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Abstract

Theg-function was introduced by Affleck and Ludwig in the context of critical quantum sys
with boundaries. In the framework of the thermodynamic Bethe ansatz (TBA) method for relat
scattering theories, all attempts to write an exact integral equation for the off-critical vers
this quantity have, up to now, been unsuccessful. We tackle this problem by using ann-particle
cluster expansion, close in spirit to form-factor calculations of correlators on the plane. The l
contribution already disagrees with all previous proposals, but a study of this and subsequen
allows us to deduce an exact infrared expansion forg, written purely in terms of TBA pseudoenergie
Although we only treat the thermally-perturbed Ising and the scaling Lee–Yang models in
we propose a general formula forg which should be valid for any model with entirely diagon
scattering.
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1. Introduction

The study of two-dimensional conformal field theories with boundaries[1] and their
integrable perturbations[2–4] is of interest both in condensed matter physics[5] and in
string theory[6]. An important quantity emerging from the definition of the cylinder p
tition function for these field theories is theg-function, the ‘ground-state degeneracy’
‘boundary entropy’, which for models criticalin the bulk was introduced some years a
by Affleck and Ludwig[7]. While many interesting questions remain in these cases[8,9],
in this paper we shall deal with the further issues which arise for off-critical, mas
systems.

Theg-function for massive field theories can be defined as follows[10–13]. There are
two possible Hamiltonian descriptions of the cylinder partition function. In the so-c
L-channel representation the role of time is taken byL, the circumference of the circle

(1.1)Zαβ = TrH(α,β)
e
−LH

strip
αβ (M,R) =

∞∑
n=0

e−LE
strip
n (M,R).

In this formula,H strip
αβ propagates states inH(α,β), the Hilbert space for an interval of leng

R with boundary conditionsα andβ imposed at the two ends,E
strip
n ∈ spec(H strip

αβ ), and
M is the mass of the lightest particle in the theory. In the R-channel representation th
of time is instead taken byR, the length of the cylinder

(1.2)Zαβ = 〈α|e−RH circ(M,L)|β〉 =
∞∑

n=0

G(n)
α (l)G(n)

β (l)e−REcirc
n (M,L) (l = ML),

whereEcirc
n ∈ spec(H circ) and

(1.3)G(n)
α (l) = 〈α|ψn〉

〈ψn|ψn〉1/2
.

In Eq.(1.2), the boundary states|α〉, |β〉 and the eigenbasis{|ψn〉} of the HamiltonianH circ

have been used. These are defined on a circle of circumferenceL and propagate along th
‘time’ directionR. At largel, the function lnG(0)

α (l) grows linearly

(1.4)lnG(0)
α (l) ∼ −fαL,

where the constantfα contributes to the constant (boundary) part of the ground-stat
ergy on the strip (see Eq.(A.5)). The standardg-function is then defined as

(1.5)lngα(l) = lnG(0)
α (l) + fαL.

In theories with only massive excitations in the bulk, lngα(l) tends exponentially to zer
at largel.

The two decompositions are illustrated inFigs. 1 and 2.
The equality of(1.1)and(1.2)results in the following important identity:

∞∑ ∞∑

(1.6)

n=0

e−LE
strip
n (M,R) =

n=0

G(n)
α (l)G(n)

β (l)e−REcirc
n (M,L).
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Fig. 1. The L-channel decomposition; states|χn〉 live on the dotted line segment along the cylinder.

Fig. 2. The R-channel decomposition; states|ψn〉 live on the dotted circle around the cylinder.

The purpose of this paper is to develop an exact expression for the ground-state fu
lnG(0)

α (l) through the large-R limit of (1.6), with boundary conditionsβ = α. As it stands,
the fact thatEcirc

0 (M,L) is negative makes the RHS of(1.6)diverge asR → ∞; however,
rearranging gives

2 lnG(0)
α (l) = REcirc

0 (M,L) − LE
strip
0 (M,R)

+ ln

(
1+

∞∑
n=1

e−L(E
strip
n (M,R)−E

strip
0 (M,R))

)

(1.7)+ O
(
e−R(Ecirc

1 −Ecirc
0 )

)
.

We shall restrict our attention to massive theories with non-degenerate ground state
plane. For these models the non-zero mass gap gives the final term the leading beh

(1.8)O
(
e−R(Ecirc

1 (M,L)−Ecirc
0 (M,L))

) ∼ O
(
e−RM

)
in the domainR � L � 0. In this same domain,Estrip

0 (M,R) tends to its limiting form as

(1.9)E
strip
0 (M,R) = EM2R + 2fα + O

(
e−RM

)
,

whereE and fα are the extensive bulk and boundary free energies, as in(A.5). These
constraints are crucial for the validity of the perturbative treatment to be introduc

the following sections: the higher corrections have a clear dependence onR and do not
contribute to theg-function. Discarding these exponentially-suppressed terms and using
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the definition(1.5), we finally obtain

2 lng(0)
α (l) ∼ R

(
Ecirc

0 (M,L) − EM2L
)

(1.10)+ ln

(
1+

∞∑
n=1

e−L(E
strip
n (M,R)−E

strip
0 (M,R))

)
.

