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“Begin at the beginning”, the King said gravely,
“and go on till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland





Abstract

In recent years, traditional epidemiology has been exposed to a new digital revolution driven
by the advent of modern communication technologies and the pervasive use of digital devices,
that has radically transformed the way people communicate and search for information in real-
time through the Web. In this context, non-traditional approaches have emerged in the use
of such digital traces generated by human activities on social media, crowdsourced platforms
and Internet in general, to monitor global health by exploiting the immediate availability of
these data to improve timeliness, and spatial and temporal resolution, thus providing health
authorities with an additional and potentially scalable layer of information that may guide the
public health decision-making process. In this dissertation, I will present my contributions in
the use of such novel digital data streams for monitoring, modelling and predicting the epidemic
spreading of infectious diseases. First, I will focus on seasonal influenza that annually affects
millions of people around the world with a severity that can vary substantially from year to
year. In Italy, a participatory surveillance system called Influweb, part of the European network
called Influenzanet, aims at monitoring seasonal influenza activity in a cohort of individuals
who self-report their health status through Internet-based surveys, thus providing an additional
layer of influenza-related information directly gathered from the general population. The result
is a large amount of crowdsourced digital data that can be rapidly analysed for a variety of
purposes, including monitoring disease trends, identifying risk factors, but also to complement
traditional surveillance data and give early detection of local outbreaks by providing local and
timely estimates of the levels of influenza circulating among the population. In this dissertation,
I will investigate the representativeness of the participants involved in the data collection and I
will evaluate the goodness of the detected epidemiological signal as compared to the traditional
surveillance data based on general practitioners’ reports. Furthermore, I will show how these
different data sources for monitoring influenza epidemics in Italy can be combined by means of
simple autoregressive models in order to improve seasonal influenza forecasts by leveraging on
the digital component of Influweb having earlier data available. Indeed, real-time forecasts of
major influenza indicators, such as peak time and peak intensity, can provide key information
for public health interventions, such as resources allocation for influenza prevention and control.
Here, I will describe a computational framework for real-time forecast of seasonal influenza based
on Influenzanet data, traditional surveillance reports and a dynamical mechanistic model called
GLEAM (GLobal Epidemic And Mobility model). Real-time forecasts of seasonal influenza are
publicly available at www.fluoutlook.org for several countries and several influenza seasons.

Differently from well-known diseases like seasonal influenza, the emergence of new infectious
diseases is continuous, variable and remarkably difficult to predict, such as the Zika outbreak
that recently hit the Americas between 2015 and 2016. In this dissertation, I will focus on
the epidemic of Zika occurred in Colombia, mainly addressing the role of human mobility in
the spreading of the disease by investigating different mobility networks of human movements
across the country generated by mobile phone data, mobility models and census data in a
metapopulation modelling approach that allows to simulate the spatial and temporal evolution
of the epidemic spreading of the disease, accounting for detailed population data and human
mobility pattern.
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Preface

This dissertation is submitted as a requirement for the degree of Doctor of Philosophy in the
Doctoral School in Life and Health Sciences at the University of Torino. The research presented
here was conducted under the supervision of Dr. Daniela Paolotti and carried out primarily
at the Institute for Scientific Interchange (ISI Foundation), in Torino, Italy, between November
2014 and November 2017, plus a three-month internship at United Nations Global Pulse in New
York, USA, from June to September 2017. In particular, this dissertation is the result of several
works I have carried out in the field of modern computational and digital epidemiology, mainly
focused on the use of novel digital data streams for monitoring, modelling and predicting the
epidemic spreading of infectious diseases.

Chapter 1 is dedicated to the literature review and description of the state-of-the-art of this sci-
entific field, giving insights on the progress in the study of infectious diseases, from the disease
surveillance techniques to the epidemic modelling approaches and the prediction of epidemics.

In Chapter 2, I will focus on an innovative online tool for monitoring seasonal influenza epidemics
in Italy as compared to the traditional surveillance system based on general practitioners’ re-
ports. This chapter is the result of an ongoing collaboration with the Italian Institute of Public
Health (ISS) and is based on the following publication:

• Daniela Perrotta, Antonino Bella, Caterina Rizzo, Daniela Paolotti Participatory On-
line Surveillance as a Supplementary Tool to Sentinel Doctors for Influenza-Like Illness
Surveillance in Italy. PLoS ONE, 2017

In particular, I personally carried out the work presented in this paper, including col-
lecting, processing and analysing the various datasets, and validating and visualising the
results, as well as contributing in writing the manuscript.

In Chapter 3, I will focus on the real-time forecasting of seasonal influenza activity by using
different forecasting techniques and integrating different data sources, particularly highlighting
the benefits of leveraging on novel digital data sources to capture an additional layer of real-time
and geo-localized signal. This chapter is based on the following publications:

• John S. Brownstein, Shuyu Chu, Achla Marathe, Madhav V. Marathe, Andre T. Nguyen,
Daniela Paolotti, Nicola Perra, Daniela Perrotta, Mauricio Santillana, Samarth Swarup,
Michele Tizzoni, Alessandro Vespignani, Anil Kumar S. Vullikanti, Mandy L. Wilson,
Qian Zhang Combining Participatory Influenza Surveillance with Modeling and Forecast-
ing: Three Alternative Approaches. JMIR Public Health and Surveillance, 2017

This paper aims at investigating three different participatory disease surveillance systems
in the use of modelling, simulation and forecasting. Here I will report only our original
contribution based on a computational framework that includes real-time influenza-related
data, traditional surveillance reports and a dynamical model for spatial epidemic spreading
able to provide long-term predictions of seasonal influenza activity. This methodology
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has been previously validated in Ref. [204, 205] of which I am co-author, as a result
of an ongoing collaboration with Qian Zhang, Nicola Perra and Alessandro Vespignani at
Northeastern University. In this work I personally contributed by exploring the calibration
of the model with a different data source, running the simulations, and analysing, validating
and visualising the results, as well as contributing in writing the manuscript.

• Daniela Perrotta, Michele Tizzoni, Daniela Paolotti Using Participatory Web-based
Surveillance Data to Improve Seasonal Influenza Forecasting in Italy. Proceeding of the
26th International Conference on World Wide Web (WWW), 2017

This paper aims at investigating how traditional surveillance data reported by general prac-
titioners can be combined with digital surveillance data from a participatory Web-based
system in order to improve seasonal influenza forecasts in Italy. In particular, I personally
carried out the work presented here, including collecting, processing and analysing the two
datasets, building and testing the various forecasting models, and analysing and validating
the results, as well as writing the manuscript.

In Chapter 4, I will focus on the Zika outbreak occurred in Colombia in 2015-2016, mainly study-
ing the role of human mobility in a metapopulation modelling approach based on real data on
population and a detailed description of the epidemiological characteristics of the disease. This
work is the result of an ongoing collaboration with Miguel-Luengo Oroz at the United Nations
Global Pulse in New York, USA. In this study, I personally conducted the research by perform-
ing each step of the work presented here, including the collection, analysis and visualization of
the various datasets, as well as building and testing the mobility networks, writing the code of
the epidemic model and performing the analysis of the simulations.

In addition, over the course of my PhD program I had the opportunity to collaborate to other
projects that are not presented in this dissertation and are listed below:

• Carl Koppeschaar, Vittoria Colizza, Caroline Guerrisi, Clément Turbelin, Jim Duggan, W.
John Edmunds, Charlotte Kjels, Ricardo Mexia, Yamir Moreno, Sandro Meloni, Daniela
Paolotti, Daniela Perrotta, Edward van Straten, Ana O. Franco Influenzanet: Citizens
Among 10 Countries Collaborating to Monitor Influenza in Europe. JMIR Public Health
and Surveillance, 2017

• Caroline Guerrisi, Clément Turbelin, Thierry Blanchon, Thomas Hanslik, Isabelle Bon-
marin, Daniel Levy-Bruhl, Daniela Perrotta, Daniela Paolotti, Ronald Smallenburg,
Carl Koppeschaar, Ana O. Franco, Ricardo Mexia, W. John Edmunds, Bersabeh Sile,
Richard Pebody, Edward van Straten, Sandro Meloni, Yamir Moreno, Jim Duggan, Char-
lotte Kjels, Vittoria Colizza Participatory Syndromic Surveillance of Influenza in Europe.
The Journal of Infectious Diseases, 2016

• Qian Zhang, Nicola Perra, Daniela Perrotta, Michele Tizzoni, Daniela Paolotti, Alessan-
dro Vespignani Forecasting Seasonal Influenza Fusing Digital Indicators and a Mechanis-
tic Disease Model. Proceeding of the 26th International Conference on World Wide Web
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Introduction

Infectious diseases have ever been a great concern of humankind and throughout history human
beings have served as incidental hosts to many infectious diseases that have resulted in dev-
astating epidemics [98]. In the 14th century, the Black Death carried by rat fleas on different
trading routes spread throughout the Mediterranean and Europe claiming a heavy toll of lives
killing almost one-fourth of the entire population. In 1918, the special circumstances during
the World War I, such as overcrowded camps and hospitals, and soldiers piled in trenches or in
transit every day, allowed the spreading of an unusually virulent and deadly flu virus. Perhaps
the most lethal pandemic in the history of humankind, the Spanish Flu killed between 20 and
100 million people, more than the number killed in the war itself. In both episodes, human
movements across regions and countries promoted the spread of the disease. Nowadays, the
growth of the transportation infrastructure, with the airline system being the main and fastest
means of transportation, enhanced human mobility and worldwide connection resulting in a
larger opportunity for infectious diseases to spread on a large scale more rapidly than ever be-
fore. The emergence of new infectious diseases is continuous, variable and remarkably difficult
to predict [148], thus feeding an increasing attention and global concern towards the next po-
tential pandemic, mainly wondering when and where it might strike, and whether practitioners
and scientists are prepared to respond and prevent the disastrous consequences of wide-spread
transmission of a new disease [48]. Indeed, modern life conditions make the scenario of a global
pandemic more likely as an increasing share of the planet lives in megacities, humans are en-
croaching on animal environments and the global trade and travel are constantly growing, thus
heightening the likelihood of a sustained person-to-person transmission of pathogens as well as
a rapid geographical spread of pathogens in new areas. The last recent global public health
threats, such as the 2009 A (H1N1) influenza pandemic, the 2013 MERS-CoV outbreak and the
2016 Zika outbreak in Latin America, are only small glimpses of how quickly a deadly virus can
spread, hitting also previously uninfected populations. In fact, infectious disease agents con-
tinuously adapt and evolve, resulting in newly emerging viruses (e.g. severe acute respiratory
syndrome (SARS)) or re-emerging ones (e.g. West Nile virus), that add up to the other existing
diseases, like HIV and influenza, that still remain unresolved threats to human health. Thus,
monitoring, modelling and forecasting the spatial and temporal evolution of disease activity in
human populations can help in fulfilling the mantra of early detection and early response to stop
epidemics in their tracks.

In this context, computational epidemiologic approaches intervene in providing alternative
solutions by exploiting the increasing computational and data integration capabilities to de-
velop epidemic models of great complexity and realism. Since experimenting epidemics in-vivo
is not a feasible option, epidemic modelling represents the main resort for understanding the
disease spreading mechanism, predicting the future course of an epidemic and evaluating control
measures and intervention strategies to reduce the overall impact of a disease. In recent years,
epidemic models have evolved from simplified compartmental models into data-driven mecha-
nistic approaches focused on large-scale microsimulations for scenario analysis of real infectious
disease outbreaks [136]. In such approaches, data-driven epidemic models are able to produce re-
alistic simulations of the global spread of infectious diseases by adopting high-resolution data on
populations, human mobility and a detailed description of the socio-demographic interactions

1



2 Introduction

among individuals to mathematically model the disease transmission mechanisms simulating
the spatial and temporal evolution of epidemics at the level of single individuals [43, 45]. Given
such unprecedented level of detail, data-driven mechanistic models represent a powerful tool to
analyse policy making scenario, target efficient control measures, guide public health decision
making process and provide quantitative forecasts of real epidemics.

However, since such powerful modelling techniques rely on data, having accurate and readily
available data is becoming more and more crucial in order to properly and timely inform data-
driven approaches. In recent years, with the advent of modern communication technology and
the pervasive use of digital devices, modern epidemiology has been exposed to a new revolution
and transformation of the pre-existing practices into digital disease detection techniques and
digital warning systems that harness new technologies and novel data streams to monitor the
health of populations and predict the future course of an epidemic [183]. With the vast majority
of the world getting online, digital records of social interactions can provide sensory informa-
tion of a potential infection in a certain geographical region, allowing for an early detection of
particularly aggressive infection or new emerging diseases among the general population. This
is the idea behind digital epidemiology: the fact that the health of a population can be assessed
in real-time through digital traces generated by human activities on social media, crowdsourc-
ing platforms and the Internet in general [174]. In this context, a variety of non-traditional
approaches have emerged in recent years leveraging on the use of new digital data sources to
provide local and timely information about disease outbreaks and related events around the
world. Some examples are provided by Twitter [164], Wikipedia [142], Google search [109], but
also participatory systems based on the possibility for single individuals to monitor and self-
report their own health status through Web-based platforms [201]. Such novel data streams can
be useful also to characterize human mobility patterns, necessary to properly inform epidemic
models and assess the spatial spreading of infectious diseases, thus allowing for rapid interven-
tions and appropriate control measures [54, 115, 169].

In this dissertation we will describe our original contribution to the field of modern computa-
tional and digital epidemiology, mainly in the use of novel digital data streams for monitoring,
modelling and predicting the epidemic spreading of infectious diseases. In Chapter 1, we will
cover the state-of-the-art of this scientific field, giving insights on the progress in the study of
infectious diseases, mainly focusing on the disease monitoring techniques and how they evolved
from traditional practices to innovative approaches based on the immediate availability of novel
data streams, on the epidemic modelling approaches from simple compartmental models to the
more recent data-driven mechanistic models, and eventually on the difficult task of predict-
ing epidemics, trying to harness new technologies to predict the next emerging public health
threats. In Chapter 2, we will focus on a participatory Web-based surveillance system present in
Italy for monitoring seasonal influenza epidemics in a cohort of individuals who self-report their
health status through Internet based surveys. Such novel non-traditional approach to gather
self-reported health-related information results in a large amount of crowdsourced digital data
that can be rapidly analysed for a variety of purposes, including monitoring disease trends, iden-
tifying risk factors, but also to complement traditional surveillance data and give early detection
of local outbreaks by providing local and timely estimates of the levels of influenza circulating
among the population. In Chapter 3, we will focus on the real-time forecasting of seasonal in-
fluenza activity by using different forecasting techniques and integrating different data sources,
particularly highlighting the benefits of leveraging on novel digital data sources to capture an
additional layer of real-time and geo-localized signal. In Chapter 4, we will focus on the recent
Zika outbreak occurred in Latin America in 2015-2016, limiting the study to the epidemic of Zika
in Colombia and mainly addressing the role of human mobility in a metapopulation modelling
approach based on real data on population and a detailed description of the epidemiological
characteristics of the disease, investigating the potential benefits of integrating human mobility
patterns provided by mobile phone data.



Chapter 1

Background

I simply wish that, in a matter which so closely
concerns the well-being of the human race, no de-
cision shall be made without all knowledge which
a little analysis and calculation can provide.

— Daniel Bernoulli, 1760

Epidemiology is the study of the factors affecting the health of populations in order to develop,
implement, and evaluate effective intervention programmes for disease prevention and health
promotion. In recent years, traditional epidemiology has been exposed to a new digital revolu-
tion driven by the advent of modern communication technologies and the pervasive use of digital
devices, that has radically transformed the way people communicate and search for information
in real-time through the Web [97]. In this chapter, I will cover the state-of-the-art of modern
computational and digital epidemiology, describing the progress in the study of infectious dis-
eases from the point of view of surveillance, modelling and forecasting of epidemics and how
they have evolved from traditional practices to innovative approaches based on the immediate
availability of novel digital data streams.

1.1 Disease Monitoring

Disease surveillance is an important epidemiological practice for the detection and prevention
of the spread of an epidemic. Surveillance is an ongoing, systematic process for the collection,
analysis and interpretation of data with the aim of observing patterns of progression and mini-
mizing the harm caused by outbreaks, as well as disseminating results in order to inform, prepare
future actions and appropriate interventions, and plan strategies for treatment to reduce overall
impact of the disease, including mortality. A key part of modern disease surveillance is the
practice of disease case reporting that, with the advent of modern communication technology,
has changed dramatically, being transformed from manual record keeping to instant worldwide
internet communication. The number of cases can derive from different layers of surveillance,
including general practitioners (GPs) counting disease-associated visits, laboratory confirma-
tions, hospitalization admissions, mortality data, depending on the type of disease and the
country. Formal reporting of notifiable infectious diseases is a requirement placed upon health
care providers by many regional and national governments, and upon national governments by
the World Health Organization (WHO) that is the lead agency for coordinating global response
to major diseases. Examples of notifiable diseases include diseases preventable by vaccination
(e.g. influenza, hepatitis B), sexually transmitted diseases (e.g. HIV, herpes), nosocomial in-
fections (e.g. methicillin-resistant Staphylococcus aureus (MRSA)), foodborne illnesses (e.g.
botulism), waterborne diseases (e.g. cholera), contagious diseases caused by airborne particles
(e.g. tuberculosis), diseases transmitted by vectors or parasites (e.g. rabies, malaria), and
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emerging diseases (e.g. Ebola, Zika). The list of mandatory notifiable diseases may vary over
time, according to a country’s stage of development and the capacity of its health workforce.

However, traditional disease surveillance systems present practical limitations, mainly due to
an heterogeneous population coverage and to considerable delay in disseminating data. In fact,
traditional surveillance systems only include those populations who have access to health care
or who decide to go to the doctor in the first place, and are often affected by reporting lags due
to the time required to collate data and by continuous revision of the numbers initially released.
Complementary surveillance systems are thus needed to provide additional and accurate data,
but especially available quickly. In this context, a variety of non-traditional approaches have
emerged in recent years leveraging on the use of new digital data sources that can provide local
and timely information about disease outbreaks and related events around the world [174, 183].
An outstanding example is HealthMap [17], a powerful tool for disease outbreak monitoring and
real-time surveillance of emerging public health threats [104, 151]. Founded in 2006, HealthMap
acquires data from a variety of freely available digital media sources (e.g. ProMED-mail, Euro-
surveillance, Google News, Baidu News) in different languages to obtain a comprehensive view
of the current global state of infectious diseases. HealthMap is used as an early detection sys-
tem and supports situational awareness by providing current, highly local information about
outbreaks, used by a variety of organizations including state and local public health agencies.
Examples of Twitter-based disease monitoring are provided by EbolaTracking [4] and ZikaTrack-
ing [31] that monitor tweets mentioning Ebola- and Zika-related keywords through a machine
learning filtering approach with the aim of tracking and providing awareness on ongoing global
conversations. But, in general, such phenomenon has particularly grown in the scope of moni-
toring influenza-like illnesses (ILI) activity that still represents a global public health problem
causing high socioeconomic impact and substantial burden. Several digital data sources have
been explored for augmenting traditional surveillance systems, such as Twitter data, whose flu-
related tweets are used as a proxy for flu activity levels in a population [56, 69, 87, 163, 164, 181],
and Wikipedia, whose access logs are used to analyse the amount of Internet traffic on certain
influenza-related Wikipedia articles in order to estimate the proportion of the population with
ILI symptoms [142]. But the most popular example is certainly Google Flu Trends (GFT).
Launched in 2008 to help predict flu epidemics, it was based on the use of flu-related search
terms entered in Google’s search engine to reveal the presence of flu-like illness in a population
[109]. Google Flu Trends popularized the idea of using digital data to derive epidemiological
insights, but also demonstrated that this is no easy task when during the 2012-2013 flu season
in the Northern Hemisphere GFT drastically overestimated the peak of flu prevalence [60, 131].
This episode serves as a remainder that new disease-tracking techniques based on mining of
web data and on social media may complement, but not substitute traditional epidemiological
surveillance networks, because, even if they are able to extract useful signals indicating disease
activity, they fail in gathering information on the general population and the amount of people
who are actually sick.

On the other hand, the advent of modern technology and the increasing community engage-
ment in public health have fostered the birth of participatory surveillance systems based on the
possibility for single individuals to monitor and report their own health status through Web-
based platforms [201]. In 2009, Influenzanet [21], a European-wide consortium for monitoring
influenza-like illness using participatory surveillance systems was established [158]. It was first
launched in 2003 in the Netherlands and Belgium as “The Great Influenza Survey” (De Grote
Griepmeting [2]) and the system was subsequently adopted by Portugal (Gripenet [11]) in 2005,
Italy (Influweb [24]) in 2008, the United Kingdom (Flusurvey [9]) in 2009, Sweden (Halsorapport
[16]) in 2011, France (Grippenet [13]) and Spain (Gripenet [12]) in 2012, Ireland (Flusurvey [8])
and Denmark (Influmeter [22]) in 2013 and Switzerland (Grippenet [14]) in 2016. Similar sys-
tems were independently implemented in Australia (Flu Tracking [10]) in 2006, Mexico (Reporta
[28]) in 2009, the United States (Flu Near You [5]) and Germany (GrippeWeb [15]) in 2011, and
Puerto Rico (Salud Boricua [29]) in 2012. Figure 1.1 shows a timeline of the aforementioned
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Figure 1.1: Timeline of the participatory surveillance systems for monitoring influenza-like illnesses. The
platforms belonging to the Influenzanet network are indicated in blue. Figure reproduced from [125].

participatory surveillance systems for ILI in Europe and worldwide [125]. The result is a large
amount of crowdsourced digital data that can complement traditional surveillance data and give
early detection of local outbreaks by providing local and timely estimates of the levels of in-
fluenza circulating among the population. In particular, participatory surveillance systems have
been proven to be accurate and reliable for ILI surveillance, as the detected timing and rela-
tive intensities of influenza epidemics are consistent with those reported by general practitioners
[86, 88, 158, 167, 192]. Furthermore, participatory surveillance data have been used for a number
of purposes, such as to estimate the severity of the 2009 H1N1 influenza pandemic [57, 65, 159],
to assess health care usage [165, 189, 192] and to provide relevant information to estimate age-
specific influenza attack rates [75, 162, 167], influenza vaccine effectiveness [66, 91, 95, 96] and
risk factors for ILI [32, 112, 192]. Challenges to participatory surveillance include the recruit-
ment and retention of participants, the accuracy of self-reported data and the development of
nationally representative sample, especially for the populations at risk [39, 42, 64].

In conclusion, despite issues and limitations, digital disease surveillance systems have the po-
tential to support infectious disease monitoring and complement data captured through existing
traditional practices. Digital data sources are valuable for detection, monitoring and dissemi-
nation of information, facilitating communication during emerging disease infections, but also
providing insights of the spatial spread and identifying regions with high prevalence or different
demographic groups and communities for the implementation of targeted interventions and con-
trol measures, such as delivering specific medicine and distributing vaccines [59, 201]. Moreover,
such digital systems can be employed in resource poor regions where supplementary sources
(such as high-resolution satellite imagery and syndromic surveillance systems) are needed to
fulfill the lack of a strong public health infrastructure [61, 72, 154]. The integration of different
sources can improve the surveillance and reduce gaps present in individual sources and systems
by monitoring different layers of a population from different perspectives and, if adopted by
appropriate public health authorities, the data available through these systems can aid in early
detection and response to outbreaks by building digital warning systems designed to track and
stop local and global epidemics [35, 47, 183].
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1.2 Epidemic Modelling

In recent years, the increasing computational and data integration capabilities have enabled the
development of computational epidemic models of great complexity and realism [173]. Given
the high human mobility and connection among different parts of the globe, with the airline
transportation system being the main and fastest means of transportation, epidemics have the
potential to spread on a large scale more rapidly than ever before. On the one hand, this
highlights the need for timely and effective surveillance systems capable to detect emerging
diseases and support traditional practices of disease monitoring. On the other hand, since ex-
perimenting in-vivo epidemics is not a feasible option, modelling approaches are the main resort
to understand the spreading mechanism of diseases, predict the future course of an epidemic and
evaluate control measures and intervention strategies to reduce the overall impact of a disease.
First important steps towards modern epidemiology was made by Daniel Bernoulli, who in 1760
introduced a mathematical method to evaluate the effectiveness of early forms of immuniza-
tion against smallpox, and by Dr. John Snow, who helped to eradicate the cholera outbreak
occurred in London’s Soho district in 1854 by identifying and removing the source of the infec-
tion, i.e. a public water pump, thus inspiring significant changes and improvement in general
public health around the world. In 1927, A. G. McKendrick and W. O. Kermack published
the Kermack-McKendrick epidemic model [124] describing the relationship between suscepti-
ble, infected and recovered individuals in a population, thus defining the modern mathematical
modelling of infectious diseases, which is still ongoing and continuously growing.

Nowadays, disease evolution and contagion processes can be described with a variety of math-
ematical models of spreading and diffusion processes, ranging from simple compartmental ap-
proaches into structured frameworks increasingly focused on the hierarchies and heterogeneities
of communities and populations [49]. Figure 1.2 shows the different structures at different scales
used in epidemic modelling [37, 49]. Epidemic modelling describes the dynamical evolution of
the contagion process within a population that is generally assumed to be divided into differ-
ent classes (or compartments) depending on the stage of the disease, such as susceptibles (who
can contract the infection), infectious (who have contracted the infection and are contagious),
and recovered (who have recovered from the disease). Additional compartments can be con-
sidered in order to model other possible states of individuals with respect to the disease, for
instance immune individuals or individuals exposed to the infection but not yet infectious. This
framework can be further extended to take into account vectors for those diseases propagating
through contact with an external carrier, such as mosquitoes for malaria or fleas for plague. The
temporal evolution of the infection in the population is governed by transitions of individuals
from one compartment to another that are generally specified by the disease etiology, such as
the transmission rate or the recovery rate. The infection dynamics occurs when individuals get
into contact and change their health status according to the disease. In the simplest assump-
tion, individuals within each compartment are considered to be identical and homogeneously
mixed, meaning that they can interact homogeneously with each other with random contacts.
This is indeed a non-realistic situation as populations are generally structured heterogeneously
according to socio-demographic factors, thus a detailed description of social interactions among
individuals can help in modelling the epidemic spreading of infectious diseases. Similarly, the
introduction of heterogeneous connectivity patterns in multiscale models helps in better de-
scribing population dynamics based on the spatial structure of the environment, transportation
infrastructures and human movement patterns. In particular, metapopulation models describe
spatially structured interacting subpopulations, such as cities, urban areas, or any defined ge-
ographical regions, accounting for the possibility that people move between different locations.
Figure 1.3 schematizes a metapopulation modelling approach in which the system is composed
of a heterogeneous network of subpopulations (or patches) connected by migration processes of
individuals [81]. Each subpopulation contains a population of individuals classified according
to their health status with respect to the disease (e.g. susceptible, infected, removed) as the
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Figure 1.2: Structures at different scales used in epidemic modelling where circles represent individuals
and colors indicate a specific stage of the disease. From left to right: homogeneous mixing, in which
individuals are assumed to interact homogeneously with each other at random; social structure, where
people are classified according to demographic information (age, gender, etc.); contact network models, in
which the detailed network of social interactions between individuals provide the possible virus propaga-
tion paths; multiscale models which consider subpopulations coupled by movements of individuals, while
homogeneous mixing is assumed on the lower scale; agent-based models which recreate the movements
and interactions of any single individual on a very detailed scale (a schematic representation of a part of
a city is shown). Figure reproduced from [49].

usual compartmental framework with the assumption of homogeneous mixing. The interaction
among subpopulations is the result of the movement of individuals from one subpopulation to
another on the network of connections among subpopulations. A simplified modelling approach
assumes a Markovian process to approximate origin-destination mobility [49, 170]. In this case,
the movement of individuals at each time step is given according to a matrix pij expressing the
probability for an individual in the subpopulation i to travel to the subpopulation j. Thus,
individuals are not labelled according to their original subpopulation and at each time step the
same traveling probability applies to all individuals in the subpopulation without having mem-
ory of their origin. Such approach is widely used for very large populations when the traffic
wij among subpopulations is known, by stating that pij ∼ wij/Nj , where Nj is the number of
individuals in subpopulation j. Several modelling approaches to the large-scale spreading of
infectious diseases use this mobility process based on transportation networks for which it is
now possible to obtain detailed data [77, 79]. On the other hand, even complicated mechanistic
patterns can be accounted in a non-Markovian travelling process that allows individuals of sub-
population i to travel to destination j and come back at a constant rate as the usual commuting
process. Here the subpopulations of the metapopulation system are coupled through detailed
rate of traveling/commuting, thus defining the mixing subpopulation Nij denoting the number
of individuals of the subpopulation i present in the subpopulation j. In this case, the effective
couplings result in a force of infection generated by the infectious individuals in subpopulation
j on the individuals in subpopulation i [49, 122].

