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In this work, it is shown that a simply connected, rationally elliptic torus orbifold is

equivariantly rationally homotopy equivalent to the quotient of a product of spheres by

an almost-free, linear torus action, where this torus has rank equal to the number of

odd-dimensional spherical factors in the product. As an application, simply connected,

rationally elliptic manifolds admitting slice-maximal torus actions are classified up to

equivariant rational homotopy. The case where the rational-ellipticity hypothesis is

replaced by non-negative curvature is also discussed, and the Bott Conjecture in the

presence of a slice-maximal torus action is proved.

1 Introduction

A torus manifold is a 2n-dimensional, closed, orientable, smooth manifold equipped

with a smooth, effectiven-torus actionwhichhas non-empty fixed-point set. Such spaces

have been of long-standing interest, going back, on the one hand, to Orlik andRaymond’s

work on closed, smooth 4-manifolds equipped with smooth, effective T2 actions [30, 31]

and, on the other hand, to the study of toric varieties in algebraic geometry [9]. Many

results on manifolds with torus actions admit generalizations to orbifolds (see, e.g.,
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[16] for smooth torus actions on orbifolds, [20, 25] for Hamiltonian torus actions on

symplectic orbifolds or [33] for quasitoric orbifolds).

Recently, it has been shown in [37] that, if M is simply connected and either a

rationally elliptic torus manifold with torsion-free integer cohomology or a torus man-

ifold with non-negative sectional curvature, then M is homeomorphic to the quotient

of a product of spheres by a free, linear torus action. In this article, torus orbifolds

are investigated, and a similar result to that in [37] is proven in this more general

context.

Recall that a simply connected topological space X is called rationally ellip-

tic if it satisfies dimQ H ∗(X ;Q) < ∞ and dimQ(π∗(X) ⊗ Q) < ∞. Two spaces X and Y

are rationally homotopy equivalent if their corresponding minimal models are isomor-

phic. Given a torus T , a rational homotopy equivalence between T-spaces X and Y is

T-equivariant if the corresponding Borel constructions XT and YT are also rationally

homotopy equivalent and there exists a commutative diagram

H ∗(Y ;Q) �� H ∗(X ;Q)

H ∗
T (Y ;Q)

��

�� H ∗
T (X ;Q)

��

where the horizontal arrows are isomorphisms induced by the respective rational

homotopy equivalences.

Theorem A. Let (O,T) be a rationally elliptic, simply connected torus orbifold. Then

there is a product P̂ of spheres of dimension ≥ 3, a torus L̂ acting linearly and almost

freely on P̂, and an effective, linear action of T on Ô = P̂/L̂, such that there is a

T-equivariant rational homotopy equivalence O �Q Ô.

Moreover, if O is a manifold, then L̂ acts freely on P̂ and thus Ô is a manifold as

well. �

The final statement in Theorem A regarding manifolds is closely related to The-

orem 1.1 of [37], where a stronger assumption (torsion-free integral cohomology) is

required in order to obtain a correspondingly strong conclusion (classification up to

homeomorphism).

Torus orbifolds have been studied in [17–19] and arise naturally in the study of

smooth torus actions on manifolds, for example, when the action is slice maximal.
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Definition. LetM be a closed, orientable, smooth n-manifold on which a torus Tk acts

smoothly and effectively, and letm be the minimal dimension of an orbit. The action is

slice maximal if 2k = n+m. �

It is clear from the definition that torus manifolds are an extremal case of slice-

maximal actions. For a generic k-torus action on an n-dimensional manifold, it follows

from the slice representation at a minimal orbit that 2k ≤ n + m. Thus, if equality

holds, the slice representation at a minimal orbit is even dimensional and has maximal

symmetry rank, justifying the terminology “slice maximal”. Slice-maximal actions were

considered in [21, 36], where they were called maximal.

Given an n-manifold M with a slice-maximal Tk action, there exists a subtorus

Tm ⊆ Tk acting almost freely onM and the quotient O = M/Tm is a 2(k−m)-dimensional

torus orbifold. Moreover, if M is rationally elliptic, so too is the quotient O.

By applying Theorem A, it turns out that the existence of a slice-maximal torus

action has strong implications on the topology of a manifold.

Theorem B. Let M be an n-dimensional, smooth, closed, simply connected, rationally

elliptic manifold with a slice-maximal Tk action. Then there is a product P̂ of spheres of

dimension ≥ 3, a torus K̂ acting linearly and freely on P̂, and an effective, linear action

of Tk on M̂ = P̂/K̂, such that there is a Tk-equivariant rational homotopy equivalence

M �Q M̂ . �

It is worth pointing out that, in general, rational homotopy does not behave well

with respect to group actions; for example, one cannot “pull back” an action via a rational

homotopy equivalence. The difficulties are even more apparent in the case of actions

which are not almost free. In particular, while it is not too hard in TheoremB to find some

space M̂ = P̂/K̂ that is rationally homotopy equivalent toM , it is more difficult to prove

that such space is a manifold (i.e., that the K̂ action is free rather than almost free), and

evenharder to show that the rational homotopy equivalence isT-equivariant in the sense

described above. To prove the latter, some novel approaches are required. In this case, it

is shown that the rational homotopy equivalence M̂ �Q M induces a rational homotopy

equivalence between the equivariant 1-skeleta M̂ (1) �Q M (1) and, moreover, that this

rational homotopy equivalence is, in fact, induced by a Tk-equivariant homeomorphism

M̂ (1) → M (1).

As a first application, TheoremBhas been used in [10] to obtain a classification of

closed, simply connected, rationally elliptic manifolds admitting effective torus actions

of maximal rank up to equivariant rational homotopy equivalence.
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For another interesting consequence of Theorem B, recall that the largest integer

r for which a closed, simply connected spaceM admits an almost-free Tr-action is called

the toral rank ofM , and is denoted rk(M). The Toral Rank Conjecture, formulated by S.

Halperin, asserts that dimH ∗(M ;Q) ≥ 2rk(M).

Corollary C. Let M be a smooth, closed, simply connected, rationally elliptic, n-

dimensional manifold with a slice-maximal torus action. Then M satisfies the Toral

Rank Conjecture. �

Proof. Let Tr act almost freely on M . Given H2(M ;Q) = Qb2(M), there is a principal

Tb2(M)-bundle over M with (rationally) 2-connected total space P. As any action by a

torus T on M lifts to a T × Tb2(M) action on P, the slice-maximal action (respectively,

the almost-free Tr action) on M lifts to a slice-maximal action (respectively, an almost-

free Tr × Tb2(M) action) on P. By Theorem B and since H2(P;Q) = 0, P must have the

rational cohomology of a product of spheres of dimension ≥ 3. By [8, Prop. 7.23],

P satisfies the Toral Rank Conjecture, that is, H ∗(P;Q) ≥ 2r+b2(M). The result now follows

from dimH ∗(P;Q) ≤ dimH ∗(Tb2(M);Q) · dimH ∗(M ;Q). �

Finally, recall that the Bott Conjecture asserts that a closed, simply connected,

non-negatively curved Riemannian manifold is rationally elliptic. In [34], W. Spindeler

verified the conjecture for simply connected, non-negatively curved torus manifolds. In

fact, the conjecture also holds in the slice-maximal setting.

Theorem D. Let M be a closed, simply connected, non-negatively curved Riemann-

ian manifold admitting an isometric, slice-maximal torus action. Then M is rationally

elliptic. �

It is worth noting that non-negatively curved torus manifolds have already been

classified up to equivariant diffeomorphism in [37], and a similar classification from

a different viewpoint can be found in [6]. If the non-negative-curvature hypothesis in

Theorem D were to be replaced by positive curvature, then it would follow from the

work of K. Grove and C. Searle [13] thatM is equivariantly diffeomorphic to a sphere or

complex projective space equipped with a linear action.

The article is organized as follows: In Section 2, some basic definitions and facts

about orbifolds are collected, following the presentation in [23], as well as some results

on smooth actions on orbifolds. These results have been included to provide a basic
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reference for compact Lie group actions on orbifolds, since they seem to be scattered in

the literature (see, e.g., [15, 16, 25, 38]). In Section 3, torus orbifolds are introduced and

their fundamental properties established. In Section 4, there is a brief review of applied

to torus orbifolds, following the work of Goresky, Kottwitz and MacPherson in [11]. The

proof of Theorem A is contained in Section 5. In Section 6, an example of a family of

rationally elliptic torus orbifolds which are not rationally homotopy equivalent to any

rationally elliptic manifold is provided, illustrating that almost-free (rather than free)

torus actions on products of spheres are necessary in the conclusion of the Theorem A.

Section 7 is devoted to establishing Theorem B. In Section 8, a version of Theorem A

for non-negatively curved orbifolds of dimension ≤ 6 is proven. The case of general

dimensions remains open. Section 8 concludes with the proof of Theorem D, which is

independent of the rest of the article.

The reader is referred to [7] for the basic definitions and results of rational

homotopy theory. A brief summary can also be found in [10].

2 Review of Orbifolds

As there are some conflicts in the literature regarding basic notions in the study of

orbifolds, it is important to clearly define the notation and terminology which will be

used throughout the article. Since the proofs of most of the lemmas in this section use

standard arguments, these will only be sketched.

Definition 2.1. A local model of dimension n is a pair (Ũ ,�), where Ũ is an open,

connected subset of a Euclidean space Rn, and � is a finite group acting smoothly and

effectively on Ũ .

A smooth map (Ũ1,�1) → (Ũ2,�2) between local models (Ũi,�i), i = 1, 2, is a

homomorphism ϕ# : �1 → �2 together with a ϕ# -equivariant smooth map ϕ̃ : Ũ1 → Ũ2,

that is, ϕ̃(γ · ũ) = ϕ#(γ ) · ϕ̃(ũ), for all γ ∈ �1, ũ ∈ Ũ1. �

Given a local model (Ũ ,�), denote by U the quotient Ũ/�. Clearly, a smooth map

ϕ̃ : (Ũ1,�1) → (Ũ2,�2) induces a map ϕ : U1 → U2. The map ϕ is called an embedding

if ϕ̃ is an embedding. In this case, the effectiveness of the actions in the local models

implies that ϕ# is injective.