Having takenR to be large, the cluster expansion involves lettingL tend to infinity as well,
so that an expansion of the RHS of(1.10)can be developed in terms of one-, two- and
on particle contributions, which themselves can be consistently estimated using the
ansatz approximated levels(A.6), (A.7). Note that this differs from the strategy adopted
[10], where a saddle-point evaluation of the dominant contributions at finiteL was made
instead.

The rest of this paper is organised as follows. In Section2 the cluster method is ex
emplified by studying the free fermion theory associated to the thermally-perturbed
model. The resulting integral expression for lngα(l) turns out to be in full agreement wit
previous results of[10,11]. In Section3 two previous proposals[10,14]for lngα(l) are de-
scribed and in Section4 the scattering data for the scaling Lee–Yang model, our wor
interactive example, are summarised. The ultraviolet result obtained from the con
perturbation theory and the boundary truncated conformal space approximation (BT
[9,12,13]is compared with infrared numerical results from the Bethe ansatz, and the equ
alence between the two functions is confirmedby a large overlap at intermediate scales

This agreement motivates the search for an exact analyticexpression. This is the ma
objective of Sections5.1, 5.2 and 5.3where the large strip-width (R → ∞) limit is explic-
itly taken and sums over the quantum numbers are transformed into integrals in ra
variables. This analysis leads to the final exact expansion for lngα(l) given in Eq.(5.24).
This and its generalization (5.30) constitute the main results of the paper. In Section5.3
we also briefly comment on the similarity between our results and one recently obtain
by Woynarovich in[15]. Section6 contains our conclusions. Finally, inAppendix A we
summarise the main equations used to develop our programme: the thermodynami
ansatz[16] and the Bethe quantisation conditions. InAppendix Bthe reflection factors fo
the Ising model are recalled and explicit expressions for the boundary entropy for fre
and fixed–fixed conditions are presented.

2. A simple example: the Ising model

We start with the study of the free Majorana fermion theory corresponding to
thermally-perturbed Ising model on a strip. The partition function is (cf.[11])1

(2.1)Zαα = e−LE
strip
0 (M,R)

∏
j>0

(
1+ e−l coshθj

)
(l = ML),
1 Notice that the zero momentum (θj = 0↔ j = 0) particle state is forbidden.
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or

lnZαα = −LE
strip
0 (M,R) +

∑
j>0

ln
(
1+ e−l coshθj

)

(2.2)= −LE
strip
0 (M,R) + 1

2

∞∑
j=−∞

ln
(
1+ e−l coshθj

) − 1

2
ln

(
1+ e−l

)
.

Due to the singular behaviour for the Ising model of the bulk and linear termsE andfα

defined in(A.2) and(A.5), it is convenient, exceptionally for this case, to work with s
tracted energies tending exponentially to zero at large scales

(2.3)E
strip
0 (M,R)

∣∣
R�1 ∼ 0

and consistently to set

(2.4)Ecirc
0 (M,L) = −

∫
R

dθ

2π
M coshθ ln

(
1+ e−l coshθ )

(cf. (A.2)). Starting from the quantization condition

(2.5)r sinhθj − i lnRα(θj ) = πj (r = MR)

with integerj andRα(θj ) as defined in(B.1), writing Eq.(2.5)with j → j + 1 and sub-
tracting(2.5)from the result, we find in the largeR limit

(2.6)
�θj

π

(
r cosh(θj ) − i

d

dθ
lnRα(θj )

)
+ O

(
(�θj )

2) = 1.

Substituting this into(2.2),

(2.7)lnZαα ∼ 1

2

∫
R

dθ

(
r

π
cosh(θ) + φα(θ) − δ(θ)

)
ln

(
1+ e−l coshθ ),

whereφα(θ) is given in(B.2). In the latter equation we recognize a part correspondin
REcirc

0 (M,L), and, considering also(2.3), we arrive at the exact result

2 lngα(l) = lim
R→∞

(
lnZαα(L,R) + REcirc

0 (M,L)
)

(2.8)= 1

2

∫
R

dθ
(
φα(θ) − δ(θ)

)
ln

(
1+ e−l coshθ ).

This coincides with the result found in[10,11] using a different technique. The mat

confirms the correctness of our method, at least in this case, and motivates its study in
more complicated models.
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Fig. 3. 2 lngfixed vs. ln(l) for Ising with fixed boundary conditions. From the bottom, the lines represent 5,
500, and 5000 particle contributions. The maximum quantum number is 80 andr = 10. The top line is the exac
result.

In Figs. 3 and 4the integration of(2.8) for free–free and fixed–fixed boundary con
tions, corresponding tok = 1 andk = −∞ in (B.1)and(B.2),2 is compared with numerica
results obtained by estimating the large-R partition function(2.1) using the Bethe ansa
quantized energy levels(2.5) directly, and then extracting the boundary entropy thro
the relation

(2.9)2 lngα(l) ∼ (
lnZαα(L,R) + REcirc

0 (M,L)
)∣∣

r�1.

For interacting models a compact expression such as(2.1) is not available, and one
forced to build the partition function using the LHS of(1.6)directly. In Figs. 5 and 6we
test this more general way to estimate ag-function. A similar idea was first applied to th
scaling Lee–Yang model in[12,13]; however in that case the energy levels were estim
using the BTCSA method[12], rather than the Bethe ansatz.

