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Abstract

The g-function was introduced by Affleck and Ludwig in the context of critical quantum systems
with boundaries. In the framework of the thermodynamic Bethe ansatz (TBA) method for relativistic
scattering theories, all attempts to write an exact integral equation for the off-critical version of
this quantity have, up to now, been unsuccessful. We tackle this problem by usingaticle
cluster expansion, close in spirit to form-factor calculations of correlators on the plane. The leading
contribution already disagrees with all previous proposals, but a study of this and subsequent terms
allows us to deduce an exact infrared expansiog farritten purely in terms of TBA pseudoenergies.
Although we only treat the thermally-perturbed Ising and the scaling Lee—Yang models in detalil,
we propose a general formula fgrwhich should be valid for any model with entirely diagonal
scattering.
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1. Introduction

The study of two-dimensional conformal field theories with bounddfigsind their
integrable perturbationj2—4] is of interest both in condensed matter phygijsand in
string theory[6]. An important quantity emerging from the definition of the cylinder par-
tition function for these field theories is thefunction, the ‘ground-state degeneracy’ or
‘boundary entropy’, which for models criticat the bulk was introduced some years ago
by Affleck and Ludwig[7]. While many interesting questions remain in these cf&6%
in this paper we shall deal with the further issues which arise for off-critical, massive,
systems.

The g-function for massive field theories can be defined as follMs-13] There are
two possible Hamiltonian descriptions of the cylinder partition function. In the so-called
L-channel representation the role of time is takenhyhe circumference of the circle

. o
_ strip strip
Zap =Trpy, , ¢ e M 237 o LESTMLR), (1.1)
n=0
In this formuIa,H;;rip propagates states g, the Hilbert space for an interval of length

R with boundary conditions and 8 imposed at the two end€5"™ e spec(ngip), and

M is the mass of the lightest particle in the theory. In the R-channel representation the role
of time is instead taken bR, the length of the cylinder

Zaﬂ _ (O{|67RHC”C(M’L) 1B) = Z gén) (l)g‘én) (l)e*REg'fC(M-,L) (I=ML), (12)
n=0

where ES" e spe¢ H®'®) and
(oY)
(YnlYn)/2

In Eq.(1.2), the boundary statds), | 8) and the eigenbasi$y,, )} of the HamiltonianH ¢
have been used. These are defined on a circle of circumfefeand propagate along the

‘time’ direction R. At largel, the function |rg§,°)(1) grows linearly

NGO ) ~—fuL, (1.4)

where the constanf, contributes to the constant (boundary) part of the ground-state en-
ergy on the strip (see E@A.5)). The standarg-function is then defined as

Ingo () =INGO (1) + fuL. (1.5)

In theories with only massive excitations in the bulkglti/) tends exponentially to zero
at largel.

The two decompositions are illustratedrigs. 1 and 2

The equality of(1.1)and(1.2)results in the following important identity:

géln)(l) — (2.3)

00 00

strip circ
§ :e*LEn (M,R) — § :gétn)(l)g/(gn)(l)efREn (M,L). (16)
n=0 n=0
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Fig. 1. The L-channel decomposition; stalgs) live on the dotted line segment along the cylinder.
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Fig. 2. The R-channel decomposition; statég) live on the dotted circle around the cylinder.

The purpose of this paper is to develop an exact expression for the ground-state function
In g§,°>(1) through the larger limit of (1.6), with boundary conditiong = «. As it stands,

the fact thateg"“(M, L) is negative makes the RHS (.6) diverge ask — oo; however,
rearranging gives

2InGO (1) = RES™(M, L) — LES™(M, R)
o . .
+1In (1 +3 e—L<E3“'F'<M,R)—ES‘””(M,R»)
n=1
+ 0 (e_R(EEIrC_ESIrC)). (1.7)

We shall restrict our attention to massive theories with non-degenerate ground state on the
plane. For these models the non-zero mass gap gives the final term the leading behaviour

0(efR(Efi“’(M,L)fESi“’(M,L))) - 0(67RM) (1.8)
in the domain® > L > 0. In this same domairESmp(M, R) tends to its limiting form as

ES"™(M, R) = EM?R + 2f, + O (e *M), (1.9)

where& and f, are the extensive bulk and boundary free energies, #8.5). These
constraints are crucial for the validity of the perturbative treatment to be introduced in
the following sections: the higher corrections have a clear dependengeaoil do not
contribute to theg-function. Discarding these exponentially-suppressed terms and using
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the definition(1.5), we finally obtain

2Ing@ () ~ R(E§"(M, L) — EM?L)

i stri stri
+1In (1 + e HETM R p(M’R”) : (1.10)
n=1

Having takenr to be large, the cluster expansion involves lettingend to infinity as well,

so that an expansion of the RHS(Gf10)can be developed in terms of one-, two- and so

on particle contributions, which themselves can be consistently estimated using the Bethe-
ansatz approximated leve&.6), (A.7). Note that this differs from the strategy adopted in
[10], where a saddle-point evaluation of the dominant contributions at finites made
instead.