Lastly, agent-based models represent the class of most realistic epidemic models, in which
the agents are the individuals described on a very detailed scale and the dynamics of interaction
among agents is based on the socio-demographic structure of the population. Consequently, the
infection spreads from one agent to another by direct contact, that may take place within house-
holds members, workplace colleagues or school and so on, thus resembling an actual situation
occurring during an epidemic. Agent-based models provide a very rich data scenario and allow
to make projections for policy makers using population specific socio-demographic features of
the population [113, 143, 144], but the computational cost and most importantly the need for
very detailed input data might be a limitation for their use. On the other hand, the struc-
tured metapopulation models are less detailed but fairly scalable and can be conveniently used
to provide worldwide scenarios and patterns throughout Monte Carlo techniques based on the
analysis of thousands of stochastic realizations exploring a multidimensional parameter space
[43, 46, 77, 82]. An example of data-driven epidemic model is provided by the Global Epidemic
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Figure 1.3: Schematic representation of a metapopulation model. The system consists of a heterogeneous
network of interacting subpopulations (or patches) connected by migration processes. Individuals within
each subpopulation are classified according to their health status (e.g. susceptible, infected, removed)
and can move among subpopulations on the network of connections. Figure reproduced from [81].

and Mobility model (GLEAM) [43, 45] that is a stochastic generative model able to produce re-
alistic simulations on the global spread of infectious diseases by integrating high-resolution data
on populations, human mobility and a detailed description of the disease of interest as well as a
great flexibility in integrating new data sources and adopting new techniques. GLEAM supports
policy-making and emergency planning by developing epidemic models and scenario analysis,
allowing to model containment and mitigation strategies and provide quantitative projections
that better informs the analysis of their potential impact. More details about GLEAM can be
found in Section 3.2.2.1.

It is clear that the key issue in such modelling approaches is the accuracy in the description
of each dynamics component and in the data used to inform the model. Population data and
mobility patterns certainly represent a fundamental aspect as the epidemic spreading of infec-
tious diseases is strongly influenced by the amount of people living in each region and moving
to other regions. Indeed, a detailed description of human mobility is important for characteriz-
ing and forecasting the spatial and temporal spread of infectious diseases [172] both at global
[43, 77, 132] and national scale [68, 100, 143]. Recently, the last global public health threats,
such as the 2009 A (H1N1) influenza pandemic, the 2013 MERS-CoV outbreak and the 2016
Zika outbreak in Latin America, highlighted the urgent need for accurate human mobility data
to properly inform epidemic models and assess the risk of importation from the affected areas
to the rest of the world, thus allowing for rapid interventions and appropriate control measures
[54, 115, 169, 196]. In developed countries, mobility data is usually available and easily accessible
from official sources for airline transportation, train trips, or commuting, but such datasets may
be not updated for several years or aggregated at a wide geographical resolution, often limiting
the potential impact of many studies. Also, this information may be inadequate or completely
unavailable in developing countries. Thus, mobility models come in help by inferring local and
global human mobility flows on a synthetic network whose connections and the corresponding
intensity represent the flow of people among different regions. The most extensively used models
for the estimation of trip distribution are the traditional gravity model [43], based on Newton’s
law of gravity, that assumes that the number of trips is related to the population at origin and
destination and to decrease with the distance, and the more recent radiation model [182], that
instead is inspired by the theory of intervening opportunities and considers human movements as
diffusion processes that depend on the population distribution over the space. The gravity law
and the radiation law have been widely tested and compared showing advantages and limitations
and giving superiority to either of the approaches depending on the specific geographical setting
and modelling assumptions [133, 134, 140, 203]. The limited generalizability of mobility models,
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whose use can be hindered in the absence of good calibration data, led to the study of the large
volumes of digital traces left by humans over the Internet allowing for a better understanding of
mobility processes. Moreover, the continuous growth of the transport infrastructure and the fast
evolution of mobility patterns allow people to travel more, thus rapidly changing travel patterns
with important consequences for epidemic spreading and planning. Several datasets coming from
different geo-located data sources have been analysed to characterize human mobility patterns.
Some examples include credit card transactions [116], Twitter data [117, 135, 147], Foursquare
data [153] or Flickr data [50]. In particular, several works have investigated the mobility flows
obtained from mobile phone data to study the temporal and spatial information on humans
physical displacements given by calls among mobile phone users and extract origin-destination
matrix of the amount of people moving among different locations [34, 62, 110, 156]. Also, the
use of mobile phone data is useful for low-income countries where the penetration is increasing
and fully justify the use of CDRs data to estimate mobility flows. The availability of human
mobility data at such high resolution has impacted several research fields, ranging from urban
planning to social sciences [36, 38, 63, 76], but more important their application to the spatial
epidemiology of infectious diseases [51, 101, 157, 190, 197, 198, 199, 200].

In conclusion, all these different structures of mathematical models have been developed to
study the dynamic properties of disease transmission, characterize spatio-temporal spreading of
infectious disease, determine the biological characteristics of specific pathogens, and analyse his-
torical transmission behaviour during past events. Given that epidemic models must rely heavily
on the realism put into the models that strongly impact the mechanisms of diseases propagation,
they might be used to pose important questions about the underlying mechanisms of infection
spread, possible means of control of the disease or epidemic prediction of real outbreaks.

1.3 Predicting epidemics

Throughout history, human beings have served as incidental hosts to many infectious diseases,
often vector-borne or zoonotic in origin, which have resulted in devastating epidemics [98, 148].
Even though diseases like HIV and avian influenza remain unresolved threats to human health,
increasingly attention and global concern is shifting to the next potential pandemic, trying to
harness new technologies to predict when and where the next pandemic might strike and prevent
the disastrous consequences of wide-spread transmission of a new disease [48]. Indeed, modern
conditions make the scenario of a global pandemic more likely as humans are encroaching on
animal environments raising chances for pathogens to adapt from animals to people, and an
increasing share of the planet lives in megacities heightening the likelihood of person-to-person
transmission of pathogens. The outbreaks related to avian influenza, the emergence of severe
acute respiratory syndrome (SARS) and Middle Eastern respiratory syndrome (MERS), and
the recent outbreaks of Ebola and Zika, to name a few, profoundly illustrate how an infection
can spread worldwide in a very rapid fashion, also affecting previously uninfected populations.
Thus, monitoring and forecasting the evolution of disease activity in human populations can
help in early detection of newly emerging viruses (e.g. SARS) or re-emerging ones (e.g. West
Nile virus), as well as complement traditional surveillance practices and support decision makers
in designing effective interventions and allocating resources to mitigate their impact.

Influenza, one of the most common infectious diseases, is a highly contagious airborne dis-
ease that occurs in seasonal epidemics, but occasionally novel influenza A strains arise and may
evade existing antibody immunity, thus giving rise to potential severe outbreaks. For example,
the 1918 pandemic caused around 20-40 million deaths, while pandemics in 1957 and 1968 in-
volved many infections but fewer deaths than in the 1918 pandemic. Real-time and accurate
forecasts of major influenza indicators, such as peak time and peak intensity, can provide key in-
formation for appropriately preparing for and responding to influenza epidemics and pandemics
[53]. In the literature, there are several studies advancing flu forecasting efforts mainly utiliz-
ing novel sources of digital surveillance [73], such as Google [109, 176], Yahoo [171], Twitter
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[56, 69, 87, 129, 163, 164, 181, 204, 205], Wikipedia [108, 120, 142] and Web-based participa-
tory surveillance systems [58, 168, 175, 204]. Also, to encourage development and innovation
in influenza forecasting, every year since 2013 CDC organizes a flu forecasting challenge, ask-
ing researchers to develop cost effective methods to predict flu activity and to come up with
their best predictions for the timing, peak, and intensity of the season [53]. After a three-year
collaboration between CDC Influenza Division and external research groups, CDC launched in
2016 a dedicated website called “FluSight” to house the weekly influenza activity forecasts pro-
vided by the various research teams involved. Moreover, the more recent availability of virologic
surveillance data and genetic sequence databases has fostered the birth of innovative studies
incorporating the evolutionary change of influenza viruses [93, 150]. Despite increasing effort in
identifying new methodology, often based on novel data streams, to provide a statistical frame-
work capable of accurate estimation of flu prevalence in a population, our ability to predict the
timing, duration and magnitude of local seasonal outbreaks of influenza remains limited.

On the other hand, some vector-borne diseases, such as dengue, chikungunya, and West Nile
virus, are emerging in countries where they were unknown previously because of globalization of
travel and trade and environmental challenges, such as climate change. The spatial dynamics of
human infectious diseases are determined by the mobility of individuals who carry a disease into
previously uninfected populations. Analogously, human migration and mobility mediate a large
number of bioinvasions, defined as the introduction of previously unknown organisms in ecosys-
tems. A clear example is provided by the new development of Zika virus, that was first identified
in 1952 and then undergone a mutation in the South American outbreak of 2015 [178], now able
to produce serious defects in newborns from infected mothers and other neurological compli-
cations, such as the Guillain-Barré syndrome. Response to and containment of an infectious
disease outbreak can be greatly improved if health care response and outbreak control measures
can be focused to areas predicted to be at the highest risk of experiencing new outbreaks. Ac-
curate models of the geographic distribution of epidemic risk could significantly enhance the
population-level effects of interventions implemented to control the spread of transmittable dis-
eases. Thus, mapping is essential in spatial epidemiology [118, 119] in order to enhance our
knowledge on the global geographic distribution of infectious agents and their spatial limits and
better understand their risk of transmission, that up to date still remains incomplete. In this
context, a large database has been recently compiled for mosquitoes Aedes aegypti and Aedes
albopictus that are vectors for several globally important viral human diseases, such as dengue,
chikungunya, yellow fever and Zika. Global maps of the predicted distributions of both species
have been computed by coupling their global distribution with relevant environmental variables
[126, 127]. Dengue is the most prevalent human arboviral infection causing approximately 100
million new annual infections in more than 120 endemic countries, mostly in the tropics and
sub-tropics, but more recently also introduced to Europe [177]. Chikungunya has caused over
2.5 million infections over the past decade mainly occurred in Africa and Asia, but recently
emerged in the Americas and Europe, thus posing new challenges to health systems and re-
ceiving considerable public health attention as the virus spreads into new areas, infecting naive
populations and consequently causing large outbreaks. Similarly, yellow fever infections were
significantly reduced due to large-scale vector control and vaccination programmes developed
more than 70 years ago, but the virus still causes a significant disease burden in tropical and
subtropical areas in South America and Africa. Given the public health impact and increasing
concerns of these diseases due to their rapid geographical spread in new areas, understanding
the distributions of their shared vectors can enable more efficient measures for disease control.
In fact, these diseases can only persist where their vectors are present, thus mapping the global
distribution of these vectors and determining their geographic limits is essential for public health
planning, but strongly hindered by a continuous expansion fuelled by increased global trade and
travel. Other previous works have been carried out in this context, such as mapping the global
distributions of the dominant vectors of malaria [184, 185, 186] in order to improve efforts to
understand the spatial epidemiology of associated arboviruses, and to predict how these could
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change in the future. However, predicting spatial transmission routes of epidemics has proven to
be remarkably difficult, due to the importance of long-distance transmission events, limited data
on population mobility, unknown population immunity levels, low sensitivity and specificity of
case reports, limited access to accurate and spatiotemporally resolved case data and a general
stochasticity in the outbreak propagation.

In recent years, mathematical and computational approaches to the study of epidemics have
been increasingly relevant in providing quantitative forecasts and scenario analysis of real in-
fectious disease outbreaks [137]. Epidemic models have evolved into data-driven computational
approaches focused on large-scale microsimulations aimed to explore the feasibility of reliable
epidemic forecasts and spreading scenario analysis, and provide information at very detailed
spatial resolutions. Data-driven approaches can generate results at unprecedented level of de-
tail, and have been used successfully in the analysis and forecast of real epidemics [43, 44, 145],
and policy making scenario analysis [55, 80, 99, 138]. Moreover, mechanistic and mathematical
approaches aid not only in the response to particular diseases, but also in illuminating basic
epidemiologic principles and important parameters that dictate whether a novel (or existing)
pathogen can be controlled [103]. However, paremeterising such models is often difficult in real-
time, when information on behavioural changes, interventions and routes of transmission are
not readily available [106]. Indeed, forecasting the course of disease spread is a difficult task,
particularly in the response to an emerging disease threat, but still remains a major goal of
the disease-modelling community and has become increasingly important to help guide critical
decision-making during infectious disease outbreaks. Since disease reporting is often delayed
and initially inaccurate, forecasting techniques include not only projections into the future,
but also nowcasting of incidence based on earlier available information, like Twitter, Google or
participatory systems [109, 164, 168, 175].

However, much more needs to be done to integrate such forecasting modelling techniques
into existing practices in public health. Epidemic forecasts are rarely evaluated during or after
the event, and it has not been established what the best metrics for assessment are. As forecasts
become a routine part of the toolkit in public health, standards for evaluation of performance
will be important for assessing quality and improving credibility of mathematical models, and
for elucidating difficulties and trade-offs when aiming to make the most useful and reliable
forecasts [107]. As the progress made in weather forecasting over the past 60 years, infectious
diseases forecasting is now in the process of steadily improving the accuracy and reliability of
predictions. The hope is that one day researchers will forecast disease outbreaks in the same
way meteorologists forecast the weather, but with the advantage of being able to prevent and
stop them with effective control measures and prevention strategies. But it is clear that many
basic theoretical questions are still open, such as understanding how the complex nature of the
real world affects our predictive capabilities in computational epidemiology or the fundamental
limits on epidemic evolution predictability with computational modelling. Understanding the
mechanisms influencing the epidemic spreading of infectious diseases, characterizing the spatio-
temporal transmission and diffusion of diseases, harnessing new technologies to predict the next
emerging public health threats, investigating the behaviour of people during a disease outbreak,
all these aspects tackle the development of a modern approach to computational and digital
epidemiology.





Chapter 2

Monitoring the activity of seasonal
influenza in Italy

When we think of the major threats to our na-
tional security, the first to come to mind are
nuclear proliferation, rogue states and global
terrorism. But another kind of threat lurks be-
yond our shores, one from nature, not humans
– an avian flu pandemic.

— Barack Obama, 2005

The pervasive use of digital communication technologies for public health and the increasing
community engagement in public health have fostered the birth of a variety of non-traditional
approaches to provide additional data sources for monitoring influenza epidemics directly among
the general population. In this context, next to national public health surveillance infrastruc-
tures, participatory surveillance systems have emerged in different parts of the globe with the
aim of monitoring the influenza activity by directly involving self-selected volunteers among the
general population reporting their health status through Internet based surveys.

In this chapter, I will focus on the two surveillance systems present in Italy for monitoring
seasonal influenza: the traditional surveillance system called Influnet [23] based on general
practitioners reports, and the participatory Web-based surveillance system called Influweb [24].
The aim of this work is to describe the two data sources, investigate the representativeness of
the two populations compared to the Italian general population, evaluate weekly incidence rates
and estimate age-specific influenza attack rates. As a result of a collaboration with the Italian
Institute of Public Health (ISS) [23], this chapter is based on Ref. [167] in which I personally
contributed as the first author by performing the cleaning process, analysis, validation and
visualisation of datasets, as well as writing the manuscript.

2.1 Introduction

Seasonal influenza is an acute contagious respiratory illness caused by viruses that can be easily
transmitted from person to person. Influenza viruses circulate worldwide causing annual epi-
demics with highest activity during winter seasons in temperate regions, resulting in about 3-5
million cases of severe illness and about 250-500 thousand deaths around the world [19]. The
rates and severity of epidemics can vary substantially from year to year due to several factors,
including the types, subtypes and strains of circulating viruses, and the level of protective an-
tibodies in the population. In fact, influenza viruses undergo high mutation rates and frequent
genetic re-assortment [188] that cause a continuous formation of newly emerging or re-emerging
influenza viruses and thus a subsequent lack of immunisation in the population. Influenza viruses
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can cause zoonotic infections and adapt to humans resulting in sustained transmission and emer-
gence of novel viruses leading then to seasonal viruses and sometime to pandemics, such as the
Spanish Flu between 1918 and 1920 or the H1N1 influenza pandemic in 2009. Since influenza
viruses constantly change, the seasonal influenza vaccines are updated and administered annu-
ally to provide the necessary protection to the population, especially to high-risk groups, such
as children, the elderly, health care workers, and people who have chronic illnesses, for whom
the influenza vaccine is recommended by the World Health Organization (WHO) [19]. Indeed,
influenza is a global public health problem causing high general practice consultation rates,
increased hospital admissions, excess deaths, and high absenteeism in schools and workplaces,
including in health workers. Its high socioeconomic impact and burden is not just limited to the
industrialized world but extends to low- and middle-income countries, encompassing multiple
dimensions such as direct costs to the health service and households and indirect costs because
of productivity losses, as well as broadly affecting the overall economy [90].

Nationally organized networks of general practitioners (GPs) constitute the basis of public
health surveillance, reporting the weekly number of patients visited with influenza-like illness
(ILI) or acute respiratory infection (ARI) in selected healthcare facilities (sentinels). Some
countries also report virological information from a subset of patients, influenza-confirmed hos-
pitalizations, or mortality data (see Figure 2.1a). The aim of collating data from different layers
of surveillance is to better assess the intensity and spread of influenza, identify trends and risk
groups, and inform actions to reduce the influenza-associated burden. On the other hand, tra-
ditional surveillance techniques are notorious for severe time lags of up to two weeks due to
the time required to collect, collate and distribute data, and typically the numbers initially re-
leased are continuously revised and updated as more data are recorded throughout the influenza
season. This means that by the time the data is available, the information is already 1 or 2
weeks old and subject to change in the following published bulletin. Moreover, these traditional
ways of collecting epidemiological data only includes those people who have access to the health
care system and subsequently seek health care treatment for their illness, but they typically
cannot account for a variable (depending on age, gender or other characteristics) proportion of
individuals who instead do not seek health care assistance. Furthermore, there is lack of spatial
resolution and uniform standards in clinical definitions, which may vary considerably between
countries and even between reporters.

Consequently, next to national public health surveillance infrastructures, a variety of non-
traditional approaches have emerged in recent years [174] in order to overcome some issues and
limitations of traditional disease surveillance approaches and provide additional data sources for
monitoring influenza epidemics [112]. The pervasive use of digital communication technologies
for public health [183] and the increasing community engagement in public health have fostered
the birth of surveillance systems based on the possibility for single individuals to monitor and
report their own health status through Web-based platforms [201]. The result is a large amount
of crowdsourced digital data that can be rapidly analysed for a variety of purposes, including
monitoring disease trends, identifying risk factors, but also to complement traditional surveil-
lance data and give early detection of local outbreaks by providing local and timely estimates of
the levels of influenza circulating among the population. Participatory surveillance systems for
seasonal influenza are currently running in 13 countries around the world and collect, aggregate
and communicate data in real time during the course of influenza seasons. Specifically, the sys-
tems that are currently online are: Influenzanet, a network of Web-platforms running in eleven
European countries [21], FluNearYou in the United States [5] and FluTracking in Australia [10].
In particular, the Influenzanet participatory surveillance system was established in Europe in
2009 and included 5 countries with prior Web-based participatory surveillance experience: first
launched in the Netherlands and Belgium as “The Great Influenza Survey” (De Grote Griepmet-
ing [2]) in the 2003-2004 influenza season, then implemented in Portugal (Gripenet [11]) in 2005,
Italy (Influweb [24]) in 2008 and the United Kingdom (Flusurvey [9]) in 2009. At the outset,
the Influenzanet platform was not homogeneous across countries because of historical develop-
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Figure 2.1: Influenzanet participatory surveillance system. a) ILI monitoring scheme illustrating different
layers of surveillance used by public health authorities. Influenzanet represents an additional layer to
monitor ILI in the general population and it is now present in 11 European countries as represented in the
map. b) Number of Influenzanet participants per country per season. c) Total number of Influenzanet
participants per season (left axis) and rate of Influenzanet participation per season (right axis) expressed
as the number of participants per 100,000 individuals of the total population of Influenzanet countries.
The dashed vertical line indicates the standardized framework introduced from the 2011-2012 season.

ments leading to the project [158], but since the 2011-2012 influenza season, the Influenzanet
platforms share a common and standardized data collection approach throughout the European
countries involved. Subsequently, the system was adopted by Sweden (Halsorapport [16]) in
2011, France (Grippenet [13]) and Spain (Gripenet [12]) in 2012, Ireland (Flusurvey [8]) and
Denmark (Influmeter [22]) in 2013, and Switzerland (Grippenet [14]) in 2016. Figure 2.1a shows
the European countries involved in the Influenzanet platform (Switzerland joined later) [112].
In each country, the platform is coordinated by a team of local researchers from University,
Research Institution or Public Health Institution and consists of a website where individuals
can register and have access to a personal account where they can insert and update their data.
Participation by country varies considerably [64], with averages over all seasons ranging from
1.2 individuals per 100,000 population, for Spain, to almost 100 individuals per 100,000 popu-
lation for the Netherlands, notably the most successful example within Influenzanet, as shown
in Figures 2.1b and 2.1c .

Over the course of the years, data collected through such participatory systems have been
used for a variety of purposes, including estimating the severity of the 2009 H1N1 influenza
pandemic [57, 65, 159], assessing health care usage [165, 189, 192] and providing relevant in-
formation to estimate age-specific influenza attack rates [75, 162, 167], influenza vaccine effec-
tiveness [66, 91, 95, 96, 125] and risk factors for ILI [32, 112, 192]. Furthermore, participatory
surveillance systems have been proven to be accurate and reliable for ILI surveillance, as the
detected timing and relative intensities of influenza epidemics are consistent with those reported
by general practitioners [86, 88, 158, 167, 192].
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In this chapter, we will focus on the two surveillance systems that are present in Italy for moni-
toring seasonal influenza epidemics: the traditional surveillance system called Influnet [23] that
is based on general practitioners reports, and the participatory Web-based surveillance system,
Influweb [24], that is part of the Influenzanet platform. Since 2012 data collected by Influweb
have been experimentally adopted by the Italian National Institute of Health as an additional
source of data about the circulation of influenza-like illness among the general population by
collecting in a single weekly bulletin called FluNews [6] all information gathered by the various
epidemiological surveillance systems monitoring seasonal influenza in Italy, including the tra-
ditional surveillance from Influnet, the participatory surveillance from Influweb, the syndromic
surveillance of access to Emergency Rooms and the monitoring of more severe influenza-related
cases. In particular, this chapter is based on Ref. [167] in which we evaluated the performance
of Influweb in combination with traditional surveillance as a tool for improving the national
surveillance of influenza-like illness in Italy during the first three years of such integrated ap-
proach for flu surveillance, namely from 2012-2013 to 2014-2015. Here, we will describe the
systems, summarizing advantages and limitations and mainly focusing on the representativeness
of individuals with respect to the Italian general population, but also investigate the quality and
accuracy of the epidemiological signal that can be extracted from Influweb compared to the ILI
incidence reported by Influnet, that represents our ground truth. Results showed that, despite
the existing participation biases, the ILI incidence detected by Influweb is able to capture both
the timing and the relative intensity of seasonal flu activity in Italy, thus justifying its use in
further works related to real-time influenza forecasts, as we will tackle in Chapter 3.

2.2 Dataset

In this section, we describe the two data sources for influenza-like illnesses (ILI) in Italy, high-
lighting their main characteristics and explaining how they have been used in our analysis.

2.2.1 Traditional surveillance system

Surveillance is an ongoing, systematic collection, analysis, interpretation, and dissemination of
data regarding the diffusion of the disease for use in public health action and program planning
and evaluation to reduce morbidity and mortality and to improve health among the general
population. In particular, for influenza surveillance, in most of the developed countries a national
network of general practitioners traditionally report the weekly number of cases with influenza-
like illness and collect samples from a subset of patients for virological confirmation. In Italy,
such surveillance system for influenza syndromes is called Influnet [23] and it is coordinated by
the Italian National Institute of Health, with the support of the Ministry of Health. The system
is based on a network of about 1,000 volunteering physicians and pediatricians, evenly distributed
to represent all the Italian regions, covering about 2% of the Italian population. Practitioners
share a common operational protocol to report weekly ILI cases, defined according to EU case
definition, as well as seasonal influenza vaccine uptake. Influnet analyses the data and estimates
the national and regional incidence rates by age groups (0-4, 5-14, 15-64, >64 years), compiling
and publishing a weekly report during the winter season, generally from week 42 to week 17 of
the calendar year, to evaluate the duration and intensity of the influenza epidemic. Therefore,
by the time the ILI incidence data are published, they are already at least one week old, and
typically new reports provide only a first estimate of the weekly ILI incidence which is then
continuously updated in the following weeks as more data from GPs are recorded. Moreover,
traditional surveillance can sometimes over- or underestimate the true burden of the epidemic,
depending on what ILI fraction corresponds to real influenza cases and on the reporting rates
of sentinel doctors [142]. However, traditional surveillance data are considered a highly reliable
indicator of influenza activity and ILI incidence data reported by Influnet represent the ground
truth for this study.
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Figure 2.2: Schematic representation of the registration process to the platform and the data collection
through the compilation of two types of surveys: the intake survey aims to collect generic information
about participants, while the symptoms survey aims to collect data on the episodes of illness and the
consequent behaviour of participants. See Appendix A for more details on the questionnaires.