Definition 2.2. An n-dimensional local chart (Up, Ũp,�p,πp) around a point p in a

topological space X consists of:

(a) A neighbourhood Up of p in X ;

(b) A local model (Ũp,�p) of dimension n;
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(c) A �p-equivariant projection πp : Ũp → Up, where �p acts trivially on Up, that

induces a homeomorphism Ũp/�p → Up.

If π−1
p (p) consists of a single point, p̃, then (Up, Ũp,�p,πp) is called a good local chart

around p. In particular, p̃ is fixed by the action of �p on Ũp. �

Note that, given a good local chart (Up, Ũp,�p,πp) around apointp in a topological

space X , the 4-tuple (Up, Ũp,�p,πp) is also a local chart, not necessarily good, around any

other point q ∈ Up. By abusing notation, a local chart (U , Ũ ,�,π) will from now on be

denoted simply by U .

Definition 2.3. An n-dimensional (smooth) orbifold, denoted by On or simply O, is a

second-countable, Hausdorff topological space |O|, called the underlying topological

space of O, together with a maximal collection of n-dimensional local charts A = {Uα}α
such that:

(a) The neighbourhoods Uα ∈ A give an open covering of |O|, and
(b) For any p ∈ Uα ∩ Uβ , there is a local chart Uγ ∈ A with p ∈ Uγ ⊆ Uα ∩ Uβ and

embeddings (Ũγ ,�γ ) → (Ũα,�α), (Ũγ ,�γ ) → (Ũβ ,�β).

An orbifold is orientable if every local model Ũα is orientable, and if every �α action and

every embedding Ũγ → Ũα is orientation preserving. Given an orientable orbifold O, it is

not hard to see that the set of points p ∈ O for which �p is non-trivial has codimension at

least 2 inO. An orbifoldO is connected (respectively, closed) if its underlying topological

space |O| is connected (respectively, compact and without boundary). �

Given an orbifold O and any point p ∈ O, one can always find a good local chart

Up around p. Moreover, the corresponding group �p does not depend on the choice of

good local chart around p, and is referred to as the local group at p. From now on, only

good local charts will be considered.

Lemma 2.4. Let O be an orbifold and Up a good local chart around p ∈ O. Let q ∈ Up,

q̃ ∈ π−1
p (q) ⊆ Up and (�p)q̃ = {γ ∈ �p | γ · q̃ = q̃}. Then there exists a (�p)q̃-invariant

neighbourhood Ũq ⊆ Ũp of q̃ such that (πp(Ũq), Ũq, (�p)q̃,πp|Ũp) is a good local chart

around q. �

Proof. Define Ũq to be a (�p)q̃-invariant neighbourhood of q̃ such that, for every γ ∈
�p \ (�p)q̃, one has Ũq ∩ γ̃ · Ũq = ∅. �
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In particular, given a good local chart Up around p ∈ O, a point q ∈ Up and

q̃ ∈ π−1
p (q), one can identify the local group �q at q with (�p)q̃.

Definition 2.5. A smooth map ϕ : O1 → O2 between orbifolds is given by a continuous

map |ϕ| : |O1| → |O2| such that, if Up and Uϕ(p) are (good) local charts around p ∈ O1 and

ϕ(p) ∈ O2, respectively, such that ϕ
(
Up

) ⊆ Uϕ(p), then there is a (possibly non-unique)

smooth lift at p ∈ O1, ϕ̃p : (Ũp,�p) → (Ũϕ(p),�ϕ(p)), so that ϕ ◦ πp = πϕ(p) ◦ ϕ̃p and there is

an induced homomorphism (ϕ̃p)# : �p → �ϕ(p).

A diffeomorphism ϕ : O1 → O2 between orbifolds is a smoothmapwith a smooth

inverse. �

Definition 2.6.

(a) An orbifold O1 is a suborbifold of an orbifold O2, if there is a smooth map

ϕ : O1 → O2 such that |ϕ| maps |O1| homeomorphically onto its image in |O2|
and, for every p ∈ O1, some (and, hence, every) smooth lift ϕ̃p : Ũp → Ũϕ(p) is

an immersion. In this case, O1 will be identified with its image.

(b) A suborbifold O1 ⊆ O2 is a strong suborbifold if, for every p ∈ O1 and every

good local chartUp, the image of a smooth lift ϕ̃p is independent of the choice

of lift. �

The above definition of strong suborbifold is equivalent to Thurston’s definition of sub-

orbifold (cf. [35]). Given a strong suborbifold O1 ⊆ O2, let Up be a good local chart

(in O2) around p ∈ O1 and let T̃pUp be the tangent space to Ũp at p̃ = π−1
p (p). Denote

by T̃pO1 ⊆ T̃pUp the tangent space to π−1
p (O1 ∩ Up) at p̃. Then the space T̃pUp splits as

T̃pO1 ⊕ ν̃pO1, where ν̃pO1 denotes the normal space to T̃pO1 ⊆ T̃pUp.

IfO is an orbifold, then a smooth action of a Lie groupG onO is an action ofG on

O such that the map G× O → O, (g,p) �→ g ·p, is smooth. The set G(p) = {g ·p | g ∈ G} is
the orbit of G through p ∈ O. The ineffective kernel of the action is the normal subgroup

Ker = {g ∈ G | ϕ(g, ·) = idO}. If the ineffective kernel is trivial, the action is effective.

The group G/Ker will always act effectively. The isotropy subgroup Gp at p ∈ O is the

subgroup consisting of those elements in G that fix p. Note that, whenever G is compact,

one can always find aGp-invariant good local chart aroundp. IfGp is trivial (respectively,

finite) for every p ∈ O, the action is free (respectively, almost free). The orbit space of

the action will be denoted by O/G and the fixed-point set {p ∈ O | Gp = G} by OG. The

identity component of G is denoted by Go.
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Lemma 2.7. Every G-orbit in O is a manifold, as well as a strong suborbifold of O. �

Proof. The fact that G(p), p ∈ O, is a manifold and a suborbifold follows as in the

manifold case. To see that it is a strong suborbifold, one can apply the fact that, since G

acts by diffeomorphisms, the local groups at all points in the orbit are isomorphic. �

Proposition 2.8. Let O be an orbifold with a smooth, effective action by a compact Lie

group G. Let p ∈ O have isotropy subgroup Gp ⊆ G and let Up be a Gp-invariant good

local chart. Then there exists a Lie group G̃p such that:

(a) G̃p acts on Ũp and Ũp/G̃p = Up/Gp;

(b) G̃p is an extension of Gp by �p, that is, there exists a short exact sequence

{ e } → �p → G̃p
ρ→ Gp → { e }. �

Proof. Let g ∈ Gp. The action of Gp on Up gives a smooth map

Lg : Up → Up

q �→ g · q.

Then, by definition, there exists a smooth lift L̃g : Ũp → Ũp of Lg. Let G̃p = {Fg : Ũp →
Ũp | πp ◦ Fg = Lg ◦ πp, g ∈ Gp } be the collection of all possible lifts. This is a group and,

given that the Gp action is smooth, it is not difficult to see that G̃p is a Lie group acting

smoothly and effectively on Ũp. Note that, since �p = {Fe : Ũp → Ũp | πp◦Fe = e◦πp = πp},
�p is a normal subgroup of G̃p. Moreover, �p acts on G̃p via Fg �→ γ · Fg and G̃p/�p = Gp,

that is, the quotient by �p fixes a choice of lift corresponding to Lg. It then follows that

Ũp/G̃p = Up/Gp. �

Corollary 2.9. Let O be an orbifold with a smooth, effective action by a compact Lie

group G. Let p ∈ O have isotropy subgroup Gp and let Up be a Gp-invariant good

local chart. Then the local group �p commutes with every connected subgroup of the

lift G̃p. �

Proof. Let H̃ be a connected subgroup of G̃p, g̃ ∈ H̃ , and γ ∈ �p. From the short exact

sequence in Proposition 2.8, the element g̃γ g̃−1 belongs to �p. Since H̃ is connected and �p

is discrete, the map g̃ �→ g̃γ g̃−1 must be constant and hence g̃γ g̃−1 = γ for all g̃ ∈ H̃ . �
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Corollary 2.10. LetG be a compact, connectedLie groupacting smoothly and effectively

on an orbifold O such that the fixed-point set OG is non-empty. Then each connected

component of OG is a strong suborbifold. �

Proof. Let p ∈ OG and let Up be a G-invariant good local chart around p. The goal is to

prove that π−1
p (OG ∩ Up) is a submanifold in Ũp.

Since G is connected, the map G̃o → G is a covering and therefore for every

g ∈ G there is a g̃ ∈ G̃o projecting to g. Let q ∈ OG ∩ Up and choose q̃ ∈ π−1(q) ⊆ Ũp. As

g · q = q, for every g ∈ G, it follows that for every g̃ ∈ G̃o there is a γg̃ ∈ �p such that

g̃ · q̃ = γg̃ · q̃. But G̃o is connected, hence γg̃ = e for every g̃ ∈ G̃o. Thus q̃ is fixed by G̃o and

so π−1
p (OG ∩ Up) ⊆ Ũ G̃o

p . The other inclusion trivially holds, and therefore

π−1
p (OG ∩ Up) = Ũ G̃o

p .

By Corollary 2.9, �p commutes with G̃o and, in particular, �p preserves the fixed-

point set of G̃o. ThenOG∩Up is a strong suborbifold and, since pwas arbitrary, it follows

that OG is a strong suborbifold. �

Just as for manifolds, one has a notion of Riemannian metric for orbifolds. An

orbifold-Riemannian metric is given at each point p in the orbifold by the metric on a

good local chart Up around p induced by a �p-invariant Riemannian metric on Ũp. An

orbifold equippedwith an orbifold-Riemannianmetric will be referred to as aRiemann-

ian orbifold. It is clear that Riemannian notions such as geodesics and completeness

carry over to Riemannian orbifolds. Recall that any orbifold on which a compact Lie

group G acts smoothly and effectively admits a G-invariant orbifold-Riemannian met-

ric. Kleiner’s Isotropy Lemma (cf. [22]) also holds, with the same proof, in the context of

complete Riemannian orbifolds.