The rest of this paper is organised as follows. In Secfidhe cluster method is ex-
emplified by studying the free fermion theory associated to the thermally-perturbed Ising
model. The resulting integral expression foglr(/) turns out to be in full agreement with
previous results dfL0,11] In Section3 two previous proposal4.0,14]for In g, (1) are de-
scribed and in Sectiofthe scattering data for the scaling Lee—Yang model, our working
interactive example, are summarised. The ultraviolet result obtained from the conformal
perturbation theory and the boundary truncated conformal space approximation (BTCSA)
[9,12,13]is compared with infrared numerical réfrom the Bethe ansatz, and the equiv-
alence between the two functions is confirnigdh large overlap at intermediate scales.

This agreement motivatesdtsearch for an exact analyggpression. This is the main
objective of Section5.1, 5.2 and 5.8vhere the large strip-widthR — oo) limit is explic-
itly taken and sums over the quantum numbers are transformed into integrals in rapidity
variables. This analysis leads to the final exact expansion fgr(In given in Eq.(5.24)

This and its generalizatiorb (30 constitute the main results of the paper. In SecBah

we also briefly comment on the similarity tiieeen our results and one recently obtained

by Woynarovich in[15]. Section6 contains our conclusions. Finally, A&ppendix Awe
summarise the main equations used to develop our programme: the thermodynamic Bethe
ansat416] and the Bethe quantisation conditionsAppendix Bthe reflection factors for

the Ising model are recalled and explicit expressions for the boundary entropy for free—free
and fixed—fixed conditions are presented.

2. A simple example: the Ising model

We start with the study of the free Majorana fermion theory corresponding to the
thermally-perturbed Ising model on a strip. The partition function is[{df])*

i
ZO{O( — eiLE(S) rIp(M,R) 1_[(1+ e*[COSmj) (l — ML), (21)
j>0

1 Notice that the zero momenturé;(= 0 <> j = 0) particle state is forbidden.
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or

INZuo = —LEG (M, R) + Y _In(1+ ¢ 10M))
j>0

. oo
= —LE3"™(M,R) + % > In(14e'oosMi) — %ln(1+ e). (2.2)

j=—00

Due to the singular behaviour for the Ising model of the bulk and linear térausd f,,
defined in(A.2) and(A.5), it is convenient, exceptionally for this case, to work with sub-
tracted energies tending exponentially to zero at large scales

Eg"P (M, R)| 4y, ~0 (2.3)

and consistently to set

. do
B =~ [ 5 M oostuinu+e~/o) a0
R

(cf. (A.2)). Starting from the quantization condition

rsinhg; —ilnRy(6;) =nj (r=MR) (2.5)
with integer;j and R, (6;) as defined ir(B.1), writing Eq. (2.5)with j — j + 1 and sub-
tracting(2.5)from the result, we find in the large limit

A

—f<rcosr(9j) —ij—eln Ra(ej)> +0((A6))?) = 1. (2.6)

T

Substituting this intq2.2),
INZyy ~ % /d@ (% cosho) + ¢ (0) — 5(9)) In(1+ e~!cosM), (2.7)
R

whereg, (0) is given in(B.2). In the latter equation we recognize a part corresponding to
REF"™(M, L), and, considering als@.3), we arrive at the exact result

2Inga (1) = lim (IN Zgo (L, R) + RES™(M, L))
—00

- %/d@ (¢a(8) —8(8)) In(1 4 e~!c0SI), (2.8)

R

This coincides with the result found §10,11] using a different technique. The match
confirms the correctness of our method, at least in this case, and motivates its study in
more complicated models.
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Fig. 3. 2Ingfixeq vs. In(/) for Ising with fixed boundary conditions. From the bottom, the lines represent 5, 100,
500, and 5000 particle contributionshd maximum quantum number is 80 ang 10. The top line is the exact
result.