2.2.2 Web-based surveillance system

Influweb [24] is the Italian Web-based surveillance system that monitors the seasonal influenza
activity in Italy since 2008. Influweb is part of the Influenzanet [21] platform and is coordinated
by ISI Foundation in Torino, Italy. The data collection generally runs from October/November
to April/May, allowing for flexibility (e.g. in 2016 the surveillance was extended through the
summer to monitor cases of Zika virus infection) and it is usually disseminated among the gen-
eral population at the beginning of each influenza season through a number of press releases,
general media campaigns, specific dissemination events (e.g. science fairs) or word of mouth.
Participation is voluntary and anonymous, and open to all individuals living in Italy. To join the
network, individuals register on their national platform and complete an intake survey covering
demographic, geographic, socioeconomic and health questions, including age, gender, household
size and composition, location of home and workplace, education level, occupation, vaccination
status for the previous and the present influenza season, the presence of a chronic disease, a pos-
sible pregnancy and other issues. The intake survey can be then updated throughout the season
to account for changes (e.g. vaccination, pregnancy, etc.). Users can also create accounts on
behalf of other members of their family or household and report for individuals, such as children
or elderly people, who are unable to navigate the Internet. Participants receive a weekly e-mail
newsletter as remainder to fill in a symptoms survey in which they are asked whether since the
last time they visited the platform they experienced any general, respiratory or gastrointestinal
symptom from a list of 20 symptoms. If symptoms are reported, further questions are asked to
assess the syndrome (e.g. sudden onset of symptoms and body temperature) and participant
behaviour (e.g. changes in the daily routine, health-seeking behaviour and medicine uptake,
including painkillers or antipyretics, cough medications, antivirals, and antibiotics). Figure 2.2
schematizes the processes of registration to the platform and compiling of the weekly symptoms
surveys. Intake and symptoms questionnaires are reported in Appendix A.

In general, participants must fulfill some conditions to be considered in the data analysis as
active participants in order to avoid having a variable and biased sample [105], mainly due to the
possibility for volunteers to join the platform throughout the influenza season or stop reporting
during the influenza season. Inclusion criteria to select participants may vary and depend on the
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specific aim of the study [42, 64, 192, 193]. Here we define as active participants those users who
joined the data collection by completing the intake survey at least once since their registration
to the system, and a minimum of two symptoms surveys with a frequency of at least one every
three weeks, on average [42]. In the following, we will equally refer to Influweb population
or Influweb active population to indicate the population of active participants. If a participant
completed the intake survey multiple times, we consider the report that is most recent according
to the influenza season under study. Symptoms surveys are weekly filtered, keeping only the
last symptoms survey filled within a certain week, thus assuming that it corresponds to the
most updated health status of the participant. Moreover, since information are provided and
manually inserted by participants, they might be affected by inaccuracy in self-reporting, due
to misunderstandings and wrong interpretations of the questions or as the result of a deliberate
action. For this reason, collected data are first processed and cleaned in order to check for
mistakes or misreporting (e.g. a date of birth in the future or a non-valid zip code).

2.3 Methods

In this study we included data collected by Influnet and Influweb during three influenza sea-
sons, namely the 2012-2013, 2013-2014 and 2014-2015 influenza season, limiting the analysis
to the time window of full overlap of both systems, that is from week 47 to week 14 of the
calendar year. Aim of this work is to describe the two data sources in terms of demographic
indicators by investigating the representativeness of the sample compared to the Italian general
population, evaluate the ILI incidence rates extracted from Influweb in comparison to the ILI
signal detected by sentinel doctors, and estimate age-specific influenza attack rates by using
self-reported symptoms from Influweb and official surveillance data reported by Influnet.

Demographic analysis Influnet provides only information about patients aggregated for age
groups (0-4, 5-14, 15-64, >64 years) and regions, and no other details are provided. Influweb,
instead, collects information at a higher resolution level, including age, gender, zip code of
residence and household composition, thus allowing for a detailed comparison with the Italian
general population. Influweb data are mapped from zip code resolution to region level to allow
the comparison with Influnet data and national data.

For this analysis we used demographic data of the Italian general population at 1st January
of 2013, 2014 and 2015, respectively, provided by the National Institute for Statistics Studies
(ISTAT) [27] as well as publicly available geographical data and shapefiles at the level of NUTS2
regions. Maps are generated by manipulating the shapefiles with the Basemap library available
in Python. Summary statistics given here comprise simple counts and percentages. We used χ2-
test for non-continuous variables, and non-parametric test (Mann-Whitney U test and Kruskal-
Wallis test) to compare distributions.

ILI incidence Weekly ILI incidence can be extracted from Influweb data by dividing the
number of ILI cases by the number of active participants per week. The flexibility of the
collected data allow for assessing the ILI syndromes by applying different case definitions. Here
we use the standard case definition provided by the European Center for Disease and Control
(ECDC) and also adopted by Influnet, that defines an ILI case as the sudden onset of symptoms
with one or more systemic symptoms (fever or feverishness, malaise, headache, myalgia) plus one
or more respiratory symptoms (cough, sore throat, shortness of breath) [18]. Only participants
who reported symptoms within 15 days from the onset of the symptoms are included and, in
order to avoid double-counting of a single ILI episode, individuals who fit the ILI definition for
two consecutive weeks are considered ILI only during the first week, while in the few cases where
individuals reported ILI for three consecutive weeks, only the second episode is discarded.

To quantify the performance of the weekly ILI incidence detected by Influweb, we compute
the Pearson correlation and the cross-correlation between the two time series. In particular, for
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this latter measure, we first smoothed the Influweb time series using a simple moving average
technique with a time window of three weeks. To this aim we used the moving average function
ma() of the R forecast package and cross-correlation function ccf() of the R stats package.

Attack Rate The influenza attack rate is defined as the cumulative incidence of influenza
virus infections and its annual global estimate corresponds to 5-10% in adults and 20-30% in
children [19]. It represents an important measure of the rate of infections in at risk population,
but it is a difficult parameter to obtain. Here we estimate age-specific influenza attack rates
by using self-reported symptoms from Influweb active participants and official surveillance data
reported by Influnet. Similar studies have been carried out in The Netherlands [162] with data
from the national Influenzanet platform called Grote Griepmeting and in the United States [75]
with data from the Flu Near You platform. Here we adopt the same methodology developed
in Ref. [162] based on the use of weekly rates of self-reported ILI (defined as self-reported
fever and cough/sore throat) among participants in the Influweb cohort in combination with
an external separate dataset, extracted from the Hong Kong household studies [84, 85, 130],
consisting of symptoms reported by influenza-positive individuals in households where clinical
cases of influenza had been observed. The influenza attack rates are estimated by using the
inference method described in Ref. [162], and, in particular, equation 3 in Ref. [162]. Briefly, it
requires the assessment of baseline ILI rates during periods of low influenza activity and during
periods of active influenza circulation as reported by the traditional surveillance system. Such
rates are then converted to influenza attack rates via estimates of the probability P (ILI|Flu) of
self-reported ILI for influenza cases. This probability is estimated using data from PCR-positive
individuals in Hong Kong household studies [84, 85]. The influenza attack rate ARflu for a given
season between calendar week t = i and week N is estimated as:

ARflu =

∑N
t=i(ILI(t)−Base)

P (ILI|Flu)−Base
(2.1)

where the numerator represents the excess ILI rate (above the baseline) during the period of
active influenza circulation, while the denominator is the excess probability of reporting ILI for
influenza cases compared to non-influenza cases (P (ILI|Flu)−Base), from which the influenza
attack rate is estimated. Posterior samples for each of the quantities in eq. 2.1 (e.g. ILI(t)) are
independently extracted to get a posterior sample of estimates for ARflu, for which the mean
and the 95% credible intervals are reported. More details can be found in Ref. [162].

In particular, we used data on self-reported symptoms among Influweb active participants
during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons. For each season, we defined
four age-group specific “main cohorts” (ages ≤24, 25-44, 45-64, and ≥65 years) as the set of
persons in each age group who 1) filled out a report by a “cutoff week”, that is the calendar
week preceding the week in which the epidemic threshold is crossed and 2) number of completed
reports during at least 50% of the weeks from the date of their first report through week 14.
The cutoff weeks have been gathered from the official surveillance data reported by Influnet and
correspond to weeks 2012-51, 2013-52 and 2014-51, respectively for the three influenza seasons.

2.4 Results

A total of 2,127 unique individuals actively participated during one or more of the three influenza
seasons under study. In particular, 35.68% participated for one season, 22.99% for two seasons
and 41.33% participated for all three seasons. Table 2.1 reports the number of registered and
active participants as well as the average number of symptoms surveys completed during the
three seasons under study. Every year, Influweb is able to attract new participants, with 446 new
individuals during the 2013-2014 influenza season, and 233 new individuals during the 2014-2015
influenza season, thus continuously increasing the total number of individuals registered to the
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Table 2.1: Participation to Influweb during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons.

season
no. registered

individuals
no. active

participants
% active
sample

no. active in
country

(per 100,000)

average
symptoms

surveys (95% CI)

2012-2013 3,041 1,452 47.75% 2.43%
10.4

(10.0, 10.7)

2013-2014 3,487 1,458 41.81% 2.4%
11.9

(11.5, 12.2)

2014-2015 3,720 1,464 39.35% 2.41%
12.4

(12.1, 12.7)

Figure 2.3: Geographic distributions of the Influweb active participants (left), the Influnet sample (mid-
dle) and the Italian general population (right) at the level of NUTS2 regions during the 2014-2015
influenza season. The colour code indicates the proportion of individuals living in each region.

system. However, participation to data collection remained quite constant with a total of 1,452,
1,458 and 1,464 active participants during the 2012-2013, 2013-2014 and 2014-2015 influenza
seasons, respectively, representing about 2.4% (per 100,000 individuals) of the Italian general
population. On average, active participants completed from 10 to 13 weekly symptoms surveys
every season, corresponding to about one survey every two weeks.

Referring to the 2014-2015 influenza season, approximately 78% of the active participants
had a single membership account, while 22% belonged to a multiple account with at least two
active participants. In particular, 11% of the multiple accounts had at least one participants
aged less than 14 years and 9% had at least one participant aged over 65 years. Among the
sample of active participants, about 49% never updated the intake survey, about 46% updated
it twice, and about 5% updated it at least three times during the 2014-2015 season.

Despite the small sample, Influweb showed a good coverage of all the Italian regions, with
an average of 2.41% active participants per 100,000 individuals, and an active participation
rate per region that varies between 0.4 per 100,000 individuals (Calabria) to 5.6 per 100,000
individuals (Piemonte). The geographic distributions of the Influweb active participants, the
Influnet sample and the Italian general population were not statistically different (p=0.886 for
2012-2013, p=0.925 for 2013-2014, p=0.923 for 2014-2015). Corresponding maps at the level of
NUTS2 regions are displayed in Figure 2.3 for the 2014-2015 influenza season. Maps for the
2012-2013 and 2013-2014 seasons are not reported here because of their similarity.

We further analysed the Influweb population in terms of age, gender and household composi-
tion in comparison to the Italian general population, as shown in Table 2.2. Such level of detail
is not available for the traditional surveillance system that reports only data for some specific
age groups. During the 2012-2013 influenza season participants were statistically representative
of the Italian general population in terms of age (p=0.226), whereas during the 2013-2014 and
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Table 2.2: Age, gender and household size of the Influweb population and the Italian general population
(IT pop) during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons.

Age Gender Household Size

Season
Influweb,
avg. age
(95% CI)

IT pop,
avg. age

Influweb,
%male,
%female

IT pop,
%male,
%female

Influweb,
avg.

household
size (95% CI)

IT pop,
avg.

household
size

2012-2013
43.8

(42.9, 44.7)
43.5 57.8, 42.2 48.4, 51.6

2.6
(2.5, 2.7)

2.4

2013-2014
45.4

(44.4, 46.3)
43.7 59.1, 40.9 48.5, 51.5

2.8
(2.6, 2.9)

2.4

2014-2015
45.7

(44.8, 46.7)
43.9 58.2, 41.8 48.5, 51.5

2.9
(2.7, 3.1)

2.4

Figure 2.4: Age and gender distribution of the Influweb population and the Italian general population
during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons.

2014-2015 influenza seasons participants were found to be older than the general population
(p < 10−3). A comparison between the age groups distributions of the two surveillance systems
showed that in the Influweb population the young adults and adults age groups are overrepre-
sented, while school age children are underrepresented, whereas in the Influnet sample, patients
aged less than 25 years are slightly overrepresented, while adults aged between 25 and 64 years
are slightly underrepresented, as displayed in Figure 2.5. In addition, Figure 2.4 shows the age
and gender distributions of the Influweb active participants compared to the Italian general
population for the influenza seasons under study. A larger proportion of male individuals par-
ticipated to Influweb, in contrast with the gender distribution of the Italian general population
(p < 10−4 for all seasons). Influweb participants were found to live in larger families with respect
to the Italian general population as the distributions of the number of household’s members were
statistically different (p=0.024 for 2012-2013, p < 10−4 for 2013-2014 and 2014-2015).

Table 2.3 shows the values for the vaccination coverage as reported by the Influweb active
participants and as collected by the Influnet sentinel doctors. On average, about 16% of the
Italian population got the seasonal influenza vaccine according to the data collected by Influnet,
while about 14.5% of the active participants reported to have got the vaccine. Vaccination
coverage detected by Influweb was statistically representative for the 2012-2013 (p=0.722) and
the 2013-2014 (p=0.235) influenza seasons, whereas during the 2014-2015 Influweb detected a
larger proportion of vaccinated people (p < 10−2). Moreover, if we limit the analysis only
to people older than 65 years old, corresponding to a high-risk group for which the seasonal
influenza vaccine is recommended by WHO, the vaccination coverage was larger in the Influweb
participants for the 2012-2013 and 2013-2014 influenza seasons (p < 10−4), whereas it was
statistically representative in the 2014-2015 (p=0.06).

The weekly incidence of ILI cases among Influweb active participants were found to correlate
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Figure 2.5: Age distribution of the Influweb population (blue), the Influnet population (light blue) and the
Italian general population (dark blue) during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons.

Table 2.3: Vaccination coverage for the Influweb population and the Influnet population, as well as
limited to the age group of individuals aged over 65 years, during the 2012-2013, 2013-2014 and 2014-
2015 influenza seasons.

Vaccination Coverage

Season Influweb pop. Influnet pop.
Influweb pop.

(aged>65 years)
Influnet pop.

(aged>65 years)

2012-2013 15.15% 14.79% 32.3% 53.0%

2013-2014 16.46% 15.31% 37.9% 53.9%

2014-2015 16.19% 13.35% 40.9% 47.6%

well with the weekly incidence detected by the Influnet sentinel doctors for the three seasons
under study. In particular, the Pearson correlation coefficient for 2012-2013 is 0.605 (p < 10−2),
for 2013-2014 is 0.472 (p <0.05) and for 2014-2015 is 0.699 (p < 10−3). Figure 2.6 shows the
weekly incidence curves of Influweb and Influnet, which are reported on different scales for
ease of comparison in order to highlight that the two curves are consistent in both timing and
relative magnitude for the whole duration of each of the three influenza seasons under exam. In
the early phase of the epidemic we can observe an initial overestimation of the Influweb weekly
incidence, mainly due to a smaller sample of participants involved in the data collection in the
first weeks. As already mentioned, the data collection period generally starts at the beginning
of the influenza season in November, through a first e-mail reminder to the participants already
enrolled in the system and a number of press releases to attract new volunteers among the general
population. Therefore, the system needs a few weeks to reach a stable cohort of participants
and early data are usually noisy. In general, to address this issue, data are filtered according to
a certain fraction of the number of active participants present at the peak during that influenza
season or during the previous influenza season, depending on whether the analysis is performed
in real-time or retrospectively [168]. In this study, we chose not to discard any data points in
order to present the entire analysis for the same time window, but, for instance, only removing
the data point at week 47 would be sufficient to obtain better results in terms of correlation, i.e.
0.706 for 2012-2013, 0.616 for 2013-2014 and 0.678 for 2014-2015.

Furthermore, we analysed the cross-correlation between the smoothed time series of Influweb
data (3-weeks centered moving average) and the Influnet time series, as shown in Figure 2.7.
The maximum level of cross-correlation is found at lag of one week (ρ=0.813 for 2012-2013,
ρ=0.724 for 2013-2014, ρ=0.795 for 2014-2015).

When participants report symptoms, they are also asked to answer to some follow up ques-
tions regarding healthcare-seeking behaviour and whether they changed their daily routine due
to the illness (see Dataset). The fraction of participants who reported to have consulted a gen-
eral practitioner after an episode of ILI remained fairly constant during each season, with an
average of about 36%. Among this subset, the largest fraction of participants visiting their fam-
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Figure 2.6: Weekly ILI incidence rates as extracted from Influweb (left axis) and reported by Influnet
(right axis) during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons. Incidence values are
intended for 1,000 participants for Influweb, while for 1,000 patients for Influnet.

Table 2.4: Estimated age-specific influenza attack rate for the period (in weeks) of high incidence, that
is when the incidence reported by Influnet is above the epidemic threshold, during the three influenza
seasons under study.

Estimated Attack Rate % (95% CI)
Season, Age Groups, years

Calendar Weeks 25-44 45-64 65+

2012-2013, 52-12 16.06 (0, 39.92) 18.72 (0, 38.95) -

2013-2014, 01-12 10.75 (0, 31.3) 4.04 (0, 18.42) 12.04 (0, 28.4)

2014-2015, 52-13 16.2 (0, 41.39) 19.43 (0, 38.73) 15.32 (0, 38.72)

ily doctor corresponded to children up to 14 years old, followed by elderly, while young adults
aged between 15 and 24 years old were less likely to visit a healthcare provider for their illness.
The corresponding age distribution is shown in Figure 2.8a and highlights the differences among
age groups in healthcare consultation. Moreover, children were more likely to change their daily
routine during an episode of ILI, staying at home from school, as shown in Figure 2.8b.

Estimated influenza attack rates in the different Influweb cohorts during the 2012-2013, 2013-
2014 and 2014-2015 seasons are reported in Table 2.4. The age group of individuals younger
than 24 years were excluded from this analysis because of its small size. For the same reason,
during the 2012-2013 season it was not possible to estimate an attack rate for the age group
65+ because of the small size of the sample. Sensitivity analysis with respect to the choice of
the baseline period in equation 2.1 is presented in Table 2.5.

2.5 Discussion

A participatory surveillance system called Influweb has been implemented since 2008 in Italy as
a tool to collect influenza-like illness data among the general population. In this work we aimed
at showing the utility and reliability of Influweb data as an additional layer of surveillance data
to support and complement traditional surveillance data based on general practitioners.

A total of 2,127 individuals actively participated during one or more of the three influenza
seasons under study, thus representing only a small fraction of the total population living in Italy
(approximately 60 millions). Among the total active participants about 38% participated for
all three seasons, thus meaning that the sample is quite stable from one year to the other, with
a consistent fraction of participants who continue to be motivated to participate over several
years. Moreover, Influweb is capable of attracting new participants every year, with an average
of 1,458 active participants per season among which about 60% are new to the system.
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Figure 2.7: ILI incidence analysis for the three influenza seasons under study. Subplots (A), (C), (E) show
the smoothed Influweb incidence curve (left axis) and the Infunet incidence curve (right axis). Subplots
(B), (D), (F) show the cross-correlation between the two time series as a function of the lag (weeks).

The geographical distribution of the Influweb active participants covers all the Italian regions
and reflects well the heterogeneous distribution of the population in the various regions of Italy
(see Figure 2.3). However, a higher number of active participants is consistently observed in
the region named Piemonte, which hosts the Institution conducting the Influweb project, likely
reflecting a more powerful effect of communication campaigns at the local level.

The distribution of age is statistically different from the Italian general population. The
young adults and adults age groups are overrepresented, while school age children are under-
represented. Underrepresentation in the groups between 0 and 25 years old may be due to the
impossibility to access the Internet in an unsupervised way for the youngest children and to a
lack of interest in influenza or health-related topics for teenagers and people in their 20’s, as
previously pointed out in [64]. The system already incorporates the possibility of adding multi-
ple users to an account managed by a single participant who is supposed to facilitate the input
of data for individuals who cannot or are not familiar with Internet tools. The results for the
2014-2015 season showed that 11% of the multiple accounts had at least one participant aged
less than 14 years and 9% had at least one participants aged over 65 years. Interestingly, elderly
participants, corresponding to individuals aged more than 65 years old, are well represented,
thus probably meaning that the familiarity with computers and the usage of the Web is increas-
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a) b)

Figure 2.8: Age distribution of the proportion of Influweb active participants, who during an episode of
ILI (a) sought medical assistance for their illness, and (b) changed their daily routine staying off from
school or work, during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons.

Table 2.5: Sensitivity analysis for the age-specific influenza attack rate with respect to the choice of the
baseline period (in weeks), during the three influenza seasons under study.

Season
Estimated Attack Rate % (95% CI)

Baseline Age Groups, years
Weeks 25-44 45-64 65+

2012-2013

47-51 16.06 (0, 39.92) 18.72 (0, 38.95) -
46-51 10.76 (0, 35.49) 18.7 (0, 38.96) -
46-50 8.89 (0, 35.67) 12.76 (0, 35.59) -
47-50 15.7 (0, 41.15) 12.77 (0, 35.56) -

2013-2014

47-52 10.75 (0, 31.3) 4.04 (0, 18.42) 12.04 (0, 28.4)
46-52 10.8 (0, 30.72) 6.63 (0, 20.17) 13.0 (0, 28.92)
47-51 12.47 (0, 33.57) 4.48 (0, 19.35) 10.5 (0, 27.56)
46-51 11.05 (0, 31.77) 4.99 (0, 19.27) 11.65 (0, 28.17)

2014-2015

47-51 16.2 (0, 41.39) 19.43 (0, 38.73) 15.32 (0, 38.72)
46-51 19.23 (0, 42.41) 17.51 (0, 36.22) 19.18 (0, 41.48)
46-50 17.82 (0, 42.3) 16.66 (0, 36.43) 24.3 (0.63, 45.98)
47-50 12.37 (0, 39.02) 20.14 (0, 40.3) 21.46 (0, 44.53)

ing even among age groups that used to be considered harder to reach through the Web. On the
other hand, while for the Influweb sample there is an underrepresentation of children aged less
than 25, this age group is well covered (if not slightly overrepresented) in the Influnet sample.
This is a clear example of the kind of complementarity that the two systems can achieve.

The percentage of male participants is larger than the percentage of female participants, in
contrast with the gender distribution in the Italian general population. This might be due to the
fact that traditionally in Italy the familiarity with Web technologies is more typical of the male
gender with a larger fraction of men (65%) accessing the Internet compared to women (55.8%),
despite the fact that in general women are usually more active and involved on websites and
forums dealing with health-related content [105]. This is also reflected by the very low rates of
participation of elderly women.

Influweb participants live in larger households than the general population, in agreement
with previous findings from other Influenzanet platforms [64].

Vaccination coverage is statistically representative of the national coverage in Italy during two
seasons (2012-2013 and 2013-2014), whereas Influweb detected a larger vaccination coverage in
Italy during the 2014-2015 influenza season. However, both systems detected the slight decrease
in the percentage of vaccination in the 2014-2015 influenza season. Looking at the 65+ age class,
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i.e. the age group who is most at risk of complications due to influenza-like illness, Influweb
found a smaller proportion of vaccinated people in comparison with official data collected by the
Ministry of Health [20] during the 2012-2013 and the 2013-2014 influenza seasons. This might
be a consequence of the fact that this age class is not well represented in the Influweb cohort.
On the other hand, as the sample size of this age group increased over the course of the years, in
the 2014-2015 the vaccination coverage was statistically representative. Potentially, data from
Influweb could also be used to estimate vaccine effectiveness during the influenza season [91].

Figures 2.6 and 2.7 show that the ILI incidence calculated from Influweb and from Influnet
correlate well: the two curves are consistent in both timing and relative magnitude for the
whole duration of each of the three influenza seasons under exam. This is in line with what
has been observed previously with other Web-based platforms for influenza surveillance in other
countries [105]. Moreover, as shown in Figure 2.7 panel B, D and F, Influweb detected the peak
incidence one week earlier than traditional surveillance, thus suggesting that Influweb might
be able to detect temporal variations in incidence rates in advance with respect to the sentinel
doctors surveillance. This might be explained by the fact that most people generally do not seek
healthcare assistance on the first day they feel sick, while sentinel doctors report the day of the
visit as being the first day of illness, thus causing a slight delay in reporting.

The portion of volunteers seeking medical assistance when experiencing ILI remained fairly
constant during each season, with an average of about 36%. However, differences among age
groups in healthcare consultation for individuals with ILI symptoms were evident, showing that
children are more likely to be visited by a doctor with respect to young adults.

Most participants do not stay at home or change their routine when they experience an
episode of ILI. Overall, children are more likely to stay at home from school, as expected, while
elderly participants rarely report to have changed their daily routine during an ILI episode. This
might be due to the fact that the largest part of participants aged over 65 years are retired and
only 9.3% still have a paid employment.

Self-reported symptoms collected by the Influweb platform have also been used to calculate
influenza attack rates during the 2012-2013, 2013-2014 and 2014-2015 influenza seasons. A good
agreement is observed between the weekly incidence of ILI in the Influweb population and attack
rates measured by the inference framework (see Methods). In fact, during the 2013-2014 season
ILI attack rates were smaller compared to the other seasons, as the 2013-2014 influenza season
was milder than the others. In the 2012-2013 influenza season, it was not possible to estimate an
attack rate for the age group 65+ because of the small size of the sample, but this shortcoming
was fixed in the 2013-2014 and 2014-2015 seasons as the sample size increased. For the same
reason, we restricted the estimation of influenza attack rates to the participants aged over 25
years, but future estimates can be performed even for the age group 0-24, provided that the
corresponding cohort size would be sufficiently large. Overall, as already discussed in previous
papers [75, 162], despite limitations of the inference method and of data gathered through the
Influweb participatory system, the results show that it is possible to have real-time estimation
of influenza attack rates among the general population during each influenza season. Such a
feature is specific of the Web-based surveillance systems detecting ILI cases directly from the
general population.

2.6 Conclusion

Since 2012 data collected by the Web-platform Influweb have been experimentally adopted by
the Italian National Institute of Health as an additional source of data about the circulation
of influenza-like illness among the general population. As a result, a weekly bulletin called
FluNews [6] is being published during the influenza season since 2012 as a single collector of all
information gathered by the various epidemiological surveillance systems monitoring seasonal
influenza in Italy, including the GPs surveillance from Influnet, the participatory surveillance
from Influweb, the syndromic surveillance of access to Emergency Rooms and the monitoring of
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more severe influenza-related cases.
In this study, we presented the results of the first three seasons of such integrated approach

for flu surveillance in order to assess the contribution that an online system can provide to
the traditional influenza-like illness surveillance system. Here we demonstrated that despite
the sample of individuals involved in the data collection is limited and not representative of
the general population, the detailed information provided by participants enables to estimate
weekly ILI incidence rates and age-specific influenza attack rates in good agreement with data
reported by the traditional surveillance. Among the advantages and strengths of Influweb we
denote the real-time component that allows to extract the current level of influenza circulating
among the population, while traditional surveillance data are usually reported with at least
one week lag and numbers initially reported are subject to continuous revision throughout the
influenza season. In addition, Influweb allows to gather information directly from the general
population and not only from medically attended ILI. In fact, we showed that only a fraction
of the Influweb participants reported to have consulted a healthcare provider for their illness,
corresponding to about 36% of the ILI cases.