We see that it is hard to get a good estimate of the ultraviolet value of lng from this
form of the cluster expansion. In Section4 we shall solve this numerical problem for th
case of the scaling Lee–Yang model by matching this numerical Bethe ansatz calculati
with the ultraviolet perturbed CFT results of[13], while in Section5 we shall develop a
more analytical treatment.
2 By studying the monodromies of the integral(2.8), we have also found more explicit expressions for
lngfixed(l) and lngfree(l); these are given inAppendix B.
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Fig. 4. 2 lngfree vs. ln(l) for Ising with free boundary conditions. From the bottom, the lines represent 5,
500, and 5000 particle contributions. The maximum quantum number is 80 andr = 10. The top line is the exac
result.

3. Earlier proposals for g

Consider a(1+ 1)-dimensional integrable field theory with entirely diagonal scatte
andN particle species. According to the proposal of[10] the boundary entropy should b
given by an expression of the form

(3.1)lngα(l) = 1

4

N∑
a=1

∫
R

dθ Θa(θ) ln
(
1+ e−εa(θ)

)
,

where the functionεa(θ) is the solution of the periodic-boundary-conditions TBA(A.1),
and

(3.2)Θa(θ) = (
φ(a)

α (θ) − 2φaa(2θ) − δ(θ)
)

with

(3.3)φ(a)
α (θ) = − i

π

d

dθ
lnR(a)

α (θ), φab(θ) = − i

2π

d

dθ
lnSab(θ).

(Note, the normalisations ofφ(a)
α (θ) andφab(θ) differ from those in[13,14]by factors of

π and 2π , respectively. This change is merely to simplify some later formulae.)

However, the detailed analysis of[13] showed that, for non-zero values of the lightest

bulk massM, the resultingl-dependence was incorrect, both in the total change ingα(l)
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Fig. 5. 2 lngfixed vs. ln(l) for Ising with fixed boundary conditions. From the bottom, the lines represent cl
contributions of 1,2, . . . ,8 particles. The maximum quantum number 80 andr = 10. The top line is the exac
result.

between UV and IR, and in the behaviour of the small-l series expansion. On the oth
hand, the predictions of(3.1) and (3.2) for dependence ofgα(l) on the boundary para
meters at fixedl, and also for the ratios ofg-functionsgα(l)/gβ(l), were in very good
agreement with conformal perturbation theory and the BTCSA. This suggested th
formulae should be modified by some boundarycondition independent extra terms, b
provided little clue as to what those extra terms should be.

Subsequently, it was proposed in[14] that(3.2)should be replaced by

(3.4)Θa(θ) = (
φ(a)

α (θ) − 2φaa(2θ) − φaa(θ)
)
.

However, using results tabulated in[13] it can be checked that this modification does
cure the problems arising in the bulk-massive case.

4. The scaling Lee–Yang model

The spectrum in the bulk scaling Lee–Yang theory consists of a single particle speci
with two-particle bulk scattering amplitude[17,18]

sinh( θ + iπx )

(4.1)S(θ) = −(1)(2), (x) = 2 6

sinh( θ
2 − iπx

6 )
.
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Fig. 6. 2 lngfree vs. ln(l) for Ising with free boundary conditions. From the bottom, the lines represent cl
contributions of 1,2, . . . ,8 particles. The maximum quantum number 80 andr = 10. The top line is the exac
result.

When a boundary is present, two different types of boundary conditions arise, which
labelled1 andΦ(h) in [12]. The corresponding reflection factors are

(4.2)RΦ(h)(θ) = Rb(θ), R1(θ) = R0(θ),

where

(4.3)h ∼ −|hc|sin
(
(b + 0.5)π/5

)
M6/5, hc = −0.6852899. . .

is the coupling of the boundary field and

(4.4)Rb(θ) =
(

1

2

)(
3

2

)(
4

2

)−1(
S

(
θ + iπ

b + 3

6

)
S

(
θ − iπ

b + 3

6

))−1

.

We first use the Bethe ansatz equation together with(1.7)to obtain theg-function up to six-
particle contributions. The results are shown inFig. 7for the boundarycondition1, and are
compared with the ultraviolet expansion obtained from (boundary) conformal perturb
theory and the BTCSA[13]

(4.5)2 lng1(l) = 1

2
ln

(√
5− 1

2
√

5

)
+ 2

f1

M
l + 2

4∑
n=1

dn

(
l

κ

) 12
5 n

+ O
(
l12),

√

wheref1 = 1

4( 3− 1)M, d1 ≈ −0.25312,d2 ≈ 0.0775,d3 ≈ −0.0360,d4 ≈ 0.0195, and
κ ≈ 2.6429.
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Fig. 7. 2 lng1 vs. ln(l) with (1,1) boundary conditions. The dotted line is the 4th order result of[13] and the solid
lines are BA results withr = 8. The solid lines, from the bottom, represent the 1,2, . . . ,6 particle contributions
respectively. The maximum quantum number used was 80 (57 for the 6-particle contribution).

