performance where benchmarks were constructed using
factor models. As factor models happen to be disproportionately concentrated on
small capitalization stocks, the funds would tend to underperform because managers
overweight large stocks where the precision of their private information is greater.

The example above is an idealized case, and in reality the comparison of rela-
tive performance is complicated by the presence of idiosyncratic signal errors, and,
eventually, by the residual uncertainty. In a situation where the structure of the
existing benchmarks is an outcome of a trial-and-error decisions made in the past
and held in place because they became popular and easily recognizable by investors,
there is little hope that the structure of each benchmark is perfectly aligned with the
structure of private information of the managers it represents.

Clearly, more efforts are needed towards the coherent performance measurement
in the presence of asymmetric information and in constructing non-performance ap-
proaches to assessing the value of private information contained in managed portfo-
lios.

2.5 Fund portfolio design and competition

The model in Part 1, as well as our study of the demand for delegation under asym-
metric knowledge, were based on the assumption that fund managers do not behave
opportunistically and do not deviate from the portfolio structure expected by in-
vestors, such as (3.5) or (2.19). There is no way to justify the assumption of the
absence of strategic behavior even under complete knowledge of managers’ preci-
sions, because the private signal itself is unobservable and there could not exist an
enforcement mechanism to guarantee that manager incorporates the signal in the
fund truthfully. As we mentioned earlier, the use of benchmarks in the investor-
manager contracts allow to enforce a partial compliance, which is possible if the
fund structure and fund returns are observed ex-post. Thus managers might be re-
stricted to hold only the securities in the benchmark portfolio and do not deviate
from the performance of the portfolio beyond a certain level.
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Here we review the role of the design of fund portfolios in the literature. Many
models of delegation assumed that a manager might alter the fund portfolio. In par-
ticular, the studies that considered the effect of the performance-based compensation
on the managers’ behavior kept the freedom for managers to respond to incentives by
altering fund portfolio or by misrepresenting the signal in order to maximize profits
(Bhattacharya and Pfleiderer (1985)). In other studies the managers’ flexibility in
structuring portfolios was essential to ensure an optimal cost-benefit outcome to all
investors, as for example in the model of Berk and Green (2004), where managers
reallocate the invested money between alpha-generating investments and an index
fund to avoid welfare losses from scale diseconomies. The effect of the flexibility of
the fund portfolio design is most probably mixed and model-dependent, depending
on the balance between the potential for managers to improve investment outcomes
and the detrimental effect of the strategic behavior.

In the literature on information markets, which is closely related to our model of
fund management, the design of informational products plays a major role (Bimpikis
et al. (2019)). The profits of the information seller depend crucially on how the in-
formation is used by the buyers. For example, if the buyers of information compete
among themselves in a downstream market, the type and the intensity of the com-
petition will affect the product design choice of the information seller. In addition,
information externalities, such as leakage of information through public prices, may
induce the information seller to modify the product design in order to limit the leak-
age. Finally, the information seller might use price discrimination, 2-part tariffs and
combine it with the product differentiation in order to maximize the profits (Ad-
mati and Pfleiderer (1988, 1990)). All the above insights were obtained using models
where the information seller was a monopolist, and where information buyers did
not have doubts about the information quality.

When the quality of information is not known to the buyers, the problem of the
seller is not how to optimally design the informational product to extract more of the
consumer surplus, but rather how to credibly signal the information quality (Allen
(1990)) in order to create the demand for the information. The signalling task is
incompatible with the strategic behaviour of managers assumed in the models of fund
competition (Glebkin and Makarov (2012)), where managers ”.. recognize that other
managers do not follow some predetermined investment rules, but rather respond
strategically to others’ investment behavior”. When signalling and commitment to
the signalled quality are of the major importance, fund design will be not altered
deliberately.

In the monopolistic competition setting the power of one seller to manipulate the
usage of information through the information product design is limited, as altering
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the information content might diminish the benefits from the complementarity of the
product to those of other sellers. Thus, our assumption of the managers complying
with a certain structure of the fund might be plausible under the incomplete knowl-
edge about managers’ information and in large markets for funds. In a way, the fund
structure based on benchmarks xmB is a design choice that increases the total use
of the information by investors.

Our model thus differs from the models that allow strategic competition among
managers, as in our case the product design determines the characteristics of the
competition among managers, and not the other way around. Consequently, our
setup allows to investigate the impact of a certain choice for information product
design (the fund structure) on the levels of delegation and on the market efficiency.

Importantly, it will not be possible to assign a benchmark when the fund structure
can be altered deliberately. An example is the difficulty to represent the sector of
hedge funds, or the private equity funds. These funds are notorious for having an
uncertain composition and commanding performance fees, which suggests that their
managers seem more similar to agents exercizing an effort as in (Stiglitz (1974)),
than to information sellers. As a result, it is problematic to introduce benchmarks
in a strategic competition where managers do not have fixed types. And vice versa,
strategic competition is limited if there are benchmarks, because managers have to
structure their portfolios around benchmarks.

How does fund competition look in the presence of benchmarks? In our model
the only dimension along which funds compete is the fund fee, and benchmarks
seem to create a separate pools of competition for each type of managers. Due to
complementarity between the managers’ signals the demand for individual funds is
inelastic, which allows nonzero profits notwithstanding a zero signal cost. In the
extreme case, managers might gain a profit without having a signal, for example
when investors use a symmetric fund allocations. Further study is needed to analyse
the details of fund competition in our model, this is a work in progress.
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3

PART 3: Investment delegation as
a mechanism for aggregating
private information

In Part 3 we show that the delegation institution introduced in Part 1 can be used
as a mechanism to implement a fully revealing rational expectation equilibrium in
an economy with asymmetrically informed agents.

The motivation for this study comes from the discomforting fact that the rational
demand for delegation exists only in the presence of noise trading. Without the
inefficiency in the asset markets there is no incentive to pay managers for their
private information, as it would become available to everybody via market prices.
Noise trading, which entered asset market models as an auxiliary hypothesis (De Long
et al. (1990)), seems to have become a foundation for many essential phenomena in
asset markets such as limits of arbitrage that prevent asset prices to converge to
fundamental asset values.

There are conceptual difficulties with noise trading that might obscure the anal-
ysis. Although noise trading could be in part related to rational activities of some
market participants, such as rebalancing or hedging, in many cases it hides behavioral
biases that the model does not attempt to address explicitly. Because noise traders
do not behave rationally, they are not assigned a precise identity or a utility function.
Thus the welfare of these market participants cannot be assessed, which makes wel-
fare comparisons across model equilibria ambiguous. Also, the asset supplies being
random in the presence of noise trading, it is difficult to define an observable market
portfolio.