On the other hand, recruiting and maintaining participants are the main challenges, while
limitations are mainly due to the self-selected sample, potential misreporting, and lack of vali-
dation by a physician or by virological testing. To improve the representativeness of the sample,
targeted strategies for communication informed by the results of this study can be used to in-
crease participation rates in Italy, which are indeed lower than in other European countries in
which Influenzanet is implemented. However, with the large majority of participants willing to
contribute to additional studies beyond ILI, Influweb may become in the near future a powerful
system that, once adjusted for sample biases, can offer a timely tool to measure the epidemio-
logical status, opinion, or behaviour of the general population with regard to different indicators
and diseases. Moreover, results showed here allow to further use Influweb collected data to
provide real-time forecasts on seasonal influenza, as we will see in the next Chapter.





Chapter 3

Real-time forecasts of seasonal
influenza epidemics

It is quite probable that influenza will continue
to be prevalent all over the world for some years
to come. May we hope that etiological and epi-
demiological work will furnish us with more com-
petent methods for prevention and delimation
before the world is visited by another pandemic.

— Hans Zinsser, 1922

Seasonal influenza is an acute contagious respiratory illness that annually produces about 3 to
5 million cases of severe illness and about 250 to 500 thousand deaths around the world [19].
Monitoring and forecasting the evolution of influenza activity can help in early detection and
response in order to minimize the impact of potentially devastating epidemics. In this chapter, I
will focus on the real-time forecasts of seasonal influenza by using different forecasting techniques
and integrating different data sources, particularly highlighting the benefits of leveraging on
novel digital data sources to capture an additional layer of real-time and geo-localized signal. In
the first section, I will describe a computational framework previously validated in Ref. [204,
205], based on real-time influenza-related data, traditional surveillance reports and a dynamical
mechanistic model called GLEAM (GLobal Epidemic And Mobility model) able to provide short-
term predictions of seasonal influenza activity. This section is based on Ref. [58] in which I
personally contributed by exploring the calibration of the model with Influenzanet data, running
the simulations, and analysing, validating and visualising the results.

In the second section, I will report our work about the way traditional surveillance data
reported by general practitioners can be combined with digital surveillance data from Influweb,
a participatory Web-based system described in Chapter 2, in order to improve seasonal influenza
forecasts in Italy. This section is based on Ref. [168] in which I personally carried out the work,
including collecting, processing and analysing the two datasets, building and testing the various
forecasting models, and analysing and validating the results, as well as writing the manuscript.

3.1 Introduction

Seasonal epidemics of influenza affect millions of people every year, causing high general prac-
tice consultation rates, increased hospital admissions and excess deaths, and consequent socio-
economic impact and burden [90]. Seasonal influenza epidemics typically occur in fall/winter
seasons in the Northern Hemisphere, annually varying in terms of timing and intensity. In fact,
once the influenza season starts, it is not an easy task to predict its spatial and temporal evo-
lution as the infection intensity and geographical spread can change dramatically year by year.

29
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As an example, Figure 3.1 shows the influenza-like illness (ILI) consultation rates per 100,000
individuals as reported by the European Centre for Disease Prevention and Control (ECDC) in
Belgium, Italy and Spain during some historical seasons. Indeed, both timing and intensity of
influenza epidemics are country- and season-specific. Moreover, in contrast to seasonal influenza,
novel influenza A strains capable of sustained person-to-person transmission arise occasionally
and may give rise to pandemic outbreaks if population lack pre-existing antibody immunity. For
example, the 1918 pandemic caused around 20-40 million deaths, while pandemics in 1957 and
1968 involved many infections but fewer deaths than in the 1918 pandemic. Thus, monitoring
and forecasting the evolution of influenza activity in populations can help in early detection of
novel circulating viruses with pandemic potential or particularly virulent influenza seasons as
well as complement traditional surveillance practices and support decision makers in designing
effective interventions and allocating resources to mitigate their impact. Real-time and accurate
forecasts of major influenza indicators, such as peak time and peak intensity, can provide key
information for preparing for and responding appropriately to influenza epidemics [53].

The first popular example of early warning system for predicting flu epidemics was Google
Flu Trends (GFT). Launched in 2008, it was based on the idea of using flu-related search terms
entered in Google’s search engine to estimate influenza-like illness activity in a population rather
than traditional statistical predictive analysis [109]. However, significant discrepancies between
GFT’s flu estimates and those measured by the Centers for Disease Control (CDC) in subsequent
years demonstrated the hard challenge of such digital disease detection systems [60]. Despite
increasing effort in identifying new methodology, often based on novel data streams, to provide a
statistical framework capable of accurate estimation of flu prevalence in a population, our ability
to predict the timing, duration and magnitude of local seasonal outbreaks of influenza remains
limited. In the literature there are several studies advancing flu forecasting efforts [73], such as
mining Twitter to uncover flu-related tweets and Wikipedia access logs to analyse the amount
of Internet traffic on certain influenza-related Wikipedia articles to be used as a proxy for flu
activity levels in a population [56, 69, 87, 142, 163, 164, 181]. To encourage development and in-
novation in influenza forecasting, the CDC organized a challenge during the 2013-2014 influenza
season in United States, mainly asking researchers to utilize novel sources of digital surveillance
data to develop cost effective methods to predict flu activity [53]. A team at Columbia Uni-
versity won the competition with a mathematical model that incorporates GFT data as well as
CDC’s ILI data and is weekly calibrated and optimized in order to produce an accurate and
reliable forecast [179, 180]. Moreover, this team presented their forecasts similarly to weather
forecast, thus helping the communication to both public health officials and the public. After a
three-year collaboration, CDC launched in 2016 a dedicated website called “FluSight” to house
the weekly influenza activity forecasts provided by the various research teams involved. Indeed,
much more needs to be done to integrate such digital epidemiology modelling approach with
existing practices in public health. As the progress made in weather forecasting over the past
60 years, infectious diseases forecasting is now in the process of steadily improving the accu-
racy and reliability of predictions and increasingly investment are now concentrated to connect
predictions to public health decision making.

In this chapter, we summarize our efforts and main findings in forecasting seasonal influenza
by using different forecasting techniques and integrating different data sources, particularly
highlighting the benefits of leveraging on digital data sources to capture an additional layer of
real-time and geo-localized signal. The chapter is subdivided in two sections. The first section
is based on Ref. [58] in which three different participatory disease surveillance systems have
been investigated in the use of modelling, simulation and forecasting. Here we report only our
original contribution based on a computational framework based on real-time influenza-related
data, traditional surveillance reports and a dynamical model for spatial epidemic spreading,
called GLEAM (GLobal Epidemic And Mobility model), which is able to produce realistic
simulations of the global spread of infectious diseases by combining high-resolution data on
populations and human mobility with stochastic mathematical models of disease transmission
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a) b) c)

Figure 3.1: The influenza-like illness (ILI) consultation rates per 100,000 individuals as reported by the
ECDC during selected influenza seasons in (a) Belgium, (b) Italy, and (c) Spain.

simulating the spatial and temporal evolution of epidemics at the level of single individuals. Such
methodology has been previously validated in Ref. [204, 205] with different calibrations of the
model through microblogging data from Twitter platform as well as participatory surveillance
data from Influenzanet platforms. Results derived from this methodology have been made
publicly available on an website, called FluOutlook (fluoutlook.org) [7], launched in 2014 as
a joint collaboration between ISI Foundation in Torino, Italy, and Northeastern University in
Boston, USA. FluOutlook is an online platform exposing real-time seasonal influenza forecasts
obtained from our computational framework calibrated both with Twitter data and Influenzanet
data as well as from some standard regression statistical models [204]. For each country and
each season, FluOutlook reports in real-time the influenza intensity projected up to four weeks
into the future, thus providing a description of the seasonal influenza progression that could be
used by public health agency to guide their decision making process, as well as to compare and
assess the performance of different forecast approaches.

The second section of this chapter is based on Ref. [168] in which we investigated how
traditional surveillance data reported by general practitioners (GPs) can be combined by means
of linear autoregressive models with digital surveillance data from the participatory Web-based
system called Influweb, thoroughly described in Chapter 2, in order to improve seasonal influenza
forecasts in Italy. Here we address the main issues affecting traditional surveillance systems (i.e.
reporting lags and continuous revision of data) and we show how to exploit one of the main
advantages of Influweb of having earlier data available.

Indeed, statistical and mechanistic models present very different features and level of knowl-
edge on the disease and the biological mechanisms that drive the infection dynamics [136]. On
the one hand, statistical models such as regression models generally ignore any details of the
disease transmission, being based on historical data to provide short terms predictions of the
ongoing season. Time series forecasting techniques can range from simple linear autoregressive
models based on a combination of past values of the variable to be predicted and then increas-
ingly add more details and accuracy, including seasonality. On the other hand, the mechanistic
models are structured to make explicit assumptions about the biological mechanisms that drive
infection dynamics, thus allowing for a better characterization of the disease, including the ex-
plicit estimation of key epidemiological parameters relevant to the public health decision-making
that cannot be achieved with statistical models that do not consider the disease dynamic. How-
ever, in both approaches we were able to highlight the added value provided by integrating a
digital real-time participatory component into seasonal influenza forecasting models.

fluoutlook.org
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3.2 Using a mechanistic model to forecast seasonal influenza

In this section, we present our work in forecasting seasonal influenza through a computational
framework that combines real-time influenza-related data, traditional surveillance reports and a
dynamical model for spatial epidemic spreading, called GLEAM (GLobal Epidemic And Mobility
model), capable of providing short-term predictions of seasonal influenza activity by producing
realistic simulations of the spatial and temporal evolution of the disease progression at the level
of single individuals.

This section is based on Ref. [58] in which three different participatory disease surveillance
systems, namely WISDM (Widely Internet-Sourced Distributed Monitoring), Influenzanet, and
Flu Near You (FNY), have been investigated in the use of modelling, simulation, and forecasting.
Here we report only our original contribution focused on the aforementioned computational
framework calibrated with Influenzanet data for the 2015-2016 influenza season for six countries
involved in the Influenzanet network (i.e. Belgium, Denmark, Italy, the Netherlands, Spain, and
the United Kingdom). The methodology presented here has been previously validated in Ref.
[204, 205] in which the model has been calibrated through microblogging data from Twitter
platform as well as participatory surveillance data from Influenzanet platform.

3.2.1 Dataset

In the case of the seasonal influenza, we generally lack surveillance data at a high spatial reso-
lution as traditional surveillance systems usually aggregate and report influenza incidence rates
at the level of country or regions. In order to inform the model about the number of initial
infections in each geographical area, we use a source of geo-localized data at a high spatial
granularity that allows to estimate the relative incidence of influenza activity across regions at
any given point in time. Such dataset corresponds to the participatory surveillance data from
Influenzanet platforms. Launched in 2008, Influenzanet is a network of Web-based platforms for
participatory surveillance of ILI present in 10 European countries [21]. Real-time information
on population health is collected through weekly Internet-based surveys in which volunteers
self-report their health status and consequent behaviour. The unique advantage provided by the
self-reported information collected by the Influenzanet platforms consists in their high resolution
both in time (daily collected) and space (at postal code level). Furthermore, Influenzanet data
represent a high-specificity ground truth for the ILI incidence that cannot be obtained with any
other source of information. More details about Influenzanet can be found in Chapter 2.

Users reporting a case of ILI are determined by applying the ECDC case definition [18] to
the set of symptoms reported by the participants. In particular, the ECDC defines an ILI case
as the sudden onset of symptoms with one or more systemic symptoms (fever or feverishness,
malaise, headache, myalgia) plus one or more respiratory symptoms (cough, sore throat, short-
ness of breath). The weekly ILI incidence is determined by dividing the number of ILI cases
by the number of active participants N in week w and postal code p, as ILIp,w/Np,w. When
retrospectively analysing these data, inclusion criteria to determine active participants may vary
and depend on the specific aim of the study [42, 64, 192, 193]. Here, as we are interested in ex-
tracting the number of infections early on in the first weeks of the influenza season, we consider
as active those participants who completed at least one Influenzanet symptoms questionnaire
during the period of interest. The full symptoms questionnaire can be found in Appendix A.

3.2.2 Methods

In order to provide real-time forecasts of seasonal influenza we combine digital indicators, surveil-
lance reports and a mechanistic modelling approach in a four stages computational framework as
presented in Figure 3.4. The mechanistic model, called GLEAM (Global Epidemic And Mobility
model), is described in the following section, then follows the description of the methodology
implemented at each stage of the framework.
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Figure 3.2: Population layer and mobility layer in GLEAM. The world surface is represented in a grid-like
partition whose cells are assigned to the closest airport, thus defining the geographical census areas (i.e.
subpopulations) of the metapopulation model. Subpopulations are connected by two mobility networks,
the short range commuting network and the long range air travel network. Figure reproduced from [45].

Figure 3.3: Compartmental structure of the epidemic model. Figure reproduced from [45].

3.2.2.1 The Global Epidemic and Mobility Model (GLEAM)

The Global Epidemic and Mobility model (GLEAM) [43, 45] is a stochastic generative model
able to produce realistic simulations on the global spread of infectious diseases by combining
real-world data on populations and human mobility and a detailed description of the specific
characteristics and epidemic parameters of the disease with stochastic mathematical models of
infectious dynamics simulating the spatio-temporal evolution of epidemics at the level of single
individuals. GLEAM supports policy-making and emergency planning by developing epidemic
models and scenario analysis able to gauge the actual threat of highly pathogenic diseases and
minimize the impact of potentially devastating epidemics. In the event of epidemic outbreaks
public health authorities can choose to activate prevention and emergency response policies,
such as vaccination, travel restrictions, or school and business closures, but the socio-economic
cost of such programmes can be high and their impact on the epidemic hard to determine. In
this context, GLEAM allows the modelling of containment and mitigation strategies providing
quantitative projections that better informs the analysis of their likely impact. GLEAM has
been thoroughly tested and validated against historical outbreaks, including the 2002-2003 SARS
epidemic [78], the 2009 H1N1 influenza pandemic [40, 41, 44, 46, 191], but also in a real-time
fashion during the more recent outbreaks of Ebola in West Africa [161] and Zika in Latina
America [206].

GLEAM is based on a metapopulation approach [123] whose subpopulations are defined
through a Voronoi tessellation of the Earth surface that is represented in a grid-like partition
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where each cell is approximately 25x25 km and corresponds to an estimated population value.
Population data are obtained from the websites of the Gridded Population of the World and the
Global Urban-Rural Mapping projects, run by the Socioeconomic Data and Application Center
(SEDAC) of Columbia University. Each cell is assigned to the closest airport from the Interna-
tional Air Transport Association (IATA) [26] database, thus generating the 3,253 subpopulations
of the metapopulation model, as shown in Figure 3.2. Groups of airports located close to each
other (e.g. London is served by six airports, New York City by three and so on) are manually
identified and assigned to the same subpopulation, hereafter called basin. Basins are connected
by a network of human travel fluxes corresponding to transportation infrastructures and mo-
bility patterns. In particular, GLEAM integrates two different types of mobility processes: a
long-range mobility given by air travel data and a short-range mobility given by commuting
data (see Figure 3.2). The flight network is derived from the worldwide booking datasets from
the Official Airline Guide (OAG) database that contains more than 3,800 commercial airports in
about 230 countries, and includes over 4,000,000 connections representing the estimated book-
ings between any two of these airports for each month. The commuting patterns are collected
from the national statistics offices of more than 40 countries in five continents, covering more
than 78,000 administrative regions. On the other hand, for those countries where real data are
not available, synthetic commuting data can be generated by applying some mobility models,
such as the gravity model [43] and the radiation model [182]. The mobility networks exhibit
important variability both in the number of people travelling on each connection and in the total
number of travellers per geographical census area, capturing the irregular network structure that
affects the local and global diffusion of infections among subpopulations.

The infection dynamics occurs within each subpopulation and is governed by a disease-
specific compartmental model in which individuals are classified according to their health sta-
tus with respect to the disease, such as infected, susceptible, immune, etc., and can change
health status according to the characteristics of the disease (incubation times, the proportion of
asymptomatic yet infectious individuals, mortality rates and immunity, etc.) coupled with any
prevention and intervention measures. The spread of the infection occurs through interactions
between individuals belonging to the same subpopulation, while the infection is transmitted
between subpopulations when people commute to work or school, or travel longer distances
on national and international flights. The epidemic evolution is modelled using an individual
dynamic where transitions are mathematically defined by chain binomial and multinomial pro-
cesses [114] to preserve the discrete and stochastic nature of the processes. The model is fully
stochastic and from any nominally identical initialization (initial conditions and disease model)
generates an ensemble of possible epidemic evolution for epidemic observables, such as newly
generated cases.

In the application to seasonal influenza, the disease dynamics is modelled with a Susceptible-
Latent-Infectious-Recovered (SLIR) compartmental scheme, typical of ILI. Individuals can oc-
cupy one of these four discrete disease states at each discrete time step: susceptible individu-
als, S, who lack immunity against the infection, latent individuals, L, who are infectious but
do not display the symptoms yet, infectious individuals who can transmit the infection, and
removed/recovered individuals, R, who no longer have the infection. In addition, infectious
individuals are further subdivided into 3 compartments: asymptomatic individuals, Ia, who
do not display any symptoms of their illness, symptomatic individuals who can be allowed to
travel, It, or not, Int. The condition of homogeneous mixing is assumed within each subpopu-
lation, meaning that each individual of each subpopulation can interact and have contact with
all the other individuals in a random way, without any specific characteristics related to their
social network. Figure 3.3 shows the compartmental structure along the transitions between
compartments. Susceptible individuals can acquire the infection through the interactions with
infectious individuals either in their home subpopulation or in their neighbouring subpopulations
on the mobility network. In particular, a susceptible individual in contact with a symptomatic
or asymptomatic infectious person contracts the infection at a rate β or rββ, respectively, and
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enters the latent compartment. This distinction is due to the fact that an asymptomatic person
is less infectious than a symptomatic one and in this case the transmission rate has to be re-
duced by a factor rβ=0.5 [46, 102, 138]. In addition, a fraction r of the population is considered
to be not susceptible to the disease because of the residual immunity from previous seasons or
vaccination. After the latency period ε−1, each latent individual becomes infectious at a rate
ε=1.5, entering the symptomatic compartments with probability 1 − pa or the asymptomatic
compartment with probability pa. To reflect the changes of human traveling behaviour after the
onset of symptoms, infected individuals with symptoms are further divided into two categories:
those who can travel (It) with probability pt=0.5 [46, 138], and those who are travel-restricted
(Int) with probability 1− pt. All the infected individuals permanently recover at a rate µ after
the average infectious period, µ−1, entering the recovered compartment, R.

The basic reproduction number R0, defined as the average number of secondary cases gener-
ated by an infected individual in a fully susceptible population [37] for seasonal influenza might
change from season to season according to the residual immunity r in a population. Thus, the
effective reproduction number is defined to take into account this variability and takes the form
Reff = (1− r)R0, where R0 = (rβpa + (1− pa))β/µ.

3.2.2.2 Computational Framework

The computational framework consists of 4 main components: input, mechanistic modelling,
model selection and output (Figure 3.4). In the following we detail the methodology implemented
at each stage of the framework.

In the input component we estimate the initial conditions needed to inform the model about
the number of initial infections so that it is able to numerically generate the epidemic progression
by explicitly simulating the transmission. The number of infected individuals extracted from
Influenzanet (see Dataset) in a given week w are mapped into the corresponding GLEAM basins
k and used as seeds to initialize the simulations, as :

ICk,w =

(
ILIk,w
Nk,w

)
αkY (3.1)

The coefficient αk is the ratio of census population to the total number of Influenzanet partici-
pants that are estimated to live in the subpopulation k, thus taking into account the heteroge-
neous coverage of Influenzanet in a country [64, 147]. Y is a free parameter necessary to fine
tune the rescaled number of ILI extracted from Influenzanet compared to the actual number
of infected individuals, while w represents the starting week in the simulation, hereafter called
seeding week. Since the ILI incidence rates reported by traditional surveillance systems are quite
noisy at the early stages of the influenza season, the seeding week is shifted forward in time until
the first week for which the ILI incidence crosses the epidemic threshold, that is specific for each
country and seasonally evaluated [194].

In the second component, such initial conditions are used as seeds to initialize the simulations
that generate an ensemble of possible epidemic evolution of the disease. GLEAM performs a

Latin hypercube sampling of a 4-dimensional phase space defined by the vector
−→
θ = r × µ ×

R0 × Y . The variable r describes the fraction of the population not susceptible to the disease
due to the residual immunity and the fraction of vaccinated population. At the beginning of
the influenza season, there is no explicit data about the fraction of population immunized due
to exposure to the virus during the previous season or due to vaccination campaign, but in
general this quantity varies from 25% to 45%, thus we consider r ∈ [0.0, 0.45]. The inverse
of the recovery rate µ defines the infectious period that for influenza typically varies from 2
to 5 days, thus we consider µ ∈ [0.2, 0.5]. The parameter β defines the disease transmission
rate, and together with r and µ, is determined by the effective reproduction number, Reff , that
typically varies from 0.9 to 2.1 for seasonal influenza [71]. Here we consider Reff ∈ [0.8, 3.0].
The parameter Y is a tuning parameter regulating the number of generated infected individuals
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in each basin k. We consider Y ∈ [10−6, 10]. Each range of these parameters is sampled with
different resolutions resulting in a phase space formed by a total of 58,000 sampling points.
For each sampled point, the model generates a statistical ensemble of 500 identically initialized
Monte Carlo simulations providing for each subpopulation k the number of new flu cases in time
Gk(t : r, µ,R0, Y ), among other indicators. Here, for sake of simplicity, we consider only the
country level aggregation G(t) =

∑
kGk(t).

Since the simulated epidemic profiles G(t) produce a large number of infected individuals,
we rescale them according to the average of the ILI surveillance data from the last ten influenza
seasons, excluding the season 2009-2010 because of the H1N1 pandemic. In particular, the
rescaling considers both the average peak intensities and off-season average of the ILI surveillance
data with variations in the rescaling factor of the order of the standard deviation.

Among these rescaled epidemic profiles, we use a statistical inference approach based on
the Akaike Information Criterion (AIC) [33] to select only those models that are more likely
according to the goodness of fit with the ILI surveillance data. In particular, given a set of
candidate models, AIC provides an estimation of the information lost when the selected model
is used to represent the real data. For each candidate model i, the AIC value is defined as:

AICi = N ln(
RSS

N
) + 2K (3.2)

where N is the number of fitting points, K is the number of parameters, and RSS is the
residual sum of squares of the vertical distances of the fitting points from the curve. The model
associated with the smallest AIC value, indicated with AICmin, minimizes the information loss
to approximate the real data and represents the best model. For each candidate model i, we
can define ∆AICi = AICi −AICmin, which is a measure that allows for an immediate ranking
of each model with respect to the best model. According to some rules of thumb, models having
∆AICi < 2 have substantial evidence to support their validity against data, values between 3
and 7 indicate that the model has considerably less support, whereas models with ∆AICi > 10
indicates that they are very unlikely.

In our application, we select models with the minimum loss of information and the maximum
likelihood with respect to the real data within a certain training window, shown in yellow in
Figure 3.4(D). For each training window x0, x1, ..., xT−1, this selected ensemble of models is then
used to forecast the epidemic in the following weeks T, T + 1, ..., and to estimate peak time and
peak intensity of the influenza season. Such model selection technique is repeated week by week
as new data from the ILI surveillance system is available, thus being more and more stringent
as the season progresses and reducing uncertainties and stabilizing the forecast.

3.2.3 Results

In this section, we report the results obtained for the calibration of the model with Influenzanet
data for the 2015-2016 influenza season for six countries of the Influenzanet network (i.e. Bel-
gium, Denmark, Italy, the Netherlands, Spain, and the United Kingdom) [58]. Regarding the
traditional surveillance data, we use the weekly ILI consultation rate per 100,000 individuals
reported by ECDC.

Forecasts are provided along the entire season by considering x-week lead predictions (x −
wlp for short) where x ∈ [1, 4], thus predicting up to four weeks ahead of the release of the
new surveillance report, but actually predicting three weeks into the future. Results for 1-
wlp correspond to the nowcasting task, i.e. inferring the incidence value that the traditional
surveillance systems will report in the following week. Figure 3.5 illustrates the values of the
forecast along the entire season for 1-week, 2-week, 3-week, and 4-week lead predictions for
the calibration with Influenzanet data. For all the countries under study the 95% confidence
interval inferred from the selected ensemble of models is able to forecast the range of the entire
epidemic profile. In fact, the empirical observations (i.e. the ground truth of the traditional
surveillance data represented as black dots in the figure) lay within the confidence intervals for
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Figure 3.4: Computational forecast framework. Figure reproduced and updated from [205].

most of the weeks. To quantify the simulation’s forecast performance, we compute the Pearson
correlation and the mean absolute percentage error (MAPE) between each predicted time series
and official surveillance time series. Moreover, in order to deepen the analysis of the accuracy
of the model we report weekly forecasts for one of the main indicators of the influenza season,
i.e. the peak week. Here we define the peak week accuracy as the percentage of the selected
ensemble of simulations providing predictions within one week for peak time. In particular,
Table 3.1 reports the values of the Pearson correlation and the mean absolute percentage error.
As expected, the correlation generally decreases and the MAPE increases as the epidemic profiles
are made by forecasts considering larger lead. Furthermore, the 2015-2016 influenza season was
very mild in Europe and our method provides more reliable predictions with one or two weeks
lead, mainly due to the fact that the dynamic pattern of the epidemic and the surveillance
data signals are affected by large relative fluctuations. It is worth remarking that the ILI rate
reported by official surveillance systems compounds together with the flu several other pathogens
like rhinovirus and respiratory syncytial virus, thus the model should be generalized to multiple
pathogens in order to improve the accuracy also at the very beginning and end of the season.
In the case of Influenzanet, the quality of the forecasts is also affected by the noise of the
corresponding ILI incidence curves, mainly due to the level of participation reached in each
country. More information can be found in Chapter 2.

Table 3.2 shows the accuracy in predicting the peak week for the various countries under
study. The peak accuracy of our predictions is consistently high for short-term predictions, but
as already pointed out, the 2015-2016 influenza season was very peculiar and mild in Europe with
an unusually late peak, and the forecasting accuracy depends on the severity of the season under
consideration. Indeed, the large fluctuations in the surveillance data and the confounding factors
introduced by other ILI pathogens that are predominant in mild influenza seasons reverberate
in the ensemble selection process inducing unstable predictions.