In Figs. 3 and 4he integration 0{2.8) for free—free and fixed—fixed boundary condi-
tions, corresponding tb= 1 andk = —oc in (B.1) and(B.2),2 is compared with numerical
results obtained by estimating the largepartition function(2.1) using the Bethe ansatz
guantized energy level®.5) directly, and then extracting the boundary entropy through
the relation

2Inge (1) ~ (IN Zoa (L. R) + REG™(M. L))| o ;- (2.9)

For interacting models a compact expression sucf2 49 is not available, and one is
forced to build the partition function using the LHS (@f.6) directly. InFigs. 5 and 6ve
test this more general way to estimatg-&unction. A similar idea was first applied to the
scaling Lee—Yang model if12,13] however in that case the energy levels were estimated
using the BTCSA methof 2], rather than the Bethe ansatz.

We see that it is hard to get a good estimate of the ultraviolet valuegfriom this
form of the cluster expansion. In Sectidiwe shall solve this numerical problem for the
case of the scaling Lee—Yang model by matghtinis numerical Bethe ansatz calculation
with the ultraviolet perturbed CFT results [@f3], while in Section5 we shall develop a
more analytical treatment.

2 By studying the monodromies of the integr@.8), we have also found more explicit expressions for
In gfixeq(!) and Inggree(l); these are given iAppendix B
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Fig. 4. 2Ingfree vs. In(/) for Ising with free boundary conditions. From the bottom, the lines represent 5, 100,
500, and 5000 particle contributionshd maximum quantum number is 80 ang 10. The top line is the exact
result.

3. Earlier proposalsfor g

Consider g1 + 1)-dimensional integrable field theory with entirely diagonal scattering
andN particle species. According to the proposa|Xd] the boundary entropy should be
given by an expression of the form

N
1
Ingy (1) = ZZ/dG Oa(0)IN(L+ e @), (3.1)
ale

where the functiorz, (0) is the solution of the periodic-boundary-conditions TBA 1),
and

B4 (0) = (X0 — 244 (20) — 8(0)) (3.2)
with
69O = LINROG).  gun® = — LIS (®). (3.3)
« T do « 27 do

(Note, the normalisations qu,“)(e) andg, () differ from those in[13,14] by factors of
7 and 2r, respectively. This change is méréo simplify some later formulae.)

However, the detailed analysis [if3] showed that, for non-zero values of the lightest
bulk massM, the resulting-dependence was incorrect, both in the total changg, (h)
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Fig. 5. 2Ingfixeq Vs. In(!) for Ising with fixed boundary conditions. From the bottom, the lines represent cluster
contributions of 12,..., 8 particles. The maximum guantum number 80 anrd 10. The top line is the exact
result.

between UV and IR, and in the behaviour of the smalkries expansion. On the other
hand, the predictions .1) and (3.2) for dependence 0§, (/) on the boundary para-
meters at fixed, and also for the ratios of-functionsg. (/)/gs(/), were in very good
agreement with conformal perturbation theory and the BTCSA. This suggested that the
formulae should be modified by some boundeopdition independent extra terms, but
provided little clue as to what those extra terms should be.

Subsequently, it was proposedir¥] that(3.2) should be replaced by

04 (0) = (070 — 2¢4a(20) — ¢aa(0)). (3.4)

However, using results tabulated[3] it can be checked that this modification does not
cure the problems arising in the bulk-massive case.

4. The scaling Lee-Yang model

The spectrum in the bulk scaling Lee—Yangainy consists of a single particle species,
with two-particle bulk scattering amplitud&7,18]

sinh(§ + 72~
)

SO =—-D®), (x) (4.1)
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Fig. 6. 2Ingfree vs. IN(l) for Ising with free boundary conditions. From the bottom, the lines represent cluster
contributions of 12,..., 8 particles. The maximum guantum number 80 anrd 10. The top line is the exact
result.

When a boundary is present, two different types of boundary conditions arise, which were
labelledl and® (k) in [12]. The corresponding reflection factors are

Ro ) (0) = Rp(0), R1(0) = Ro(9), 4.2)
where
h~ —|he|sin((b + 0.5)7/5)M®/>,  h.=—0.6852899.. (4.3)

is the coupling of the boundary field and

o= (o w2 o

We first use the Bethe ansatz equation together (4iff)to obtain theg-function up to six-
particle contributions. The results are showirig. 7for the boundargonditiont, and are
compared with the ultraviolet expansion obtained from (boundary) conformal perturbation
theory and the BTCSAL3]

1 (v/5-1 NN L
n=1

2.5

where f1 = %(\/é — DM, d1~ —0.25312,d> ~ 0.0775,d3 ~ —0.0360,d4 ~ 0.0195, and
Kk ~2.6429.
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Fig. 7. 2Ingy vs. In(l) with (1, 1) boundary conditions. The dotted line is the 4th order resilt3jfand the solid
lines are BA results witlt = 8. The solid lines, from the bottom, represent the,1. ., 6 particle contributions
respectively. The maximum gquantum number used 80 (57 for the 6-particle contribution).

