
Improving the Theoretical Precision
and Looking for New Physics in the

Flavour Sector

Dissertation
zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)

vorgelegt der
Mathematisch-naturwissenschaftlichen Fakultät

der
Universität Zürich
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Abstract

The decays of B mesons exhibit intriguing puzzles. There are departures of experimental
measurements from standard model expectation, indicating the presence of new physics, but
there is also a persistent discrepancy between the inclusive and exclusive determinations of Vcb,
the so-called Vcb puzzle.

In the first part of this thesis we examine the Vcb puzzle. To this end we perform a study
of a new method for computing inclusive observables in lattice QCD. Inclusive observables are
computed on the lattice at an unphysically low b quark mass and subsequently compared to
results of an OPE calculation. We find a generally good agreement between lattice and OPE
results despite numerical challenges.

Staying on the topic of inclusive B decays we then study the impact of higher dimensional
terms in the weak effective Hamiltonian on inclusive observables. These effects can in principle
receive enhancements in the phase space integration and therefore naive estimates are not
sufficient to predict their size. Therefore they are computed explicitly and their dependence
on lower cuts in the phase space integration is studied.

For the second part of this thesis we shift our focus to the discrepancies between standard
model predictions and measured values in branching ratios and angular variables in exclusive
B → K(∗)µ+µ− decays. The SM predictions for these observables receive hadronic long-
distance contributions which cannot be quantified within the realm of perturbation theory. We
employ a dispersive formulation of intermediate cc resonances to determine C9 from different
regions of q2 and decay channels. The results we find strongly indicate the presence of a missed
short-distance contribution in the current standard model analysis of b→ s`` decays.
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Chapter 1

Introduction

1.1 The Scientific Method

A core principle of scientific theories is falsifiability. They have to admit the possibility of
being proven wrong by empirical evidence. Thanks to this they can describe how nature works
but not why it works in the way it does. In this sense scientific theories can answer questions
starting in with ”how”, but not those starting with ”why”.

On the other hand it is utterly impossible to prove any theory right by observations or
experiments. It is however possible to improve a theory by empirically testing it and updating
it, if it does not survive a test. This is the scientific method.

Thus the basis of scientific progress is constantly scrutinizing the state-of-the-art theories
and trying to prove them wrong. As soon as the currently accepted theory can be disproved
by an experiment there is a clue potentially leading to a more general one.

How good a theory is can be assessed by the number of tests it survives. Additionally it
should make predictions for measurable effects. The more new predictions a theory makes,
which are subsequently confirmed experimentally, the better the theory.

By these measures the Standard Model of particle physics (SM) is the best theory ever
found by humankind. Its predictions have been tested over an energy range of more than
10 orders of magnitude, most of which have been confirmed to an impressive accuracy. In
fact the SM is too good! There is no single significant disagreement between an experimental
measurement and the corresponding theory prediction.

This is not to say that there are no discrepancies at all. In decays of B mesons to lighter
mesons and two leptons, so–called semileptonic decays, intriguing discrepancies between the-
ory and experiment are observed. As some of the observables in question suffer from large
uncertainties and each measurement on its own does not deviate significantly enough from the
SM expectation to claim discovery, the path forward is not immediately clear.

In order to scrutinize these discrepancies and make the most of the available data a combined
effort on both, the experimental and the theoretical side, is necessary.

To this end a theory program with the goal of

• building new models to explain the discrepancies

• performing independent checks of established computational frameworks

• improving the precision of theory predictions

is being carried out. Here we are concerned with the two latter points.
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1.2 Structure of this Thesis

The present thesis is structured in three parts. The first part, consisting of chapters 2 and 3
the SM and concept of Effective Field Theories (EFT’s) are introduced.

In the second part, consisting of chapters 4 to 6, we discuss inclusive semileptonic decays of
B mesons. chapter 4 serves as a general introduction of the heavy quark expansion for inclusive
B decays. After introducing the necessary methods we apply them in chapter 5 to test the
heavy quark expansion against a new method for computing inclusive observables in lattice
QCD. The second part ends with a study of contributions from higher dimensional operators
in the weak effective Hamiltonian to inclusive observables. we derive the leading new physics
contribution to the a new method of computing observables in inclusive decays of B mesons
is studied and new corrections to them are computed. The following chapter treats exclusive
decays of B mesons, scrutinizing the tension between theory prediction and measurement of
the differential decay rate in b→ sll processes.

For the third and last part of this thesis, consisting of chapter 7, we turn to the study of
exclusive decays of B mesons, where the complete final state is resolved. Unfortunately this
additional information comes at a price. Contrary to inclusive observables in b→ c decays, the
observables in exclusive b→ s`` decays suffer from uncertainties originating in our knowledge of
form factors and charm-loops. After introducing the problem of these charm-loops we employ
a dispersive treatment of intermediate charm resonances to determine the Wilson coefficient
C9 from experimental data in different kinematical regions and from different decay channels.

1.3 Conventions and Abbreviations

Throughout this thesis we will use the following conventions for the Levi-Civita tensor and the
Minkowski metric:

• ε0123 = +1

• gµν = diag (1,−1,−1,−1)

Here we list the abbreviations used in the present thesis in the order of appearance:

• SM: Standard Model of Particle Physics

• EFT: Effective Field Theory

• VEV: Vacuum expectation value

• PT: Perturbation theory

• NLO: Next-To-Leading Order

• OPE: Operator Product Expansion

• HQE: Heavy Quark Expansion

• WC: Wilson Coefficient

• LQCD: Lattice QCD

• FCNC: Flavour Changing Neutral Current

9



Chapter 2

The Standard Model of Particle
Physics

This chapter serves as an introduction of the Standard Model of Particle Physics (SM) [150,
213,220]. As there are many excellent textbook introductions to the SM, for example [209–211],
it is by no means meant to be a complete account of this remarkable theory. Instead it serves
to introduce the concepts on which the work in chapters 4 and 7 is based.

2.1 Gauge Invariance

The SM is a gauge theory based on the symmetry group

GSM = SU(3)c × SU(2)L × U(1)Y .

Its minimal version without right-handed neutrinos and thus without neutrino masses contains
15 fermion fields describing the contents of matter. In table 2.1.1 they are listed together with
their transformation properties under the SM gauge group GSM. In the following we build

Fermion field SU(3)C rep. SU(2)L rep. U(1)Y charge

LfL 1 2 −1
2

Ef
R 1 1 −1

Qf
L 3 2 1

6

U f
R 3 1 2

3

Df
R 3 1 −1

3

Table 2.1.1: Fermion of content of the Standard Model. The index f ∈ {1, 2, 3} specifies the
fermion generation.

the most general renormalizable Lagrangian which is invariant under local transformations of
the group GSM with the given fermion content, beginning with the kinetic energy terms of the
fermion fields.

For a fermion field ψ and defining ψ = ψ†γ0 and /∂ = γµ∂µ, terms of the form ψ/∂ψ are
invariant under global transformations the SM group GSM but not under local transformations.
In order to restore their invariance under local transformations the derivative operator has to
be adjusted.

10



Let us look at the QCD subgroup SU(3)c as an example. A global SU(3)c transformation
of a quark field ψ takes the form

ψi(x)→ ψ
′
(x) = eiθ

aTaijψj(x)

ψi(x)→ ψ
′
i(x) =

(
eiθ

aTajiψj(x)
)†
γ0 = ψj(x)e−iθ

aTaji , (2.1.1)

where T a are the eight generators of SU(3) and the term global refers to the fact that the
parameters θa are independent of the spacetime coordinate x. If the symmetry is gauged, that
is to say it is promoted to a local symmetry, this restriction is not valid anymore. A local
SU(3)c gauge transformation acts on a fermion field as

ψi(x)→ ψ
′
(x) = eiθ

a(x)Taijψj(x). (2.1.2)

Due to the explicit dependence of the parameters θa on x the term ψ/∂ψ is not invariant under
local SU(3)c gauge transformations. Explicitly it term transforms as

ψ(x)/∂ψ(x)→ ψ(x)/∂ψ(x) + ψ(x)e−iθ
a(x)Taij

(
/∂eiθ

a(x)Taij

)
ψ(x). (2.1.3)

The invariance under gauge transformations can be recovered however by introducing the gauge
boson fields Ga

µ. They are added to the derivative, forming the covariant derivative

Dµ = ∂µ1− igsGµ. (2.1.4)

Now the invariance of terms of the form ψ /Dψ can be imposed by demanding that the gauge
fields transform as

Gµ → eiθ
a(x)TaGµe

−iθa(x)Ta +
i

gs
eiθ

a(x)Ta
(
∂µe

−iθa(x)Ta
)

(2.1.5)

such that

Dµ → D
′

µ = ∂µ − igsG
′

µ

= ∂µ + eiθ
a(x)Ta

(
∂µe

−iθa(x)Ta
)
− igseiθ

a(x)TaGµe
−iθa(x)Ta

= eiθ
a(x)Ta (∂µ − igsGµ) e−iθ

a(x)Ta

= eiθ
a(x)TaDµe

−iθa(x)Ta . (2.1.6)

The covariant derivative has the correct transformation behavior to render the term ψ /Dψ
invariant under local SU(3)c transformations:

ψk(x) /Dklψl(x)→ψn(x)e−iθ
a(x)Tankeiθ

a(x)Takr /Drse
−iθa(x)Tasleiθ

a(x)Talmψm(x)

= ψk(x) /Dklψl(x). (2.1.7)

This yields the massless QCD Lagrangian

LQCD, massless =
3∑

f=1

∑
ψf∈{QfL,U

f
R,D

f
R}

ψ
f

k

(
iγµ
(
∂µδkl − igsGa

µT
a
kl

))
ψfl . (2.1.8)

Here the QCD gauge field Gµ = Ga
µT

a is expanded in terms of the SU(3) generators. A mass

term of the form mψψ would be compatible with the SU(3)c symmetry but break the SU(2)L
symmetry describing weak interactions so it is omitted here.
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As can be seen in eq. (2.1.6) the covariant derivative itself is not gauge invariant. But a
gauge invariant object can be built out of the gauge field strength

Gµν =
i

g
[Dµ, Dν ] = ∂µGν − ∂νGµ − ig [Gµ, Gν ] . (2.1.9)

On the r.h.s. we can see that the gauge field strength can be expanded in terms of generators
of the gauge group, just like the gauge fields themselves, Gµν = Ga

µνT
a. The trace Tr

(
Ga
µνG

µν
a

)
then is gauge invariant and the kinetic energy of the gauge fields in the Lagrangian can be
written as −1/4Tr

(
Ga
µνG

µν
a

)
.

For the electroweak subgroup SU(2)L × U(1) analogous arguments lead to the covariant
derivative

DEW
µ = ∂µ − ig′Y Bµ − ig

3∑
b=1

W b
µτ

b, (2.1.10)

where Bµ and Wµ gauge field are the U(1)Y and SU(2)L gauge boson fields, respectively and
τ b denote the generators of SU(2). As in the QCD case one can write gauge invariant kinetic
energy terms for the gauge bosons as −1/4Tr

(
W a
µνW

µν
a

)
− 1/4Tr (BµνB

µν) with the index a
running from 1 to 3.

The interactions between gauge bosons and fermions are completely determined by the
Lagrangian

Lmatter + Lgauge =
3∑

f=1

∑
ψf∈{LfL,E

f
R,Q

f
L,U

f
R,D

f
R}

ψ
f
i /Dψψ

f

−1

4

(
8∑

a=1

Gµν
a G

a
µν +

3∑
b=1

W µν
b W b

µν +BµνBµν

)
. (2.1.11)

Here the covariant derivative carries an index ψ indicating that different fermion fields are
acted upon by different covariant derivatives depending on their quantum numbers, explicitly
it reads

Dµ
LL

= ∂µ + ig′
1

2
Bµ − ig

3∑
b=1

W b
µτ

b

Dµ
ER

= ∂µ + ig′Y Bµ

Dµ
QL

= ∂µ − ig′
1

6
Bµ − ig

3∑
b=1

W b
µτ

b − igs
8∑

a=1

Ga
µT

a

Dµ
UR

= ∂µ − ig′
2

3
Bµ − igs

8∑
a=1

Ga
µT

a

Dµ
DR

= ∂µ + ig′
1

3
Bµ − igs

8∑
a=1

Ga
µT

a. (2.1.12)

2.2 Spontaneous Symmetry Breaking

So far all particles in the theory, fermions and gauge bosons, are massless. The problem with
particle masses is that mass terms couple left - and right-handed fields. This can be seen by
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decomposing a fermion field into left- and right-handed components, ψ = ψL+ψR = PLψ+PRψ,
where PL,R are the left- and right handed projectors. They are given by (1 ∓ γ5)/2 and have
the properties P 2

L,R = Id and PL,RPR,L = 0. Then ψL,R = ψ†γ0PR,L = ψPR,L and

mψψ = m
(
ψL + ψR

)
(ψL + ψR) = m

(
ψPLψ + ψPLψ

)
= m

(
ψRψL + ψLψR

)
. (2.2.1)

A term of this form cannot be invariant under SU(2)L because left-handed fields transform
under this group while the right-handed ones do not. Therefore in order to account for fermion
masses the weak symmetry has to be broken. Explicitly breaking the symmetry would mean
giving up on the idea of starting with a gauge symmetry and writing down a Lagrangian density
containing all terms which are invariant under the given symmetry group.

Instead the SU(2)L×U(1)Y symmetry is broken spontaneously by the vacuum expectation
value (VEV) of the scalar Higgs field φ. This field is an SU(2)L doublet with an assigned
hypercharge of 1/2, so it transforms as

φ→ φ
′
= eiθ

b(x)τbei
θ(x)

2 φ. (2.2.2)

With the covariant derivative Dµ
φ = ∂µ− ig′ 1

2
Bµ− ig 1

2

∑3
b=1 W

µ,bτ b one can write the invariant

kinetic energy term (Dµφ)†Dµφ = |Dµφ|2 for the Higgs field. Additional invariant terms can
be built out of the product φ†φ. At mass dimension four there are two possibilities, µ2(φ†φ)
and λ(φ†φ)2, with a dimension-1 constant µ and a dimensionless constant λ. Both terms can
be combined in a Higgs potential

V (φ) = −µ2
(
φ†φ
)
− λ

(
φ†φ
)2
. (2.2.3)

Writing the Higgs field as

φ(x) =

(
1√
2

(φ1(x) + iφ2(x))
1√
2

(φ3(x) + iφ4(x))

)
=

(
φ+(x)
φ0(x)

)
, (2.2.4)

where φ+ and φ0 are complex scalar fields. The VEV is found by minimizing the potential in
the scenario µ2 < 0 and λ > 0, yielding the condition

φ†φ =
1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
= −µ

2

2λ
. (2.2.5)

The vacuum can be fixed to any configuration satisfying this relation. For the choice φ1 =
φ2 = φ4 = 0 and φ3 = v, with v =

√
−µ2/(2λ), is given by

〈φ〉 =
1√
2

(
0
v

)
. (2.2.6)

The action of the generators of SU(2)L × U(1) on the VEV is given by

τ1 〈φ〉 =
1

2
√

2

(
0 1
1 0

)(
0
v

)
=

1

2
√

2

(
v
0

)
τ2 〈φ〉 =

1

2
√

2

(
0 −i
i 0

)(
0
v

)
=

1

2
√

2

(
−iv

0

)
τ3 〈φ〉 =

1

2
√

2

(
1 0
0 −1

)(
0
v

)
= −1

2
〈φ〉

Y 〈φ〉 =
1

2
〈φ〉 . (2.2.7)
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As can be seen here, under general SU(2)L×U(1)Y transformations as given in eq. (2.2.2) the
Higgs VEV transforms non-trivially, that is to say it spontaneously breaks the symmetry! The
only exception are transformations with θ1(x) ≡ θ2(x) ≡ 0 and θ3(x) = θ(x). Transformation
of this form,

〈φ〉 →
〈
φ
′
〉

= eiθ(x)(τ3+Y ) 〈φ〉 (2.2.8)

make up a U(1) subgroup of SU(2)L × UY identified with the QED group describing electro-
dynamics. Consequently the combination

Q = τ 3 + Y. (2.2.9)

is identified with the electric charge operator.
Mass terms for the gauge bosons are now found by expanding the Higgs field around its

VEV as φ(x) = 〈φ〉 + h(x) and plugging it into the Lagrangian. The action of the covariant
derivative on the Higgs VEV turns out to be

Dµ 〈φ〉 =
−iv
2
√

2

(
g
(
W 1
µ − iW 2

µ

)
g
′
Bµ − gW 3

µ

)
. (2.2.10)

Thus the kinetic term of the Higgs field evaluated at its VEV is

|Dµ 〈φ〉|2 =
v2

8

((
W 1
µ

)2
+
(
W 2
µ

)2
+
(
g
′
Bµ − gW 3

µ

)2
)

=
v2

8

(
W 1,µ W 2,µ W 3,µ Bµ

)
g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g

′2



W 1,µ

W 2,µ

W 3,µ

Bµ

 . (2.2.11)

This mass matrix is diagonal in the basis
(
W 1
µ ,W

2
µ , g

′
Bµ − gW 3

µ , g
′
Bµ + gW 3

µ

)
with the corre-

sponding eigenvalues g2, g2, g2 + g
′2, 0. So there is one massless gauge boson and three massive

ones. Not all of these are eigenstates of the electric charge operator however. In order to see
this the transformation rule for the gauge bosons under gauge transformations is needed. From
eq. (2.1.5) it follows that for an infinitesimal transformation

Wµ(x) = W b
µ(x)τ b → i

g
∂µθ

b(x)τ b −
[
W a
µ (x)τa, iθc(x)τ c

]
=
i

g
∂µθ

b(x)τ b − iW a
µ (x)θc(x) [τa, τ c]

=

(
i

g
∂µθ

b(x)− f bacθa(x)W c
µ(x)

)
τ b, (2.2.12)

where f bac are the structure functions of SU(2), defined as
[
τa, τ b

]
= ifabcτ c. So the gauge

fields transform as

W a
µ (x)→ i

g
∂µθ

a(x)− fabcθb(x)W c
µ(x). (2.2.13)

Therefore under global transformations the gauge bosons transform in the adjoint transfor-
mation of the SU(2)L. Note that they do not transform under global U(1)Y transformations
because U(1) is abelian, i.e. all of its structure functions vanish. Noting that the structure
functions of SU(2) are given by fabc = iεabc, where εabc is the totally antisymmetric tensor,
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as can be verified by explicit computation and that the generators in the adjoint representa-
tion are given by

(
τ̃ b
)
ac

= −ifabc, the electric charge operator in the adjoint representation of
SU(2)L × U(1)Y can be written as

Q = τ 3 + Y =


0 i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 . (2.2.14)

Consequently it is diagonalised by the orthonormal basis(
W 1
µ + iW 2

µ√
2

,
W 1
µ − iW 2

µ√
2

,
g
′
Bµ − gW 3

µ√
g′2 + g2

,
g
′
Bµ + gW 3

µ√
g2 + g′2

)
(2.2.15)

with respective eigenvalues −1, +1, 0 and 0. These are the physical electroweak gauge bosons.
Conventionally they are named according to their electric charges. Here we have the charged
W bosons

W∓
µ =

W 1
µ ± iW 2

µ√
2

, (2.2.16)

the neutral but massive Z boson

Zµ =
g
′
Bµ − gW 3

µ√
g′2 + g2

(2.2.17)

and the massless and electrically neutral photon

Aµ =
gBµ + g

′
W 3
µ√

g′2 + g2
. (2.2.18)

In terms of mass and electric charge eigenstates and with the definition τ± = τ 1 ∓ iτ 2 the
electroweak covariant derivative from eq. (2.1.10) then reads

DEW
µ = ∂µ −

ig√
2

(
W−
µ τ
− +W+

µ τ
+
)
− i√

g2 + g′2
Zµ

(
g2τ 3 − g′2Y

)
− igg

′√
g2 + g′2

Aµ
(
τ 3 + Y

)
.

(2.2.19)
From the explicit form of the SU(2) generators in eq. (2.2.7) it is now obvious that the Z boson
and photon do not mix upper and lower members of an SU(2)L doublet. Upper and lower
doublet members are only mixed in interactions with the charged W∓ bosons. As an example
the interactions of left-handed quarks and the negative W boson are explicitly given by

g√
2
Q
f

LW
−
µ τ
−γµQf

L =
g√
2
W−
µ γ

µ
(
ufL d

f

L

)(0 1
0 0

)(
ufL
dfL

)
=

g√
2
W−
µ u

f
Lγ

µdfL. (2.2.20)

The interactions involving leptons and the ones involving the positively charged W boson follow
analogously. Note that at this point all interactions are flavour diagonal! So far decays are
impossible because the fermions have to be massless. This is going to change in the following
section.
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2.3 Fermion Masses and Mixing

There is one more kind of term which is invariant under the SM symmetry. From two fermion
fields and the Higgs field we can build terms of the form ψLφψR. As ψLU

†UφψR = ψLU
†UφψR

for any U in SU(2)L these terms are clearly SU(2) invariant. To make sure that they are
invariant under U(1)Y the hypercharges of the involved fields have to add to 0. Looking at
table 2.1.1 there are three combinations which achieve this, yielding the Yukawa Lagrangian

LYukawa = −
3∑

i,j=1

Y ij
d Q

i

LD
j
Rφ−

3∑
i,j=1

Y ij
u Q

j

LU
j
Rφ

c −
3∑

i,j=1

Y ij
` L

i

LE
j
Rφ+ h.c., (2.3.1)

where the indices i and j denote the fermion generation and

φc = iτ2φ
† =

(
−φ0

φ+

)
(2.3.2)

is the charge conjugate Higgs doublet. When the Higgs field acquires a VEV it can be written
as

φc(x) =
1√
2

(
v + h(x)

0

)
. (2.3.3)

The Yukawa terms are the only terms in the SM Lagrangian which induce interactions between
fermions of different generations. Without them all fermions would be stable!

Analogously to the case of the gauge bosons the fermion masses are found by plugging the
Higgs field expanded around its VEV into the Yukawa Lagrangian. The terms made up of two
fermion fields and one VEV then yield the fermion masses. In order to obtain definite fermion
masses the Yukawa couplings have to be diagonalised. In the lepton sector this can be achieved
by making use of the global flavour symmetry of the matter part of the SM Lagrangian. The
term LSM is invariant under global transformations of the form

ψf → W fg
ψ eiθψψg, (2.3.4)

where f is a generation index and W ∈ SU(3). For example

L
f

Li /DLLL
f
L →L

f

LW
†fg
LL
e−iθLL i /DLLe

iθLLW gh
LL
LhL

= L
f

Li /DLLW
†fg
LL
e−iθLLeiθLLW gh

LL
LhL

= L
f

Li /DLLW
†fg
LL
W gh
LL
LhL

= L
f

Li /DLLδ
fhLhL

= L
f

Li /DLLL
f
L. (2.3.5)

The SU(3) flavour transformations WLL commute with the covariant derivative because the
gauge couplings are equal for all generations. These transformations make up the group

Gflavour = U(1)5 × SU(3)LL × SU(3)ER × SU(3)QL × SU(3)UR × SU(3)DR = U(3)5. (2.3.6)

The lepton Yukawa couplings Y` can then be diagonalised by applying SU(3) transformations
WLL and WER to the left- and right-handed leptons respectively, such that W †

LL
Y`WER is

diagonal. The diagonal elements of this matrix correspond to the lepton masses.
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In the quark sector a complication arises. For the diagonalisation of Yu and Yd in general
four different unitary matrices are needed. Because SU(3)QL transformations act on the upper
and lower members of the left-handed quark doublet in the same way, that is to say only a
simultaneous transformation of up-type and down-type quarks leave the matter Lagrangian
invariant, only three unitary matrices can be chosen in such a way that they do not change
other terms in the Lagrangian.

We can chooseWQL andWUR such that the Yukawa couplings to up-type quarks, W †
QL
YuWUR ,

are diagonal. We can also freely choose WDR without impacting the rest of the Lagrangian but
W †
QL
YdWDR is not diagonal. This can be corrected by introducing a unitary transformation V

rotating the left-handed quark doublets as

Qf
L =

(
uf

df

)
→ V fgQg

L =

(
V fg
u ug

V fg
d dg

)
. (2.3.7)

We choose it in such a way that V †W †
QL
YdWDR is diagonal. As V has to transform up- and

down-type quarks differently the only terms it impacts in the Lagrangian are the interactions
of the charged W bosons with a pair of quarks. The Z boson and photon interactions are
unaffected because they do not mix upper and lower members of an SU(2)L doublet as was
established in the end of section 2.2. The W boson interactions with a pair of quarks from
eq. (2.2.20) then become

g√
2
W−
µ u

f
Lγ

µdfL →
g√
2
W−
µ u

f
LV
†fg
u γµV gh

d dhL =
gV fh

CKM√
2

W−
µ u

f
Lγ

µdhL, (2.3.8)

where we defined the CKM matrix as VCKM = V †uVd. Finally there are couplings between
different flavours of quarks. Thanks to the introduction of the Yukawa terms in the Lagrangian
the fermions obtain masses and heavy fermions can decay into lighter ones of a different flavour.

In general a unitary 3× 3 matrix has 9 parameters, three of which are real rotation angles
and 6 are complex phases but we can change the 5 relative phases between the 6 quarks without
any effect apart from the Yukawa couplings, or equivalently the CKM matrix. By making use
of these, 5 phases can be removed from the CKM matrix. So in the end the CKM matrix
contains 3 real mixing angles and one complex phase.

2.4 The Standard Model

In summary, the SM is a gauge theory based on the symmetry SU(3)c × SU(2)L ×U(1)Y with
the Lagrangian

LSM =Lmatter + Lgauge + LHiggs + LYukawa

=
3∑

f=1

∑
ψf∈{LfL,E

f
R,Q

f
L,U

f
R,D

f
R}

ψ
f
i /Dψψ

f

−1

4

(
8∑

a=1

Gµν
a G

a
µν +

3∑
a=1

W µν
a W a

µν +BµνBµν

)
+
∣∣Dφ

µφ
∣∣2 − µ2 (φ∗φ)− λ (φ∗φ)2

−
3∑

i,j=1

Y ij
d Q

i

LD
j
Rφ−

3∑
i,j=1

Y ij
u Q

j

LU
j
Rφ

c −
3∑

i,j=1

Y ij
e L

i

LE
j
Rφ+ h.c. (2.4.1)
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with the covariant derivatives given in eq. (2.1.12). When the Higgs field acquires a VEV the
gauge bosons get their masses from the kinetic energy energy term of the Higgs field, while
the fermion masses and quark mixing both have their origin in the Yukawa terms. Upon
the diagonalisation of the Yukawa couplings the quark mixing is moved to the gauge sector
yielding flavour changing charged current interactions. As the Z boson and the photon do
not mix upper and lower members of an SU(2)L doublet, at the tree-level there are no flavour
changing neutral currents in the SM.

The Lagrangian above completely fixes the dynamics of all known elementary particles, but
it contains 18 input parameters which cannot be predicted from first principles. They are

• 9 Yukawa couplings, or equivalently fermion masses,

• the Higgs self coupling λ,

• the Higgs VEV, or equivalently the constant µ2,

• the 3 mixing angles and the complex phase of the CKM matrix,

• the gauge couplings gs, g, g
′
.

Note that, except for the 3 gauge couplings, all a priori unknown input parameters have their
origin in the Higgs sector.

Considering the scope of physics it describes the SM is a remarkably simple theory. It is
truly impressive how precisely its predictions agree with almost all experiments carried out to
test it in the past 50 years.

Still there are big theoretical problems, suggesting that the Standard Model can be gener-
alized to a more complete description of nature. Some of these indications are

• the fact that there are at least 18 constants of nature which have to be plugged in by
hand,

• the fact that there is no gravity in the SM,

• the fact that the complex phase of the CKM matrix is the only source of CP violation in
the SM and that this is not enough to cause the observed matter/antimatter asymmetry
in the universe,

• the fact that the SM in its minimal form does not account for neutrino masses even though
there is evidence for neutrino masses from the observation of neutrino oscillations.

The shared property among these issues with the SM is that they are not easily translated into
explicit predictions for microscopic processes. Despite it being frustratingly good at predicting
the outcome of precision measurements there are some processes in which the SM seems to fail
in appropriately describing nature.

Notably in processes which involve the decay of a bottom quark to a strange or a charm
quark it seems that the SM fails to describe nature accurately. At this point also the anomalous
magnetic moment of the muon should be mentioned for completeness, even though it is not a
topic of this thesis. Also in measurements of this constant there seems to be a disagreement
between theory prediction and experimental measurement.

In the following we will focus on two current puzzles. The first one is concerned with one
of the elements of the CKM matrix, describing the probability of the charged current b → c
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decays. This constant can be measured in inclusive and exclusive decays of B mesons and
interestingly the results of both determinations disagree with each other. This is known as the
Vcb puzzle and will be discussed in more detail in chapter 4.

The second one concerns a neutral current flavour changing decay. Being forbidden at tree-
level these decays are heavily suppressed in the SM. Explicitly this work deals with the decay
rate of a bottom quark decaying to a strange quark and two leptons. The measured decay rate
of this process exhibits a departure from the SM expectation which could hint at New Physics
(NP), i.e. physics beyond the SM. This is the topic of chapter 7.

Before tackling these problems the necessary theoretical framework is laid out in the fol-
lowing sections and chapter 3.

2.5 The CKM Matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [181] parametrizes the probabilities for flavour
changing charged current interactions. It is commonly displayed in the form

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.5.1)

There are many possible parametrizations of the CKM matrix. The one that is recommended
by the PDG is

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.5.2)

where sij = sin θij and cij = cos θij. Unitarity relates its elements to each other. Explicitly the
condition V †V = 13×3 yields

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = |Vtd|2 + |Vts|2 + |Vtb|2 = 1 (2.5.3)

and six more relations for the off-diagonal elements of V V †. The relations for the off-diagonal
elements define triangles in the complex plane. In depictions usually the relation

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 (2.5.4)

is shown. Rescaling it the relation becomes

1 +
V ∗ubVud
V ∗cbVcd

+
V ∗tbVtd
V ∗cbVcd

= 0 (2.5.5)

and defining

Ri =

∣∣∣∣V ∗ibVidV ∗cbVcd

∣∣∣∣ (2.5.6)

for i ∈ {u, t}, it is obvious that this relation defines a triangle in the complex plane with sides
of length 1, Ru and Rt as depicted in fig. 2.5.1.
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Figure 2.5.1: The unitarity triangle

Experimentally it is observed that the elements of the CKM matrix follow a hierarchical
pattern, with the diagonal elements being close to 1, |Vus| and |Vcd| being close to 0.22, |Vcb|
and |Vts| being of order 10−2 and |Vub| and |Vtd| being of order 10−3.

2.6 Asymptotic Freedom

At this point we can apply the framework of perturbation theory (PT) to the SM and compute
predictions for observables. For hadronic processes, that is to say in processes involving quarks
in the initial or final state, these predictions cannot directly be compared to experimental
measurements however. This is due to a property of QCD called asymptotic freedom, stating
that the QCD coupling constant αs, decreases when the energy scale of a given process increases
and diverges at low energy scales.

This property is intrinsically linked to the renormalization of QCD. In order to make precise
predictions in QCD, loop diagrams have to be evaluated. At the Next-To-Leading Order
(NLO) we have to evaluate one-loop diagrams with one undetermined momentum which has
to be integrated over. These integrals suffer from UV divergences which are dealt with by
renormalizing the theory. First the integrals are regularized such that the intermediate results
of the computation are formally finite before one takes a certain limit. A commonly used
regularization procedure is called dimensional regularization. In dimensional regularization
loop integrals are computed in d = 4 − 2ε dimensions. Away from d = 4 dimensions the
integrals are formally finite and can be computed. The UV singularities then appear as 1/ε
poles in the result. For obtaining a physical prediction these poles then have to be cancelled
before taking the ε→ 0 limit. This is achieved through a redefinition of the parameters in the
Lagrangian (masses and coupling constants) and of the fields. The singular bare quantities,
here denoted by the subscript 0, then relate to their renormalized counterparts as

ψ0 = Z
1
2
ψψ

Ga
0,µ = Z

1
2
GG

a
µ (2.6.1)

where the renormalization constants Z contain singularities, but the renormalized parameters
and fields are finite.

Analogously we introduce a renormalization constant Zg for the coupling constant to absorb
the singularity of the bare coupling gs,0. Now we run into a problem if we want the renormal-
ization constant to be dimensionless. The coupling constant gs,0 itself is not dimensionless
away from d = 4. This can be seen from simple dimensional arguments
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In d spacetime dimensions we want the action S =
∫
Lddx to be dimensionless so by

looking at the fermion kinetic energy terms we see that the fermion fields have mass dimension
(d− 1) /2 and from the kinetic energy terms of the gauge bosons we find that they have mass
dimension (d− 2) /2. Then from the interaction term we find that the coupling constant has
mass dimension ε. As we would like to keep the coupling constant and thus the renormalization
constant associated with it dimensionless, we introduce a new constant µ which absorbs the
mass dimension of the coupling. Therefore the relation between the bare coupling gs,0 and the
renormalized coupling gs is given by

gs,0 = Zg(µ)µεgs(µ), (2.6.2)

where gs,0, Zg and gs are dimensionless but Zg and gs depend on µ.
So the process of renormalization comes at the cost of introducing an artificial energy scale

in the theory. The dependence of the coupling constant on µ can be found by noticing that
the bare coupling does not scale with µ. Consequently we find

0 =
d

dµ
gs,0

=
d

dµ
(Zgµ

εgs(µ))

= µ
d

dµ
(Zgµ

εgs(µ))

= µεgs
dZg

d log µ
+ Zgµ

ε dgs
d log µ

+ Zggsεµ
ε (2.6.3)

The logarithmic derivative of the coupling constant is called the β function of QCD, β(gs) =
d log gs/d log µ. The renormalization group equation eq. (2.6.3) lets us write it as

β(gs) =
∞∑
n=0

(αs
4π

)n+1

βn = − 1

Zg

dZg
d log µ

− ε, (2.6.4)

where αs = 4πg2
s is the fine structure constant of QCD.

Also the constant Zg has an αs expansion,

Zg = 1 +
αs
4πε

Zg,1 +
α2
s

16π2ε
Zg,2 +O

(
α3
s

)
(2.6.5)

and only depends on µ through αs because Zg,n are the singularities of n-loop diagrams and
as such µ independent. At the 1-loop level the diagrams in fig. 2.6.1

Figure 2.6.1: The diagrams contributing to the renormalization of the QCD coupling constant
at 1-loop.
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have to be evaluated and yield

Zg,1 = −11

6
CA +

2

3
TFnF , (2.6.6)

where CA = 3 is the number of colors, TF = 1
2

and nF is the number of active quark flavours.
While in full QCD this number is 6, in effective low energy theories it can be lower because
at energy scales Λ � mt for example the top quark does not participate in interactions as a
dynamical degree of freedom.

At 1-loop the derivative of Zg with respect to µ can thus be written as

dZg
d log µ

=
d

dµ

(
1 +

g2
s

16π2ε
Zg,1 +O(g4

s)

)
=
Zg,1
8π2ε

gsβ(gs) +O
(
g4
s)
)

=
gsZg,1
8π2

(
−gsε−

gs
Zg

dZg
d log µ

+O
(
g4
s

))
= −g

2
sZg,1
8π2

+O
(
g4
s

)
, (2.6.7)

where we used the fact that dZg/d log µ starts at order g2
s . Note that the 1/ε pole cancels, as

it should, so we can take the ε→ 0 limit of eq. (2.6.4) and obtain at 1-loop

β0 = 2Zg,1 =
2

3
nF − 11. (2.6.8)

As can be seen here, the leading term of the QCD β function is negative as long as nF ≤ 16.
The scaling of αs with µ can be found from

dαs
d log µ

=

(
dZg
dαs

)−1
dZg

d log µ

=

(
Zg,1
4πε

+O (αS)

)−1(
−αsZg,1

2π
+O

(
α2
s

))
= −2εαs +O

(
α2
s

)
=
α2
sβ0

2π
(2.6.9)

at 1-loop. This equation can be solved by separation of variables:∫ αs(µ2)

αs(µ1)

dαs
α2
s

=
β0

2π

∫ log µ2

log µ1

d log µ, (2.6.10)

yielding

αs (µ2) =
αs (µ1)

1− β0

2π
αs (µ1) log µ2

µ1

. (2.6.11)

For µ2 > µ1 and β0 < 0, as indicated in eq. (2.6.8), the denominator of this equation is larger
than 1 and thus αs (µ2) < αs (µ1). Therefore the QCD coupling constant decreases if the scale
µ is increased. This behavior is linked to QCD being a non-abelian theory. Without the gluon
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self interaction we would not get a negative term in eq. (2.6.6) and the strength of the coupling
constant would increase with increasing µ, like it does in QED.

If we go in the opposite direction, so to smaller scales µ2, αs (µ2) increases. At some
point the scale is low enough for αs to grow beyond 4π. Below this scale eq. (2.6.11) is not
valid anymore because in its derivation we truncated the perturbation expansion. Even worse,
according to eq. (2.6.11) there is a scale at which the denominator of eq. (2.6.11) will vanish
and αs (µ2) will diverge. This scale is called ΛQCD. Renaming µ2 → µ and taking the limit
µ1 → ΛQCD we obtain

αs (µ) =
1

1
αs(µ1)

− β0

2π
log µ

µ1

µ1→ΛQCD−→ 12π

(33− 2nF ) log µ2

Λ2
QCD

. (2.6.12)

At energy scales below ΛQCD PT breaks down so it cannot be used to describe bound states in
QCD. This is a challenge to experimental tests of QCD because the asymptotic states which
are observed are colorless bound states. At high energies this difficulty is mitigated to a degree
by the running of the QCD coupling, rendering quarks quasi-free. At low energies, such as mb

however non-perturbative methods have to be used, in order to compute precise predictions. In
the following section one of these methods, the Heavy Quark Expansion (HQE) is introduced.