3.2.4 Discussion

In this study, we presented a computational framework to forecast the unfolding of seasonal
influenza combining digital ILI indicators, official surveillance data, and a data-driven mech-
anistic epidemiological model. This methodology has been previously validated adopting two
different calibrations of the model: microblogging data from Twitter platform [205] and par-
ticipatory surveillance data from Influenzanet platforms [58]. In particular, here we evaluated
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Figure 3.5: Influenzanet-based forecasts for the 2015-2016 influenza season in Belgium, Denmark, Italy,
the Netherlands, Spain, and the United Kingdom, considering 4-week, 3-week, 2-week, and 1-week lead
predictions. The best estimation (solid line) and the 95% confidence interval (shadow area) are shown
together with official surveillance data (black dots).

its performance during the 2015-2016 influenza season in Belgium, Denmark, Italy, the Nether-
lands, Spain, and the United Kingdom. Remarkably, the predictions are in good agreement
with real observations and the framework is able to provide forecasts that stabilize and become
more accurate as the season progresses. Overall, from these analyses we can conclude that our
methodology provides reliable predictions often with significant lead times. The quality of the
forecasts is related to the intensity of the epidemic and for the 2015-2016 influenza season, that
was particularly mild, we observed that the fluctuations in the signal generates a larger uncer-
tainty in the predictions. The importance of accurate forecasts is certainly higher during severe
influenza season and it is encouraging to observe that the forecast framework performs better
exactly when it is most needed. Furthermore, our approach presents a number of advances with
respect to previous work. In fact, we adopt an individual based data-driven epidemiological
model in which the census areas are coupled by real mobility data, thus being able to capture
the geospatial spreading patterns in a country. Moreover, we make use of digital ILI indica-
tors only to initialize the epidemiological model with the result that the predictions are just
indirectly influenced by such indicators, and the dependence from their availability is limited to
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Table 3.1: Pearson correlations and mean absolute percentage errors (MAPE) as obtained by comparing
the forecast results and the traditional surveillance data along the entire season in each country under
study. Significant correlations (i.e. p< 10−2) are indicated with *.

country
Pearson correlation MAPE

4-wlp 3-wlp 2-wlp 1-wlp 4-wlp 3-wlp 2-wlp 1-wlp

Belgium 0.283 0.193 0.236 0.922* 43 46 149 39

Denmark 0.236 0.255 0.199 0.965* 60 75 76 25

Italy 0.879* 0.809* 0.973* 0.812* 15 20 6 18

Netherlands 0.387 0.387 0.763* 0.632 69 69 18 31

Spain 0.791* 0.494 0.521 0.521 124 35 34 34

United Kingdom 0.845* 0.845* 0.845* 0.810* 15 15 15 19

Table 3.2: Peak week accuracy defined as the percentage of the selected ensemble of epidemic profiles
providing predictions within one week for peak time.

country
Peak week accuracy

4-wlp 3-wlp 2-wlp 1-wlp

Belgium 17 0 5 56

Denmark 12 0 84 74

Italy 56 0 100 61

Netherlands 59 60 34 83

Spain 100 83 97 100

United Kingdom 9 3 68 100

just few weeks in the early stages of the influenza season. Also, we are not limited to a specific
source of digital ILI indicators as we demonstrated that the same methodology can adopt dif-
ferent data, being able to be extended to any other geo-localized data sources [205]. Traditional
surveillance data are usually affected by reporting lags of at least one week and by weekly re-
vision of the numbers initially released and generally lack a fine geographical resolution needed
to inform high-resolution dynamical models such as GLEAM. Thus, geo-localized and real-time
influenza-related indicators, such as data from social media and participatory systems, represent
an important component in such modelling approach. Finally the presented framework can be
easily refined with multiple data sources, such as weather data information, specific contact
matrices and school calendars.
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3.3 Using participatory Web-based surveillance data to improve
seasonal influenza forecasting in Italy

In this section, we will describe the second approach we developed in the scope of real-time
forescasting of seasonal influenza in Italy. This work is based on Ref. [168] in which we inves-
tigated how two data sources deriving from two different monitoring systems can be combined
to improve seasonal influenza forecasts in Italy. The first one is Influnet [23], the national
surveillance system for influenza syndromes in Italy, which is coordinated by the Italian Na-
tional Institute of Health (ISS). The second one is Influweb [24], a Web-based participatory
surveillance system, part of the Influenzanet network [21], that monitors ILI activity in Italy
since 2008. Both systems have already been described in Caption 2, here we will briefly explaine
how they have been used in this study.

Our approach is based on linear autoregressive models that integrate ILI prevalence reported
by the traditional surveillance system and detected by the Influweb platform to generate pre-
dictions in a real-time fashion up to four weeks in advance. We retrospectively evaluate the
predictive ability of our forecasting models over the course of four influenza seasons in Italy,
from 2012-2013 to 2015-2016, for each of the four weekly time horizons.

3.3.1 Dataset

In this section, we describe the data collection for the two surveillance systems, highlighting
their main characteristics and explaining how they have been used in our analysis. More details
about these platforms can be found in Chapter 2.

3.3.1.1 Influnet

Influenza activity in Italy is officially monitored by the Italian National Institute of Health,
“Istituto Superiore di Sanità”, through a system called Influnet [23]. ILI incidence data reported
by Influnet represent the ground truth for this study. The Influnet system collects data from
a network of sentinel General Practitioners (GPs) and compiles a weekly report in which the
national and regional incidence rates by age group are published during the winter season,
generally from week 42 to week 17 of the calendar year. The system covers about 2% of the
Italian population. Influnet data are published with at least one-week lag and typically new
reports provide a first estimate of the weekly ILI incidence which is then updated in the following
weeks as more data from sentinel GPs are recorded.

In this study, we distinguished between final revised reports, i.e. ILI data that are no
longer being revised and are available only at the end of the influenza season, and weekly
unrevised reports, i.e. ILI data that are actually available with one-week lag and subject to
weekly revision until the end of the influenza season. We collected the Influnet revised and
unrevised reports for five influenza seasons, from 2011-2012 to 2015-2016, from week 47 to week
17. Reports for weeks 2011-52 and 2013-51 were not available. Weekly reports released on week
WW of the year YYYY are available at the following URLs: http://www.iss.it/binary/

iflu/cont/Influnet_YYYY_WW.pdf. Final revised reports are available at the following URLs:
http://www.iss.it/flue/index.php?lang=1&anno=2016&tipo=13. All reports were accessed
and downloaded on September 1, 2016.

3.3.1.2 Influweb

Influweb collects weekly symptoms reports in Italy with the aid of self-selected volunteers from
the general population [192]. Generally, the data collection is active from November to May dur-
ing each influenza season. Participants, upon registration, are invited to provide some general
background information (e.g. postal code of residence, their birth month and year, their vacci-
nation status, their household composition etc.; further details about the background questions

http://www.iss.it/binary/iflu/cont/Influnet_YYYY_WW.pdf
http://www.iss.it/binary/iflu/cont/Influnet_YYYY_WW.pdf
http://www.iss.it/flue/index.php?lang=1&anno=2016&tipo=13
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Table 3.3: Participation to Influweb during the five influenza seasons under study.

Season
Number of

registered users
Average number of
weekly active users

Total number of
symptoms surveys

2011-2012 2,270 1,085 14,681

2012-2013 3,057 1,165 15,789

2013-2014 3,513 1,244 18,471

2014-2015 3,753 1,290 20,224

2015-2016 4,053 1,224 20,823

are available upon request). Once they are enrolled in the system they are invited by means of
a weekly e-mail reminder to report whether or not they experienced respiratory, gastrointestinal
and systemic symptoms (see the full list in [64]).

ILI cases among participants are determined by applying the ECDC case definition [18] to the
set of symptoms reported by volunteers. Accordingly, ILI is defined as the acute onset (within
a few hours) of symptoms, including at least one among fever or feverishness, malaise, headache
and myalgia and at least one among cough, sore throat and shortness of breath. The day of
symptoms onset determines the day of ILI onset. Weekly ILI incidence is determined by dividing
the number of ILI onsets by the number of active participants per week. When retrospectively
analysing these data, inclusion criteria to determine active participants may vary and depend on
the specific aim of the study [42, 64, 192, 193]. Here, we consider as active those participants who
filled the background survey and at least two symptoms surveys, to avoid sporadic participation
[64, 193]. ILI cases detected in the first symptoms survey were not taken into account because
of a potential correlation between symptom presence and willingness to join the web-platform
[32, 57, 193]. Participants are considered active for two weeks around the week of reporting.

The fact that volunteers are self-selected is a well known issue that usually affects partici-
patory systems and causes the sample to be non-representative of the general population. In
the case of the Influenzanet platforms, self-selection biases have been discussed and quantified
in a previous work [64] in which all the relevant aspects for epidemiological analyses, including
geography, mobility, demographic, socio-economic and health indicators, have been extensively
explored and compared with national statistics. More recently, the representativeness of the
users sample has been thoroughly investigated by restricting the analysis only to the Italian
Web-platform [167]. In particular, the representativeness of the sample has been examined in
terms of age, gender and geographic distribution with respect to the general Italian population
and to the Influnet population sample during three influenza seasons, from 2012-2013 to 2014-
2015. Results have shown that, despite the existing participation biases, the epidemiological
signal extracted from Influweb correlates well with the ILI signal detected by the Influnet sen-
tinel network, capturing both the timing and the relative intensity of seasonal flu activity in
Italy. More details can be found in Chapter 2. In addition, differently from Influnet, Influweb
data are available in real-time and the system can detect ILI cases from the general population
and not only from medically attended patients.

Here, we have used Influweb data from five influenza seasons, from 2011-2012 to 2015-2016.
The data collection period generally starts at the beginning of the influenza season in November,
through a first e-mail reminder to the participants already enrolled in the system and a number
of press releases to attract new volunteers among the general population. Thus, the system
needs some weeks to reach a stable cohort of participants and early data are usually noisy and
must be discarded to avoid biases due to a variable sample of reporting participants. To address
this issue, for each influenza season we have selected a starting week according to a threshold
on the number of active participants of at least 25% of the total number of participants in the
previous season. Accordingly, the influenza seasons under study start on weeks 2011-47, 2012-48,
2013-47, 2014-47 and 2015-47. We have also tested different thresholds and 25% has been found
as the optimal value to remove the initial noise and obtain the largest number of data points at
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the same time, for all the seasons under study.
In Table 3.3, we report the number of registered users, the average number of weekly active

users and the total number of symptoms surveys for all influenza seasons considered in this work
from the starting week until the last week of active GP surveillance.

Data collected from the Influweb platform are gathered according to the Italian regulations
on privacy which states that only aggregated and anonymized data can be published and shared.
Raw data are available upon request from third parties wishing to conduct scientific research
and upon discussion with other members of the Influenzanet Scientific Committee. Weekly
incidence data aggregated at country level for the current influenza season (2016-2017) are pub-
licly available at the following URLs (in Italian): http://www.epicentro.iss.it/problemi/

influenza/flunews.asp. Weekly incidence data used in this study are available at the following
URLs: https://www.influweb.it/it/dati/.

3.3.2 Methods

In this section we describe three models we have used to produce seasonal influenza forecasts:
one model is based on data from GP surveillance reports only, while the other two combine data
from both traditional influenza surveillance and Web-based participatory surveillance. We also
present evaluation metrics we used to quantify the forecasting accuracy of the three models over
the four influenza seasons under study.

Following the same methodology adopted in previous works [131, 164, 175], we considered as
our reference a baseline model that considers only ILI data from the traditional GP surveillance
Influnet. The baseline model consists of a linear autoregressive model with three weekly lagged
components (AR3) as independent variables and takes the form:

yw+k = α1ỹw−1 + α2ỹw−2 + α3ỹw−3 (3.3)

where yw denotes the ILI incidence value at week w and y indicates the value reported by
the revised reports, while ỹ indicates the unrevised report that is most recent at the time of the
forecast.

According to the value of k, a distinction can be made between nowcasting (k = 0), i.e.
inferring the present ILI incidence value that Influnet will report in the following week, and
forecasting (k > 0), i.e. predicting the ILI incidence value in k weeks. ILI predictions generated
with the baseline model are then contrasted with those produced by the forecasting models that
integrate data from participatory surveillance, to assess their added value.

As mentioned above, one advantage of the participatory system Influweb is that data are
available in real-time, not just for the previous week as for Influnet. Thus, we used a forecasting
model that integrates the real-time ILI signal detected by Influweb into the epidemiological
signal of Influnet. First, we produced ILI predictions by including the previous three weeks
of ILI incidence reported by Influnet and the Influweb signal for the current week in a linear
autoregressive exogenous (ARX) model, as described in [164]. This model, hereafter called
ARX1w, takes the following form:

yw+k =
3∑
i=1

αiỹw−i + γ0z̃w (3.4)

Then, we further extended the ARX model by adding other three weekly lagged terms of
the Influweb ILI incidence, (hereafter called ARX4w), as follows:

yw+k =

3∑
i=1

αiỹw−i +

3∑
j=0

γj z̃w−j (3.5)

In the previous models, the regression coefficients αi and γi are estimated separately for
different values of k by a least-squares regression.

http://www.epicentro.iss.it/problemi/influenza/flunews.asp
http://www.epicentro.iss.it/problemi/influenza/flunews.asp
https://www.influweb.it/it/dati/
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We considered the 2011-2012 influenza season as a training set for all the models and the
subsequent four seasons, from 2012-2013 to 2015-2016, for validation purposes. The goal was to
use all available information, at a given point in time, to produce accurate predictions of the ILI
incidence one, two, three and four weeks ahead of the release of Influnet reports, effectively pre-
dicting ILI three weeks into the future. To this aim, the training set was dynamically increased
to include all available information at a given week. In other words, for our first prediction on
week 2012-48, the training set included 23 weeks of historical data, for the second prediction on
week 2012-49, the training set consisted of 24 weeks, including the values at week 2012-48, and
so on for all subsequent weeks.

For each forecasting model we report four different evaluation metrics: Pearson correlation,
mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage
error (MAPE). The definitions of all evaluation metrics are given below, conforming to the
following notation: xi indicates the predicted value at time i, yi corresponds to the ground
truth value at time i, and, finally, x and y denote the average of the values {xi} and {yi},
respectively.

• The Pearson’s Correlation is a measure of the linear dependence between two variables
and is defined as:

r =

∑n
i=1(yi − y)(xi − x)√∑n

i=1(yi − y)2
√∑n

i=1(xi − x)2
(3.6)

• The Mean Absolute Error is a measure of the average of the absolute errors between
predicted and true values and is defined as:

MAE =
1

n

n∑
i=1

| yi − xi | (3.7)

• The Root Mean Squared Error (RMSE) is a measure of the difference between predicted
and true values and is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)2 (3.8)

• The Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy of a
forecasting method and is defined as:

MAPE =
1

n

n∑
i=1

|yi − xi|
yi

× 100 (3.9)

These similarity metrics were calculated for the time period from the beginning of the 2012-
2013 influenza season, week 2012-48, to the end of the 2015-2016 influenza season, week 2016-16.

Moreover, for each forecasting model we evaluate both the timing and magnitude of the
peaks in the influenza seasons with respect to the ground truth. In particular, for each value
of k, we report the number of weeks lag between the predictions and the ground truth and the
percent error (PE) around the peak, that is a measure of the discrepancy between predicted and
true values and is defined as:

PE =
|yi − xi|

yi
× 100 (3.10)

The peak analysis is performed separately for each of the four influenza seasons, but for
simplicity’s sake, we report only the minimum and maximum number of weeks lag and the
average together with the minimum and maximum percent error around the peak intensity.
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Figure 3.6: Comparison between the ground truth (black) and the forecasting models: baseline model
(blue), ARX1w model (orange) and ARX4w model (purple), for the four time horizons: a) k=0; b) k=1;
c) k=2; d) k=3.

3.3.3 Results

Figure 3.6 shows the ILI predictions, while Figure 3.7 shows the weekly errors associated to each
model. Table 3.4 displays all the values of the evaluation metrics and the peak analysis obtained
by comparing the baseline model and the forecasting models ARX1w and ARX4w for the four
weekly time horizons, corresponding to k = 0, 1, 2, 3, against the ground truth. The Pearson’s
correlation increases with respect to the baseline model of about 0.2% and 0.3%, respectively
for the ARX1w and the ARX4w models, for k = 0; 0.8% and 2.5% for k = 1; 3.4% and 9.9% for
k = 2; 10.9% and 29.9% for k = 3. The MAE decreases with respect to the baseline model of
about 6.7% and 13.3%, respectively for the ARX1w and the ARX4w models, for k = 0; 12.0%
and 24.1% for k = 1; 18.6% and 34.9% for k = 2; 21.1% and 43.3% for k = 3. The root mean
squared error (RMSE) decreases with respect to the baseline model of about 9.0% and 15.2%,
respectively for the ARX1w and the ARX4w models, for k = 0; 13.8% and 28.8% for k = 1;
17.2% and 37.8% for k = 2; 20.1% and 46.2% for k = 3. The mean absolute percentage error
(MAPE) increases with respect to the baseline model of about 0.2% and 1.5%, respectively for
the ARX1w and the ARX4w models, for k = 0; 8.6% and 14.5% for k = 1; for k = 2, the MAPE
decreases of about 3.2% for the ARX1w model, while it increases of about 2.5% for the ARX4w

model; finally, for k = 3, the MAPE decreases of about 4.4% and 5.1%, respectively for the
ARX1w and the ARX4w models.

As observed in Figure 3.6, the predictions curves produced by the baseline model undergo a
slight shift forward. This trend is then corrected by incorporating a source of data that integrates
the current value of the ILI incidence and contributes to readjust the predictions and partially
remove the shift.
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Table 3.4: Similarity metrics and peak analysis of the forecasting models with respect to the ground
truth. The best performing model per metric is bold faced.

Similarity Metrics Peak Analysis

Model CORR
MAE

(ILI/1,000)
RMSE

(ILI/1,000)
MAPE

(%)
weeks lag

[Min, Max]

PE (%)
Mean [Min, Max]

baseline 0.981 0.45 0.5955 12.93 [0, 1] 8.6 [4.8, 10.9]

k = 0 ARX1w 0.983 0.42 0.5419 12.95 [0, 1] 5.5 [3.5, 7.7]

ARX4w 0.984 0.39 0.5052 13.13 [0, 1] 5.6 [1.9, 9.0]

baseline 0.934 0.83 1.1174 22.39 [1, 2] 13.7 [8.9, 19.3]

k = 1 ARX1w 0.942 0.73 0.9635 24.31 [1, 2] 9.3 [0.8, 18.1]

ARX4w 0.957 0.63 0.7952 25.63 [0, 1] 5.5 [0.7, 10.6]

baseline 0.835 1.29 1.7497 33.79 [2, 3] 13.8 [7.7, 24.3]

k = 2 ARX1w 0.864 1.05 1.4488 32.72 [2, 3] 11.7 [6.5, 23.0]

ARX4w 0.918 0.84 1.0885 34.62 [0, 2] 5.2 [0.3, 12.0]

baseline 0.677 1.80 2.4287 45.23 [0, 3] 9.7 [2.3, 23.2]

k = 3 ARX1w 0.751 1.42 1.9404 43.23 [0, 3] 10.7 [1.7, 22.1]

ARX4w 0.879 1.02 1.3058 42.93 [0, 3] 7.2 [0.6, 19.7]

In the nowcasting task (k = 0) the three forecasting models show a comparable performance
in predicting the peak with 0 or 1-week lag. The ARX1w model predicts the peak with the same
range of weeks lag with respect to the baseline model, but with a lower percent error around the
peak, for all the four weekly time horizons. The ARX4w model predicts the peak with a greater
accuracy with respect to the baseline model and the ARX1w model for k = 1, 2 and with a lower
percent error around the peak, for all the four weekly time horizons. As expected, the ability of
the forecasting models to capture the peaks in the influenza seasons decays as the time horizon
increases, as shown in Figure 3.7.

3.3.4 Discussion

In this study, we have investigated how real-time forecasts of seasonal influenza activity in
Italy can be improved by integrating surveillance data from the GP based monitoring system,
called Influnet, with data from a Web-based participatory platform, called Influweb. Indeed,
ILI incidence estimates produced by traditional surveillance systems such as Influnet undergo
weekly revisions during the influenza season as more data from sentinel doctors are collected and
official reports are usually released with at least one-week lag. On the other hand, participatory
surveillance data such as those produced by Influweb are available as soon as participants report
their health status. To produce accurate seasonal influenza forecasts, we have leveraged on this
real-time component and built two forecasting models incorporating the weekly lagged terms
of the ILI incidence of both surveillance systems in a linear autoregressive exogenous (ARX)
model. One is the ARX1w model, which combines incidence data from GP surveillance with a
single term of the Influweb incidence for the current week. The second is the ARX4w model
which integrates incidence data from traditional surveillance with four weekly lagged terms of
the Influweb incidence. We have found that both models outperform the predictions based on
GP surveillance data only. The ARX4w model achieves the best performance by predicting
the unfolding of the influenza epidemic four weeks in advance and showing the best accuracy
in terms of lowest MAE and RMSE and highest correlation with the ground truth across all
time horizons. These results highlight the added value provided by the integration of a digital
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Figure 3.7: Errors associated with each forecasting models, baseline model (blue), ARX1w model (orange)
and ARX4w model (purple), are displayed for the four time horizons: a) k=0; b) k=1; c) k=2; d) k=3.

real-time participatory component into seasonal influenza forecasting models. For sensitivity
analysis, we also tested the performance of a linear autoregressive model with three weekly
lagged components (AR3) based only on Influweb ILI incidence. This model resulted to be less
accurate than the baseline model (results not presented) showing that, although ILI retrospective
estimates tracked by Influweb correlate well with the ground truth data, a model relying only
upon Web-based surveillance data is not able to capture the main indicators of the epidemic
season.

Our study relies on the assumption that ILI incidence reported by GP surveillance represents
the best available measure of influenza activity in Italy. Such assumption may not be completely
accurate, as GP surveillance can sometimes over- or underestimate the true burden of the epi-
demic, depending on what ILI fraction corresponds to real influenza cases and on the reporting
rates of sentinel medical doctors [141]. However, sentinel incidence data is considered a highly
reliable indicator of influenza activity and adjusting sentinel data for under-ascertainment would
require additional information, such as consultancy rates by age groups or reporting rates by
GPs, which is usually not available.

The advantages of an integrated framework have been explored also in previous works
[142, 164, 175] in which it has been shown that, at least in the United States, the most effec-
tive approaches aimed at improving influenza forecasts combine information from multiple flu
predictors extracted from various Web data sources such as Twitter, Google Trends, Wikipedia,
including data from participatory surveillance. In countries where the penetration of social me-
dia is low or Natural Language Processing algorithms do not reach the same accuracy as for the
English language and such abundance of different data sources may not be harnessed with equal
efficacy, participatory surveillance systems remain not only an important tool to measure the
levels of flu activity but also a data source that, combined with the traditional GP surveillance,
can be used to provide real-time accurate forecasts.

In the next future, we will extend the present work to include all the countries in which the
Influenzanet project has been deployed so far. Another promising extension of our study lies in
the integration of other Web sources, such as Twitter or Wikipedia, into our framework. While
the majority of the existing studies are focused on the United States and the English language, it
would be of interest to understand how much real-time flu forecasts can be improved in countries
like Italy, where the penetration of Twitter is more limited, and how this compares to the results
obtained by assimilating participatory surveillance data into predictive models.
Traditional surveillance of seasonal influenza is generally affected by reporting lags of at least one
week and by continuous revisions of the numbers initially released. As a consequence, influenza
forecasts are often limited by the time required to collect new and accurate data. On the
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other hand, the availability of novel data streams for disease detection can help in overcoming
these issues by capturing an additional surveillance signal that can be used to complement data
collected by public health agencies. In this study, we investigate how combining both traditional
and participatory Web-based surveillance data can provide accurate predictions for seasonal
influenza in real-time fashion. To this aim, we use two data sources available in Italy from two
different monitoring systems: traditional surveillance data based on sentinel doctors reports and
digital surveillance data deriving from a participatory system that monitors the influenza activity
through Internet-based surveys. We integrate such digital component in a linear autoregressive
exogenous (ARX) model based on traditional surveillance data and evaluate its predictive ability
over the course of four influenza seasons in Italy, from 2012-2013 to 2015-2016, for each of the
four weekly time horizons. Our results show that by using data extracted from a Web-based
participatory surveillance system, which are usually available one week in advance with respect to
traditional surveillance, it is possible to obtain accurate weekly predictions of influenza activity
at national level up to four weeks in advance. Compared to a model that is only based on
data from sentinel doctors, our approach significantly improves real-time forecasts of influenza
activity, by increasing the Pearson’s correlation up to 30% and by reducing the Mean Absolute
Error up to 43% for the four weekly time horizons.

Seasonal influenza epidemics occur annually during winter in temperate regions, resulting in
around 3-5 million cases of severe illness and 250,000-500,000 deaths worldwide each year [19].
Accurate influenza incidence predictions are needed to estimate in advance, rapidly and reli-
ably, the number of influenza cases and to properly prepare for and respond to the unfolding of
the influenza epidemics. In developed and developing countries, national syndromic (i.e. based
on observed symptoms) surveillance systems monitor levels of influenza-like illness (ILI) cases
among the general population by gathering information from physicians, known as sentinel doc-
tors, who record the number of people seeking medical attention and presenting ILI symptoms.
These traditional surveillance systems for seasonal influenza are generally affected by reporting
lags of at least one week and by continuous revision of the numbers initially released [67]. Thus,
influenza forecasts are often limited by the time required to collect new, accurate data.

The pervasive use of digital communication technologies for public health [174] and the
increasing community engagement in public health have fostered the birth of surveillance systems
based on the possibility for single individuals to monitor and report their own health status
through Web-based platforms [201]. These so-called participatory surveillance systems aim at
capturing seasonal influenza activity directly from the general population through Internet-based
surveys. Participatory surveillance systems for seasonal influenza are currently running in 13
countries worldwide and collect, aggregate and communicate data in real time during the course
of every influenza season. Specifically, the systems that are currently online are: Influenzanet, a
network of Web platforms running in eleven European countries [21], FluNearYou in the United
States [74, 86, 187] and FluTracking in Australia [65, 66, 88, 89, 160]. Participatory surveillance
systems have proven to be accurate and reliable for ILI surveillance, as the detected timing and
relative intensities of influenza epidemics are consistent with those reported by sentinel doctors
[86, 88, 158, 167, 192]. Furthermore, it has been shown that participatory surveillance systems
can also provide relevant information to estimate age-specific influenza attack rates [75, 162, 167]
and influenza vaccine effectiveness [66, 96], to assess health care usage [189], and to estimate
risk factors for ILI [32].

Previous studies have developed a range of model-inference systems to generate real-time
influenza forecasts [180], some of them exploiting the availability of large scale Web data from
search queries and social media, such as Google [109, 176], Yahoo [171], Twitter [56, 69, 87, 129,
163, 164, 181, 204], Wikipedia [108, 120, 142] and also by including participatory surveillance
data in their models [175]. However, the large majority of published studies have focused
on forecasting the influenza activity in the United States only. This is mainly due to the
availability of advanced Natural Language Processing algorithms for the English language and
the easy access to ILI data provided by the Centers for Disease Control and Prevention (CDC),
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also in the context of the “Forecasting influenza season challenge” [53]. To what extent similar
forecasting approaches can be extended to non-native English speaking countries remains largely
unexplored, with a few exceptions [204].

