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The Third Cohomology 2-Group

Alan S. Cigoli , Sandra Mantovani , and Giuseppe Metere

Abstract. In this paper we show that a finite product preserving opfibration can
be factorized through an opfibration with the same property, but with groupoidal
fibres. If moreover the codomain is additive, one can endow each fibre of the new
opfibration with a canonical symmetric 2-group structure. We then apply such
factorization to the opfibration that sends a crossed extension of a group C to
its corresponding C-module. The symmetric 2-group structure so obtained on the
fibres, defines the third cohomology 2-group of C, with coefficients in a C-module.
We show that the usual third and second cohomology groups are recovered as
its homotopy invariants. Furthermore, even if all results are presented in the
category of groups, their proofs are valid in any strongly protomodular semi-
abelian category, once one adopts the corresponding internal notions.

Mathematics Subject Classification. 20J06, 18E13, 18G45, 18D30.

Keywords. 2-Groups, Cartesian monoidal opfibration, Cohomology, Crossed
extension, Semi-abelian category.

1. Introduction

For a fixed group C, let Mod(C) denote the category of C-modules, whose objects
are pairs (B, ξ), with ξ : C × B → B a group action on the abelian group B, and
morphisms are equivariant group homomorphisms. Mod(C) is an abelian category,
and it is well known to be equivalent to the category Ab(Gp/C) of abelian groups
in Gp/C (also called Beck C-modules, see [4]).

With any C-module (B, ξ), we can associate the groupoid OpExt(C,B, ξ) of
abelian extensions of C, with kernel B and induced action ξ, where, given an ex-
tension of C with abelian kernel B

0 �� B
j �� E

p �� C �� 0,
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the action of C on B is given by the conjugation action of E, via any pointed
set-theoretical section of p.

If we consider the set π0(OpExt(C,B, ξ)) of connected components, we can
extend the previous assignment to a functor

H2(C,−) : Mod(C) → Set

which preserves finite products. Actually, likewise any Set-valued functor with abelian
domain which preserves finite products, H2(C,−) factors through the category Ab
of abelian groups (see [7], where the Baer sum of abelian extensions in a protomodu-
lar category is introduced in this way). As a consequence, the set π0(OpExt(C,B, ξ))
can be endowed with an abelian group structure, which is isomorphic to the usual
H2(C,B, ξ) (see [19]).

It is well known since [16] and [17] that also the cohomology functor H3(C,−)
can be described in a similar fashion, i.e. using crossed extensions (see Sect. 3):

0 �� B
j �� E2

∂ �� E1
p �� C �� 0.

In this case the categories XExt(C,B, ξ) of such extensions are no longer groupoids.
However, their connected components define again a Set-valued functor which pre-
serves finite products. So, it is possible to apply the same argument as for H2(C,−).

In fact, the abelian group structure on π0(OpExt(C,B, ξ)) is nothing but the
shadow of a richer structure of a symmetric 2-group H2(C,B, ξ) which can be defined
directly on OpExt(C,B, ξ) (see [9]). This result has been anticipated by Bourn in [6],
where he singles out some sufficient conditions to lift a monoidal closed structure
to the fibres of a given opfibration. The groupoids OpExt(C,B, ξ) are actually the
fibres of an opfibration PC : OpExt(C) → Mod(C) which preserves finite products.
An articulate treatment of the subject can be found in [14], where cartesian monoidal
opfibrations [21] are investigated (see also [24]). It turns out that, when the codomain
of a finite product preserving opfibration is additive, then its fibres are symmetric
2-groups as soon as they are groupoids, and this is precisely what happens in the
case of abelian extensions.

In the present paper we deal with the case of opfibrations as before, but whose
fibres are not groupoids. In Proposition 4.6 we show that a 2-group structure can
still be defined on the fibres of a new opfibration obtained from the original one via
a suitable category of fractions.