Lemma 2.11 (Isotropy Lemma). Let O be a complete Riemannian orbifold and suppose

that a compact Lie group G acts effectively and isometrically on O. Let c : [0,d] → O
be a minimal geodesic between the orbits G(c(0)) and G(c(d)). Then, for any t ∈ (0,d),

Gc(t) = Gc does not depend on t and is a subgroup of Gc(0) and of Gc(d). �

It turns out that the good local charts given by Lemma 2.4 can be chosen to be

compatible with the action of a Lie group.

Lemma 2.12. Let a compact Lie group G act effectively and isometrically on a complete

Riemannian orbifold O and fix p ∈ O. Then there exists a Gp-invariant good local chart
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Up around p such that, for every q ∈ Up and every q̃ ∈ π−1
p (q), there is a Gq-invariant good

local chart Uq ⊆ Up around q and a commutative diagram

{e} �� �q ��

��

G̃q

ρq
��

��

Gq ��

��

{e}

{e} �� �p �� G̃p

ρp
�� Gp �� {e}

(2.1)

of short exact sequences, where the vertical maps identify �q, G̃q and Gq with the sub-

groups (�p)q̃, (G̃p)q̃ and (Gp)q, respectively. Furthermore, there is a commutative diagram

Ũq
��

πq

��

Ũp

πp

��
Uq �� Up

(2.2)

where each map is equivariant with respect to the appropriate actions of the groups G̃q,

G̃p, Gq and Gp. �

Proof. The proof requires simply checking that everything proceeds as expected and

is left to the reader. �

Recall from Lemma 2.7 that orbits of Lie group actions are strong suborbifolds.

Using the notation developed in Section 2, there is a version of the Slice Theorem for

orbifolds (for a proof, see, e.g., [38]).

Theorem 2.13 (Slice Theorem). Suppose that a compact Lie group G acts on an ori-

entable orbifold O equipped with a G-invariant, orbifold-Riemannian metric, and let

G(p) be the orbit of G through p ∈ O. Then a G-invariant neighbourhood of G(p) is

equivariantly diffeomorphic to

G ×Gp

(
ν̃pG(p)/�p

)

and, by Proposition 2.8, this is equivariantly diffeomorphic to

G ×G̃p ν̃pG(p). �
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3 Torus Orbifolds

Definition 3.1. A pair (O2n,Tn), n ≥ 1, is a torus orbifold if O2n is a 2n-dimensional,

closed, oriented orbifold on which the n-dimensional torus Tn acts smoothly and

effectively with non-empty fixed-point set. �

To avoid confusion, henceforth the notation G = Tn will be used. The identity

component of a subgroup K ⊆ G will be denoted by Ko. If the action is clear from the

context, a torus orbifold (O,G) will be denoted simply by O. It will always be assumed

that O is equipped with an invariant orbifold-Riemannian metric (cf. [2]).

Definition 3.2. LetO be a torus orbifold and let p ∈ O. The stratum containing p, which

will be denoted by 
p, is the connected component of the set

{q ∈ O | Go
q = Go

p as subgroups of G}

which contains p. The projection
p/G ⊆ O/G of the closure,
p, of a stratum
p is called

an (orbifold) face of O/G. A one-dimensional face of O/G is called an edge. �

It follows from Definition 3.2 that the closure 
p of the stratum containing p is

a connected component of the fixed-point set OGop and hence, by Corollary 2.10, a strong

suborbifold of O.

Note that the identity component Go
p of an isotropy group Gp is a connected,

compact, abelian Lie group, hence a torus. In particular, G̃o
p acts effectively on Ũp

∼= R2n.

This fact implies the following lemma.

Lemma 3.3. The fixed-point set of a torus orbifold (O,G) consists of finitely many

isolated points. HenceHodd(O;Q) = 0 ifO is simply connected and rationally elliptic. �

Proof. Let p ∈ OG be a G-fixed point. As G̃o is an n-dimensional torus which acts

linearly and effectively on T̃pUp, it follows from dimension reasons that this action is

(up to automorphisms of G̃o) equivalent to the standard action of G̃o on Cn. Hence it

follows from the Slice Theorem that p is an isolated fixed point.

It now follows from the Euler characteristic identity χ(OG) = χ(O) (cf. [2, p. 163],
[24]) that χ(O) > 0. Whenever O is also simply connected and rationally elliptic, this is

equivalent to Hodd(O;Q) = 0 [7, p. 444]. �
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Lemma 3.4. Given a torus orbifold (O,G), suppose that p ∈ OG and Up is a G-invariant

good local chart around p. Then:

(a) The action of G on Up lifts to an action of G̃ on Ũp such that the isotropy

action G̃o × T̃pUp → T̃pUp is equivalent to the standard n-torus action on Cn.

(b) �p is a subgroup of G̃o. In particular, G̃ = G̃o, i.e. G̃ is connected, hence a

torus. �

Proof. Part (a) was already proven in the proof of Lemma 3.3.

There is an G̃-invariant scalar product on T̃pO. Hence, G̃ is a closed subgroup of

SO(T̃pO)). By part (a), G̃o is a maximal torus of SO(T̃pO). Hence, the centralizer of G̃o in

SO(T̃pO) is G̃o itself. Now part (b) follows from Corollary 2.9. �

Corollary 3.5. Let O2n be a 2n-dimensional torus orbifold. Fix p ∈ OG and let Up be a G-

invariant good local chart around p. ThenUp/G = Ũp/G̃ is face-preserving diffeomorphic

to Rn
+ = {(x1, . . . ,xn) ∈ Rn | xi ≥ 0, i = 1, . . . ,n}. �

Lemma 3.6 (cf. [29, Lemma 2.2]). Let O be a closed n-orbifold with a smooth, effective

action by a k-torus G, k ≤ n. Let H ⊆ G be a subtorus and N ⊆ OH a connected com-

ponent of its fixed-point set. If Hodd(O;Q) = 0, then Hodd(N ;Q) = 0 and N G �= ∅ (i.e.

N ∩ OG �= ∅). �

Proof. Since Hodd(O;Q) = 0, it follows from [1, Lemma 4.2.1] and [1, Lemma 3.10.13]

that Hodd(N ;Q) = 0. Because N is a G-invariant strong suborbifold of O, it follows that

χ(N G) = χ(N ) > 0 and, hence, that there is a G-fixed point in N . �

Proposition 3.7. Let O2n be a torus orbifold with Hodd(O;Q) = 0. Fix p ∈ O2n and let 
p

be the closure of the stratum 
p in O. Then:

(a) 
p is a codimension-(2 dimGp) torus orbifold with Hodd(
p;Q) = 0.

(b) The linear, effective action of G̃o
p on T̃pUp = T̃p
p ⊕ ν̃p
p is trivial on the first

summand and equivalent to the standard (dimGp)-torus action on CdimGp on

the second. �

Proof. By Lemma 3.6,
p ⊆ OGop contains some fixed point p0 of theG action. Since
p is

a strong G-invariant suborbifold of O, it follows that T̃p0
p is an G̃-invariant subspace

of T̃p0O. As G̃ acts in the standard way on T̃p0O, it follows that 
p has codimension

2 dimGp and, hence, is a torus orbifold with Hodd(
p;Q) = 0.
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The second claim follows from dimension reasons in a similar way as in the

proof of Lemma 3.4. �

Proposition 3.8. Let O2n be a torus orbifold with Hodd(O;Q) = 0. Then every point

p ∈ O2n lies in the closures of exactly dim(Gp) strata of codimension 2. Equivalently, a

point [p] ∈ O/G in the (relative) interior of a face of codimension k, lies in exactly k faces

of codimension 1 in O/G. �

Proof. This follows from part (b) of Proposition 3.7 and the Slice Theorem. �

Lemma 3.9. LetO be a torus orbifoldwithHodd(O;Q) = 0. Then the closure of each two-

dimensional stratum of O is homeomorphic to a two-sphere and each one-dimensional

face (edge) in the quotient O/G contains exactly two fixed points. �

Proof. Recall that the closure

2
i of each two-dimensional stratum
2

i in a torus orbifold

O projects down to a one-dimensional face ofO/G. By Proposition 3.7, each

2
i contains a

fixed point of the G action and is a two-dimensional torus orbifold with Hodd(

2
i ;Q) = 0.

By [35, Chap. 13] the 

2
i are closed, orientable, topological 2-manifolds with positive

Euler characteristic, hence each must be homeomorphic to a two-dimensional sphere.

Therefore each 

2
i has Euler characteristic 2 and contains exactly two fixed points of

the G action. �

4 Weights, GKM-Graphs and the Moment-Angle Complex

Let O be a 2n-dimensional torus orbifold with Hodd(O;Q) = 0. A facet of the orbit space

Q = O/G is a face of codimension one. Recall that, by Proposition 3.8, this corresponds,

in O, to the closure 
p of a stratum 
p defined by a one-dimensional isotropy group Gp.

Given a facet F , let p ∈ O be a point with dim(Gp) = 1 such that 
p is the

pre-image of F , and let Up ⊂ O be a Gp-invariant good local chart around p.

Formally assign a circle S1
F to F and let the label

λF : S1
F → G

denote the composition (covering)

S1
F

∼=−→ G̃o
p

ρp−→ Go
p ⊆ G,
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where the map ρp : G̃p → Gp is that arising in Proposition 2.8. Set now TQ = ∏
F S

1
F and

define the label map

λ =
∏
F

λF : TQ −→ G.