In this study, we combine traditional surveillance data and Web-based participatory surveil-
lance data to improve forecasts of seasonal influenza activity in an European country, Italy, for
which such a forecasting approach has never been tested. To this aim, we use two influenza
activity monitoring systems. The first one is Influnet [23], the national surveillance system for
influenza syndromes in Italy, which is coordinated by the Italian National Institute of Health
(ISS). The second one is Influweb [24], a Web-based participatory surveillance system, part of
the Influenzanet network, that monitors ILI activity in Italy since 2008.

Our approach is based on linear autoregressive models that integrate ILI prevalence for
the current week as reported from the Influweb platform to generate predictions in a real-time
fashion up to four weeks ahead of the release of Influnet report. We retrospectively evaluate
the predictive ability of our forecasting models over the course of four influenza seasons in Italy,
from 2012-2013 to 2015-2016, for each of the four weekly time horizons.



Chapter 4

Modelling the epidemic spreading of
Zika using mobile phone data

Not a single year passes without [which]...
we can tell the world: here is a new disease!

— Rudolf Virchow, 1867

A large outbreak of Zika started in Brazil in July 2015 recently hit a total of 48 countries and
territories in the Americas causing up to the end of 2016 more than 700 thousand cases, among
which about 25% were laboratory confirmed, resulting in a cumulative incidence rate of about
71 cases/100,000 population, strongly affected by underreporting due to the clinical similarities
of mild illness symptoms associated with Zika, asymptomatic cases, limited sentinel sites, and
medically unattended cases. In this chapter, I will focus on the epidemic of Zika occurred in
Colombia in 2015-2016, mainly studying the role of human mobility in a metapopulation mod-
elling approach based on real data on population and a detailed description of the epidemiological
characteristics of the disease, as well as informed by real data on the number of cases occurred
in the early stage of the epidemic. In particular, I will investigate different mobility networks,
mainly focusing on the potential benefits of integrating human mobility patterns given by mobile
phone data, as well as human mobility generated by mobility models (i.e. the gravity model
and the radiation model) and census commuting data. In this study I personally carried out the
collection, analysis and visualization of the data, as well as generating the mobility networks
and writing the code of the epidemic model and performing the analysis of the simulations.

The research presented here is the result of a collaboration with United Nations Global Pulse
in New York, USA, where I spent three months from June to August 2017 for a summer intern-
ship in the Data Science group. Global Pulse was launched in 2009 as an innovation initiative of
the United Nations Secretary-General with the mission to accelerate discovery, development and
scaled adoption of big data innovation for sustainable development and humanitarian action.

4.1 Introduction

The Zika virus (ZIKV) is a mosquito-borne flavivirus that was first identified in the Zika Forest
of Uganda in 1947 in monkeys and later in humans in 1952. ZIKV is primarily transmitted by
infected Aedes mosquitoes [70, 111], which are also responsible for the transmission of dengue,
chikungunya and yellow fever. However, other ways of transmission have been reported, such
as sexual and perinatal transmission [52, 92, 146, 202] and blood transmission through blood
transfusion [149]. It generally causes mild symptoms, such as fever, skin rashes, conjunctivitis,
muscle and joint pain, malaise, and headache, although almost 80% of infections are asymp-
tomatic [94]. Being a mild disease, no specific treatment is required, but only get plenty of rest,
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drink enough fluids, and treat pain and fever with common medicines.

Until recently, ZIKV was considered a neglected tropical disease with only local outbreaks,
typically accompanied by mild illness. Underreporting, due to the clinical similarities of (mild)
illness symptoms associated with Zika, dengue, and chikungunya infections might also account
for previous Zika outbreaks being overlooked. The first large outbreak of disease caused by
Zika infection was reported in 2007 in the Pacific Island of Yap in the Federated States of
Micronesia with an estimate of 73% of Yap residents infected with Zika virus. In 2013-2014
outbreaks occurred in 4 other groups of Pacific islands (French Polynesia, Easter Island, the Cook
Islands, and New Caledonia) with thousands of suspected infections in French Polynesia and
possible associations between Zika virus and congenital malformations and severe neurological
and autoimmune complications. Lastly, during the recent outbreak in Latin America started
in Brazil in July 2015, WHO declared a Public Health Emergency of International Concern
(PHEIC) [155] on February 2016 (and that lasted for nearly 10 months) due to the increased
incidence of neurological complications, including microcephaly in newborns and Guillain-Barré
syndrome, associated to ZIKV infections. The epidemic reached a total of 48 countries and
territories in the Americas causing up to the end of 2016 more than 700 thousand cases, of
which about 25% were laboratory confirmed.

In this study we focus on the Zika outbreak occurred in Colombia that, following Brazil, was
the second earliest country that experienced a large-scale ZIKV epidemic in Latin America [1].
From week 2015-32 to week 2016-30, when health officials declared the end of the Zika epidemic
in Colombia, the Colombian Instituto Nacional de Salud (INS) [25] reported a total of 100,888
cases (about 9% were laboratory confirmed) corresponding to a cumulative incidence rate of
214 cases/100,000 population. In particular, here we investigate the role of human mobility in
the epidemic spreading of Zika in Colombia, with a special focus on the benefits of integrating
human mobility patterns provided by Call Detail Records (CDRs) in an epidemic modelling
approach. Recently, the latest global public health threats have highlighted the urgent need
for accurate human mobility data to properly inform epidemic models and assess the spatial
spreading of diseases and the risk of importation from the affected areas to the rest of the world,
thus allowing for rapid interventions and appropriate control measures [54, 115, 169, 196]. In
developed countries, mobility data is usually available and easily accessible from official sources
for airline transportation, train trips, or commuting, but such datasets may be not updated for
several years or aggregated at a wide geographical resolution, often limiting the potential impact
of many studies. Moreover, this information may be inadequate or completely unavailable in
developing countries. Mobility models, such as the gravity model [43] and the radiation model
[182], come in help by inferring local and global human mobility flows on a synthetic network
whose connections and the corresponding intensity represent the flow of people among different
regions. On the other hand, the limited generalizability of mobility models whose use can be
hindered in the absence of good calibration data, led to the study of the digital traces left by
humans over the Internet (e.g. Twitter, Flickr, Foursquare) and the footprints left by mobile
phone users whenever they make a call or send an SMS. In particular, CDRs data carry temporal
and spatial information on the position of mobile phone users at the level of tower signal cells
and can provide a proxy for humans physical displacements over time that may be used as a
primary data source for early response in case of outbreak. The availability of human mobility
data at such high resolution has impacted several research fields, ranging from urban planning to
social sciences [36, 38, 63, 76], but more important their application to the spatial epidemiology
of infectious diseases [51, 101, 157, 190, 197, 198, 199, 200].

In this study, we develop a metapopulation model directly informed with the reported Zika
cases in Colombia in order to analyse the spatiotemporal spread of the epidemic, accounting for
detailed population data and human mobility pattern. Next to mobile phone data, we consider
different synthetic networks of human movements across the country as well as census commuting
data in order to investigate and evaluate the metapopulation epidemic outcomes obtained by
integrating different mobility sources.
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Figure 4.1: a) Population distribution: Bogotá, Antioquia and Valle del Cauca are the most populated
departments. b) Cumulative incidence rate per 100,000 population from week 2015-32 to week 2016-30.

4.2 Dataset

In this section, we give a description of Colombia in terms of geography, population and the
epidemiological situation of the Zika outbreak. We then describe the mobile phone data, high-
lighting their main characteristics and explaining how they have been used in our analysis.

Population

Colombia is situated in the northwest of South America and is bordered to the northwest by
Panama; to the east by Venezuela and Brazil; to the south by Ecuador and Peru. Archipelago
of San Andres, Providencia and Santa Catalina consists of two island groups about 775 km
northwest of mainland Colombia. Colombia is divided into 32 Departments and 1 Federal
District, which is the country’s capital, Bogotá. Departments are formed by a grouping of
municipalities, 1,120 in total. The urban centres are mostly located in the highlands of the Andes
mountains, thus most people live in the western portion of the country, while the southern and
eastern portions are mostly sparsely inhabited with tropical rainforest, large livestock farms, oil
and gas production facilities, small farming communities and indigenous tribes.

Population data have been obtained from WorldPop [30] that provides estimates of popula-
tion counts and densities for multiple years per 100x100m grid cells through integrating census,
survey, satellite and GIS datasets in a flexible machine-learning framework. In this study, we
used the dataset lastly updated in 2015 by projecting population estimates on the administrative
resolution of departments (Figure 4.1). About 47 million people live in Colombia according to
this dataset, mostly distributed in the departments of Bogotá (about 16%), Antioquia (about
13%) and Valle del Cauca (about 10%), as reported in Table 4.1.

Zika case data

Although preliminary monitoring began in Colombia after the recognition of the outbreak in
Brazil, the Colombian Instituto Nacional de Salud (INS) [25] began official surveillance for ZIKV
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Table 4.1: Administrative subdivision of Colombia in 33 departments with the population, the cumulative
number of Zika cases and the incidence rate reported from week 2015-32 to week 2016-30 by the Instituto
Nacional de Salud (INS). Departments are sorted according to the population size.

Code Department Population (%)
Zika cases

(confirmed)
Incidence Rate
(cases/100,000)

11 Santafe De Bogotá D.C. 7,572,580 (16.07) 0 (0) 0

05 Antioquia 6,350,420 (13.48) 2,393 (335) 38

76 Valle del Cauca 4,525,666 (9.61) 25,341 (895) 560

25 Cundinamarca 2,840,969 (6.03) 5,212 (317) 183

08 Atlantico 2,090,062 (4.44) 6,627 (359) 317

68 Santander 2,065,317 (4.38) 9,570 (443) 463

13 Bolivar 1,970,779 (4.18) 1,885 (242) 96

52 Narino 1,690,071 (3.59) 67 (20) 4

23 Cordoba 1,655,242 (3.51) 3,195 (253) 193

47 Magdalena 1,619,426 (3.44) 3,233 (295) 200

73 Tolima 1,362,998 (2.89) 6,904 (822) 507

19 Cauca 1,362,202 (2.89) 300 (34) 22

15 Boyaca 1,300,493 (2.76) 346 (88) 27

41 Huila 1,153,011 (2.45) 6,767 (915) 587

54 Norte de Santander 1,112,279 (2.36) 10,112 (1,521) 909

20 Cesar 1,015,579 (2.16) 1,558 (245) 153

17 Caldas 994,946 (2.11) 277 (74) 28

66 Cisaralda 953,055 (2.02) 1,296 (130) 136

50 Meta 921,498 (1.96) 3,995 (580) 434

44 La Guajira 902,996 (1.92) 712 (95) 79

70 Sucre 851,034 (1.81) 1,610 (107) 189

63 Quindio 555,222 (1.18) 377 (24) 68

27 Choco 479,515 (1.02) 50 (5) 10

18 Caqueta 469,704 (1.00) 1,144 (234) 244

85 Casanare 347,198 (0.74) 3,827 (280) 1,102

86 Putumayo 324,807 (0.69) 510 (110) 157

81 Arauca 230,173 (0.49) 1,820 (191) 791

95 Guaviare 105,759 (0.22) 206 (15) 195

88
Archipelago of San

Andres, Providencia and
Santa Catalina

73,965 (0.16) 1,124 (66) 1,520

99 Vichada 68,010 (0.14) 75 (5) 110

91 Amazonas 65,264 (0.14) 329 (28) 504

97 Vaupes 42,915 (0.09) 13 (0) 30

94 Guainia 35,059 (0.07) 13 (3) 37

Colombia 4,7108,214 (100) 100,888 (8,731) 214

in August 2015. In early October 2015, a Zika outbreak was declared after the first cluster of
laboratory-confirmed cases was identified in nine patients from northern Colombia. After that
report, the INS retrospectively identified Zika virus in an archived serum sample from July 2015.
In July 2016, INS declared the end of the Zika epidemic in Colombia.

In this study we use the weekly epidemiological reports published from week 2015-32 to week
2016-30 and available at the following URL: http://www.ins.gov.co/boletin-epidemiologico/
Paginas/default.aspx. All reports were accessed and downloaded on June 30, 2017. Each re-

http://www.ins.gov.co/boletin-epidemiologico/Paginas/default.aspx
http://www.ins.gov.co/boletin-epidemiologico/Paginas/default.aspx
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Table 4.2: Basic properties of the weekly OD matrices at the municipality level generated from mobile
phone data. Table includes the weekly number of nodes, links and total volume of trips, and some statistics
on the distribution of trips Tij and active phones ni, including minimum, maximum and average values.

week nodes links volume Tijmin Tijmax T ij nimin nimax
ni

2013-49 786 41,805 4,005,184 1 174,714 96 1 489,267 5,060

2013-50 787 46,096 4,210,148 1 175,590 91 1 504,840 5,266

2013-51 824 49,401 4,394,688 1 187,247 89 2 517,384 5,311

2013-52 831 55,410 4,415,700 1 171,634 80 3 487,953 5,504

2014-01 839 63,194 4,730,996 1 147,393 75 6 430,362 5,877

2014-02 848 62,587 4,503,580 1 159,557 72 1 486,339 5,383

2014-03 849 54,934 4,352,551 1 159,989 79 2 499,834 5,150

2014-04 854 51,607 4,255,056 1 158,437 82 1 505,074 5,013

2014-05 855 49,283 3,595,741 1 136,644 73 1 492,084 4,669

2014-06 856 48,882 3,660,297 1 141,324 75 1 506,978 4,786

2014-07 856 48,735 4,360,665 1 168,967 89 1 521,226 5,061

2014-08 858 48,793 4,303,000 1 166,948 88 1 523,650 5,065

2014-09 858 49,420 4,513,878 1 174,699 91 1 544,196 5,278

2014-10 858 47,818 4,542,935 1 180,103 95 1 545,182 5,214

2014-11 859 48,055 4,453,554 1 170,364 93 1 542,875 5,172

2014-12 858 50,117 4,510,703 1 166,130 90 0 540,254 5,278

2014-13 859 49,564 4,283,952 1 159,565 86 0 536,457 4,996

2014-14 859 48,187 4,412,165 1 168,483 92 1 544,497 5,093

2014-15 860 52,640 4,612,189 1 166,435 88 1 547,129 5,250

2014-16 860 63,826 4,500,126 1 117,738 71 3 497,451 5,456

2014-17 860 55,510 4,623,062 1 165,102 83 2 545,608 5,153

2014-18 860 46,636 4,372,846 1 157,824 94 2 540,645 5,077

2014-19 861 47,853 4,739,432 1 172,058 99 2 559,030 5,265

2014-20 861 50,360 4,686,350 1 163,605 93 2 557,085 5,257

2014-21 863 48,998 4,580,521 1 161,257 93 4 549,841 5,130

port includes the number of suspected and confirmed Zika cases per each department. Table 4.1
reports the number of cases, including the laboratory confirmed, and the cumulative incidence
rate per each department, also shown in Figure 4.1. A total of 100,888 cases have been reported
in Colombia corresponding to an incidence rate of 214 cases/100,000 population and about 9%
of the cases were laboratory confirmed through RT-PCR assay. No cases have been reported
in Bogotá that is situated at an average altitude of 2,640 metres above sea level with an aver-
age monthly air temperature of 18°C, thus not favouring the presence of mosquitoes. Valle del
Cauca experienced the highest number of cases (25,341), whereas Archipelago of San Andres,
Providencia and Santa Catalina had the highest cumulative incidence rate (1,520 cases/100,000).
However, these numbers underestimate the total effect of the ZKV outbreak, since they do not
account for asymptomatic infection or unreported clinical illness.

Mobile Phone data

Aggregated and encripted Origin-Destination (OD) matrix has been provided by a telecommuni-
cation operator in Colombia. The network consists of about 4 thousand cell towers distributed
in the territory of Colombia accordingly to the population density (Figure 4.2a). Cellphone
coverage is heterogeneous across municipalities with cell towers mostly concentrated in Bogotá
(about 18% of the total number of cell towers), while 258 out of 1,120 municipalities have no cell
towers (Figure 4.2b). Our dataset consists of weekly OD matrices containing the number of trips
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Figure 4.2: a) Location of cell towers in Colombia. b) Number of cell towers per municipality. The 258
municipalities with no cell towers are shown in grey. c) Average number of trips T ij among municipalities.

Tij from municipality i to municipality j that occurred in a week for a six-month period, from
2013-12-02 to 2014-05-19 (25 weeks in total). Moreover, we are also provided with the number
of active phones ni per municipality. OD matrices have been previously generated from more
than two billion encripted and anonymized calls made by around seven million phone numbers
in Colombia. More details on this process and the topology of the network can be found in
Ref. [83]. Briefly, each phone number is associated to a cell tower whenever it makes a call,
so that a movement can be identified when the same phone number is handled by two different
cell towers in two consecutive calls, thus reconstructing the mobility network of human trips
aggregated then at the level of municipality. In this process each phone number is encrypted
and anonymized and only phone numbers which originated and received at least six calls during
the observation period have been considered in order to drop foreign phones and all special
phone numbers that are likely to be not associated with an actual person (e.g. call centers).

Table 4.2 shows the characteristics of the weekly data, including the number of nodes (i.e.
municipalities), links and volume of trips, as well as the statistics of the weekly distribution of
the number of trips and active phones per municipality. The structure of the networks varies
week by week with the number of municipality that ranges from 786 to 863, the number of links
connecting municipalities that ranges from 41,805 to 63,826 and the volume of trips that ranges
from 3,595,741 to 4,739,432. The OD matrices are constructed to account at least 1 trip along a
link during a week. The average number of trips ranges from 71 to 99. Differently, the number
of active phones ranges from 0 to a maximum of 559,030 with an average that ranges from 4,669
to 5,877. On average, trips mostly interest the western portion of the country, including links
with the islands and few links towards the south, as shown in Figure 4.2c.

4.3 Materials and Methods

In this study we use a metapopulation modelling approach [123] to perform numerical simulations
of the epidemic spreading of Zika in Colombia at the geographical resolution of departments.
Metapopulation models describe spatially structured interacting subpopulations, such as city
locations, urban areas, or any defined geographical regions [81]. Individuals within each sub-
population are classified according to their health status with respect to the disease, such as
infected, susceptible, immune, etc., and the compartment dynamics accounts for the possibility
that individuals in the same location may get into contact and change their health status ac-
cording to the infection dynamics. The interaction among subpopulations is the result of the
movement of individuals from one subpopulation to another.
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Here we consider the 33 departments of Colombia as the subpopulations of the metapopula-
tion model that interact according to different human mobility patterns. The migration process
among subpopulations is modelled with a Markovian dynamics, representing individuals who
are indistinguishable regarding their travel pattern, so that at each time step the same trav-
eling probability applies to all individuals without having memory of their origin [79, 80, 81].
Since this study focuses on identifying the benefits of using CDRs data, we first create a mo-
bility network generated from mobile phone data and then we test it against different mobility
networks through a detailed comparison of datasets and analysis of outcomes of the epidemic
model. In particular, we create a mobility network based on the census data from the National
Institute of Statistics [3] that represents our benchmark as it comprises the entire population
of the country and its mobility features. On the other hand, mobile phone data are usually
affected by the sampling bias corresponding to the operator’s coverage and to the selection of
the subset available for the analysis (it only represents a fraction of the total population) and
by the algorithm used to identify movements. Next to census data, population movements can
be described by mobility models determining the daily commuting fluxes across the country.
Here we create two synthetic mobility networks by applying the gravity model [43], based on
Newton’s law of gravity, that assumes that the number of trips is related to the population at
origin and destination and to decrease with the distance, and the more recent radiation model
[182], that instead is inspired by the theory of intervening opportunities and considers human
movements as diffusion processes that depend on the population distribution over the space.

In the next sections follows a description of the mobility networks and the epidemic model
used to simulate the ZIKV transmission dynamic.

4.3.1 Mobility Networks

In this section, we describe the various mobility networks and how they have been generated at
the geographical resolution of departments. In particular, we model the migration process with
a Markovian process in which the memory of the origin of each traveller is lost and this requires
a symmetric mobility network, i.e. the strength of the connection from i to j is the same of the
one from j to i. Consequently, for each mobility network under study (that are asymmetric by
definition) we will compute the average of wij and wji in order to obtain wij = wji. Moreover,
for each of these networks we consider only those connections having wij ≥ 1, allowing at least
one person daily travelling on that link.

4.3.1.1 Mobile Phone Network

The weekly OD matrices generated from CDRs data in Colombia contains the number of trips
Tij from municipality i to municipality j occurred in a week. To generate the mobility network
of flows wij of people travelling among departments we have to collapse our 25 weekly OD
matrices in a single mobility network by accounting for the weekly fluctuations in the network
and aggregating at the level of departments. Moreover, to obtain an estimate of the number of
people moving from one location to another we rescale the number of trips Tij on the number of
active phones ni in location i and on the population Ni living in i. Figure 4.3 shows the weekly
number of active phones ni within each department. Large weekly fluctuations can be observed
in some departments, such as department D18 with a number of active phones that varies from
a minimum of 0 to a maximum of 15,325 active phones per week, or department D86 (min=239;
max=8,980) or department 99 (min=921; max=2,186). In conjunction with the celebration of
the New Year at week 2014-01, almost all departments present a peak in the number of active
phones, while department D11, that is the country’s capital Bogotá, shows a decrease in the
number of active phones, thus highlighting the outward movement of people travelling from the
most populated region to other locations in the occasion of the New Year.

Since we do not know a priori the effect of such variability in the number of active phones
on the final mobility network, we calculate the flows wij with two different rescaling approaches:
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Figure 4.3: Weekly number of active phones within each department D in Colombia (subplots are sorted
according to the maximum number of active phones).

1. In the first approach, flows are computed by rescaling the weekly average number of trips
T ij on the weekly average number of active phones ni and on the population Ni, as follows:

w̃ij =
T ij∗Ni

ni
. Flows obtained with this method are indicated hereafter with w̃ij and the

network is labelled as “MP1”.

2. In the second approach, first we rescale each weekly number of trips T kij at week k on the

number of active phones nki at week k and on the population Ni, as follows: wkij =
Tk
ij∗Ni

nk
i

,

where k=2013-49, ..., 2014-21, then we compute the median of the rescaled weekly flows.
Flows obtained with this method are indicated hereafter with wij and the network is
labelled as “MP2”.

In both methods flows are made symmetric (i.e. wij = wji) and only links having wij ≥ 1
are considered. Moreover, since the OD matrices have been constructed to include movements
occurred in a week, here we divided the flows by a factor 7 in order to get the daily flows.

4.3.1.2 Census Commuting Network

Commuting data for Colombia is extracted from the 2005 Colombian census of the National
Institute of Statistics [3]. Even though this dataset is not recent and mobility might be changed
in the meantime, we will consider it as our benchmark since it represents the entire population
of the country and its mobility features. Data is collected at the level of municipality and
the matrix of census commuting flows is asymmetric, i.e. the strength of the connection from
municipality m1 to municipality m2 is not the same of the one from m2 to m1. Thus, here we
aggregate at the geographical resolution of departments and compute the average of wij and wji
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Table 4.3: Parameters of the gravity law as obtained by applying a multivariate analysis to census data.

Parameter Estimate
Standard

Error
p-value

α 0.63 0.05 < 10−17

γ 0.37 0.04 < 10−17

β 1.94 0.09 < 10−17

C 3.25 2.86 0.3

removing then those connections having wij < 1. In the following we will indicate with wCij the
census fluxes of commuters from departments i to department j.

4.3.1.3 Synthetic Mobility Networks

Next to census data and mobile phone data, we generate human mobility fluxes across depart-
ments by creating two fully connected synthetic networks whose weights of edges connecting
nodes are computed with the gravity model [43] and the radiation model [182], respectively.

The gravity model assumes that the commuting flow wij between location i with population
Ni and location j with population Nj takes the following form:

wij = C
Nα
i N

γ
j

f(dij)
(4.1)

where C is a proportionality constant, α and γ tune the dependence with respect to each
location size, and f(dij) is a distance dependent functional form. Gravity laws usually consider
power or exponential laws for the behaviour of f(dij). The results reported in the literature are
variable and generally depend on the geographical resolution used in the study. We tested both
power and exponential decay functions of the distance and we found that the best fit is obtained
by using a power function f(dij) = dβij . In particular, the regression coefficients are R2 = 0.579

for a power function and R2 = 0.499 for an exponential function.

The gravity law of equation 4.1 has 4 free parameters: the exponents of the population sizes,
α and γ, the exponent of the distance, β, and the proportionality constant, C. A multivariate
regression analysis is applied to obtain the values of the parameters that better fit our data as
well as an estimation of their statistical significance. The values estimated for α, γ, β and C are
reported in Table 4.3 along their p-values. All p-values are significant, except for the value of
the intercept that shows a p-value>0.05, therefore we cannot reject the null hypothesis that the
coefficient is equal to 0, thus meaning C = 1. These estimated parameters fitted to the census
commuting data allows to apply the gravity law and generate the human mobility fluxes among
departments, hereafter called wGij .

In the case of the radiation model, instead, the flows wij of people travelling between different
locations are obtained with the following expression:

wij = Ti
NiNj

(Ni + sij)(Ni +Nj + sij)
, Ti =

∑
i 6=j

wij (4.2)

where Ni is the population living at origin i, Nj is the population living at destination j, sij
is the total population living in a circle of radius dij centered at i, excluding the populations
of origin and destination locations. Differently from the gravity model, the radiation model is
parameter-free, i.e. it does not require regression analysis or fit on existing data. However, it
requires the information on the total number of residents Ti who commute in each administrative
unit. Given these quantities, the radiation model yields the mobility fluxes wRij for each pair of
departments of Colombia.
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For each mobility network we analyse the structural properties as well as a detailed comparison of
the distributions of flows and distances, for which also a two-sample Kolmogorov-Smirnov test is
performed in order to asses if they derive from the same underlying distribution. Restricting the
analysis to the topological intersection of the census network and the other mobility networks, we
compute different statistical tests and similarity measures, including the Spearman’s correlation
coefficient, the Jaccard index, the cosine similarity and the common part of commuters (CPC)
in order to evaluate the correlation and similarity of both links and weights of the networks.

• The Spearman’s rank correlation coefficient is a nonparametric measure to assess mono-
tonic relationships (whether linear or not) between two variables. It takes values from -1
(decreasing monotonic trend) to +1 (increasing monotonic trend).

• The Jaccard index is a measure of similarity that quantifies the fraction of connections in
common between two networks. In particular, given a network A with elements Aij and a
network B with elements Bij , the Jaccard index measures the proportion of shared links
between A and B relative to the total number of links connected to A or B, i.e. the size
of the intersection divided by the size of the union of the two sets, defined as follows:

J(Aij , Bij) =
|Aij ∩Bij |
|Aij ∪Bij |

, J(Aij , Bij) ∈ [0, 1] (4.3)

Values of J close to 1 mean that the two networks under study share a large fraction of
links, while values close to 0 mean that the two networks present very different structures.