As can be seen from the figure, the resultsfrom the Bethe ansatz and from perturb
conformal field theory overlap over a significant range of scales. This supports our h
esis that the two approaches are describing the same functiong1(l), expanded about eithe
the IR or the UV.

5. Infrared expansion for the Lee–Yang model

The purpose of this section is to develop ananalytic technique to check the earli
proposals described in Section3 and at the same time to give hints about the approp
modifications. The idea, successfully applied above to the Ising model, is to start fro
Bethe ansatz and to set up a cluster expansion by transforming the sums into integ
R → ∞. The method is quite powerful, and already at first order it confirms the ques
raised in[13] about the proposals described in Section3. To simplify the discussion w
shall only treat the(1,1) boundary conditions directly. However, this restriction is of
real significance since the results in[4,13,19]show that(

b + 3
)

(5.1)G(0)
Φ(h)(l) = Y iπ

6
G(0)

1 (l), Y (θ) = eε(θ),
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whereε(θ) is the solution of the ground state TBA equation with periodic boundary
ditions.

5.1. The one particle contribution

We start from the large-R equation(1.10), truncated at the one-particle level

(5.2)2 lng1 ∼ R
(
Ecirc

0 (M,L) − EM2L
) + ln

(
1+

∑
n1>0

e−l coshθ1(n1) + · · ·
)

,

where the one-particle Bethe ansatz essentially coincides with that for a free particl

(5.3)r sinhθ1 − i lnR1(θ1) = πn1,

with integern1. Performing the continuous limit as in Section2 we find

P1 =
∑
n1>0

e−l coshθ1 = 1

2

( ∞∑
n1=−∞

e−l coshθ1 − e−l

)

(5.4)→ 1

2

∫
R

dθ
(
J (1)(θ) − δ(θ)

)
e−l coshθ ,

where the Jacobian for the change of variablen1 → θ1 ≡ θ is

(5.5)J (1)(θ) = r

π
coshθ + φ1(θ).

The cosh term cancels the leading part of the term linear inR on the RHS of(5.2), leaving
the first contribution to lng1 as

(5.6)2 lng1 = 1

2

∫
R

dθ
(
φ1(θ) − δ(θ)

)
e−l coshθ + · · · .

Comparing this result with the proposals of Section3, we conclude that both are incorre
in particular noφ(2θ) or φ(θ) terms are involved in the leading largel asymptotic.

Next, we want to use this result to gain a hint as to how the earlier proposals sho
modified. However, the task to totally or even partially resum the cluster expansion di
is, in principle, very hard. Our work is driven by the extra assumption that the final r
should depend, just like the earlier ‘partially correct’ proposals(3.2)and(3.4), on the bare
single-particle energies only through the TBA pseudoenergiesε(θ). As will be reported
in more detail below, the consistency of this assumption was checked carefully up t
particles and confirmed, by a more superficial inspection, to all orders.

The attempt to find an exact expression for lng1, therefore, naturally starts from

(5.7)lng1 = [lng1](1)
D + · · · ,

where we have defined the ‘dressed’ version of(5.6)to be

1
∫ ( ) ( )
(5.8)2[lng1](1)
D =

2
R

dθ φ1(θ) − δ(θ) ln 1+ e−ε(θ) .
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Fig. 8. 2 lng1 vs. ln(l). The top dotted line is the ‘exact’ result obtained by combining the CFT and BA re
from Fig. 7. The solid lines are obtained from(5.6) (bottom line) and(5.7) (middle line).

Fig. 8gives some initial numerical support for the conjecture.
Notice now that[lng1](1)

D also containsn(> 1)-particle contributions. To see this
second order, we expand

(5.9)ln
(
1+ e−ε(θ)

)
ase−ε(θ) − e−2ε(θ)

2
+ · · · ,

and use the exponential of Eq.(A.1) expanded in terms of the bare particle energye(θ) =
M coshθ

(5.10)e−ε(θ) = e−l coshθ

(
1+

∫
R

dθ ′ φ(θ − θ ′)e−l coshθ ′
)

+ · · ·

to see that

2[lng1](1)
D = 1

2

∫
R

dθ
(
φ1(θ) − δ(θ)

)
e−l coshθ − 1

2

∫
R

dθ φ(θ)e−l coshθ−l + 1

4
e−2l

− 1

4

∫
R

dθ φ1(θ)e−2l coshθ

1
∫

(5.11)+
2

R2

dθ1dθ2 φ1(θ1)φ(θ1 − θ2)e
−l coshθ1−l coshθ2 + · · · .
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The aim of the analysis in the next sections is to justify the replacement ofe−l coshθ by
ln(1+ e−ε(θ)) and is also to find some hints as to the origin and form of the further co
tion terms in(5.7).

5.2. Two and three particle contributions

We start again from(1.10), this time keeping both one and two particle contribution

2 lng1 = R
(
Ecirc

0 (M,L) − EM2L
)

(5.12)+ ln

(
1+

∑
n1>0

e−l coshθ1 +
∑
n1>0

∑
n2>n1

e−l coshθ1−l coshθ2 + · · ·
)

,

where the two-particle-state momenta(θ1, θ2) are related to their quantum numbe
(n1, n2) via the Bethe ansatz equations

r

π
sinhθ1 − i

π
lnR1(θ1) − i

2π
lnS(θ1 − θ2)S(θ1 + θ2) = n1,

(5.13)
r

π
sinhθ2 − i

π
lnR1(θ2) − i

2π
lnS(θ2 − θ1)S(θ2 + θ1) = n2.