Lemma 4.1. The label map λ : TQ → G is well defined. �

Proof. In order to verify that the map λ is well defined, it need only be demonstrated

that the labels λF do not depend on the choice of the point in the pre-image 
p of a

facet F . By Definition 3.2, if q ∈ 
p is another point with dim(Gq) = 1, then Go
p = Go

q as

subgroups of G. It suffices to show that there is an isomorphism α : G̃o
q → G̃o

p such that

the following diagram commutes:

S1
F

∼= ��

∼= ���
��

��
��

�
G̃o
p

ρp
�� Go

p

G̃o
q

ρq
��

α

��

Go
q.

=
��

As each of Go
p, G

o
q, G̃

o
p and G̃o

q is a circle, if the kernels of ρp and ρq have the same order,

then it is possible to lift the identity Go
q

=−→ Go
p to such an isomorphism α.

The kernels of ρp and ρq are given by �p ∩ G̃o
p and �q ∩ G̃o

q, respectively. Since the

stratum
p is connected, it is enough to show that the order of �p∩G̃o
p is locally constant.

LetUp be a sufficiently smallGp-invariant good local chart around p such that Ũp

is a linear G̃p-representation. Then Ũp is of the formV⊕W such that G̃o
p acts non-trivially

on V and trivially on W (see Proposition 3.7).

Moreover, since 
p has codimension 2, it follows that V is two dimensional

and πp(W) = 
p ∩Up. Therefore, the subgroup �p ∩ G̃o
p of �p acts trivially onW . For any

q ∈ 
p∩Up and q̃ ∈ π−1
p (q)∩W one has �p∩G̃o

p ⊆ (�p)q̃. By Lemmas 2.4 and 2.12, �q = (�p)q̃

and G̃o
q = G̃o

p, hence �p ∩ G̃o
p ⊆ �q ∩ G̃o

q. On the other hand, the same lemmas yield �q ⊆ �p

and G̃o
q ⊆ G̃o

p, hence �q ∩ G̃o
q ⊆ �p ∩ G̃o

p. Therefore, �p ∩ G̃o
p is locally constant. �

The labels of the facets can be used to define weights on the edges of the orbit

space. By Proposition 3.8, any edge E is the intersection of n− 1 facets {F1, . . .Fn−1} and,
by restricting the label map to TE = ∏n−1

i=1 S
1
Fi
, one obtains a homomorphism λE : TE → G.

Let pi be a generic point in the stratum corresponding to Fi. As S1
Fi

→ Go
pi

⊆ G is a

covering, for all facets Fi, the map λE induces an injective map tE → g on Lie algebras,
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hence a surjective map g∗ → tE on the corresponding dual spaces. Since the dual l∗ of

the Lie algebra of a Lie group L is canonically isomorphic to H2(BL;R), one concludes

that the induced map λ∗
E : H2(BG;Z) = Zn → H2(BTE ;Z) = Zn−1 has full rank. Define the

weight μ(E) ∈ H2(BG;Z) of E to be a generator of the kernel of λ∗
E .

In this way, one obtains a system of weights on the vertex-edge graph of the

orbit space Q, that is, on the union of edges and vertices. This is the well-known GKM-

graph associated to the torus orbifold O. In an analogous manner to the manifold case

(cf. [28]), this graph determines the rational equivariant cohomology ring H ∗
G(O;Q) =

H ∗(OG;Q) ofO, whereOG = O×GEG is the Borel construction, in the followingway: Since

Hodd(O;Q) = 0 by assumption, it follows thatH ∗
G(O;Q) is a freeH ∗(BG;Q)-module, which

is easily seen from the spectral sequence of the homotopy fibration O → OG → BG. In

particular, the induced homomorphism H ∗
G(O;Q) → H ∗(O;Q) is surjective.

IfO(1) ⊆ O is the union of allG-orbits of dimension atmost one, that is, the preim-

age of the vertex-edge graph of Q, the respective inclusion maps induce a commutative

diagram

H ∗
G(O(1);Q) �� H ∗

G(OG;Q)

H ∗
G(O;Q).

�� �������������

It follows from Lemma 2.3 and Proposition 2.4 of [5] that the homomorphisms

H ∗
G(O;Q) → H ∗

G(OG;Q) and H ∗
G(O(1);Q) → H ∗

G(OG;Q) have the same image, and the former

homomorphism is injective. Furthermore, the homomorphism H ∗
G(O;Q) → H ∗

G(O(1);Q)

must, therefore, also be injective.

By Lemma 3.9, O(1) is a union of two-dimensional spheres (intersecting only in

the fixed points of the G action). Therefore, the following theorem follows as in the

manifold case [11, Theorem 7.2]:

Theorem4.2. LetO be a torus orbifoldwith fixed points {p1, . . . ,pN} andHodd(O;Q) = 0.

Then, via the natural restriction map

H ∗
G(O;Q) → H ∗

G(OG;Q) =
N⊕
i=1

H ∗(BG;Q),

the equivariant cohomology algebra H ∗
G(O;Q) is isomorphic to the set of N-tuples

(f1, . . . , fN) ∈ H ∗
G(OG;Q), with the property that if the vertices pi and pj in the associated
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GKM-graph are joined by an edge with weight μij ∈ H2(BG;Q), then fi− fj lies in the ideal

of H ∗(BG;Q) generated by μij. �

Remark 4.3. The process by which one obtains H ∗
G(O;Q) from the GKM-graph is func-

torial in the following sense: Suppose that O (respectively, Ô) is a 2n-dimensional torus

orbifoldwith fixed points p1, . . . ,pN (respectively, p̂1, . . . , p̂N̂ ) andweightsμ (respectively,

μ̂). Suppose, further, that there is a weight-preserving, injective map ϕ between the

GKM-graphs of O and Ô, i.e. μ̂(ϕ(E)) = μ(E), for each edge E of O/G.
The map ϕ induces an injective homomorphism

ϕ# :
N⊕
i=1

H ∗(BG;Q) →
N̂⊕
i=1

H ∗(BG;Q),

where, for each i0 ∈ {1, . . . ,N} and given ϕ(pi0) = p̂j0 , the restriction of ϕ# to the i0-th

summand of
⊕N

i=1 H
∗(BG;Q) is given by the identity map onto the j0-th summand of the

target space
⊕N̂

i=1 H
∗(BG;Q).

By Theorem 4.2, H ∗
G(O;Q) and H ∗

G(Ô;Q) embed into
⊕N

i=1 H
∗(BG;Q) and⊕N̂

i=1 H
∗(BG;Q), respectively. Since ϕ is weight-preserving, ϕ# maps H ∗

G(O;Q) into

H ∗
G(Ô;Q). It then follows that there is an induced H ∗(BG;Q)-module homomorphism

H ∗
G(O;Q) → H ∗

G(Ô;Q),

which, by abuse of language, will be denoted also by ϕ#. Moreover, if Hodd(O;Q) =
Hodd(Ô;Q) = 0, then

H ∗(O;Q) = H ∗
G(O;Q)/H>0(BG;Q) · H ∗

G(O;Q)

and similarly for H ∗(Ô;Q). Hence, there is an induced homomorphism

ϕ# : H
∗(O;Q) → H ∗(Ô;Q)

such that the diagram

H ∗
G(O;Q)

��

ϕ# �� H ∗
G(Ô;Q)

��
H ∗(O;Q)

ϕ#

�� H ∗(Ô;Q)

(4.1)

commutes. �

Torus Orbifolds 57801

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/18/5786/3084651 by guest on 12 O
ctober 2018



Recall now that an n-dimensional manifold with corners Q, that is, a manifold

locally modelled on Rn
+, is called nice if each one of its codimension-k faces is contained

in exactly k facets, that is, codimension-1 faces, of Q.

Formally assign a copy S1
F of the circle to each facet F of Q and let TQ = ∏

F S
1
F be

the torus given by their product.

For any q ∈ Q, let T(q) = ∏
F�q S

1
F ⊆ TQ denote the subtorus generated by the

circles corresponding to the facet of Q which contain q. The moment-angle complex is

defined by ZQ = (Q× TQ)/∼, where (q1, t1) ∼ (q2, t2) if q1 = q2 and t1t
−1
2 ∈ T(q1).

As Q is a nice manifold with corners, it follows that ZQ is a topological manifold

with a continuous TQ action, such that ZQ/TQ is homeomorphic to Q.

Suppose that, in addition,Q has zero-dimensional faces. Consider a torusG = Tn

and a homomorphism

λ̂ : TQ → G

such that, for every q ∈ Q, the restriction λ̂|T(q) : T(q) → G hasfinite kernel. This condition

ensures that the kernel K of λ̂ acts almost freely on ZQ. The group G then acts on the

quotient OQ = ZQ/K such that (OQ,G) is a 2n-dimensional torus orbifold whose orbit

space OQ/G has labels induced by the assignment λ̂, and there is a face-preserving

homeomorphism OQ/G → Q.

The following three standard examples will be needed in the proof of Theorem A.

Example 4.4. [4, Ex. 6.7] If Q = n is an n-dimensional simplex, then TQ is an (n+ 1)-

dimensional torus. Moreover, ZQ is equivariantly homeomorphic to S2n+1 ⊆ Cn+1 with

the standard linear torus action. �

Example 4.5. [29, Ex. 4.3] If Q = 
n is the suspension of the simplex n−1, then TQ is

n-dimensional. Moreover, ZQ is equivariantly homeomorphic to S2n ⊆ Cn × R with the

standard linear torus action. �

Example 4.6. [4, Prop. 6.4] Let Q1 and Q2 be two nice manifolds with corners. If Q =
Q1 ×Q2, then TQ = TQ1 × TQ2 and ZQ is equivariantly homeomorphic to ZQ1 × ZQ2 . �

5 Equivariant Classification of Torus Orbifolds

In order to prove Theorem A, it is necessary to first understand the combinatorial

properties of the face poset of the orbit space O/G.
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Proposition 5.1. Let O be a simply connected, rationally elliptic torus orbifold. Then

the face poset of O/G satisfies:

(a) The vertex-edge graph of each face is connected.

(b) Each face of O/G contains at least one vertex.

(c) Each face of O/G of codimension k is contained in exactly k faces of

codimension 1.

(d) Each one-dimensional face of O/G contains exactly two fixed points of the

G action.

(e) Every two-dimensional face of O/G contains at most four vertices.