One of the most famous paradoxes involving noise trading is the Grossman-
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Stiglitz paradox (Grossman and Stiglitz (1980)) about the impossibility to provide
incentives for information acquisition in the absence of the noise trading. Less known,
there exists another related problem with a wide set of models with privately informed
trading: the implementation problem. When agents are already privately informed
(having acquired information at a zero cost, or considering their information cost as
sunk) they may fail to trade on their private signals in the absence of noise trading,
expecting the prices to be better predictors of the future payoffs than their signals
(Diamond and Verrecchia (1981)). Thus the noise is necessary for prices to aggre-
gate the information, and at the same time limits the aggregation by preventing fully
revealing equilibria. The implementation paradox is present for some categories of
the informational structures, with so-called exclusivity of private information, which
happens to be the case for the delegation model we used in Part 1.

The introduction of noise trading eliminates the implementation problem, because
agents cannot infer the future assets’ payoff from its price. It allows, however, for
partially revealing equilibria only, preventing markets to be informationally efficient.
Garleanu and Pedersen (2018) even coined a term ”efficiently inefficient” to highlight
that some level of inefficiency in asset markets is necessary to support the existence
of equilibrium with privately informed trading and delegation.

The situation where a social dilemma prevents the markets from reaching ef-
ficiency provides an opportunity to form an institution helping to coordinate the
behaviour. We explore here how the introduction of the delegation institution might
serve as a mechanism to incorporate private information into asset prices when it
is impossible to achieve informational efficiency through decentralised asset trading
alone. The intuition is that, when trading on a private signal directly in the absence
of noise trading, an agent has to suffer a loss in utility due to the signal error. When,
instead, the trading in assets is done using the fund market, neither the manager
acting on the signal, nor the fund investors bears the signal risk. The manager acts
on behalf of others and thus is insensitive to the signal error, and the investors are
able to diversify the signal risk completely investing simultaneously in many funds.

If the market for funds were to be viable in the absence of noise trading, it would
lead to informationally efficient asset prices. Moreover, the market portfolio in such
a case would become investable and would be optimal. The efficiency of the market
portfolio would help to explain benchmarking, i.e. investing directly in a fixed-
composition portfolio, the phenomenon observed in the market. The viability of
the delegation in such a case could be problematic because investing in the market
portfolio, equally attractive, will be accessible to everybody at a zero cost. We
address the tension between paying for the service of fund managers and free-riding
with a market portfolio by building a public good game.
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Our analysis has so far reached several tentative conclusions. The markets where
fund management is introduced will be in general more robust as implementation
mechanisms for fully revealing equilibria than asset trading alone. A simple public
good game outcome might be compatible with a simultaneous existence of delegation
and benchmarking in the asset markets, although more thorough analysis and a
consideration of fund management costs are needed to extract meaningful predictions
about the relative importance of delegation and benchmarking.

3.1 Implementation problem for fully revealing equi-

libria

The very act of trading on private information transmits the information through
prices to other market participants. Because the information revealed through prices
is of higher quality than any individual signal (Grossman (1976)), the information
transmission feature of asymmetrically informed markets is generally beneficial for
market participants. In these economies the private information might be in princi-
pal fully incorporated in prices through decentralized trading. (The equilibria with
full revelation of private information are called FRREE, the term stands for fully
revealing rational expectation equilibrium). An extensive literature on the existence
of competitive rational expectation equilibria established equivalence between the
equilibrium in a FRREE economy and a Walrasian equilibrium in an artificial econ-
omy where all private information is made public (Grossman (1978, 1981); Anderson
and Sonnenschein (1982)).

A formal existence of fully revealing equilibria does not guarantee, however, that
they are implementable through decentralized or even center-mediated trading mech-
anisms (see Vives (2007), section. 3.1.2). The main trading mechanism explored in
the implementation literature is a direct-revelation game where agents communicate
their signals to the center and the latter assigns individual allocations based on the
revealed signals. If one can prove that all agents in this game will have rational
incentives to truthfully reveal their signals, then the FRREE equilibrium is said to
be implementable Blume and Easley (1990).

Implementation of a revelation game breaks down, however, if agents have in-
centives to lie about their signals. Thus a truthful revelation might not be a Nash
equilibrium. It was shown that the condition preventing the strategic behavior is the
requirement of so-called non-exclusivity of information Postlewaite and Schmeidler
(1986); Blume and Easley (1990). There are two versions of the non-exclusivity con-
dition. The first Postlewaite and Schmeidler (1986) requires that the random state
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should be fully revealed before the center asks the agent m about his signal. The
second Blume and Easley (1990) requires that all other agents in aggregate are able
to recover the signal of trader m from their private information. The two definitions
convey the notion of ”informational smallness”, but they do not coincide.

Compare two following information structures for a continuum of investors labeled
by m ∈ (0, 1) as follows:

1. Info 1 : sm = s = θ + ε, i.e. all informed agents have the same signal, and

2. Info 2 : sm = θ + εm, cov(εm, εm
′
) = 0,

∫ 1

0
smdm = θ , i.e. all signal errors

are independent and the aggregated signal reveals the state θ.

Both Info 1 and Info 2 satisfy the first definition of ”smallness”, that is, no
individual trader is material for the revelation of full information. However, the Info
1 differs from Info 2 in the sense of the second definition of non-exclusivity. An agent
in Info 1 simply cannot lie about her signal to the others, because other agents in
aggregate already know the signal with certainty. Instead, with Info 2 , there is no
way to recover the realization of the signal sm knowing all other signals, because
individual signals are not perfectly correlated.

The question is whether the economies with Info 1 and Info 2 information struc-
tures are implementable in the sense of direct-revelation games. The FRREE in
Info 1 economy is clearly implementable, both through a revelation game and via a
decentralized auction. Such information structure was used in the model of Gross-
man and Stiglitz (1980). Since the total private information in this case is the same
as the individual information, informed agents will act on their signals and submit
demand functions that depend on it. Their trading will ensure that the information
s is reflected in prices. As highlighted by Diamond and Verrecchia (1981), in such
an economy only a transmission of information exists, but there is no aggregation.

Instead, implementation of equilibrium in the economy with Info 2 is not feasible.
In the context of a revelation game with Info 2, even if no investor has rational
incentives to lie, no agent will have a rational incentive to tell the truth about her
signal either, because individual expected utilities will not depend on the private
signals. No punishment can be implemented for a lie, because the peers cannot
detect a lie (the second definition of ”informational smallness” is violated).

A revelation game might seem an abstraction, but there actually exist real exam-
ples of a failure to aggregate private information through a center-mediated mech-
anism because of the information exclusivity. Gambetta (1993) (pp.220-225) gives
an example of the collapse of the market of radio-dispatched taxis in Palermo in the
1980s, when taxi drivers deceived the operators by quoting too short pickup times in
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order to get the rides. Only a special system of checks where taxi drivers could re-
spond to a call and quote a pickup time only when they were parked at a designated
parking lot and observed by their peers, restored the functioning of the market. Us-
ing the terminology of revelation games, the new allocation system worked because
the private information became non-exclusive.