• The cosine similarity is a measure of similarity that takes into account both links and
weights shared by two networks. In particular, given a network A with weights wij,A and
a network B with weights wij,B, the cosine similarity is defined as follows:

σ(wij,A, wij,B) =

∑
j wij,Awij,B√∑
j w

2
ij,A

∑
j w

2
ij,B

, σ(wij,A, wij,B) ∈ [0, 1] (4.4)

It takes values from 0, i.e. the sets of links are completely different in the two configura-
tions, to 1, i.e. the two networks share the same set of links with same weight.

• The common part of commuters (CPC) is a measure of similarity that compares the
modelled weights w̃ij against the real weights wij according to the following expression:

CPC(w, w̃) =
2
∑

i,jmin(wij , w̃ij)∑
i,j wij +

∑
i,j w̃ij

(4.5)

This indicator is based on the Sørensen-Dice similarity coefficient that, given two sets A
and B, is defined as s(A,B) = 2|A ∩ B|/(|A|+ |B|). Values of CPC(w, w̃) varies from 0,
when no agreement is found, to 1, when the two networks are identical.

4.3.2 Epidemic Model

Following the same methodology adopted in previous works [128, 206], to study the spatiotempo-
ral ZIKV spread we used a compartmental mathematical model simulating vector-borne trans-
mission. Figure 4.4 describes the compartmental classification used to simulate ZIKV transmis-
sion dynamics. Humans can occupy one of four compartments: susceptible individuals SH who
lack immunity against the infection, exposed individuals EH who have acquired the infection
but are not yet infectious, infected individuals IH who can transmit the infection (and may or
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Figure 4.4: Human-vector transmission model for ZIKV infection. The transmission dynamics can occur
when a susceptible human (SH) is bitten by an infectious mosquito (IV ) or, viceversa, when a susceptible
mosquito (SV ) bites an infectious human (IH).

may not display symptoms), and removed individuals RH who no longer have the infection and
are immune to further ZIKV infection. As the mean human lifespan is much longer than the
outbreak duration, we omitted human births and deaths and we considered the total human
population size to be constant, i.e. SH + EH + IH +RH = NH . Susceptible humans transition
to the exposed compartment occurs under the vector-to-human force of infection that follows
the usual mass-action law and is given by the expression λV H = βτV H

IH
NH

. Exposed individuals
become infectious at a rate εH , which is inversely proportional to the mean intrinsic latent period
of the infection, ε−1

H . Infectious individuals then recover from the disease at a rate µH , which is
inversely proportional to the mean infectious period, µ−1

H .
The mosquito vector population is described by the number of susceptible SV , exposed EV ,

and infectious mosquitoes IV . The number of mosquitoes per person is expressed by k, so
that k = NV

NH
. The human-to-vector force of infection λHV governing the transition rate from

susceptible to exposed individuals is given by λHV = βτHV
IV
NH

. Exposed mosquitoes transition
to the infectious class occurs at a rate εV , which is inversely proportional to the mean extrinsic
latent period in the mosquito population, ε−1

V . Mosquitoes in each compartment die at a rate
µV , that is inversely proportional to the mosquito lifespan, µ−1

V .
The dynamics is discrete and stochastic, and individuals are assumed to be homogeneously

mixed within each subpopulation. Subpopulations are coupled by weighted links representing the
mobility fluxes between two locations, thus defining the metapopulation structure of the model
[123]. No other type of movement is considered. The transmission model is fully stochastic. The
coupled population equations describing the epidemic time evolution read as follows:

SHt+1 = SHt −∆SH−→EH (4.6)

EHt+1 = EHt + ∆SH−→EH −∆EH−→IH (4.7)

IHt+1 = IHt + ∆EH−→IH −∆IH−→RH (4.8)

RHt+1 = RHt + ∆IH−→RH , (4.9)

SVt+1 = SVt −∆SV −→EV + ∆EV −→SV + ∆IV −→SV (4.10)

EVt+1 = EVt + ∆SV −→EV −∆EH−→SV −∆EV −→IV (4.11)

IVt+1 = IVt + ∆EV −→IV −∆IV −→SV . (4.12)
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Figure 4.5: Initial condition at week
2015-42.

Parameter Value Ref.

transmission prob.
τV H
τHV

0.399,
0.504,
0.591

-

mosquito biting rate β 0.7 [121]

intrinsic latent period ε−1
H 7 days [206]

human infectious period µ−1
H 5 days [121]

extrinsic latent period ε−1
V 8 days [206]

mosquito lifespan µ−1
V 7.8 days [128]

mosquito per person k 2 [121]

reproduction number R0 3.0, 4.8, 6.6 [152]

Table 4.4: Summary of the epidemiological parameters.

Each term ∆X−→Y represents the number of human or vector individuals transitioning from
state X to state Y . Transitions are calculated according to chain binomial processes ∆X−→Y =
Binomial(X, pX−→Y ) considering a number of trials equal to the number of individuals X in the
compartments and a transition probability pX−→Y determined by the force of infection and the
average lifetime of individuals in each compartment. Each transition is a memoryless discrete
stochastic transition process.

The basic reproduction number R0 can be expressed as the standard approach of Ref. [123]:

R0 =
εV

µHµV (εV + µV )
kβ2τV HτHV (4.13)

For each epidemic scenario, defined by certain initial conditions and a set of parameters, we
simulate 1,000 stochastic realizations using discrete time steps of one full day over a period of
1 year, thus resembling the actual duration of the epidemic of Zika in Colombia. The model is
fully stochastic and from any nominally identical initialization generates an ensemble of possible
epidemics, as described by newly generated infections in each subpopulation. Initial conditions
are given by the number of Zika cases in each department at a certain week as reported by the
Instituto Nacional de Salud in Colombia. Among each set of simulations, we then compute the
median and the 95% confidence interval (CI), and we weekly aggregate the results in order to
make them comparable with the surveillance case data.

As initial phase of this study, we investigate the role of human mobility in the spreading of
ZIKV in Colombia in a very simple setting in which we first neglect the potential correlation of
ZIKV transmission dynamics with environmental, climatic and socio-economic factors. To this
aim, the study is limited to some epidemic scenarios in order to evaluate the variability in the
epidemic outcomes and test the performances of the various mobility networks. In particular,
we inform the model about the number of initial infections by considering the number of Zika
cases reported in the early stage of the epidemic in Colombia, taking into account that Zika cases
reported over that period might not be accurate as the outbreak was just declared and a potential
underreporting affected the collected data due to asymptomatic cases, limited sentinel sites, and
cases not seeking treatment (see Dataset). Thus, here we assume that reported cases correspond
to 1% of the actual number of Zika cases and we consider the number of Zika cases reported at
week 2015-42 (18-24 October, 2015) as initial conditions to run the epidemic simulations (see
Figure 4.5). At this stage, such choice is arbitrary and further investigations will be needed to
better understand how results may be affected by using different set of initial conditions.

The epidemiological parameters that intervene in the model are taken from the literature, in
particular from articles presenting similar compartmental models for ZIKV transmission dynam-
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Figure 4.6: Flows wij of people travelling among departments as obtained for the census network (a),
the mobile phone networks MP1 (b) and MP2 (c), the gravity network (d) and the radiation network (e).
Colours refer to different ranges of values.

ics [121, 128, 139, 166, 206]. Given that many parameters characterizing ZIKV are surrounded
by uncertainty, here we consider the average values of the ranges reported in the literature, as
shown in Table 4.4. In particular, the basic reproduction number R0 for Colombia was esti-
mated to range from 3.0 to 6.6 [152], thus here we set three epidemic scenarios according to
the minimum, mean and maximum value of this range (i.e. R0=3.0, 4.8, 6.6). Given R0, we
estimate the value of the probabilities of transmission τV H and τHV , as reported in Table 4.4.
Moreover, as in a previous study [121], we assume an average of 2 mosquitoes per person, i.e. the
population of susceptible mosquitoes in each subpopulation at the beginning of the simulations
is twice the population of humans. Spatio-temporal variability in the number of mosquitoes is
not taken into account, but will be further explored in the future.

4.4 Results

In this section we describe the topological structure of the various mobility networks by com-
paring their statistical properties against the census network that represents our benchmark.
Then, we compare the metapopulation epidemic outcomes obtained integrating these different
mobility sources into the three scenarios (see Methods).



62 CHAPTER 4. MODELLING THE EPIDEMIC SPREADING OF ZIKA IN COLOMBIA

Table 4.5: Basic properties of each mobility network under study, including the number of nodes, links
and links shared with the census network, and the total volume of travellers without considering self-loops.

network #nodes #link
# shared
link (%)

volume

census 33 734 - 298,962

MP1 33 820 690 (94) 1,577,198

MP2 33 802 684 (93) 688,850

gravity 33 814 684 (93) 25,354

radiation 33 666 590 (80) 277,872

Table 4.6: Statistics on the distribution of flows and distances for each mobility network under study.
Columns report the minimum (min), maximum (max), mean (mean), 95% confidence interval (95%
CI), median (median) and standard deviation (std) of the flows wij and the distances dij , respectively.
Distances are reported in kilometers.

network wijmin wijmax wijmean 95% CI wijmedian
wijstd

census 1 82,311 407 (1; 1,583) 22 4,311

MP1 1 255,949 1,923 (2; 12,140) 49 13,191

MP2 1 106,033 859 (1; 7,264) 23 5,597

gravity 1 2,044 31 (1; 184) 8 111

radiation 1 57,205 417 (1; 2,087) 18 3,173

network dijmin dijmax dijmean 95% CI dijmedian
dijstd

census 57 1,320 485 (113; 1,082) 446 256

MP1 57 1,422 512 (116; 1,135) 479 271

MP2 57 1,422 507 (116; 1,135) 470 270

gravity 57 1,247 484 (116; 1,006) 462 235

radiation 57 1,250 450 (110; 1,045) 406 238

4.4.1 Statistical comparison of mobility networks

Final mobility networks are displayed in Figure 4.6. All mobility networks under study share
the same number of nodes, thus meaning that all 33 Colombian departments are covered by
all datasets, with variations in the number of links and total volume of travellers. The census
commuting network for Colombia includes 298,962 people travelling among departments through
734 weighted connections. The mobile phone networks MP1 and MP2 are formed by 820 links
and 1,577,198 travellers, and 802 links and 688,850 travellers, respectively. For the mobility
models we found 25,354 people moving along 814 links and 277,872 people moving along 666
links for the gravity and the radiation model, respectively. A summary of the basic statistics of
the networks is reported in Table 4.5. In particular, the number of links shared with the census
network varies from 80% for the radiation network to 94% for the mobile phone network MP1,
thus reflecting the Jaccard index that ranges from 0.72 for the radiation network to 0.80 for
both mobile phone networks (see Table 4.7).

For each mobility network, we further analyse the travel fluxes wij as well as the travelled
distances dij , this latter calculated from the coordinates of the department’s centroid by applying
the Vincenty’s formula [195]. Figure 4.7 shows the probability density distributions of flows and
distances (reported in kilometers), whereas Table 4.6 reports the statistics on such distributions.
The largest number of travellers is observed between Cundinamarca (D25) and country’s capital
Bogotá (D11) for all mobility networks, with significant variations in the weights of the link. In
particular, there are 82,311 travellers for the census network, 255,949 and 106,033 for the mobile
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Figure 4.7: Probability density distributions of the weights wij (top) and the distances dij (bottom) for
the census network and the various mobility networks. Distances are reported in kilometers.

phone networks, 2,044 for the gravity network and 57,205 for the radiation network. In general,
both mobile phone networks show large weights, whereas the gravity network presents very small
flows, with an average of 31 people travelling through a link. A two-sample Kolmogorov-Smirnov
test performed between the census network and the various mobility networks showed that only
the flows of the radiation network and the census network derive from the same underlying
distribution (p=0.1, while p < 10−3 for the remaining mobility networks). Furthermore, a
deeper analysis of the spatial relative differences in the incoming/outgoing traffic at the level of
departments, confirmed the similarity between the census network and the radiation network,
presenting 16 out of 33 departments in the interval of the national traffic value (grey coloured in
Figure 4.9) and only few departments strongly underestimated, located in less populated areas
in the southern and eastern portion of the country. Larger discrepancies are instead observed
for the other mobility networks with the gravity network being strongly underestimated and the
mobile phone networks strongly overestimated, as shown in Figure 4.9.

On the other hand, travelled distances are quite similar across the mobility networks, with
a minimum of 57 km between Cundinamarca (D25) and Bogotá (D11) and an average daily
distance that ranges from 450 to 512 km. The largest daily distances correspond to 1,320 km
between Huila (D41) and Archipelago of San Andres, Providencia and Santa Catalina (D88)
for the census network, 1,422 km between Archipelago of San Andres, Providencia and Santa
Catalina (D88) and Meta (D50) for the mobile phone networks, 1,247 km between Narino
(D52) and La Guajira (D44) for the gravity network, and 1,250 km between Archipelago of San
Andres, Providencia and Santa Catalina (D88) and Bogotá (D11) for the radiation network.
Note that in a fully connected network the overall largest distance would be of 1,947 km between
Archipelago of San Andres, Providencia and Santa Catalina (D88) and Amazonas (D91) or, if
we restrict only to mainland, 1,441 km between La Guajira (D44) and Amazonas (D91). A
two-sample Kolmogorov-Smirnov test performed between the census network and the other
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Figure 4.8: Comparison of the weights wij in the various mobility networks and the weights wC
ij in the

census networks. Grey points are scatter plot for each connection. The red line is given by y = x.

Figure 4.9: Spatial relative difference in the incoming/outgoing traffic between the census network and
the various mobility networks at the level of departments. The colour code indicates the relative difference
between the census traffic and the corresponding traffic of the mobile phone networks MP1(a) and MP2
(b), the gravity network (c) and the radiation network (d). Since the networks are symmetric, the
incoming traffic Tj =

∑
i wij is equal to the outgoing traffic Ti =

∑
j wij .

mobility networks confirmed that the corresponding distributions of distances derive from the
same underlying distribution (all p > 0.05).

Restricting our analysis to the topological intersection of the mobility networks and the
census network, fluxes are found to be larger than the census ones, except for the gravity
network (Figure 4.8). A side-by-side weight comparison on each link shows high correlation
between datasets, as reported in Table 4.7. Strong correlations are also obtained for the total
number of travellers leaving or entering a given department (outgoing and incoming flows are the
same because the networks are symmetric). In particular, the correlation is lower for the gravity
network and higher for the radiation network, thus confirming the results found for the spatial
relative differences in the incoming/outgoing traffic (see 4.9). The cosine similarity measured
between the census network and the various mobility networks ranges from 0.91 for the gravity
network to 0.99 for the radiation network, as reported in Table 4.7. Furthermore, we tested the
various mobility networks by analysing the performance for different flows subsets organized by
distance and destination population, using the common part of commuters (CPC) that compares
the modelled flows w̃ij against the real flows wij given by census data. Figure 4.10 shows the
goodness of fit in a grid of (distance, population) ranges, where each cell represents a subset of
pairs of origin-destination links filtered by distance and by destination population. In general,
the gravity network shows the worst performance with low values of similarity with the census
flows. The performance increases in the mobile phone network MP1 with increasing values of
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Figure 4.10: Performance of the mobility networks against the census network according to the common
part of commuters (CPC) in a grid of (distance, population) subsets. The colour code indicates the level
of similarity between the predicted and real flows, from low (light yellow) to high similarity (dark green).

Table 4.7: Values of the Spearman’s coefficient, the Jaccard index and the cosine similarity as obtained
from the various mobility networks compared to the census network. The Spearman’s coefficient is
measured on both weights wij and outgoing flows

∑
i wij .

Mobility Spearman’s coefficient Jaccard Cosine
network wij

∑
iwij Index Similarity

MP1 0.88 0.91 0.80 0.97

MP2 0.86 0.87 0.80 0.96

gravity 0.79 0.90 0.79 0.91

radiation 0.77 0.96 0.73 0.99

the distances. Best performances are presented by the mobile phone network MP2 for high
populated departments and long distances, and by the radiation network for high populated
departments and short distances.

4.4.2 Comparison of epidemic outcomes

Figure 4.11 shows the simulated epidemic profiles with the 95% confidence interval (CI) aggre-
gated at the country level in the three epidemic scenarios based on the different values of the
basic reproduction number R0. Peak weeks and Pearson correlations are reported in Table 4.8.
In general, the same behaviour is observed in all three scenarios in terms of peak timing and
peak intensity, with the mobile phone network MP1 being the one with the highest number of
infected individuals and presenting an early peak, followed then by the mobile phone network
MP2, then the census network, then the radiation network, and eventually the gravity net-
work. In particular, the census network and the radiation network present very similar epidemic
profiles, due to the similarity we already observed in the structure of the mobility networks.

The epidemic of Zika in Colombia reached the highest number of reported cases at week 2016-
05. The first scenario, corresponding to R0=3.0, presents a slow infection dynamics that causes
the curves to be wider with a late peak, in general after week 2016-12. Values of the Pearson
correlation ranges from 0.557 for the gravity network to 0.66 for the mobile phone network MP1.
In the second scenario (R0=4.8), both mobile phone networks are able to capture the peak week
within their 95% CI and the correlation is generally high for all mobility networks, ranging
from 0.758 for the mobile phone network MP1 to 0.802 for the radiation network. In the third
scenario, the high value of R0 allows for a faster infection dynamics that causes more narrow
curves with early peaks. In this case, the mobile phone network MP1 peaks at week 2016-03
and has the lowest value of correlation of 0.39, while the gravity network captures the peak week
with a correlation of 0.667.

A deeper analysis of the simulated epidemic profiles at the level of departments is shown
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Scenario 1 
(R0=3.0)

Scenario 2 
(R0=4.8)

Scenario 3 
(R0=6.6)

Figure 4.11: The simulated epidemic profiles and the official case data aggregated at the country level.
Solid lines correspond to the median, while shadow areas correspond to 95% CI.

Table 4.8: Peak weeks and Pearson correlation values as obtained from the simulated epidemic profiles
compared to the official case data aggregated at the country level. All p-values are significant (p< 10−4).

Scenario 1 (R0=3.0) Scenario 2 (R0=4.8) Scenario 3 (R0=6.6)
Mobility
network

peak week
(95% CI)

CORR
peak week
(95% CI)

CORR
peak week
(95% CI)

CORR

census
2016-15

[2016-14, 2016-16]
0.60

2016-07
[2016-07, 2016-08]

0.79
2016-04

[2016-04, 2016-05]
0.61

MP1
2016-12

[2016-12, 2016-12]
0.66

2016-05
[2016-05, 2016-06]

0.76
2016-03

[2016-03, 2016-03]
0.39

MP2
2016-13

[2016-13, 2016-13]
0.63

2016-06
[2016-06, 2016-07]

0.79
2016-03

[2016-03, 2016-04]
0.52

gravity
2016-17

[2016-15, 2016-22]
0.56

2016-08
[2016-08, 2016-09]

0.78
2016-05

[2016-05, 2016-06]
0.67

radiation
2016-14

[2016-14, 2016-15]
0.59

2016-07
[2016-07, 2016-08]

0.80
2016-04

[2016-04, 2016-05]
0.61

in Figure 4.12, limiting the study to the first ten departments according to the highest value
of cumulative incidence rate during the Zika outbreak in Colombia, namely Valle del Cauca
(D76), Norte de Santander (D54), Santander (D68), Tolima (D73), Huila (D41), Atlantico (D08),
Cundinamarca (D25), Meta (D50), Casanare (D85), and Magdalena (D47). Since the weekly
numbers of Zika cases reported at the level of departments are very noisy, we apply a smoothing
technique based on a 3-weeks centered moving average. At such geographical resolution, the
temporal evolution in different departments shows strong heterogeneity with non-well defined
peaks, that most of the time are very broad or present multiple spikes during the epidemic, thus
being very difficult to predict. As for the results aggregated at the country level, also in this
case we observe that the mobile phone network MP1 tends to hasten the infections dynamics
with an early peak, followed then by the mobile phone network MP2, while the census network
and the radiation network present very similar epidemic profiles, that often coincide, and finally
the gravity network with a late peak. In some departments, such as Valle del Cauca (D76) and
Santander (D76), each mobility network presents a well-distinct simulated epidemic profile in
all three epidemic scenarios, while in other departments, such as Tolima (D73) and Atlantico
(D08), all simulated epidemic profiles almost coincide in all three epidemic scenarios. As the
value of R0 increases, the simulated curves become more narrow, presenting early peaks, thus
reflecting the more rapid dynamics of infection induced by increased transmissibility between
humans and mosquitoes.

The correlation measured between each epidemic profile and the official case data is very
heterogeneous, as reported in Table 4.9, and at this stage we do not observe any epidemic
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Table 4.9: Values of the Pearson correlation computed between the curve of the official case data and
each epidemic profile as obtained by integrating the various mobility networks under study. Significant
correlations (i.e. p-value< 0.01) are indicated with ∗. Departments are sorted according to the cumulative
incidence rate reported during the period from week 2015-32 to week 2016-30.

Pearson correlation
Dep. scenario census MP1 MP2 gravity radiation

Valle del Cauca
scenario 1 0.78* 0.62* 0.87* 0.85* 0.72*

(D76)
scenario 2 0.53* 0.63* 0.24 0.45* 0.58*
scenario 3 0.16 0.30 -0.18 0.04 0.22

Norte de Santander
scenario 1 -0.39 -0.29 0.25 -0.01 -0.27

(D54)
scenario 2 0.40 0.40 0.98* 0.88* 0.51*
scenario 3 0.88* 0.89* 0.79* 0.91* 0.94*

Santander
scenario 1 0.34 0.30 0.41* 0.36 0.39

(D68)
scenario 2 -0.34 -0.35 -0.30 -0.33 -0.32
scenario 3 -0.52* -0.52* -0.50* -0.51* -0.51*

Tolima
scenario 1 0.45* 0.47* 0.44* 0.33 0.38

(D73)
scenario 2 0.90* 0.90* 0.91* 0.91* 0.92*
scenario 3 0.52* 0.51* 0.58* 0.63* 0.57*

Huila
scenario 1 -0.14 -0.14 -0.01 -0.10 -0.20

(D41)
scenario 2 0.74* 0.73* 0.84* 0.77* 0.66*
scenario 3 0.96* 0.96* 0.93* 0.95* 0.97*

Atlantico
scenario 1 -0.10 -0.47* 0.42* 0.23 -0.21

(D08)
scenario 2 0.82* 0.32 0.89* 0.89* 0.75*
scenario 3 0.83* 0.79* 0.66* 0.74* 0.84*

Cundinamarca
scenario 1 -0.26 -0.34 0.09 -0.10 -0.18

(D25)
scenario 2 0.46* 0.43* 0.63* 0.56* 0.52*
scenario 3 0.63* 0.64* 0.53* 0.61* 0.63*

Meta
scenario 1 0.55* 0.44* 0.86* 0.78* 0.42*

(D50)
scenario 2 0.69* 0.72* 0.39 0.58* 0.73*
scenario 3 0.43* 0.46* -0.06 0.22 0.51*

Casanare
scenario 1 0.87* 0.90* 0.58* 0.78* 0.90*

(D85)
scenario 2 0.19 0.23 0.02 0.12 0.25
scenario 3 -0.03 0.02 -0.23 -0.11 0.02

Magdalena
scenario 1 -0.37 -0.49* 0.21 0.02 -0.40

(D47)
scenario 2 0.52* 0.34 0.80* 0.77* 0.48*
scenario 3 0.75* 0.73* 0.65* 0.70* 0.75*

scenario that is better than the others. In particular, among the ten departments we considered
in this analysis, the census network outperforms only in one department (i.e. Magdalena (D47),
the gravity network outperforms in two departments (i.e. Tolima (D73) and Atlantico (D08)),
the mobile phone network MP1 outperforms in four departments (i.e. Valle del Cauca (D76),
Tolima (D73), Cundinamarca (D25) and Casanare (D85)), the radiation network outperforms
in six departments (i.e. Norte de Santader (D54), Tolima (D73), Huila (D41), Meta (D50),
Casanare (D85) and Magdalena (D47)), the mobile phone network MP2 outperforms in eight
departments (i.e. Valle del Cauca (D76), Norte de Santader (D54), Santader (D68), Huila (D41),
Atlantico (D08), Cundinamarca (D25), Meta (D50) and Magdalena (D47)).
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Tolima (D73)

Huila (D41)

Atlantico (D08)

Cundinamarca (D25)

Meta (D50)

Casanare (D85)

Magdalena (D47)

Valle del Cauca (D76)

Norte de Santander (D54)

Santander (D68)

Scenario 1 
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Figure 4.12: Weekly number of infectious individuals as obtained from the metapopulation model by
integrating the various mobility networks under study. Solid lines correspond to the median, while
shadow areas correspond to 95% CI for each department of Colombia. Departments are sorted according
to the cumulative incidence rate reported during the period from week 2015-32 to week 2016-30.
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4.5 Discussion and Future Work

In this study we focused on the Zika outbreak occurred in Colombia in 2015-2016 by developing
a metapopulation model based on real data on population and human mobility, and directly
informed with the number of cases reported in the early stage of the epidemic. Aim of this
work is to investigate the role of human mobility given by different mobility networks, including
human mobility patterns provided by mobile phone data, as well as generated by mobility
models (i.e. the gravity model and the radiation model) and census commuting data. Here we
thoroughly analysed the various mobility networks and we undertook the initial step towards the
investigation of the spatiotemporal spread of the epidemic as obtained by integrating different
mobility sources into the metapopulation modelling approach.

In particular, we found that all final mobility networks under study share the same number of
nodes (i.e. departments) with variations in the number of weighted connections. The radiation
network shares a smaller number of links with the census network (i.e. 80% with a Jaccard
index of 0.73) compared to the remaining networks (i.e. 93-94% with a Jaccard index of 0.8).
In general, fluxes are found to be larger than the census ones, except for the gravity network
that has very small flows, with an average of 31 people travelling through a link. Consequently,
the incoming/outgoing traffic at the level of departments is strongly underestimated by the
gravity network, while is strongly overestimated by both mobile phone networks. The radiation
network shows the best performance in terms of similarity with the census traffic with 16 out of
33 departments in the interval of the national traffic values and only few departments strongly
underestimated, located in less populated areas in the southern and eastern portion of the
country. This is also confirmed by the Spearman correlation computed on the incoming/outgoing
traffic, that is lower (=0.87) for the gravity network and higher (=0.96) for the radiation network.
Indeed, from this analysis of the structural and fluxes properties of the mobility networks under
study, the radiation network resulted to be the best mobility network in terms of performance
and similarity with the census network, that represents our benchmark. Also, travelled distances
are quite similar across the mobility networks, with a minimum of 57 km and an average daily
distance that ranges from 450 to 512 km. The migration process among departments has been
modelled with a Markovian dynamics because of the long distances travelled on a daily basis.
However, human mobility might be split into a short-range and a long-range mobility in order
to integrate a non-Markovian dynamics that allows individuals to travel to a destination and
come back at a constant rate as it usually happens for the daily commuting.