The new piece in(5.12)can be written as

P2 =
∑
n1>0

∑
n2>n1

e−l coshθ1−l coshθ2

≡ 1

8

∞∑
n1=−∞

∞∑
n2=−∞

e−l coshθ1−l coshθ2 − 1

4

∞∑
n1=−∞

e−l coshθ1−l

(5.14)− 1

4

∞∑
n1=−∞

e−2l coshθ1 + 3

8
e−2l .

As R → ∞ the continuous limit can be taken as∑
n1>0

∑
n2>n1

e−l coshθ1−l coshθ2

→ 1

8

∫
R2

dθ1 dθ2J
(2)
1 (θ1, θ2)e

−l coshθ1−l coshθ2 − 1

4

∫
R

dθ J
(2)
2 (θ)e−l coshθ−l

(5.15)− 1

4

∫
R

dθ J
(2)
3 (θ)e−2l coshθ + 3

8
e−2l .

The JacobiansJ (2)
1 (θ1, θ2), J

(2)
2 (θ) andJ

(2)
3 (θ) can be calculated from the Bethe ans

equations(5.13) as before. Notice that the correct subtractions of the excluded co
butions (those excluded by the statistics) are crucial to get the corresponding Jac
J

(2)
2 (θ) andJ

(2)
3 (θ): one has to take the derivatives only after the forbidden values o
quantum numbersn1 andn2 are fixed. Although we have performed the calculation in full
and checked the consistent cancellations of ther (strip size) dependent parts, for brevity
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we shall concentrate on the subleading,r-independent, partsj (2)
1 , j

(2)
2 , j

(2)
3

j
(2)
1 (θ1, θ2) = φ1(θ1)φ1(θ2) + 2φ(θ1 − θ2)φ1(θ2) + 2φ(θ1 − θ2)φ1(θ1)

+ 4φ(θ1 + θ2)φ(θ1 − θ2),

j
(2)
2 (θ) = φ1(θ) + 2φ(θ),

(5.16)j
(2)
3 (θ) = φ1(θ) + 2φ(2θ).

Expanding the logarithm in(5.12), we have at second order

(5.17)ln(1+ P1 + P2 + · · ·) = P1 +
(

P2 − P 2
1

2

)
+ · · · .

The up-to second order 2 lng1 contains seven distinct contributions, the first five coincid
with those written explicitly on the RHS of(5.11) and corresponding to the up-to-tw
particle expansion of 2[lng1](1)

D . (This confirms the correctness of the dressed form
(5.7), (5.8)up to this point.) There are also two genuinely new terms, and we find

2 lng1 = 2[lng1](1)
D + 1

2

∫
R2

dθ1 dθ2φ(θ1 + θ2)φ(θ1 − θ2)e
−l coshθ1−l coshθ2

(5.18)− 1

2

∫
R

dθ φ(2θ)e−2l coshθ + · · · .

The final step is to iterate the dressing procedure, though in a modified form, by rep
l coshθ with ε(θ) and writing lng1 = [lng1](1)

D + [lng1](2)
D + · · · with

2[lng1](2)
D = 1

2

∫
R2

dθ1dθ2 φ(θ1 + θ2)φ(θ1 − θ2)e
−ε(θ1)−ε(θ2)

(5.19)− 1

2

∫
R

dθ φ(2θ)e−2ε(θ).

Again this dressing prescription can be justified retrospectively by testing at third an
higher order. The third-order result turns out to support the assumption, and gives
uinely new type of correction to 2 lng1, independent ofφ1(θ):

2 lng1 = 2[lng1](1)
D + 2[lng1](2)

D + 2

3

∫
R

dθ φ(2θ)e−3l coshθ

+ 1

3

∫
R3

dθ1 dθ2dθ3 φ(θ1 + θ2)φ(θ2 − θ3)φ(θ3 − θ1)

× e−l coshθ1−l coshθ2−l coshθ3

(5.20)−
∫

dθ1 dθ2φ(θ1 + θ2)φ(θ1 − θ2)e
−l coshθ1−2l coshθ2 + · · · .
R2
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5.3. The exact result

To go further in the expansion becomes increasingly difficult, due to higher numb
Jacobians and the huge number of terms contributing to a single Jacobian. Howe
managed to complete the analysis up to four particles and to perform a more sup
inspection at higher orders. The followingresults were deduced: at each order ther
always a new contribution of the form

Cn = 1

n

∫
Rn

dθ1 · · ·dθn φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θ1)

(5.21)× e−l coshθ1 · · ·e−l coshθn,

when the lower order termsC2, . . . ,Cn−1 are corrected according to the rule

(5.22)e−l coshθ → 1

1+ eε(θ)
.