(f) For d ≥ 3, no d-dimensional face is combinatorially equivalent to the face

poset of [−1, 1]d/{±id}. �

Proof. Property (a) follows from [5, Prop. 2.5]. Indeed, Hodd(O;Q) = 0 and Hodd(BG;Q) =
0 imply that the differentials in the spectral sequence of the homotopy fibration O →
OG → BG are trivial. Therefore H ∗

G(O;Q) = H ∗(OG;Q) = H ∗(O;Q) ⊗ H ∗(BG;Q), thus

fulfilling the hypotheses of the aforementioned proposition. Properties (b), (c) and (d)

have been verified in Lemmas 3.6, 3.8, and 3.9, respectively.

To see that property (e) holds, one must modify the proof of Lemma 4.2 of [37]

for the case of torus orbifolds only slightly. The original proof invokes [1, Corollary

3.3.11]which, although stated only for rationally ellipticG-CW-complexes, also holds for

compact spaces with finitelymany orbit types, for example, torus orbifolds, as indicated

on page 160 of [1].

Finally, suppose that there is a d-dimensional face F combinatorially equivalent

to the face poset of X := [−1, 1]d/{±id}. Notice first that the standard linear, effective

Td action on (S2)d commutes with the diagonal antipodal map and, therefore, induces

an effective Td action on N = (S2)d/Z2 with orbit space X . Thus, the quotient of the

Td action on the preimage of F is combinatorially equivalent to the quotient of the

Td action on N and, in particular, the corresponding GKM-graphs are isomorphic. By

the discussion before Theorem 4.2, their rational cohomology rings are the same. How-

ever, the pre-image of F is rationally elliptic by [1, Cor. 3.3.11], while, on the other

hand, N is not: Indeed, by [2, Thm. 2.4], H ∗ (N ;Q) = H ∗((S2)d;Q
)Z2 and therefore the

Betti numbers of N satisfy b1(N) = b2(N) = b3(N) = 0, b4(N) = d(d − 1)/2. In par-

ticular dimQ(π4(N) ⊗ Q) = b4(N) and, if N were rationally elliptic, Theorem 32.6 in [7]

would yield
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2d(d− 1) = 4 dimQ(π4(N)⊗ Q) ≤
∑
j

2j dimQ(π2j(N)⊗ Q) ≤ 2d

which is not possible for d > 2. �

Proof of Theorem A. Following the arguments involved in proving [37, Prop. 4.5], the

properties established in Proposition 5.1 are precisely those required to prove that the

face poset ofO/G is combinatorially equivalent to the face poset ofQ = ∏
i

ni×∏j 

nj as

in Examples 4.4–4.6, that is, there is an isomorphism of face posets ϕ : P(O/G) → P(Q).
For each facet F ∈ P(Q), fix an isomorphism ιF : S1

F → S1
ϕ−1(F)

.

With Q as above, the moment-angle complex ZQ of Q, together with the action

of TQ as discussed in Section 4, is equivariantly homeomorphic to a product of spheres∏
Sni equipped with a linear action.

The isomorphism ϕ induces a label map ϕ∗λ : TQ → G, such that the restriction

to each factor S1
F is given by λϕ−1(F) ◦ ιF . By setting λ̂ = ϕ∗λ, one can construct, as before,

a torus orbifold (OQ,G), where OQ is the quotient of
∏

Sni by the linear and almost-free

action of a subtorus of TQ complementary to G.

This is achieved as follows: The kernel L̂ of λ̂ acts almost freely on
∏

Sni , although

it may not be connected. Therefore,
∏

Sni/L̂ is a torus orbifold. Moreover, the identity

component L̂o of L̂ is a subtorus of TQ.

Since the natural action of the finite group L̂/L̂o on
∏

Sni/L̂o extends to an action

of the connected group TQ/L̂o, the induced action on cohomology is trivial. Hence, by

[2, Thm. 2.4],
∏

Sni/L̂ and
∏

Sni/L̂o have isomorphic rational cohomology rings.Moreover,

by Proposition 32.16 of [7] and Corollary 2.7.9 of [1], the minimal models of these spaces

are formal and, therefore, isomorphic. Hence, it may be assumed that L̂ is connected. In

this case, define OQ = ∏
Sni/L̂.

By construction, the torus orbifolds (O,G) and (OQ,G) have isomorphic labelled

face posets, hence isomorphic GKM-graphs. Therefore the rational cohomology rings of

O and OQ are isomorphic, as discussed after Theorem 4.2. But once again, the minimal

models of these spaces are formal by Proposition 32.16 of [7] and Corollary 2.7.9 of [1].

Since their cohomology rings are isomorphic, this implies that the spaces are rationally

homotopy equivalent.

Since H ∗(OG;Q) = H ∗(O;Q) ⊗ H ∗(BG;Q) as modules over H ∗(BG;Q), BT , O and

OQ are formal and O and OQ are rationally elliptic, it follows from Proposition 3.2 of

[26] that the minimal models of OG and (OQ)G are formal. As H ∗(OG;Q) is isomorphic to

H ∗((OQ)G;Q), this ensures that the minimal models of the Borel constructions OG and

(OQ)G are isomorphic, hence OG �Q (OQ)G.
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Furthermore, from the face-poset isomorphism ϕ, one obtains a commutative

diagramas in (4.1), where the horizontal arrows are clearly the isomorphisms induced by

the rational homotopy equivalence O �Q OQ. Therefore, O is G-equivariantly rationally

homotopy equivalent to OQ.

Finally, if O is a (torus) manifold, then all local groups are trivial and one can

identify Ũp withUp, G̃p withGp, and so on. Given any p ∈ O with dim(Gp) = l, Proposition

3.8 states that p belongs to the closures 
i, i = 1, . . . , l, of l codimension-2 strata. By

Proposition 3.8 again, each 
i is fixed by a different factor S1
i of Go

p = Tl, and the 
i

project to distinct facets Fi of O/G.
By definition, λFi : S

1
Fi

→ G sends S1
Fi
isomorphically into S1

i ⊆ Go
p and, therefore,

the label map λ sends T([p]) = ∏
i S

1
Fi
isomorphically into Go

p = ∏
i S

1
i , where [p] ∈ O/G is

the image of p.

In particular, the restriction of λ to T([p]) has trivial kernel. It then follows that

the kernel of λhas trivial intersectionwith each such torusT([p]). Since the labelmap ϕ∗λ

has the same properties as λ, the kernel of ϕ∗λ has trivial intersection with all isotropy

subgroups of the TQ action on ZQ and, therefore, acts freely on ZQ. Hence, OQ is also a

manifold. �

6 A Family of Examples

The family of examples in this section shows the necessity of including almost-free

actions in the conclusion of Theorem A, and also gives an explicit demonstration of how

to apply the GKM algorithm discussed in Section 4.

Consider a 2-torus G and a two-dimensional nice manifold with corners, Q,

whose boundary consists of four segments labelled as in the square on the left of

Figure 1, where a,b, c,d ∈ Z. In this example, the four edges and facets of Q coincide.

The labels of the facets of Q are the slopes ∈ Z2 corresponding to circle subgroups (tori

of codimension one) in G. By the discussion following Example 4.6, in order to construct

Fig. 1. (l) Labelled orbit space Q; (r) GKM-graph �Q.
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a four-dimensional torus orbifold with orbit space Q the corresponding labels must be

linearly independent whenever two facets intersect. Assume therefore that

a,d, det

(
a b

c d

)
�= 0.

SinceQ = [0, 1]2, it follows from Examples 4.4 and 4.6 that the moment angle complex ZQ

is equivariantly homeomorphic to S3 × S3 equipped with the standard linear T4 action.

There is, moreover, a surjective homomorphism T4 → G whose kernel is a 2-torus K

acting almost freely on ZQ ∼= S3 × S3. The resulting orbifold OQ = ZQ/K ∼= (S3 × S3)/K is

a simply connected, rationally elliptic, four-dimensional torus orbifold whose labelled

orbit space Q under the action of G is as on the left of Figure 1. Indeed, in this case the

action of K on S3 × S3 can be written explicitly as

K × (SU(2)× SU(2)) → SU(2)× SU(2)

((z,w), (A,B)) �→
(
diag(z1−aw̄c, 1)Adiag(zawc, z̄)

diag(z̄bw1−d, 1)Bdiag(zbwd, w̄)

)
.

It remains to demonstrate that not all such labelled orbit spacesQ canbe realised

by torus manifolds, hence that one cannot always find a torus manifold which is ratio-

nally homotopy equivalent to a given torus orbifold. This will be achieved by computing

the cohomology ring and intersection form of the torus orbifold OQ.

As discussed in Section 4, each edge E of the labelled orbit space Q can be

assigned a weight μ(E) ∈ H2(BG;Z). The resulting GKM-graph �Q is shown on the

right of Figure 1. As there are four vertices (corresponding to the fixed points of the G

action on OQ), Theorem 4.2 implies that H ∗
G(OQ;Q), the equivariant cohomology algebra

of OQ, is isomorphic to the set of all 4-tuples (f1, f2, f3, f4) ∈ ⊕4
i=1 H

∗(BG;Q) = ⊕4
i=1 Q[x,y]

satisfying the relations

f1 − f2 = m1y,

f2 − f3 = m2x,

f3 − f4 = m3(bx − ay), and

f4 − f1 = m4(dx − cy),

where m1,m2,m3,m4 ∈ Q[x,y], and the ring structure is given by coordinate-wise

multiplication. It is straightforward to check that the equivariant cohomology of OQ
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is then generated as a Q[x,y]-module by 1 = (1, 1, 1, 1), u = (0,−ay,bx − ay, 0),

v = (0,−cy,dx − cy,dx − cy) and w = (0,xy, 0, 0), of degree 0, 2, 2 and 4 (in H ∗
G(OQ;Q)),

respectively. Clearly 1 is the unit element.