Figure 2.6.2: The running of the QCD coupling constant as a function of the energy scale
µ. The dashed line corresponds to a theory with nF = 6 quark flavors, while the solid line
corresponds to 5 quark flavors. In the grey shaded region the coupling becomes strong and
thus perturbation theory is not valid.
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Chapter 3

Effective Field Theories

There are two distinct regions in which the QCD coupling constant behaves very differently.
In the high energy region QCD is perturbative and its coupling runs according to eq. (2.6.11).
At low energies however the behavior of the coupling constant is not clear a priori and non
perturbative methods have to be used for describing processes taking place at these energy
scales.

Physical processes like the decays of B mesons depend on very different energy scales. The
initial meson has a mass of a few GeV, its decay is mediated by a W boson with a mass of about
80 GeV, while the scale of the kinetic energy of the quarks inside the initial and final state
is ΛQCD, which is a few hundred MeV. Therefore calculations are facilitated if the processes
happening at the different energy scales can be treated separately from each other and only
contributions which matter at a given precision are taken into account.

Such a separation of scales can be achieved by the Operator Product Expansion (OPE)
[221, 223, 226]. If it is sandwiched between an initial and a final state, a product of operators
A(x)B(y) evaluated at different points in spacetime can be expanded into a sum of local
operators On(x):

〈f |A(x)B(y)| i〉 =
∞∑
n

Cn 〈f |On(x)| i〉 (3.0.1)

As shown explicitly below the Wilson coefficients Cn encode the short distance effects and the
matrix element 〈f |On(x)| i〉 only contains low energy effects.

3.1 The Weak Effective Lagrangian

In order to see the how the scales are separated let us consider the part of the SM Lagrangian
describing charged current interactions between bottom and charm quarks,

Lcb = ci/∂c+ bi/∂b+
gVcb√

2
bγµ

1− γ5

2
cW+µ +

gVcb√
2
cγµ

1− γ5

2
bW−µ

− 1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW+µ

)
+m2

WW
+
µ W

−µ. (3.1.1)

Defining

J+
µ = bγµ

1− γ5

2
cW+µ

J−µ = cγµ
1− γ5

2
bW−µ (3.1.2)
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and

Lψ = ci/∂c+ bi/∂b

Lcc =
gVcb√

2
J+
µW

+µ +
gVcb√

2
J−µW

−µ

LW = −1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW+µ

)
+m2

WW
+
µ W

−µ, (3.1.3)

the generating functional for this theory can be written as

Z[J ] = N
∫
DψDW exp

(
i

∫
d4xLψ(x) + Lcc(x) + LW (x) + J (x)

)
, (3.1.4)

where Dψ = DcDcDbDb and DW = DW+DW− are shorthand notations for the functional
integration over the light and heavy degrees of freedom respectively and J = Jcc+J cc+Jbb+J bb
denotes the source terms. There are no source terms for the W bosons because we are only
interested in initial and final states made up of light particles, i.e. particles with mass m� mW .
The normalization constant N is given by

1

N =

∫
DψDW exp

(
i

∫
d4xLcb

)
. (3.1.5)

We can separate the terms containing heavy degrees of freedom in eq. (3.1.4) from the rest,
obtaining

Z[J ] = N
∫
Dψ exp

(
i

∫
d4xLψ(x) + J (x)

)∫
DW exp

(
i

∫
d4xLcc(x) + LW (x)

)
= N

∫
Dψ exp

(
i

∫
d4xLψ(x) + J (x)

)
IW . (3.1.6)

The integral over the W bosons can be evaluated explicitly [94]. Integrating LW by parts to
move the derivatives from the W+ to the W− we can write the integral over the heavy degrees
of freedom as

IW =

∫
DW exp

(
i

∫
d4xd4yW+

µ (x)Kµν(x, y)W−
ν (y) +

igVcb√
2

∫
d4xJ+

µW
+µ + J−µW

−µ
)
,

(3.1.7)
with the operator

Kµν = δ(4) (x− y)
(
gµν
(
∂2 +m2

W

)
− ∂µ∂ν

)
. (3.1.8)

Its inverse is given by the W boson propagator

∆µν(x, y) =

∫
d4q

(2π)4

−1

q2 −m2
W

(
gµν −

qµqν

m2
W

)
e−iq(x−y). (3.1.9)

Explicitly performing the integration one obtains

Z[J ] = N
∫
Dψ exp

(
i

∫
d4xLψ(x) + J (x)− ig2 |Vcb|2

2

∫
d4xd4yJ+

µ (x)∆µν(x, y)J−ν (y)

)
.

(3.1.10)
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It should be stressed that this relation is exact as long as the full propagator is taken into
account. The non-local product of currents can be dealt with by the OPE. In order to perform
the OPE, we note that the available energy in the decay of a B meson is the B mass mB ≈ 5
GeV so q2/m2

W ≈ 0.004 is a small parameter. Therefore we can expand the propagator in
powers of q2/m2

W , finding

∆µν(q) =
gµν
m2
W

δ(4) (x− y) +
q2

m2
W

q2gµν + qµqν
m2
W

δ(4) (x− y) +O
(
q4

m4
W

)
. (3.1.11)

Then the generating functional becomes

Z[J ] = N
∫
Dψ exp

(
i

∫
d4xLψ(x) + J (x)− i4GF |Vcb|2√

2
J+
µ (x)J−µ(x) +O

(
q4

m4
W

))
,

(3.1.12)
with the Fermi constant GF =

√
2g2/ (8m2

W ).
Therefore, at energies far below the W mass, we get the same physics from the Lagrangian

Leff = Lψ −
4GF |Vcb|2√

2

[
J+
µ J
−µ +

1

m2
W

D2J+
µ J
−µ − 1

m2
W

DµDνJ
+µJ−ν +O

(
1

m4
W

)]
(3.1.13)

as from the Lagrangian LψW + LW . At energies close to the W mass the effective theory
does not reproduce the results of the full SM anymore however because the terms neglected in
eq. (3.1.11) become sizeable.

Now we can explicitly see that the high and low energy contributions factorize. As the
local operators J+

µ J
−µ, D2J+

µ J
−µ and DµDνJ

+µJ−ν only involve the light degrees of freedom
we can see that the effects of the heavy particles only appear in the Wilson coefficients. The
Wilson coefficients on the other hand are independent of the light degrees of freedom because
they only appear in the local operators.

All contributions of the W boson would vanish if we were to send the mass of the W
boson to infinity. This is a consequence of the decoupling theorem [48], which states that in
a renormalizable quantum field theory with different mass scales, the heavy particles decouple
from the theory at low energies, i.e. they do not take part in interactions as dynamical degrees
of freedom. Their only contribution to the low energy dynamics is through Wilson coefficients,
which in the effective theory are interpreted as effective coupling constants. One has to be
careful here though. One of the particles integrated out in the effective Lagrangian for weak
B decays is the top quark. Since the bottom quark is obviously left in the theory, this violates
gauge symmetry and thus renormalizability. So in this case the decoupling theorem is not valid
and amplitudes can for example scale with the top quark mass.

A quick dimensional analysis of eq. (3.1.13) shows that this effective Lagrangian contains
one operator with mass dimension 6 followed by two operators at dimension 8, which are
accompanied by appropriate powers of the scale mW so the terms have dimension 4. This
pattern generalizes.

In general an effective Lagrangian is given by all terms invariant under a given gauge
symmetry, accompanied by appropriate powers of a high scale Λ,

Leff = L0 +
n∑
i=1

1

Λi
Ci(µ)Oi (3.1.14)

up to a fixed dimension n + 4, determined by the desired precision of the computation. If a
more complete theory exists, the effective theory correctly reproduces its physics at energies
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far below Λ. In this context more complete means that this theory is still valid at energies
above Λ.

Intuitively going from an effective theory to a more complete theory can be pictured as
observing nature and zooming in, resolving more and more details of the processes happen-
ing. At everyday distances in the meter range, classical mechanics is an adequate description
of nature, but when we zoom in and start resolving atoms, classical mechanics does not ap-
propriately describe natural processes anymore. We need a more complete theory, quantum
mechanics, which extends classical mechanics and yields the same predictions in the limit of
large distances. Therefore classical mechanics is an effective theory of non relativistic quan-
tum mechanics. Non relativistic quantum mechanics itself is an effective theory of the SM.
Following this logic, it seems likely that the SM is an effective theory of a yet unknown more
general theory. There has been a lot of effort spent on exploring this idea of a Standard Model
Effective Field Theory, or SMEFT [176].

In the study of B decays in chapters 4 and 7 the inclusion of dimension 6 operators is
sufficient to reach the desired precision, with the exception of chapter 6, where the effects of
dimension 8 operators in the weak effective Lagrangian on inclusive observables are studied.

When loop effects are taken into account the Wilson coefficients Ci(µ) are renormalized.
Just like in the case of the QCD coupling constant in section 2.6 there is a renormalization
group equation for the Wilson coefficients, obtained by demanding that physical observables
are independent of this scale, which yields µ dependent Wilson coefficients. In case the full
theory is known, we can demand that the matrix elements computed in the effective theory
are equal to their counterparts in the full theory at the heavy scale, in our case mW . This
procedure is known as matching. After matching one uses the renormalization group running
to determine the Wilson coefficients at the scale of the processes of interest, in our case mb.
Since matching computations are not a subject of this work, in the following we will focus
on the last step of an EFT computation. This step is concerned with the computation of the
matrix elements of effective operators between given initial B meson states and final states
composed of hadrons and leptons.

3.2 Heavy Quark Effective Theory

The main complication which arises in this last step lies in the fact that the asymptotic (initial
and final) hadronic states we observe are mesons and baryons instead of single quarks. The
structure of these composite objects is governed by long distance QCD effects. This statement
begs the question of what exactly ”short” and ”long” distances in this context are. Looking
back at eq. (2.6.12) one can see that the distance separating the non-perturbative from the
perturbative regime is 1/ΛQCD so a sensible definition of a long distance is any distance l �
1/ΛQCD. Analogously we define short distances as distances l � 1/ΛQCD. Consequently we
need a non-perturbative framework if we want to treat these hadronic states consistently.

Similarly we call quarks with masses mq � ΛQCD heavy and the others light. In this sense
the charm, bottom and top quarks are heavy, while the up, down and strange are light. The top
quark will be excluded in the following because of its short lifetime. In the following sections
we briefly discuss the strict heavy quark limit mq →∞, followed by an introduction of HQET
which takes into account corrections to the heavy quark limit in a systematic way. A textbook
treatise of HQET can be found in [198].
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3.2.1 Heavy Quark Symmetry

Following [129] let us consider a hadron HQ containing a heavy quark Q and light degrees of
freedom, consisting of light quarks, light antiquarks and gluons in the strict heavy quark limit
mQ → ∞. Because the momenta of the light degrees of freedom are of the order of ΛQCD

and thus small compared to mQ, the interactions between them and the heavy quark do not
change the kinematical state of the heavy quark. In this limit the heavy quark can be seen
as a static source of an electric and a chromoelectric (or color) field which holds the hadron
together, similar to the proton in the hydrogen atom. Additionally the Compton wavelength of
the heavy quark scales with its inverse mass λQ ∼ 1/mQ and since the Compton wavelength of
the light degrees of freedom is of order λl ∼ 1/ΛQCD, we have λQ � λl. So the light degrees of
freedom cannot probe the exact value of mQ, they are independent of the actual heavy quark
mass. There is also another simplification in the heavy quark limit. As quarks carry spin, the
heavy quark carries a chromomagnetic moment µQ = g/ (2mQ) which vanishes in the heavy
quark limit. From these simple arguments we can see that the light degrees of freedom are
oblivious to the heavy quark mass and spin. For Nh heavy quark flavours (in nature Nh = 2)
this results in an SU(2Nh) symmetry of our theory. This symmetry relates different hadrons
H1(v) and H2(v) with the same velocity v = p/mH but different momenta, as opposed to
other symmetries of QCD which relate states of the same momentum. Therefore we will label
hadrons with their velocity from now on.

We can use the heavy quark symmetry to relate different hadronic matrix elements. For
instance if we consider the decay b → c`ν in the heavy quark limit for the b and c quarks.
Before the decay we have a hadron Hb(v) consisting of a b quark dressed with light degrees of
freedom. After the decay we have a pair of leptons carrying away momentum and a hadron
H ′c(v

′) containing a c quark dressed with light degrees of freedom as well.
From the point of view of the light degrees of freedom the only change which occurs at

the time of the decay is that the color source instantly (δt ∼ 1/mW � 1/ΛQCD) changes its
velocity from v to v′. In general they then build an excited state of the final state meson or
additional color neutral particles. But there is also a probability for them to build another
ground state meson. For example we can consider Hb(v) = B(v) and Hc(v

′) = D(v′). In this
case the amplitude for the final state to be a ground state D meson only depends on v · v′ = w
and is called ξ(w), known as the Isgur-Wise function.

At the kinematic point w = 1, or v = v′, nothing changes for the light degrees of freedom,
since the only property which changes during the decay at this kinematic point is the mass of
the heavy quark, to which the light degrees of freedom are blind. Consequently we have [174]

ξ(1) = 1. (3.2.1)

The heavy quark limit is useful for finding relations among different hadronic matrix elements
but still we cannot use it directly for doing precise phenomenology. This is because even though
we know that it is an approximation, at this point we have no idea of how good it is. In other
words, to make precise statements we have to quantify the effects we neglect. This is important
because for example ΛQCD/mc ∼ 0.15, so corrections of this order could be important.

We want a theory which provides a systematic expansion about the heavy quark limit.
In the following section we will find such an expansion in terms of powers of ΛQCD/mQ, mQ

being the mass of the heavy quark. The first term in this expansion corresponds to the strict
heavy quark limit and the subleading terms correspond to corrections arising from the fact
that the bottom and charm quarks are, in fact, not infinitely heavy. The full result of an
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HQET computation then is a double expansion in terms of powers of ΛQCD/mQ and powers of
αs. The former are commonly called power corrections while the latter are known as radiative
corrections.

3.2.2 The HQET Lagrangian

Let us consider a hadron containing one heavy quark, denoted by Q. As we noted before the
typical momenta it exchanges with the light degrees of freedom are of the order of ΛQCD. Since
ΛQCD � mQ, the heavy quark is always close to its mass shell, where p2

Q = m2
Q. So it is natural

to decompose its momentum into a large on–shell part mQv and a small deviation from its
mass shell, k. We write it as

pµQ = mQv
µ + kµ, (3.2.2)

where vµ denotes the heavy quark’s four velocity. Now noting that kµ = O (ΛQCD) is small
compared to mQ let us take a look at what happens to the heavy quark propagator in this
limit. It becomes

i

/p−mQ + iε
=

i
(
/p+mQ

)
p2 −m2

Q + iε
=

i [mQ (1 + /v) + /k]

k2 + 2mQv · k + iε

→ 1 + /v

2

i

v · k + iε
(mQ � k) . (3.2.3)

We notice that the heavy quark propagator becomes independent of the heavy quark mass.
Additionally it contains a factor of P+ = (1 + /v)/2 which projects onto the positive frequency
parts of a Dirac spinor. This can be seen in the rest frame of the heavy quark, where it becomes
(1 + γ0) /2 and projects onto the two upper components of the heavy quark field Q. Therefore
in the limit of a heavy quark only the upper components of the field Q propagate. Then the
action of the projectors P± = (1± /v) /2 on the heavy quark field Q(x) is given by

P+Q(x) = Q(x) +O
(

1

mQ

)
, P−Q(x) = 0 +O

(
1

mQ

)
. (3.2.4)

The action of the heavy quark field on a heavy quark state is given by

Q(x) |Q(p)〉 = e−ip·x |0〉 . (3.2.5)

If we multiply both sides of this equation by the phase eimQv·x, we obtain

eimQv·xQ(x) |Q(p)〉 = e−ik·x |0〉 . (3.2.6)

The right-hand-side of this equation is independent of mQ and consequently the left-hand-side
as well. We just removed the dependence on the heavy quark mass by the multiplication with
a phase. We already established that in the heavy quark limit only the upper components of
the heavy quark field propagate so we can define a heavy quark field

hv(x) = eimQv·xP+Q(x), (3.2.7)

where Q(x) denotes the heavy quark field defined in full QCD.
The field hv(x) is independent of mQ, which was to be expected by heavy quark symmetry.

We define a second field containing the small components of the heavy quark field as

Hv(x) = eimQv·xP−Q(x). (3.2.8)
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This field becomes necessary as soon as we want to consider effects of order 1/mQ. It is
straightforward to find the HQET Lagrangian at the leading order in 1/mQ. We take the QCD
Lagrangian

LQCD = Q(x)
(
i /D −mQ

)
Q(x), (3.2.9)

where Dµ = ∂µ − igAaµT a is the covariant derivative of QCD, and plug in

Q(x) = e−imQv·xhv(x) +O
(

1

mQ

)
(3.2.10)

to find

LQCD =

(
eimQv·xhv(x) +O

(
1

mQ

))
(iγµD

µ −mQ)

(
e−imQv·xhv(x) +O

(
1

mQ

))
= hv(x)iγµD

µhv(x) +O
(

1

mQ

)
= hv(x)P+iγµD

µP+hv(x) +O
(

1

mQ

)
= hv(x)iv ·Dh(x) +O

(
1

mQ

)
. (3.2.11)

Here we used that fact that P+hv = hv, which entails /vhv = hv and P+γµP+ = vµ. Then we
can read off the HQET Lagrangian at LO,

LLO
HQET = hv(x)iv ·Dhv(x). (3.2.12)

This Lagrangian leads to the propagator i/(v · k + iε) we already derived in the heavy quark
limit and the quark gluon vertex igT avµAaµ. Its classical equation of motion is given by

iv ·Dhv(x) = 0, (3.2.13)

which is often useful in the simplification of matrix elements, even though at higher orders
subtleties may arise.
In order to include the 1/mQ corrections we have to include the small components of the heavy
quark field as well. So we plug

Q(x) = e−imQv·x (hv(x) +Hv(x)) (3.2.14)

into the QCD Lagrangian to find

LQCD = eimQv·x
(
hv(x) +Hv(x)

)
(iγµD

µ −mQ) e−imQv·x (hv(x) +Hv(x))

= hv(x)iv ·Dhv(x)−Hv(x) (iv ·D + 2mQ)Hv(x)

+ hv(x)i /DHv(x) +Hv(x)i /Dhv(x). (3.2.15)

It is convenient to project four vectors into components parallel and perpendicular to the
velocity v. To this end we can replace the factors i /D by i /D⊥, where Dµ

⊥ = Dµ − v · Dvµ is
perpendicular to v. Then

LQCD = hv(x)iv ·Dhv(x)−Hv(x) (iv ·D + 2mQ)Hv(x)

+ hv(x)i /D⊥Hv(x) +Hv(x)i /D⊥hv(x). (3.2.16)
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We can eliminate the field Hv at the classical level by making use of its equation of motion,

(iv ·D + 2mQ)Hv = i /D⊥hv. (3.2.17)

Then

Hv =
1

iv ·D + 2mQ

i /D⊥hv, (3.2.18)

where we explicitly see that Hv is of order 1/mQ. We can insert this into the Lagrangian to
find

LHQET = hviv ·Dhv + hvi /D⊥
1

iv ·D + 2mQ

i /D⊥hv

= hviv ·Dhv −
1

2mQ

hv /D⊥ /D⊥hv +O
(

1

m2
Q

)
. (3.2.19)

In the second line we expanded in 1/mQ. We can simplify this expression by using

/D⊥ /D⊥ = γµγνD
µ
⊥D

ν
⊥ = D2

⊥ +
1

2
[γµ, γν ]D

µ
⊥D

ν
⊥, (3.2.20)

the identity [Dµ, Dν ] = igGµν and σµν = i [γµ, γν ] /2. Then

/D⊥ /D⊥ = D2
⊥ +

g

2
σµνG

µν . (3.2.21)

In the second term we do not have to include the ⊥ labels because hvσµνv
µhv = 0. By inserting

the above relation into our Lagrangian eq. (3.2.19) it takes the form

LHQET = LLO
HQET + L1

HQET + · · · (3.2.22)

with

L1
HQET =

1

2mQ

(OK +OG)

= −hv
D2
⊥

2mQ

hv − ghv
σµνG

µν

4mQ

hv. (3.2.23)

The leading order Lagrangian corresponds to the heavy quark limit and respects the heavy
quark symmetry.

This Lagrangian has the form of an effective Lagrangian we postulated in eq. (3.1.14). It
is interesting to note now that the terms of order 1/mQ explicitly violate the heavy quark
symmetry of the leading order term. The operator OK is independent of the heavy quark spin
but explicitly depends on the heavy quark mass. The operator OG depends on the heavy quark
mass and has a Dirac structure so it also violates the heavy quark spin symmetry.

3.2.3 Effective States and Currents

It is convenient to have states independent of mQ, since in the end we want to make the
dependence of the matrix elements on mQ explicit. To this end we define the states in the
HQET to be eigenstates of the lowest order Hamiltonian and thus independent of mQ. Note
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that now the HQET states are not the same as the full QCD states anymore. They differ by
1/mQ corrections and a normalization factor.

In full QCD the hadronic state H(p) is normalized as

〈H(p′) |H(p)〉 = 2Ep(2π)3δ3 (p− p′) . (3.2.24)

On the right–hand–side we see that the states depend on mQ through p = mQv+k. Since the
lowest order in the HQET corresponds to the heavy quark limit, HQET states can be labeled
with a four velocity v and a residual momentum k, which satisfies v · k = 0 because in the
heavy quark limit the on–shell condition for the heavy quark is given by

m2
Q = (mQv

µ + kµ)2 = m2
Q + 2mQv · k + k2 (3.2.25)

and we can neglect the last term. The normalization convention for HQET then is

〈H(v′, k′) |H(v, k)〉 = 2v0δvv′(2π)3δ3(k − k′). (3.2.26)

The r.h.s. of this equation is independent of mQ and thus the l.h.s. must be as well. The states
of QCD and HQET are then related by

|H(p)〉 =
√
mH

(
|H(v)〉+O

(
1

mQ

))
, (3.2.27)

where mH denotes the hadron mass.
In order to find the 1/mQ expansion of flavour changing currents like c(1 − γ5)b we note

that now we have to introduce two effective fields

b→ hbv, c→ hcv′ . (3.2.28)

The relation between the QCD fields and the effective ones is found by inserting eq. (3.2.18)
into eq. (3.2.14), which yields

Q(x) = e−imQv·x
(

1 +
1

iv ·D + 2mQ

i /D⊥

)
hv(x)

= e−imQv·x
(

1 +
i /D⊥
2mQ

+O
(

1

m2
b

))
hv(x). (3.2.29)

By plugging this relation into the current cΓb at NLO in the power corrections we find HQET
current

hcv′Γh
b
v +

1

2mb

h
c

v′Γ
(
i /D⊥

)
hbv +

1

2mc

h
c

v′

(
−i

←
/D⊥

)
Γhbv +O

(
1

m2
c

,
1

m2
b

)
. (3.2.30)

The arrow denotes that the derivative acts on the factor to its left. This notation is convenient
because moving the Dirac matrix contained in /D around in general entails the appearance of
extra terms.

32



Chapter 4

Inclusive Decays of B Mesons

In the study of semileptonic decays of B mesons one distinguishes decays in which all particles of
the final state are resolved, i.e. exclusive decays, from decays in which only partial information
on the final state is available, so-called inclusive decays.

In this chapter we focus on inclusive semileptonic b → c`ν decays. This is to say that the
only information we have about the identity of the hadronic part of the final state is that it
contains a charm quark.

4.1 Why Study Inclusive B Decays?

At tree level in the SM the decay b→ c`ν is mediated by the flavour changing charged current
Lagrangian in eq. (2.3.8). We can integrate out the W boson by faithfully repeating the steps
in section 3.1 with the Lagrangian

Lb→c`ν = ci/∂c+ bi/∂b+
g√
2
`γµ

1− γ5

2
νW+µ +

gVcb√
2
cγµ

1− γ5

2
bW−µ

− 1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW+µ

)
+m2

WW
+
µ W

−µ. (4.1.1)

At dimension 6 we obtain the effective Hamiltonian

Heff
b→c`ν =

4GFVcb√
2

[
c
1− γ5

2
γµb

] [
`
1− γ5

2
γµν

]
, (4.1.2)

which is related to the effective Lagrangian as Heff = −Leff . From this effective Hamiltonian
we find the total inclusive B(p)→ Xc(p− q)`(p`)ν(pν) decay rate

d3Γ

dq2dE`dEν
=
G2

F |Vcb|2
8π3

WµνL
µνΘ

(
4E`Eν − q2

)
Θ
(
q2
)

Θ (E`) Θ (Eν) , (4.1.3)

where q = p` + pν is the four momentum of the lepton pair and E` and Eν are the energies of
the charged lepton and the neutrino, respectively. A detailed derivation of this expression can
be found in appendix A.1.

Here we can see that the inclusive B meson decay rate is proportional to the squared
modulus of the CKM matrix element Vcb. Thus |Vcb| can be extracted from measurements of
the inclusive B meson decay rate. The main challenge in this endeavor is the computation of
the hadronic tensor W µν , which describes the non-perturbative dynamics. It can be computed
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in an OPE framework [83, 105, 197]. The OPE allows for a parametrization of the inclusive
decay rate in terms of hadronic matrix elements which are then determined by fitting moments
of kinematical distributions to experimental measurements.

Similarly |Vcb| can be measured in exclusive decays, in which the full final state is known.
Interestingly the value which are obtained from the inclusive and exclusive determinations of
Vcb are not compatible. Indeed recent determinations found∣∣V incl

cb

∣∣ = (42.16± 0.51)× 10−3 [88]∣∣V excl
cb

∣∣ = (39.36± 0.68)× 10−3 [47] (4.1.4)

so there is a ∼ 3σ discrepancy. The situation is summarized in fig. 4.1.1.
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Figure 4.1.1: Overview plot of the inclusive and exclusive determinations of Vcb and Vub from
the FLAG review 2021 [47].

This Vcb puzzle has received a lot of attention over the last decade, recent reviews can be
found in [43,141,146,225]. Nevertheless it has not been resolved so far. Since it is unlikely that
this tension is due to NP [111], improving the precision of Vcb necessitates independent checks
of the methods used in the exclusive and inclusive determination of Vcb.

After a general introduction of the inclusive observables and their computation within the
OPE framework its predictions are tested against new lattice QCD predictions in chapter 5
and in chapter 6 we compute the effects of dimension 8 operators in the weak Lagrangian of
eq. (4.1.2).
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4.2 Generalities

4.2.1 Inclusive Observables

As stated in the last section the observables in inclusive semileptonic decays of B mesons are
the total decay rate

Γ =

∫
dE`dq

2dEν
d3Γ

dE`dq2dEν
(4.2.1)

and the spectra of the charged lepton energy E`, the hadronic invariant mass m2
X and the

invariant mass of the lepton pair q2. The shape of the spectra is parametrized by the moments

〈xn〉 =
1

Γ

∫
dE`dq

2dEνx
n d3Γ

dE`dq2dEν
, (4.2.2)

where x ∈ {E`,m2
X , q

2}. From these one builds the central moments

Xn =

{
〈x〉 , for n = 1

〈(x− 〈x〉)n〉 , for n > 1
(4.2.3)

the first of which corresponds to the mean value of the spectrum, the second corresponds to
its variance and the third one corresponds to its skewness.

The moments of E` and q2 can be evaluated directly. For the hadronic invariant mass
moments we have to relate hadronic variables to parton-level variables because the B meson
and the b quark have different momenta. We relate the hadronic quantity mX to the parton-
level quantities û = ((p− q)2 −m2

c)
2
/m2

b and ω̂ = 1 − q0/mb, where q = (q0, q), by the fact
that in the HQE the B meson and the b quark have the same four-velocity v. From now on all
quantities with a hat are made dimensionless by dividing by an appropriate power of mb, e.g.
q2 = m2

b q̂
2. In terms of its velocity the hadronic final state mass is given by

m2
X = (pB − q)2 = m2

B − 2mBv · q + q2. (4.2.4)

For the parton-level quantities we have

û = 1− 2v · q̂ + q̂2 − ρ
ω̂ = 1− v · q̂, (4.2.5)

where we defined ρ = m2
c/m

2
b . We use eq. (4.2.5) to replace q2 and v · q in eq. (4.2.4) by

parton-level quantities and obtain

m2
X = m2

c + Λ2 + 2Λmbω̂ +m2
b û (4.2.6)

where Λ = mB − mb is the mass difference between the B meson and the b quark mass.
Therefore we obtain the hadronic invariant mass moments from the relation〈

m2
X

〉
= m2

c + Λ2 + 2Λmb 〈ω̂〉+m2
b 〈û〉 (4.2.7)

after computing the moments of û and ω̂.
Because the moments are normalized to the decay rate they are independent of Vcb. In

practice they are used to extract non-perturbative matrix elements which appear in the OPE
for inclusive B decays from experimental data. As we will see explicitly in the following sections
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the OPE for inclusive B decays results in a double expansion of observables in terms of powers
of ΛQCD/mb and αs. Any given inclusive observable M , that is to say the total decay rate or
one of the moments defined above, then takes the form

Mi = M
(0,0)
i +

αs
π
M

(1)
i +

µ2
π

m2
b

(
M

(π,0)
i +

αs
π
M

(π,1)
i

)
+
µ2
G

m2
b

(
M

(G,0)
i +

αs
π
M

(G,1)
i

)
+
ρ3
D

m3
b

M
(D,0)
i +

ρ3
LS

m3
b

M
(LS,0)
i + · · · , (4.2.8)

where µ2
π, µ2

G, ρ3
D and ρ3

LS are non-perturbative matrix elements which will be properly defined
in section 4.2.4. An overview of all available corrections of this expansion, their size and where
to find them can be found in table A.8.1.

There have been many experimental studies of the inclusive observables introduced above.
The charged lepton energy moments have been measured by the DELPHI [24], BaBar [51] and
Belle [217] collaborations, the hadronic invariant mass moments have been measured by the
BaBar [53,54], Belle [214], Belle II [28], CDF [29], CLEO [112] and DELPHI [24] collaborations
and the q2 moments have been measured by the Belle [218], Belle II [2] and CLEO [112]
collaborations.

In the following sections we turn to the theoretical description of inclusive B decays before
confronting them with experimental data.

4.2.2 The Triple Differential Decay Rate

In order to accommodate for general NP we generalize eq. (4.1.2) to

Hb→c`ν`′
eff =

4GF√
2
Vcb

∑
Γ

[c (cΓΓ + dΓΓγ5) b]
[
` (aΓΓ + bΓΓγ5) ν`′

]
, (4.2.9)

allowing for all possible Dirac structures Γ ∈ {1, γµ, σµν = i [γµ, γν ] /2}. As the matrices 1, γµ,
γµγ5 and σµν span the space of 4 × 4 matrices the product σµνγ5 is redundant. We keep the
corresponding terms to facilitate a comparison of our result with [107].

By following the steps from appendix A.1 we obtain the triple differential decay rate

dΓ
(
B → Xc`ν`

)
dq2dE`dEν

=
G2

F |Vcb|2
8π3

LΓΓ′WΓΓ′ (4.2.10)

with the hadronic and leptonic tensors

LΓΓ′ =
1

8

∑
s,s′

〈
νs′`

−
s

∣∣aΓ`Γν + bΓ`Γγ5ν
∣∣ 0〉 〈νs′`−s ∣∣aΓ`Γ

′ν + bΓ`Γ
′γ5ν

∣∣ 0〉†
WΓΓ′ =

(2π)3

2mB

∑
Xc

δ4 (pB − pXc − p` − pν`)
〈
Xc |cΓcΓb+ dΓcΓγ5b|B

〉 〈
Xc |cΓcΓ

′b+ dΓcΓ
′γ5b|B

〉†
.

(4.2.11)

We can compute the leptonic tensor directly by evaluating the spin sums. This computation
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is straightforward and can be found in full in appendix A.2. We obtain

L1,1 = 2
(
|aS|2 + |bP|2

) (
q2 −m2

`

)
Lγµγν = 2

(
|aV|2 + |bA|2

) (
−gµν

(
q2 −m2

`

)
− 4pµ` p

ν
` + 4 (pµ` q

ν + pν` q
µ)
)

+ 4iRe (aVb
∗
A) εµναβp`,αqβ

Lσκλσρτ =
(
|aT|2 + |bT5|2

) ( (
gκτgλρ − gκρgλτ

) (
m2
` + q2

)
+ 4

(
pκ`
(
pρ`g

λτ − pτ` gλρ
)

+ pλ` (pτ` g
κρ − pρ`gκτ )

)
+ 2gκτ

(
pκ` q

ρ + pρ`q
λ
)
− 2gλτ (pκ` q

ρ + pρ`q
κ)

− 2gκρ
(
pλ` q

τ + pτ` q
λ
)

+ 2gλρ (pκ` q
τ + pτ` q

κ)
)

− 4iRe
(
aTb

∗
T5

) ( (
pλ` ε

κρτα − pκ` ελρτα + pρ`ε
κλτα − pτ` εκλρα

)
p`,α

+
(
qτεκλρα − qρεκλτα

)
p`,α +

(
pκ` ε

λρτα − pλ` εκρτα
)
qα

)
L1,γµ = 2m` (aSa

∗
V + bPb

∗
A) (qµ − pµ` )

Lγµ,1 = L∗1,γµ

L1,σκλ = 2i
(
aSa

∗
T + bPb

∗
T5

) (
pλ` q

κ − pκ` qλ
)
− 2

(
aSb
∗
T5

+ bPa
∗
T

)
εκλαβp`,αqβ

Lσκλ,1 = L∗1,σκλ

Lγµ,σκλ = 2m`

(
i
(
aVa

∗
T + bAb

∗
T5

) (
gµκpλ` − gµλpκ` + gµλqκ − gµκqλ

)
+
(
aVb

∗
T5

+ bAa
∗
T

) (
εκλµαp`,α − εκλµαqα

) )
Lσκλ,γµ = L∗γµ,σκλ . (4.2.12)

The SM can be found from this general expression by setting aV = −bA = 1/2 and ai = bi = 0
for all the other Wilson coefficients, yielding the well known result

LSM = −gµν
(
q2 −m2

`

)
− 4pµ` p

ν
` + 4 (pµ` q

ν + pν` q
µ)− iεµναβp`,αqβ. (4.2.13)

As the hadronic tensor cannot be computed directly, we start by parametrizing it in terms
of Lorentz invariant structure functions and deal with the problem of finding the structure
functions subsequently. We can decompose the hadronic tensor as

W1,1 = w0

Wγµγν = −gµνw1 + vµvνw2 + iεµναβvαq̂βw3 + q̂µq̂νw4 + (vµq̂ν + vν q̂µ)w5

Wσκλσρτ =
(
vκq̂λ − vλq̂κ

)
(vρq̂τ − vτ q̂ρ)w6 +

(
gκρgλτ − gκτgλρ

)
w7

+
(
vκ
(
vτgλρ − vρgλτ

)
− vλ (vτgκρ − vρgκτ )

)
w8

+
(
q̂κ
(
q̂τgλρ − q̂ρgλτ

)
− q̂λ (q̂τgκρ − q̂ρgκτ )

)
w9

+
(
gκτ
(
vλq̂ρ + vρq̂λ

)
− gλτ (vκq̂ρ + vρq̂κ)− gκρ

(
vλq̂τ + vτ q̂λ

)
+ gλρ (vκq̂τ + vτ q̂κ)

)
w10

+ i
(
vκελρτα − vλεκρτα − vρεκλτα + vτεκλρα

)
(vαw11 + q̂αw12)

+ i
(
q̂κελρτα − q̂λεκρτα − q̂ρεκλτα + q̂τ εκλρα

)
(vαw13 + q̂αw14)

+ εκλρτw15

W1γµ = q̂µw16 + vµw17
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W1σκλ = i
(
vκq̂λ − vλq̂κ

)
w18 + εκλαβvαq̂βw19

Wγµσκλ = i
(
gµκvλ − gµλvκ

)
w20 + i

(
gµκq̂λ − gµλq̂κ

)
w21

+ i
(
vκq̂λ − vλq̂κ

)
(vµw22 + q̂µw23) + εµκλα (vαw24 + q̂αw25) (4.2.14)

We can easily find a general expression for the differential decay rate by plugging the leptonic
and hadronic tensors into eq. (4.2.10) but we have to be careful about how the Lorentz indices
are contracted. In the effective Hamiltonian the Lorentz indices of the Dirac matrix Γ ap-
pearing in the hadronic current are contracted with the ones of the matrix Γ appearing in the
leptonic current. Consequently in the differential decay rate the Lorentz indices of the matrix
Γ appearing in the leptonic tensor are contracted with the ones of the matrix Γ in the hadronic
tensor and analogously for Γ′. As an example the differential decay rate contains terms of the
form WγµσκλLγµσκλ but no terms of the form WγµσκλLσµκγλ . Keeping this in mind we contract
the hadronic and leptonic tensors, finding

WL|S,S =
(
|aS|2 + |bP |2

) (
q2 −m2

`

)
w0

WL|V,V =
(
|aV |2 + |bA|2

) [
2
(
q2 −m2

`

)
w1 +

(
m2
` − q2 + 4E`Eν

)
w2

+
m2
` (q2 −m2

`)

m2
b

w4 +
4m2

`Eν
mb

w5

]

+ 4Re (aV b
∗
A)
q2 (E` − Eν)−m2

` (E` + Eν)

mb

w3

WL|T,T = 4
(
|aT |2 + |bT5|2

) [(q2 (E` − Eν)2 +m4
` −m2

`

(
(E` − Eν)2 − 4E2

ν + q2
)

m2
b

)
w6

+
(
m2
` − q2 + 8E`Eν

)
w8 +

q2m2
` − 2m4

` + q4

m2
b

w9

+
2 ((q2 −m2

`) (E` + Eν) + 4m2
`Eν)

mb

w10

]

− 16Re
(
aT b

∗
T5

) [
+
(
m2
` − q2 + 8E`Eν

)
w11

+
(q2 −m2

`) (E` + Eν) + 4m2
`Eν

mb

(w12 + w13) +
q2m2

` − 2m4
` + q4

m2
b

w14

]

WL|S,V = 2m`Re (aSa
∗
V + bP b

∗
A)

[
q2 −m2

`

mb

w16 + 2Eνw17

]
WL|S,T =

4 (E` (q2 −m2
`)− Eν (q2 +m2

`))

mb

[
Re
((
aSa

∗
T + bP b

∗
T5

)
w18

)
+ Re

((
aSb

∗
T5

+ bPa
∗
T

)
w19

) ]
WL|V,T = 4m`Re

(
aV a

∗
T + bAb

∗
T5

) [
6Eνw20 +

3 (q2 −m2
`)

mb

w21

− m2
` − q2 + 2Eν (E` + Eν)

mb

w22
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+
E` (q2 −m2

`)− Eν (q2 +m2
`)

m2
b

w23

]

+ 12m`Re
(
aV b

∗
T5

+ bAa
∗
T

) [
2Eνw24 +

q2 −m2
`

mb

w25

]
., (4.2.15)

where we denote the scalar and pseudoscalar WC by aS and bP , the vector and axial vector
WC as aV and bA and the tensor WC as aT and bT5 , respectively.