An additional term contains a single integration over the functionφ(2θ), as already see
in (5.18)and(5.20). To treat these terms is trickier, but after a few attempts we convi
ourselves that the correct procedure is always to replacel coshθ with ε(θ), and then to
resum, as

(5.23)

∫
R

dθ φ(2θ)

(
−1

2
e−2l coshθ + · · ·

)
→ −

∫
R

dθ φ(2θ)

(
ln

(
1+ e−ε(θ)

) − 1

1+ eε(θ)

)
.

We finally arrive at

2 lng1(l) = 1

2

∫
R

dθ
(
φ1(θ) − δ(θ) − 2φ(2θ)

)
ln

(
1+ e−ε(θ)

)

+
∞∑

n=1

1

n

∫
Rn

dθ1

1+ eε(θ1)
· · · dθn

1+ eε(θn)

(5.24)× φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θn+1),

with θn+1 = θ1.3 It is not hard to check that this formula is consistent with the one-, t
and three-particle results described above. Another simple (but non-trivial) check c
performed in the ultraviolet, as

(5.25)eε(θ) → eε0 =
√

5+ 1

2
,

∫
R

dθ φ1(θ) = −2,

∫
R

dθ φ(θ) = −1,
3 Notice the sequence of signs+,−,−, . . . ,− in the arguments of theφs in (5.24), that the number ofφ
factors in thenth correction term isn and that according to(5.23)atn = 1 only φ(2θ) survives.



nt
. As

s have

in
the

s a
0
iolet

al is
460 P. Dorey et al. / Nuclear Physics B 696 [FS] (2004) 445–467

(5.26)
∫
Rn

dθ1 · · ·dθn φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θ1) = (−1)n

2
,

and(5.24)reduces to

− ln
(
1+ e−ε0

) +
∞∑

n=1

(−1)n

2n

(
1

1+ eε0

)n

(5.27)= − ln
(
1+ e−ε0

) − 1

2
ln

(
1+ 1

1+ eε0

)
= 1

2
ln

(√
5− 1

2
√

5

)
,

which is the expectedl = 0 value for 2 lng1 given in(4.5).
The first term on the RHS of(5.24)coincides with the proposal of[10], repeated in

Eqs.(3.1) and (3.2), while the remaining parts constitute a boundary-condition independe
correction, which only comes non-trivially into play when the bulk theory is massive
mentioned at the end of Section3, this was only to be expected given the results of[13],
but it is nevertheless satisfying that the already-verified portions of the earlier result
been recovered by this rather different route.

In Fig. 9 the result from Eq.(5.24) is compared with the ‘exact’ result obtained
Section4 by combining UV perturbed CFT results with the IR cluster expansion from
Bethe ansatz. We see that keeping only the first three terms in the series already give
very good agreement with the exact result: in the UV the agreement is within about.3%.

We also used(5.24)to make a numerical estimate of the coefficients of the ultrav
expansion of lng1(l)

lng1(l) ∼ −0.3214826953191634+ 0.483692443734693x
5
12 − 0.253117570x

+ 0.0781176x2 − 0.037284x3 + 0.02042x4 − 0.0120x5

(5.28)+ 0.0074x6 + · · ·
with x = (1/κ)12/5. This can be compared with the result of[13]

lng1(l) ∼ −0.3214826953191634+ 0.4836924437346968x
5
12

(5.29)− 0.253117581x + 0.0775x2 − 0.036x3 + 0.0195x4 + · · · .
(Exact expressions for the first three coefficients in(5.29)were found in[13]; here we only
quote sufficiently-many digits to enable the numerical errors in(5.28)to be assessed.)

By inspection, it is straightforward to generalize(5.24)to more general theories withN
particle species and entirely diagonal scattering and reflection matrices. The propos

2 lngα(l) = 1

2

N∑
a=1

∫
R

dθ
(
φ(a)

α (θ) − δ(θ) − 2φaa(2θ)
)
ln

(
1+ e−εa(θ)

)

+
∞∑

n=1

N∑
a1...an=1

1

n

∫
Rn

dθ1

1+ eεa1(θ1)
· · · dθn

1+ eεan(θn)
(5.30)× (
φa1a2(θ1 + θ2)φa2a3(θ2 − θ3) · · ·φanan+1(θn − θn+1)

)
,
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whereθn+1 = θn, an+1 = a1, whileφab(θ) andφ
(a)
α are defined in Section3. Note, though,

that in some circumstances extra terms may be needed for the correct analytic continuation
of the integrals, as discussed in Section 4.3.1 of[13].

Before concluding this section we would like to mention that while this project
in progress and some of the analytic results already obtained as they are writte
a preprint by Woynarovich appeared[15]. Our result(5.24) is similar in form to the
expression proposed by Woynarovich for theO(1) corrections to the free energy for
one-dimensional Bose gas with repulsiveδ-function interaction. However, there is also
major difference. The string of kernels