The case of crossed extensions is exactly of the kind described above. In fact, the
categories XExt(C,B, ξ) turn out to be the fibres of an opfibration ΠC : XExt(C) →
Mod(C) which again preserves finite products. The first step is to investigate the
category of fractions [BExt](C) of XExt(C) with respect to ΠC-vertical maps (which
are indeed weak equivalences between the underlying crossed modules, see [1]).
Relying on results in [13] and [12], in Theorem 4.2 we show that such fractions can be
described using diagrams called butterflies by Noohi (see [22]). By applying Propo-
sition 4.6, we get that the functor ΠC factors through a new cartesian monoidal
opfibration ΠC with groupoidal fibres. Therefore, for each C-module (B, ξ), the
corresponding fibre of ΠC becomes a symmetric 2-group which can be considered
as the third cohomology 2-group, and will be denoted by H3(C,B, ξ).
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The abelian group π0(H3(C,B, ξ)) of connected components of the 2-group
H3(C,B, ξ) is isomorphic to the usual H3(C,B, ξ), as observed above. On the other
hand, the abelian group π1(H3(C,B, ξ)) given by the automorphisms of the monoidal
identity Iξ is isomorphic to the group H2(C,B, ξ) ∼= π0(H2(C,B, ξ)). This result is
obtained as a consequence of Theorem 4.7, where it is proved that the 2-group
H2(C,B, ξ) is monoidally equivalent to the 2-group Eq(Iξ) of auto-equivalences of
Iξ, with tensor product given by butterfly composition.

We remark here that, although all results are presented having as base category
the category of groups, all proofs are indeed internal, in the sense that they can be
performed in any strongly protomodular semi-abelian category (see [5]), once one
adopts the corresponding internal notions.

We use sans-serif capital letters for categories (A,B etc.). Composition of
arrows (1-cells) f, g is denoted g · f , or just gf . Binary products in a category B
are denoted as usual, with projections pr1, pr2. We denote by 2Gp the 2-category of
2-groups; its objects are (not necessarily strict) 2-groups (also known as categorical
groups), morphisms are monoidal functors, and 2-morphisms are monoidal natu-
ral transformations. Their symmetric monoidal version organizes in the 2-category
Sym2Gp. There is a 2-functor

(π0, π1) : 2Gp → Mod

where the category of group modules Mod is considered as a 2-discrete 2-category.
It associates with any 2-group G the group module (π0(G), π1(G)) of its homotopy
invariants, with π0(G) the group of connected components of G and π1(G) the
abelian group of the automorphisms of the identity object of G, endowed with a
canonical π0(G)-module structure (see for instance [3]). Notice that, if the 2-group
is symmetric, the group π0(G) is abelian. Finally, throughout the paper, we will use
the additive notation for any group operation.

2. Preliminaries

In this section we recall from [14] some basic results on monoidal opfibrations,
and complete the description of the symmetric 2-group H2(C,B, ξ) given in the
introduction.

Definition 2.1. Let X,B be categories with finite products, and P : X → B be an
opfibration. We say that P is cartesian monoidal if it strictly preserves finite prod-
ucts and the product of two cocartesian morphisms is still cocartesian.

In other words, cartesian monoidal
opfibrations are nothing but monoidal opfibrations, with the monoidal structures
given by cartesian products, see [24, Definition 12.1].

Proposition 2.2. Let X and B be categories with finite products and P : X → B be
an opfibration with groupoidal fibres. Then P is a cartesian monoidal opfibration if
and only if it strictly preserves finite products.
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Proof. It suffices to notice that each morphism in X factorizes through a cocartesian
lifting of its image by P , with a P -vertical comparison morphism, hence an isomor-
phism by assumption. So any morphism, in particular any product of morphisms,
is cocartesian. �

If the codomain B is an additive category, every object of B is endowed with
a (unique) commutative monoid structure. In this case, the monoidal opfibration
induces on its fibres and on change-of-base functors canonical symmetric monoidal
structures, as shown in [21, Theorem 4.2] (see also [14, Remark 4.8]). Furthermore,
we have the following result, see [14, Theorem 5.9].

Theorem 2.3. Let P : X → B be a cartesian monoidal opfibration. If the category B is
additive, then the symmetric monoidal structures induced on the fibres are 2-groups
if and only if the fibres are groupoids.