AsHodd
G (OQ;Q) = 0 (Lemma 3.3) and, hence,H ∗

G(OQ;Q) is a freeH ∗(BG;Q)-module,

it follows that the rational cohomology of OQ is given by

H ∗(OQ;Q) = H ∗
G(OQ;Q)/(R

+ · H ∗
G(OQ;Q)),

whereR+ = H>0(BG;Q) andR+·H ∗
G(OQ;Q) is the set of all 4-tuples of the formm11+m2u+

m3v + m4w, for polynomials m1, . . . ,m4 ∈ Q[x,y] with zero constant term. Therefore,

letting α, β and γ in H ∗(OQ;Q) be the classes represented by u, v and w, respectively,

H2(OQ;Q) is generated (over Q) by α and β, H4(OQ;Q) by γ , and Hi(OQ;Q) = 0, i �= 0, 2, 4.

Moreover, the ring structure is given by the relations

α2 = abγ , β2 = cdγ , and αβ = adγ .

Indeed, this implies that α(dα − bβ) = 0 and β(aβ − cα) = 0.

Whenever either b = 0 or c = 0, it is easy to see that one can find generators

α̃, β̃ ∈ H2(OQ;Q) such that α̃2 = 0, β̃2 = 0 and γ = α̃β̃.

On the other hand, if bc �= 0 (by assumption ad(ad−bc) �= 0), then the generators

α̃ = 1
bα and β̃ = a

b (dα − bβ) satisfy

α̃β̃ = 0 and β̃2 + ad(ad− bc)α̃2 = 0.

Furthermore, α̃2 generates H4(OQ;Q) and the intersection form is given by

diag(1,−ad(ad− bc)).

However, S4, CP2, CP2# ± CP2 and S2 × S2 are the only closed, simply connected,

smooth, rationally elliptic 4-manifolds. Therefore, if OQ were to be rationally homotopy

equivalent to such amanifold, it would have intersection form either diag(1,±1) or
(
0 1
1 0

)
,

corresponding to CP2# ± CP2 or S2 × S2. This is clearly not true for generic a,b, c,d ∈ Z.

7 Slice-Maximal Torus Actions

The goal of this section is to prove Theorem B. To that end, let M be a closed, smooth,

simply connected, rationally elliptic,n-dimensionalmanifold admitting a slice-maximal

action by a torus TM of rank k. If s denotes the maximal dimension of an isotropy

subgroup, the action being slice maximal is equivalent to the identity n = k + s.
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Under these hypotheses, there is a torus KM ⊆ TM acting almost freely on M ,

with dimKM = k− s. Since the action of KM onM is almost free, the orbit spaceM/KM is

an orbifold O. Moreover, O is rationally elliptic and has an induced action of the torus

TO = TM/KM of rank s = 1
2 dimO. The images of the TM-orbits of (minimal) dimension

k− s under the quotient mapM → O correspond to fixed points of the TO action. Hence,

(O,TO) is a simply connected, rationally elliptic torus orbifold.

By Theorem A, O is TO-equivariantly rationally homotopy equivalent to a simply

connected torus orbifold (Ô = P̂/L̂,TO), where P̂ is a product of spheres of dimension ≥ 3

and L̂ is a compact abelian Lie group acting linearly and almost freely on P̂. Recall from

Section 5 that L̂ is defined as the kernel of the label map λ : TQ → TO, where TQ = ∏
F S

1
F

is the product of a copy of S1 for each facet of the orbit space Q = O/TO = M/TM . Since

λ is onto, this yields an isomorphism TO = TQ/L̂.

Consider the map π : M → M/KM = O, p ∈ M and p∗ = π(p) ∈ O. A (TO)p∗-

invariant good local chart around p∗ is given by Ũp∗ = νp(KM (p)) with map Ũp∗ → O
given by the composition νp(KM (p))

exp−→ M
π−→ O. The local group at p∗ is given by

�p∗ = KM ∩ (TM )p. Thus, following the notation of Proposition 2.8, one has (T̃O)p∗ ⊂ TM

and

(T̃O)
o
p∗ = (TM )

o
p.

In particular, the slice representation of (TM )op on νp(TM (p)) coincides with the

slice representation of (T̃O)p∗ on ν̃p∗(TO(p∗)) as in the Slice Theorem (Theorem 2.13).

From Proposition 3.7(b), this action is a sum of a trivial summand and a maximal-rank

summand. Such actions belong to a class called polar actions and, since every slice rep-

resentation of TM is polar, the TM action onM is infinitesimally polar (see [14, 32]). Here

an isometric action on a Riemannian manifold N is called polar if there is a submanifold

of N which intersects every orbit orthogonally. A group action is called infinitesimally

polar if all slice representations are polar.

By definition of the label map, each λF : S1
F → (TO)oq∗ ⊆ TO, with q∗ ∈ O a point

projecting to F , factors through (λM )F : S1
F → (T̃O)oq∗ = (TM )oq and, therefore, the map

λ : TQ → TO naturally admits a lift to a map λM : TQ → TM .

Lemma 7.1. Let λM : TQ → TM be the above-defined lift of the label map. Then:

(a) λM is surjective.

(b) For every p ∈ M projecting to q ∈ Q, the torus T(q) ⊆ TQ is mapped

isomorphically onto (TM )op. �
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Proof. Part (a). Let Mreg denote the collection of principal orbits, and Qreg = Mreg/TM .

Since the TM action on Mreg is free, there is a principal bundle

TM → Mreg → Qreg.

SinceM is simply connected and the TM-action onM is infinitesimally polar, by Theorem

1.8 of [27] there are no orbits with finite isotropy and, therefore, the set Qreg consists

precisely of the orbits of maximal dimension. On the other hand, Qreg is the quotient

Oreg/TO, where Oreg also consists of the orbits of O of maximal dimension. Because O is

a rationally elliptic torus orbifold, Hodd(O;Q) = 0. Therefore, Corollary 1 of [3] can be

applied to conclude thatQreg is rationally acyclic. Since π1(Qreg, [p0]) = π1(Q, [p0]) = 0, by

Hurewicz π2(Qreg, [p0]) ⊗ Q = H2(Qreg;Q) = 0 and, in particular, π2(Qreg, [p0]) is torsion.

From the long exact sequence in homotopy for Mreg → Qreg, it follows that the kernel of

π1(TM ) → π1(Mreg,p0)must be torsion as well, but since π1(TM ) is free abelian, the kernel

must be trivial. Therefore, the map π1(TM ) → π1(Mreg,p0) is injective.

In order to prove that λM is surjective, it is enough to show that it induces a

surjective map (λM )∗ : π1(TQ) → π1(TM ). Letting � ⊆ π1(TM ) denote the image of (λM )∗,

from the discussion above it is enough to prove that � has the same image as π1(TM ) in

π1(Mreg,p0).

For any α ∈ π1(TM ), its image in π1(Mreg,p0) is represented by some loop

C in a principal TM-orbit in M and, since M is simply connected, hence bounds a

two-dimensional disk D in M . The pre-images of the facets of Q are codimension-2

submanifolds of M . Hence, by performing a suitable deformation, it may be assumed

without loss of generality that D intersects only finitely many of these codimension-2

submanifolds, in only finitely many points x1, . . . ,xN , and that these intersections are

transversal. As D is simply connected, C is homotopy equivalent (within D) to a concate-

nation of lassos based at p0 ∈ C, each of which has a noose γi which is a circle around a

single intersection point xi, i ∈ {1, . . . ,N}.
For each i ∈ {1, . . . ,N}, in a sufficiently small neighbourhood of the intersection

point xi, the disk D can be assumed to coincide with the normal slice to the TM-orbit

through xi. By the Slice Theorem, a noose γi around xi can be assumed to lie in an orbit

of the slice action of the one-dimensional isotropy subgroup (TM )xi , hence, to be some

(positive or negative) iterate of the circle (TM )oxi .

Together with the isomorphisms arising via change of base points, the above

discussion ensures that C is homotopic to the concatenation of the γi, each of which

represents an element in π1(Mreg,p0) in the image of �.
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Part (b). This follows closely the last part of the proof of Theorem A. Given any p ∈ M

with dim((TM )p) = l, Proposition 3.8 states that the image p∗ ∈ O of p belongs to the

closures 
i of codimension-2 strata 
i, i = 1, . . . , l. By Proposition 3.8 again, each 
i

projects to a different facet Fi of Q, and it is fixed by a different factor S1
i of (TO)op∗ = Tl,

which lifts to a factor S̃1
i of (T̃O)op∗ = (TM )op.

By definition, (λM )Fi : S1
Fi

→ TM sends S1
Fi

isomorphically into S̃1
i ⊆ (TM )op and,

therefore, the label map λ sends T([p]) = ∏
i S

1
Fi
isomorphically into (TM )op, where [p] ∈ Q

is the image of p. �

Let KP̂ ⊆ TQ denote the kernel of λM and let M̂ be the quotient P̂/KP̂ . The group

KM̂ = L̂/KP̂ acts almost freely on M̂ , with quotient Ô = P̂/L̂. Recall, furthermore, that

there is an isomorphism

ϕ : P(Q) → P(Q̂)

of face posets of the quotients Q = O/TO = M/TM and Q̂ = Ô/TO = P̂/TQ, such that, for

every face F of P(Q), F and ϕ(F) have the same isotropy.

All of the above information is contained in the following diagram, where the

label on each arrow denotes the quotient by the given torus, the dashed line indicates

rational homotopy equivalence (not a map!), and the dotted line indicates that there is

an isomorphism of face posets ϕ : P(Q) → P(Q̂).

P̂

L̂

����
��
��
��
��
��
��
�KP̂

����
��

��
��

TQ

		

M

KM

��
TM





M̂

KM̂
��

O �Q

������

TO
��

Ô
TO

��
Q Q̂ .