Again we can set aV = −bA = 1/2 and ai = bi = 0 for all the other cases to recover the SM
expression

WµνL
µν =

(
q2 −m2

`

)
w1 +

(m2
` − q2 + 4E`Eν)

2
w2 +

m2
` (q2 −m2

`)

m2
b

w4

+
4m2

`Eν
mb

w5 +
q2 (E` − Eν)−m2

` (E` + Eν)

mb

w3. (4.2.16)

4.2.3 Operator Product Expansion

So far we have avoided the main complication in the computation of the inclusive B meson
decay rate, namely the fact that the hadronic tensor contains long distance QCD effects. This
problem can be dealt with by studying the forward scattering amplitude

TΓΓ′ = − 1

mB

i

∫
d4xe−iq·x

〈
B
∣∣∣T {J†Γ(x)JΓ′(0)

}∣∣∣B〉 , (4.2.17)

where JΓ(x) = c(x) (cΓΓ + dΓΓγ5) b(x).
This amplitude has the same Lorentz structure as the hadronic tensor, hence it has a

decomposition into Lorentz invariant structure functions ti analogous to eq. (4.2.14). The
structure functions ti are related to the functions wi by the optical theorem [105,215], yielding

wi = − 1

π
Im (ti) . (4.2.18)

In order to evaluate the imaginary part we note that at the leading order in αs the matrix
element of the forward scattering amplitude between two b quark states with momentummbv+k
is given by [197]

u
(c∗Γ − d∗Γγ5) Γ

(
mb/v − /q + /k +mc

)
Γ′ (cΓ′ + dΓ′γ5)

(mbv − q + k)2 −m2
c + iε

u (4.2.19)

where u is a quark spinor. In fig. 4.2.1 the corresponding Feynman diagram is shown. The

b b

q

mbv + k

q

mbv + k

Figure 4.2.1: Forward scattering amplitude

momentum k is of order ΛQCD � mb. Therefore we can expand the matrix element eq. (4.2.19)
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in powers of k. This way we obtain an expansion in powers of ΛQCD/mb because operators of
higher mass dimension are suppressed by powers of mb.

At the leading order in k the amplitude is given by

1

∆0

(mbv − q)α u (c∗Γ − d∗Γγ5) ΓγαΓ′ (cΓ′ + dΓ′γ5)u

+
mc

∆0

u (c∗Γ − d∗Γγ5) ΓΓ′ (cΓ′ + dΓ′γ5)u (4.2.20)

where we defined
∆0 = m2

bv
2 + q2 − 2mbv · q −m2

c + iε. (4.2.21)

We then get the OPE by replacing the quark spinor u with the field b. This is because at the
LO we only have terms of the form uγµu = 〈b|bγµb|b〉 and uγµγ5u = 〈b|bγµγ5b|b〉. Consequently
the forward scattering amplitude defined in eq. (4.2.17) is given by

TΓΓ′ =
(mbv − q)α

2mB∆0

〈
B
∣∣b (c∗Γ − d∗Γγ5) ΓγαΓ′ (cΓ′ + dΓ′γ5) b

∣∣B〉
+

mc

2mB∆0

〈
B
∣∣b (c∗Γ − d∗Γγ5) ΓΓ′ (cΓ′ + dΓ′γ5) b

∣∣B〉+O
(

ΛQCD

mb

)
. (4.2.22)

The hadronic matrix elements appearing in this expression can be computed in HQET. We
find for the matrix elements without γ5〈

B
∣∣bb∣∣B〉 = 2mB〈

B
∣∣bγµb∣∣B〉 = 2pµB = 2mBv

µ〈
B
∣∣bγµγνb∣∣B〉 = 2mBg

µν , (4.2.23)

while the others vanish. Using eq. (4.2.23) it is then straightforward to compute the ti functions.
As the full computation is a bit lengthy it can be found in appendices A.5 and A.6.

It turns out that all the functions ti get an imaginary part from the factor ∆−1
0 they are

proportional to. Their imaginary parts can be computed by making use of the relation

1

ω + iε
= P

1

ω
− iπδ (ω) , (4.2.24)

where P denotes the Cauchy principal value. Using this relation we find

Im
1

∆0

= −πδ
(
(pb − q)2 −m2

c

)
= −πδ

(
−2mb

(
v · q − m2

b + q2 −m2
c

2mb

))
= − π

2mb

δ

(
v · q − m2

b + q2 −m2
c

2mb

)
= − π

2mb

δ

(
Eν + E` −

m2
b + q2 −m2

c

2mb

)
. (4.2.25)

Therefore the structure functions wi are given by eq. (A.6.22) with the replacement

∆−1
0 →

1

2mb

δ

(
Eν + E` −

m2
b + q2 −m2

c

2mb

)
. (4.2.26)
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We can plug them into eq. (4.2.10), with WΓΓ′LΓΓ′ from eq. (4.2.15) to obtain the full triple
differential decay rate.

Observables can then be calculated by integrating the triple differential decay rate over the
kinematical variables. In appendix A.7 the complete double differential decay rate including
general NP can be found. In the following we restrict ourselves to the SM case and finish
developing the OPE framework by going beyond the leading order, before applying it in a
study of a new method for computing inclusive observables on the lattice.

4.2.4 Higher Order Corrections

In eq. (4.2.20) we expanded eq. (4.2.19) to the order k0. In this section we will see that at
this order the Heavy Quark Expansion (HQE) exactly reproduces the decay of a free b quark.
If we want to take non-perturbative effects, originating in the confinement of the heavy quark
inside the meson, into account, we have to go to higher orders in this expansion. In order to
facilitate the treatment of the higher order corrections from now on we will restrict ourselves
to the SM case with light leptons, i.e. ` ∈ {e, µ}, in the final state. In this case the triple
differential decay rate from eqs. (4.2.10) and (4.2.16) simplifies to

8π3

G2
F |Vcb|2

d3Γ

dE`dq2dEν
= q2w1 +

(4E`Eν − q2)

2
w2 +

q2 (E` − Eν)
mb

w3 (4.2.27)

A useful property of the HQE is that there are no terms which are suppressed by only one
power of the heavy quark mass mb [189]. In our case this can be seen by expanding eq. (4.2.19)
to linear order in k. Then one obtains the operators bγµiDνb and bγµγ5iDνb in the OPE. When
the b fields are replaced by their leading order HQET counterparts the matrix elements of the
latter vanish by the parity conservation of QCD while the former operator will have a vanishing
matrix element by the HQET equation of motion eq. (3.2.13).

There are only non-vanishing contributions from these operators when the relation between
QCD and HQET fields at order 1/mb is used or, in other words, when they are suppressed by
an additional power of the heavy quark mass.

The matrix elements of the higher dimensional operators cannot be computed from first
principles like the ones appearing at the leading order because they contain non-perturbative
dynamics. They can be parametrized in a minimal number of non-perturbative matrix elements
however. At the order Λ2

QCD/m
2
b one finds two matrix elements [83,191,197]

µ2
π = − 1

2mB

〈
B

∣∣∣∣bv (i ~D)2

bv

∣∣∣∣B〉
µ2
G =

1

2mB

〈
B

∣∣∣∣bv i2σµνGµνbv

∣∣∣∣B〉 , (4.2.28)

where bv(x) = eimbv·xb(x) is the QCD b field without its high energy modes, Dµ is the covariant
derivative and Gµν is the gluon field strength tensor. At order Λ3

QCD/m
3
b two more matrix

elements,

ρ3
D =

1

2mB

〈
B
∣∣bv (iDµ) (iv ·D) (iDµ) bv

∣∣B〉
ρ3
LS =

1

2mB

〈
B
∣∣bv (iDµ) (iv ·D) (iDν) (−iσµν) bv

∣∣B〉 (4.2.29)

41



appear [78, 156].
As these matrix elements cannot be computed from first principles, with the notable excep-

tion of lattice QCD methods which are the topic of chapter 5, they are usually treated as free
parameters and extracted from experimental data. This has been done for the above matrix
elements [88]. But at order Λ4

QCD/m
4
b there are 9 new matrix elements and at order Λ5

QCD/m
5
b

18 new matrix elements appear [196]. This proliferation of non-perturbative matrix elements
renders their extraction from data impossible.

One way to deal with this problem is the usage of a framework which allows one to find
relations between the WC of matrix elements appearing at different orders in the HQE, such as
Reparametrization Invariance (RPI) with which fits at order Λ4

QCD/m
4
b become possible [68,123]

or the Lowest-Lying-State-Approximation (LLSA) [165,196] which allows for an estimation of
the matrix elements at Λ5

QCD/m
5
b . Ultimately the sheer number of non-perturbative matrix

elements at higher orders in the HQE will remain a challenge however.
To get more acquainted with the power correction up to O(Λ3

QCD/m
3
b) we now compute the

total tree-levelB → Xc`ν` decay rate at this order using the structure functions atO(Λ2
QCD/m

2
b)

from [83] and at O(Λ3
QCD/m

3
b) from [156].

In order to facilitate a comparison with lattice results later on we change variables from
(E`, q

2, Eν) to (E`, q̂
2, ω̂), where q̂2 = (E` + Eν)

2 − q2, ω = mb − (E` + Eν), before explicitly
performing the phase space integration. Because the hadronic tensor is independent of the
leptonic dynamics we can integrate eq. (4.2.27) over the charged lepton energy without any
knowledge of the structure functions wi. By doing this we obtain the double differential decay
rate

m3
bX̂
(
ω̂, q̂2

)
=

d2Γ

dω̂dq̂2
=
G2

F |Vcb|2m3
b

24π3

√
q̂2
(
−3
(
q̂2 − (1− ω̂)2)w1 + q̂2w2

)
. (4.2.30)

We write the inclusive decay rate as

Γ =
G2

F |Vcb|2m5
b

24π3

∫ q̂2
max

0

dq̂2
√
q̂2X(q̂2), (4.2.31)

where q̂2
max = (1− ρ)2/4, ρ = m2

c/m
2
b and

X(q̂2) =

∫ 1−
√

q̂2

√
ρ+q̂2

dω̂X̂
(
ω̂, q̂2

)
. (4.2.32)

In the literature the differential decay rate is usually studied as a function of q0 and q2. We use
different variables here because in our study of inclusive decays in Lattice QCD in chapter 5
we need the differential spectrum of q2.

NLO Power Corrections

Starting from the NLO in 1/mb the structure functions ti contain terms proportional to 1/u2

and 1/u3, where u = ω2 − (q2 +m2
c). Their imaginary parts are found by employing the

identity

− 1

π
Im

1

(u+ iε)n
=

(−1)n−1

(n− 1)!

dn−1

dun−1
δ(u). (4.2.33)
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By integrating over ω̂ we find the q2-distribution

X̂
(
q̂2
)

=

∫ 1−
√

q̂2

√
ρ+q̂2

dω̂X̂
(
ω̂, q̂2

)
=

∫ ∞
−∞

dû
1

2
√
û+ q̂2 + ρ

[
f (0)

(
ω̂ (û) , q̂2

)
δ (û)

− f (1)
(
ω̂ (û) , q̂2

)
δ′ (û) +

1

2
f (2)

(
ω̂ (û) , q̂2

)
δ
′′

(û)
]

×Θ
(
q̂2 (û)

)
=

1

2

∫ ∞
−∞

dû
2∑

n=0

(−1)n

(n− 1)!

d(n)

dû(n)

[
f (n) (ω̂ (û) , q̂2)√

û+ q̂2 + ρ
Θ
(
q̂2 (û)

)]
δ (û)

=
1

2

2∑
n=0

(−1)n

(n− 1)!

d(n)

dû(n)

[
f (n) (ω̂ (û) , q̂2)√

û+ q̂2 + ρ
Θ
(
q̂2 (û)

)]∣∣∣∣∣
û=0

(4.2.34)

where q̂2 (û) = 1 + ρ + û − 2
√
û+ q̂2 + ρ and we decomposed X =

∑2
l=0 X

(l) into terms
proportional to δ(u), δ′(u) and δ′′(u),

X̂ =f (0)
(
ω̂, q̂2

)
δ (û)− f (1)

(
ω, q̂2

) d

dû
δ (û)

+
1

2
f (2)

(
ω̂, q̂2

) d2

dû2
δ (û) . (4.2.35)

Now the q2-spectrum contains terms proportional to the first second derivative of Θ (q̂2 (û))
with respect to û. These are given by

d

dû
Θ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣
û=0

=

(
1− 1√

ρ+ q̂2

)
δ
(

1 + ρ− 2
√
ρ+ q̂2

)
=

(
1− 1√

ρ+ q̂2

)
1 + ρ

2
δ

(
q̂2 −

(
1− ρ

2

)2
)

=
ρ− 1

2
δ
(
q̂2 − q̂2

max

)
(4.2.36)

and

d2

dû2
Θ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣
û=0

=
δ
(

1 + ρ− 2
√
ρ+ q̂2

)
2 (ρ+ q̂2)

3
2

+

(
1− 1√

ρ+ q̂2 + û

)
d

dû
δ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣∣
û=0
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=
2δ (q̂2 − q̂2

max)

(1 + ρ)2 +

(√
ρ+ q̂2 − 1

)2

ρ+ q̂2
δ′
(

1 + ρ− 2
√
ρ+ q̂2

)
. (4.2.37)

When integrated together with a test function g the last term yields

∫ (1−ρ)2
4

0

dq̂2

(√
ρ+ q̂2 − 1

)2

ρ+ q̂2
g
(
q̂2
)
δ′
(

1 + ρ− 2
√
ρ+ q̂2

)

=

∫ 0

(1−√ρ)
2

dx
dq̂2

dx

(√
ρ+ q̂2(x)− 1

)2

ρ+ q̂2(x)
g
(
q̂2(x)

)
δ′ (x)

= −
∫ (1−√ρ)

2

0

dx
dq̂2

dx

(√
ρ+ q̂2(x)− 1

)2

ρ+ q̂2(x)
g
(
q̂2(x)

)
δ′ (x)

=
d

dx

dq̂2

dx

(√
ρ+ q̂2(x)− 1

)2

ρ+ q̂2(x)
g
(
q̂2(x)

)
x=0

= −
√
ρ+ q̂2

d

dq̂2

dq̂2

dx

(√
ρ+ q̂2 − 1

)2

ρ+ q̂2
g
(
q̂2
)

q̂2=q̂2
max

, (4.2.38)

where x = 1 + ρ − 2
√
ρ+ q̂2 is the argument of the δ′ function. After decomposing the

q̂2-distribution as

X̂
(
q̂2
)

=
2∑

n=0

g(n)
(
q̂2
)( d

dû

)n
Θ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣∣
û=0

(4.2.39)

the total decay rate is given by

Γ

Γ0

= 8

∫ q̂2
max

0

dq̂2
√
q̂2

2∑
n=0

g(n)
(
q̂2
)( d

dû

)n
Θ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣∣
û=0

= 8

∫ q̂2
max

0

dq̂2
√
q̂2g(0)

(
q̂2
)

+

[
ρ− 1

2

√
q̂2g(1)

(
q̂2
)

+
2
√
q̂2g(2) (q̂2)

(1 + ρ)2

]∣∣∣∣∣
q̂2=q̂2

max

−
√
ρ+ q̂2

d

dq̂2

dq̂2

dx

(√
ρ+ q̂2 − 1

)2

ρ+ q̂2
g(2)

(
q̂2
)

q̂2=q̂2
max

= f(ρ)

(
1 +

1

2

(
µ2
G − µ2

π

))
− 2 (1− ρ)4 µ2

G, (4.2.40)

where Γ0 = G2
F |Vcb|2m5

b/(192π3) and f(ρ) = (1− 8ρ+ 8ρ3 − ρ4 − 12ρ2log(ρ)). This result
coincides with the literature [83,197].
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NNLO Power Corrections

At O (1/m3
b) the total decay rate is given by

Γ

Γ0

= 8

∫ q̂2
max

0

dq̂2
√
q̂2

3∑
n=0

g(n)
(
q̂2
)( d

dû

)n
Θ
(

1 + ρ+ û− 2
√
ρ+ q̂2 + û

)∣∣∣∣∣
û=0

, (4.2.41)

the difference to the first line of eq. (4.2.40) being that the sum over n now runs from 0
to 3 because at this order in the power expansion the structure functions ti contain terms
proportional to 1/ (u+ iε)4 which translate to terms proportional to the third derivative of a
δ-function of u after taking the imaginary part. Once we move the derivatives away from the
δ-functions by integrating by parts we encounter terms proportional to

d3

dû3
Θ
(

1 + ρ+ û− 2
√
û+ q̂2 + ρ

)∣∣∣∣
û=0

=− 12

(ρ+ 1)4 δ
(
q̂2 − q̂2

max

)
+

3
(√

q̂2 + ρ− 1
)

2 (q̂2 + ρ)2 δ′
(

1 + ρ− 2
√
q̂2 + ρ

)

+


(√

q̂2 + ρ− 1
)

√
q̂2 + ρ

3

δ′′
(

1 + ρ− 2
√
q̂2 + ρ

)
.

(4.2.42)

The integration of the second term together with a test function g (q̂2) is analogous to eq. (4.2.38),

3

2

∫ q̂2
max

0

dq̂2

√
q̂2 + ρ− 1

(q̂2 + ρ)2 g
(
q̂2
)
δ′
(

1 + ρ− 2
√
q̂2 + ρ

)

= −3

2

∫ (1−√ρ)
2

0

dx
dq̂2

dx

√
q̂ (x)2 + ρ− 1(
q̂ (x)2 + ρ

)2 g
(
q̂ (x)2) δ′ (x)

= −3

2

√
q̂2 + ρ

d

dq̂2

[
dq̂2

dx

√
q̂2 + ρ− 1

(q̂2 + ρ)2 g
(
q̂2
)]

q̂2=q̂2
max

. (4.2.43)

When we integrate the last term of eq. (4.2.42) together with a test function we obtain∫ q̂max

0

dq̂2

(√
q̂2 + ρ− 1√
q̂2 + ρ

)3

g
(
q̂2
)
δ′′
(

1 + ρ− 1
√
q̂2 + ρ

)

= −
∫ (1−√ρ)

2

0

dx
dq̂ (x)2

dx


√
q̂ (x)2 + ρ− 1√
q̂ (x)2 + ρ

3

g
(
q̂2(x)

)
δ′′ (x)

= − d2

dx2

dq̂ (x)2

dx


√
q̂ (x)2 + ρ− 1√
q̂ (x)2 + ρ

3

g
(
q̂2(x)

)
x=0

= −

(d2q̂2

dx2

d

dq̂2
+

(
dq̂2

dx

)2
d2

(dq̂2)2

)dq̂ (x)2

dx


√
q̂ (x)2 + ρ− 1√
q̂ (x)2 + ρ

3

g
(
q̂2
)


q̂2=q̂2
max
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=


(

1

2

d

dq̂2
+
(
q̂2 + ρ

) d2

(dq̂2)2

)
(√

q̂ (x)2 + ρ− 1

)3

q̂2 + ρ
g
(
q̂2
)



q̂2=q̂2
max

(4.2.44)

Using this result we obtain

Γ

Γ0

=8

∫ q̂2
max

0

dq̂2
√
q̂2g(0)

(
q̂2
)

+

[
ρ− 1

2

√
q̂2g(1)

(
q̂2
)

+
2
√
q̂2g(2) (q̂2)

(1 + ρ)2
− 12

(ρ+ 1)4 g
(3)
(
q̂2
)]∣∣∣∣∣

q̂2=q̂2
max

+
√
ρ+ q̂2

d

dq̂2


(√

ρ+ q̂2 − 1
)2

√
ρ+ q̂2

g(2)
(
q̂2
)

+
3

2

√
q̂2 + ρ− 1

(q̂2 + ρ)
3
2

g(3)
(
q̂2
)

q̂2=q̂2
max

+


(

1

2

d

dq̂2
+
(
q̂2 + ρ

) d2

(dq̂2)2

)
(√

q̂ (x)2 + ρ− 1

)3

q̂2 + ρ
g(3)

(
q̂2
)



q̂2=q̂2
max

=f(ρ)

(
1 +

1

2

((
µ2
G +

ρ3
LS

3

)
− µ2

π

))
− 2 (1− ρ)4

(
µ2
G +

ρ3
LS

3

)
+

1

6

(
77− 88ρ+ 24ρ2 − 8ρ3 − 5ρ4 +

(
48 + 36ρ2

)
log (ρ)

)
ρ3

D, (4.2.45)

which agrees with [156].
The moments introduced in eq. (4.2.2) can be computed by weighting the triple differential

decay rate with powers of the kinematical variable in question and faithfully repeating the
steps above.

Radiative Corrections and Quark Masses

As we have seen before the OPE lets us separate long distance effects happening over distances
l � Λ−1

QCD from short distance effects. The long distance effects are encoded in the matrix
elements of higher dimensional operators while the short distance effects are described by
their Wilson Coefficients (WC). Being of a short distance nature, the WC have a perturbative
expansion.

Analytical results for the one-loop corrections to the structure functions wi, i.e. to the
triple differential decay rate, have been computed a while ago [49]. At one-loop they take the
form

w
(1)
i = w

(1)
i,v δ (û) + w

(1)
i,+

[
1

û

]
+

+ w
(1)
i,r . (4.2.46)

Here we distinguish the contributions of virtual gluons proportional to a delta function from
the part of the real gluon emission which is proportional to a plus distribution defined by∫ û

0

dû

[
1

û

]
+

f(û) =

∫ û

0

dû
f (û)− f(0)

û
, (4.2.47)
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where f is a test function, and the part of the real gluon emission contribution which contains
neither a delta nor a plus distribution.

We find X(û, q̂2) at order αs by plugging the results from [49] into eq. (4.2.30) and replacing
q2 = 1 + û + ρ − 2

√
q̂2 + û+ ρ and ω̂ =

√
û+ q̂2 + ρ. The total decay rate is then found by

integrating over û and q̂2:

24π3

GF |Vcb|2m5
b

Γ =

∫ (1−ρ)2
4

0

dq̂2

∫ 1−2
√

q̂2−ρ

0

dû

√
q̂2√

û+ q̂2 + ρ
X̂
(
û, q̂2

)
=

∫ (1−ρ)2
4

0

dq̂2

∫ 1−2
√

q̂2−ρ

0

dû

√
q̂2√

û+ q̂2 + ρ

[
X̂v

(
û, q̂2

)
δ (û)

+ X̂+

(
û, q̂2

) [1

û

]
+

+ X̂r

(
û, q̂2

) ]

=

∫ (1−ρ)2
4

0

dq̂2

√
q̂2√

q̂2 + ρ
X̂v

(
0, q̂2

)
+

∫ (1−ρ)2
4

0

dq̂2

∫ 1−2
√

q̂2−ρ

0

dû

√
q̂2

û

[
X̂+ (û, q̂2)√
q̂2 + û+ ρ

− X̂+ (0, q̂2)√
q̂2 + ρ

]

+

∫ (1−ρ)2
4

0

dq̂2

∫ 1−2
√

q̂2−ρ

0

dû

√
q̂2√

q̂2 + û+ ρ
X̂r

(
û, q̂2

)
. (4.2.48)

After numerically evaluating the last three integrals we recover the literature result [49]

ΓO(αs)

Γ0f(ρ)
= −1.778. (4.2.49)

As the heavy quark masses get renormalized it is important to fix the scheme in which
they are defined when radiative corrections are taken into account. A natural definition of
the heavy quark masses is provided by the pole mass. It is defined as the zero of the inverse
propagator at every order in perturbation theory. But this definition of the heavy quark mass
suffers from an ambiguity of order ΛQCD, a so-called renormalon ambiguity, which hampers the
convergence of the perturbative series. Indeed in the relation between the pole mass and the
MS mass of the b quark the four-loop term still amounts to about 100 MeV [199]. The modified
minimal subtraction, or MS scheme, in which one absorbs the divergence plus a constant term
appearing along with it into the counterterms, is commonly used in high energy computations.
But because of the low energy scale of B meson decays, the energy of the final hadronic state
is limited by mb −mc and significantly reduced by the momentum carried away by the lepton
pair, also this scheme is not ideal in this case. In fact we saw above that the total decay rate
is proportional to m5

b , which introduces large corrections in the conversion from the pole mass
to the MS mass.

Instead in inclusive calculations one usually defines the b quark mass in the kinetic scheme
[76,78]. The heavy quark mass is defined by its relation to the meson mass [125]:

mQ(µ) = MH − Λ− µ2
π

2mQ(µ)
+ · · · (4.2.50)
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The quantities Λ and µ2
π are related to the double differential decay rate by Small Velocity (SV)

sum rules. These rules are obtained from moments of the hadronic final state energy in the limit
where |q| � mc ∼ mb, additional to ΛQCD � mc ∼ mb . The conversion between the kinetic
scheme and the pole and MS schemes has been computed at the three-loop level [124,125].

For the charm quark the situation is different. Because of the lower charm mass the HQE
is worse behaved than in the bottom case, which renders the definition of a kinetic mc difficult.
But as the scale of B decays is above the charm mass we can use the MS mass scheme for
mc. At one-loop the relations between the pole mass scheme and the kinetic scheme for mb are
given by [142]

mpole
b ≡ mkin

b (0) = mkin
b (µb) +

αs (µb)

π
CFµb

(
4

3
+

µb
2mkin

b

)
µ2
π,pole = µ2

π,kin (µb)− CFµ2
b

αs
π

ρ3
D,pole = ρ3

D,kin (µb)−
2

3
CFµ

3
b

αs
π
. (4.2.51)

while the relation between the pole mass and MS mass for the charm quark is [124]

mpole
c =

(
1 +

αs (µc)

π

(
4

3
+ ln

µ2
c

mc (µc)
2

))
mc (µc) , (4.2.52)

where CF = 4
3
.

4.3 Inclusive Decays in Lattice QCD

As mentioned above, non-perturbative effects in QCD, such as the HQE matrix elements,
cannot be computed analytically from first principles. Numerically however it is possible to
compute them by making use of Lattice QCD (LQCD) [222] simulations. Lattice computations
provide a way of computing inclusive observables without relying on the HQE and can serve
as an important check of the established HQE framework.

LQCD provides a regularization of QCD by discretizing Euclidean spacetime, related to
Minkowski space by a Wick rotation, which is equivalent to introducing a momentum cutoff in
the UV. In discrete spacetime formerly continuous momentum integrals are replaced by finite
sums, rendering their values finite. Processes can be simulated on a lattice with a given spacing
a and a volume V = L3 × T , where L corresponds to the spatial extent and T corresponds to
the time extent of the lattice. Here a complication arises. Once the simulation is performed its
results cannot directly be linked to physical observables. First their dependence on the lattice
volume has to be studied, such that one can take their limit when V → ∞. Secondly one
also has to study their dependence on the lattice spacing in order to take the continuum limit
a → 0. These difficulties can be dealt with and lattice computations have become crucial in
accessing non-perturbative objects like quark masses, form factors and decay constants. For a
review on lattice results for flavour physics one may consult [45].

Most lattice computations concern exclusive processes, in which the exact final state is
known as well as the initial state. Simulations of inclusive processes are more complicated
because of the large number of possible intermediate states.

For inclusive decays of heavy mesons however a method of directly computing observables
which circumvents this problem has been found recently [143,164].
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It is based on the observation that the hadronic matrix element

Cµν (q, t) =
1

2mBs

〈
Bs

∣∣∣J̃†µ (q, t) e−ĤtJ̃ν (q, t)
∣∣∣Bs

〉
, (4.3.1)

which can be computed on the lattice from four-point correlators, is related to the hadronic
tensor through a Laplace transform:

Cµν (q, t) =

∫ ∞
0

dωWµν (q, ω) e−ωt (4.3.2)

Here the hadronic tensor is expressed in terms of the three-momentum q of the lepton pair and
the energy ω energy of the hadronic final state Xc,

Wµν =
1

2mBs

∑
Xc

δ (ω − EXc)
〈
Bs

∣∣∣J̃†µ (q, 0)
∣∣∣Xc

〉〈
Xc

∣∣∣J̃ν (q, 0)
∣∣∣Bs

〉
. (4.3.3)

Now inverting the integral on the r.h.s. of eq. (4.3.2) is an ill-posed problem so the hadronic
tensor cannot be computed directly. But this is not necessary either if we are interested in
inclusive observables. As the quantity X defined in eq. (4.2.32) is nothing else but the q2

spectrum we can write it in the form

X
(
q2
)

=

∫ ωmax

ωmin

dωkµν (q, ω)W µν (q, ω) , (4.3.4)

where kµν is a kinematical factor determined by the E` integral of the leptonic tensor. We can
exchange the upper integration by a Heaviside function θ (ωmax − ω) and the lower integration
limit can be exchanged with any 0 ≤ ω0 ≤ ωmin thanks to the δ function in eq. (4.3.3). After
doing this and defining Kµν = θ (ωmax − ω) kµν we obtain

X
(
q2
)

=

∫ ∞
ω0

dωKµν (q, ω)W µν (q, ω) (4.3.5)

which looks very similar to eq. (4.3.2). Making use of the fact that we can approximate any
smooth function f (ω) as

f (ω) =
∑
τ

gτe
−ωτ (4.3.6)

we can write eq. (4.3.5) as a sum of terms equal to eq. (4.3.2) times a coefficient gµντ . But we are
not done just yet. The last problem is that the integrand of eq. (4.3.5) is cut off sharply at ωmax

while the integrand of eq. (4.3.2) dies off smoothly. this problem can be solved by replacing the
Heaviside function in eq. (4.3.5) with a smooth function which tends to the Heaviside function
in a well defined limit. Such a function is given by the sigmoid

θσ(x) =
1

1 + e−
x
σ

(4.3.7)

which satisfies limσ→0 θσ(x) = θ(x). Combining this with the approximation of the kernel
function in eq. (4.3.6) we obtain

lim
σ→0

∑
τ

gµντ Cµν (q, t) = lim
σ→0

∫ ∞
ω0

dωθσ (ωmax − ω) kµν (q, ω)W µν (q, ω) = X
(
q2
)
. (4.3.8)
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In chapter 5 the l.h.s. of this equation is computed on the lattice and confronted with an OPE
calculation of the r.h.s. This serves as an independent check of the OPE framework commonly
used to extract |Vcb| from inclusive B meson decays. Furthermore in the future it could be
used to access hadronic matrix elements which are difficult to extract from experimental data.

Afterwards the part on inclusive decays of B mesons will conclude with chapter 6 in which
the tools developed in this chapter will be applied to study the effects of dimension 8 operators
in the weak effective theory to inclusive observables.
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Chapter 5

Lattice QCD Study of Inclusive
Semileptonic Decays of Heavy Mesons

This chapter presents the work published in [144].

5.1 Introduction

The theoretical study of semileptonic decays of B mesons continues to be an important and very
active area of research in high-energy physics: this interest is mainly driven by the fact that
these decays encode direct information on the modulus of two of the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix [100, 181], namely |Vub| and |Vcb|, and may
be a sensitive probe to new physics beyond the Standard Model (SM). As a matter of fact,
many different types of extensions of the SM are expected to affect flavour physics, inducing
new flavour-changing interactions, complex phases in the CKM matrix, possible violations of
lepton-flavour universality, etc. Even if the mass scales of new particles beyond the SM turned
out to be very high, quantum effects of the associated fields could leave detectable imprints
onto the physics of bottom and charm quarks.

On the experimental side, recent results from B factories reveal some tension with SM
predictions, but also exhibit puzzling discrepancies between exclusive and inclusive chan-
nels [43, 141, 146, 228]. For theorists, this provides further motivation to improve the un-
derstanding of these decays and to refine their predictions. Currently, the most powerful
tool to obtain theoretical predictions from the first principles of QCD is the one based on
numerical simulations in the lattice regularisation of the theory [222]. It is an intrinsically
non-perturbative approach, that allows one to obtain accurate and systematically improvable
predictions for a variety of quantities, including those relevant for decays of heavy mesons: for
an up-to-date world review of lattice results relevant to flavour physics, see ref. [45]. It should
be emphasized, however, that most lattice calculations focus on exclusive decays: in a nutshell,
this is due to the fact that inclusive processes consist of a potentially very large number of phys-
ical states—including states featuring multiple hadrons, which pose their own challenges—and
their systematic analysis in numerical calculations is very impractical, if possible at all.

Recently, however, novel approaches have been put forward, that allow one to address
inclusive decays in lattice QCD. As an example, in ref. [164] it was pointed out that the
differential rate for inclusive decays of the type B → X`ν (where X denotes all hadronic states
that are compatible with the semileptonic decay of the bottom quark) could be evaluated by
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relating the hadronic tensor

Wµν(p, q) =
4π3

EB

∑
X

δ4(p− q − pX)〈B(p)|J†µ|X(pX)〉〈X(pX)|Jν |B(p)〉 (5.1.1)

(where Jµ is the weak current associated with the b quark decay, p and pX respectively denote
the four-momenta of the B meson and of theX state, while q is the transferred four-momentum)
to the forward scattering matrix element Tµν(p, q) [83,197], and by extracting the latter through
an analytical continuation of lattice results obtained for this quantity in an unphysical region,
where the decay is forbidden by kinematics.

In ref. [163], on the other hand, it was proposed to study decay and transition rates into
final states with an arbitrary number of hadrons by reconstructing the spectral function as-
sociated with a Euclidean four-point function in a finite volume from lattice correlators, with
an appropriate smoothing protocol. A closely related approach was discussed in ref. [162] (see
also refs. [95, 96]).

Finally, in ref. [143] it was suggested to study inclusive decays on the lattice by computing
a suitable “smeared” spectral density ρ(w) of hadron correlators, where the smearing is defined
by the integration over the allowed phase-space region. Also in this case, the strategy involves
the lattice determination of a class of four-point correlation functions. This technique allows
one to bypass the need for analytical continuation, and, at least in principle, paves the way for
the determination of the total semileptonic width as well as of the moments of any kinematic
distribution associated with general B → X`ν decays.

In the present work, we focus on the method proposed in ref. [143], presenting the results of
explicit lattice calculations based upon this framework. We discuss results from two different
types of ensembles of lattice QCD configurations, and we also compare them with an analytical
calculation based on the operator-product expansion (OPE) [178,221] within the framework of
an expansion in inverse powers of the heavy-quark mass [77,79,83].

The structure of this article is the following. In section 5.2, we recapitulate the formu-
lation of the method, extending the presentation in ref. [143] with additional remarks, and
commenting on its application to observables of particular interest (including differential dis-
tributions and moments). In section 5.3, we present an explicit implementation of the method
in lattice QCD calculations, using two different ensembles of configurations, generated by the
JLQCD collaboration and by the ETM collaboration; the final part of the section is devoted
to a technical discussion about the extrapolation to the limit in which the smearing parameter
σ tends to zero. The following section 5.4 presents the analytical calculation based on the
OPE, and compares its predictions with the results from lattice QCD. Finally, in section 5.5
we summarize our results and discuss future prospects.