Let C be a group, and OpExt(C) be the category of abelian extensions of the
group C and their morphisms. The functor P : OpExt(C) → Mod(C), which assigns
to each abelian extension the canonical C-module structure on the kernel, is an
instance of Bourn’s direction functor (see [6]). In op.cit., the author proved that the
latter is an opfibration that preserves finite products and that cocartesian maps are
stable under binary products. In other words, it is cartesian monoidal. As explained
in [14, Section 6.1], since the codomain of P is additive, thanks to Theorem 2.3,
each P -fibre OpExt(C,B, ξ) inherits a symmetric 2-group structure:

H2(C,B, ξ) := (OpExt(C,B, ξ), ⊗, E�)

where the tensor product ⊗ is obtained by the classical construction used to de-
fine Baer sums, before taking the isomorphism classes of extensions. The identity E�

is the canonical extension associated with the semidirect product B�ξ C. Moreover,
each C-module morphism f : B → B′ induces a symmetric monoidal functor

f∗ : H2(C,B, ξ) → H2(C,B′, ξ′).

Concerning the homotopy invariants π0, π1, as recalled in the introduction, we have
that

π0(H2(C,B, ξ)) ∼= H2(C,B, ξ).

On the other hand, the abelian group π1(H2(C,B, ξ)) consists of the automorphisms
of the extension E�. According to [19, Proposition IV.2.1], this can be interpreted
as the group of 1-cocycles, i.e.

π1(H2(C,B, ξ)) ∼= Z1(C,B, ξ).

3. Crossed Extensions

Recall that a crossed module consists of a group homomorphism ∂ : E2 → E1,
endowed with an action of E1 on E2, satisfying the following conditions:

(i) ∂(g ∗ x) = g + ∂x − g (Pre-crossed module)

(ii) ∂x1 ∗ x2 = x1 + x2 − x1 (Peiffer)
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Crossed modules, and their usual morphisms, organize in a category, which
is equivalent to the category of internal groupoids in the category of groups. To
fix notations, let us recall that each crossed module ∂ corresponds to the internal
groupoid

E2 � E1

d ��

c
�� E1,�� (3.1)

where the semidirect product operation is induced by the given action of E1 on E2

and the morphisms d and c are as follows:

d(x, g) = ∂x + g,

c(x, g) = g.

Let C be a group. A crossed extension E of C is given by

0 �� B
j �� E2

∂ �� E1
p �� C �� 0

where ∂ is endowed with a crossed module structure, with B and C fixed kernel and
cokernel, respectively. Morphisms of crossed extensions of C are given by commu-
tative diagrams:

0 �� B
j ��

β
��

E2

f2

��

∂ �� E1
p ��

f1

��

C �� 0

0 �� B′ j′
�� E′

2
∂′

�� E′
1

p′
�� C �� 0

where the middle square is a crossed module morphism. We denote by XExt(C) the
category of crossed extensions of C.

In each crossed extension the kernel B is central and it comes equipped with a
C-module structure (B, ξ), where ξ is the action of C over B induced by the action
of E1 on E2 (see for instance [8]).

One can lift a given crossed extension along a C-module morphism β : (B, ξ) →
(B′, ξ′) by means of what is called the push forward along β (see [2], or [10] for the
semi-abelian version):

0 �� B
j ��

β
��

p.f.

E2
∂ ��

��

E1
p �� C �� 0

0 �� B′ �� B′ ×B E2
∂′

�� E1
p �� C �� 0

Such liftings are universal, i.e. the functor PC : XExt(C) → Mod(C) is an opfibration
(see [11, Section 4]). Actually, it is also cartesian monoidal. A proof in the context
of strongly semi-abelian categories, based on properties of Bourn’s 1-dimensional
direction functor, can be found in [23].
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Indeed, PC has not groupoidal fibres, since morphisms in the fibre over (B, ξ)
are of the kind (1, f1, f2, 1):

0 �� B
j �� E2

∂ ��

f2

��

E1
p ��

f1

��

C �� 0

0 �� B
j′

�� E′
2

∂′
�� E′

1

p′
�� C �� 0

which induce weak equivalences of crossed modules (see [1]). Such maps do not have
inverses in general, so that it is not possible to endow the fibres of PC with a 2-group
structure. The idea is to turn PC into an opfibration with groupoidal fibres, but still
cartesian monoidal. This will be performed in the next section.