In asset markets with exclusivity of private information agents will have strong
incentives to learn from the price P (θ), and, given that the price is a sufficient
statistic for any pair (P, sm), ∀m , individual signals will disappear from the traders’
demand functions. The indifference to individual signals compromises a ”strong”,
rationally supported implementation of FRREE for Info 2 economy. For example,
the proof of Laffont (1985) of the existence of fully revealing FRREE will not hold
if one eliminates the assumption of nonzero sensitivity of trader’s utility to their
private signal.

Anderson and Sonnenschein (1982) proposed an implementation via an implicit
coordination of individual models that agents may refine on the basis of empirical
observations. But they conclude that the information an agent possesses will not
be transmitted to the price unless it alters his demand function. As a consequence,
REE is only implementable in the model of Anderson and Sonnenschein (1982) when
asset supplies are noisy.

Summarizing, an implementable equilibrium in an economy with asymmetric in-
formation crucially depends on the informational structure. When prices are ex-
pected to aggregate the full private information, implementation of a fully revealing
equilibrium might not be possible, because agents become insensitive to their private
signals.

Note, that the implementation difficulty is different from the Grossman-Stiglitz
paradox, since the information is given to traders exogenously. Here the prices fail
to be informationally efficient not because the agents have no incentive to acquire
information, but because they fail to trade on the information they already possess,
hoping to profit from a more precise information contained in the equilibrium price.

The standard remedy for the implementation failure in the asymmetric informa-
tion economy is to introduce noisy asset supplies, which makes it impossible to fully
reveal the aggregated private information via prices and thus preserves the incen-
tive to trade on individual signals. Thus many findings about rational exectation
equilibrium are obtained exclusively in the noisy REE setup Admati (1985); Vives
(2007).
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3.2 Costless delegation as an implementation mech-

anism

We argue here that the introduction of a fund market with zero fees represents a
feasible decentralized mechanism for implementing a rational expectation equilibrium
without the need to resort to noise trading. In addition, in the economies with
costless delegation the equilibrium prices will fully reveal all private information.

The central issue facing economies with the information structure of Info 2 type
is that it is not rational to act on the individual signal sm, because conditioning on
price P (θ) is available, and the price is a sufficient statistic for the pair (sm, P (θ)).
Nobody is willing to accept a loss in utility by holding an allocation that contains
the signal error εm.

Delegation institution avoids the problem by dissociating the agents’ trading ac-
tions in the asset market from their utility. Agents, acting as managers, would submit
demand schedules to the asset market based on their individual signals, because they
trade on behalf of investors and do not experience a loss in utility due to the signal
error. Investors, who invest in all available funds, do not assume signal risk because
they diversify across managers. In both of their roles, as investors, and as managers,
agents act rationally. As a result, individual signals get incorporated into the asset
prices.

As we showed in Part 1, in an ideal setup with perfect knowledge of all economy
parameters, including the agents’ signal precisions, the delegation mechanism results
in the same equilibrium price as an economy where the private information is publicly
disseminated, notwithstanding the presence of noise trading.

The implementation via delegation is ”weak” in the sense that there is no self-
enforcing feature that would motivate traders to strongly prefer delegation to direct
trading. Once agents know that mono-signal funds are operating, they would infer
that the prices are fully revealing and will be indifferent between investing in funds at
zero fee or reverse-engineering the full information directly from price and investing
in assets directly.

Yet, delegation has several important advantages over other implementation mech-
anisms, such as revelation games or trading schemes allowing direct trading only:

1. even if one investor decides to skip delegation and invests in the markets directly
extracting the perfect signal from the price, the private signal of this investor
will not be lost, because he will continue to submit demands based on his
signal on behalf of the investors of his fund. An individual signal is lost only
if the individual chooses to free-ride, and if nobody invests in the fund of this
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individual.

2. when knowledge of the structure of the economy is not perfect, delegation might
be strictly preferable to direct investing,

3. delegation allows to avoid explicit communication of the signal to the center for
aggregation. As noted by Hayek in his seminal paper on the use of knowledge
in economy Hayek (1945), a part of private information might be in a non-
communicable form.

4. when delegation fees are introduced, asymmetrically informed traders might
actually profit from their information by selling investment funds for a fee.
Thus, there might be an endogenous incentive to acquire information in an
economy with delegation, even without noise trading.

Thus delegation sustains meaningful asset trading in the presence of private infor-
mation, results in informationally efficient market prices and, if delegation fees are
introduced, allows privately informed agents to extract value from their information
by offering investment funds to investors. In an economy where full revelation of
private information will follow, agents cannot profit from their information by direct
investing. The only way to extract value from the information is to sell a service
based on it, an investment fund.

In order for the delegation to be viable, however, one has to resolve the tension
between the need to remunerate managers for their role in making the prices efficient,
and the possibility to free-ride on the managers’ services by investing directly in the
efficient market portfolio.

In what follows, we develop a more formal setup to study delegation with nonzero
fees, including separate stages for marketing the funds, concluding binding commit-
ments to invest in funds, and trading in assets.

3.3 Structure of the delegation mechanism

We assume that a delegation arrangement consists of three stages: pre-contracting
stage, delegation stage and asset trading stage.

During the pre-contracting stage privately informed agents hold portfolios condi-
tionally optimal with respect to their own private signals and refrain from deducing
the signals of others from asset prices. During this stage they act as managers who
are launching their funds with their own ”seed” money and building the track records
for their funds. We assume, as we did in Part 1 and 2, that signals are obtained at no
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cost, so the only loss that agents suffer during the pre-contracting stage is the loss in
utility by ignoring the informational content of prices. We also assume that during
the pre-contracting stage the uninformed agents are free to condition on prices. At
the end of the pre-contracting stage, which could last several ”rounds”, there is a
collection of data accumulated about the performances of different funds. Based on
the performance data any agent will be in principle able to deduce the precision
of the signal from the fund’s performance record, using, for example, a regression
routine described in Part 2.

The delegation stage begins with agents approaching their peers and offering to
invest in their funds for a fee during the subsequent asset trading round. Fund
managers make a promise to invest the delegated money strictly according to the
same signal that was used for the fund during the pre-contracting stage (that is, fund
managers will continue to refrain from inferring the signals of others from the prices).
Investors decide what portion of their own wealth to delegate, and what portion to
invest directly in asset markets. At the delegation stage none of the agents is able
to observe the next period signals or the future prices of the risky assets. Investor
and manager sign contracts to safeguard the promises.

The asset trading stage begins by revealing the private signals. Then managers
submit the fund demands according to their signals and all agents submit demands
for their own accounts. When trading for their own accounts, agents are free to
condition on price. It is possible that some agents will not be willing to participate
in the delegation stage, hoping to free-ride on the aggregate private information
during the market session without having to pay a fee to the managers. Although
the delegation arrangement will not eliminate the information free-riding completely,
an equilibrium with aggregation of private information is possible when at least some
of the agents decide to delegate.