It remains to show that the space M̂ is a manifold and that M is TM-equivariantly

rationally homotopy equivalent to M̂ equipped with the induced action of the torus

TM̂ = TQ/KP̂ .
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Lemma 7.2. The group KP̂ acts freely on P̂ and, hence, the quotient M̂ = P̂/KP̂ is a

(topological) manifold. �

Proof. Recall that P̂ is defined by Q̂ × TQ/ ∼, where (q, t) ∼ (q′, t′) if and only if q = q′

and tt′−1 ∈ T(q) = ∏
F�q S

1
F ⊆ TQ. The action of TQ on P̂ is given by left multiplication on

the second factor. The action of KP̂ on P̂ is simply the restriction of the TQ action to KP̂

and, therefore, the isotropy subgroup of the KP̂ action at a point [(q, t)] ∈ P̂ is given by

T(q) ∩ KP̂ .

Let F̂q denote the face of Q̂ of minimal dimension containing q, and Fq = ϕ−1(F̂q)

the corresponding face in Q, given by the face-poset isomorphism ϕ : P(Q) → P(Q̂).
Since M is a manifold, T(q) maps injectively via λM into the isotropy of TM at a point

x ∈ M in the preimage of Fq. Thus T(q) ∩ ker(λM ) = T(q) ∩ KP̂ is trivial, as desired. �

Lemma 7.3. The manifolds P̂/KP̂ and P̂/Ko
P̂
are rationally homotopy equivalent. There-

fore, in the following it may be assumed that KP̂ is connected and M̂ is simply

connected. �

Proof. It will be shown that the orbit map of the � = KP̂/K
o
P̂
-action on P̂/Ko

P̂
induces

a rational homotopy equivalence P̂/Ko
P̂

→ P̂/KP̂ . The � action commutes with the

KM̂-action on P̂/Ko
P̂
and, therefore, induces a � action on the orbifold Ô′ = (P̂/Ko

P̂
)/KM̂

with orbit space Ô = (P̂/KP̂)/KM̂ . Moreover, there is a commutative diagram

KM̂
��

��

KM̂/(� ∩ KM̂ )

��
P̂/Ko

P̂
��

��

P̂/KP̂

��

Ô′ �� Ô.

Here the top and bottom maps are rational homotopy equivalences, since the �-actions

on KM̂ and Ô′ induce trivial actions on cohomology and the spaces in the corners of the

diagram are formal. Because a model for the spaces in the middle is given by the tensor

product of the models for the corresponding top and bottom spaces, it follows that the

map in the middle is a rational homotopy equivalence. Hence, it may be assumed that

KP̂ is connected. �

Torus Orbifolds 5811

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/18/5786/3084651 by guest on 12 O
ctober 2018



Observe now that, since the torus KM̂ = L̂/KP̂ acts almost freely on M̂ with

M̂/KM̂ = P̂/L̂ = Ô, the projection M̂ → Ô is, up to rational homotopy, a principal

KM̂-bundle.

The label map λM : TQ → TM described above descends to an isomorphism λM :

TM̂ → TM with inverse μM : TM → TM̂ . Since λ : TQ → TO factors through λM , there is an

induced map π̂ : TM̂ → TO with kernel KM̂ . Then the following diagram commutes

TM
π ��

μM

��

TO

=
��

TM̂
π̂ �� TO

(7.1)

where the vertical maps are isomorphisms. Moreover, there is an induced isomorphism

μK : KM → KM̂ given by the restriction of μM to KM . Therefore, M → O and M̂ → Ô can

be thought of as rational homotopy principal KM-bundles, and the goal is to show that

M and M̂ are rationally homotopy equivalent.

Theorem7.4. LetX ,Y be rationally homotopy equivalent spaces, and letφ : H2(Y ;Q) →
H2(X ;Q) be the isomorphism induced by a rational equivalence. Moreover, let T be a k-

torus and let ξX : EX → X , ξY : EY → Y be rational homotopy principal T-bundles

with classifying maps ρX : X → BT , ρY : Y → BT . Suppose, finally, that there is a map

β : H2(BT ;Q) → H2(BT ;Q) such that the diagram

H2(X ;Q) H2(Y ;Q)
φ

��

H2(BT ;Q)

ρ∗
X

��

H2(BT ;Q)

ρ∗
Y

��

β
��

(7.2)

commutes. Then EX is rationally homotopy equivalent to EY . �

Proof. Let (∧VX ,dX ) and (∧VY ,dY ) be the minimal models of X and Y respectively. Let

ϕ : (∧VY ,dY ) → (∧VX ,dX ) be an isomorphism inducing φ : H2(Y ;Q) → H2(X ;Q).

The minimal model of T is (∧(t1, . . . , tk), 0) with |ti| = 1. The minimal model of

BT is Q[t̄1, . . . , t̄k], where |t̄i| = 2. The ti are mapped to t̄i via the isomorphism

δ : W = Hom(π1(T),Q) → W = Hom(π2(BT),Q)
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induced by the long exact homotopy sequence of the fibration T → ET → BT . It’s clear

that H2(BT ;Q) can now be identified with the vector space W = spanQ{t1, . . . , tk}. Using
δ, the map β : W → W induces a map

β̌ = δ−1 ◦ β ◦ δ : W → W .

A model for EX is (∧VX ⊗ ∧(t1, . . . , tk),DX ), where DX |∧VX = dX and DX |W = ρ∗
X ◦ δ.

Similarly, a model for EY is (∧VY ⊗∧(t1, . . . , tk),DY ), where DY |∧VY = dY and DY |W = ρ∗
Y ◦δ.

Define now an isomorphism

ψ : (∧VY ⊗ ∧(t1, . . . , tk),DY ) −→ (∧VX ⊗ ∧(t1, . . . , tk),DX )

by letting ψ |∧VY = ϕ and ψ(1 ⊗ ti) = 1 ⊗ β̌(ti). It is clear that ψ preserves the grading

and (ψ ◦DY )|∧VY = (DX ◦ψ))|∧VY . Moreover, using the commutativity of diagram (7.2) (and

Hurewicz),

ψ ◦ DY |W = ψ ◦ ρ∗
Y ◦ δ

= ϕ ◦ ρ∗
Y ◦ δ

= ρ∗
X ◦ β ◦ δ

= ρ∗
X ◦ δ ◦ β̌

= DX |W ◦ β̌
= DX ◦ ψ |W .

Then ψ is an isomorphism between the models of EX and EY . Consequently, there is an

isomorphism between the corresponding minimal models and EX �Q EY . �

It is now apparent that, in order to show thatM and M̂ are rationally homotopy

equivalent, it suffices to show that the hypotheses of Theorem 7.4 are satisfied by the

rational homotopy principal KM-bundles M → O and M̂ → Ô.

Proposition 7.5. The diagram

H2(O;Q) H2(Ô;Q)
f

��

H2(BKM ;Q)

��

H2(BKM̂ ;Q)

��

(BμK )
∗

��

(7.3)
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is commutative, where the vertical arrows are induced by the bundles M → O and

M̂ → Ô, and f is the isomorphism given by O �Q Ô. �

As a first step towards proving Proposition 7.5, the following lemma is

necessary.

Lemma 7.6. Let M (1) ⊂ M , M̂ (1) ⊂ M̂ be the pre-images of the vertex-edge graphs of Q

and Q̂, respectively. Then there is a TM-equivariant homeomorphism h̃ : M (1) → M̂ (1).

Moreover, h̃ induces a TO-equivariant homeomorphism h : O(1) → Ô(1) whose

induced map in cohomology completes the commutative diagram

H2(O;Q)

i∗
��

H2(Ô;Q)
f

��

î∗
��

H2(O(1);Q) H2(Ô(1);Q)
h∗

��

where the vertical maps are induced by the respective inclusions. �

Proof. M (1) and M̂ (1) are unions of cohomogeneity-one manifolds Nij and N̂ij, respec-

tively. Each of these cohomogeneity-one manifolds is the pre-image of an edge in Q or

Q̂, respectively. Moreover, the indices run over the edges eij of the vertex-edge graph

of Q.

Since the isotropy subgroups of the TM-action on each Nij and N̂ij are the same,

there are equivariant homeomorphisms Nij → N̂ij. Since TM is a compact, connected,

abelian Lie group, these homeomorphisms can be chosen in such a way that they extend

to an equivariant homeomorphism h̃ : M (1) → M̂ (1).

Because O(1) = M (1)/KM and Ô(1) = M̂ (1)/KM , it follows that there is an

TO-equivariant homeomorphism h : O(1) → Ô(1).

It remains to show that the inducedmap in cohomology completes a commutative

diagram as in the statement of the lemma. Consider the diagram below, where the back

(by equivariant rational homotopy equivalence), base and sides are each commutative.

The goal is to show that the dotted arrow in the diagram below makes the top of the
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cube into a commutative diagram.

H2(O;Q)

i∗

������������������������� H2(Ô;Q)
f

��

î∗

���������������������������

H2(O(1);Q) H2(Ô(1);Q)
h∗

��

H2
TO (O;Q)

i∗ ����������������������

��

H2
TO (Ô;Q)��

î∗
�����������

�������������

��

H2
TO (O(1);Q)

��

H2
TO (Ô(1);Q).��

��

Here the bottommaps are induced by functoriality from the isomorphism of face posets

ϕ : P(Q) → P(Q̂), see Remark 4.3.

By a diagram chase, one readily sees that it suffices to showboth that the vertical

map H2
TO (O;Q) → H2(O;Q) is surjective and that the front of the cube is commutative.

Since H1(O,Q) = 0 the natural map H2
TO (O;Q) → H2(O;Q) is surjective.

By using an inductive Mayer–Vietoris sequence argument, one sees that

H2(O(1);Q) is generated by the duals αij of the fundamental classes [S2
ij] ∈ H2(O(1);Q).

Similarly, H2(Ô(1);Q) is generated by the duals α̂ij of the classes [Ŝ2
ij] ∈ H2(Ô(1);Q), and

h∗(α̂ij) = αij.