As can be seen from the figure, the restiltsn the Bethe ansatz and from perturbed
conformal field theory overlap over a significant range of scales. This supports our hypoth-
esis that the two approachegatescribing the same functiga(/), expanded about either
the IR or the UV.

5. Infrared expansion for the L ee-Yang model

The purpose of this section is to develop amalytic technique to check the earlier
proposals described in Secti8rand at the same time to give hints about the appropriate
modifications. The idea, successfully applied above to the Ising model, is to start from the
Bethe ansatz and to set up a cluster expansion by transforming the sums into integrals as
R — oco. The method is quite powerful, and already at first order it confirms the questions
raised in[13] about the proposals described in Sect®bo simplify the discussion we
shall only treat thg1, 1) boundary conditions directly. However, this restriction is of no
real significance since the resultg4#13,19]show that

b+3
92?&%““(”%)%“(!» Y(©)=e®, (5.1)
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wheree(0) is the solution of the ground state TBA equation with periodic boundary con-
ditions.

5.1. Theone particle contribution

We start from the larg&® equation(1.10) truncated at the one-particle level

2Ings ~ R(ES™(M, L) — EM?L) +1In <1+ D ertcoshinin) ) (5.2)

n1>0

where the one-particle Bethe ansatz essentially coincides with that for a free particle,
rsinhfy —iIn Ry (01) = mny, (5.3)

with integerns. Performing the continuous limit as in SectiBmve find

1 o
P = Z eflcosh% — E( Z e—lcosml _ el)

n1>0 ni=—00

— %/d@ (TP @) — 5(6))e oS, (5.4)
R

where the Jacobian for the change of variahle> 61 =0 is
TD@6) = L costv + ¢4.(6). (5.5)
T

The cosh term cancels the leading part of the term line&ram the RHS 0f5.2), leaving
the first contribution to Iig; as

2Ingy = % f d6 (¢1.(6) —8(6))e 'O ... (5.6)
R

Comparing this result with the proposals of Sectiymwe conclude that both are incorrect:
in particular nop (20) or ¢ (0) terms are involved in the leading largasymptotic.

Next, we want to use this result to gain a hint as to how the earlier proposals should be
modified. However, the task to totally or even partially resum the cluster expansion directly
is, in principle, very hard. Our work is driven by the extra assumption that the final result
should depend, just like the earlier ‘partially correct’ propogalg)and(3.4), on the bare
single-particle energies only through the TBA pseudoenerdies As will be reported
in more detail below, the consistency of this assumption was checked carefully up to four
particles and confirmed, by a more superficial inspection, to all orders.

The attempt to find an exact expression fogdntherefore, naturally starts from

Ingg =[Ingsl® +---, (5.7)

where we have defined the ‘dressed’ versio(&o6)to be

2lngy]}y = %/d@ ($2(6) = 8(0)) In(1+e~*@), (5.8)
R
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T T ] T T

Fig. 8. 2Ingq vs. In(/). The top dotted line is the ‘exact’ result obtained by combining the CFT and BA results
from Fig. 7. The solid lines are obtained fro¢.6) (bottom line) and5.7) (middle line).

Fig. 8 gives some initial numerical support for the conjecture.
Notice now that[In gﬂ](Dl) also containsi(> 1)-particle contributions. To see this at
second order, we expand

o—26(0)

IN(1+e @) ase*® — — (5.9)

and use the exponential of Hgh.1) expanded in terms of the bare particle ener() =
M coshp

e €0) _ p—lcoshy (1+/d9/¢(9 . 9/)elcoshg/> L. (5.10)
R
to see that
1 1 1
20ngs] = E/de ($1(0) — 8(8))e" oo E/de ¢ (@)e ! COS=L 4 Ze*Z’
R R
1
_ Z/da ¢1(9)e—21()05h9
R
1
+5 f dO1.dO2 1 (61) (01 — O)e ! COSPL—ICOSIW2 | (5.11)

R2
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The aim of the analysis in the next sections is to justify the replacement'6#" by
In(1+ ¢~¢®) and is also to find some hints as to the origin and form of the further correc-
tion terms in(5.7).