There are several problems that may perturb such an arrangement:

• Managers might not respect their promises to incorporate the private signals in
the fund portfolios. They might prefer either to ignore their signals, or, to try
to guess the signals of others. In both cases the drift in the fund’s approach is a
problem for investors, because their decision to delegate to a particular manager
is based on the manager’s precision and on the way it is related to the precisions
of others. The possibility of the ”style drift” is real and investors should plan
for this. Though there is no clear incentive for the manager to deviate from the
performance promise, the investor might add to the contract some observable
performance metrics enhancing the compliance. First, there might be a penalty
for performing exactly like the market portfolio (or other suitable benchmark
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portfolio) to avoid the ”closet-indexing” phenomenon1. Second, there might be
a penalty on too large deviations from the benchmark (e.g. using the tracking
error limit).

• It is important to specify the outside option of the game, that is, what happens
when nobody agrees to delegate. The first possibility is the unimplementable
equilibrium, where the market breaks down because everybody tries to guess
the aggregate information and fails to act on the own signal. The scenario
of market failure does not have a unique expected payoff, because everybody
submits the order for the market portfolio at any price (so no price schedules
can be coordinated). The resulting price is arbitrary. One possibility is to
associate with the market failure a payoff equivalent to investing in the riskless
asset.

The second scenario is to assume that, when the delegation breaks down, in-
formed investors ”forget” about their signals (for example, discontinue signal
licenses). Then the agents in the economy become all uninformed and a CAPM
equilibrium follows. One problem with the CAPM outside option is that, from
the welfare point of view, the informational efficiency is not always paired with
Pareto efficiency. It might happen that too much information is revealed, elimi-
nating insurance opportunities (Laffont (1985)). The exact welfare comparison
of the equilibria with and without the aggregated private information will also
depend on the assumption about the supply of the riskless asset. We will as-
sume for the rest of this Part that the outside option gives a payoff inferior to
that of the fully revealing equilibrium. We then address the welfare analysis in
appendix 3.A.

Given the difficulties outlined above, we proceed by assuming that managers
comply with their investment mandate. We assume, without the loss of generality,
that there is a threshold delegation level γ∗ that managers require in order to operate
their funds. If an investor considers delegation, given that the current delegation level
is below γ∗, signing or not the contract with the managers gives the same outcome.
Signing the contract when γ > γ∗ is not convenient, because the investor is sure that
managers will incorporate the information in prices and he will opt for free-riding on
the information. One may argue that the only non-trivial decision is at γ = γ∗.

1Another possibility is a relative performance bonus.
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Figure 3.1: The stages of the delegation game

3.4 Equilibrium at the pre-contracting stage

To create the demand for delegation, informed investors refrain from conditioning on
the equilibrium price for a certain amount of investment ”rounds” and invest their
wealth in the mean-variance efficient portfolios conditioned only on their private
signals. We assume that there is a continuum of investors labeled by m ∈ (0, 1),
each possessing a private signal sm = θ + εm with the signal error variance Σm =
V ar(sm | θ). We also assume that a portion ω of the continuum of investors has
no private signal Σ−1 = 0. These investors do not plan to sell their services as
fund managers in the future, and thus do not impose on themselves the constraint
of not extracting the signals of others from the prices. In this section we look at
the equilibrium during the pre-contracting stage and discuss how investors evaluate
performance records of the peers’ funds.

We assume that there is a residual uncertainty in the market, as the assets’ payoffs
D are not perfectly determined by the aggregate private information:

D = θ + εD, εD ∼ N(0, VD) (3.1)

The equilibrium is given by the optimal portfolios of informed investors xm0 con-
ditioned on their private signals only, by the portfolios of uninformed investors xu

that condition on the market prices, and the equilibrium prices. We assume that all
investors have the same CARA preferences and share the knowledge of unconditional
probability distribution of risky payoffs D ∼ N(θ̄, V + VD):

We introduce the following definitions. The expected value of θ conditional on a
private signal sm:

θm = E(θ | sm) = (V −1 + Σ−1
m )−1(Σ−1sm + V −1θ̄) (3.2)

The expected value of θ conditional on price P :

θ(P ) = E(θ | P ) = A−1
1 (PR− A0) (3.3)
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where Ai are coefficients of the linear price functional:

P = A0 + A1θ (3.4)

The equilibrium asset demands then are defined as follows:

xm0 =
1

ρ
Em(θ̄ − PR) +

1

ρ
Om(sm − PR) (3.5)

xu =
1

ρ
V −1
D (θ(P )− PR) (3.6)

where Em = V −1 (1 + VD(V −1 + Σ−1
m ))

−1
, Om = Σ−1

m (1 + VD(V −1 + Σ−1
m ))

−1
. The

equilibrium price is found from the market clearing condition:

z = Ē(θ̄ − PR) + Ō(θ − PR) +
ω

ρ
V −1
D (θ − PR) (3.7)

which gives:

A0 = (Ō + Ē + ωV −1
D )−1(Ēθ̄ − ρz) (3.8)

A1 = (Ō + Ē + ωV −1
D )−1(Ō + ωV −1

D ) (3.9)

where Ē =
∫ 1−ω

0
Emdm, and Ō =

∫ 1−ω
0

Omdm.
During the pre-contracting stage informed agents are supplying a public good,

because the market clears with informationally efficient prices. The benefit that
uninformed investors rceive from the trading of informed fund managers can be
measured by comparing expected utilities of the uninformed unconditional portfolio
x0
u = 1

ρ
V −1(θ̄ − PR) to the conditional uninformed portfolio (3.6) in the presence of

informed trading.

3.5 Delegation game

During the contracting stage fund managers offer investors to buy shares in the funds
for a fee. Investors who choose to buy the shares will have to sign binding contracts
with the managers, thus securing an indirect access to the full private information.
Investors who choose not to invest in funds will have an opportunity to wait until
the trading stage when the asset prices will reveal the full information, and build an
informationally efficient asset allocation by themselves.

If the fund fees are zero, the two alternatives (delegating and free-riding) will be
equally attractive. If one considers informational efficiency of the market to be a
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public good, one would say that investors can supply the public good by delegating
to managers at no cost. Though the choice to delegate does not strictly dominate
the choice to free-ride at the individual level, it is unlikely that the public good will
not be supplied in the case of zero fund fees. If investors are undecided between
delegating and free-riding, they could just make their choice randomly, for example
flipping a coin. The public good will be supplied even if a fraction of investors end
up delegating, as long as all the funds continue to operate. Using the terminology of
the public good games, the strategy to supply the public good, though not dominant,
is reasonable if fund fees are zero.

With nonzero fees km 6= 0, the free-riding alternative would be a rational choice
for an individual investor, but will be suboptimal from the collective point of view.
If no individual will be willing to pay for the funds, the supply of the public good will
be disrupted. The situation fits the description of a social dilemma, where individual
incentives go against what is the best for the group. The contracting stage thus turns
into a strategic game with multiple players, where everyone’s decision to supply the
public good will depend on the expectations about the decisions of others.