5.2 Formulation of the method and application to ob-

servables

5.2.1 Spectral representation of the inclusive decay rate

Here we review the formalism to calculate the inclusive semileptonic decay rate in lattice
QCD [143]. To be specific, we consider the semileptonic decay of a B meson to charmed
final states Xc with a pair of massless leptons (`ν̄) through the flavour-changing current Jµ =
Vµ − Aµ = c̄γµ(1− γ5)b.
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We start from the differential decay rate

dΓ

dq2dq0dE`
=
G2
F |Vcb|2
8π3

LµνW
µν , (5.2.1)

where GF is the Fermi constant and |Vcb| is the relevant CKM matrix element. Here we work
in the rest frame of the initial B meson, so that

p = (mB,0) , q = p` + pν̄ = (q0, q) , r = p− q = (ω,−q) , (5.2.2)

where the differential decay rate is a function of the three kinematical variables q2, q0 and the
lepton energy E`, and is given by the product of the leptonic tensor,

Lµν = pµ` p
ν
ν̄ − p` · pν̄gµν + pν`p

µ
ν̄ − iεµανβp`,αpν̄,β , (5.2.3)

and the hadronic tensor,

W µν(p, q) =
∑
Xc

(2π)3δ(4)(p− q − r) 1

2EB(p)
〈B̄(p)|Jµ†(0)|Xc(r)〉〈Xc(r)|Jν(0)|B̄(p)〉. (5.2.4)

The sum over the charmed states Xc(r) actually includes an integral over r.1

Performing the integral over the lepton energy E` in its kinematical range, i.e. from (q0 −√
q2)/2 to (q0 +

√
q2)/2, and changing the remaining kinematical variables from (q0, q

2) to
(ω, q2), the total rate can be written as

Γ =
G2
F |Vcb|2
24π3

∫ q2
max

0

dq2
√
q2X̄(q2) , X̄(q2) ≡

∫ ωmax

ωmin

dωX(ω, q2) , (5.2.5)

where

q2
max =

(m2
B −m2

D)2

4m2
B

, ωmin =
√
m2
D + q2 , ωmax = mB −

√
q2 . (5.2.6)

The quantity X(ω, q2) appearing above is a linear combination, with coefficients depending on
the kinematical variables, of the different components of the hadronic tensor. Indeed, Lorentz
invariance and time-reversal symmetry allow one to decompose W µν into invariant structure
functions according to

W µν(p, q) =− gµνW1(ω, q2) +
pµpν

m2
B

W2(ω, q2)− iεµναβ pαqβ
m2
B

W3(ω, q2)

+
qµqν

m2
B

W4(ω, q2) +
pµqν + pνqµ

m2
B

W5(ω, q2) . (5.2.7)

By introducing the following basis for three-dimensional space,

n̂ =
q√
q2

, ε(a) · n̂ = 0 , ε(a) · ε(b) = δab , {a, b} = {1, 2} , (5.2.8)

1More precisely, the sum over the charmed states Xc(r) should be written as∑
Xc

|Xc(r)〉〈Xc(r)| →
∑
Xc

∫
d3r

(2π)3
1

2EXc(r)
|Xc(r)〉〈Xc(r)|

when the standard relativistic normalization for a single-particle state is employed for Xc.
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and the hadronic quantities

Y (1) = −
2∑

a=1

3∑
i,j=1

ε
(a)
i ε

(a)
j W ij , Y (2) = W 00 , Y (3) =

3∑
i,j=1

n̂in̂jW ij ,

Y (4) =
3∑
i=1

n̂i(W 0i +W i0) , Y (5) =
i

2

3∑
i,j,k=1

εijkn̂kW ij , (5.2.9)

it is easy to see that, in the rest frame of the B meson, the information contained in W µν can
be equivalently parametrized in terms of Y (i) ≡ Y (i)(ω, q2). A convenient representation of
X(ω, q2) is then given by

X(ω, q2) =
2∑
l=0

(
√
q2)2−l(mB − ω)lX(l)(ω, q2) ,

X(0) = Y (1) + Y (2) , X(1) = −Y (4) , X(2) = Y (3) − Y (1) . (5.2.10)

At this point, some observations are in order. First, we notice that the parity-violating structure
function W3 (or equivalently Y (5)) does not contribute to the differential decay rate after the
integral over E` has been performed (this will not be the case for the moments considered
below). Then, by rewriting eq. (5.2.4) as

Wµν(ω, q) =
(2π)3

2mB

〈B̄(0)|J†µ(0)δ(Ĥ − ω)δ3(P̂ + q)Jν(0)|B̄(0)〉 , (5.2.11)

where Ĥ and P̂ are the QCD Hamiltonian and momentum operators, we explicitly see that in
the rest frame of the B meson the different components of the hadronic tensor are functions of
ω and q (we already used this information in changing the integration variables from (q0, q

2)
to (ω, q2)). In the following we refer to eq. (5.2.11) as the spectral representation of the
hadronic tensor. Flavour and momentum conservation imply that the hadronic tensor vanishes
identically for energies ω < ωmin. From this observation one obtains ωmin =

√
m2
D + q2. This

means that by introducing the kernels

K(l)(ω, q2) = (mB − ω)lθ(ωmax − ω) , (5.2.12)

the ω integral in eq. (5.2.5) can be rewritten as

X̄(q2) =
2∑
l=0

(
√
q2)2−l

∫ ∞
0

dωK(l)(ω, q2)X(l)(ω, q2) . (5.2.13)

We close this subsection by providing an equivalent representation of X(ω, q2) which will be
useful later. It is given by

X(ω, q2) =
2∑
l=0

(
√
q2)2−l(ωmax − ω)lZ(l)(ω, q2) , (5.2.14)

where the Z(l)(ω, q2) are again linear combinations of the Y (l),

Z(0) = Y (2) + Y (3) − Y (4) , Z(1) = 2Y (3) − 2Y (1) − Y (4) , Z(2) = Y (3) − Y (1) . (5.2.15)
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By introducing the kernels

Θ(l)(x) = xlθ(x) , (5.2.16)

that are functions of the single variable x = ωmax − ω, we thus have

X̄(q2) =
2∑
l=0

(
√
q2)2−l Z(l)(q2) , Z(l)(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z(l)(ω, q2) . (5.2.17)

5.2.2 Decay rate from Euclidean correlators

In order to calculate X̄(q2), as given in eq. (5.2.13) or eq. (5.2.17), we need to evaluate the
integral over ω of the different components of the hadronic spectral density (5.2.11) with the
kernels K(l)(ω, q2) or Θ(l)(ωmax − ω). To this end, following ref. [164], we first establish the
connection between suitably chosen correlation functions that can be calculated on the lattice,
and Wµν .

We start by considering the Euclidean correlator

Cµν(tsnk, t2, t1, tsrc; q) =

∫
d3x eiq·x T 〈0| φ̃B(0; tsnk)J†µ(x; t2)Jν(0; t1)φ̃†B(0; tsrc) |0〉 , (5.2.18)

where φ̃B(0; t) is a B-meson creation/annihilation operator projected onto zero spatial momen-
tum by integrating over space at a time t. A zero-momentum B meson is thus created at time
tsrc and annihilated at tsnk. The two currents are inserted in between, at times t2 and t1. The
charmed hadrons are created at time t1 with a momentum insertion −q and propagate until
they are transformed back to the B-meson state at time t2.

The four-point function Cµν is saturated by the B-meson non-local matrix element

Mµν(t; q) = e−mBt
∫
d3x

eiq·x

2mB

〈B̄(0)|J†µ(x,t)Jν(0,0)|B̄(0)〉 , (5.2.19)

when the double limit tsrc → −∞, tsnk →∞ is taken. To include a proper normalization, one
can analyse

Mµν(t2 − t1; q) = ZB lim
tsnk→+∞
tsrc→−∞

Cµν(tsnk, t2, t1, tsrc; q)

C(tsnk − t2)C(t1 − tsrc)
, (5.2.20)

where C(t) is the B-meson two-point function

C(t) = T 〈0| φ̃B(0; t)φ̃†B(0; 0)|0〉 (5.2.21)

and ZB is its residue when a large time separation is taken, C(t)→ ZBe
−mBt.

Starting from eq. (5.2.19) we can establish the connection between Mµν(t; q) and the
hadronic tensor given in eq. (5.2.11). We have

Mµν(t; q) =

∫
d3x

eiq·x

2mB

〈B̄(0)|J†µ(0,0)e−tĤ+iP̂ ·xJν(0,0)|B̄(0)〉

=
(2π)3

2mB

〈B̄(0)|J†µ(0,0)e−tĤδ3(P̂ + q)Jν(0,0)|B̄(0)〉

=

∫ ∞
0

dωWµν(ω, q) e−ωt . (5.2.22)

55



The problem of the calculation of X̄(q2) is now reduced to that of trading the integral of
Wµν(ω, q) with the kernels e−tω for the integral with the kernels Θ(l)(ωmax−ω) (or K(l)(ω, q2)).

The general inverse problem represented by the extraction of hadronic spectral densities
from Euclidean correlators is notoriously ill-posed. Recently, methods to cope with these
problems have been proposed, and they treat the above mentioned integrals with some kernels.
In this paper we use two approaches proposed in refs. [55, 162]. The differences between the
two methods will be discussed in detail in the following sections. Here we concentrate on the
common starting point of the two approaches, which are actually closely related to each other.

We start by introducing an arbitrary length scale a. On the lattice this will be identified with
the lattice spacing. The correlators Mµν(t; q) will be computed at times t = aτ where τ ≥ 0
is an integer. By introducing the variable x = e−aω (and its inverse mapping ω = − log(x)/a),
standard theorems of numerical analysis guarantee that any C∞ function f(ω) ≡ g(x) in
the interval ω ∈ [0,∞] (corresponding to x ∈ [0, 1]), vanishing at ω = ∞ (x = 0), can be
approximated with arbitrary precision in terms of polynomials in x according to

f(ω) =
∞∑
τ=1

gτ x
τ ≡

∞∑
τ=1

gτ e
−aωτ . (5.2.23)

This implies that the integral of the product of Wµν(ω, q) with f(ω) can be computed, once
the coefficients gτ are known, by using the linear relation∫ ∞

0

dωWµν(ω, q) f(ω) =
∞∑
τ=1

gτ Mµν(aτ ; q) . (5.2.24)

This procedure cannot be applied straightforwardly to the calculation of X(q2) because the
kernels Θ(l)(ωmax − ω) (or K(l)(ω, q2)) are not smooth, i.e. they contain a discontinuity due
to the θ-function. In this case, a sequence of polynomials can still converge to the kernels in
mean, which would be sufficient for our purposes, but a reasonable approximation would imply
a very large number of terms. However, the problem can be solved by introducing smeared
C∞ versions of the θ-function, θσ, such that the sharp step-function is recovered in the limit in
which the smearing parameter σ is sent to zero, limσ→0 θσ(x) = θ(x).

By considering, as suggested in ref. [143], the corresponding smeared versions of the kernels

entering the definition of X̄(q2), that we call Θ
(l)
σ (ωmax − ω) and K

(l)
σ (ω, q), we then have

Θ(l)
σ (ωmax − ω) = ml

B

∞∑
τ=1

g(l)
τ (ωmax, σ) e−aωτ , (5.2.25)

and ∫ ∞
0

dωWµν(ω, q) Θ(l)(ωmax − ω) = lim
σ→0

ml
B

∞∑
τ=1

g(l)
τ (ωmax, σ)Mµν(aτ ; q) , (5.2.26)

as well as similar relations in the case of the kernels K(l)(ω, q2).
A few observations are now in order. The first concerns a subtle theoretical issue. The

smearing procedure, which is algorithmically required to implement the procedure just out-
lined, is also necessary for theoretical reasons. Hadronic spectral densities, and therefore also
Wµν(ω, q), are elements in the space of distributions and their product with another distribu-
tion, such as the θ-function, can only be defined through a regularization procedure (when it
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exists). The issue is particularly important in the case of lattice simulations because they are
necessarily performed on a finite volume. Finite-volume spectral functions, due to the quanti-
zation of the energy spectrum, are sums of isolated δ-function singularities and their connection
with the corresponding physical quantities requires an ordered double-limit procedure: first the
infinite volume limit has to be taken and only after that, if the quantity is non-singular, can
one take the σ → 0 limit.

The second observation is related to the fact that the problem we are addressing is partic-
ularly hard from the computational point of view. In the limit of very small σ the coefficients
g

(l)
τ (ωmax, σ) of eq. (5.2.25) tend to become arbitrarily large in modulus and oscillate in sign.

Since lattice correlators are unavoidably affected by statistical and systematic errors, in these
cases the resulting uncertainties on the sums on the left-hand side of eq. (5.2.26) tend to ex-
plode. The two approaches of refs. [55, 162] differ for the procedures used to determine the

coefficients g
(l)
τ (ωmax, σ), once the series is truncated at τ = τmax, in such a way to keep both

statistical and systematic errors under control.

5.2.3 Kernel approximation

In this subsection we review the methods of refs. [55, 162] by highlighting the differences in
the procedures used to approximate the smearing kernels. To simplify the formulae, we shall
consider a generic kernel f(ω), that will then be identified with the kernels Θ(l)(ωmax−ω)/ml

B

or K(l)(ω, q)/ml
B, and a generic correlator

C(t) =

∫ ∞
0

dω ρ(ω) e−ωt , (5.2.27)

to be identified with Mµν(t; q), so that ρ(ω) will correspond to Wµν(ω, q). In this work we shall
not address the systematics associated with the finiteness of the extent of the lattice in the
temporal direction, see refs. [96, 162] for an extended discussion of this issue and, in general,
for more details concerning the algorithm and its applications.

In the method of ref. [162] the coefficients gτ corresponding to the approximation of f(ω)
are determined by minimizing the functional

Wλ[g] = (1− λ)
A[g]

A[0]
+ λB[g] , (5.2.28)

where λ ∈ [0, 1] is the so-called “trade-off parameter” (see below) and the functionals A[g] and
B[g] are given by

A[g] = a

∫ ∞
E0

dω

{
f(ω)−

τmax∑
τ=1

gτ e
−aωτ

}2

, B[g] =
τmax∑
τ,τ ′=1

gτgτ ′
Cov [C(aτ), C(aτ ′)]

[C(0)]2
.

(5.2.29)

Here Cov [C(t), C(t′)] is the statistical covariance of the correlator C(t) and, consequently, the
functional B[g] is positive definite. The functional A[g] is also a positive definite quadratic
form in the coefficients gτ . Therefore, the minimum conditions

∂Wλ[g]

∂gτ

∣∣∣∣
gτ=gλτ

= 0 (5.2.30)
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are a linear system of equations to be solved for the coefficients gλτ . These coefficients define
the approximation of f(ω) and the associated estimator for the integral of ρ(ω) with f(ω)
according to

fλ(ω) =
τmax∑
τ=1

gλτ e
−aωτ , ρλ[f ] =

τmax∑
τ=1

gλτC(aτ) =

∫ ∞
0

dω fλ(ω) ρ(ω) . (5.2.31)

The functional B[gλ] is the statistical variance of ρλ[f ] normalized with the square of the cor-
relator in zero and, therefore, vanishes in the ideal case of infinitely precise input data. On the
other hand, A[gλ] measures the distance between the target kernel f(ω) and its approximation
fλ(ω) in the range2 ω ∈ [E0,∞]. In fact A[gλ] is the squared L2-norm in function space of the
difference fλ(ω)− f(ω) and can only vanish in the limit tmax →∞.

In the absence of errors, the coefficients gλτ that minimize A[g] provide the best polynomial
approximation of f(ω) with respect to the L2-norm. This has to be compared with the method
of ref. [55] that provides the best polynomial approximation of f(ω) with respect to the L∞-
norm (see below). In the presence of errors, the coefficients gλτ that minimize Wλ[g] represent
a particular balance between statistical and systematic errors, as dictated by the λ parame-
ter. For small λ the estimator ρλ[f ] is close to ρ[f ] but with a large statistical uncertainty.
Conversely, for large λ the estimator ρλ[f ] has a small statistical error but differs significantly
from ρ[f ]. When evaluated at the minimum, the functional Wλ[g] is a function of λ only, thus
defining W (λ) ≡ Wλ[g

λ]. The prescription suggested in ref. [162] to choose the optimal value
of the trade-off parameter defines λ? such that

∂W (λ)

∂λ

∣∣∣∣
λ=λ?

= 0 . (5.2.32)

From eq. (5.2.30) it follows that at λ? (the maximum of W (λ) where gλτ = g?τ ) one has A[g?] =
A[0]B[g?]. This can be understood as the condition of “optimal balance” between statistical
and systematic errors. The numerical results discussed in subsection 5.3.2 have been obtained
using this method, also monitoring the stability of the results with respect to λ ≤ λ?.

In ref. [55], on the other hand, the function f(ω) is approximated using the Chebyshev
approximation as

f(ω) ' c∗0
2

+
N∑
j=1

c∗jT
∗
j (e−aω) , (5.2.33)

where T ∗j (x) is a (shifted) Chebyshev polynomial of the j-th order. The coefficients c∗j are
determined only by the function f(ω):

c∗j =
2

π

∫ π

0

dθ f

(
− ln

1 + cos θ

2

)
cos(jθ) . (5.2.34)

This yields the best approximation in the sense of the L∞-norm3. The approximation of the

2The parameter E0 can be adjusted by exploiting the fact that ρ(ω) has support only for ω > ωmin, so that
ρ[f ] is insensitive to f(ω) for ω < ωmin. The same holds for ρλ[f ] so that the functional form of fλ(ω) can be
left unconstrained for ω < ωmin. Any E0 < ωmin is therefore a viable choice in determining the coefficients gλt
so E0 can be chosen to improve the numerical stability of the minimization procedure.

3More precisely, the Chebyshev approximation of a generic function f(y) for y ∈ [−1, 1] is in practice

equivalent, although not identical, to the optimal polynomial approximation of f(~g; y) =
∑N
τ=0 gτy

τ obtained
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ω-integral is then constructed as∫
dωf(ω)ρ(ω) =

〈ψµ|f(Ĥ)|ψν〉
〈ψµ|ψν〉

' c∗0
2

+
N∑
j=1

c∗j
〈ψµ|T ∗j (e−aĤ)|ψν〉

〈ψµ|ψν〉
, (5.2.35)

where |ψµ〉 ≡ e−Ĥt0Jµ|B〉 is defined such that the state is evolved for some small time t0
after applying the current insertion: this allows one to avoid any ultraviolet divergence due to
contact terms of two currents. To reflect this change, the kernel f(ω) is multiplied by e2ωt0 to
cancel the time evolution. The right-hand side of eq. (5.2.35) can be reconstructed from the
matrix elements (5.2.19) using Mµν(t+ 2t0)/Mµν(2t0).

An advantage of this construction is that the matrix element appearing on the right-hand
side of eq. (5.2.35), 〈ψµ|T ∗j (e−aĤ)|ψν〉/〈ψµ|ψν〉, is strictly bound between −1 and +1, by con-
struction of the Chebyshev polynomial. This corresponds to the condition that the eigenvalues
of e−Ĥ lie between 0 and 1, or equivalently that the eigenvalues of Ĥ are positive semi-definite.
Then, the convergence of the series appearing in eq. (5.2.35) is dictated by that of the co-
efficients c∗j . Since c∗j can be easily calculated for arbitrarily large j’s, the error due to the
truncation in (5.2.35) can be rigorously estimated.

The constraint |〈ψµ|T ∗j (e−aĤ)|ψν〉/〈ψµ|ψν〉| ≤ 1 is not automatically satisfied in the presence
of statistical errors. Since the Chebyshev polynomial T ∗j (x) is a sign-alternating series of
growing powers of x with (exponentially) large coefficients, this constraint is satisfied after
huge cancellations for large j. Therefore, even a small statistical error of the lattice correlator
can easily violate the constraint. In the numerical analysis, one should add the constraint when
the Chebyshev matrix elements are determined by a fit, see ref. [55] for details. The higher-
order terms are then masked by the statistical uncertainties and become basically undetermined
within ±1, so that they only contribute to the truncation error.

In both methods, a good approximation is obtained only when the kernel function is suf-
ficiently smooth. If this is not the case, the truncation error becomes significant, e.g. due to
unsuppressed higher-order coefficients c∗j in the case of the Chebyshev approximation. Unfor-

tunately, the kernel functions K(l)(ω, q) or Θ(l)(ωmax−ω) are not smooth, because they contain
the Heaviside function θ(ωmax−ω). We therefore introduce smeared versions of the θ-function
and then we take the limit of σ → 0 to recover the unsmeared kernel. This has been done by
considering three different smeared θ-functions,

θsσ(x) =
1

1 + e−
x
σ

, θs1σ (x) =
1

1 + e− sinh( x
rs1σ )

, θeσ(x) =
1 + erf

(
x
reσ

)
2

, (5.2.36)

and by extrapolating the numerical data to the σ → 0 limit. In the following we shall refer
to θsσ(x) as the “sigmoid function”, to θs1σ (x) as the “modified sigmoid function” and to θeσ(x)
as the “error function”. Any choice of the parameters rs1 and re appearing in the previous
formulae corresponds to a legitimate definition of the smearing kernels that approach the same
σ → 0 limit, i.e. the θ-function. By adjusting the values of these parameters one can change
the rate of convergence to the θ-function and balance between statistical and systematic errors.
In the following we set rs1 = 2.2 and re = 2.0. This (empirical) choice gives statistical errors of

by minimizing the L∞-norm ‖f(y) − f(~g; y)‖∞ = maxy∈[−1,1]|f(y) − f(~g; y)| with respect to the coefficients
~g. In fact, the Chebyshev approximation is obtained by minimizing the weighted squared L2-norm given by∫ 1

−1 dy w(y)|f(y) − f(~g; y)|2 with w(y) = 1/
√

1− y2. By setting instead w(y) = 1, as done in the case of the
method of ref. [162], one gets the Legendre polynomial approximation.
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the same order of magnitude for the three kernels at fixed σ and similar (although not identical)
shapes for θsσ(x) and θeσ(x) while θs1σ (x) results into a smoother approximation of the θ-function.
A combined analysis of smearing kernels that have rather different shapes at fixed σ is in fact
helpful in order to quantify the systematics associated with the σ → 0 extrapolations (see also
ref. [96]).

5.2.4 Decomposition of the total rate

The expression of the total rate in eq. (5.2.5) can also be used to compute the differential decay
rate in q2, i.e. dΓ/dq2 = G2

F |Vcb|2/(24π3)|q|X̄(q2). This can be further decomposed into its
contributions from parallel (‖) and perpendicular (⊥) components, where the⊥ components are
defined as those involving the polarization vector ε∗(α), while the ‖ ones are the rest. In addition,
we also separate the contributions from vector (V ) and axial-vector (A) current insertions.
Since two currents are inserted, we have V V , AA, as well as V A and AV contributions. Among
them, V A and AV do not contribute to the differential rate after integrating over E`, and thus
to the total decay rate. We therefore analyze four components: V V‖, V V⊥, AA‖, AA⊥. For
the lepton energy moments, the V A and AV insertions can also appear (see below).

5.2.5 Moments

It is also interesting to consider the moments of various kinematical quantities. In particular,
two types of moments have been studied experimentally: the hadronic mass moments 〈(M2

X)n〉
and the lepton energy moments 〈En`

` 〉. They are defined as

〈(M2
X)n〉 =

∫
dq2dq0dE` (ω2 − q2)n

[
dΓ

dq2dq0dE`

]
∫
dq2dq0dE`

[
dΓ

dq2dq0dE`

] , (5.2.37)

〈En`
` 〉 =

∫
dq2dq0dE`E

n`
`

[
dΓ

dq2dq0dE`

]
∫
dq2dq0dE`

[
dΓ

dq2dq0dE`

] . (5.2.38)

The strategy to compute these moments on the lattice is the same as in the method described
above. For the hadronic mass moments defined in eq. (5.2.37), the numerator contains extra
powers of ω2 − q2, with which the ω-dependence of X(0), X(1), X(2) is modified. Otherwise,
the basic procedure remains the same. Beside these quantities which require an integration
over the whole q2 range, we will also consider moments at fixed values of q2, i.e. differential
moments:

Hn(q2) ≡ 〈(M2
X)n〉q2 =

∫
dq0dE` (ω2 − q2)n

[
dΓ

dq2dq0dE`

]
∫
dq0dE`

[
dΓ

dq2dq0dE`

] , (5.2.39)

Ln`(q
2) ≡ 〈En`

` 〉q2 =

∫
dq0dE`E

n`
`

[
dΓ

dq2dq0dE`

]
∫
dq0dE`

[
dΓ

dq2dq0dE`

] , (5.2.40)
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and the second central moment or variance of the lepton energy distribution

L2c(q
2) = L2(q2)−

(
L1(q2)

)2

.

In the case of leptonic moments, the E` integral is modified with respect to (5.2.5). The
integrand in the denominator is the same as in (5.2.10); if we set the q momentum direction
n along the k-th axis, the two vectors εa can be chosen in the perpendicular directions of the
i-th and j-th axes, and we can re-express X(ω, q2) as

Xn`=0 = q2(W 00 −W ii −W jj)− q0qk(W
0k +W k0) + q2

0(W kk +W ii +W jj) , (5.2.41)

where repeated indices are not summed. The integrand in the numerators of eq. (5.2.38) and
eq, (5.2.40) depends on the exponent n`. For n` = 1, it reads

Xn`=1 =
q0

2

[
q2(W 00 −W ii −W jj)− q0qk(W

0k +W k0) + q2
0(W kk +W ii +W jj)

]
+
i

2
qk(q

2
0 − q2)W ij , (5.2.42)

where the last term corresponds to the insertion of V A or AV . The other terms are the same
as Xn`=0, up to a factor q0/2. The next orders are more involved:

Xn`=2 =
1

4

{(
q2

0q
2 +

1

5
|q|4
)
W 00 +

(
2q4

0 −
6

5
q2

0q
2 − 4

5
|q|4
)
W ii +

(
q4

0 +
1

5
q2

0q
2

)
W kk

−
(
q3

0|q|+
1

5
q0|q|3

)
(W 0k +W k0) +

i

2
q0|q|(q2

0 − q2)W ij

}
, (5.2.43)

Xn`=3 =
1

8

{(
q3

0q
2 +

3

5
q0|q|4

)
W 00 +

(
q5

0 +
3

5
q3

0q
2

)
W kk +

(
2q5

0 +
2

5
q3

0q
2 − 12

5
q0|q|4

)
W ii

−
(
q4

0|q|+
3

5
q2

0|q|3
)

(W 0k +W k0) + i

(
3q2

0|q|+
3

5
|q|3
)

(q2
0 − q2)W ij

}
. (5.2.44)

Again, the term with W ij survives for V A and AV insertions, while the others are from V V
or AA.

The contributions in eq. (5.2.42) can be rearranged in such a way that the ω-integral
contributing to the numerator of eq. (5.2.40) takes the form

X̄n`=1(q2) =
3∑
l=0

(
√
q2)3−l Z

(l)
n`=1(q2) ,

Z
(l)
n`=1(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n`=1(ω, q2) , (5.2.45)

where the Z
(l)
n`=1(ω, q2) are given by

Z
(0)
n`=1 =

Y (2) + Y (3) − Y (4)

2
, Z

(1)
n`=1 =

−2Y (1) + Y (2) + 3Y (3) − 2Y (4) + 2Y (5)

2
,

Z
(2)
n`=1 =

−3Y (1) + 3Y (3) − Y (4) + Y (5)

2
, Z

(3)
n`=1 =

−Y (1) + Y (3)

2
. (5.2.46)
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The previous expressions are analogous to the corresponding expressions for the differential
decay rate, eq. (5.2.17) and eq. (5.2.15), but include the sum of four terms with the one
corresponding to l = 3 that involves the kernel Θ(3)(ωmax − ω). In this basis the second
leptonic moment is given by

X̄n`=2(q2) =
4∑
l=0

(
√
q2)4−l Z

(l)
n`=2(q2) ,

Z
(l)
n`=2(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n`=2(ω, q2) , (5.2.47)

where

Z
(0)
n`=2 = 3

Y (2) + Y (3) − Y (4)

10
,

Z
(1)
n`=2 =

7Y (1) − 5Y (2) − 11Y (3) + 8Y (4) − 10Y (10)

10
,

Z
(2)
n`=2 =

−27Y (1) + 5Y (2) + 31Y (3) − 15Y (4) + 30Y (5)

20
,

Z
(3)
n`=2 =

4Y (1) − 4Y (3) + Y (4) − 2Y (5)

4
,

Z
(4)
n`=2 =

−Y (1) + Y (3)

4
, (5.2.48)

and the first hadronic moment is

X̄n=1(q2) =
4∑
l=0

Z
(l)
n=1(q2) , Z

(l)
n=1(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n=1(ω, q2) , (5.2.49)

where the Z
(l)
n=1(ω, q2) are given by

Z
(0)
n=1 = mB|q|3(mB − 2|q|)

(
Y (2) + Y (3) − Y (4)

)
,

Z
(1)
n=1 = 2|q|4

(
Y (2) + Y (3) − Y (4)

)
+m2

B|q|2
(
−2Y (1) + 2Y (3) − Y (4)

)
+mB|q|3

[
−2
(
Y (2) + Y (3) − Y (4)

)
+ 2

(
2Y (1) − 2Y (3) + Y (4)

)]
,

Z
(2)
n=1 = m2

B|q|
(
−Y (1) + Y (3)

)
+ |q|3

[
Y (2) + Y (3) − Y (4) − 2

(
2Y (1) − 2Y (3) + Y (4)

)]
+mb|q|2

[
−2
(
−Y (1) + Y (3)

)
+ 2

(
2Y (1) − 2Y (3) + Y (4)

)]
,

Z
(3)
n=1 = −2mB|q|

(
−Y (1) + Y (3)

)
+ |q|2

[
−2Y (1) + 2Y (3) + 2

(
−Y (1) + Y (3)

)
− Y (4)

]
,

Z
(4)
n=1 = |q|

(
−Y (1) + Y (3)

)
. (5.2.50)

5.3 Numerical implementation in lattice QCD

In this section, we discuss in detail two different implementations of the method in lattice QCD
calculations. First, in subsection 5.3.1 we present an implementation based on configurations
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generated within the JLQCD collaboration. Then, in subsection 5.3.2 we discuss an analogous
calculation based on an ensemble generated by the ETM collaboration (ETMC). In both cases,
we specify the technical details of the lattice calculations, and discuss the different types of
uncertainties affecting the results. Finally, in subsection 5.3.3, we discuss a few technical
aspects related to the extrapolation to the σ → 0 limit.

5.3.1 Lattice implementation with JLQCD configurations

One dataset used to demonstrate the lattice computation of the inclusive semileptonic decay
rate is based on the ensemble generated by the JLQCD collaboration. See the supplementary
materials of [108] for details of the gauge configurations. It employs Möbius domain-wall
fermions for both valence and sea quarks. In the sea, 2+1 flavors of light and strange quarks
are included. The light quark mass corresponds to a pion of mass around 300 MeV; the
strange quark mass is slightly heavier than its physical value. The gauge action is the tree-
level O(a2)-improved Symanzik at β = 4.35. The corresponding lattice spacing is a ' 0.055 fm,
corresponding to inverse lattice spacing 1/a = 3.610(9) GeV. The lattice volume is 483 × 96,
so that the spatial volume is about L3 = (2.6 fm)3. This ensemble corresponds to “M-ud3-sa”
of [108]. (See also [202].)

The valence quarks are also described by Möbius domain-wall fermions. The charm quark
mass is tuned to its physical value (see ref. [202] for details), while the bottom quark mass is
set at 1.254 ' 2.44 times the charm quark mass. The spectator quark is a strange quark, so
the process corresponds to the inclusive semileptonic decay of a Bs meson, albeit with a light
Bs meson mass of ' 3.45 GeV.

The measurement is carried out on 100 gauge configurations and is replicated four times
on each configuration with shifted position of the initial source. The Bs meson is created by a
interpolating pseudoscalar operator, which is spatially smeared by a gauge-invariant operator
(1 − (α/N)∆)N with a discretized Laplacian ∆ and parameters α = 20 and N = 200. The
source points are spread over the source time slice tsrc = 0 with Z2 noises to improve statistics.
The initial Bs meson is thus projected to zero spatial momentum. The Bs meson on the
other end is created by another pseudoscalar operator of the same type placed at the time
slice tsnk = 42 using a sequential source from the spectator strange quark propagator. The
bottom quark propagates from there to a time slice t2, where the first b→ c current is inserted
with momentum q and is fixed at t2 = 26. The charm quark propagator then connects the
time slice t2 to t1 where the other b → c current is contracted with momentum insertion −q.
The charm quark propagator is computed repeatedly for each choice of the current operator
and momentum insertion at t1. We fix the time separation between tsrc and tsnk under an
assumption that the ground-state Bs meson state dominates the signal between tsrc and t1 or
between t2 and tsnk. This separation is at least 16 in the lattice unit, which corresponds to
0.9 fm. The saturation is confirmed in [164].

The matrix element (5.2.19) is then constructed as in eq. (5.2.20). For the analysis of this
ensemble we applied the Chebyshev polynomial approximation, following [143]. The polynomial
order is set to N = 15, but the results are unchanged within the statistical error with other
choices beyond N = 12. The σ → 0 limit is taken for each point assuming a polynomial in σ
with data points at σa = 0.02, 0.05, 0.10 and 0.20. For all the cases, the extrapolation is small
compared to the statistical error on the finite values of σ.

The results are shown in Figure 5.3.1. The left panel is X̄ as a function of q2, while the
integrand to produce the numerator of 〈E`〉 is shown in the right panel. The lattice data are
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Figure 5.3.1: X̄ (left panel) and L1X̄ (right panel, corresponding to the numerator of
eq. (5.2.38)) as functions of q2. The results are shown for each channel. XAV is non-vanishing
only for L1X̄. The dashed curves are the estimated contributions from the ground states of Ds

and D∗s .

obtained at momentum transfer q at (0,0,0), (0,0,1), (0,1,1), (1,1,1), (0,0,2) in units of 2π/L.
Data points represent different channels as discussed in section 5.2.4.

Also shown in figure 5.3.1 are dashed curves which represent the contributions from the
ground-states, i.e. Ds and D∗s mesons. They are computed using the form factors obtained by
JLQCD for the same quark mass parameters. The necessary formulae and the lattice data are
presented in the appendix A.9.

The lattice data with different momentum insertion q are analyzed together to account for
the statistical correlations among them. We then fit X̄ in a polynomial of q2 including terms
up to (q2)2.

We observe that the inclusive results for each channel are consistent with the expected
ground-state contributions. This means that the excited-state contributions are small, which
is consistent with our expectation from the B → D∗∗`ν form factors based on heavy-quark
effective theory (HQET) [188]. Also phenomenologically, it is plausible because the mass
of the initial bottom quark is smaller than its physical value. The heavy quark symmetry
predicts that the wave-function overlap is 1 at zero recoil when the initial and final masses are
degenerate.

We also calculate the differential moments. The numerators for the hadronic mass moments
〈M2

X〉 and 〈(M2
X)2〉 are shown in figure 5.3.2, while that for 〈E`〉 is in figure 5.3.1 (right panel).

The corresponding differential moments, evaluated for each channel at individual momentum
q2, are shown in figure 5.3.3 and in figure 5.3.4.

5.3.2 Lattice implementation with ETMC configurations

The ETMC gauge ensemble used in this work is the one named B55.32, generated by ETMC
together with other 14 ensembles with Nf = 2 + 1 + 1 dynamical quarks in refs. [60, 61] for
determining the average up/down, strange and charm quark masses. The Iwasaki action [177]
and the Wilson twisted-mass action [132, 134, 136] were used for gluons and sea quarks, re-
spectively. Using the mass renormalization constants determined in ref. [104] the physical
light, strange, and charm quark masses were found to be mphys

ud (MS, 2 GeV) = 3.70(17) MeV,
mphys
s (MS, 2 GeV) = 99.6(4.3) MeV, and mphys

c (MS, 2 GeV) = 1176(39) MeV, respectively.
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Figure 5.3.2: H1X̄ (left panel) and H2X̄ (right panel), which are numerators of eq. (5.2.37),
as a function of q2. The results are shown for each channel. The dashed curves are estimated
contributions from the ground state of D and D∗.
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Figure 5.3.3: 〈H1〉q2 (left panel) and 〈H2〉q2 (right panel) for each channel. The dashed lines
are those of the expected contribution from the ground state.
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Figure 5.3.4: 〈L1〉q2 for each channel. The dashed lines are those of the expected contribution
from the ground state.

65



Figure 5.3.5: Effective mass aMeff(t) ≡ log (C(t)/C(t+ a)) in lattice units for the Ds-meson
(left panel) and the Bs-meson (right panel) correlation function (5.2.21), evaluated using
the ETMC gauge ensemble B55.32 for bare quark masses equal to aµb = 0.50, aµc = 0.25
and aµs = 0.021, corresponding to renormalised quark masses mb(MS, 2 GeV) ' 2.4 GeV,
mc(MS, 2 GeV) ' 1.2 GeV and ms(MS, 2 GeV) ' 100 MeV. The values of the Wilson r-
parameter of the two valence quarks are opposite, i.e. rc = −rs in the Ds meson and rb = −rs
in the Bs meson.

In order to avoid the mixing of K- and D-meson states in the correlation functions a non-
unitary setup [135] is used in the valence sectors: the strange and the charm valence quarks are
regularised as Osterwalder-Seiler fermions [204], while the up and down valence quarks have
the same action as the sea. Working at maximal twist, such a setup guarantees an automatic
O(a)-improvement [134,135].

The ensemble B55.32 has a lattice volume L3 × T = (323 × 64) a4 with a lattice spacing
equal to a = 0.0815(30) fm and a bare light-quark mass equal to aµ` = 0.0055, corresponding
to a simulated pion mass mπ = 375(13) MeV [104] with mπL ' 5.0. The number of analyzed
gauge configurations, separated by 20 trajectories, is 150. We have carried out our simulations
using the values aµs = 0.021 and aµc = 0.25 for the bare valence strange and charm quark
masses, which correspond to renormalised strange and charm quark masses very close to their
physical values.