4. The Symmetric 2-Group H3(C, B, ξ)

The categorical construction that we need in order to make PC-vertical morphisms
invertible consists in taking the corresponding category of fractions. We rely on
results obtained in [1], where such fractions are described by means of suitable
diagrams called butterflies (see [22]).

A butterfly between two crossed extensions of C is depicted as a diagram

0 �� B
j �� E2

∂ ��

κ
���

��
��

��
� E1

p �� C �� 0

F

γ ���
��

��
��

�

δ

����������

0 �� B′
j′

�� E′
2

∂′
��

ι

����������
E′

1
p′

�� C �� 0

(4.1)

where the following conditions are satisfied:
(i) δ · κ = ∂, γ · ι = ∂′ and p · δ = p′ · γ,
(ii) (κ, γ) is a complex, i.e. γ · κ = 0 and (ι, δ) is a short exact sequence, i.e.

δ = coker ι and ι = ker δ,
(iii) the action of F on E2, induced by the one of E1 on E2 via δ, makes κ a

pre-crossed module,
(iv) the action of F on E′

2, induced by the one of E′
1 on E′

2 via γ, makes ι a
pre-crossed module.

We will use the short notation ̂F : E → E′ to denote the above butterfly.
With each butterfly ̂F : E → E′ as in (4.1), one can associate a C-module

morphism β : B → B′. In order to describe how it is constructed, let us recall
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from [1] that each butterfly induces a span of crossed module morphisms as in the
right-hand side of the following diagram:

B

��
��
��
��
��

��
��
��
��
��

j �� E2
∂ ��

κ
���

�
�

� E1

B

β ���
��

��
��

��
�

j �� E2 × E′
2

pr1

		���������

pr2
��	

		
		

		
		

κ	ι �� F

γ ��















δ



��������

B′ j′
�� E′

2
∂′

��

ι



�
�

�
�

E′
1

(4.2)

where the crossed module κ
ι is the cooperator (see [5]) of the arrows ι and κ,
which exists since the images κ(E2) and ι(E′

2) commute in F (see [1] for details).
More explicitly, κ
ι(x, x′) = κx + ιx′. Now, the square δ · κ
ι = ∂ · pr1 turns out to
be a pullback, so that one can choose B as a kernel of κ
ι via a morphism j with
pr1 ·j = j. We call β : B → B′ the unique morphism such that j′ ·β = pr2 ·j, whence
j(b) = (j(b), j′β(b)).

Actually, β is a C-module morphism, so it admits an opposite −β. Notice that

κ · j = ι · j′ · (−β). (4.3)

One can prove this by showing that κ · j + ι · j′ · β = 0. The same argument holds
in any semi-abelian category (see [5, §1] for details on symmetrizable morphisms).
Consider the commutative diagram

E2

B

j
��

j′β ��

〈1,1〉 �� B × B
1×β �� B × B′ j×j′

�� E2 × E′
2

pr1



pr2
��

κ	ι �� F

E′
2

The composite κ
ι · (j × j′) · (1 × β) is the cooperator of κ · j with ι · j′ · β, so that
precomposition with the diagonal 〈1, 1〉 : B → B × B yields the sum κ · j + ι · j′ · β
(see Definition 1.3.21 in [5]). This sum is trivial since (j × j′) · (1 × β) · 〈1, 1〉 = j,
the two terms being equal by composition with product projections.

After our discussion above, we are allowed to report more information in the
picture of a butterfly. For instance, diagram (4.1) becomes:

0 �� B

β

���
�
�
�
�
�
�

j �� E2
∂ ��

κ
���

��
��

��
� E1

p �� C �� 0

F

γ ���
��

��
��

�

δ

����������

0 �� B′
j′

�� E′
2

∂′
��

ι

����������
E′

1
p′

�� C �� 0
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where β is dashed in order to remind the reader that the pentagon on the left only
commutes up to a −1 factor. Notice that, on the other hand, the pentagon on the
right does commute, since p · δ = p′ · γ by hypotesis.