The common intuition in economics is that in a situation of a social dilemma the
public good will be undersupplied and the Nash equilibrium will be Pareto-inefficient.
Yet, as highlighted by Archetti and Scheuring (2012), the common intuition might
be misleading, because it is built on one particular model of the public good, namely
the linear contribution model. In the linear model the value of the public good
grows linearly with individual contributions. The dominant equilibrium in such
game is when everyone chooses to free-ride and the public good is undersupplied or
not supplied at all. The outcome might be quite different, however, for nonlinear
models of public goods, which fit better the pure public good representing market
efficiency. With nonlinear models there are Nash equilibria when the public good is
supplied at the optimal level (Palfrey and Rosenthal (1983)). An extensive theoretical
and experimental literature employed nonlinear public good models to explain the
phenomenon of private provision of public goods without recurring to behavioural
explanations, such as ”warm glow”, or other-regarding preferences. According to
the literature on nonlinear games, ”incentive-compatible institutions” might exist
and the production of the public good may be feasible (benefit exceeds the cost),
dominant, or reasonable.

3.5.1 Private provision of public goods

Here we briefly review the main features of a public good game where the good in
question is provided only when the level of contributions meets a certain threshold.
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This form of the public good production function is known in the literature under
the names of a discrete or threshold public good (Palfrey and Rosenthal (1983)), or
a volunteer’s dilemma (Diekmann (1985), Bliss and Nalebuff (1984)).

A typical threshold game involves multiple players who have to choose between
two strategies: contribute to the public good paying a cost c, or to defect. The
public good, without the loss of generality, is assumed to bring utility 1 to each
player, regardless of the individual contribution. The good is provided only if the
threshold of w contributions is met. Assume for the moment that there is a finite
number N of players and denote the actual number of contributions by n.

In order to characterise the equilibria in a threshold game, several other game
features have to be specified: the refund of the contribution if the good is not pro-
vided, the possible set of strategies (for example, if mixed strategies are allowed),
and the possibility for the players to communicate. The possibility to get a refund
could have material consequences for the provision of the public good, because it
eliminates the ”fear” to lose the contribution (van de Kragt et al. (1983)). The
possibility to use mixed strategies turns out to be important, because it allows to
build equilibria where the good is provided in a symmetric way without dividing the
group in pure ”contributors” and pure ”defectors”. The possibility to communicate
might be crucial to allow the implementation of asymmetric equilibria, where certain
players volunteer in front of the others, or are publicly designated by the group to
contribute.

The main takeaway from the literature on threshold public goods is that these
games possess multiple equilibria, and in many of the equlibria the public good
is provided. Thus, even if the opportunity to free-ride is attractive individually,
the strategic motives to cooperate are strong enough to ensure the provision of a
threshold public good. The main intuition for the existence of a good equilibrium is
as follows. If the number of contributing players is observable, then in equilibrium
exactly w investors will contribute. Near the equilibrium the choices are strategic
substitutes: if a player thinks that too many of the peers will free-ride, he prefers
to contribute; and if he thinks too many players will contribute, he should free-ride
(Camerer and Fehr (2006)). Thus there exist equilibria with exactly w contributors,
which ensures the provision of the public good, and at the same time results in
Pareto-efficiency, because the exact minimum of contributions is met. Would there
be n > w contributions, the public good will be still provided, but the contributions
above the threshold would be wasted.

The implementation of an asymmetric Pareto-efficient equilibria in a threshold
game requires some mechanism to designate the contributors. There are two main
options to do so: relying on the heterogeneity of players, or allowing communi-
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cation. If the players differ in their characteristics, such as wealth or the cost of
the provision of the good (Bergstrom et al. (1985), Palfrey and Rosenthal (1983)),
the volunteers could be naturally singled out as the wealthiest players (Palfrey and
Rosenthal (1983)), or the least-cost contributors (Bergstrom et al. (1985), Bliss and
Nalebuff (1984)). Otherwise, if the players are all alike, there is a possibility to
allow the group to communicate and decide collectively who will be the volunteer
(van de Kragt et al. (1983)). This way each designated volunteer will be aware of the
criticality of his contribution to the provision of the public good, and the dominant
strategy of the designated volunteers will be to contribute.

The assumptions of heterogeneity of the players or of the possibility to communi-
cate are not always met. For example, for big groups (and, possibly, infinite groups)
communication might be practically infeasible, or unreliable because of even a tiny
probability of the presence of irrational individuals in the group. Irrational volun-
teers wight miss the contribution even if it is in their individual interest, and thus
break down the supply of the good. The bigger the group the greater the probability
of having at least one such individual present. The assumption of heterogeneous
costs is not relevant to our model where the cost of he provision of the public good,
in our case the fund fees, is the same for everyone. Thus is it important to consider
possible equilibria in mixed strategies, where no individual chooses a pure strategy
to ”only free-ride” or to ”only contribute”.

Equilibria in mixed strategies are realized when player ”m’” decides to contribute
to the public good with a certain probability qm′ . If the equilibrium value of the
probability is the same for everyone (q∗m′ = q), the resulting equilibrium is symmetric,
meaning there is no need to sort players into volunteers and defectors, and no need
to introduce communication. The mixed equilibria were shown to be inferior from
the point of view of Pareto-efficiency (Palfrey and Rosenthal (1983)), but they often
result in the provision of the public good.

To conclude, there is a fair chance that the delegation game, where investors
choose between paying managers to produce informationally efficient prices, and
free-riding by investing directly in risky assets at efficient prices, will result in the
provision of the public good. The informationally efficient prices will be enjoyed by
the delegating and the free-riding investors alike.

3.5.2 Is delegation a threshold game?

Armed with the intuition that informationally efficient markets could be implemented
even if individuals have incentives to free-ride, we have to consider carefully if the
the delegation game is indeed a threshold public good game. The game at the
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delegation stage is obviously more complex than a basic threshold game. Managers
have strategic motives in the definition of the fees, making the cost of the public good
an endogenous variable. Moreover, investors and managers are not separate groups,
so each player simultaneously chooses his strategy as an investor and as a manager.
To move forward, we begin by defining a simplified delegation game, where the fees
are fixed exogenously, so only the individual decisions of investors matter. We would
later transform the game to endogenize the fees. Let’s assume for the moment that
there is a finite number N of investors. We would then take the limit N →∞.

To define the delegation game with exogenous fees as a threshold public good
game, we need to specify its ingredients: the characteristics of the public good, the
payoff from the public good, the cost of the contribution to the public good, the
threshold for the provision of the good, as well as the features like the possibility of
the refund, the introduction of communication and the use of mixed strategies.

It is fairly straightforward to see that the informational efficiency of prices satisfy
the properties of a public good: it is non-rival, meaning that several people could
trade on efficient prices simultaneously, and is non-excludable, meaning that once
the prices are efficient there is no way to prevent non-contributors from trading on
these prices. The payoff from the public good is the same for all investors, because
in the absence of noise all agents hold the same informationally efficient allocation,
irrespective of their decision to contribute (i.e. delegate) or free-ride (i.e. invest
directly in assets). If the public good is not supplied, it is plausible to assume that
every investor gets a payoff of zero, which would correspond to a failure of the markets
to clear.