We have calculated the two-point function C(t), defined in eq. (5.2.21), using the interpo-
lating operator b(x)γ5s(x) with a simulated b-quark mass equal to twice the physical charm
mass, i.e. mb(MS, 2 GeV) ' 2.4 GeV, and a physical strange quark. We set opposite Wilson
parameters for the two valence quarks in order to guarantee that cutoff effects on the pseu-
doscalar mass are O(a2µf ) [122,133,134]. To improve the statistical precision we have made use
of the “one-end trick” stochastic method [131,200] and employed 10 spatial stochastic sources
at a randomly chosen time-slice per gauge configuration. Moreover, in order to suppress con-
tributions of the excited states in the Bs-meson correlation function, we have used Gaussian
smeared interpolating quark fields [160] both at the source and at the sink. For the values of
the smearing parameters we set kG = 4 and NG = 30. In addition, we apply APE smearing to
the gauge links [31] in the interpolating fields with parameters αAPE = 0.5 and NAPE = 20.

Smearing leads to improved projection onto the lowest-energy eigenstate at smaller Eu-
clidean time separations. As shown by the effective mass aMeff(t) ≡ log (C(t)/C(t+ a)) in
fig. 5.3.5, the dominance of the ground-state signal starts around t/a ' 13 for both the Ds and
Bs mesons. By averaging over the plateau regions shown in fig. 5.3.5 the ground-state masses
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Figure 5.3.6: Time dependence of the correlators Y (a)(t; q) for |q| ' 0.5 GeV calculated on the
ETMC ensemble B55.32. The error bars are smaller than the point markers on this scale and
a similar quality of the numerical signal is observed for the other momentum values considered
in this work.

are respectively found to be mDs = 2.05(8) GeV and mBs = 3.08(11) GeV.
We have calculated the four-point function Cµν(tsnk, t2, t1, tsrc; q), given by eq. (5.2.18),

as a function of t1, the time at which the first weak current is inserted with momentum q,
for fixed values of t2, where the second weak current is contracted with momentum insertion
−q, fixing tsrc = 0 and tsnk = T/2 = 32a. The momentum q is inserted along one spatial
direction, namely q = (0, 0, q) and we have considered eleven values for q ranging from q = 0
up to q = qmax ' 0.9 GeV. On the lattice these values are injected through the use of twisted
boundary conditions (BC’s) [64,115,157] in the spatial directions and anti-periodic BC’s in time.
The sea dynamical quarks, on the contrary, are simulated with periodic BC’s in the spatial
directions and anti-periodic ones in time. The twisted BC’s for the valence quark fields lift the
severe limitations, arising from the use of periodic BC’s, on the accessible kinematical regions
of momentum-dependent quantities. Furthermore we remark that, as shown in refs. [65, 212],
for physical quantities which do not involve final-state interactions (like, e.g., meson masses,
decay constants and form factors), the use of different BC’s for valence and sea quarks produces
only finite-size effects that are exponentially small.

For the b → c weak current we use the local vector and axial-vector quark currents,
b(x)γµc(x) and b(x)γµγ5c(x). The value of the Wilson r-parameter for the charm quark is
chosen to be opposite to that of the b quark, i.e. rc = −rb, and therefore in our maximally
twisted setup the vector and axial-vector currents renormalise respectively with the axial and
vector renormalization constants, ZA and ZV , determined in ref. [104].

We extract the matrix elements Mµν(t2 − t1; q) using eq. (5.2.20). In order to calculate
X̄(q2), as defined in eq. (5.2.17), we apply the smearing kernel Θ(l)(ωmax−ω) to the quantities
Z(l)(ω, q2). These in turn are defined in terms of the quantities Y (a)(ω, q) in eq. (5.2.15). To
this end we start from the linear combinations of the correlators Mµν(t; q) with the kinematical
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Figure 5.3.7: Correlator Y (1)(t, q2) at various time separations t2 − t1 for |q| ' 0.5 GeV. The
points in each subplot are obtained for different values of t2, with the x-axis showing the
distance between tsnk and the time t2 at which the current is inserted.

coefficients of eqs. (5.2.9). We call these objects

Y (a)(t; q2) =

∫ ∞
0

dω Y (a)(ω, q2) e−ωt , a = 1, · · · , 5 ,

Z(l)(t; q2) =

∫ ∞
0

dω Z(l)(ω, q2) e−ωt , l = 0, 1, 2 . (5.3.1)

To show the quality of the numerical data, in fig. 5.3.6 we plot the correlators Y (a)(t; q2)
corresponding to |q| ' 0.5 GeV. Notice that the correlators Z(l)(t; q2) are linear combinations of
the Y (a)(t; q2)’s, see eq. (5.2.15). Similar results are obtained for the other momenta considered
in this work.

The central values for all the physical quantities extracted from the Y (a)(t, q) correlators
have been extracted by setting t2 = 22a in eq. (5.2.20) and by using the data up to t = 18a,
which corresponds to t1 − tsrc = 4a. To check the approach to the tsrc → −∞ and tsnk → ∞
limits we have repeated the analysis by setting t2 = {18a, 20a, 22a, 26a, 28a} and by varying
the maximum value of t used to reconstruct the smearing kernels. Figure 5.3.7 shows the
comparison of the correlator Y (1)(t, q) at |q| ' 0.5 GeV for different values of t = t2 − t1 and
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Figure 5.3.8: Reconstruction of the kernels Θ
(0)
σ (ωmax − ω) defined with the three smearing

types s, s1 and e, see eq. (5.2.36), at λ = λ?. The data correspond to |q| ' 0.7 GeV and
σ = 0.12mBs , the smallest value of the smearing parameter that we used.

t2. In the following analysis, we chose the value (tsnk − t2) = 10a, corresponding to t2 = 22a.
Similar results are obtained for the other correlators (Y (2), Y (3), Y (4) and Y (5)), and, in all
cases, we observe that the onset of the tsnk → ∞ limit is reached within the uncertainties
already for tsnk − t2 = 4a.

We now turn to the discussion of the systematics associated with the approximation of the
kernels of eq. (5.2.36) by using the method of ref. [162]. This is an important issue because,
on the one hand, the reconstruction of a given kernel can never be exact with a finite number
of time-slices and in the presence of errors. On the other hand, one can (and must) quantify
the systematic error associated with an approximate reconstruction.

In order to illustrate this point we consider the quantity Z
(0)
σ (q2) (see eq. (5.2.17)) for three

smooth approximations of the θ-function given in eq. (5.2.36). The kernels are approximated as

described in section 5.2, see in particular eq. (5.2.31), with τmax = 18. The quantity Z
(0)
σ (q2) is

then obtained by applying the coefficients gλτ that represent the approximated kernel at a fixed
value of λ to the correlator Z(0)(t; q2). Figure 5.3.8 shows the comparison of the reconstructed
kernels with the target ones for |q| ' 0.7 GeV and σ = 0.12mBs at the values λ = λ? determined
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Figure 5.3.9: Integral Z̄
(0)
σ (q) of the hadronic correlator with three kernels, plotted as a function

of A[gλ]/A[0]. No significant difference is observed within the statistical errors for values
A[gλ]/A[0] smaller than A[gλ? ]/A[0].

independently for each kernel. The values of λ? are marked with red points in fig. 5.3.9, where
we show the dependence of Z

(0)
σ (q2) on the normalised L2-norm A[gλ]/A[0]. As explained in

section 5.2, for smaller values of λ one obtains a more accurate reconstruction of the kernels
and thus smaller A[gλ]/A[0] values. There is no significant difference on the final results for

Z
(0)
σ (q) by decreasing λ with respect to λ?.

By implementing this strategy, proposed in ref. [96], we have checked that the estimated
errors on the different quantities that enter our determinations of the physical observables
discussed below properly take into account the systematics associated with the kernel approx-
imation.

In fig. 5.3.10 we show our results for the total decay rate, with the different points corre-
sponding to different input parameters used in the analysis, as described in the figure’s caption.
The plot shows clearly that all results are compatible with each other. In order to take into
account all the results showed in the figure, we use eq. (28) of ref. [104] to get an estimate of
the central value and its standard deviation, corresponding to the filled red dots in the plot,
and we quote that value as our final result for the total decay rate. This procedure is repeated
for all other observables considered in this work.

The final ETMC results for all the physical observables, divided into four different channels,
are shown together with the OPE results in figures 5.4.1, 5.4.4, 5.4.6, and 5.4.7.

5.3.3 Extrapolation to σ = 0

The ETMC data are produced at several values of the smearing parameter σ and, for each of
the target kernels Θ(l)(x) with three different smeared versions of the θ-function in eq. (5.2.36).
These are used in a combined σ → 0 extrapolation for each contribution to the differential
decay rate and to the leptonic and hadronic moments.

Before presenting the results of the σ → 0 extrapolation an important remark is needed. As
discussed in section 5.2 the limits of zero smearing radius and of infinite volume do not com-
mute. Because of the quantized energy spectrum on a finite volume, the σ → 0 extrapolation
must be performed only after the infinite-volume limit. Under the reasonable assumption that
smeared QCD spectral densities are affected by exponentially suppressed finite-volume effects,
and given the exploratory nature of the present work, we shall assume below that finite-volume
effects are negligible with respect to our statistical uncertainties. This assumption can only
be verified with simulations on larger volumes, a task that we leave for future work on the
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Figure 5.3.10: Results for 24π3

G2
F |Vcb|2

dΓ
dq2 , obtained changing the parameters given as input to our

analysis. The default values are: Atr = 1 × 10−3, τmax = 18, extrapolations to σ = 0 using 5
values of σ. The letters in the legend stand for: A) All parameter equal to default, the final
result is given by extrapolating to σ = 0 the single components X(i) and then summing the
extrapolations together. B) The same as case (A) but with extrapolations done employing all
10 values of σ, as quoted in the caption of fig. 5.3.11. C) A threshold changed to Atr = 1×10−2.
D) A threshold changed to Atr = 5 × 10−3. E) All parameters equal to default, final result
given by summing all the single contributions X(i) together and then extrapolation the sum to
σ = 0. F) τmax changed to τmax = 15. G) τmax changed to τmax = 16. H) τmax changed to
τmax = 17. I) Same as default, analysis performed using the bootstrap method. J) Final results
obtained considering all previous results listed here. Central value and standard deviation are
calculated using the average procedure given by eq. (28) of ref. [104]. It is important to note
that the analysis of all the cases listed above is performed taking the result corresponding to
λ = λ? as discussed in subsection 5.3.2, the only exception being when we change the Atr
parameter. In these two cases we take the results corresponding to values of A[gλ]/A[0] smaller
than Atr.
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Figure 5.3.11: Combined σ → 0 extrapolations of three contributions Z(l)(q2) to the differential
decay rate, see eq. (5.2.17). The plots on the left correspond to |q| ' 0.5 GeV while those on

the right to |q| ' 0.7 GeV. The reconstruction of the kernels Θ
(0)
σ (ωmax − ω) is more difficult

from the numerical point of view w.r.t. the case of the kernels Θ
(l)
σ (ωmax − ω) with l = 1, 2. In

all cases we have obtained results at 10 different values of σ that, in the case of Θ
(0)
σ (ωmax−ω)

span the region σ ∈ [0.12mBs , 0.3mBs ] while in the other case we have σ ∈ [0.03mBs , 0.16mBs ].
In all cases we include the five smallest values of σ into a combined linear extrapolation to
quote our results at σ = 0.
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Figure 5.3.12: Systematics associated with the σ → 0 extrapolation of Z(0)(q2) at |q| '
0.5 GeV, the same set of data shown in the top–left panel of fig. 5.3.11. The unconstrained
linear extrapolations of the different sets of data, corresponding to the three different smearing
kernels, are shown together with the results of the combined linear extrapolation of the five
points at the smaller values of σ (black point) and of the combined quadratic extrapolation
including all ten values of σ (violet point). The black and violet points have been slightly
displaced on the horizontal axis to help the eye.

subject. Taking this issue into account, the σ → 0 extrapolation discussed below has to be
considered as a feasibility study that, as we work at unphysical meson masses and fixed cutoff,
we consider interesting and promising.

In fig. 5.3.11 we show the σ → 0 extrapolations of the three contributions Z
(l)
σ (q2) to the

differential decay rate for |q| ' 0.5 GeV (plots on the left) and |q| ' 0.7 GeV (plots on the

right). The reconstruction of the kernels Θ
(0)
σ (ωmax−ω) is more challenging from the numerical

point of view with respect to the case of the kernels Θ
(l)
σ (ωmax − ω) with l = 1, 2. In all cases

studied in this work we have obtained results at 10 different values of σ that, for the kernel
Θ

(0)
σ (ωmax − ω) span the region σ ∈ [0.12mBs , 0.3mBs ] while for the other kernels we have

σ ∈ [0.03mBs , 0.16mBs ]. For all the values of q2 we have included the five smallest σ values
into a combined linear extrapolation to obtain the central values and statistical errors that we
quote for our results at σ = 0. As evident from the plots in fig. 5.3.11 there is a reassuring
convergence of the results corresponding to the different kernels for small values of σ. The five
points included in the fit are always in the linear regime and the χ2/d.o.f. for all the combined
σ → 0 linear extrapolations performed in this work never exceed 1.

The systematics associated with the σ → 0 extrapolations has been quantified (see also the
caption of fig. 5.3.10) by performing unconstrained linear extrapolations of the five points at the
smaller values of σ and combined quadratic extrapolations of all points, i.e. with ten values of
σ. This procedure is illustrated in fig. 5.3.12 where we show, for the same set of data appearing
in the top–left panel of fig. 5.3.11, the unconstrained linear extrapolations and the result of
the combined quadratic extrapolation (violet point). As can be seen in this plot, the results of
the three different unconstrained extrapolations are compatible within the quoted errors and
also compatible with our central value result (black point). Following the procedure explained
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in the caption of fig. 5.3.10, i.e. estimating the systematics associated with the extrapolation
by adding in quadrature the statistical error of the black point and the difference between
the central values of the black and violet points, largely takes into account the spread of the
results coming from the different extrapolations, including the unconstrained ones. The same
procedure has been repeated for all the sets of data analyzed in this work and similar plots can
be shown in all cases.

In fig. 5.3.13 we show the σ → 0 extrapolations of the four different terms that enter the
calculation of the leptonic moment L1(q2).
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Figure 5.3.13: Combined σ → 0 extrapolations of the four contributions Z
(l)
n`=1(q2) to the first

leptonic moment, see eq. (5.2.45). The plots on the left correspond to |q| ' 0.26 GeV while
those on the right to |q| ' 0.78 GeV.
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5.4 Operator-product expansion and comparison with

lattice results

As inclusive semileptonic B decays are described by an OPE, observables which are sufficiently
inclusive admit a double expansion in αs and in inverse powers of mb [77, 79, 83, 105, 197], or
more precisely of the energy release, which is of the order of mb −mc. Schematically, for an
observable M we have

M =M (0) +M (1)as +M (2)a2
s +

(
M (0)

π +M (1)
π as

) µ2
π

m2
b

+
(
M

(0)
G +M

(1)
G as

)µ2
G

m2
b

+M
(0)
D

ρ3
D

m3
b

+M
(0)
LS

ρ3
LS

m3
b

+ . . . (5.4.1)

where as = αs(µ)/π is the QCD coupling evaluated at a scale µ ∼ mb and the ellipsis represents
higher-order terms in as and in 1/mb. The parameters µ2

π, µ2
G, ρ3

D, ρ3
LS are expectation values

of dimension-5 and dimension-6 local operators in the physical B meson. For instance,

µ2
π(µk) =

1

2MB

〈B|b̄v ~π2 bv|B〉µk , µ2
G(µk) =

1

2MB

〈B|b̄v
i

2
σµνG

µνbv|B〉µk (5.4.2)

where ~π = −i ~D, while Dµ is the covariant derivative, bv(x) = e−imbv·xb(x) is the b field
deprived of its high-frequency modes, and Gµν is the gluon-field tensor. In the so-called kinetic
scheme [76,113,125], the Wilsonian cutoff µk ∼ 1 GeV is introduced to factorise long- and short-
distance contributions. Indeed, the OPE disentangles the physics associated with soft scales of
order ΛQCD (described by the above parameters) from that associated with hard scales ∼ mb,
which determine the Wilson coefficients Mi that admit an expansion in αs. Quite importantly,
the power corrections start at O(Λ2

QCD/m
2
b) and are therefore comparatively suppressed. The

kinetic scheme provides a short-distance, renormalon-free definition of mb and of the OPE
parameters by introducing the cutoff µk to factor out the infrared contributions from the
perturbative calculation.

The smearing provided by the phase-space integration, discussed in section 5.2, is in general
sufficient to guarantee the convergence of the OPE for the quantities introduced in eqs. (5.2.6)
and (5.2.37)–(5.2.40), which can then be expressed in the form (5.4.1). The OPE calculation
proceeds therefore as in refs. [83, 149, 197]. There are however two specific points related to
the kinematics chosen in the lattice calculation that need to be mentioned. First, while the
hard scale that governs the OPE is generally mb − mc, there are regions of the phase space,
e.g. at small recoil |q| ∼ 0, where it is rather mc, possibly implying a slower convergence of
the expansion. Second, near the maximum value of q2 the smearing interval in ω closes up and
one cannot expect the OPE to provide reliable results.

5.4.1 Details of the OPE calculation and related uncertainties

From a technical point of view, the OPE provides a double expansion like the one in eq. (5.4.1)
for the hadronic tensor W µν defined in eq. (5.2.4) that can be used to compute the total rate,
the moments, and any sufficiently inclusive quantity. The coefficients of the expansion involve
the Dirac delta δ(r2−m2

c) and its derivatives, which upon integration over the quark (partonic)
phase space lead to results valid for sufficiently inclusive observables. It is customary to use
the decomposition of W µν into Lorentz-invariant form factors as in eq. (5.2.7) and to identify
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the four-velocities of the B meson and of the b quark, v = p/mB = pb/mb. In this section we
will use eq. (5.2.7) replacing mB with the b quark mass mb and employing a hat for quantities
that are normalised to mb. In the case of massless leptons considered in this work, the form
factors W4,5 do not contribute to the decay amplitude.

The lowest order of the expansion for the relevant Wi and the 1/m2
b corrections can be

found in refs. [83,197], while analytic expressions for the O(αs) terms are given in refs. [33,49].
The O(1/m3

b) corrections have been first computed in ref. [156]. Higher power corrections
have been investigated in ref. [196], but involve a large number of new and poorly known
parameters. They appear to be sufficiently suppressed at the physical mb [145]; we will not
consider them but they represent an important source of theoretical uncertainty in our low mb

setup. The O(αs/m
2
b) corrections to the Wi are also known [33,34], while for the total rate we

also have O(αs/m
3
b) corrections [193,195]. Numerical results for the O(α2

sβ0) contributions are
also available [49], while the complete O(α2

s) are available only for the total rate and for a few
moments [80, 201, 205, 206]. Finally, the O(α3

s) correction to the total rate has been recently
computed in ref. [126].

While these corrections have generally been computed in the V − A case realised in the
SM, the decomposition in V V,AA and AV = V A components is potentially useful in our case,
and has been made manifest for the O(1/m2,3

b ) and O(αs) corrections, see refs. [32,83,107]. In
the calculation of the q2 spectrum and of the differential moments we will therefore consider
only power corrections up to and including O(1/m3

b) and the O(αs) perturbative corrections.
However in the calculation of the total width and of the total moments we will restrict to the
SM case and will employ all the known corrections.

Following section 5.2, we take the three-momentum q to point along the k direction and
the i and j directions to be perpendicular to that. The components of the hadronic tensor
along these directions are given by

W 00 = −W1 +W2 + q̂2
0W4 + 2q̂0W5 ,

W ii = W jj = W1 ,

W kk = W1 + q̂2
kW4 ,

W 0i = W i0 = W ik = W ki = W jk = W kj = 0 ,

W 0k = W k0 = q̂0q̂kW4 + q̂kW5 ,

W ij = −W ji = −iεij0kq̂kW3 .

In the OPE the decay occurs at the quark level: pb = p′ + p` + pν , where pb and p′ are
the momenta of the initial b quark and of a final hadronic state made of a c quark and n ≥ 0
perturbative gluons. At the leading order in αs and in 1/mb, this is a free-quark decay into an
on-shell c quark, which implies that the Wi are proportional to δ(p′2 −m2

c) = δ(û)/m2
b , where

û = (p′2 −m2
c)/m

2
b . We can rewrite this δ function in terms of the energy of the final c quark,

δ(û) =
1

2
√
q̂2 + ρ

[
δ
(
χ̂−

√
q̂2 + ρ

)
+ δ

(
χ̂+

√
q̂2 + ρ

)]
, (5.4.3)

where ρ = m2
c/m

2
b and χ̂ is the parton-level energy of the final hadronic state in units of mb,

which is related to the total hadronic energy ω by ω = mbχ̂+ Λ, with Λ = MB−mb. Similarly,
the invariant hadronic mass M2

X is related to the partonic variables by

M2
X = (pB − q)2 = (pb + Λv − q)2 = m2

b û+ 2mbΛχ̂+ Λ2 +m2
c .
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Only the first term of eq. (5.4.3) contributes to the physical process of interest and can be
readily integrated over χ̂. At O(1/m2,3

b ) one has to deal with δ′(û), δ′′(û) and δ′′′(û) that upon
integration subject to kinematic constraints lead to new singularities. A typical case is provided
by the interplay between the δ′ and the requirement that q2 ≥ 0:∫

f(û) θ
(
q2
)
δ′(û) dû =

∫
f(û) θ(1 + ρ+ û− 2

√
ρ+ q̂2 + û) δ′(û) dû

= −f ′(0)θ(1 + ρ− 2
√
ρ+ q̂2) + f(0)

1 + ρ

2
δ(q̂2 − q̂2

max) .(5.4.4)

The singularity at the partonic endpoint of the q2 spectrum, q̂2
max = (1−ρ)2/4, appears because

one reaches the maximum energy exactly on the mass-shell of the charm quark.
We apply exactly the same setup to compare with both JLQCD and ETMC data, adjusting

only the heavy-quark masses to the two cases. The unphysically light b quark mass and the
OPE parameters are expressed in the kinetic scheme with µk = 1 GeV, while the c quark
mass is expressed in the MS scheme at 2 GeV. In the case of the JLQCD data we employ
mb(1 GeV)= 2.70(4) GeV, obtained from matching the observed mBs with the results of [147,
148], and mc

(4)(2 GeV) = 1.10(2) GeV. In the case of the ETMC data we employ mc
(4)(2 GeV)

= 1.186(41) GeV and mb
(4)(2 GeV) = 2.372(82) GeV (with 100% correlated uncertainties),

and translate the latter into the kinetic scheme using the three-loop conversion formula [125]
implemented in version 3.1 of RunDec [166] obtaining mb(1 GeV) = 2.39(8) GeV. The strong

coupling employed in the conversion and elsewhere is α
(4)
s (2 GeV) = 0.301.

For the OPE parameters that appear in eq. (5.4.1) we start from the results of the most
recent fit to the semileptonic moments [88], which refer to the physical B meson, with a much
heavier b quark and without a strange spectator. The difference induced in these parameters
by the strange spectator at the physical point has been investigated in [75, 91, 147], where it
was found that spectroscopic and lattice data approximately suggest a 20% upward shift in µ2

π

and µ2
G, while heavy-quark sum rules hint at a similar or even stronger SU(3) flavour-symmetry

breaking in ρ3
D. The dependence on the mass of the heavy quark, on the other hand, can be

analysed by observing that µ2
π and µ2

G satisfy a heavy-quark expansion

µ2
π = µ2

π|∞ −
ρ3
ππ + 1

2
ρ3
πG

mb

+ . . . , µ2
G = µ2

G|∞ +
ρ3
S + ρ3

A + 1
2
ρ3
πG

mb

+ . . . (5.4.5)

where ρ3
ππ, ρ3

πG, ρ3
S, ρ3

A are expectation values of non-local operators, of which little is known,
see ref. [148]. If they were of the same order of magnitude of ρ3

D and ρ3
LS, i.e. about 0.1–

0.2 GeV3, they could shift µ2
π and µ2

G by 0.02–0.1 GeV in going from the physical value of mb

to mb ∼ 2.5 GeV, which amounts to a 5–25% shift. We show the inputs of our calculation in
table 5.4.1. While the heavy-quark masses are slightly different between the two setups, we
adopt the same expectation values in both cases. Their central values take into account the
shift related to the strange spectator, while the uncertainties follow from the uncertainty of
the fit of ref. [88], the SU(3) symmetry breaking, and the lower b mass.

Beside the parametric uncertainty of the inputs, our results are subject to an uncertainty
due the truncation of the expansion in eq. (5.4.1) and to possible violations of quark-hadron
duality. We estimate the former by varying the OPE parameters, the heavy-quark masses, and
αs in an uncorrelated way and adding the relative uncertainties in quadrature. In particular,
we shift mb,c by 6 MeV, µ2

π,G by 15%, and ρ3
D,LS by 25%. These corrections should mimic

the effect of higher-power corrections. Since in the case of the q2 spectrum and differential
moments we restrict ourselves to O(αs) corrections, we include the relative uncertainty in
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mkin
b (JLQCD) 2.70± 0.04

mc(2 GeV) (JLQCD) 1.10± 0.02
mkin
b (ETMC) 2.39± 0.08

mc(2 GeV) (ETMC) 1.19± 0.04
µ2
π 0.57± 0.15
ρ3
D 0.22± 0.06

µ2
G(mb) 0.37± 0.10
ρ3
LS −0.13± 0.10

α
(4)
s (2 GeV) 0.301± 0.006

Table 5.4.1: Inputs for our OPE calculation. All parameters are in GeV at the appropriate
power and all, except mc, in the kinetic scheme at µ = 1 GeV. The heavy-quark masses for
the ETMC setup are 100% correlated. As a remnant of the semileptonic fit, we include a 50%
correlation between µ2

π and ρ3
D.

the same way, shifting αs by 0.15, which corresponds to a 50% uncertainty. In the case of
the total width and total moments, higher-order perturbative corrections are known and the
perturbative uncertainty can be reduced, as discussed below.

5.4.2 Comparison with lattice results

q2 spectrum and differential moments

We start our comparison of lattice and OPE results with the q2 spectrum and the differential
moments introduced in eq. (5.2.39) and in eq. (5.2.40). Only the O(αs) perturbative corrections
are included in this case. Figure 5.4.1 shows the q2 spectrum in the SM, namely with a V −A
current. Despite the large uncertainty of the OPE prediction, about 30% in the JLQCD case
and 50% in the ETMC case, the overall agreement is good. The OPE uncertainty is dominated
by the power corrections. We also stress that close to the partonic endpoint, corresponding
to 1.27 GeV2 and 0.82 GeV2 in the two cases, we do not expect the OPE calculation to
be reliable, as discussed above. The corresponding hadronic endpoints are 1.35 GeV2 and
0.75 GeV2, respectively.

The uncertainties affecting both calculations can be greatly reduced by considering the
differential moments. In particular, the OPE uncertainty becomes smaller because of the
cancellations between power corrections to the numerator and to the denominator. To expose
the cancellations we expand the ratios in powers of αs and 1/mb. In figure 5.4.2 we show the
first differential lepton energy moment, L1(q2), in the SM, comparing the OPE with ETMC
data. As expected, the relative uncertainty of both the OPE calculation and of the lattice data
is much smaller than in the bottom panel of figure 5.4.1 and we observe good agreement at low
and moderate q2.

Figs. 5.4.3 and 5.4.4 show the q2 spectrum in the individual channels. Comparing them
with figure 5.4.1 we see that in the individual channels the agreement between OPE and
lattice results is poorer than in their sum, especially at large q2. This is to be expected and
(unless discretisation and/or finite-volume effects turn out to have a sizeable impact on the
lattice results) is likely to be a manifestation of duality violations. Notice that the OPE central
predictions for the AA⊥ and V V⊥ channels turn negative at large and moderate q2, respectively,
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Figure 5.4.1: Differential q2 spectrum, divided by |q|, in the SM. Comparison of OPE with
JLQCD (top panel) and ETMC (bottom panel) data are shown.
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Figure 5.4.2: Differential lepton energy mean value, L1(q2), in the SM. The comparison of
OPE with ETMC data is shown.

and that for q2 > 0.6 GeV2 the spectrum is always negative within errors. This unphysical
feature suggests that our error estimates are not adequate at large q2. The contribution to the
V V⊥ channel, moreover, is particularly small and very sensitive to large power corrections.

Figs. 5.4.5 and 5.4.6 show L1(q2) in the individual channels, for the JLQCD and ETMC
cases. In general, we observe good agreement with the lattice data, especially at low q2.
However, the expansion in powers of αs and 1/mb of the denominator is not justified when the
lowest-order contribution to the denominator becomes particularly small or has a zero, like in
the V V‖ and V V⊥ channels. In these cases we also show the unexpanded version of the ratio,
whose uncertainty is much larger, but we stress that away from the singularities the expanded
form is preferable, and this appears to be confirmed by better agreement with the lattice data.

Figure 5.4.7 shows the second central moment computed at different values of q2 in the
ETMC case. We do not display the V V⊥ channel, for which the OPE result would have a very
large uncertainty. In the case of L2c(q

2) the OPE does not reproduce the lattice results within
uncertainties, except for very small q2. It is certainly possible that our method to estimate the
OPE uncertainty fails here as a result of multiple cancellations between large contributions to
L2 and L2

1 which are not necessarily replicated by higher-order contributions. On the other
hand, it has not yet been possible to estimate discretisation and finite volume effects on our
lattice results, and the additional systematics could affect this particular quantity in a relevant
way. For this quantity we do not display the comparison with the JLQCD data, which agree
with the OPE but have very large uncertainties.

We also looked at the moments of the hadronic invariant mass. In figure 5.4.8 we show
the mean hadronic mass 〈M2

X〉 as a function of q2 computed from JLQCD configurations in
comparison with the OPE predictions. Again, we do not display the V V⊥ channel because of
the large OPE uncertainty. We observe excellent agreement except at large q2, but the lattice
uncertainty is larger here than in the case of the leptonic moments. Analogous plots for the
ETMC calculation are shown in fig. 5.4.9. In figure 5.4.10 we also show 〈M4

X〉 as a function
of q2 with JLQCD data.
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Figure 5.4.3: Differential q2 spectrum, divided by |q|, in the various channels. The plots show
the comparison between OPE and JLQCD data.
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Figure 5.4.4: Differential q2 spectrum, divided by |q|, in the various channels. The plots show
the comparison between OPE and ETMC data.
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Figure 5.4.5: Differential first leptonic moment in the various channels. The plot shows the
comparison between OPE and JLQCD data.
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Figure 5.4.6: Differential moment L1(q2) in the various channels. The plots show the compar-
ison between OPE and ETMC data.
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Figure 5.4.7: Differential moment L2c = L2 − L2
1 in the various channels. The plots show the

comparison between OPE and ETMC data.
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Figure 5.4.8: Differential moment H1(q2) = 〈M2
X〉(q2) in the various channels. The plots show

the comparison between OPE and JLQCD data.
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Figure 5.4.9: Differential moment H1(q2) = 〈M2
X〉(q2) in the various channels. The plots show

the comparison between OPE and ETMC data.
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Figure 5.4.10: Differential moment H2(q2) = 〈M4
X〉(q2) in the various channels. The plots

show the comparison between OPE and JLQCD data.
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JLQCD OPE
Γ/|V 2

cb| × 1013 (GeV) 4.46(21) 5.7(9)
〈E`〉 (GeV) 0.650(40) 0.626(36)
〈M2

X〉 (GeV2) 3.75(31) 4.22(30)

Table 5.4.2: Total width and moments in the JLQCD case.

ETMC OPE
Γ/|V 2

cb| × 1013 (GeV) 0.987(60) 1.20(46)
〈E`〉 (GeV) 0.491(15) 0.441(43)
〈E2

` 〉 (GeV2) 0.263(16) 0.207(49)
〈E2

` 〉 − 〈E`〉2(GeV2) 0.022(16) 0.020(8)
〈M2

X〉 (GeV2) 3.77(9) 4.32(56)

Table 5.4.3: Total width and moments in the ETMC case.

5.4.3 Total width and moments

We perform a comparison between OPE predictions and lattice results also in the case of
the total semileptonic width and of the global moments introduced in eq. (5.2.37) and in
eq. (5.2.38). In this case the OPE results are going to be slightly more accurate as we can
take advantage of existing two- and even three-loop calculations [126]. We can also test the
relevance of the singularity at q2

max. The lattice results for the q2 spectrum can be interpolated
by polynomials or piecewise polynomials, leading to the results shown in table 5.4.2 and in
table 5.4.3. As the q2-spectrum is peaked near q2

max, see figure 5.3.10, the total width is
particularly sensitive to that region. In the JLQCD case the limited number of q2 points
makes the extrapolation to the highest q2 values more uncertain, with clear implications on
the estimate of the total width. On the other hand, it is difficult to estimate such uncertainty,
hence table 5.4.2 shows only the statistic uncertainty.

In the OPE the total width receives large and concurring power and perturbative correc-
tions, which reflect in a ∼ 20–40% uncertainty. This is at variance with what happens in the
case of the physical b quark, for which a recent estimate of the total uncertainty is about 2% [88].
Indeed, the convergence of the OPE expansion deteriorates rapidly as mb decreases approach-
ing mc, even from 2.7 to 2.4 GeV. To illustrate this point we show the various contributions to
the semileptonic width in the ETMC case:

Γ

|V 2
cb|

=
[
3.03− 0.32pert − 0.65µ2

G
− 0.09µ2

π
− 0.66ρ3

D
− 0.10ρ3

LS
+ . . .

]
× 10−13 GeV , (5.4.6)

where the perturbative contribution includes O(α3
s) and the non-perturbative contributions

include the O(αs) corrections to the Wilson coefficients. We estimate the perturbative uncer-
tainty by varying the scale of αs between 1.5 and 3.0 GeV. Notice that more than half of the
uncertainty on the width reported in tables 5.4.2 and 5.4.3 is due to the large uncertainty on
the heavy quark masses, in both the JLQCD and ETMC cases.

For what concerns the leptonic moments, only the O(α2
s) corrections have been computed,

either numerically for physical values of the heavy-quark masses [201], or analytically in an
expansion up to O(r7) in powers of r = mc/mb [205]. Unfortunately, this expansion converges
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slowly and does not provide reliable results for r ∼ 0.5, which is the value relevant in the
ETMC case. We therefore show results computed to O(αs) and include the O(αsµ

2
π,G/m

2
b)

corrections discussed in ref. [34] as well. The first moment in the ETMC case is given by

〈E`〉 =
[
0.533− 0.051µ2

G
+ 0.021µ2

π
− 0.051ρ3

D
− 0.003ρ3

LS
− 0.008αs + . . .

]
GeV, (5.4.7)

where both power and perturbative corrections are smaller than in the total width. Similarly,
the second central moment L2c = 〈E2

` 〉 − 〈E`〉2 is given by

L2c =
[
0.0297− 0.0057µ2

G
+ 0.0103µ2

π
− 0.0167ρ3

D
+ 0.0006ρ3

LS
+ 0.0021αs + . . .

]
GeV. (5.4.8)

As shown in tables 5.4.2 and 5.4.3, there is reasonable agreement between OPE and both
JLQCD and ETMC data in all cases. As a general comment, we stress that the large contribu-
tions of ρ3

D are related to a kinematically enhanced Wilson coefficient and do not necessarily
imply similarly large higher-power corrections.

Finally, the OPE prediction for the first hadronic mass moment in the JLQCD case is

〈M2
X〉 =

[
3.84− 0.36µ2

π
+ 0.23µ2

G
+ 0.41ρ3

D
+ 0.05ρ3

LS
+ 0.04αs + . . .

]
GeV2, (5.4.9)

where we do not include the O(αs/m
2
b) corrections and consequently enlarge the uncertainty

slightly. The OPE prediction for the first hadronic moment is in reasonable agreement with
both the JLQCD and ETMC values, see table 5.4.2 and table 5.4.3.

5.4.4 Determination of the OPE parameters

As different physical quantities have a different dependence on the OPE parameters, it is
possible to constrain their values using lattice data. The analytic expressions for the power
corrections to the differential q2 distribution and for the moments, which encode this depen-
dence, are rather lengthy and are provided in an ancillary Mathematica file.

To illustrate this point, let us consider a few examples using simpler approximate formulas,
and focusing on the differential leptonic moments at moderately low q2, where the OPE is
more reliable. We choose a q2 value for which we have lattice data, q2

∗ = 0.1865 GeV2. In the
ETMC setup, the OPE prediction for L1(q2

∗) can be approximated by

L
V V ‖
1 (q2

∗) ' 0.5597 +
1

2
δb − 0.47δc + 0.056µ2

G − 0.19µ2
π − 0.094ρ3

D − 0.057ρ3
LS ,

L
AA‖
1 (q2

∗) ' 0.5455 +
1

2
δb − 0.47δc − 0.141µ2

G − 0.074µ2
π − 0.069ρ3

D + 0.043ρ3
LS ,

LAA⊥1 (q2
∗) ' 0.5448 +

1

2
δb − 0.47δc − 0.175µ2

G − 0.033µ2
π − 0.101ρ3

D + 0.039ρ3
LS ,

where δb = mb−2.39, δc = mc−1.19, and all quantities are expressed in GeV to the appropriate
power. Notice that the lowest order expression for the differential leptonic moments is universal,
namely does not depend on the channel. We do not consider the V V⊥ channel because, as
discussed above, the expanded form does not provide a good approximation. The analogous
expressions for the second central moments are

L
V V ‖
2c (q2

∗) ' 0.005 + 0.010µ2
π + 0.052ρ3

D − 0.015ρ3
LS ,

L
AA‖
2c (q2

∗) ' 0.009 + 0.010µ2
π − 0.058ρ3

D + 0.011ρ3
LS ,

LAA⊥2c (q2
∗) ' 0.019 + 0.010µ2

π − 0.026ρ3
D − 0.002ρ3

LS .
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Figure 5.4.11: Differential q2 spectrum computed with a sigmoid approximation to the kernel
with σ = 0.12mB. The plots show the comparison between OPE and ETMC data.