Butterflies between crossed extensions can be composed, and details can be
found in [1]. Here we just describe the construction of the composite butterfly. Let
us consider two butterflies ̂F : E → E′ and ̂F ′ : E′ → E′′. The following diagram
illustrates the composition ̂F ′ · ̂F (the kernels and cokernels of the involved crossed
modules are omitted in the diagram, for the sake of clarity)

E2

〈κ,0〉

��








∂
���������

κ
���

��
��

��
� E1

F

γ ���
��

��
��

�

δ

����������

F ′ · F

δ·p1 ��

γ′·p2

��

F ×E′
1
F ′q��

p2

����
���

���
���

���
�

p1

������������������
E′

2

〈ι,κ′〉��
∂′

���������

κ′

���
��

��
��

ι

����������
E′

1

F ′

γ′ ���
��

��
��

�

δ′

���������

E′′
2

〈0,ι′〉

������������������
∂′′

���������
ι′

����������
E′′

1

(4.4)

In diagram above, F ×E′
1

F ′ is the pullback over the pair (γ, δ′), q is the cokernel
of 〈ι, κ′〉, γ′ · p2 and δ · p1 are the unique arrows such that γ′ · p2 · q = γ′ · p2 and
δ · p1 · q = δ · p1 respectively. The resulting butterfly F̂ ′ · F : E → E′′ is given by the
complex (q · 〈κ, 0〉, γ′ · p2) and the short exact sequence (q · 〈0, ι′〉, δ · p1).

Identity butterflies are depicted as follows:

0 �� B

�
�
�
�
�
�
�

�
�
�
�
�
�
�

j �� E2
∂ ��

ker(d) ���
��

��
��

��
E1

p �� C �� 0

E2 � E1

d ���
��

��
��

��

c

		���������

0 �� B
j

�� E2
∂

��
ker(c)

		���������
E1 p

�� C �� 0

(4.5)

where c and d are as in (3.1).

Definition 4.1. We say that two butterflies ̂F , ̂F ′ : E → E′ are isomorphic to each
other if there exists an isomorphism σ : F → F ′ such that

σ · ι = ι′, σ · κ = κ′, γ′ · σ = γ, δ′ · σ = δ.

By taking isomorphism classes of butterflies as morphisms between crossed
extensions of C, we get a category [BExt](C). From Proposition 6.4 in [13] and
Proposition 3.14 in [12] we obtain the following result.
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Theorem 4.2. The category [BExt](C) is the category of fractions of XExt(C) with
respect to PC-vertical maps, by means of a functor QC : XExt(C) → [BExt](C) which
is the identity on objects.

Remark 4.3. A description of QC on morphisms can be found in [13, Section 6.4].
Those butterflies representing a class in the image of QC are called representable.
On the other hand, as proved in [9], those butterflies whose isomorphism class is
invertible in [BExt](C) are precisely the ones where also (κ, γ) is a short exact
sequence. These are called flippable butterflies.

Actually, [BExt](C) is the classifying category of the bicategory of butterflies
of crossed extensions of C. It was proved in [1] that butterflies provide a bicategory
of fractions of crossed modules with respect to weak equivalences, so that the above
theorem can be seen as a shadow of this result.

Theorem 4.2 is important in our context also because it shows that the cate-
gory of fractions of XExt(C) we need, is still a locally small category. Going back
to the functor PC : XExt(C) → Mod(C), recall that it sends PC-vertical maps to
isomorphisms. Hence, by the universal property of QC , we get a factorization of PC

given by

XExt(C)
QC

��

PC

��
[BExt](C)

PC

�� Mod(C),
(4.6)

where PC associates with each isomorphism class of butterflies the C-module mor-
phism β described in diagram (4.2) which is invariant under isomorphisms (see
Theorem 6.6 of [13] for details).