All players in the game are aware of the fact that buying the funds is akin to
contributing to the public good, in the sense that the contribution does not bring
any private benefits beyond the value of the public good of informational efficiency.
The cost of an individual contribution to the public good is the total fee that an
investor pays to fund managers. Given the linear structure of the fund fees, the
fee for investing in one fund m′ is equal to the fee per share km

′
multiplied by the

optimal number of shares of the fund to buy γmm
′
, where m labels investors. In the

absence of noisy trading, all investors will have the same demand for funds, because
they would stop trading on their private information for the personal account. If the
prices are efficient, one cannot achieve a superior allocation to that of an uninformed
investor. (Yet, the heterogeneous private information will still matter for the players
when they consider their strategy as managers.) Consequently, the fee is independent
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on m:

f =

∫ 1

0

γm
′
fm
′
dm′ (3.10)

Thus, all players in the public good game have the same cost f of supplying
the public good. The game thus differs from the volunteer’s dilemma of Bliss and
Nalebuff (1984) where the costs were heterogeneous, leading to an equilibrium where
the least cost providers volunteered to contribute to the public good.

The minimal level of contribution needed to provide the public good is the min-
imal total fee that should be paid to fund managers. Since in our model there are
neither information acquisition costs, nor fixed fund management costs, there is no
obvious candidate for the threshold. One could not rule out a priori that the man-
agers will accept managing the funds for only one investor. In the case of a finite
number of players such an assumption would lead to a threshold of just one player,
with the minimal contribution being equal to f . Below we will investigate the game
properties with an exogenous threshold of w ∗ f . Although a manager would not
lose money by serving just one client, there might be a strategic incentive to raise
the minimal number of required contributions above one, given that, if the public
good is provided in the equilibrium, the number of contributions will be around the
threshold. The threshold here gives another source of pricing power to managers,
who can threaten to withhold the public good to extract more contributions.

It is natural to assume that the fund fees paid by investors will be refunded when
the total number of contributions falls short of the threshold. The refund is costless
to managers, as no part of the fees is used by managers as an upfront expense to
provide the funds. It also reflects the fund management practices when the fees
paid upfront are reimbursed when the delegation contract is terminated early. The
possibility of a refund eliminates the ”fear” motive to free-ride, as pointed out by
van de Kragt et al. (1983), although it was shown to make little difference in the
equilibrium provision of the public good.

Finally, we do not allow group communication before the delegation stage. Such
communication could be in principle used to select the volunteers who will be ex-
pected to contribute. Such coordination of expectations was shown to be crucial in
implementing asymmetric equilibria in public good games, where some players select
to contribute, and the others to free-ride. van de Kragt et al. (1983) reported that
the possibility of communication led to the provision of a threshold public good in
100% of the game rounds, versus to about 30% when there was no communication
prior to the game. When communication was allowed, players used three mecha-
nisms to designate the contributors: lottery, volunteering, and need basis, with the
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lottery being the most common mechanism. It is difficult though to imagine any of
these three mechanisms of communication to be implemented in the fund market,
especially if we are interested in large markets with potentially infinite number of
players.

In the absence of communication it is important to retain the possibility to play
mixed strategies, when any given playerm does not elect a pure strategy to contribute
or to free-ride, but chooses his action randomly, with a probability qm to contribute.
We allow for such strategies in our game, and will consider two distinct cases: an
a priori symmetric case where qm = q, and a case where each player chooses his
optimal q∗m in equilibrium.

3.5.3 A delegation game with fixed fees and exogenous thresh-
old

Below we give the individual payoff matrix for the public good game with exogenous
threshold w. The payoff from the public good is equal to 1. The individual cost of
contribution to the public good is equal to f . The cost should be less than f < 1 in
order for the private provision of public good to be feasible. The contributions are
refunded if the threshold is not met.

n ≤ w n < w − 1 n = w − 1
Contribute 1− f 0 1− f
Free− ride 1 0 0

(3.11)

We consider here the equilibrium in mixed strategies, when each player con-
tributes with probability q. Such equilibria have desirable property of being symmet-
ric, eliminating the need to specify the mechanism of designating the contributors.

We will look for the answers to the following questions concerning the game above:

1. If players in the threshold public good game use mixed strategies, what is the
probability that the public good will be provided?

2. How the probability to provide the public good depends on the threshold?

3. Is there an optimal threshold w∗ where managers maximize their profits?

Let’s denote by ni the number of contributions excluding the contribution of
investor i. The expected payoffs for investor i is derived from the expected payoff
from contributing P(ni ≥ w − 1)(1 − f) and the expected payoff from free-riding
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P(ni ≥ w). In equilibrium the investor i is indifferent between the two options,
which defines the condition for an optimal contributing probability q:

(1− f)P(ni ≥ w − 1) = P(ni ≥ w) (3.12)

Rearranging the expression one gets:

f =
P(ni = w − 1)

P(ni ≥ w − 1)
(3.13)

With the common probability q for an individual contribution, the number of
contributions follows a binomial distribution:

P(ni = w − 1) =
(N − 1)!

(w − 1)!(N − w)!
qw−1(1− q)N−w (3.14)

Substituting (3.14) into (3.13), and simplifying the expression somewhat one
obtains:

1

f
=

N−1∑
i=w−1

(w − 1)!(N − w)!

(N − 1− i)!(i)!

(
q

1− q

)i−w+1

(3.15)

The indifference condition (3.13) thus defines a function F (q;w,N). The inverse
functionQ(f ;w,N) exists (see Palfrey and Rosenthal (1983)). In the case of arbitrary
w it might not be possible to derive the functional form of Q(f ;w,N) explicitly. Yet,
one could always solve the condition (3.15) numerically.

Once the optimal probability of contribution q∗ is specified, one could compute
the probability of the provision of the public good as P(n ≥ w).

Let’s calculate the probability of the provision of the public good in a simple
example of w = 1. The game where only one contribution is sufficient to provide the
public good is also known as the volunteer’s dilemma (Diekmann (1985), Bliss and
Nalebuff (1984)). It is easy to derive the optimal probability to contribute q∗(w = 1)
directly from the original indifference condition (3.13), noting that the probability
in the denominator is equal to 1:

f = P(ni = 0) = (1− q)N−1 (3.16)

Therefore,

q∗(w = 1) = 1− f
1

N−1 (3.17)
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The probability of the provision of the public good if players use mixed strategies
is:

P(m ≥ 1) = 1− (1− q∗)N = 1− f
N
N−1 (3.18)

The probability that the public good will be provided with the threshold of just
one contribution, and using mixed strategies only, is thus a decreasing function of the
contribution cost f . For large groups the probability is roughly equal to 1− f . This
result is different from the prediction of the volunteer game of Bliss and Nalebuff
(1984), when the probability of the provision of the public good approached 1 when
the group size increased to infinity. The crucial difference between our threshold
game and their volunteer game is the heterogeneity of the contribution costs in Bliss
and Nalebuff (1984), which provides a reason for a waiting subgame where the least
cost player will eventually contribute.