(5.31)φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θn+1),

in our (5.24)is replaced by a string of the form

(5.32)ψ(θ1, θ2)ψ(θ2, θ3) · · ·ψ(θn, θn+1),

Fig. 9. 2 lng1 vs. ln(l). The dotted line corresponds to the ‘exact’ contribution. The bottom solid line repre
the RHS of(5.24)with the sum truncated at the first term. The solidline just above the dotted line truncates t

sum at the doubly-integrated term, and the line just belowthe dotted line is the total contribution up to the triple
integral.
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with 2ψ(k1, k2) = φ(k1+k2)+φ(k1−k2) ≡ K̄(k1, k2) in Eq. (3.28) of[15].4 That terms of
the type(5.31)appear in our formulae and not the expression(5.32)is unmistakably emerg
ing from the Jacobians for the change of variable{ni} → {θi} and from their definitions a
determinants. Woynarovich obtained his result by a calculation of the next-to-leadin
tributions to the free energy, evaluating corrections to the standard saddle point resu
a direct computation would be a highly desirablealternative to the more indirect approa
taken in this paper. Unfortunately, as stated in the paragraph after Eq. (5.8) in Sectio
[15], for the field theory case the result of[15] is divergent in the ultraviolet,R = 1/T → 0,
limit. This rules out the possibility of its consistent agreement with ag-function defined
in (perturbed) conformal field theory, of the sort studied in[10,13,14]and this paper. Nev
ertheless, the mathematical similarity between the final outcomes is striking and de
further investigation. To make a more precise comparison note that

(5.33)2 logg
(this paper)
1 ↔ [−T −1(�F + φ0 + φL) + �S

](Ref. [15])

and that−T −1(�F + φ0 + φL) matches the first, single-integral, term on the RHS
(5.24). �S should then be compared with the infinite series in(5.24). In Eq. (5.8) of[15]
Woynarovich notes that his�S can be written as a sum of two contributions: an UV c
vergent part corresponding to 1/2 of our infinite series, plus an UV divergent term whi
has no counterpart in(5.24). Thus, in spite of the apparent similarities between our res
and those of[15], there are also important discrepancies, which we are currently una
resolve physically.

6. Conclusions

This paper concerned the off-critical version of the boundary entropyg as defined in
field theory via the identity(1.6). It was shown numerically that the asymptotic infrar
expansion for lng, obtained using the Bethe ansatz, matches UV results from co
mal perturbation theory and the BTCSA at intermediate scales. This was a crucial step
the analysis, because it meant that these two alternative definitions are equivalent
opened up the interesting possibility of deriving an exact expression for the conform
perturbedg-function by using the Bethe ansatz technique. The first step toward this w
give the exact prescription, as the width of the stripR tends to infinity, to transform sum
over the quantum numbers into integrals on rapidity variables. The idea is that the su
ing R-independent terms in this expansion should build up to form the boundary entrog.
A careful inspection of this expansion, motivated by the plausible assumption that
nal result should depend on the bare single-particle energies only through their d
versions, i.e., through the TBA pseudoenergiesε(θ), led to a partial resummation wit
corrections written purely in terms ofε(θ). The expressions for lng written in (5.24)and
in (5.30) are the main new results of the paper. Eq.(5.24)was carefully checked against r
sults obtained using a combination of conformal perturbation theory and the Bethe a
4 Notice that the kernels in the two cases are actually different, but the derivation in[15] is quite general, and
the result is independent of the precise functional form of the kernel.
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The agreement was extremely good, and showed that the series is rapidly converge
in the ultraviolet region (see Eqs.(5.27), (5.28) and (5.29)). Although it relied at various
points on conjectures, we would also like to stress that our derivation avoided some
pitfalls that potentially afflict more direct computations of theg-function: by working in
the l → ∞ limit, we always dealt with states in which all constituent particles were w
separated, and so the accuracy of the Bethe ansatz wavefunctions for high particle dens
was not an issue.

There are many open problems related to this project, the first being that the m
proposed, for all its virtues, is not particularly elegant and a direct approach wou
desirable for the generalization to more complicated models. It would also be interes
study the correspondingquantities in theories with non-diagonal scattering and in syst
with massless excitations in the bulk[20].

Note added in proof

There is a numerical error in the third term of the expansion for lng1 given in Eq.(5.29)
above, which was pointed out to us by Aliosha Zamolodchikov. This is due to an inaccura
in Mathematica’s evaluation of the generalised hypergeometric function3F2, which arises
in formula (3.14) of Ref.[13] for an associated quantityI2. In fact, Aliosha Zamolodchikov
has found a simplified expression forI2, as follows:

(6.1)

I2 = 5

8
log5− 5

√
5

8
log

√
5+ 1√
5− 1

+ π

4
cot

2π

5
= −0.08393791256821845466150. . .

(this contrasts with the value−0.083937990. . . quoted in Ref.[13]). Accordingly, the
prediction(5.29)above should be corrected to

lng1(l) ∼ −0.3214826953191634+ 0.4836924437346968x
5
12

(6.2)

− 0.2531175700933719x + 0.0775x2 − 0.036x3 + 0.0195x4 + · · ·

with an even better match to(5.28). We would like to thank Aliosha Zamolodchikov fo
discussions of this point.
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Appendix A. TBA and BA in purely elastic scattering models

In this appendix we summarise the equations relevant to our analysis.

A.1. Periodic boundary conditions

The thermodynamic Bethe ansatz equations are[16]

(A.1)εa(θ) = MaLcoshθ −
N∑

b=1

∫
R

dθ ′ φab(θ − θ ′)Lb(θ
′) (a = 1, . . . ,N).