Each of these moments has a different dependence on the non-perturbative parameters and they
can be used in a fit to the lattice ETMC results to obtain constraints on those parameters.
In fact, using only these six inputs with their theoretical uncertainty does not lead to any
improvement on the constraints given in table 5.4.1. Considering additional q2 points enhances
the sensitivity to the non-perturbative parameters, but one has to estimate the correlation
among the theoretical uncertainties at adjacent q2 points. One can also include in the fit the
data for the q2 distribution in the different channels, as well as additional moments like the
hadronic mass moments. A global fit to lattice data is however beyond the scope of this paper,
especially because our estimate of the lattice systematic uncertainty is incomplete. We stress
that the limiting factor here is not the statistical uncertainty of the present ETMC calculation,
but the theoretical uncertainty we attach to the OPE predictions. In this respect the unphysical
case we have considered, with the partonic energy release (of the order of mb −mc) about a
factor 2 (JLQCD) or 3 (ETMC) smaller than in reality, is strongly penalising. At the physical
point the OPE enjoys a much better convergence and the prospects for constraining the non-
perturbative parameters are better than it appears from this exploratory study.

5.4.5 Computations with a smooth kernel

In sections 5.2 and 5.3 we have seen that the reconstruction of the discontinuous kernel is one
of the main problems in the calculation of physical quantities. As far as the comparison with
the OPE is concerned, however, the kernel does not need to be discontinuous. Indeed, one can
compute inclusive (unphysical) quantities in the OPE employing a smooth kernel (σ 6= 0) and
compare them directly with the analogous quantities computed on the lattice. In this way it
is possible to check that the level of agreement between the two calculations is not affected by
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Figure 5.4.12: Differential first lepton moments computed with a sigmoid approximation to the
kernel with σ = 0.12mB . The plots show the comparison between OPE and ETMC data.

the σ → 0 limit, and to extract information on the non-perturbative parameters of the OPE,
as well as on the heavy quark masses, from slightly more precise lattice data.

In figure 5.4.11 we show the q2 spectrum in the different channels computed on the lattice
using the sigmoid approximation θsσ of eq. (5.2.36) for θ(ωmax − ω) with σ = 0.12mB. In
the OPE calculation, where the partonic kinematics holds, we replace θ(1 − η̂ −

√
q2) by the

sigmoid θsσ(1 − η̂ −
√
q2) using σ = 0.12mB. At low q2 the agreement between OPE and

ETMC data is similar to that in figure 5.4.4, while at large q2 there is marginal improvement,
as expected because the smearing occurs over a larger ω range. In figure 5.4.12 we show the
first differential leptonic moment L1(q2) in the different channels, excluding V V⊥ because of the
large uncertainties in the OPE calculation. With respect to figure 5.4.6 we observe a marked
improvement of the agreement between OPE and ETMC data at large q2 in the AA‖ and V V‖
channels, while in the AA⊥ channel the agreement is slightly worse. Finally, in figure 5.4.13
we show the q2 spectrum in the different channels computed from the JLQCD configurations
using the sigmoid approximation θsσ with σ = 0.1/a. Here the overall agreement between lattice
calculations and OPE is similar to figure 5.4.3, but now the q2 dependence of the lattice data
is closer to the OPE result, obtained using θsσ(1− η̂ −

√
q2) with σ = 0.1.
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Figure 5.4.13: Differential q2 spectrum computed with a sigmoid approximation to the kernel
with σ = 0.1/a. The plots show the comparison between OPE and JLQCD data.

5.5 Discussion and future prospects

In this article we have presented the first comprehensive investigation of inclusive semileptonic
B-meson decays on the lattice. Using the method of ref. [143] we have computed various inclu-
sive observables with gauge-field ensembles generated by the JLQCD and ETM collaborations
for unphysically light values of the b quark mass (about 2.7 GeV and 2.4 GeV, respectively) and
mc close to its physical value. In this exploratory study we have not performed the continuum
and infinite-volume limits.

An important feature of the method we have adopted is that it requires the approximation
of the energy-integral kernel. The kinematics of the inclusive semileptonic decay involves a
discontinuity at the boundary of the phase space, for which a reasonable approximation with
the Euclidean correlator obtained on the lattice is impractical. The problem can be dealt with
using a sequence of smooth kernels, parametrized by a smearing width σ, which converge to
the physical phase space in the limit σ → 0. As emphasized in section 5.2, the σ → 0 limit does
not commute with the infinite-volume limit that has to be taken first. Under the assumption
that finite volume effects are negligible with respect to the statistical errors associated with
our lattice results, we have studied the σ → 0 extrapolation in detail and found that it does
not induce a significant uncertainty.

We have compared the JLQCD results with the contributions of the charmed ground states,
estimated from a JLQCD calculation of the Bs → D

(∗)
s form factors for the same values

of the heavy-quark masses (details are given in the appendix A.9). Due to the proximity
between the charm and bottom masses and to the limited phase space available in the decay,
the inclusive results are nearly saturated by the ground-state contributions. Although the
correlator themselves show the presence of excited states, their contribution to the inclusive
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rate is relatively small. The ETMC results obtained at even lower b quark mass are also
expected to be largely dominated by the ground states.

While the JLQCD and ETMC results cannot be compared directly as they are obtained
at different b quark masses, they can be both compared with the expectations from the OPE,
assuming that discretisation and finite-volume effects are negligible. When the OPE can be
considered reliable, the agreement with both JLQCD and ETMC results is generally good, while
we observe possible indications of quark-hadron duality violation at large q2. The variance of
the lepton energy distribution also shows a clear and unexpected deviation, which could be due
to underestimated uncertainties in our OPE calculation or to non-negligible lattice systematics.
To the best of our knowledge, this is the first time that the onset of quark-hadron duality is
studied on the lattice. For mb ∼ 2.4 GeV, the OPE converges much more slowly than at the
physical point, but the normalised moments allow us to perform a relatively clean comparison
with the lattice data.

We have found that the calculation of the total width and of other global quantities like the
moments of the lepton energy or of the hadronic invariant-mass distribution depends crucially
on the number of q2 points that can be computed on the lattice. In the ETMC calculation the
flexibility due to the use of twisted boundary conditions has allowed us to reach an accuracy
of 6% on the total width and 3% on the first leptonic moment. These uncertainties do not yet
include several lattice systematics that need to be considered, but are dominated by statistical
uncertainties and could be improved with a dedicated effort. This is an aspect which will be-
come important for future phenomenological applications, which should also focus on reaching
the physical b mass.

Finally, we have shown that one can constrain the non-perturbative parameters in the OPE
analysis from our results. We have not attempted a fit to the lattice data in the unphysical
setup we have considered, as this is penalised by large uncertainties from higher-dimensional
operators. With larger b-quark masses these uncertainties will be reduced and the data obtained
at different values of mb will provide an additional handle on the non-local matrix elements
that appear in eq. (5.4.5).

There are certainly many issues to be improved or investigated in order to get results of
direct phenomenological relevance. First, we have not yet studied the continuum and infinite-
volume limits. Although we have presented a rather detailed discussion of the systematics
associated with the reconstruction of the smearing kernels, including the required extrapolation
at vanishing smearing radius, this last step is only permitted after having checked the onset
of the infinite-volume limit. The continuum and infinite-volume limits can only be taken
by performing calculations at different values of the lattice spacing and on different physical
volumes, a task that is beyond the exploratory nature of this study and that we postpone to
future work on this subject.

Second, the calculation has to be performed at the physical b and light quark masses.
Simulations with physical pion masses are nowadays possible and, for instance, a collection
of Nf = 2 + 1 + 1 ensembles with physical light, strange and charm quark masses has been
produced by the ETM collaboration at different values of the lattice spacing and with different
physical volumes. Although it is not possible to simulate directly a physical b quark on these
ensembles (because of potentially dangerous cutoff effects), the problem can nevertheless be
approached by using well-established techniques such as the ETMC ratio method [84], based
on ratios of the observable of interest computed at nearby heavy-quark masses. The ratio
method has been already applied to determine the mass of the b quark, the leptonic decay
constants, the bag parameters of B(s) mesons and the matrix elements of dimension-four and
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dimension-five operators appearing in the Heavy Quark Expansion of pseudoscalar and vector
meson masses [98, 103, 121, 147, 148]. Its main advantages can be summarised as follows: i)
B-physics computations can be carried out using the same relativistic action setup with which
the lighter-quark computations are performed; ii) an extra simulation at the static point limit
is not necessary, while the exact information about it is automatically incorporated in the
construction of the ratios of the observable; iii) the use of ratios greatly helps in reducing the
discretisation effects. However, there is an important subtlety. In order to apply the ratio
method (or any other method based on extrapolations in the b-quark mass) in the case of
the inclusive decay rates one has to cope with the fact that at unphysical (lighter) values of
the b-quark mass the phase-space available to the decay shrinks. This implies that some of
the hadronic channels that are open at the physical value of mb are totally excluded from the
phase-space integral at mh < mb. The important point to be noticed here is that this happens
when the integration limits are imposed sharply, i.e. by using the exact Heaviside functions
that implement the phase-space constraint. The problem is totally analogous to the ordered
double-limit required in order to deal with the finite-volume distortion of the hadronic spectral
density. Indeed, we envisage applying the ratio method to Γ ≡ Γ(mb) before taking the σ → 0
extrapolation: while Γ(mh) is (at least in principle) a distribution in mh, Γσ(mh) is certainly
a smooth function that can safely be extrapolated at the physical value of mb. Moreover, we
already have simulations with mh ∼ 0.8mb, and it can be reasonably argued that for such large
masses the missing (mostly continuum) states scale with mh.

Although we have compared the lattice results with the OPE, a more direct and effective
validation of our method would come from a comparison with experimental data, such as those
for the branching ratio and for the electron energy spectrum in inclusive semileptonic decays
of the D or Ds mesons [27, 50]. Here the challenge is to get accurate results at physical light-
quark masses, while the charm quark can be simulated directly on present lattices. Beside
validating the method without extrapolations in the heavy-quark mass, a calculation of charm
decays might shed light on the following two open and phenomenologically relevant questions.
i) To what extent is the OPE applicable to charm decays? ii) What is the role played by weak
annihilation (WA) contributions? The first question refers to the onset of quark-hadron duality,
and a detailed study of charm decays in connection with their OPE description may yield an
insight on this conceptual issue. Answering the second question may help us quantifying the
role played by WA contributions in charmless semileptonic B decays, hence improving the
inclusive determination of |Vub|. If one could reproduce the lepton energy spectrum of the
Ds inclusive semileptonic decays that is measured experimentally, a more ambitious future
application would be a direct calculation of B → Xu`ν.

Finally, one may wonder whether the foreseeable precision will be sufficient for a precision
determination of |Vcb| and for interesting phenomenology. Indeed, present experimental errors
for B → Xc`ν are 1.4% on the branching ratio and a few per mille on the first few moments
of the lepton energy distribution. The lattice precision is unlikely to get close to that, at least
initially. On the other hand, on a relatively short time-scale lattice calculations of inclusive
semileptonic decays might be able to enhance the predictive power of the OPE by accessing
other quantities that are inaccurate or beyond the reach of current experiments and are highly
sensitive to the non-perturbative parameters, allowing us to validate and improve the results
of the semileptonic fits on which the OPE predictions are based.
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Chapter 6

Higher Dimensional Operator
Corrections

This chapter presents the work published in [73].

6.1 Introduction

Over recent years the study of semileptonic decays of B mesons has been developing rapidly,
with intriguing tensions between Standard Model (SM) predictions and experimental measure-
ments appearing. One of the most persistent tensions in this field is the ∼ 3σ tension between
the exclusive and inclusive determinations of the CKM matrix element Vcb [43, 141,146,225].

On the inclusive side the theoretical description relies on the Heavy Quark Expansion
(HQE) [83, 105, 197], an expansion in powers of ΛQCD/mb. By now the HQE is at a mature
state with the corrections up to O

(
Λ5

QCD/m
5
b

)
known at tree-level [74, 145, 196], the one–loop

correction fully known at O
(
Λ2

QCD/m
2
b

)
[33, 34, 62, 194, 195] and in the case of the lepton in-

variant mass spectrum even at O
(
Λ3

QCD/m
3
b

)
[192]. At the leading order in the HQE the

three–loop corrections to the total decay rate and the semileptonic moments have been com-
puted recently [126,127].

The starting point of any HQE computation is the Weak Effective Theory (WET) with the
W boson integrated out at the electroweak scale. The leading corrections to the limit of an
infinitely heavy W boson are given by terms of O(q2/m2

W ), where q2 is the dilepton invariant
mass. Being suppressed by the W boson mass, these corrections are expected to be small.
Nonetheless, in principle they could have a sizeable effect on the moments of the dilepton
invariant mass spectrum recently used to determine the CKM matrix element Vcb [68] due to
an enhancement in the phase space integration, especially if it is constrained by a lower cut. In
conjunction with the current theory precision this renders a computation of O (q2/m2

W ) effects
on the inclusive decay rate and moments timely. The purpose of this paper is the presentation
of such a computation.

6.2 Triple differential decay width to O(q2/m2
W )

We consider the inclusive decay B(p) → Xc(p − q)`(p`)ν`(pν) of a B meson into a charmed
hadronic final state and lepton pair. As usual we start by integrating the W boson out of our
description physics at the B scale. We do however keep terms of O(q2/m2

W ) in the expansion
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of the W propagator, leading to the effective Hamiltonian

Heff =
GF√

2
Vcb

[
gµν

(
1− D2

m2
W

)
Jµq J

ν
`

− DµDν

m2
W

Jµq J
ν
`

]
, (6.2.1)

where Jµq (x) = (cγµ(1− γ5)b) and Jµ` (x) =
(
`γν(1− γ5)ν`

)
are the hadronic and leptonic

currents and the covariant derivative is given by

Dµ = ∂µ + igT aGa
µ + ieQAµ, (6.2.2)

with the SU(3)c and U(1)Q gauge fields Ga
µ and Aµ. In the following we consider light leptons

(` ∈ {e, µ}). In this limit the last term of eq. (6.2.1) does not contribute.
Now we can write the triple differential decay rate as

8π3

G2
F |Vcb|2

dΓ

dq2dq0dE`

= Lµνg
µα

(
1 +

q2

m2
W

)
gνβ
(

1 +
q2

m2
W

)
Wαβ

=

(
1 +

2q2

m2
W

)
LµνW

µν +O
(
q4

m4
W

)
. (6.2.3)

Here
Lµν = pµ` p

ν
ν − p` · pνgµν + pν`p

µ
ν + iεµανβp`,αpν,β (6.2.4)

is the standard leptonic tensor and the hadronic tensor is defined as

2mB

(2π)3
W µν =∑

Xc

δ(4)(pB − q − pX)
〈
B
∣∣Jµ†q ∣∣Xc

〉 〈
Xc

∣∣Jνq ∣∣B〉 . (6.2.5)

The hadronic tensor can be decomposed into Lorentz invariant structure functions as

W µν = −gµνW1 + vµvνW2 − iεµναβvαq̂βW3, (6.2.6)

where v = p/mB is the B meson four velocity and q̂ = q/mb. Then in the rest frame of the
decaying B-meson we have v · p` = E` and v · q = q0. Consequently

LµνW
µν =q2W1 +

(
2E`q0 − 2E2

` −
q2

2

)
W2

+ q2 (2E` − q0)W3. (6.2.7)

The structure functions are computed in the HQE, resulting in a double expansion in terms of
inverse powers of the b quark mass and powers of the strong coupling constant. The current
state of the art of the HQE is summarized in table A.8.1.
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6.3 Results

We study the impact of O(q2/m2
W ) contributions on the total decay rate and the moments of

the charged lepton energy E`, the hadronic invariant mass mX and the invariant mass of the
lepton pair q2. The moments are defined as

〈xn〉 =
1

Γ

∫
E`>E

cut
` , q2>q2

cut

dq2dq0dE`x
n dΓ

dq2dq0dE`
(6.3.1)

with

Γ =

∫
E`>E

cut
` , q2>q2

cut

dq2dq0dE`
dΓ

dq2dq0dE`
(6.3.2)

for x ∈ {E`,mX , q
2}. In the leptonic and hadronic moments a lower cut on the energy of the

charged lepton, E`, is applied while in the case of the q2 a lower cut on the invariant mass of the
lepton pair is applied. For the lepton energy and q2 moments these integrals can be evaluated
directly. In the case of the hadronic mass moments however we compute the moments of
û = ((p − q)2 −m2

c)/m
2
b and ω̂ = 1 − q0/mb and relate them to the hadronic final state mass

through 〈
m2
X

〉
= m2

c + Λ2 + 2Λmb 〈ω̂〉+m2
b 〈û〉 , (6.3.3)

where Λ = mB −mb is the mass difference between the B meson and the b quark. For n > 1
one usually considers the central moments 〈(x− 〈x〉)n〉. We denote them as

`i =

{
〈E`〉 , for i = 1〈

(E` − 〈E`〉)i
〉
, for i > 1

hi =

{
〈m2

X〉 , for i = 1〈
(m2

X − 〈m2
X〉)

i
〉
, for i > 1

Qi =

{
〈q2〉 , for i = 1〈

(q2 − 〈q2〉)i
〉
, for i > 1.

(6.3.4)

By carrying out the integrations in eq. (6.3.1) and re-expanding the ratio in powers of 1/mb,
αs and ξ = 2m2

b/m
2
W we find the contributions of O(q2/m2

W ). As the analytic expressions are
lengthy they are attached to the arXiv submission in an ancillary file. Numerically we find the
results in tables 6.3.2 to 6.3.4.

Parameter Value
mkin
b (mb) 4.6 GeV

mc(2GeV) 1.15 GeV
µ2
π 0.4 GeV2

µ2
G 0.35 GeV2

ρ3
D 0.2 GeV3

ρ3
LS −0.15 GeV3

Table 6.3.1: Default input values

In appendix A.10 the full dependence of the moments on the experimental cuts is illustrated
by the examples of the first moments of the charged lepton energy, the hadronic invariant mass
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104 × O
(

q2

m2
W

)/
LO

Ecut Γ `1 `2 `3

0 14.3 1.134 −3.140 3.212
1 GeV 15.9 0.368 −1.53043 25.4

Table 6.3.2: O(q2/m2
W )) contributions to the total decay rate and leptonic moments

104 × O
(

q2

m2
W

)/
LO

Ecut h1 h2 h3

0 −0.933 3.50 −21.0
1 GeV −0.946 1.77 −46.2

Table 6.3.3: O(q2/m2
W )) contributions to the hadronic moments

104 × O
(

q2

m2
W

)/
LO

q2
cut Q1 Q2 Q3

0 6.04 3.50 −21.0
3 GeV2 2.47 2.87 −14.2

Table 6.3.4: O(q2/m2
W )) contributions to the leptonic invariant mass moments

and the dilepton invariant mass. The charged lepton energy moments have been measured
by the DELPHI [24], BaBar [51] and Belle [217] collaborations, the hadronic invariant mass
moments have been measured by the BaBar [53,54], Belle [214], Belle II [28], CDF [29], CLEO
[112] and DELPHI [24] collaborations and the q2 moments have been measured by the Belle
[218], Belle II [2] and CLEO [112] collaborations. The Belle II uncertainties are not plotted
because they are larger than the ones of the older measurements. As can be seen in the plots the
q2/m2

W corrections decrease for higher cuts and they are multiple orders of magnitude smaller
than the experimental uncertainties. Therefore they are unlikely to significantly impact the
theory prediction of Vcb.

They are however of the same order of magnitude as the O(α3
s) for the total rate, the second

central lepton energy moment and the first hadronic mass moment. Therefore they may also be
considered if one keeps the three–loop corrections, in order to consistently treat contributions
of their order of magnitude.

Intuitively the smallness of the q2/m2
W corrections can be seen from the fact that the

q2-distribution decreases with increasing q2 and the fact that the average dilepton mass is
∼ 5 GeV2. So even though q2/m2

W is about 0.6% we obtain a 0.14% correction to the total
decay rate. In the moments there is also a cancellation between numerator and denominator,
suppressing the corrections even more.

6.4 Conclusions

We computed the corrections of O (q2/m2
W ) to the inclusive total rate and moments in semilep-

tonic B decays. In most kinematical distributions these effects are several orders of magnitude
smaller than the current experimental uncertainties. However, they are of comparable size
to the three–loop corrections, which are included in present analyses. Thanks to the results
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presented in this paper, they can be consistently included in future studies.
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Chapter 7

Exclusive Decays of B Mesons

In this chapter we shift our attention away from inclusive decays of B mesons to exclusive
decays, in which we know the exact final state. In particular we study the decays which at the
parton-level proceed via a b→ s`` transition.

The structure of this chapter is the following. After motivating the study of b → s``
transitions in section 7.1 we introduce the necessary formalism in section 7.2 and apply it to
a study of long-distance contributions to the decays B+ → K+`+`− and B0 → K∗`+`− in
section 7.5. Throughout this chapter q will denote the four-momentum of the lepton pair.

7.1 Why Study Exclusive b→ s`` transitions?

In section 2.4 we found that there are no Flavour Changing Neutral Current (FCNC) inter-
actions at tree-level in the SM. Thus in the SM processes which are mediated by FCNC are
rare. This property makes them great probes of NP because even small effects can easily be
distinguished from the tiny SM expectation.

Indeed there are intriguing tensions between the SM prediction and measured values in
the branching ratios B (B → K+µ+µ−) [7,208] and B (B0 → K∗µ+µ−) [16] and in the angular
observables of B → K∗`−`+ [21]. Especially the branching ratios consistently show a deficit in
the b→ sµµ mode.

The SM predictions of the branching ratios and angular observables are plagued by hadronic
contributions which can mimic a NP contribution to the Wilson coefficients however. In order
to distinguish genuine NP effects from hadronic SM effects it is important to study these
contributions. This problem arises because the leading contribution of the four-quark operators
in the effective Hamiltonian involves a charm loop which can go on-shell. In the following
section we will see this explicitly.

7.2 Generalities

The effective Hamiltonian for b→ s`` decays is given by [85,87]

Heff(b→ s`+`−) =
4GF√

2

[
λsu

2∑
i=1

CiQui + λsc

2∑
i=1

CiQci − λst
10∑
i=3

CiQi
]
, (7.2.1)
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where λsp = VpbV
∗
ps, and

Qc1 =(s̄aLγµc
b
L)(c̄bLγ

µbaL), Qc2 =(s̄LγµcL)(c̄Lγ
µbL),

Qu1 =(s̄aLγµu
b
L)(ūbLγ

µbaL), Qu2 =(s̄LγµuL)(ūLγ
µsL),

Q3 = (s̄LγµbL)
∑
q

(q̄Lγ
µqL) Q4 =

(
s̄aLγµb

b
L

)∑
q

(
q̄bLγ

µqaL
)

Q5 = (s̄LγµγνγρbL)
∑
q

(q̄Rγ
µγνγρqR) Q6 =

(
s̄aLγµγνγρb

b
L

)∑
q

(
q̄bRγ

µγνγρqaR
)

Q7 =
e

16π2
mb(s̄Lσ

µνbR)Fµν , Q8 =
gs

16π2
mb(s̄Lσ

µνT abR)Ga
µν ,

Q9 =
e2

16π2
(s̄LγµbL)(¯̀γµ`), Q10 =

e2

16π2
(s̄LγµbL)(¯̀γµγ5`). (7.2.2)

The only operators which have a non-vanishing matrix element in b→ sll are O7, Q9 and Q10.
The four-quark operators Q1,...,6 have non-vanishing matrix elements only at the loop level, as
shown in fig. 7.2.1. In the loop we can have a light quark (u, d or s) or a heavy quark (c or b).

b s

q q

`

`

Figure 7.2.1: Leading order contribution of the operators Q1, . . .Q6. The cross denotes an
insertion of the operator.

At this level of accuracy WC C1, . . . , C6 only appear in specific combinations, accompanied
by C9 or C7 [97]. Therefore we define an effective C7

Ceff
7 = C7 −

1

3

(
C3 +

4

3
C4 + 20C5 +

80

3
C6

)
(7.2.3)

and an effective C9

Ceff
9 = C9 + Y

(
q2
)

(7.2.4)

with

Y
(
q2
)

=
4

3
C3 +

64

9
C5 +

64

27
C6 −

1

2
h
(
q2, 0

)(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+ h

(
q2,mc

)(4

3
C1 + C2 + 6C3 + 60C5

)
− 1

2
h
(
q2,mb

)(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
, (7.2.5)
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where the function

h
(
q2,m

)
= −4

9

(
ln
m2

µ2
− 2

3
− x
)
− 4

9
(2 + x)

{√
x− 1 arctan 1√

x−1
, x > 1

√
1− x

(
ln 1+

√
1−x√
x
− iπ

2

)
, x ≥ 1

(7.2.6)

with x = 4m2/q2 corresponds to the fermion loop integral in fig. 7.2.1. The effective C9 depends
on q2 due to the q2 dependence of the loop function in fig. 7.2.1. In eq. (7.2.5) we have three
quark loop contributions. The contribution proportional to h (q2, 0) describes a loop containing
light quarks while h (q2,mb) and h (q2,mc) describe bottom and charm loops, respectively.

The function h (q2,m) is not sufficient for modeling the q2 dependence of Ceff
9 [37,159]. This

is due to the fact that in B decays there is enough energy for the charm quarks in the loop
to go on-shell. In this case the decay proceeds via an intermediate cc resonance which is not
described adequately by the function h, which misses the non-perturbative dynamics. Instead
it has to be described by a non-perturbative framework. In section 7.3 we will estimate the
resonance contributions from subtracted dispersion relations instead of using the h function
defined above.

But first we turn to the computation of matrix elements of the effective Hamiltonian
eq. (7.2.1). In section 7.2.1 we describe the semileptonic decay of a B meson to a vector meson
V and in section 7.2.2 we describe the semileptonic decay of a B meson to a pseudoscalar
meson P .

7.2.1 B → V ``

We cannot analytically compute the hadronic matrix elements of the operatorsQi in eq. (7.2.1).
Instead we parametrize them in terms of the seven form factors [41]

〈
V (k) |sγµ (1− γ5) b|B(p)

〉
=− iε∗ (mB +mV )A1

(
q2
)

+ i (2p− q)µ (ε∗ · q) A2 (q2)

mB +mV

+ iqµ (ε∗ · q) 2mV

q2

[
A3

(
q2
)
− A0

(
q2
)]

+ εµνρσε
∗νpρkσ

2V (q2)

mB +mV

,

(7.2.7)

〈
V (k) |sσµνqν (1 + γ5) b|B(p)

〉
=iεµνρσε

∗νpρkσ2T1

(
q2
)

+ T2

(
q2
) [
ε∗
(
m2
B −m2

V

)
− (ε∗ · q) (2p− q)µ

]
+ T3

(
q2
)

(ε∗ · q)
[
qµ −

q2

m2
B −m2

V

(2p− q)µ
]

(7.2.8)

where A0(0) = A3(0), T1(0) = T2(0) and one of the form factors A1,2,3 is redundant because we
have the relation

A3

(
q2
)

=
mB +mV

2mV

A1

(
q2
)
− mB −mV

2mV

A2

(
q2
)
. (7.2.9)

In experiments the vector meson V is not directly observed. Instead it decays and its decay
products are observed. In the cases of interest to us here one actually observes the decay
B → K∗(→ Kπ)`+`− and Bs → φ (→ K+K−) `+`−. Assuming that the vector meson decays
resonantly and has a small width, i.e. ΓV � mV (corrections to this approximation can be
found in [116]), and after summing over the lepton spins and integrating over the Kπ or K+K−
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invariant mass one finds the fully differential decay width

d4Γ

dq2d cos θ`d cos θV dφ
=

9

32π
(Js1 + Js2 cos 2θ` + Js6 cos θ`) sin2 θV

+ (J c1 + J c2 cos 2θ` + J c6 cos θ`) cos2 θV

+ (J3 cos 2φ+ J9 sin 2φ) sin2 θV sin2 θ`

+ (J4 cosφ+ J8 sinφ) sin 2θV sin 2θ`

+ (J5 cosφ+ J7 sinφ) sin 2θV sin θ`. (7.2.10)

For the angles we use the LHCb basis described in detail in Appendix A of [4]. We define θ`
as the angle between the flight direction of the µ+ (µ−) in the muon pair rest frame and the
direction of the muon pair in the B

(
B
)

rest frame, explicitly

cos θ` = p̂
(µ+µ−)
µ+ · p̂(B)

µ+µ− = p̂
(µ+µ−)
µ+ ·

(
−p̂(B)

B

)
,

cos θ` = p̂
(µ+µ−)
µ− · p̂(B)

µ+µ− = p̂
(µ+µ−)
µ− ·

(
−p̂(B)

B

)
(7.2.11)

for B and B decays, respectively. The angle θV is defined as the angle between the flight
direction of the kaon in the kaon rest frame and the direction of the vector meson V in the B(
B
)

rest frame, explicitly

cos θV = p̂
(V )

K+ · p̂(B)
V = p̂VK+ ·

(
−p̂(V )

B

)
cos θV = p̂

(V )
K− · p̂

(B)
V

= p̂VK− ·
(
−p̂(V )

B

)
, (7.2.12)

for the decays of a B meson and of a B meson, respectively. Last but not least we define the
angle φ as the angle between the plane spanned by the muon pair and the plane spanned by
the decay products of V , explicitly

cosφ =
(
p̂

(B)

µ+ × p̂(B)

µ−

)
·
(
p̂

(B)

K+ × p̂(B)

π−(K−)

)
sinφ =

[(
p̂

(B)

µ+ × p̂(B)

µ−

)
×
(
p̂

(B)

K+ × p̂(B)

π−(K−)

)]
· p̂(B)

V (7.2.13)

for the decay of a B meson and

cosφ =
(
p̂

(B)

µ− × p̂
(B)

µ+

)
·
(
p̂

(B)

K− × p̂
(B)

π+(K+)

)
sinφ = −

[(
p̂

(B)

µ− × p̂
(B)

µ+

)
×
(
p̂

(B)

K− × p̂
(B)

π+(K+)

)]
· p̂(B)

V
(7.2.14)

for a B meson.
This definition of θ` differs from the one in [41], where θ` is defined with respect to the

positive muon in both cases. It is important to keep this in mind because we implement the
angular observables based on [41] but use data from LHCb. We compensate for the different

angular definitions by using the relation θ
[41]
` = π−θLHCb

` which amounts to a change of the sign
of J4 and Js6 . A detailed comparison of the LHCb conventions to the conventions commonly
used by theory groups can be found in Appendix C.2 of [152].
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The angular coefficients Ji in eq. (7.2.10) can be computed in terms of the seven transversity
amplitudes AL,R‖,⊥,0 and At [183]. In terms of the transversity amplitudes the angular observables
are given by

Js1 =
2 + β2

4

(∣∣AL⊥∣∣2 +
∣∣A‖∣∣2 + (L→ R)

)
+

4m2
`

q2
Re
(
AL⊥A

R∗
⊥ + AL‖A

R∗
‖
)

J c1 =
∣∣AL0 ∣∣2 +

∣∣AR0 ∣∣2 +
4m2

`

q2

(
|At|2 + 2Re

(
AL0A

R∗
0

))
Js2 =

β2

4

(∣∣AL⊥∣∣2 +
∣∣AL‖ ∣∣2 + (L→ R)

)
J c2 = −β2

(∣∣AL0 ∣∣2 + (L→ R)
)

J3 =
1

2
β2
(∣∣AL⊥∣∣2 − ∣∣AL‖ ∣∣2 + (L→ R)

)
J4 =

1√
2
β2
(
Re
(
AL0A

L∗
‖
)

+ (L→ R)
)

J5 =
√

2β
(
Re
(
AL0A

L∗
⊥
)
− (L→ R)

)
Js6 = 2β

(
Re
(
AL‖A

L∗
⊥
)
− (L→ R)

)
J c6 = 0

J7 =
√

2β
(
Im
(
AL0A

L∗
‖
)
− (L→ R)

)
J8 =

1√
2
β2
(
Im
(
AL0A

L∗
⊥
)

+ (L→ R)
)

J9 = β2
(
Im
(
AL∗‖ A

L
⊥
)

+ (L→ R)
)

(7.2.15)

where β =
√

1− 2m2
`/q

2 and

A⊥L,R = N
√

2λ

((
Ceff

9 ∓ C10

) V (q2)

mB +mV

+
2mb

q2
Ceff

7 T1

(
q2
))

A‖L,R = −N
√

2
(
m2
B −m2

V

)((
Ceff

9 ∓ C10

) A1 (q2)

mB −mV

+
2mb

q2
Ceff

7 T2

(
q2
))

A0L,R = − N

2mV

√
q2

((
Ceff

9 ∓ C10

)((
m2
B −m2

V − q2
)

(mB +mV )A1

(
q2
)
− λ A2 (q2)

mB +mV

)

+ 2mbC
eff
7

((
m2
B + 3m2

V − q2
)
T2

(
q2
)
− λ

m2
B −m2

V

)
T3

(
q2
))

At =
2N√
q2

√
λC10A0

(
q2
)
, (7.2.16)

with λ = m4
B +m4

V + q4 − 2 (m2
Bm

2
V +m2

V q
2 +m2

Bq
2) and the normalization factor

N = VtbV
∗
ts

(
GFα

2

3 · 210π5m3
B

q2
√
λβ

) 1
2

, (7.2.17)

where α = e2/(4π) is the fine structure constant.
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Now we can define the observables we will use to study the long-distance contributions to
Ceff

9 later on. We will need the differential branching ratio

dB (B → V `+`−)

dq2
=

1

ΓB

∫
d cos θ`d cos θV d cosφ

d4Γ

dq2d cos θ`d cos θV d cosφ
, (7.2.18)

where ΓB denotes the total B meson decay rate and the CP-averaged angular observables
introduced in [41]

S
(a)
i =

(
J

(a)
i + J

(a)

i

)/d
(
Γ + Γ

)
dq2

(7.2.19)

The CP conjugates J i of the angular coefficients are found by conjugating all the weak phases in
the transversity amplitudes, i.e. the phases of the Wilson coefficients and of the normalization
factor. As J7,8,9 are CP odd in the SM we have S7,8,9 = 0, up to corrections of O (Vus/Vts).
Explicitly carrying out the integrations over the angles θ`, θV and φ in eq. (7.2.10) we find the
q2-spectrum

dΓ

dq2
=

3

4
(2Js1 + J c1)− 1

4
(2Js2 + J c2) , (7.2.20)

and due to the normalization of the angular observables this yields the relation

3

4
(2Ss1 + Sc1)− 1

4
(2Ss2 + Sc2) = 1 (7.2.21)

which renders one of the observables S
(s,c)
(1,2) redundant. If the final state leptons are massless,

which is a good approximation for q2 > 1GeV2, additionally the relations Ss1 = 3Ss2 and
Sc1 = −Sc2 hold, reducing the number of independent angular observables from 12 to 8.

In experimental measurements the differential observables are averaged over bins of q2 as〈
dB (B → V `+`−)

dq2

〉
[q2

min,q
2
max]

=
1

q2
max − q2

min

∫ q2
max

q2
min

dq2 dB (B → V `+`−)

dq2
(7.2.22)

and 〈
S

(a)
i

〉
[q2

min,q
2
max]

=

∫ q2
max

q2
min

dq2
(
J

(a)
i + J

(a)

i

)/∫ q2
max

q2
min

dq2 d
(
Γ + Γ

)
dq2

. (7.2.23)

To match the LHCb conventions on the names of the observables we will refer to Sc1 as FL from
now on because it corresponds to the fraction of longitudinal polarization of the meson V and
we replace Ss6 by the forward-backward asymmetry AFB = 3

4
Ss6 of the lepton pair [13].

This concludes the general treatment of B → V `` decays. In section 7.5 we implement the
binned branching ratio and the angular observables {FL, S3, S4, S5, AFB, S7, S8, S9}, employing a
novel parametrization of the charm loop effects in a fit of the WC C9. Another possibility would

be to use the optimized observables P
(′)
i , which suffer from smaller form factor uncertainties.

7.2.2 B → P``

In this case we will focus on the decay B+ → K+µ+µ−. The hadronic matrix elements
appearing in this decay are commonly parametrized in terms of three form factors as

〈K(k) |sγµb|B(p)〉 =

(
(p+ k)µ −

m2
B −m2

K

q2
qµ

)
f+

(
q2
)

+
m2
B −m2

K

q2
qµf0

(
q2
)

〈K(k) |sσµνb|B(p)〉 = −i (pµkν − pνkµ)
2fT (q2)

mB +mK

. (7.2.24)
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The fully differential B → K`+`− decay rate is given by [63]

d2Γ (B → K`+`−)

dq2d cos θ
= a`

(
q2
)

+ b`
(
q2
)

cos θ + c`
(
q2
)

cos2 θ, (7.2.25)

where θ is the angle between the flight direction of the B meson and and of `− in the rest frame
of the lepton pair. Carrying out the integral over θ yields the q2-spectrum

dΓ (B → K`+`−)

dq2
= 2a` +

2

3
c`. (7.2.26)

The angular coefficients a` and c` are given by

a` = NK

(
q2 |FP |2 +

λK
4

(
|FA|2 + |FV |2

))
+ 4m2

`m
2
B |FA|2 + 2m`

(
m2
B −m2

K + q2
)

Re (FPF
∗
A)

c` = −NKλKβ
2

4

(
|FA|2 + |FV |2

)
, (7.2.27)

where λK = m4
B +m4

K + q4 − 2 (M2
Bq

2 +M2
Kq

2 +M2
BM

2
K) and the normalization constant NK

is given by

NK = |VtbV ∗ts|2
GFα

2

29π5m3
B

β
√
λK . (7.2.28)

The quantities FP,V,A are constructed from the form factors as

FP = −m`C10

(
f+ −

m2
B −m2

K

q2
(f0 − f+)

)
FV = Ceff

9 f+ +
2mb

mB +mK

Ceff
7 fT

FA = C10f+. (7.2.29)

Again the values of the branching ratio measured in experiments are averages over q2-bins so
we compute〈

dB (B → K`+`−)

dq2

〉
[q2

min,q
2
max]

=
1

(q2
max − q2

min) ΓB

∫ q2
max

q2
min

dq2 dΓ (B → K`+`−)

dq2
. (7.2.30)

In section 7.5 we will use this observable to study the q2-dependence of Ceff
9 from experimental

data. To this end we develop a new treatment of the charm loop contributions in the next
section.