In Appendix 3.B we derive several other special case solutions, as well as a general
formula easily adaptable for numerical simulations. Here are some results on the
behavior of the probability of the provision of public good for different configuration
of parameters (w,N, f).

Probability to provide the public good through symmetric mixed strategies de-
creases monotonically with the cost f (fig. 3.2). The increase of the threshold (in
the above example from 1 to 2) does not have a monotonic effect on the probability:
the provision of the public good is more likely with just one volunteer if the costs are
low, but becomes more likely with two volunteers when the cost per person is high.

To investigate the behavior of the probability as a function of the number of
players N , we plot the probability for three values of the threshold: w = 1, 2, 3.

The probability to provide public good (fig. 3.3) has a limit for large N . For
small w at least, the limit is reached after roughly N = 100. The bigger the threshold
w, the smaller is the probability of supplying the public good in the limit.

To see how the probability to supply the public good behaves for arbitrary N
and w, we plot the numerical solutions obtained by the method in Appendix 3.B.

From the figures 3.4 it is evident that the provision of the public good has high
probability in two configurations:

1. too low threshold w << N , and

2. too high threshold w ∼ N .

The two configurations share the same property of criticality, that is a higher
likelihood of an individual contribution being critical for the provision of the good.
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Figure 3.2: Probability to provide public good

Note also that the cost f has a strong effect on the result, with high costs driv-
ing the probability to provide public good close to zero for intermediate values of
the threshold. For the two favourable configurations of the threshold listed above,
however, the good is very likely to be provided even with high costs.

It is important to remind that the threshold game has other asymmetric equilibria
in pure strategies, where the public good is provided with certainty. We do not focus
on those equilibria here because these would introduce another layer of difficulty,
namely specifying the mechanism of appointing contributors.
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Figure 3.3: Probability to provide public good
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Figure 3.4: Probability to provide public good
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3.5.4 A delegation game with exogenous fees and endoge-
nous threshold

The level of the minimal contributions w will be eventually decided by fund man-
agers. Although there is no structural floor for the contributions in the absence of
management and information costs, there might be strategic motives for managers
to refuse to supply the funds until a certain level of contributions is reached. If a
manager expects that in equilibrium the demand for the fund will be around the
threshold, it is rational to increase the threshold as much as possible, as long as
”good” equilibria, when the public good is provided, are feasible.

Here we consider two possibilities: (i) a homogeneous threshold, and (ii) hetero-
geneous individual thresholds. The homogeneous threshold (i) could be interpreted
as a collective decision of managers, made in order to maximize the total number
of contributions to the public good. In the other case (ii) when managers do not
coordinate on the same threshold, each of them selects an individual threshold in a
subgame. The subgame involves managers anticipating the decisions of other man-
agers and the demand for the funds for each possible threshold. To derive a Nash
equilibrium in the subgame one has to specify what will be the demand for the funds
when individual thresholds are heterogeneous.

Suppose there are heterogeneous individual thresholds wm′ . If a number w of
investors delegate, only the funds with wm′ < w will be active at the asset trading
stage. The managers who chose the thresholds wm′ > w will close their funds. The
managers of the closed funds could choose to trade on their private information for
their own accounts. If they do so (or, if investors expect them doing so), then free-
riding will become strictly more attractive than investing in the active funds, because
the equilibrium price will contain more private information than the active fund
allocation. In such a case one would expect everybody to free ride, and the markets
will fail to aggregate the private information. Hence, in the case of heterogenous
thresholds, the ”good” equilibrium is possible only when all funds operate, i.e. when
w ≤ wmaxm′ .

The next step would be to look for an endogenous threshold w∗ at which managers
get the maximum profit, which we leave for future research.

Summarizing, the exercise of considering delegation in an economy without noise
trading inefficiencies highlights the fundamental role of the professionally managed
funds, that is making asset prices informationally efficient. It also exposes the tension
between the need to remunerate the managers for the provision of the public good
(informationally efficient prices), and the incentive to free-ride by forgoing investing
in funds and resorting to benchmarking. The nonlinear structure of the public good
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game in this case leaves a possibility that the good will be provided privately, when
at least a portion of agents will volunteer to invest in funds and pay the managers’
fees. Such equilibria could be feasible without sophisticated mechanisms of volunteer
selection or communication. In particular, several equilibria in mixed strategies
described in this Part provide a non-zero probability of provision of the public good
and serve as a rough picture of how investing in funds and benchmarking could
co-exist.

3.6 Appendix 3.A: On the welfare analysis of the

economies with asymmetric information

In economies with asymmetric information one should distinguish between three
types of efficiency concepts: ex-ante, interim, and ex-post (Holmstrom and Myerson
(1983)).

As shown in Laffont (1985), the rational expectations equilibria, including the
fully revealing ones when implementable, might not be Pareto efficient interim and
ex-ante.

Suppose the true distribution of risky assets’ payoffs is True = N(θ, VD) and
the publicly known distribution is False = N(θ̄, V + VD). The public distribution
has higher variance (more uncertainty) and a bias θ − θ̄. If we solve for equilibrium
under the true and the false distributions, all agents will have the same portfolio
structure, they will be holding the market portfolio z in both cases. The difference
between the two equilibria is the price:

PFalse =
1

R
(θ̄ − ρ(V + VD)z) (3.19)

PTrue =
1

R
(θ − ρVDz) (3.20)

Let’s compute the agent’s expected utility in the two equilibria under the true
distribution. First, holding the market portfolio with an arbitrary price P one has:

ETrue(U(z, P )) = −e−ρeR−ρz(θ−PR)+ ρ2

2
zVDz (3.21)

Substituting the expressions for PFalse and PTrue for the generic pice P one has:

ETrue(U(z, PTrue)) = −e−eR−
ρ2

2
zVDz (3.22)
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ETrue(U(z, PFalse)) = −e−eR−ρz(θ−θ̄)−ρ2zV z−
ρ2

2
zVDz (3.23)

The latter utility (resulting from the False distribution) contains a positive con-
tribution of the extra uncertainty zV z and an ambiguous contribution from the bias
z(θ− θ̄). So, the overall comparison is not conclusive. Moreover, an investor cannot
assess the difference between the two possibilities without knowing the true distri-
bution mean θ, which we assume may be learned only at the asset trading stage.
So, what measures of utility can investors use at the delegation stage to compare
alternatives?

In the discussion above we assumed that the riskless asset was in elastic supply,
which should not necessarily be the case. In the absence of noise trading it is easy to
introduce a fixed supply condition for the riskless asset and determine the endogenous
rate R: ∫ 1

0

xmBdm = 1, e− zP = 1 (3.24)

where e is the endowment (equal for all investors).

The riskless rate will not be the same for informationally efficient and informa-
tionally inefficient risky assets’ prices.