5.2. Two and three particle contributions

We start again fron(1.10), this time keeping both one and two particle contributions
2Ings = R(E§™(M, L) — EM?L)

+|n<1+ Z p—lcoshvy + Z Z ol costby— costr, _'_._.)’ (5.12)

n1>0 n1>0 nz>ng

where the two-particle-state momen@y, 62) are related to their quantum numbers
(n1, n2) via the Bethe ansatz equations

L sinhor — L In Ry.(61) — — InS(61 — 62)S(61 + 62) = n1,
T T 21

L sinhto — L In Ry (62) — — InS(62 — 61)S(62 + 61) = ny. (5.13)
T T 21

The new piece if5.12)can be written as

Py= Z Z ¢~ coshv1—I cosit;

n1>0n2>ny

1 o o 1 o
= é Z Z e—lcosml—l costvp Z Z e—lcosh91—l
n1=—00 n2=—00 n|=—00
1 = —2l coshy 3 =2l
-3 > e e (5.14)
np=—00

As R — oo the continuous limit can be taken as

Z Z e—l coshy; —I coshd,

n1>0nz>ny

1 1
~ 3 / dBydoy 117 (61, Bp)e ! OIS 2 / d 13 ()¢ oSt~

R2 R
1 (2) —2lcoshg 3 —2
R

The Jacobiansll(z)(el, 02), szz)(e) and J?fz)(e) can be calculated from the Bethe ansatz
equationg(5.13) as before. Notice that the correct subtractions of the excluded contri-
butions (those excluded by the statistics) are crucial to get the corresponding Jacobians
12(2)(9) and Jéz)(e): one has to take the derivatives only after the forbidden values of the
guantum numbers; andn are fixed. Although we have performed the calculation in full

and checked the consistent cancellations ofrtlistrip size) dependent parts, for brevity
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we shall concentrate on the subleadingndependent, partﬁfz), j2(2), jéz)

72 (01, 02) = ¢1.(01)$1(02) + 26 (01 — 62)¢h1 (02) + 26 (61 — 02)1.(61)
+ 4901+ 02)¢p (61 — 62),
3s26) = ¢1(0) +29(6),
i20) = $1(0) + 2¢.(20). (5.16)
Expanding the logarithm i(b.12) we have at second order

P2
|n(1+P1+P2+"')=P1+<P2—71)+"'- (5.17)

The up-to second order 2¢n contains seven distinct contributions, the first five coinciding
with those written explicitly on the RHS gb.11) and corresponding to the up-to-two
particle expansion of [Ih gﬂ]g). (This confirms the correctness of the dressed formulae
(5.7), (5.8)up to this point.) There are also two genuinely new terms, and we find

1
2Ingy =2[Inga 15’ + 5 f d01d02 (01 + 02)p (01 — Op)e ' COSPAI COSIT

R2

1
- E/d@ P (20)e™200SW . (5.18)
R
The final step is to iterate the dressing procedure, though in a modified form, by replacing
[ cosh with £(0) and writing Ingg = [In gﬂ]g) +[In gﬂ]g) + .- with
1
2lngy]y = 5 / d61d62 ¢ (61 + 02)¢ (61 — Op)e—* W)

R2

~ %fd9¢(29)e*2€<9>. (5.19)
R

Again this dressing prescription can be justfiretrospectively by testing at third and
higher order. The third-order result turns out to support the assumption, and gives a gen-
uinely new type of correction to 2 gy, independent opy (0):

2
2 |nng = 2[|n g]l]g) =+ 2[|n gﬂ]g) + é / do ¢(29)673ICOSh9
R
1
* §fd91d92d93¢(91 +02)¢ (62 — 63)¢p (63 — 61)
R3

x e—l coshy,—I coshdr—I coshyz

- / d61d02 ¢ (01 4 02)p (01 — Op)e ' COSIPr=2ICOSV2 (5.20)

R2
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5.3. The exact result

To go further in the expansion becomes increasingly difficult, due to higher number of
Jacobians and the huge number of terms contributing to a single Jacobian. However we
managed to complete the analysis up to four particles and to perform a more superficial
inspection at higher orders. The followimgsults were deduced: at each order there is
always a new contribution of the form

1
Co= [ o0, 601+ 02602~ 060, — 00
Rn
x e~lcostvr . —lcostd, (5.21)

when the lower order termsy, ..., C,_1 are corrected according to the rule

1
1+es®°
An additional term contains a single integration over the func#i¢2v), as already seen
in (5.18)and(5.20) To treat these terms is trickier, but after a few attempts we convinced

ourselves that the correctquedure is always to replaé¢eoshy with ¢(6), and then to
resum, as

1 _ocostw —£(0) 1
/d9¢(29)(—ie +-~-)a—fde¢<29>(ln(1+e )~ Tre® )
R R

eflcosh9

(5.22)

(5.23)
We finally arrive at
2Ing1(l) = % /d@ (¢1.(6) — 8(6) — 2¢(20)) In(1+e—*®)
R
=1 déy db,