Proposition 4.4. In the factorization of diagram (4.6), PC is an opfibration with
groupoidal fibres.

Proof. The thesis follows by Theorem 4.3 of [12], since, in 2-categorical terms, QC

is the coinverter of the identee of PC . �

Now we are going to show that PC inherits from PC the property of being
cartesian monoidal. As for the preservation of finite products, we need a preliminary
Lemma, which follows from results in Section 3.2 of [18] (see also [15]).

Lemma 4.5. Let A be a category with finite products and Σ a class of morphisms in
A which contains identities and such that, if f and g are in Σ, f × g is in Σ as
well. Then the category of fractions A[Σ−1] has finite products and the localization
functor Q : A → A[Σ−1] preserves them.

As an application, we get the following general result.

Proposition 4.6. Let X and B be categories with finite products, and P : X → B an
opfibration strictly preserving them. Consider the factorization

X

P

��
Q

�� Q
P

�� B
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of P through the category of fractions (Q,Q), with respect to the class of P -vertical
morphisms. Then P : Q → B is a cartesian monoidal opfibration with groupoidal
fibres.

If moreover B is additive, each fibre of P is endowed with a symmetric 2-group
structure, and change-of-base functors are symmetric monoidal.

Proof. Lemma 4.5 is applicable, since P -vertical morphisms are closed under finite
products. Hence, finite products in X serve also as finite products in Q. So P pre-
serves finite products as soon as P does. Then by Theorem 4.3 in [12] and Proposi-
tion 2.2, P is a cartesian monoidal opfibration with groupoidal fibres. Finally, when
B is additive, the result follows from Theorem 2.3. �

As observed in Sect. 3, PC : XExt(C) → Mod(C) is a cartesian monoidal opfi-
bration, hence we can apply Proposition 4.6 to get that PC : [BExt](C) → Mod(C)
is a cartesian monoidal opfibration with groupoidal fibres. Moreover, the codomain
Mod(C) is an additive category, so by Theorem 2.3 each fibre of PC becomes a
symmetric 2-group, which can be considered as the third cohomology 2-group of C
with coefficients in (B, ξ) and denoted by H3(C,B, ξ).

It is easy to see that if one considers connected components, the tensor opera-
tion induces precisely the Baer sum, which makes π0(H3(C,B, ξ)) a group (isomor-
phic to H3(C,B, ξ)).

As a matter of fact, for a given crossed extension

E : 0 �� B
j �� E2

∂ �� E1
p �� C �� 0,

any representative of the inverse of the class [E] in π0(H3(C,B, ξ)) is a pseudo-
inverse of E in H3(C,B, ξ). For example, one can take

E∗ : 0 �� B
−j �� E2

∂ �� E1
p �� C �� 0.

To the reader’s convenience, we provide here a proof of this fact. First, we have to
compute the tensor product E ⊗ E∗ of the two crossed extensions above, then find
a flippable butterfly in the fibre over (B, ξ) between E ⊗E∗ and the unit object Iξ:

0 �� B B
0 �� C C �� 0

of H3(C,B, ξ). This process is summarized in the diagram below:

0 �� B × B

[1,1]

��

j×(−j)��

p.f.

E2 × E2

f2

��

∂×∂ ��

ϕ

��

�
�


�
�
�
�

E1 ×C E1

p·pr2 �� C �� 0

0 �� B
j′

��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ker(c)·(−j)
��

� � � � � � � � �  ! " "

Ker(p · c) ∂′
��

ker(p·c)
###

#

��##
##

E1 ×C E1

p·pr2 �� C �� 0

E2 � E1

p·c

��$$
$$$

$$$
$$$

$

〈c,d〉

��%%%%%%%%%%%

0 �� B B
0 ��

ker(c)·j ��&&&&&&&&&&&&
C C �� 0
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The arrow ϕ : E2 × E2 → E2 � E1 is the cooperator of ker(d) : E2 → E2 � E1

with ker(c) : E2 → E2 � E1, where d and c are as in diagram (3.1). More explicitly,
ϕ(x1, x2) = (−x1+∂x1∗x2, ∂x1). It is easy to check that ϕ·(j×(−j)) = ker(c)·(−j)·
[1, 1]. Moreover, both the dashed arrows factor uniquely through the kernel of p · c,
hence we get the upper left commutative diagram. Now consider the commutative
diagram