7.3 Long Distance Contributions from cc resonances

As already stated the contribution of intermediate cc states cannot be described by perturbation
theory. We proceed with a formulation of the cc resonances following [90]. First we modify

our effective C9 and add a new term Y
(λ)
cc . The label λ in parentheses stems from the fact that

in the B → V `` case this term depends on the polarization of the vector meson V . So we
introduce a new effective C9

Ceff
9 → C

(λ),eff
9

(
q2
)

= C9 + Ỹ
(
q2
)

+ Y
(λ)
cc̄

(
q2
)
, (7.3.1)
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where Ỹ (q2) is defined by eq. (7.2.5) with the replacement

h
(
q2,m2

c

)
→ lim

q2→0
h
(
q2,m2

c

)
=

4

9

(
2

3
+ 3 ln

µ2

q2
+ 3i

)
. (7.3.2)

This modification is necessary in order to not double count the charm loop contributions. For
B → V `` we denote the form factor proportional to C9 in the transversity amplitude Aλ as
fλ, i.e. f⊥ = V , f‖ = A1 and f0 = A12. In the case of B → P`` C9 is proportional to f+ and

therefore f = f+ in this case. Then we express the functions Y
(λ)
cc as

Y
(λ)
cc̄

(
q2
)

=
16π2

f(λ) (q2)
H(λ)
cc̄ (q2) , (7.3.3)

where [179]

i

∫
d4xeiqx〈P (k)|T

{
j(λ),em
µ (x),

∑
i=1,2

CciOqi (0)

}
|B̄(p)〉

= [(p · q)qµ − q2pµ]H(λ)
cc̄

(
q2
)
,

(7.3.4)

with jem
µ =

∑
q=u,d,s,c,bQq q̄γµq. In practice, we are unable to evaluate these expressions from

first principles and we estimate them from data using dispersion relations [81,86,110,179,190].
In full generality, we can write a subtracted dispersion relation for Hcc̄(q

2)

∆Y
(λ)
qq̄ (q2) =

16π2

f(λ) (q2)
∆H(λ)

qq̄ (q2) , (7.3.5)

with

∆H(λ)
qq̄ (q2) =

q2 − q2
0

π

∫ ∞
s0

ds
Im[H(λ)

qq̄ (s)]

(s− q2
0)(s− q2)

≡ q2 − q2
0

π

∫ ∞
s0

ds
ρ

(λ)
qq̄ (s)

(s− q2
0)(s− q2)

,

(7.3.6)

The function ρqq̄(s) is the spectral density for an intermediate hadronic state with valence
quarks qq̄ and invariant mass s, and the parameter s0 is the energy threshold where the state
can be created on-shell. The parameter q2

0 is the subtraction point that we choose for the
different qq̄ states (q2

0 < s0).
The leading contribution to ρqq̄(s) is provided by single-particle intermediate states. We

can describe them as a sum of Breit-Wigner distributions:

∆H(λ),1P
qq̄ =

∑
Vj

η
(λ)
Vj
e
iδ

(λ)
Vj

(q2 − q2
0)

(m2
V − q2

0)
Ares
Vj

(
q2
)
,

Ares
Vj

(
q2
)

=
mVjΓVj

m2
Vj
− q2 − imVjΓVj

,

(7.3.7)

where the sum runs over all the possible vector states associated with the the qq̄ valence quarks.
The parameters ηj and δj have to be determined from data. For the charmonium resonances,
which have a high invariant mass, we use dispersion relations subtracted at q2 = 0, yielding

∆H(λ),1P
cc̄ =

∑
Vj=J/ψ,ψ(2S),...

η
(λ)
Vj
e
iδ

(λ)
Vj

q2

m2
Vj

Ares
Vj

(
q2
)
. (7.3.8)
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Then we can write eq. (7.3.1) as

C
(λ),eff
9

(
q2
)

= C9 + Ỹ
(
q2
)

+
16π2

f(λ) (q2)

∑
Vj=J/ψ,ψ(2S),...

η
(λ)
Vj
e
iδ

(λ)
Vj

q2

mVj

ΓVj
m2
Vj
− q2 − imVjΓVj

. (7.3.9)

7.4 Extraction of the resonance parameters from data

7.4.1 B → KVj → K`+`−

For the decay chain B+ → KVj → K+`+`− we can determine the resonance parameters from
the following expression [90]

B
(
B+ → K+Vj

)
× B

(
Vj → µ+µ−

)
=∣∣ηVj ∣∣2 τB+

G2
Fα

2 |VcbV ∗cs|2
1024π5

∫ (mB−mK)2

4m2
µ

|k|3
[
β − 1

3
β3

] (
16π2

)2
∣∣∣Ares

Vj

(
q2
)∣∣∣2 ∣∣∣∣∣ q2

m2
Vj

∣∣∣∣∣
2

dq2, (7.4.1)

where τB is the B+ meson lifetime and |k| =
√
λ
(
mB+ ,mK+ ,mVj

)
/2mB is the modulus of

the kaon 3-momentum in the B+ meson rest frame. The function
∣∣∣Ares

Vj
(q2)

∣∣∣2, describing the

resonance takes the form of a Breit-Wigner distribution:

Ares
V

(
q2
)

=
mVjΓVj(

m2
Vj
− q2

)
− imVjΓVj

. (7.4.2)

After taking the modulus squared of the resonance function we can facilitate the integration
by taking the narrow width approximation

∣∣∣Ares
Vj

(
q2
)∣∣∣2 =

m2
Vj

Γ2
Vj(

q2 −m2
Vj

)2

+m2
Vj

Γ2
Vj

ΓVj
mVj
→0

−→ mVjΓVjπδ
(
q2 −m2

Vj

)
. (7.4.3)

Then eq. (7.4.1) yields∣∣ηVj ∣∣2 =
6m3

B+B (B+ → K+Vj)B (Vj → µ+µ−)

τB+G2
Fα

2 |VcbV ∗cs|2 ΓVjmVjλ
3/2
(
mB+ ,mK+ ,mVj

) , (7.4.4)

where λ(a, b, c) = a4 + b4 + c4 − 2 (a2b2 + a2c2 + b2c2).
Using the the PDG result for the branching ratios, the LHCb results in [17] (we use the

values in the upper right corner of Table 3) and the input values in table B.1.1, we then obtain
the values reported in table B.2.1 for the J/ψ and ψ(2s) resonances. The values for the higher
resonances are taken from table 2 of [90].

7.4.2 B → V Vj → V `+`−

B → V Vj

As a first step we determine the B → V `` amplitude from the measured values of the transver-
sity amplitudes for Bs → J/ψφ, Bs → ψ(2s)φ and B → J/ψK∗. We can do this by treating
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the decay as a sequential process B → V Vj → V `+`−. The first step of this process is where
the measured non-leptonic amplitudes come in. Once we have expressed the matrix element〈

V (k, εV (λ))V ∗j (q, εVj(λj))
∣∣Qp1,2 |Bq(pB)〉 , (7.4.5)

in terms of measured transversity amplitudes we relate it to the full decay and extract the
resonance parameters ηλVj and δλVj . where V1,2 are two vector states, characterized by mass m1,2

and their momentum p1,2 and polarization vector ε1,2. Following [119], we have:〈
V (k, εV (λ))V ∗j (q, εVj(λj))

∣∣Qp1,2 |Bq(pB)〉 =

ε∗V µ(λ)ε∗Vjν(λj)

[
agµν +

b

mVmVj

qµkν + i
c

mVmVj

εµναβkαqβ

]
,

(7.4.6)

where the coefficients a, b and c encode the contributions to this decay due to all possible
topologies. We can introduce 3 transversity amplitudes, which are related to the coefficients a,
b and c as

A0 =− xa− (x2 − 1)b , (7.4.7)

A‖ = +
√

2 a , (7.4.8)

A⊥ = +
√

2(x2 − 1) c . (7.4.9)

With this definition, we have that

Γ(Bs → J/ψφ) = (|A0|2 + |A‖|2 + |A⊥|2)

√
λ
(
mB,mV ,mVj

)
16πm3

B

. (7.4.10)

In order to extract the amplitudes from data, we need to compare the previous expression to
the one used in experimental analysis, where

dΓ(Bs → J/ψφ)

dt
= N (|A0(t)|2 + |A‖(t)|2 + |A⊥(t)|2) , (7.4.11)

and for each amplitude we have:

|Ak(t)|2 = |Ak(0)|2e−Γst

[
ak cosh

(
1

2
∆Γst

)
+ bk sinh

(
1

2
∆Γst

)
+ck cos(∆mst) + dk sin(∆mst)

]
,

(7.4.12)

and the coefficients are

a0 = a‖ = a⊥ =1 , (7.4.13)

b0 = b‖ = −b⊥ =− 2
|λ
(
mB,mV ,mVj

)
| cosφs

1 + |λ
(
mB,mV ,mVj

)
|2 , (7.4.14)

c0 = c‖ = c⊥ =
1− |λ

(
mB,mV ,mVj

)
|2

1 + |λ
(
mB,mV ,mVj

)
|2 , (7.4.15)

d0 = d‖ = −d⊥ =− 2
|λ
(
mB,mV ,mVj

)
| sinφs

1 + |λ
(
mB,mV ,mVj

)
|2 . (7.4.16)
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In order to find the constant N , we integrate eq. (7.4.11), in the approximation ∆Γs = 0,
∆ms = 0 and λ = 1, obtaining:

NV,Vj = Γ2
B × B(B → V Vj) . (7.4.17)

Using the data in [44,227], we have for example Nφ,J/ψ = 2.03×10−28 GeV2. In order to extract
the amplitudes Ai, we integrate eq. (7.4.11). Using the results in [42,228] we find:

|Ai (Bs → φJ/ψ) |2 = 2.13× 10−13|Ai(0)|2GeV2 ,

|Ai (Bs → φψ(2s)) |2 = 1.46× 10−13|Ai(0)|2GeV2 ,

|Ai (B → K∗J/ψ) |2 = 2.46× 10−13|Ai(0)|2GeV2 ,

|Ai (B → K∗ψ(2s)) |2 = 1.61× 10−13|Ai(0)|2GeV2 . (7.4.18)

The amplitudes Ai are in principle complex valued numbers. They are usually parametrized
as

Ai = |Ai|e−iδi , (7.4.19)

where historically δ0 = 0. From [12], we extract for the decay Bs → J/ψφ:

|A0|2 = 0.5241± 0.0034± 0.0067 , δ‖ = 3.26+0.10+0.06
−0.17−0.07 ,

|A⊥|2 = 0.2504± 0.0049± 0.0036 , δ⊥ = 3.08+0.14
−0.15 ± 0.06 ,

(7.4.20)

where the phases are expressed in radians and the value of A‖ can be extracted from the
relation: |A0|2 + |A‖|2 + |A⊥|2 = 1. For the decay B → J/ψK∗ we use [6] and extract

|A0|2 = 0.227± 0.004± 0.011 , δ‖ = − 2.94± 0.02± 0.03 ,

|A⊥|2 = 0.201± 0.004± 0.008 , δ⊥ = 2.94± 0.02± 0.02 .
(7.4.21)

Last but not least we use [15] for the decay B → ψ(2s)φ and extract

|A⊥|2 = 0.264+0.024
−0.023 ± 0.002 , δ⊥ = 3.29+0.43

−0.39 ± 0.04,

|A0|2 = 0.422± 0.014± 0.003 , δ‖ = 3.67+0.13
−0.18 ± 0.03 .

(7.4.22)

The amplitudes for the decay B → K∗ψ(2s) have not been measured so in the following we
estimate them from SU(3)F relations.

Estimation of the Polarization Amplitudes for B → ψ(2s)K∗

In order to estimate the transversity amplitudes for the decay B → ψ(2s)K∗ we build the
ratios Ai (B → ψ(2s)φ) /Ai (B → J/ψφ) for i ∈ {0,⊥, ‖} and assume the corresponding ratios
in the B → K∗ case are the same. We find the ratios∣∣∣∣A0 (Bs → ψ(2s)φ)

A0 (Bs → J/ψφ)

∣∣∣∣ = 0.897± 0.017,∣∣∣∣A⊥ (Bs → ψ(2s)φ)

A⊥ (Bs → J/ψφ)

∣∣∣∣ = 1.03± 0.33,
δ⊥ (Bs → ψ(2s)φ)

δ⊥ (Bs → J/ψφ)
= 1.08± 0.14,∣∣∣∣A‖ (Bs → ψ(2s)φ)

A‖ (Bs → J/ψφ)

∣∣∣∣ = 1.18± 0.32,
δ‖ (Bs → ψ(2s)φ)

δ‖ (Bs → J/ψφ)
= 1.13± 0.07.

(7.4.23)
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From them we compute

|A0 (B → ψ(2s)K∗)|2 = 0.461± 0.021,

|A⊥ (B → ψ(2s)K∗)|2 = 0.21± 0.13, δ⊥ (B → ψ(2s)K∗) = 3.2± 0.4,∣∣A‖ (B → ψ(2s)K∗)
∣∣2 = 0.32± 0.17, δ‖ (B → ψ(2s)K∗) = −1.06± 0.07.

(7.4.24)

As a quick sanity check we add the squared amplitudes and find

|A0 (B → ψ(2s)K∗)|2 + |A⊥ (B → ψ(2s)K∗)|2 +
∣∣A‖ (B → ψ(2s)K∗)

∣∣2 = 0.99± 0.22 (7.4.25)

which is compatible with 1, so the relation: |A0|2+|A‖|2+|A⊥|2 = 1 is satisfied by the estimated
amplitudes.

B → V Vj → V `+`−

At this point we have the transversity amplitudes and an expression of the B → VjV matrix
element in terms of them. The next step is to relate this expression to the matrix element of
the effective Hamiltonian eq. (7.2.1) in terms of Ceff,λ

9 ,

M
(
B → V `+`−

)∣∣
C9

=

GFα

2
√

2π
VtbV

∗
tsC

eff,λ
9

(
q2
)(

i

(
−ε∗V,µ(λ) (mB +mV ) + qµ (ε∗V (λ) · q) mB +mV

q2

)
A1

(
q2
)

+ i

(
(2p− q)µ − qµ

mB −mV

q2

)
(ε∗V (λ) · q) A2 (q2)

mB +mV

− iqµ (ε∗V (λ) · q) 2mV

q2
A0

(
q2
)

+ εµνρσε
∗,ν
V (λ)pρkσ

2V (q2)

mB +mV

)
. (7.4.26)

Next we write the matrix element for the sequential decay via a resonance Vj as

M
(
B → V (λ)Vj (λj)→ V (λ)`+`−

)
=
∑
λj

M (B → V (λ)Vj (λj))M
(
Vj (λj)→ `+`−

)
,

(7.4.27)
where M (B → V (λ)Vj (λj)) is given by writing eq. (7.4.6) in the form

M (B → V (λ)Vj (λj)) = ε∗V,µ(λ)ε∗Vj ,ν(λj)M
µν (7.4.28)

and

M
(
Vj (λj)→ `+`−

)
= εVj ,ρ (λj)

2efVj
q2 −m2

Vj
− imVjΓVj

`γρ`. (7.4.29)

Details on the charmonium decay constant fVj can be found in appendix B.4. For evaluating
the sum over the polarization λj of the vector resonance we use the completeness relation∑

λj

ε∗Vj ,ν (λj) εVj ,ρ (λj) = −gνρ +
qνqρ
m2
Vj

, (7.4.30)
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obtaining∑
λj

M (B → V Vj)M
(
Vj → `+`−

)
=

2efVj
q2 −m2

Vj
− imVjΓVj

[
A‖√

2

(
−ε∗ρv (λ) +

ε∗V (λ) · q
m2
Vj

qρ

)
+
xε∗V (λ) · q
x2 − 1

(
pρV

mVmVj

− (pV · q) qρ
mVm3

Vj

)

+
A0

x2 − 1
(ε∗V (λ) · q)

(
(pV · q) qρ
mVm3

Vj

− pρV
mVmVj

)

− iA⊥√
2 (x2 − 1)mVmVj

εµαβρε∗V,µ(λ)pV,αqβ

]
`γρ`. (7.4.31)

By equating eq. (7.4.26) and eq. (7.4.31) for λ = (0, ‖,⊥) (details on the polarization vectors
in the Vj rest frame can be found in appendix B.3) we can now extract the parameters ηλV and
δλV , finding

η0
Vj
e
iδ0
Vj =

fVj

8
√

2παGFVtbV ∗tsmBmVjΓVj
A0

η
‖
Vj
e
iδ
‖
Vj =

fVj
2
√
παGFVtbV ∗ts(mB +mV )mVjΓVj

A‖

η⊥Vje
iδ⊥Vj =

fVj(mB +mV )

2
√
παλGFVtbV ∗tsmVjΓVj

A⊥.

(7.4.32)

The phases in eq. (7.4.32) are composed of three contributions. There are the phases of the
transversity amplitudes, given in eq. (7.4.20), the phase of (V ∗ts)

−1, shown in table B.1.1, and
an overall phase between the short and long distance amplitudes measured in [17], for which
we use the upper right corner of table 3.

7.5 Fit

In this section we perform multiple fits of the Wilson coefficient C9 using the available exper-
imental data on the differential branching ratios B (B+ → K+`+`−) and B (B0 → K0∗`+`−),
as well as on the set of angular observables defined in the end of section 7.2.1 in the case of
B0 → K0∗`+`−. We use the input parameters reported in table B.1.2.

In the theory predictions we implement Ceff
9 as defined in eq. (7.3.1) and perform fits

to its constant part we called C9, assuming a different value C
(i)
9 in each q2-bin i. If our

implementation of the cc resonances does a good job at modeling the q2-dependence of C
(λ),eff
9

the fit should yield a flat distribution of C
(i)
9 across all bins.

The best-fit results are calculated by minimizing the χ2 defined as follows for a generic
observable O and N bins:

χ2

({
C

(i)
9

}
i=1,...,N

)
= ~xTV −1~x, (7.5.1)

where
xi = 〈Omeasured〉i − 〈Otheory〉i , (7.5.2)
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〈O〉i is the observable O averaged over the bin i and V is the matrix of theoretical and exper-
imental covariances between the bins:

V = Vtheory + Vexp. (7.5.3)

In principle also Vtheory depends on C9, but we neglect the higher-order terms in C9 by evaluating
it at the SM value.

Let us denote by χ2
min the minimum value of the full χ2

(
C

(1)
9 , . . . , C

(N)
9

)
. We profile the

full χ2 with respect to each coefficient C
(i)
9 , obtaining N one-dimensional profiles χ2

i

(
C

(i)
9

)
.

The uncertainty for each coefficient C
(i)
9 is then extracted from the interval in which∣∣∣χ2
i

(
C

(i)
9

)
− χ2

min

∣∣∣ ≤ 1, (7.5.4)

the upper (lower) uncertainty being given by the distance between the best fit point and the
upper (lower) end of this interval.

7.5.1 B → K

We implement the differential branching ratio defined in eq. (7.2.30) for the decay B+ →
K+µ+µ−. For the form factors we employ the recent HPQCD results [207]. On the experimental
side the differential branching ratio has been measured by the LHCb collaboration [7].

In fig. 7.5.1 the theory prediction we find after adding the cc resonances is shown. Let us
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Figure 7.5.1: Theory prediction for the differential B+ → K+`+`− branching ratio including
the cc resonances. The dashed lines indicate the squared resonance masses.

now turn to the covariance matrix. It is composed of 4 terms:

V = V FF
theory + V η,δ

theory + V stat
exp + V syst

exp , (7.5.5)
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where the theory covariances are split up into a term coming from the uncertainties on the
form factors and one from the uncertainties of the resonance parameters and the experimental
ones are split into systematic and statistical contributions. The parametric uncertainties of the
numerical inputs in table B.1.2 are neglected.

For any observable O given in terms of parameters µi with given covariances cov(µ) we
propagate the theory covariances according to the master formula

(Vtheory)ij =

〈
∂O

∂µk

〉
i

cov(µ)kl

〈
∂O

∂µl

〉
j

. (7.5.6)

The form factors are supplied in the form of a series expansion in terms of

z =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, (7.5.7)

where t+ = (mB +mK)2, t− = (mB −mK)2 and t0 = t+

(
1−

√
1− t−/t+

)
. In order to

find V FF
theory we therefore evaluate the derivatives of the branching ratio with respect to the

coefficients in this z-expansion and plug them into eq. (7.5.6) together with the covariance
matrix supplied in [207].

For finding the covariances originating in the uncertainties of the resonance parameters ηVj
and δVj we assume that they are uncorrelated. Then their covariance matrix is diagonal and
contains their squared standard deviations. We evaluate the derivatives of the branching ratio
with respect to the resonance parameters and use eq. (7.5.6) to find V η,δ

theory. In figs. B.5.1
and B.5.2 the theory covariances can be found. As the covariance matrices have 72 rows and
columns we show them as matrix plots.

The statistical and systematical uncertainties can be found in [7]. We treat the statistical
ones as uncorrelated and assume the systematical ones to be fully correlated, finding the
covariances using the relation (

V syst
exp

)
ij

= σiσj, (7.5.8)

where σi is the squared standard deviation of the value measured in bin i. Finally we have
performed fits in 3 different ranges of q2. First we considered the whole q2 range from 0.1 GeV2

to 22 GeV2. In this range we want to compare different formulations of the charm-loop con-
tributions. To this end performed fits for 3 scenarios:

(i) with Ceff
9 defined as in eq. (7.2.4)

(ii) with Ceff
9 defined in eq. (7.3.9)

(iii) with eq. (7.3.9) with Ỹ (q2) replaced by Y (q2).

The result of these fits are presented in fig. 7.5.2. As one can see scenario (ii) shows the
smallest residual q2 dependence. This is why in the following we will consider this scenario for
a q2 independent determination of C9 in the regions below and above the narrow resonances.

The result of a q2 independent fit in the low-q2 range from from 1.1 GeV2 to 8 GeV2 is
shown in fig. 7.5.3. The result in the high-q2 range from 15 GeV2 to 22 GeV2 is shown in
fig. 7.5.4.
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Figure 7.5.2: Results of the fits for B+ → K+µ+µ− in the whole q2 range. The blue dots cor-
respond to scenario (i), that is purely perturbative contributions, while the red and yellow dots
correspond the the scenarios (ii) and (iii) respectively, which take into account the resonance
contributions. The horizontal black line corresponds to the SM value of C9.

Figure 7.5.3: Results of the fits for B+ → K+µ+µ− in the low-q2 range. The black line
corresponds to the result of the fit assuming a constant shift in C9 and the grey band shows
its uncertainty. The red line shows the SM value of C9.
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Figure 7.5.4: Results of the fits for B+ → K+µ+µ− in the high-q2 range. The black line
corresponds to the result of the fit assuming a constant shift in C9 and the grey band shows
its uncertainty. The red line shows the SM value of C9.
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7.5.2 B → K∗

For the decay B0 → K0∗µ+µ− we implement the branching ratio defined in eq. (7.2.22) and
additionally the set of angular observables defined in the end of section 7.2.1, which are defined
in eq. (7.2.23). We use the form factors computed in [69]. The differential branching ratio has
been measured in [16] and the angular observables were measured in [21].

The theory prediction for the differential branching ratio including the cc resonances can
be seen in fig. 7.5.5. Due to lack of data on the decays B → K∗Vj with Vj above the ψ(2s)
resonance only the first two cc resonances are implemented in this case. The treatment of the
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Figure 7.5.5: Theory prediction for the differential B0 → K0∗`+`− branching ratio including
the cc resonances. The dashed lines indicate the squared resonance masses.

theory covariances is exactly as described in the previous section. As we consider 9 observables
here, which are all measured in 8 bins of q2, the full covariance matrix is a 72 × 72 matrix.
Again we treat the statistical uncertainties as uncorrelated. For the systematic uncertainties
we assume

corr (〈Ok〉i, 〈Ol〉j) = δkl, (7.5.9)

where Oi ∈ {B, FL, S3, S4, S5, AFB, S7, S8, S9} and 〈·〉i denotes the average over the q2-bin i. In
other words we assume that the systematic uncertainties of a given observable are fully corre-
lated between different bins but that they are independent from the uncertainties of different
variables. So far the covariance matrix would be block diagonal. This is not case because
the angular observables extracted by LHCb are correlated within a given bin, which induces
nonzero off-block-diagonal entries in V . The full covariance matrix is too lengthy to write down
explicitly but in fig. B.5.6 a plot of the size of its elements can be found.

As we saw in eq. (7.3.9) the long distance contributions from cc resonances depend on λ,
the polarization of the K∗. Now we write the effective C9 in the theory expressions as

Cλ,eff
9

(
q2
)

= Cλ
9 + Ỹ

(
q2
)

+ Y λ
cc̄

(
q2
)

(7.5.10)
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and extract Cλ
9 for each polarization λ. This way we can see if the effective C9 receives helicity

dependent contributions beyond the ones from the resonances.
Again the fit is performed in ranges of q2, the full one [0.1, 19] GeV2, the low-q2 range

[1.1, 8] GeV2 and the high-q2 range [12.5, 19] GeV2 separately for each helicity. The results are
shown in figs. 7.5.6 to 7.5.8.

Figure 7.5.6: Fit results for B0 → K0∗µ+µ− in the full q2 range. The blue dots correspond
to C

‖
9 , the yellow dots correspond to C⊥9 and the red dots correspond to C0

9 , respectively. The
black horizontal line indicates the SM value of C9.

Figure 7.5.7: Fit results for B0 → K0∗µ+µ− in the low-q2 range. The blue dots correspond
to C

‖
9 , the yellow dots correspond to C⊥9 and the red dots correspond to C0

9 , respectively. The
black horizontal line indicates the SM value of C9.
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Figure 7.5.8: Fit results for B0 → K0∗µ+µ− in the high-q2 range. The blue dots correspond
to C

‖
9 , the yellow dots correspond to C⊥9 and the red dots correspond to C0

9 , respectively. The
black horizontal line indicates the SM value of C9.

7.6 Discussion

In order to assess how compatible the results of a given fit are with their average value we
consider the squared deviations from their weighted average,

χ2 =
N∑
i

C9 − C(i)
9(

δC
(i)
9

)2 , (7.6.1)

where N denotes the number of bins in a given fit, C
(i)
9 ± δC(i)

9 denotes the value of C9 in the
i-th bin and

C9 ± δC9 =

∑N
i

1(
δC

(i)
9

)2C
(i)
9∑N

i
1(

δC
(i)
9

)2

±

 N∑
i

1(
δC

(i)
9

)2


− 1

2

(7.6.2)

is their weighted average. For the fits performed in fig. 7.5.2 we find for the different scenarios

(i) χ2/(16) = 2.51 and C9 = 2.51± 0.15

(ii) χ2/(16) = 1.15 and C9 = 2.63± 0.14

(iii) χ2/(16) = 1.52 and C9 = 2.75± 0.13

where we scaled the uncertainties by a factor of
√
χ2/(N − 1). As anticipated the q2-dependence

of the effective C9 is best modeled in scenario (ii). In the following we study this scenario more
closely.

The results for scenario (ii) in the low and high-q2 regions for both B → K and B → K∗

(separated into different helicities) are reported in table 7.6.1. As can be seen in all cases we

obtain a good χ2, the only exception being C
‖
9(B → K∗) at low q2. The eight independent

determinations of C9 thus obtained are also shown in fig. 7.6.1. Here the error of C
‖
9(B → K∗)

is rescaled according to the PDG procedure.
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We stress that these should be treated as independent determinations of C9 coming from
different kinematical regions and different hadronic amplitudes. The overall consistency of these
eight independent determinations, and their difference from the SM value provide a significant
indication of short-distance contributions to C9 that is not accounted for in the present SM
analysis.

low q2 high q2

X λ χ2/(n− 1) C9 χ2/(n− 1) C9

K 0.2 2.31± 0.35 0.87 2.23± 0.31
K∗ ‖ 3.2 1.5± 0.4 0.01 2.8± 0.4
K∗ ⊥ 0.24 2.0± 0.4 0.36 3.20± 0.32
K∗ 0 0.58 2.4± 0.4 0.28 3.0± 0.4

Table 7.6.1: Summary of the averaged fit results for the decays B → Xµ+µ−.

Figure 7.6.1: Averaged fit results. The black dots correspond to C9(B → K) and the blue,
yellow and red dots correspond to Cλ

9 (B → K∗) in the ordering (‖,⊥, 0). The dashed error
band shows the uncertainty scaled by a factor of

√
χ2/(N − 1) in the case where χ2/(N−1) > 1

(see table 7.6.1). The black horizontal line indicates the SM value of C9.

7.7 Conclusion

We have studied the long distance hadronic contributions to the effective Wilson coefficient C9

in B+ → K+µ+µ− and B0 → K0∗ decays. The effects of cc resonances in the contributions of
the operators Q1,...,6 were estimated via dispersion relations and using data from non-leptonic
B → J/ψφ, B → ψ(2s)φ and B → J/ψK∗ decays. Additionally the polarization amplitudes
for B → ψ(2s)K∗ were estimated from SU(3)F relations.

We implemented an effective Wilson coefficient Ceff
9 including effects from the cc resonances

J/ψ, ψ(2s), ψ(3770), ψ(4040), ψ(4160), ψ(4450) for the B → K decay and including the reso-
nances J/ψ and ψ(2s) for the B → K∗ decay.

Using this effective C9 we have computed the differential branching ratios for both decay
modes and a set of angular observables for B → K∗, which were then employed in different fits
to experimental data.
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In the fits we extracted the q2 dependence of Ceff
9 in low and high regions of the squared

lepton pair mass. In the low-q2 region our results indicate that the resonances model its q2-
dependence well and we find consistent results across both decay modes. In the high-q2 region
we find consistent results within a given decay mode. The values extracted from B → K∗ are
a bit higher than the ones extracted from B → K, however. In part this might be due to the
missing contributions of the resonances above ψ(2s) in the theory predictions for the B → K∗

observables.
Overall the consistency of the eight independent determinations of C9 shown in fig. 7.6.1

provide a significant indication for a missing short-distance contribution in the present descrip-
tion of b→ sll amplitudes.
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Chapter 8

Conclusions

The decays of B mesons exhibit several intriguing discrepancies between SM expectation and
measured data, but also between different determinations of the same constant of nature.

In this thesis we presented 3 studies. The first two were concerned with inclusive b → c`ν
decays in which the hadronic part of the final state is not resolved and the third one was
concerned with hadronic long-distance contributions in exclusive b→ sµµ decays.

The studies of inclusive B decays were motivated by a long standing 3σ tension between the
inclusive and the exclusive determination of the CKM matrix element Vcb. This discrepancy
calls for a careful check of the established framework based on the heavy quark expansion.

In chapter 5 we performed such a check by using lattice QCD simulations as a virtual lab-
oratory. Inclusive observables were computed by two lattice collaborations at an unphysically
low b quark mass and systematically compared to an OPE computation for the first time. As
this is an exploratory study there are multiple issues to be addressed in future work. First of
all the continuum and infinite-volume limits were not performed in the lattice computations.
In order to take these limits the calculations have to be performed at different values of the
lattice spacing and different physical volumes. This task goes beyond the exploratory nature of
this study. Secondly the calculation should be performed at the physical value of the b quark
mass. At a higher b quark mass the OPE converges more quickly, reducing the associated
uncertainties and additionally a direct comparison of lattice results to experimental data be-
comes possible at the physical mb. Despite these issues in general we found a good agreement
between the lattice and OPE results and showed the possibility of determining OPE matrix
matrix elements from lattice data.

In light of a recent determination of Vcb from q2 moments we also studied the impact of order
q2/m2

W effects on inclusive observables. These effects were expected to be small, as m2
b/m

2
W ∼

0.006. In principle they could however receive enhancements in the phase space integration,
especially if the phase space is constrained by a lower cut. We explicitly computed the q2/m2

W

corrections in chapter 6 and studied their dependence on lower cuts, finding that they are
smaller than the current experimental uncertainties. Compared to the current theoretical
precision, which goes up to three loops, they can be sizeable however.

The last work presented in this thesis dealt with the discrepancies between the SM pre-
dictions for the branching ratios of B → K(∗)µµ, the angular observables in B → K∗µµ and
their respective measured values. We implemented these observables, employing a dispersive
formulation of the cc resonances, in chapter 7. After determining the resonance parameters
from measurements of non-leptonic B decays we were able to determine the value of the Wilson
coefficient C9 from the decay channels B → K and B → K∗, keeping the different helicities
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separate, in two regions of q2. The consistency of the eight independent determinations of C9

we obtained in this way is a clear indication of a missing short-distance contribution in the
present SM analysis of b→ s`` decays.

In summary we have seen that the decays of B mesons remain a fascinating and active area
of fundamental research. On one hand, the ongoing studies of inclusive B decays on the lattice
might bring us closer to a resolution of the Vcb puzzle soon. This would drastically improve
many NP physics searches, in which the leading uncertainty is Vcb. On the other hand, the
presence of unknown short-distance effects in b → s`` decays points towards physics beyond
the SM in B decays.
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Appendix A

Inclusive decays of B Mesons

A.1 Triple Differential Decay Rate for B → Xc`ν`

The general expression for the differential decay rate of a particle A to final states f is given
by [209]

dΓ =
1

2mA

(∏
f

d2

(2π)3

1

2Ef

)
|M (mA → {pf})|2 (2π)4 δ4

(
pA −

∑
pf

)
. (A.1.1)

We consider semileptonic B decays with the effective Hamiltonian

Lint = −Hint = −GF√
2
Vcb (cγµ (1− γ5) b)

(
`γµ (1− γ5) ν`

)
≡ −GF√

2
VcbJq,µJ

µ
` . (A.1.2)

Then the matrix element for the inclusive process is given by

M
(
B → Xc`ν`

)
=
〈
Xc`ν` |Hint|B

〉
=
GF√

2
Vcb

〈
Xc`ν` |Jq,µ(0)Jµ` (0)|B

〉
. (A.1.3)

The interaction is local because we integrated out the W–boson. Then we can write the
differential decay rate as

dΓ =
∑
Xc

∑
lepton
spins

1

2MB

(
d3p`

(2π)3

1

2E`

)(
d3pν

(2π)3

1

2Eν

) ∣∣M (
B → Xc`ν`

)∣∣2
× (2π)4 δ4 (pB − (p` + pν + pX)) (A.1.4)

where∣∣M (
B → Xc`ν`

)∣∣2 =
G2

F

2
|Vcb|2

〈
Xc`ν` |Jq,µ(0)Jµ` (0)|B

〉
=
G2

F

2
|Vcb|2

〈
B
∣∣J†q,µ∣∣Xc

〉 〈
Xc |Jq,ν |B

〉 〈
0
∣∣∣Jµ†` ∣∣∣ `ν`〉 〈`ν` |Jν` | 0〉 . (A.1.5)
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As the hadronic and leptonic parts of the amplitude do not interfere they can be separated
from each other and computed individually. To this end we define a leptonic tensor

Lµν =
1

8

∑
lepton
spins

〈
0
∣∣∣Jµ†` ∣∣∣ `ν`〉 〈`ν` |Jν` | 0〉 (A.1.6)

describing the leptonic part of the interaction and a hadronic tensor

Wµν =
1

2MB

∑
Xc

(2π)3δ (pB − (p` + pν + pX))
〈
B
∣∣J†q,ν∣∣Xc

〉 〈
Xc |Jq,µ|B

〉
(A.1.7)

containing the non–perturbative hadronic dynamics. In terms of these objects we can write
the differential decay rate as

dΓ = 8πG2
F |Vcb|2

(
d3p`
(2π)3

1

2E`

)(
d2pν
(2π)3

1

2Eν

)
WµνL

µν . (A.1.8)

For massless leptons the leptonic tensor evaluates to

Lµν = pµ` p
ν
ν + pν`p

µ
ν − gµνp` · pν + iεµανβp`,αpν,β (A.1.9)

with the convention ε0123 = −ε0123 = 1. The hadronic tensor cannot be copmuted from first
principles. It is computed in the context of the heavy quark expansion (HQE) using the
heavy quark effective theory (HQET). By employing the optical theorem the hadronic tensor
is connected to the forward scattering amplitude

Tµν = − i

2MB

∫
d4xeiqx

〈
B |T [Jq,µ(x), Jq,ν(0)]|B

〉
(A.1.10)

as

− 1

π
ImTµν = Wµν . (A.1.11)

Let us now perform the phase space integration for the triple differential rate. The triple
differential rate is obtained by differentiating the total decay rate

Γ = 8πG2
F |Vcb|2

∫ (
d3p`
(2π)3

1

2E`

)(
d3pν
(2π)3

1

2Eν

)
WµνL

µν (A.1.12)

and given by

dΓ

dq2dE`dEν

=
∣∣∣M̃∣∣∣ ∫ d3p`

(2π)3

1

2E`

∫
d3pν
(2π)3

1

2Eν
δ
(
E` − p0

`

)
δ
(
Eν − p0

ν

)
δ
(
q2 − (p` + pν)

2)
=
∣∣∣M̃∣∣∣ ∫ d3p`

(2π)3

∫
d3pν
(2π)3

1

4E`Eν
δ
(
E` − p0

`

)
δ
(
Eν − p0

ν

)
δ
(
q2 − (p` + pν)

2) (A.1.13)

As the integrand is symmetric we change to spherical coordinates d2p`,ν = |~p`,ν |2 d |~p`,ν | d cos θ`,νdφ`,ν
and choose the three momentum ~p` to be aligned with the z–direction. Then∫

d cos θνdφνdφ` = 2 · 2π · 2π = 8π2. (A.1.14)
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For the phase space of the triple differential rate above this yields

dϕ =

∫
d3p`
(2π)3

∫
d3pν
(2π)3

1

4E`Eν
δ (E` − |~p`|) δ (Eν − |~pν |) δ

(
q2 − (p` + pν)

2)
=

∫ ∞
−∞

Θ (|p`|) |~p`|2 d |~p`|
∫ ∞
−∞

Θ (|pν |) |~pν |2 d |~pν |
∫ 1

−1

d cos θ
8π2

4(2π)6E`Eν

× δ (E` − |~p`|) δ (Eν − |~pν |) δ
(
q2 − 2E`Eν + 2 |~p`| |~pν | cos θ

)
=

1

4(2π)4
Θ (E`) Θ (Eν)

∫ 1

−1

d cos θδ

(
cos θ −

(
1− q2

2E`Eν

))
=

1

4(2π)4
Θ (E`) Θ (Eν)

∫ ∞
−∞

d cos θΘ (cos θ + 1) Θ (1− cos θ) δ

(
cos θ −

(
1− q2

2E`Eν

))
=

1

4(2π)4
Θ (E`) Θ (Eν) Θ

(
2− q2

2E`Eν

)
Θ

(
q2

2E`Eν

)
=

1

4(2π)4
Θ
(
4E`Eν − q2

)
Θ
(
q2
)

Θ (E`) Θ (Eν) . (A.1.15)

By plugging this result into the triple differential rate we obtain

d3Γ

dq2dEνdE`
=

1

4(2π)4

∣∣∣M̃∣∣∣2 Θ
(
4E`Eν − q2

)
Θ
(
q2
)

Θ (E`) Θ (Eν)

=
8πG2

F |Vcb|2
4(2π)4

WµνL
µνΘ

(
4E`Eν − q2

)
Θ
(
q2
)

Θ (E`) Θ (Eν) (A.1.16)

which becomes

d3Γ

dq2dq0dE`
=
G2

F |Vcb|2
8π3

WµνL
µνΘ

(
4E` (q0 − E`)− q2

)
Θ
(
q2
)

Θ (E`) Θ (q0 − E`) (A.1.17)

after changing variables from Eν to q0.