+Z;/ 1@ 14 e

n=1 Rr
X @01+ 602)p (02 — 63) - - - P (6 — On1), (5.24)

with 6,11 = 61.2 It is not hard to check that this formula is consistent with the one-, two-,
and three-particle results described above. Another simple (but non-trivial) check can be
performed in the ultraviolet, as

5+1
O s g0 = f; , / 46 $1(6) = —2, (5.25)
R
/ do¢®)=-1,
R
3 Notice the sequence of sigas —, —, ..., — in the arguments of thes in (5.24) that the number o

factors in thezth correction term i& and that according t(6.23)atn = 1 only ¢ (20) survives.
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[ o0, 601+ 029 02— 09400, — 0 = - (5.26)
and(§n24)reduces to
—In(1+e7%°) +g (_2?" (ﬁ)
_In(1+e€°)—%ln<l+ 1+1680> E' (‘/Z‘F:/;> (5.27)

which is the expectetl= 0 value for 21Irngy given in(4.5).

The first term on the RHS df.24) coincides with the proposal ¢10], repeated in
Egs.(3.1) and (3.2)while the remaining parts cotitsite a boundary-conditionindependent
correction, which only comes non-trivially into play when the bulk theory is massive. As
mentioned at the end of Secti@nthis was only to be expected given the result§ld,
but it is nevertheless satisfying that the already-verified portions of the earlier results have
been recovered by this rather different route.

In Fig. 9 the result from Eq(5.24)is compared with the ‘exact’ result obtained in
Section4 by combining UV perturbed CFT results with the IR cluster expansion from the
Bethe ansatz. We see that keeping only thet finree terms in the series already gives a
very good agreement with the exact result: in the UV the agreement is within al384t 0

We also used5.24)to make a numerical estimate of the coefficients of the ultraviolet
expansion of ligq (1)

Ing1 (/) ~ —0.3214826953191634 0.483692443734693> — 0.253117570
+0.07811762 — 0.037284° + 0.02042* — 0.0120¢°
+0.0074c6 + - .. (5.28)

with x = (1/«)*%>5. This can be compared with the resulfd8]

In g1 (/) ~ —0.3214826953191634 0.4836924437346968>
—0.25311758% 4 0.0775¢% — 0.036¢% + 0.0195¢* + - - - (5.29)

(Exact expressions for the first three coefficientbii29)were found if13]; here we only
quote sufficiently-many digits to enable the numerical erro($i@8)to be assessed.)

By inspection, it is straightforward to generalize24)to more general theories witki
particle species and entirely diagonal scattering and reflection matrices. The proposal is

2Inga (1) = Z/df) (6(0) — 8(0) — 2644(20)) In(L+ e~*«®)

alR

d9n
+Z Z /1+esal(01) 1 efan @)

n=1aj.. an—l R
(¢a1a2 01+ 92)¢a2a3 (O2—03)--- ¢anan+1 On — 9n+l))a (530)
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wheref, 11 =6,, ay+1 = a1, while ¢, (0) and¢>§f’) are defined in Sectiod Note, though,
that in some circumstances extra terms mayédsded for the correct atytic continuation
of the integrals, as discussed in Section 4.3.[iL8f.

Before concluding this section we would like to mention that while this project was
in progress and some of the analytic results already obtained as they are written here,
a preprint by Woynarovich appear¢tl5]. Our result(5.24) is similar in form to the
expression proposed by Woynarovich for tB&1) corrections to the free energy for a
one-dimensional Bose gas with repulsd#unction interaction. However, there is also a
major difference. The string of kernels

¢ 01+ 02)p (02 —03) - P (O — Ont1), (5.31)

in our (5.24)is replaced by a string of the form

Y (01, 02)¥ (02,03) - -« Y (O, Onr1), (5.32)

—08 1 1 I 1 1 1 L
-5 -4 =3 -2 -1 0 1

Fig. 9. 2Ingy vs. In(/). The dotted line corresponds to the ‘exact’ contribution. The bottom solid line represents
the RHS of(5.24) with the sum truncated at the first term. The sdilie just above the dotted line truncates the
sum at the doubly-integrated term, and the line just belmwvdotted line is the total contribution up to the triple
integral.
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with 2y (k1, ko) = ¢ (k1+k2)+¢ (k1 —k2) = K (k1, k2) in Eq. (3.28) 0f15].% That terms of

the type(5.31)appear in our formulae and not the expresgmB2)is unmistakably emerg-

ing from the Jacobians for the change of varidlalg — {0;} and from their definitions as
determinants. Woynarovich obtained his result by a calculation of the next-to-leading con-
tributions to the free energy, evaluating corrections to the standard saddle point result. Such
a direct computation would be a highly desirablgrnative to the more indirect approach
taken in this paper. Unfortunately, as stated in the paragraph after Eq. (5.8) in Section V of
[15], for the field theory case the result{@b] is divergentin the ultraviolety = 1/T — O,

limit. This rules out the possibility of its consistent agreement withfanction defined

in (perturbed) conformal field theory, of the sort studiefllid,13,14]Jand this paper. Nev-
ertheless, the mathematical similarity between the final outcomes is striking and deserves
further investigation. To make a more precise comparison note that