B
j′

�� Ker(p · c)

(a)ker(p·c)
��

∂ �� Ker(p · pr2)

(b)ker(p·pr2)
��

�� 0

��
B

ker(c)·(−j) �� E2 � E1

〈c,d〉 �� E1 ×C E1

p·pr2 �� C.

Both squares (b) and (a) + (b) are pullback, so by cancellation (a) is a pullback.
Hence, since ker(c) · (−j) is a kernel of 〈c, d〉, j′ is a kernel of ∂. Notice that 〈c, d〉
is a regular epimorphism, since it is the comparison arrow of the internal groupoid
E2 � E1 to its support E1 ×C E1 (i.e. the kernel pair of the coequalizer p of d and
c). Let us denote ∂′ = 〈c, d〉 · ker(p · c). One can check that ker(p · pr2) · ∂ · f2 =
〈c, d〉 · ϕ = ∂ × ∂. But ∂ × ∂ = ker(p · pr2) · ∂ × ∂, where ∂ × ∂ is a cokernel of
j × (−j), so that ∂ · f2 = ∂ × ∂.

The observations above explain that the commutative square f2 · (j × (−j)) =
j′ · [1, 1] induces isomorphisms on kernels and cokernels of the horizontal arrows,
hence it is a push forward, thanks to [10, Theorem 2.13]. As a consequence, by
construction (p ·pr2, ∂′, j′) is the tensor product E ⊗E∗. Furthermore, we obtain an
isomorphism, represented by the flippable butterfly Ê2 � E1, between E ⊗ E∗ and
the unit object Iξ.

As recalled in the introduction, associated with any 2-group G, beside π0(G)
there is also the abelian group π1(G) of automorphisms of its unit object. Let us
investigate it in our context.

It was proved in [9] that elements in π1(H3(C,B, ξ)) are exactly (isomorphism
classes) of butterflies of the form:

0 �� B

�
�
�
�
�
�
�

�
�
�
�
�
�
� B

0 ��

−κ ���
��

��
��

� C C �� 0

E
γ

���
��

��
��

�

γ



��������

0 �� B B
0

��

κ

����������
C C �� 0

(4.7)

As observed in [9], both π1(H3(C,B, ξ)) and π0(H2(C,B, ξ)) are isomorphic to the
abelian group H2(C,B, ξ). More is true: by defining Φ(κ, γ) as the butterfly in (4.7),
one gets a monoidal equivalence

Φ: H2(C,B, ξ) → Eq(Iξ),
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where Eq(Iξ) is the 2-group with objects the butterflies as in (4.7), and arrows the
isomorphisms of such butterflies, with tensor product given by butterfly compo-
sition. Indeed, since π0(Eq(Iξ)) is isomorphic to π1(H3(C,B, ξ)), π0(Φ) makes the
latter isomorphic to π0(H2(C,B, ξ)), as recalled above.

Theorem 4.7. Given a C-module B with action ξ, the assignment Φ gives rise to a
symmetric strict monoidal equivalence between the symmetric 2-groups H2(C,B, ξ)
and Eq(Iξ).

Proof. Let us recall the construction of the Baer sum in H2(C,B, ξ) of two abelian
extensions

E : B
κ �� E

γ �� C E′ : B
κ′

�� E′ γ′
�� C

of cokernel C and abelian kernel B. In order to get their Baer sum E⊕E′ (displayed
in the left-most vertical sequence of maps, diagram (4.8) below)

B

κ̄
��

(a)

B × B
[1,1]��

κ×Cκ′
��

B × B

κ×κ′
��

E ⊕ E′

γ̄

��

E ×C E′p�� 〈p1,p2〉 ��

r

��
(b)

E × E′

γ×γ′

��
C C 〈1,1〉

�� C × C

(4.8)

first take the pullback (b) of γ × γ′ along the diagonal map 〈1, 1〉 of C (i.e., take the
pullback of γ along γ′), then take the pushforward (a) of the kernel κ ×C κ′ along
the codiagonal [1, 1] of the abelian object B. The short exact sequence (κ̄, γ̄) is the
Baer sum of (κ, γ) and (κ′, γ′).