On the other hand, by using the Mayer–Vietoris sequence on the Borel con-

struction (S2
ij)T (using the decomposition (S2

ij)T = U ∪ V , with U = (S2
ij \ pi)T and

V = (S2
ij \ pj)T )

H2
T (S

2
ij;Z) = {(gi,gj) ∈ H2

T (pi;Z)⊕ H2
T (pj;Z) | gi − gj ∈ Z · μ(eij)},

whereμ(eij) is theweight of eij in the GKM-graph associated toO. From the Serre spectral

sequence of the fibration S2
ij → (S2

ij)T → BT , which degenerates in the E2-page, it follows

that the map H2
T (S

2
ij;Z) → H2(S2

ij;Z) is surjective, and sends (μ(eij), 0) to αij. The same dis-

cussion carries over identically to the spheres Ŝ2
ij. The map h∗ : H2(Ô(1);Q) → H2(O(1);Q)

can now be factored as

H2(Ô(1);Q) −→ H2
T (Ô(1);Q) −→ H2

T (O(1);Q) −→ H2(O(1);Q)

α̂ij �−→ (μ̂(êij), 0) �−→ (μ(eij), 0) �−→ αij

and, therefore, there is a commutative diagram, as desired. �
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Lemma 7.7. The inclusion map i : O(1) → O induces an injection i∗ : H2(O;Q) →
H2(O(1);Q). �

Proof. Recall that there is a map of fibrations

O(1)

i

��

�� O(1)
TO

��

i∗
��

BTO

O �� OTO �� BTO

(7.4)

which induces a map between the corresponding Serre spectral sequences with rational

coefficients. Both spectral sequences have the property that E1,j
2 = E3,j

2 = 0 for all j ≥ 0.

Therefore, for X = O(1) or X = O there are exact sequences

0 → E2,0
∞ → H2(XTO ;Q) → E0,2

∞ → 0.

The natural map H2(BTO;Q) → H2(XTO ;Q) is injective, since there are TO-fixed points

in X . It then follows that E2,0
∞ = H2(BTO;Q). Moreover, E0,2

∞ ⊆ H2(X ;Q), with equality

holding if b1(X) = 0. This last condition holds if X = O
The map i∗, in particular, induces a row-exact, commutative diagram

0 �� H2(BTO;Q) �� H2(O(1)
TO ;Q) �� H2(O(1);Q)

0 �� H2(BTO;Q) �� H2(OTO ;Q) ��
��

(iTO )∗
�

H2(O;Q) ��

i∗
��

0.

By [5, Proof of Prop. 2.4], (iTO )
∗ is injective and, by diagram chasing it follows that

i∗ : H2(O;Q) → H2(O(1);Q) is injective as well. �

Proof of Proposition 7.5. Diagram (7.3) is part of the larger diagram

H2(O(1);Q) H2(Ô(1);Q)
h∗

��

H2(O;Q)

i∗
��

H2(Ô;Q)

î∗
��

f
��

H2(BKM ;Q)

��

H2(BKM̂ ;Q)

��

(BμK )
∗

��

,

(7.5)
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where, i : O(1) → O, î : Ô(1) → Ô denote the inclusions. The upper square comes from

Lemma 7.6 and hence commutes. By Lemma 7.7, the map i∗ is injective. In order to prove

the proposition it now suffices to show that the outer square commutes.

By Lemma 7.6, the map h : O(1) → Ô(1) can be lifted to a μK-equivariant map

h̃ : M (1) → M̂ (1) such that the diagram

KM

��

μK �� KM̂

��

M (1)

��

h̃ �� M̂ (1)

��

O(1)
h �� Ô(1)

is a pull-back diagram between the (rational homotopy) principal torus bundlesM (1) →
O(1) and M̂ (1) → Ô(1). This induces a (rational homotopy) commutative diagram

O(1)

��

h �� Ô(1)

��
BKM

BμK �� BKM̂

from which the commutativity of the outer square in diagram (7.5) follows. �

Theorem 7.8. The manifolds M and M̂ are TM-equivariantly rationally homotopy

equivalent. �

Proof. Recall that M → O (respectively, M̂ → Ô) is a rational principal KM-bundle

(respectively, KM̂-bundle), with an isomorphism μK : KM → KM̂ . With respect to the

induced identification (BμK)
∗ : H ∗(BKM̂ ;Q) → H ∗(BKM ;Q), Proposition 7.5 yields a

commutative diagram

H2(O;Q) H2(Ô;Q)
f

��

H2(BKM ;Q)

��

H2(BKM ;Q)

��
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where f is the isomorphism induced by the rational homotopy equivalence O �Q Ô and

the vertical arrows are induced by the rational principal KM-bundles. By Theorem 7.4,

this implies that the total spaces M and M̂ are rationally homotopy equivalent.

Consider now the diagram

H ∗(M ;Q) H ∗(M̂ ;Q)��

H ∗(O;Q)

��

H ∗(Ô;Q)

��

f
��

H ∗
TO (O;Q)

��

H ∗
TO (Ô;Q)

��

��

where the uppermost map is the isomorphism induced by the rational homotopy equiv-

alence M �Q M̂ constructed in Theorem 7.4. From that construction, it is clear that

the upper square commutes. On the other hand, the lower square commutes because of

the equivariance of the rational homotopy equivalence O �Q Ô. Since O/TO = M/TM

and Ô/TO = M̂/TM̂ , it follows from the commutativity of (7.1) that M and M̂ are

TM-equivariantly rationally homotopy equivalent.

Indeed, since KM acts almost freely on M with orbit space O, there is an

isomorphism

H ∗
TM
(M ;Q) ∼= H ∗

TO (O;Q).

and similarly for M̂ and Ô. Therefore, since the above diagram commutes, there is a

commutative diagram

H ∗(M ;Q) H ∗(M̂ ;Q)��

H ∗
TM
(M ;Q)

��

H ∗
TM
(M̂ ;Q)

��

��

as desired. �

8 Torus Actions in Non-Negative Curvature

To begin this section, a version of Theorem A for non-negatively curved torus orbifolds

of dimension at most six will be established.
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Theorem 8.1. Let (O,G) be a non-negatively curved and simply connected torus orb-

ifold of dimension at most six such that Hodd(O;Q) = 0. Then there is a product P̂ of

spheres of dimension ≥ 3, a torus L̂ acting linearly and almost freely on P̂, a linear action

of G on Ô = P̂/L̂ and a G-equivariant rational homotopy equivalence O �Q Ô. �

To prove this theorem, it suffices to show that O/G satisfies all the properties

listed in Proposition 5.1. All of these, except for Property (f), can be proved as in the

rationally elliptic case.

Note that, as O/G is being viewed as a face of itself of codimension zero, in

order to prove Theorem 8.1, Property (f) needs to be discussed in dimension six. Since

the rational cohomology of O is concentrated in even degrees, it follows that all faces of

O/G are acyclic over the rationals [3, Corollary 3]. Hence, the following lemma implies

that Property (f) holds for O/G.

Lemma 8.2. There is no simply connected, six-dimensional torus orbifold (O,G) such

that each face of O/G is acyclic over the rationals, each facet of O/G is combinatorially

equivalent to a square, and the intersection of any two facets has two components. �

Proof. Assume that there is a torus orbifold whose orbit space contradicts the conclu-

sion of the lemma. First note that all two-dimensional orbifolds are homeomorphic to

two-dimensional topological manifolds. Therefore, since the facets of O/G are acyclic

over the rationals and orientable, they are all homeomorphic to two-dimensional discs.

Hence, with the same argument as in the proof of Lemma 4.4 of [37], one sees that the

boundary of O/G is homeomorphic to RP2. However, O/G is an orientable orbifold with

boundary, while RP2 is non-orientable, yielding a contradiction, as desired. �

Proof of Theorem 8.1. Since Hodd(O;Q) = 0 and O admits an invariant metric with

non-negative sectional curvature, the conclusion of Proposition 5.1 holds for O/G as

discussed above. Therefore the same arguments as in the proof of Theorem A can be

carried out to prove Theorem 8.1. �

To conclude the article, a proof of Theorem D is provided, that is, the Bott Con-

jecture in the presence of an isometric, slice-maximal torus action is verified. This is a

generalisation of Theorem 1.2 of [34].

Proof of Theorem D. Let T denote the torus whose action on M is slice maximal. It

is sufficient to show that M is rationally �-elliptic, that is, the pointed loop space �M
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of M satisfies
∑

r dim(πr(�M) ⊗ Q) < ∞, since, M being simply connected, this prop-

erty implies that M is rationally elliptic. The proof will proceed by induction on the

dimension d = dim(M/T) and no longer assumes that M is simply connected.

When d = 0, M consists of one orbit and is, therefore, a torus, hence rationally

�-elliptic. Suppose now that every non-negatively curved, closed manifold admitting

an isometric, slice-maximal torus action with quotient of dimension d− 1 is rationally

�-elliptic.

From the introduction, the action of T on M being slice maximal ensures that,

at every point on a (fixed) minimal orbit, the normal slice is even dimensional and the

identity component G of the isotropy subgroup acts on it with maximal rank, that is, the

action is equivalent to the standard linear, effective action of G on Cdim(G). Hence, one

can find a circle subgroup S ⊆ G ⊆ T such that some componentM ′ of its fixed-point set

MS is of codimension two and contains the minimal orbit. Consequently, the induced

action of T ′ = T/S on M ′ is slice-maximal. Moreover, since M ′ is totally geodesic, hence

non-negatively curved, and dim(M ′/T ′) = d− 1, the induction hypothesis yields thatM ′

is rationally �-elliptic.

As the action of S on M has a fixed-point component of codimension 2, meaning

that it is fixed-point homogeneous, by Theorem 4.1 of [34] there exists a submanifold

N ⊆ M such that M is diffeomorphic to the union of the normal disc bundles D(M ′) and

D(N) of M ′ and N along their common boundary E:

M = D(M ′) ∪E D(N).

The foot-point projection D(M ′) → M ′ induces an S1-bundle E → M ′. Since M ′ is

rationally �-elliptic, it follows from the homotopy long exact sequence that E is also

rationally �-elliptic. Moreover, by Theorem D of [12], the homotopy fibre F of the inclu-

sion ι : E ↪→ M is rationally�-elliptic. Therefore, from the homotopy long exact sequence

for ι and the fact that E is rationally �-elliptic, it follows thatM is rationally �-elliptic

as well, as desired. �
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