](Ref. [15])

210gg " PP o [~TL(AF + go+ 1) + AS (5.33)

and that—7"1(AF + ¢o + ¢1) matches the first, single-integral, term on the RHS of
(5.24) AS should then be compared with the infinite serie¢5r24) In Eq. (5.8) of[15]
Woynarovich notes that hia S can be written as a sum of two contributions: an UV con-
vergent part corresponding tg2 of our infinite series, plus an UV divergent term which
has no counterpart i(.24) Thus, in spite of the apparent similarities between our results
and those of15], there are also important discrepancies, which we are currently unable to
resolve physically.

6. Conclusions

This paper concerned the off-critical version of the boundary entgopyg defined in
field theory via the identity1.6). It was shown numerically that the asymptotic infrared
expansion for Irg, obtained using the Bethe ansatz, matches UV results from confor-
mal perturbation theory and the BTCSA at imteediate scales. This was a crucial step in
the analysis, because it meant that these two alternative definitions are equivalent, and it
opened up the interesting possibility of deriving an exact expression for the conformally-
perturbede-function by using the Bethe ansatz technique. The first step toward this was to
give the exact prescription, as the width of the siipends to infinity, to transform sums
over the quantum numbers into integrals on rapidity variables. The idea is that the sublead-
ing R-independent terms in this expansion should build up to form the boundary egtropy
A careful inspection of this expansion, motivated by the plausible assumption that the fi-
nal result should depend on the bare single-particle energies only through their dressed
versions, i.e., through the TBA pseudoenergi@®), led to a partial resummation with
corrections written purely in terms ef9). The expressions for [nwritten in (5.24)and
in (5.30 are the main new results of the paper. Eg24)was carefully checked against re-
sults obtained using a combination of conformal perturbation theory and the Bethe ansatz.

4 Notice that the kernels in the two cases are actually different, but the derivatjb8]iis quite general, and
the result is independent of the preeifunctional form of the kernel.
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The agreement was extremely good, and showed that the series is rapidly convergent even
in the ultraviolet region (see Eq&.27), (5.28) and (5.29)Although it relied at various

points on conjectures, we would also like to stress that our derivation avoided some of the
pitfalls that potentially afflict more direct computations of tiiéunction: by working in

thel — oo limit, we always dealt with states in which all constituent particles were well-
separated, and so the accuracy of the Betlsatarwavefunctions for high particle density

was not an issue.

There are many open problems related to this project, the first being that the method
proposed, for all its virtues, is not particularly elegant and a direct approach would be
desirable for the generalization to more complicated models. It would also be interesting to
study the correspondirguantities in theories with non-diagonal scattering and in systems
with massless excitations in the by0].

Note added in proof

There is a numerical error in the third term of the expansion fgg Igiven in Eq.(5.29)
above, which was pointed out to us by Ali@shamolodchikov. This is due to an inaccuracy
in Mathematica’s evaluation of the generalised hypergeometric fungtigrnwhich arises
in formula (3.14) of Ref[13] for an associated quantify. In fact, Aliosha Zamolodchikov
has found a simplified expression by, as follows:

5 55 5+1 2
I = >log5— Tf log V5 + 2 cot™l = _0.08393791256821845466150

8 J5-1 4 5
(6.1)

(this contrasts with the value 0.083937990.. quoted in Ref[13]). Accordingly, the
prediction(5.29)above should be corrected to

Ingy () ~—0.3214826953191634 0.48369244373469682

— 0.2531175700933716+ 0.0775x2 — 0.036x3 + 0.0195x* + - - -
(6.2)

with an even better match {&.28) We would like to thank Aliosha Zamolodchikov for
discussions of this point.
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Appendix A. TBA and BA in purely elastic scattering models
In this appendix we summarise the equations relevant to our analysis.
A.1. Periodic boundary conditions