The ground state energy on a circle is expressed in terms of the functionsLa(θ) = ln(1+
e−εa(θ)) as

(A.2)Ecirc
0 (M,L) = −

N∑
a=1

∫
R

dθ

2π
Ma coshθLa(θ) + EM2

1L,

whereEM2
1L is the bulk contribution to the energy and

(A.3)φab(θ) = − i

2π

d

dθ
lnSab(θ).

A.2. (α,β) boundary conditions

The (R-channel) thermodynamic Bethe ansatz equations are[10]

εa(θ) = 2MaR coshθ − ln

(
R(a)

α

(
i
π

2
− θ

)
R

(a)
β

(
i
π

2
+ θ

))

(A.4)−
N∑

b=1

∫
R

dθ ′ φab(θ − θ ′)Lb(θ
′),

wherea = 1, . . . ,N ; the ground state energy on an interval of lengthR is then

(A.5)E
strip
0 (M,R) = −

N∑
a=1

∫
R

dθ

4π
Ma coshθLa(θ) + EM2

1R + fα + fβ,

where the constantE is the same as in(A.2), fα andfβ areR-independent contribution
(a) (a)
to the energy from the boundaries and{Rα (θ),Rβ (θ)} are the reflection amplitudes cor-

responding to the two boundary conditionsα andβ . Generalisations of these equations
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govern the excited state energiesE
strip
n (M,R) [12],5 but in the largeR limit we are inter-

ested in, they reduce to simple (Bethe ansatz) forms. Suppose that thenth excited state is
made up ofm = ∑N

a=1 m(a) particles,m(a) being the number of particles of typea. Then

(A.6)E
strip
n (M,R) − E

strip
0 (M,R) =

N∑
a=1

m(a)∑
i=1

Ma coshθ(a)
i + O

(
e−RM

)
,

where sums on the RHS withm(a) = 0 are understood to be omitted, and the sets of n
bers{θ(a)

i } satisfy the Bethe ansatz equations

2πn
(a)
i = 2MaR sinhθ

(a)
i − i ln

(
R(a)

α

(
θ

(a)
i

)
R

(a)
β

(
θ

(a)
i

))
−

N∑
b=1

∑
j =i

i ln
(−Sab

(
θ

(a)
i + θ

(b)
j

))

(A.7)−
N∑

b=1

∑
j =i

i ln
(−Sab

(
θ

(a)
i − θ

(b)
j

))
.

It is to be noted that the logarithmic branches in the Bethe ansatz equations caus
difficulties in the numerics. We impose the branch cut at−π so that the function−i ln(RR)

and any of the terms−i ln(−S) in (A.7) take values in the range(−π,π]. This choice
renders the Bethe ansatz(A.7) fully anti-symmetric (a change of sign in any of the quant
numbersn(a)

i → −n
(a)
i corresponds to a changeθ(a)

i → −θ
(a)
i ) and one can consistent

restrict{n(a)
i } to strictly positive integers only.

Appendix B. Some exact results for the boundary Ising model

The boundary scattering matrix for the free Majorana fermion is[3]

(B.1)Rk(θ) = i tanh

(
iπ

4
− θ

2

)
k − i sinhθ

k + i sinhθ
,

wherek = 1− h2

2M
andh is the boundary magnetic field. Therefore, we have

(B.2)φk(θ) = 1

π

(
1

coshθ
− 4k coshθ

cosh(2θ) + 2k2 − 1

)
.

In this appendix we would like to report exact expressions for

(B.3)lngfree ≡ lngk=1(l) = −1

4

∫
R

dθ

(
δ(θ) + 1

π coshθ

)
ln

(
1+ e−l coshθ )
5 Sometimes such generalisations are required even to describe the ground state correctly[12], but these cases
will not concern us here.
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and

(B.4)lngfixed ≡ lngk=−∞(l) = −1

4

∫
R

dθ

(
δ(θ) − 1

π coshθ

)
ln

(
1+ e−l coshθ ).

These are obtained from the following identity, which can be deduced by studying t
monodromies of the integral(2.8)along the lines sketched in[21]

(B.5)
∫
R

dθ
1

π coshθ
ln

(
1+ e−x coshθ ) = ln(2) − x

π

(
1+ ln(π/x) − γE

) − 2S(x),

whereγE = 0.57721566. . . is the Euler–Mascheroni constant and

(B.6)S(x) =
∞∑

n=1

(
ln

[
x + (2n − 1)π −

√
(2n − 1)2π2 + x2

x − (2n − 1)π +
√

(2n − 1)2π2 + x2

]
+ x

(2n − 1)π

)
.

The idea of the derivation is to determine the positions of the singularities in(B.6) using
the pinched-contour argument of[21], adding counterterms to make the infinite sumS(x)

convergent. The remaining parts of(B.5) were then fixed by studying thex → 0 limit.
(Alternatively,(B.5) can be proved using the Bessel-function technique of[22,23]and an
identity due to Schlömilch[24].) From(B.5), we have

(B.7)

4 lngfree/fixed(l) = − ln
(
1+ e−l

) ∓
(

ln(2) − l

π

(
1+ ln(π/l) − γE

) − 2S(l)

)
.
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