On the other hand, if we consider Φ(E) and Φ(E′) (as in diagram (4.7)), and
we take their composite as butterflies, we get the following construction:

B

〈−κ,0〉

��''
''
''
''
''
''
''
''

0
��

−κ ���
��

��
��

� C

E

γ
���

��
��

��
�

γ

����������

E′ · E

γ·p1
��

γ′·p2

��

E ×C E′q��

p2
����

���
���

���
���

�

p1

�����������������
B

〈κ,−κ′〉��
0

��

−κ′

���
��

��
��

�

κ

����������
C

E′

γ′
���

��
��

��
�

γ′



��������

B

〈0,κ′〉

������������������
0 ��

κ′

����������
C

(4.9)
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Now, thanks to Lemma 4.8 below, the composite q·〈0, κ′〉 in diagram (4.9) is actually
a pushforward of κ ×C κ′ along [1, 1]. As a consequence, the short exact sequence
(κ̄, γ̄) of diagram (4.8) coincides with the short exact sequence (q · 〈0, κ′〉, γ · p1) of
diagram 4(4.9). Therefore, the identity Φ(E ⊕ E′) = Φ(E′) · Φ(E) holds.

As far as the monoidal units are concerned, it is clear that the image of the
unit object of H2(C,B, ξ)

E� : B
iB �� B � C

pC �� C

under Φ is given by the identity butterfly of the crossed extension Iξ = (1B, 0, 1C):

0 �� B

�
�
�
�
�
�
�

�
�
�
�
�
�
� B

0 ��

−iB ���
��

��
��

��
C C �� 0

B � C

pC
���

��
��

��
��

pC

  (((((((((

0 �� B B
0

��
iB

  ���������
C C �� 0

Finally, by means of the universal properties used in the composition of but-
terflies, one easily determines a canonical natural isomorphism

σE,E′ : Φ(E ⊕ E′) = Φ(E′) · Φ(E) ∼= Φ(E) · Φ(E′) = Φ(E′ ⊕ E)

which makes Φ symmetric monoidal. �
Lemma 4.8. The square of solid arrows in diagram (4.10) below presents q · 〈0, κ′〉
as the pushforward of κ ×C κ′ along [1, 1].

B

q·〈0,κ′〉
��

B × B
[1,1]��

κ×Cκ′
��

E · E′

γ·p1

���
�
� E ×C E′q��

r

���
�
�

C �������� �������� C

(4.10)

Proof. First we prove that the candidate pushforward square is commutative. This
can be done by precomposing with the jointly epimorphic pair

B
〈0,1〉 �� B × B B.

〈1,−1〉��

Indeed,

q · 〈0, κ′〉 · [1, 1] · 〈0, 1〉 = q · 〈0, κ′〉 = q · (κ ×C κ′) · 〈0, 1〉,
q · 〈0, κ′〉 · [1, 1] · 〈1, −1〉 = 0 = q · 〈κ, −κ′〉 = q · (κ ×C κ′) · 〈1, −1〉.

As a second step we prove that the dashed square commutes. To this end, let us
consider the square (b) of diagram (4.8). One has:

〈1, 1〉 · r = 〈γ · p1, γ
′ · p2〉 = 〈γ · p1, γ · p1〉 = 〈1, 1〉 · γ · p1 = 〈1, 1〉 · γ · p1 · q

Canceling the monomorphism 〈1, 1〉 on both sides, one obtains r = γ · p1 · q.
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Summarizing, diagram (4.10) shows that the pair ([1, 1], q) is a morphism of
crossed modules between normal monomorphisms with isomorphic cokernels, hence
a pushforward, thanks to [10, Theorem 2.13]. �
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