The thermodynamic Bethe ansatz equationg E¢

N
€a(6) = M, L coshy — Z/d@’qsab(e —0)Ly®) (a=1,....N). (A1)
b:]‘R

The ground state energy on a circle is expressed in terms of the funétjefs= In(1 +
e_sa(e)) as

N
. de
ES™(M,L)=— E / > Ma cosh9L,(0) + EM?L, (A.2)
ale

WhereSMlzL is the bulk contribution to the energy and
i d

Pab(0) = —Z%In Sab(0). (A.3)

A2. (a,p) boundary conditions

The (R-channel) thermodynamic Bethe ansatz equatiorjd @e
— _ @ ;% _g\r@(; T
€.(0) =2M, R cosh) In(Ra (z > Q)Rﬁ (z > + 9))

N
=3 [ @0 guto = 0Ls0". (A4)

b=1p

wherea =1, ..., N; the ground state energy on an interval of lengtls then

N
- do
ESPM, Ry =— ) / M COSILy(0) + EMER + fu+ fp, (A.5)
a:lR
where the constarft is the same as i(A.2), fi, and fg are R-independent contributions

to the energy from the boundaries a{ritff’)(e), R/(;’)(e)} are the reflection amplitudes cor-
responding to the two boundary conditiomsand 8. Generalisations of these equations
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govern the excited state energiE%t“p(M, R) [12],° but in the largeR limit we are inter-
ested in, they reduce to simple (Bethe ansatz) forms. Suppose thahtbgcited state is
made up ofn = Zi:’:lm(“) particles,n@ being the number of particles of type Then

N m@
EY™M, R) — Eg™ (M. R) =Y > My cosh® + 0 (e M), (A.6)
a=1 i=1

where sums on the RHS with® = 0 are understood to be omitted, and the sets of num-
bers{@i(“)} satisfy the Bethe ansatz equations

271\ = 2M, R sinho ¥ — i In(R@ (6 R\ (6'©
i i o i B i

_ i S iln(—Su(61 +6))

b=1 j#i

N
=YY iIn(=Sw (61 = 0)). (A7)

b=1 j£i

It is to be noted that the logarithmic branches in the Bethe ansatz equations cause some
difficulties in the numerics. We impose the branch cutatso that the functior-i In(RR)

and any of the terms-i In(—S) in (A.7) take values in the range-r, w]. This choice
renders the Bethe ansd#.7) fully anti-symmetric (a change of sign in any of the quantum
numbers@lf“) — —n?“) corresponds to a chan@é“) — —Gi(“)) and one can consistently

restrict{ng")} to strictly positive integers only.

Appendix B. Some exact resultsfor the boundary Ising model

The boundary scattering matrix for the free Majorana fermidlis

it 6\k—isinho
Ri(B) =it —_—— ), B.1
k@) =1 an?—( 4 2>k-|-isinh9 (B.1)
wherek =1— % and# is the boundary magnetic field. Therefore, we have
1 4k coshp
0)=— — B.2
¢:(6) T (cosm cosh20) + 2k2 — 1) (82)
In this appendix we would like to report exact expressions for
1 1
| =Ingiei)=—= [ do (8@ In(1+ e*cost? B.3
N giree = INgx=1() 4/ 9( ( )+7'[COS|’€> n(l+e ) (B.3)

5 Sometimes such generalisations are reqiuéneen to describe the ground state correfdB], but these cases
will not concern us here.
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and

) In(1+ e~ coSH). (B.4)

1 1
In gfixed=INghe—ooc() =—= | dO | 5(0) — ———
Sfixed 8k=—o0(l) 4/ ( @) 7 cosho
R

These are obtained from the followingeiatity, which can be deduced by studying the
monodromies of the integrg2.8)along the lines sketched jA1]

1 —xcoshp) __ X
/d@ —oostp In(1+e ) =In(2) - (14 1In(z/x) — ye) —2S(x), (B.5)
R
whereyr = 0.57721566. . is the Euler—-Mascheroni constant and

ad x+(2n—1)7r—\/(2n—1)2712~|—x2:| X )
Sx) = I + . B.6
0 ;(n[x—(2n—1)7r+\/(2n—1)2712~|—x2 (2n—Dr (B.6)

The idea of the derivation is to detemaithe positions of the singularities (B.6) using
the pinched-contour argument @], adding counterterms to make the infinite sSw)

convergent. The remaining parts @.5) were then fixed by studying the — 0 limit.

(Alternatively, (B.5) can be proved using the Bessel-function technigu@®f23]and an
identity due to Schlémilcf24].) From(B.5), we have

[
4Ingireestixedl) = —IN(1+ ') F (In(2) - ;(1+ InGr/1) — ye) — 25(l)>~
(B.7)
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