To study the spatiotemporal ZIKV spread we adopted a compartmental mathematical model
simulating the vector-borne transmission that characterizes Zika, whose dynamics of infection
occur in the interaction between humans and mosquitoes, i.e. when a human is bitten by
an infectious mosquito or when a mosquito bites an infectious human. Then, the possibility for
individuals to move from one location to another promotes the epidemic spreading of the disease.
In particular, the subpopulations of the metapopulation model correspond to the 33 Colombian
departments. As initial stage of this study, we investigated the role of human mobility in the
spreading of ZIKV in Colombia in a very simple setting in which we first neglect the potential
correlation of ZIKV transmission dynamics with environmental, climatic and socio-economic
factors. To this aim, the study is limited to three epidemic scenarios based on different values of
the basic reproduction number R0 in order to evaluate the variability in the epidemic outcomes
and test the performance of the various mobility networks. In general, we observed that both
mobile phone networks present early peaks in the epidemic, explained by their larger fluxes
connecting different locations. The census network and the radiation network instead show
very similar epidemic profiles, that often coincide, thus reflecting the similarity we found in the
structure of the two networks. Lastly the gravity network shows late peaks due to its small
fluxes as compared to the other mobility networks.

The epidemic of Zika in Colombia reached the highest number of reported cases at week
2016-05 and in the second scenario, corresponding to R0=4.8, both mobile phone networks were
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Figure 4.13: Left: Probability distribution of mosquitoes in Colombia. Right: Average monthly air
temperature in Colombia.

able to capture the peak week within their 95% CI and the correlation was generally high for
all mobility networks, ranging from 0.758 for the mobile phone network MP1 to 0.802 for the
radiation network.

However, at this stage of the work, the results found for these three epidemic scenarios are not
sufficient to assess the performance of the various mobility networks. Also, at the resolution of
departments, the temporal evolution of the number of reported cases shows strong heterogeneity
with non-well defined peaks, that most of the time are very broad or present multiple spikes
during the epidemic, thus being very difficult to predict, especially for the strong assumptions
of geographical homogeneity we made in our modelling approach. Indeed, we made several
assumptions and simplifications in the study of the spatiotemporal spreading of Zika. First of
all, the epidemiological parameters that intervene in the model are taken from the literature as
the average values of the ranges reported in similar studies. For some specific parameters, such
the transmission probability and the mosquito lifespan, there exists some polynomial expressions
describing their temperature dependence, that might be used to modulate the spatiotemporal
variability of these parameters [206]. On the other hand, Markov Chain Monte Carlo (MCMC)
methods can be used to estimate the key model parameters involved in the infection dynamics by
calibrating the model on the official surveillance data. In the next future, we plan to calibrate
the model using a Metropolis-Hastings algorithm as well as a deeper exploration of possible
ranges of the epidemiological parameters to understand which factors affect more the model.

Moreover, the underreporting of Zika cases is here assumed to correspond to 1% and the
abundance of mosquitoes is considered to be homogeneous in the country, corresponding to 2
mosquitoes per person (i.e. the population of mosquito is twice the population of humans). This
latter is indeed a strong assumption as we know that the abundance of mosquitoes is associated
with strong spatial heterogeneity, driven by variability and seasonality due to the temperature
dependence modulating the vector competence. Many locations, such as those at high elevation,
are not at risk for autochthonous ZIKV transmission simply because the vector is absent as
we observed for the country’s capital Bogotá where no cases have been reported. In other
locations the vector may be present but sustained transmission may not be possible because
of environmental factors that affect the vector’s population dynamics, such as temperature or
precipitation. Housing conditions, availability of air conditioning, and socioeconomic factors also
contribute significantly in determining the fraction of the population likely exposed to the vector.
Indeed, for a vector-borne disease like Zika, additional layers of information concerning the
distribution of the vector and the consequent exposed populations due to socio-economic factors,
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are extremely important in order to model a more realistic spatiotemporal transmissibility of
the disease. In the future we will integrate several other fundamental datasets at a high spatial
resolution, including the following:

• Temperature The global air temperature dataset (available at climate.geog.udel.edu/
climate/) contains average monthly air temperature interpolated to a 0.5 by 0.5 degree
grid resolution (centered on 0.25 degree). To match the spatial resolution of departments,
grid nodes are associated to each department according to the position (coordinates). If
none nodes fall within a department (e.g. islands), the nearest node is associated to it.
A department contains n measurements of the temperature for each month m, Tm1 , .., Tmn ,
thus we consider the average temperature as T

m
=
∑n

i=1 T
m
i , for m=January, ..., Decem-

ber. Daily average temperatures are linearly interpolated from monthly averages. Figure
4.13 shows the average air temperature in Colombia.

• Distribution of mosquitoes The global A. aegypti and A. albopictus distribution database
provides uncertainty estimates for the vector’s distribution at a spatial resolution of 5 km
x 5 km [126, 127]. The probability distribution of mosquitoes in Colombia is shown in
Figure 4.13. Colombia is characterized by the presence of the Andes mountains, where the
probability of having mosquitoes is almost zero.

• Socio-economic factor Dataset from G-Econ Project, Yale University (available at
http://gecon.yale.edu/colombia) contains the per capita Gross Domestic Product (GDP,
computed at purchasing power parity (PPP) exchange rates) at a 1 degree longitude by 1
degree latitude resolution (approximately 100 km by 100 km).

Human mobility is certainly one of the main factors that affect the epidemic spreading of an
infectious disease, but in this case the correlation of ZIKV transmission dynamics with environ-
mental, climatic and socio-economic factors play a fundamental role [128, 139, 206]. These extra
datasets must be included in the model in order to assess and justify the epidemic outcomes
obtained from the various mobility networks.

climate.geog.udel.edu/climate/
climate.geog.udel.edu/climate/
http://gecon.yale.edu/colombia




Conclusion

In this dissertation we explored how novel digital data streams can be integrated into the mon-
itoring, modelling and forecasting of the epidemic spreading of infectious diseases. The perva-
sive use of digital communication technologies, including electronic devices and smartphones,
has dramatically changed the way people communicate and search for information in real-time
through the Web [97], generating a large volume of digital traces left by human activities on
social media, crowdsourced platforms and Internet in general [174]. Modern epidemiology has
thus been exposed to a new digital revolution and transformation of the pre-existing practices
into digital disease detection techniques and digital warning systems that harness new technolo-
gies and novel data streams to monitor the health of populations and predict the future course
of an epidemic.

The first part of this work is dedicated to an innovative online tool called Influweb [24] that since
2008 aims at monitoring seasonal influenza activity in Italy by directly involving self-selected
volunteers among the general population reporting their health status through Web-based sur-
veys. In this way, Influweb is able to provide an additional layer of surveillance to the traditional
existing practices based on general practitioners’ reports. We thoroughly investigated the repre-
sentativeness of the population monitored by Influweb in terms of demographic and geographic
indicators, as well as the epidemiological signal that can be extracted from Influweb collected
data, and we found that, despite the limited sample and the existing participation biases, In-
fluweb is a powerful tool to estimate weekly incidence rates as compared to the traditional
surveillance data, with additional advantages provided by a real-time component and a higher
spatial resolution [167]. Indeed, recruiting and maintaining participants are the main challenges,
but targeted strategies informed by the results of our study can be implemented to increase par-
ticipation rates in Italy. With the vast majority of people getting online and the increasing
community engagement in public health, such participatory Web-based systems may become in
the near future powerful tools to measure health status, opinion, or behaviour of the general
population with regard to different indicators and diseases.

In the second part of this dissertation, we demonstrated how such digital crowdsourced data
from participatory systems can be used in the scope of real-time forecasting of seasonal influenza
epidemics by using different forecasting techniques, from simple linear autoregressive models to
a dynamical mechanistic model called GLEAM (GLobal Epidemic And Mobility model), which
is able to produce realistic simulations of the global spread of infectious diseases by combining
high-resolution data on populations and human mobility with stochastic mathematical models
of disease transmission simulating the spatial and temporal evolution of epidemics at the level
of single individuals. In particular, in the first approach we used a previously validated compu-
tational framework [204, 205] based on real-time influenza-related data, traditional surveillance
reports and stochastic Monte Carlo simulations computed by GLEAM, to provide long-term
predictions of seasonal influenza activity, as well as key indicators, such as the peak timing and
peak intensity, up to four weeks in advance. The novel component of this methodology consists
in the calibration of the model with the initial infections estimated from various participatory
Web-based systems available in Europe under the umbrella of Influenzanet [21], including Bel-
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gium, Denmark, Italy, the Netherlands, Spain, and the United Kingdom [58]. In the second
approach, we investigated how traditional surveillance data reported by general practitioners
can be combined with digital surveillance data from the participatory Web-based system In-
fluweb, in order to improve seasonal influenza forecasts in Italy [168]. We used some standard
autoregressive models to address the main issues affecting traditional surveillance systems (i.e.
reporting lags and continuous revision of data throughout an influenza season) and to exploit
one of the main advantages of Influweb of having earlier data available. Indeed, statistical and
mechanistic models present very different features and level of knowledge on the disease and the
biological mechanisms that drive the infection dynamics [136]. However, in both approaches we
were able to highlight the added value provided by integrating a digital real-time participatory
component into seasonal influenza forecasting models.

In the third and last part of this work, we focused on the recent Zika outbreak occurred in
Colombia in 2015-2016, mainly addressing the role of human mobility in the epidemic spreading
of the disease. The continuous growth of the transportation infrastructure and the high human
mobility and connection among different parts of the globe lead to a larger opportunity for
infectious diseases to spread on a large scale more rapidly than ever before. Accurate human
mobility data are needed to properly inform epidemic models and assess the spatial spreading
of the disease and the risk of importation from the affected areas to the rest of the world, thus
allowing for rapid interventions and appropriate control measures [54, 115, 169, 196]. Here we
investigated different mobility networks, mainly focusing on the potential benefits of integrating
human mobility patterns provided by mobile phone data, as well as human mobility generated
by mobility models (i.e. the gravity model and the radiation model) and census commuting data.

Indeed, much more needs to be done to integrate such digital disease monitoring techniques and
computational modelling and forecasting approaches into existing practices in public health and
the efforts presented in this dissertation are only few glimpses of what can be done to help guide
this process. In our case, since 2012 data collected by Influweb have been adopted by the Italian
National Institute of Health [23] as an additional source of data about the circulation of influenza-
like illness among the general population by collecting in a single weekly bulletin, called FluNews
[6], all information gathered by the various epidemiological surveillance systems monitoring
seasonal influenza in Italy. Moreover, in 2014 we launched FluOutlook (fluoutlook.org) [7],
an online platform exposing real-time seasonal influenza forecasts projected up to four weeks
into the future, thus providing a description of the seasonal influenza progression that could be
used by public health agency to guide their decision making process, as well as to compare and
assess the performance of different forecast approaches.

In the event of epidemic outbreaks public health authorities can choose to activate prevention
and emergency response policies, such as vaccination, travel restrictions, or school and business
closures, but the socioeconomic cost of such programmes can be high and their impact on the
epidemic hard to determine. In this context, a high-resolution mechanistic model like GLEAM,
allows the modelling and scenario analysis of containment and mitigation strategies providing
quantitative projections that better informs the analysis of their likely impact. Furthermore,
it can be easily refined with multiple data sources, from weather data information, to specific
contact matrices and genetic sequence data, in order to include an increasing level of details and
achieve better performances in the modelling and response to real epidemic situation. Luckily,
we can now witness public health authorities more and more willing to adapt to this ongoing
evolution and revolution, and to adopt these novel powerful tools for prevention strategies and
emergency response planning. Certainly digital epidemiology represents a good premise in these
challenges, thanks to the great improvements in the speed, scope, and focus of information
available for public health purposes.

fluoutlook.org


Appendix A

Influenzanet questionnaires

A.1 Intake Questionnaire

Intake Q0:

For whom are you filling this survey in? (If you are filling in the survey on behalf of someone
else, then make sure that you have the consent of that person to do so)

Q0.1 - Yes

Q0.2 - No

Intake Q1:

What is your gender?

Q1.1 - Male

Q1.2 - Female

Intake Q2:

What is your date of birth (month and year)?

Q2.1 - XX/XXXX

Intake Q3:

What is your home postal code?

Q3.1 - XXXX

Intake Q4:

What is your main activity?

Q4.1 - Paid employment, full-time

Q4.2 - Paid employment, part-time

Q4.3 - Self-employed (businessman, farmer, tradesman, etc.)

Q4.4 - Attending daycare/school/college/university

Q4.5 - Home-maker (e.g. housewife)

Q4.6 - Unemployed

Q4.7 - Long-term sick-leave or parental leave

Q4.8 - Retired

Q4.9 - Other

Intake Q4b: (follow-up question to Q4.1 and Q4.2)

What is the first part of your school/college/workplace postal code (where you spend the ma-
jority of your working/studying time)?

Q4b.1 - XXXX

Q4b.2 - I don’t know/can’t remember
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Q4b.3 - Not applicable (e.g. don’t have a fixed workplace)

Intake Q4c: (follow-up question to Q4.1 and Q4.2)

Which of the following descriptions most closely matches with your main occupation?

Q4c.1 - Professional (e.g. manager, doctor, teacher, nurse, engineer)

Q4c.2 - Office work (e.g. admin, finance assistant, receptionist, etc.)

Q4c.3 - Retail, sales, catering and hospitality and leisure (e.g. shop assistant, waiter, bar-staff,
gym instructor etc.)

Q4c.4 - Skilled manual worker (e.g. mechanic, electrician, technician)

Q4c.5 - Other manual work (e.g. cleaning, security, driver)

Q4c.6 - Other [free text here to allow users to write their occupation]

Intake Q4d: (only if age>16)

What is the highest level of formal education qualification that you have? (If you are still in
education, then tick this box with the appropriate highest level that you have already achieved)

Q4d.1 - I have no formal qualifications

Q4d.2 - GCSE’s, O’levels, CSEs or equivalent

Q4d.3 - A-Levels or equivalent (e.g. Highers, NVQ Level3, BTEC)

Q4d.4 - Bachelor’s Degree (BA, BSc) or equivalent (e.g. HND, NVQ Level 4)

Q4d.5 - Higher Degree or equivalent (e.g. Masters Degree, PGCE, PhD, Medical Doctorate,
Advanced Professional Awards)

Q4d.6 - I am still in education

Intake Q5:

Except people you meet on public contact, do you have contact with any of the following during
the course of a typical day? (Select all options that apply, if any)

Q5.1 - More than 10 children or teenagers over the course of the day

Q5.2 - More than 10 people aged over 65 over the course of day

Q5.3 - Patients

Q5.4 - Groups of people (more than 10 individuals at any one time)

Q5.5 - None of the above

Intake Q6:

INCLUDING YOU, how many people in each of the following age groups live in your household?
(Insert number for each age groups)

Q6.1 - 0-4 years

Q6.2 - 5-18 years

Q6.3 - 19-44 years

Q6.4 - 45-64 years

Q6.5 - 65+ years

Intake Q6b: (if any in household are aged 0-18, including participant)

How many of the children in your household go to school or day-care?

Drop-down menu

Intake Q7:

What is your main means of transportation?

Q7.1 - Walking

Q7.2 - Bike

Q7.3 - Motorbike/scooter

Q7.4 - Car

Q7.5 - Public transportation (bus, train, tube, etc.)
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Q7.6 - Other

Intake Q7b:
On a normal day, how much time do you spend on public transport (bus, train, tube, etc.)?
Q7b.1 - No time at all
Q7b.2 - 0-30 minutes
Q7b.3 - 30 minutes - 1.5 hours
Q7b.4 - 1.5 hours - 4 hours
Q7b.5 - Over 4 hours

Intake Q8:
How often do you have common colds or flu-like diseases?
Q8.1 - Never
Q8.2 - Once or twice a year
Q8.3 - Between 3 and 5 times a year
Q8.4 - Between 6 and 10 times a year
Q8.5 - More than 10 times a year
Q8.6 - I don’t know

Intake Q9:
Have you received a flu vaccine this autumn/winter season?
Q9.1 - Yes
Q9.2 - No
Q9.3 - I don’t know/can’t remember

Intake Q9b: (follow-up question to Q9.1)
When were you vaccinated against flu this season?
Q9b.1 - XX/XX/XXXX
Q9b.2 - I don’t know/can’t remember

Intake Q9c: (follow-up question to Q9.1)
What were your reasons for getting a seasonal influenza vaccination this year? (Select all options
that apply)
Q9c.1 - I belong to a risk group (e.g. pregnant, over 65, underlying health condition, etc.)
Q9c.2 - Vaccination decreases my risk of getting influenza
Q9c.3 - Vaccination decreases the risk of spreading influenza to others
Q9c.4 - My doctor recommended it
Q9c.5 - It was recommended in my workplace/school
Q9c.6 - The vaccine was readily available and vaccine administration was convenient o The
vaccine was free (no cost)
Q9c.7 - I don’t want to miss work/school
Q9c.8 - I always get the vaccine
Q9c.9 - Other reason(s)

Intake Q9d: (follow-up question to Q9.2)
What were your reasons for NOT getting a seasonal influenza vaccination this year? (Select all
options that apply)
Q9d.1 - I am planning to be vaccinated, but haven’t been yet
Q9d.2 - I haven’t been offered the vaccine
Q9d.3 - I don’t belong to a risk group
Q9d.4 - It is better to build your own natural immunity against influenza
Q9d.5 - I doubt that the influenza vaccine is effective
Q9d.6 - Influenza is a minor illness
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Q9d.7 - I don’t think that I am likely to get influenza
Q9d.8 - I believe that influenza vaccine can cause influenza
Q9d.9 - I am worried that the vaccine is not safe or will cause illness or other adverse events
Q9d.10 - I don’t like having vaccinations
Q9d.11 - The vaccine is not readily available to me
Q9d.12 - The vaccine is not free of charge
Q9d.13 - No particular reason
Q9d.14 - Although my doctor recommended a vaccine, I did not get one
Q9d.15 - Other reason(s)

Intake Q10:
Did you receive a flu vaccine during the last autumn/winter season?
Q10.1 - Yes
Q10.2 - No
Q10.3 - I don’t know/can’t remember

Intake Q11:
Do you take regular medication for any of the following medical conditions? (Select all options
that apply)
Q11.1 - No
Q11.2 - Asthma
Q11.3 - Diabetes
Q11.4 - Chronic lung disorder besides asthma e.g. COPD, emphysema, or other disorders that
affect your breathing
Q11.5 - Heart disorder
Q11.6 - Kidney disorder
Q11.7 - An immunocompromising condition from treatment or illness including splenectomy,
organ transplant, acquired immune deficiency, cancer treatment

Intake Q12: (Only to women aged between 15 and 50)
Are you currently pregnant?
Q12.1 - Yes
Q12.2 - No
Q12.3 - Don’t know/would rather not answer

Intake Q12b: (follow-up question to Q12.1)
Which trimester of the pregnancy are you in?
Q12b.1 - First trimester (week 1-12)
Q12b.2 - Second trimester (week 13-28)
Q12b.3 - Third trimester (week 29-delivery)
Q12b.4 - Don’t know/would rather not answer

Intake Q13:
Do you smoke tobacco?
Q13.1 - No
Q13.2 - Yes, occasionally
Q13.3 - Yes, daily, fewer than 10 times a day
Q13.4 - Yes, daily, 10 or more times a day
Q13.5 - Don’t know/would rather not answer

Intake Q14:
Do you have one of the following allergies that can cause respiratory symptoms? (Select all
options that apply)
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Q14.1 - Hay fever
Q14.2 - Allergy against house dust mite
Q14.3 - Allergy against domestic animals or pets
Q14.4 - Other allergies that cause respiratory symptoms (e.g. sneezing, runny eyes)
Q14.5 - I do not have an allergy that causes respiratory symptoms

Intake Q15:
Do you follow a special diet? (Select all options that apply)
Q15.1 - No special diet
Q15.2 - Vegetarian
Q15.3 - Veganism
Q15.4 - Low-calorie
Q15.5 - Other

Intake Q16:
Do you have pets at home? (Select all options that apply)
Q16.1 - No
Q16.2 - Yes, one or more dogs
Q16.3 - Yes, one or more cats
Q16.4 - Yes, one or more birds
Q16.5 - Yes, one ore more other animals

A.2 Symptoms Questionnaire

If you are filling this in on behalf of someone else, please answer all the questions as if you are
that person.

Weekly Q1:
Have you had any of the following symptoms since your last visit (or in the past week, if this is
your first visit)? (Select all options that apply)
Q1.1 - No symptoms
Q1.2 - Fever
Q1.3 - Chills
Q1.4 - Runny or blocked nose
Q1.5 - Sneezing
Q1.6 - Sore throat
Q1.7 - Cough
Q1.8 - Shortness of breath
Q1.9 - Headache
Q1.10 - Muscle/joint pain
Q1.11 - Chest pain
Q1.12 - Feeling tired or exhausted (malaise)
Q1.13 - Loss of appetite
Q1.14 - Coloured sputum/phlegm
Q1.15 - Watery, bloodshot eyes
Q1.16 - Nausea
Q1.17 - Vomiting
Q1.18 - Diarrhoea
Q1.19 - Stomach ache
Q1.20 - Other
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Weekly Q2: (If the participant was still ill on their last visit and has reported symptoms this
time)
On DATE OF LAST VISIT you reported that you were still ill with symptoms that began on
DATE OF FIRST SYMPTOMS REPORTED PREVIOUSLY. Are the symptoms you reported
today part of the same bout of illness?
Q2.1 - Yes
Q2.2 - No
Q2.3 - I don’t know/can’t remember

Weekly Q3: (if symptoms)
When did the first symptoms appear?
Q3.1 - Choose date XX/XX/XXXX
Q3.2 - I don’t know/can’t remember

Weekly Q4: (if symptoms)
When did your symptoms end?
Q4.1 - Choose date XX/XX/XXXX
Q4.2 - I don’t know/can’t remember
Q4.3 - I am still ill

Weekly Q5: (if symptoms)
Did your symptoms develop suddenly over a few hours?
Q5.1 - Yes
Q5.2 - No
Q5.3 - I don’t know/can’t remember

Weekly Q6 (if fever)
When did your fever begin?
Q6.1 - Choose date XX/XX/XXXX
Q6.2 - I don’t know/can’t remember

Weekly Q6a: (if fever)
Did your fever develop suddenly over a few hours?
Q6a.1 - Yes
Q6a.2 - No
Q6a.3 - Don’t know

Weekly Q6b: (if symptoms)
Did you take your temperature?
Q6b.1 - Yes
Q6b.2 - No
Q6b.3 - I don’t know

Weekly Q6c: (if symptoms and if took temperature)
What was your highest temperature measured?
Q6c.1 - Below 37◦C
Q6c.2 - 37◦ - 37.4◦C
Q6c.3 - 37.5◦ - 37.9◦C
Q6c.4 - 38◦ - 38.9◦C
Q6c.5 - 39◦ - 39.9◦C
Q6c.6 - 40◦C or more
Q6c.7 - I don’t know/can’t remember
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Weekly Q7: (if symptoms)

Because of your symptoms, did you VISIT (see face to face) any of medical services? (Select all
options that apply)

Q7.1 - No

Q7.2 - GP or GP’s practice nurse

Q7.3 - Hospital admission

Q7.4 - Hospital accident & emergency department/out of hours service o Other medical services

Q7.5 - No, but I have an appointment scheduled

Weekly Q7b: (if symptoms)

How soon after your symptoms appeared did you visit this medical service?

Q7b.1 - Same day

Q7b.2 - 1 day

Q7b.3 - 2 days

Q7b.4 - 3 days

Q7b.5 - 4 days

Q7b.6 - 5-7 days

Q7b.7 - More than 7 days

Q7b.8 - I don’t know/can’t remember

Weekly Q8: (if symptoms)

Because of your symptoms, did you contact via telephone or internet any of the following?
(Select all options that apply)

Q8.1 - No

Q8.2 - GP, spoke to receptionist only

Q8.3 - GP, spoke to doctor or nurse

Q8.4 - Other

Weekly Q8b: (if symptoms)

How soon after your symptoms appeared did you contact via telephone or internet any of the
following?

Q8b.1 - Same day

Q8b.2 - 1 day

Q8b.3 - 2 days

Q8b.4 - 3 days

Q8b.5 - 4 days

Q8b.6 - 5-7 days

Q8b.7 - More than 7 days

Q8b.8 - I don’t know/can’t remember

Weekly Q9: (if symptoms)

Did you take medication for these symptoms? (Select all options that apply)

Q9.1 - No medication

Q9.2 - Pain killers (e.g. paracetamol, ibuprofen, aspirin, etc.)

Q9.3 - Cough medication (e.g. expectorants)

Q9.4 - Antivirals (Tamiflu, Relenza)

Q9.5 - Antibiotics

Q9.6 - Other

Q9.7 - I don’t know/can’t remember

Weekly Q9b: (follow-up question to Q9.4)

How long after the beginning of your symptoms did you start taking antiviral medication?
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Q9b.1 - Same day (within 24 hours)
Q9b.2 - 1 day later
Q9b.3 - 2 days later
Q9b.4 - 3 days later
Q9b.5 - 4 days later
Q9b.6 - 5-7 days later
Q9b.7 - More than 7 days later
Q9b.8 - I don’t know/can’t remember

Weekly Q10: (if symptoms)
Did you change your daily routine because of your illness?
Q10.1 - No
Q10.2 - Yes, but I did not take time off work/school
Q10.3 - Yes, I took time off work/school

Weekly Q10b: (follow-up question to Q10.3)
Are you still off work/school?
Q10b.1 - Yes
Q10b.2 - No
Q10b.3 - Other (e.g. I wouldn’t usually be at work/school today anyway)

Weekly Q10c: (follow-up question to Q10.3)
How have you been off work/school for?
Q10c.1 - 1 day
Q10c.2 - 2 days
Q10c.3 - 3 days
Q10c.4 - 4 days
Q10c.5 - 5 days
Q10c.6 - 6 to 10 days
Q10c.7 - 11 to 15 days
Q10c.8 - More than 15 days

Weekly Q11: (if symptoms)
What do you think is causing your symptoms?
Q11.1 - Flu or flu-like illness o Common cold
Q11.2 - Allergy/hay fever
Q11.3 - Asthma
Q11.4 - Gastroenteritis/gastric flu
Q11.5 - Other
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M. Barthelemy, E. Frias-Martinez, and J. J. Ramasco. Cross-checking different sources of
mobility information. PLoS One, 9(8):e105184, 2014.

[136] J. Lessler and D. A. Cummings. Mechanistic models of infectious disease and their impact
on public health. American journal of epidemiology, 183(5):415–422, 2016.

[137] E. T. Lofgren, M. E. Halloran, C. M. Rivers, J. M. Drake, T. C. Porco, B. Lewis,
W. Yang, A. Vespignani, J. Shaman, J. N. Eisenberg, et al. Opinion: Mathematical mod-
els: A key tool for outbreak response. Proceedings of the National Academy of Sciences,
111(51):18095–18096, 2014.

[138] I. M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. A. Cummings, and
M. E. Halloran. Containing pandemic influenza at the source. Science, 309(5737):1083–
1087, 2005.
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