RTrue =
1

e− 1
z(θ − ρVDz) (3.25)

RFalse =
1

e− 1
z(θ̄ − ρ(V + VD)z) (3.26)

The endogenous interest rate is smaller for the economy with greater uncertainty
in risky asset prices, thus the economy with inefficient asset prices will have lower
return from the riskless asset. Also, the bias in the probability distribution of risky
assets will affect the riskless rate: if the bias results in overestimating the mean of
risky securities, the riskless rate is larger, and vice versa.

The combined effect of the inefficient prices on investors’ utilities in the case of
riskless asset in unit supply is the following:

ETrue(U(z, P,R)) = −e−ρeR−ρz(θ−PR)+ ρ2

2
zVDz = −e−ρzθ−ρR+ ρ2

2
zVDz (3.27)

The utility is higher in an economy with a higher endogenous riskless rate R.
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If we compare the market with the ”False” distribution of risky payoffs and that
with the ”True” distribution, one has:

RTrue −RFalse =
1

e− 1
(z(θ − θ̄) + ρzV z) (3.28)

So, with endogenous riskless rate the uncertainty zV z penalizes the information-
ally inefficient economy with the False public probability distribution. Even if the
prices of risky assets in this market are lower, the overall amount invested in risky
assets is low, and thus the demand for riskless bond is relatively high, depressing the
riskless rate.

The bias θ− θ̄ has, again, an unpredictable sign depending of the realization of θ.
Underestimating the probability mean θ − θ̄ > 0 is worse than overestimating it. If
the bias is absent, the improvement is the public distribution increases the expected
utility.

External effect on utilities

If an agent was offered an ex-ante choice in which economy to live, the one with False
public distribution, and the one with True distribution, the decision cannot be based
on marginal utility improvements, but is based on a global comparison of expected
utilities, measured under the same probability distribution (the True distribution).
As was shown before, the expected utility of investing in the market portfolio under
the true distribution is the following:

ETrue(U(z, P,R)) = −e−ρeR−ρz(θ−PR)+ ρ2

2
zVDz = −e−ρzθ−ρR+ ρ2

2
zVDz (3.29)

The ratio of utilities is thus:

ETrue(z, PTrue, RTrue)

ETrue(z, PFalse, RFalse)
=

e−ρeRTrue+ρzPTrueRTrue

e−ρeRFalse+ρzPFalseRFalse
(3.30)

It is easy to recover the two particular cases we discussed above, when the riskless
asset is in elastic supply and in unit supply:

1. Elastic supply RTrue = RFalse = R.

ETrue(z, PTrue, R)

ETrue(z, PFalse, R)
= eρzR(PTrue−PFalse) = eρz(θ−θ̄)+ρ

2zV z (3.31)

Reducing uncertainty in public distribution of risky payoffs is not beneficial in
this case, because it leads to higher prices of risky assets and lower returns.
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2. Unit supply e− Pz = 1:

ETrue(z, PTrue, RTrue)

ETrue(z, PFalse, RFalse)
= e−ρ(RTrue−RFalse) = e−

ρ
e−1

(z(θ−θ̄)+ρzV z) (3.32)

Reducing the variance of the public probability distribution gives the opposite
result compared to the case of elastic supply: it improves agents’ utilities. The
direction of the bias is also inverted: if for elastic supply of riskless asset it
was beneficial to underestimate the true mean, with the unit supply, on the
contrary, it underestimation brings a penalty, while overestimation is beneficial.

3.7 Appendix 3.B: Analytical solution for the thresh-

old public game

We derive analytical solution for the indifference condition (3.15) of a threshold
public good game, defining the equilibrium probability to contribute when players
use mixed strategies. An explicit solution can be easily obtained for w = 2 and
w = 3.

First, recall the indifference condition (3.15):

1

f
=

N−1∑
i=w−1

(w − 1)!(N − w)!

(N − 1− i)!(i)!

(
q

1− q

)i−w+1

(3.33)

where q is the probability to contribute to the public good, f is the cost of
contributing per person, N is the number of players, and w is the threshold of
required contributions.

Recall, that the solutions derived are valid for N > w.
First, let’s derive the equilibrium probability in the case of N = 3, w = 1, 2.
The configuration N = 3, w = 1 was already solved above, the optimal q∗ =

1− f 1/(N−1), and the optimal probability of having the public good:

P(m ≥ 1) = 1− fN/N−1 = 1− f 3/2

Let’s solve the case w = 2, using two approaches. From the indifference condition
3.13, and 3.15.

(1− f)P(mi ≥ 1) = P(mi = 2)

P(mi = 1) = (N − 1)q(1− q), P(mi = 2) = q2
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(1− f)(2q(1− q) + q2) = q2

q∗ =
2(1− f)

2− f
Another method is to start formally from:

1

f
=

N−1∑
i=w−1

(w − 1)!(N − w)!

(N − 1− i)!(i)!

(
q

1− q

)i−w+1

(3.34)

Let’s denote by

y =
q

1− q
, q =

y

1 + y

1

f
=

N−1∑
i=w−1

(w − 1)!(N − w)!

(N − 1− i)!(i)!
yi−w+1

Redefine j = i− w + 1:

1

f
= (w − 1)!

N−w∑
j=0

(N − w)!

(N − w − j)!(j)!(j + 1)...(j + w − 1)
yj (3.35)

Define:

S(y) =
N−w∑
j=0

(N − w)!yj

(N − w − j)!(j)!
= (1 + y)N−w

Integrating with respect to y both parts:∫
S(y)dy =

N−w∑
j=0

(N − w)!yj+1

(N − w − j)!(j)!(j + 1)∫
S(y)dy =

∫
(1 + y)N−wdy =

(1 + y)N−w+1

N − w + 1
− 1

N − w + 1

The indifference condition (3.35) can be expressed via a (w-1)-times integral of
S(y) as follows:

1

f
=

(w − 1)!

yw−1

∫
w−1

S(y)dy (3.36)
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The general form of w − 1-times integration of (1 + y)n−w could be derived in
closed form.

For w = 2 we have:

1

f
=

(w − 1)!

yw−1

(
(1 + y)N−w+1

N − w + 1
− 1

N − w + 1

)
1

f
=

1

y

(
(1 + y)N−1

N − 1
− 1

N − 1

)
(3.37)

Substitute N = 3:

1

f
=

1

y

(
(1 + y)2

2
− 1

2

)
=

2y + y2

2y
= 1 +

y

2

The optimal:

y∗ = 2

(
1

f
− 1

)
which is the same as q∗ obtained above.

Let’s calculate the probability of supplying the public good:

P(m ≥ 2) = 3q∗2(1− q∗) + q∗3

For w = 3 the condition (3.36), taking the integration two times, will lead to:

1

f
=

2

y2(N − 1)(N − 2)

(
(1 + y)N−1 − 1− (N − 1)y

)
(3.38)

The probability to provide public good has a limit for large N . For small w at
least, the limit is reached after roughly N = 100. The bigger the threshold w, the
smaller is the probability of supplying the public good in the limit.
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