A.2 Computation of the leptonic tensor

We use the following identities

u(p) = u†(p)γ0

u†(p) = γ0u(p)∑
s

us(p)us(p) = /p+m∑
s

vs(p)vs(p) = /p−m

(γµ)† = γ0γµγ0

γ†5 = γ5

γ2
5 = 1

γ2
0 = 1
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{γ5, γµ} = 0

σµν =
i

2
[γµ, γν ]

σ†µν = γ0σµνγ0

ε0123 = +1 (A.2.1)

First we evaluate the spin sums and obtain

LΓΓ′ = Tr
((
/p` +m`

)
(aΓΓ + bΓΓγ5) /pν (a∗Γ′Γ

′ − b∗Γ′γ5Γ′)
)
. (A.2.2)

Then we compute this quantity for the cases Γ(′) ∈ {1, γµ, σµν}.
1. Γ = Γ′ = 1

L11 = Tr
((
/p` +m`

)
(aS + bPγ5) /pν (a∗S + b∗Pγ5)

)
= 2

(
|as|2 + |bs|2

)
p` · pν (A.2.3)

2. Γ = γµ, Γ′ = γρ

Lγµγρ = Tr
((
/p` +m`

)
(aVγ

µ + bAγ
µγ5) /pν (a∗Vγ

ρ + b∗Aγ5γ
ρ)
)

= 2
(
|aV|2 + |bA|2

)
(pµ` p

ρ
ν + pρ`p

µ
ν − p` · pνgµρ) + 4iRe (aVb

∗
A) εαβµρp`,αpν,β (A.2.4)

3. Γ = σκλ, Γ′ = σρτ

Lσκλσρτ = Tr
((
/p` +m`

) (
aTσ

κλ + bT5σ
κλγ5

)
/pν
(
a∗Tσ

ρτ − b∗T5
γ5σρτ

))
=
(
|aT |2 + |bT5|2

)
Tr
(
/p`σ

κλ
/pνσ

ρτ
)

+ 2Re
(
aT b

∗
T5

)
Tr
(
/p`σ

κλγ5
/pνσ

ρτ
)

(A.2.5)

Using eqs. (A.3.2) and (A.3.3) we can evaluate the traces and find

Lσκλσρτ = 4
(
|aT |2 + |bT5|2

) ( (
gκρgλτ − gκτ gλρ

)
p` · pν

+ gκτ
(
pλ` p

ρ
ν + pρ`p

λ
ν

)
− gλτ (pκ` p

ρ
ν + pρ`p

κ
ν)

− gκρ
(
pλ` p

τ
ν + pτ`p

λ
ν

)
+ gλρ (pκ` p

τ
ν + pτ`p

κ
ν)
)

− 4iRe
(
aT b

∗
T5

) ((
pκ` ε

λρτα − pλ` εκρτα
)
pν,α −

(
pρνε

κλτα − pτνεκλρα
)
p`,α
)

(A.2.6)

4. Γ = 1, Γ′ = γµ

L1γµ = Tr
((
/p` +m`

)
(aS + bPγ5) /pν

(
a∗Vγ

µ − b∗Aγ5γµ
))

= 2
(
aSaV∗+bPb

∗
A

)
m`p

µ
ν (A.2.7)

5. Γ = 1, Γ′ = σµρ

L1σµρ = Tr
((
/p` +m`

)
(aS + bPγ5) /pν

(
a∗Tσ

µρ − b∗T5
γ5σµρ

))
= 2i

(
aSa

∗
T + bPb

∗
T5

)
(pρ`p

µ
ν − pµ` pρν)− 2

(
aSb
∗
T5

+ bPa
∗
T

)
p`,αpν,βε

αβµν (A.2.8)

126



6. Γ = γµ, Γ′ = σκλ

Lγµσκλ = Tr
((
/p` +m`

)
(aVγ

µ + baγ
µγ5) /pν

(
a∗Tσ

κλ − b∗T5
γ5σκλ

))
= 2m`

(
i
(
aVa

∗
T + bAb

∗
T5

) (
gµλpκν − gµκpλν

)
−
(
aVb

∗
T5

+ bAa
∗
T

)
pν,αε

κλµα
)

(A.2.9)

By replacing pν = q − p` we arrive at the following expressions for the leptonic tensors

L1,1 = 2
(
|aS|2 + |bP|2

) (
q2 −m2

`

)
Lγµγν = 2

(
|aV|2 + |bA|2

) (
−gµν

(
q2 −m2

`

)
− 4pµ` p

ν
` + 4 (pµ` q

ν + pν` q
µ)
)

+ 4iRe (aVb
∗
A) εµναβp`,αqβ

Lσκλσρτ =
(
|aT|2 + |bT5|2

) ( (
gκτgλρ − gκρgλτ

) (
m2
` + q2

)
+ 4

(
pκ`
(
pρ`g

λτ − pτ` gλρ
)

+ pλ` (pτ` g
κρ − pρ`gκτ )

)
+ 2gκτ

(
pκ` q

ρ + pρ`q
λ
)
− 2gλτ (pκ` q

ρ + pρ`q
κ)

− 2gκρ
(
pλ` q

τ + pτ` q
λ
)

+ 2gλρ (pκ` q
τ + pτ` q

κ)
)

− 4iRe
(
aTb

∗
T5

) ( (
pλ` ε

κρτα − pκ` ελρτα + pρ`ε
κλτα − pτ` εκλρα

)
p`,α

+
(
qτεκλρα − qρεκλτα

)
p`,α +

(
pκ` ε

λρτα − pλ` εκρτα
)
qα

)
L1,γµ = 2m` (aSa

∗
V + bPb

∗
A) (qµ − pµ` )

Lγµ,1 = L∗1,γµ

L1,σκλ = 2i
(
aSa

∗
T + bPb

∗
T5

) (
pλ` q

κ − pκ` qλ
)
− 2

(
aSb
∗
T5

+ bPa
∗
T

)
εκλαβp`,αqβ

Lσκλ,1 = L∗1,σκλ

Lγµ,σκλ = 2m`

(
i
(
aVa

∗
T + bAb

∗
T5

) (
gµκpλ` − gµλpκ` + gµλqκ − gµκqλ

)
+
(
aVb

∗
T5

+ bAa
∗
T

) (
εκλµαp`,α − εκλµαqα

) )
Lσκλ,γµ = L∗γµ,σκλ (A.2.10)

A.3 Traces of products of Dirac γ–matrices

One can easily show that any trace of a product of an odd number of γ–matrices vanishes by
multiplying the string of γ–matrices by γ2

5 = 1 and using the cyclicity of the trace.
For N ∈ N being an even number we can rewrite the trace of a product of N γ–matrices as a
sum of traces of products of (N − 2) γ–matrices. By writing the trace as

Tr (γµ1 · · · γµN ) =
1

2
Tr [{γµ1 , γµ2 · · · γµN}] (A.3.1)

and commuting γµ1 in the second term of the anticommutator to the left we find

Tr (γµ1 · · · γµN ) =
N∑
k=2

(−1)kgµ1µkTr

 N∏
l=2
l 6=k

γµl

 . (A.3.2)
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If the string of γ–matrices is multiplied by γ5 we get an additional minus sign from commuting
the γµ1 and γ5 and obtain

Tr
(
γµ1 · · · γµNγ5

)
=

N∑
k=2

(−1)k−1gµ1µkTr

 N∏
l=2
l 6=k

γµl

 γ5. (A.3.3)

In particular this leads to

Tr
(
γασκλγ5γβσρτ

)
= 4i

(
gαβεκλρτ − gακεβλρτ + gαλεβκρτ

− gαρεβκλτ + gατ εβκλρ
)

(A.3.4)

A.4 Properties of the Dirac δ–function

The determination of the derivatives of the Dirac δ–function by partial integration is straight-
forward: ∫ ∞

−∞
dzf(z)δ′(z) = f(z)δ(z)|∞−∞ −

∫ ∞
−∞

dzf ′(z)δ(z) = −f ′(0) (A.4.1)∫ ∞
−∞

dzf(z)δ
′′
(z) =

∫ ∞
−∞

dzf
′′
(z)δ(z) = f

′′
(z) (A.4.2)∫ ∞

−∞
dzf(z)

dn

dzn
δ(z) = (−1)nf (n)(0). (A.4.3)

A.5 Hadronic Matrix Elements

Following [203] heavy quarks can be represented by a spinor uh(v, s) which satisfies

/vuh(v, s) = uh(v, s) (A.5.1)

while the cloud of light degrees of freedom in total transforms like an antiquark with spin–1
2

and as such can be represented by a spinor vl which satisfies

vl(v, s)/v = −vl(v, s). (A.5.2)

The ground state hadron can then be represented by the composite object ψ = uhvl which
under a connected Lorentz–transformation transforms as

ψ → D (Λ)ψD−1 (Λ) (A.5.3)

where

D (Λ) = exp

(
− i

4
ωµνσ

µν

)
(A.5.4)

is the spinor representation of Λ. While heavy–quark–spin transformations only act on the
heavy quark:

ψ → D
(

Λ̃
)
ψ (A.5.5)
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The composite object ψ is a linear combination of physical meson states. In the meson rest
frame they can be identified as

P (~v = 0) = − 1√
2

1 + γ0

2
γ5

V (~v = 0, ε) =
1√
2

1 + γ0

2
/ε. (A.5.6)

When we change to a moving frame of reference with velocity v in the above expressions the γ0

matrix is replaced by /v. In order to study hadronic matrix elements the meson wave function

M(v) =
1 + /v

2

{
−γ5, pseudoscalar meson

/ε, vector meson
(A.5.7)

which has the useful property

P+M(v)P− =
1 + /v

2
M(v)

1− /v
2

=M(v) (A.5.8)

and its conjugate

M(v) = γ0M(v)†γ0

= γ0 (−γ5)
1 + γ0/vγ0

2
γ0

= γ5
1 + /v

2
(A.5.9)

are introduced. The last two equalities are true in the pseudoscalar case. The hadronic matrix
element of a current h′vΓhv, where hv and h′v are heavy quark fields, is then given by〈

M
′
(v′) |h′vΓhv|M(v)

〉
= −ξ(w, µ)Tr

{
M′

(v′)ΓM(v)
}
. (A.5.10)

Now we are ready to compute the matrix elements we need for our purposes. First we have to
find the HQET currents corresponding to the currents bγµγνb and bγµγνγ5b. As the relation
between the b–quark spinor in the full theory and its counterpart in HQET is given by

b(x) = e−ipB ·x
(

1 +
i /D⊥
2mb

+ · · ·
)
bv (A.5.11)

at leading order the transition to HQET is obtained by the replacement

bγµγν (γ5) b→ bvγ
µγν (γ5) bv. (A.5.12)

Then finding the LO expression for their hadronic matrix elements is straightforward. Using
the standard relativistic normalization they are given by

〈
B
∣∣bvbv′∣∣B〉 = −ξ(w, µ)mBTr

(
γ5

1 + /v

2

1 + /v

2
(−γ5)

)
=mB (v · v′ + 1) ξ(w, µ), (A.5.13)
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〈
B
∣∣bvbv′∣∣B〉 = −ξ(w, µ)mBTr

(
γ5

1 + /v

2
γ5

1 + /v

2
(−γ5)

)
= 0, (A.5.14)

〈
B
∣∣bvγµγνbv∣∣B〉 = −ξ(x, µ)mBTr

{
γ5

1 + /v′

2
γµγν

1 + /v

2
(−γ5)

}
= ξ(w, µ)mB ((v′ · v + 1) gµν − vµv′ν + vνv′µ) (A.5.15)

and 〈
B
∣∣bvγµγνγ5b

∣∣B〉 = −ξ(x, µ)mBTr

{
γ5

1 + /v′

2
γµγνγ5

1 + /v

2
(−γ5)

}
= −iξ(w, µ)mBε

µναβvαv
′
β. (A.5.16)

where ξ is the Isgur–Wise function.
In the following we need the forward scattering amplitude. In this case v = v′ and the

above expressions at LO simplify to 〈
B
∣∣bb∣∣B〉 = 2mB〈

B
∣∣bγ5b

∣∣B〉 = 0〈
B
∣∣bγµb∣∣B〉 = 2pµB = 2mBv

µ〈
B
∣∣bγµγ5b

∣∣B〉 = 0〈
B
∣∣bγµγνb∣∣B〉 = 2mBg

µν〈
B
∣∣bvγµγνγ5b

∣∣B〉 = 0. (A.5.17)

A.6 Structure Functions

A.6.1 T1,1

The time–ordered product of interest here is given by

− i
∫
d4xe−iq·xT

{
J†S(x)JS(0)

}
. (A.6.1)

At lowest order in αS and 1/mB its the forward scattering amplitude is given by

T1,1 =
1

2mBu
(pb,α − qα)

((
|cS|2 + |dP |2

) 〈
B
∣∣bγαb∣∣B〉+ 2Re (cSdP )

〈
B
∣∣bγαγ5

∣∣B〉)
+

mc

2mBu

((
|cS|2 − |dP |2

) 〈
B
∣∣bb∣∣B〉+ 2iIm (c∗SdP )

〈
B
∣∣bγ5b

∣∣B〉)
=

1

2mBu
(pb,α − qα)

(
|cS|2 + |dP |2

) 〈
B
∣∣bγαb∣∣B〉

+
mc

2mBu

(
|cS|2 − |dP |2

) 〈
B
∣∣bb∣∣B〉

=
1

2mBu
(pb,α − qα)

(
|cS|2 + |dP |2

)
2pαB

+
mc

u

(
|cS|2 − |dP |2

)
=

1

u

(
|cS|2 + |dP |2

)
(mb − q · v) +

mc

u

(
|cS|2 − |dP |2

)
. (A.6.2)
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Then the structure function t0 is

t0 =
1

u

((
|cS|2 + |dP |2

)
(mb − q · v) +

(
|cS|2 − |dP |2

)
mc

)
. (A.6.3)

A.6.2 Tγκ,γλ

Here we are interested in the time–ordered product

T̃γµ,γν = −i
∫
d4xe−iq·xT

{
Jµ†V (x)JνV (0)

}
. (A.6.4)

In the OPE we find that its matrix element between B–meson states at leading order corre-
sponds to

T µνV,V =
(pb − q)α

2mBu

〈
B
∣∣b (c∗V − d∗Aγ5

)
γµγαγν

(
cV + dAγ

5
)
b
∣∣B〉

+
mc

2mBu

〈
B
∣∣b (c∗V − d∗Aγ5

)
γµγν

(
cV + dAγ

5
)
b
∣∣B〉

=
cV c

∗
V + dAd

∗
A

2mBu
(mbv − q)µ

〈
B
∣∣bγνb∣∣B〉

+
cV c

∗
V + dAd

∗
A

2mBu
(mbv − q)ν

〈
B
∣∣bγµb∣∣B〉

− cV c
∗
V + dAd

∗
A

2mBu
gµν (mbv − q)α

〈
B
∣∣bγαb∣∣B〉

− i (cV d
∗
A + dAc

∗
V )

2mBu
εµναβ (mbv − q)α

〈
B
∣∣bγβb∣∣B〉

+
mc

2mbu

(
|cV |2 − |dA|2

) 〈
B
∣∣bγµγνb∣∣B〉 (A.6.5)

where we used
γµγαγν = gµαγν + gανγµ − gµνγα − iεµναβγβ (A.6.6)

and the fact that the matrix elements containing one γ5 matrix vanish by parity. Plugging in
the result matrix element from the previous section then yields

T µνV,V =
1

u

(
|cV |2 + |dA|2

)
[2mbv

µvν − qµvν − qνvµ − (mb − v · q) gµν ]

+
mc

u

(
|cV |2 − |dA|2

)
gµν +

2imB

u
Re (cV d

∗
A) εµναβvαq̂β

=
1

u

(
|cV |2 + |dA|2

)
[2mbv

µvν −mB (vµq̂ν + vν q̂µ)]

+
1

u

[(
|cV |2 − |dA|2

)
mc −

(
|cV |2 + |dA|2

)
(mb −mBv · q̂)

]
gµν

− 2imB

u
Re (cV d

∗
A) εµναβvαq̂β (A.6.7)
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from which we obtain

t1 =
1

u

[(
|cV |2 + |dA|2

)
(mb − v · q)−

(
|cV |2 − |dA|2

)
mc

]
t2 =

2mb

u

(
|cV |2 + |dA|2

)
t3 =

2mb

u
Re (cV d

∗
A)

t4 = 0

t5 = −mb

u

(
|cV |2 + |dA|2

)
. (A.6.8)

These results agree with the ones given in [83]

A.6.3 Tσκλ,σρτ

T̃ κλρτT,T = −i
∫
d4xe−iq·xT

{
Jκλ†T (x)JρτT (0)

}
(A.6.9)

At lowest order in ΛQCD/mB and αs:

T κλρτT,T = −i
∫
d4xe−iq·x

〈
B
∣∣∣T {Jκλ†T (x)JρτT (0)

}∣∣∣B〉
=

(pb − q)α
2mBu

〈
B
∣∣(c∗T − d∗T5

γ5
)
bσκλγασρτb

(
cT + dT5γ

5
)∣∣B〉

=
(pb − q)α

2mBu

( (
cT c
∗
T + dT5d

∗
T5

) 〈
B
∣∣bσκλγασρτb∣∣B〉

+ 2Re
(
cTd

∗
T5

) 〈
B
∣∣bσκλγασρτγ5b

∣∣B〉 )
=

1

u

[(
|cT |2 + |dT5|2

)
(mb −mBv · q̂) +

(
|cT |2 − |dT5|2

)
mc

] (
gκρgλτ − gκτgλρ

)
+

1

u

(
|cT |2 + |dT5|2

) [
2mb

(
vλvρgκτ − vκvρgλτ + vκvτgλρ − vλvτgκρ

)
+mB

(
gκρ
(
vλq̂τ + vτ q̂λ

)
− gκτ

(
vλq̂ρ + vρq̂λ

)
− gλρ (vκq̂τ + vτ q̂κ) + gλτ (vκq̂ρ + vρq̂κ)

)]
+

2i

u
Re
(
cTd

∗
T5

) [
mb

(
vκελρτα − vλεκρτα − vρεκλτα + vτ εκλρα

)
vα

+mB

((
vλεκρτα − vκελρτα

)
q̂α +

(
q̂ρεκλτα − q̂τ εκλρα

)
vα
) ]

+
2mc

u
Im
(
cTd

∗
T5

)
εκλρτ (A.6.10)

Where we used eq. (A.6.6) again and in the last line we used the Schouten identity

δµνεαβλρ + δµαεβλρν + δµβελρνα + δµλερναβ + δµρεναβλ ≡ 0 (A.6.11)
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to rewrite the structure in the last line in a simpler form. From the above expression we can
read off the leading order expressions for the structure functions

t6 = 0

t7 =
1

u

[(
|cT |2 + |dT5|2

)
(mb − v · q) +

(
|cT |2 − |dT5|2

)
mc

]
t8 =

2mb

u

(
|cT |2 + |dT5|2

)
t9 = 0

t10 = −mb

u

(
|cT |2 + |dT5|2

)
t11 = −2mb

u
Re
(
cTd

∗
T5

)
t12 =

mb

u
Re
(
cTd

∗
T5

)
t13 =

mb

u
Re
(
cTd

∗
T5

)
t14 = 0

t15 =
2mc

u
Im
(
cTd

∗
T5

)
(A.6.12)

A.6.4 T1,γµ

T̃ µS,V = −i
∫
d4xe−iq·xT

{
J†S(x)JµV (0)

}
(A.6.13)

At lowest order in ΛQCD/mB and αS:

T µS,V =
(pb − q)α

2mBu

〈
B
∣∣(c∗S − d∗Pγ5

)
bγαγµb

(
cV + dAγ

5
)∣∣B〉

+
mc

2mBu

〈
B
∣∣(c∗S − d∗Pγ5

)
bγµb

(
cV + dAγ

5
)∣∣B〉

=
(pb − q)α

2mBu

(
(c∗ScV − d∗PdA)

〈
B
∣∣bγαγµb∣∣B〉

+ (c∗SdA − d∗P cV )
〈
B
∣∣bγαγµγ5b

∣∣B〉 )
+

mc

2mBu

(
(c∗ScV + d∗PdA)

〈
B
∣∣bγµb∣∣B〉

+ (c∗SdA + d∗P cV )
〈
B
∣∣bγµγ5b

∣∣B〉 )
=

1

u
((c∗ScV − d∗PdA) (mbv

µ −mB q̂
µ) + (c∗ScV + d∗PdA)mcv

µ) (A.6.14)

t16 =
mb

u
(dPd

∗
A − cSc∗V )

t17 =
1

u
((cSc

∗
V − dPd∗A)mb + (cSc

∗
V + dPd

∗
A)mc) (A.6.15)
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A.6.5 T1,σκλ

T̃ κλS,T = −i
∫
d4xe−iq·xT

{
J†S(x)JκλT (0)

}
(A.6.16)

At lowest order in ΛQCD/mB and αS:

T κλS,T =
(pb − q)α

2mBu

〈
B
∣∣(c∗S − d∗Pγ5

)
bγασκλb

(
cT + dT5γ

5
)∣∣B〉

+
mc

2mBu

〈
B
∣∣(c∗S − d∗Pγ5

)
bσκλb

(
cT + dT5γ

5
)∣∣B〉

=
(pb − q)α

2mBu

(
(c∗ScT + d∗PdT5)

〈
B
∣∣bγασκλb∣∣B〉

+ (c∗SdT5 + d∗P cT )
〈
B
∣∣bγασκλγ5b

∣∣B〉 )
+

mc

2mBu

(
(c∗ScT − d∗PdT5)

〈
B
∣∣bσκλb∣∣B〉

+ (c∗SdT5 − d∗P cT )
〈
B
∣∣bσκλγ5

∣∣B〉 )
=

(pb − q)α
2mBu

(
i (c∗ScT + d∗PdT5)

〈
B
∣∣b (gακγλ − gαλγκ) b∣∣B〉

− (c∗SdT5 + d∗P cT )
〈
B
∣∣bεακλβγβb∣∣B〉 )

+
mc

4mBu

(
i (c∗ScT − d∗PdT5)

〈
B
∣∣b (γκγλ − γλγκ) b∣∣B〉

+ i (c∗SdT5 − d∗P cT )
〈
B
∣∣b (γκγλ − γλγκ) γ5b

∣∣B〉 )
=

(pb − q)α
2mBu

(
i (c∗ScT + d∗PdT5)

(
gακδλβ − gαλδκβ

)
− (c∗SdT5 + d∗P cT ) εακληgηβ

) 〈
B
∣∣bγβb∣∣B〉

+
imc

2mBu
(c∗ScT − d∗PdT5)

〈
B
∣∣b (γκγλ − γλγκ) b∣∣B〉

=
(pb − q)α
mBu

(
i (c∗ScT + d∗PdT5)

(
gακpλB − gαλpκB

)
− (c∗SdT5 + d∗P cT ) εακληpB,η

)
+
imc

u
(c∗ScT − d∗PdT5)

(
gκλ − gλκ

)
=
mB

u

(
i (c∗ScT + d∗PdT5)

(
vκq̂λ − vλq̂κ

)
− (c∗SdT5 + d∗P cT ) εκληαvη q̂α

)
(A.6.17)

Then the structure functions t19, t18 are given by

t18 = −mb

u

(
cSc
∗
T + dPd

∗
T5

)
t19 = −mb

u

(
cSd

∗
T5

+ dP c
∗
T

)
. (A.6.18)
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A.6.6 Tγµ,σκλ

T̃ µκλV,T = −i
∫
d4xe−iq·xT

{
Jµ†V (x)JκλT (0)

}
(A.6.19)

At lowest order in ΛQCD/mB and αS:

T µκλV,T =
(pb − q)α

2mBu

〈
B
∣∣(c∗V − d∗Aγ5

)
bγµγασκλb

(
cT + dT5γ

5
)∣∣B〉

+
mc

2mBu

〈
B
∣∣(c∗V − d∗Aγ5

)
bγµσκλb

(
cT + dT5γ

5
)∣∣B〉

=
(pb − q)α

2mBu

(
(c∗V cT − d∗AdT5)

〈
B
∣∣bγµγασκλb∣∣B〉

+ (c∗V dT5 − d∗AcT )
〈
B
∣∣bγµγασκλγ5b

∣∣B〉 )
+

mc

2mBu

(
(c∗V cT + d∗AdT5)

〈
B
∣∣bγµσκλb∣∣B〉

+ (c∗V dT5 + d∗AcT )
〈
B
∣∣bγµσκλγ5b

∣∣B〉 )
=
i

u
(c∗V cT − d∗AdT5)

[
mb

(
vκgλµ − vλgκµ

)
+mB

(
q̂λgκµ − q̂κgλµ

)]
− i

u
(c∗V cT + d∗AdT5)mc

(
vκgλµ − vλgκµ

)
+

1

u
(c∗V dT5 − d∗AcT )

[
(mb −mBv · q̂) εκλµαvα +mB

(
vκελµαβ − vλεκµαβ + vµεκλαβ

)
q̂αvβ

]
− 1

u
(c∗V dT5 + d∗AcT )mcε

κλµαvα

=
i

u
[(c∗V cT − d∗AdT5)mb − (c∗V cT + d∗AdT5)mc]

(
vκgλµ − vλgκµ

)
+
imB

u
(c∗V cT − d∗AdT5)

(
q̂λgκµ − q̂κgλµ

)
+

1

u

[
((c∗V dT5 − d∗AcT )mb − (c∗V dT5 + d∗AcT )mc) ε

µκλαvα
]

− mB

u
(c∗V dT5 − d∗AcT ) εµκλαq̂α (A.6.20)

t20 =
1

u

[(
cV c

∗
T − dAd∗T5

)
mb −

(
cV c

∗
T + dAd

∗
T5

)
mc

]
t21 = −mb

u

(
cV c

∗
T − dAd∗T5

)
t22 = 0

t23 = 0

t24 =
1

u

[(
cV d

∗
T5
− dAc∗T

)
mb −

(
cV d

∗
T5

+ dAc
∗
T

)
mc

]
t25 =

mb

u

(
dAc

∗
T − cV d∗T5

)
(A.6.21)
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Therefore at the leading order the structure functions are given by

t0 =
1

u

((
|cS|2 + |dP |2

)
(mb − q · v) +

(
|cS|2 − |dP |2

)
mc

)
t1 =

1

u

[(
|cV |2 + |dA|2

)
(mb − v · q)−

(
|cV |2 − |dA|2

)
mc

]
t2 =

2mb

u

(
|cV |2 + |dA|2

)
t3 =

2mb

u
Re (cV d

∗
A)

t4 = 0

t5 = −mb

u

(
|cV |2 + |dA|2

)
t6 = 0

t7 =
1

u

[(
|cT |2 + |dT5|2

)
(mb − v · q) +

(
|cT |2 − |dT5|2

)
mc

]
t8 =

2mb

u

(
|cT |2 + |dT5|2

)
t9 = 0

t10 = −mb

u

(
|cT |2 + |dT5|2

)
t11 = −2mb

u
Re
(
cTd

∗
T5

)
t12 =

mb

u
Re
(
cTd

∗
T5

)
t13 =

mb

u
Re
(
cTd

∗
T5

)
t14 = 0

t15 =
2mc

u
Im
(
cTd

∗
T5

)
t16 =

mb

u
(dPd

∗
A − cSc∗V )

t17 =
1

u
((cSc

∗
V − dPd∗A)mb + (cSc

∗
V + dPd

∗
A)mc)

t18 = −mb

u

(
cSc
∗
T + dPd

∗
T5

)
t19 = −mb

u

(
cSd

∗
T5

+ dP c
∗
T

)
t20 =

1

u

[(
cV c

∗
T − dAd∗T5

)
mb −

(
cV c

∗
T + dAd

∗
T5

)
mc

]
t21 = −mb

u

(
cV c

∗
T − dAd∗T5

)
t22 = 0

t23 = 0

t24 =
1

u

[(
cV d

∗
T5
− dAc∗T

)
mb −

(
cV d

∗
T5

+ dAc
∗
T

)
mc

]
t25 =

mb

u

(
dAc

∗
T − cV d∗T5

)
(A.6.22)
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A.7 Double Differential Decay Rate Including General

NP

In order to present the double differential decay rate in a concise form we define y = 2Ê`,
ρ` = m2

`/m
2
b , ρc = m2

c/m
2
b and new Wilson coefficients as cVL,R = cV ∓ dA, cSL,R = cS ∓ dP ,

c̃T = 2cT = −2dT5 . Additionally we only consider left-handed neutrinos. Thus we set

aV = aS = aT = −bA = −bP = −bT5 =
1

2
. (A.7.1)

Thanks to the Dirac delta function we can directly integrate the triple differential decay rate
found from eq. (4.2.15) over the neutrino energy, obtaining

d2Γ

dq̂2dy
=
G2
F |Vcb|2m5

b

192π3

{
12 |cVL|2

(
y − ρ` − q̂2

) (
1 + q̂2 − ρc − y

)
+12 |cVR |2 y (1 + ρ` − ρc − y)

+24Re
(
cVLc

∗
VR

)√
ρc
(
ρ` − q̂2

)
+3
(
|cSL|2 + |cSR |2

) (
q̂2 − ρ`

) (
1− q̂2 + ρc

)
+12Re

(
cSLc

∗
SR

)√
ρc
(
q̂2 − ρ`

)
+48 |c̃T |2

(
ρc
(
3ρ` + q̂2 − 4y

)
− ρ`

(
3q̂2 − 4y + 1

)
+ 4y

(
q̂2 + 1

)
− q̂2

(
q̂2 + 3

)
− 4y2

)
+12

(
Re
(
cSLc

∗
VL

)
+ Re

(
cSRc

∗
VR

))√
ρ`ρc

(
1 + q̂2 − ρc − y

)
+12

(
Re
(
cSLc

∗
VR

)
+ Re

(
cSRc

∗
VL

))√
ρ` (1 + ρ` − ρc − y)

+24Re (cSL c̃
∗
T )
(
ρ`
(
q̂2 + 1

)
+ q̂2

(
q̂2 − 2y + 1

)
− ρc

(
ρ` + q̂2

))
+144Re (cVL c̃

∗
T )
√
ρcρ`

(
ρc + y − q̂2 − 1

)
+144Re (cVR c̃

∗
T )
√
ρ` (1 + ρ` − ρc − y)

}
. (A.7.2)

A.8 Currently available corrections

In table A.8.1 we list the currently available corrections and where to find them. Note that
in different references different input values for the quark masses, HQE matrix elements, the
strong coupling constant and the kinematic cut are used so these numbers can not be directly
compared to each other. Nonetheless, their respective orders of magnitude are informative and
having them all collected in one place might be useful to someone who is not yet familiar with
the HQE.

The values in the first two columns, i.e. the corrections of O
(
Λ2

QCD/m
2
b

)
and O

(
Λ3

QCD/m
3
b

)
are computed from the triple differential decay rates given in [83] and [156] respectively.

TheO
(
Λ2

QCD/m
2
b

)
andO

(
Λ3

QCD/m
3
b

)
corrections to the central moments of q2 are computed

from the expressions of the ancillary file supplied with [123] using the default input values given
in table 6.3.1 with a cut of q2

cut = 3GeV2. While for the O
(
Λ4

QCD/m
4
b

)
the results of the results

of the fit including all 1/m4
b parameters in [68] are used for the input parameters and a cut of

qcut = 3GeV2 is applied.
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A.9 Contributions from the ground states

Among the complete set of states inserted in eq. (5.2.4), we consider the contribution of the
lowest-lying states, which are the S-wave states, i.e. D and D∗ mesons. (Here and in the
following, we omit the subscript s for brevity.) The corresponding matrix elements can be
parametrized by the form factors as

〈D(v′)|V µ|B(v)〉 = h+(w)(v + v′)µ + h−(w)(v − v′)µ , (A.9.1)

〈D∗(v′, ε)|V µ|B(v)〉 = −hV (w)εµνρσvνv
′
ρε
∗
σ , (A.9.2)

〈D∗(v′, ε)|Aµ|B(v)〉 = −ihA1(w)(1 + w)ε∗µ

+i [hA2(w)vµ + hA3(w)v′µ] ε∗ · v , (A.9.3)

where ε∗ denotes the polarization vector of the vector D∗ meson. We use the HQET definition
of the meson states, so that the kinematics is parametrized by the velocities v and v′ (with
p = mBv and p′ = mD(∗)v′) and w = v · v′. In the rest frame of the B meson ~v′ = −~q/mD(∗) .

From a separate calculation of the B → D(∗) from factors on the lattice with the same
setup as we use for the inclusive decays, we numerically obtain the form factors of the form

hX(w) = c
(0)
X + c

(1)
X (w − 1) + c

(2)
X (w − 1)2 (A.9.4)

after fitting the lattice data. The fit is shown in fig. A.9.1, and the numerical coefficients c
(0)
X ,

c
(1)
X , c

(2)
X are listed in table A.9.1.

Now, we insert the parametrizations given in eqs. (A.9.1), (A.9.2), and (A.9.3) into eq. (5.2.4)
and perform the ω integral, which merely picks the ground state through δ(p0 − q0 −ED(∗)) =
δ(ω − ED(∗)). For X̄ ≡∑2

l=0 X
(l), we obtain

X̄V V ‖ =
q2

4mDED
((mB +mD)h+ − (mB −mD)h−) (A.9.5)

for the D meson contribution, which corresponds to the partial decay rate

ΓB→D =
G2
F |Vcb|2
8π3

∫
dq2 |q|

3
· q

2(mB +mD)2

4mDED

[
h+ −

mB −mD

mB +mD

h−

]2

=
G2
F |Vcb|2m5

B

48π3

∫
dw (w2 − 1)3/2r3(1 + r)2

[
h+ −

1− r
1 + r

h−

]2

, (A.9.6)

X c
(0)
X c

(1)
X c

(2)
X

+ 1.0082(26) −1.40(12) 1.0(1.2)
− −0.057(11) −0.01(17)
A1 0.9143(34) −1.17(15) 0.4(1.6)
A2 −0.354(75) 0.5(1.2)
A3 0.999(75) −1.0(1.2)
V 1.243(13) −1.78(20)

Table A.9.1: Numerical coefficients c
(i)
X to parametrize the form factors of B → D (X = +

and −) and B → D∗ (A1, A2, A3 and V ) decays. A polynomial expansion of the form

hX(w) = c
(0)
X + c

(1)
X (w − 1) + c

(2)
X (w − 1)2 is introduced.
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Figure A.9.1: Form factors computed from three-point functions.

where w = v · v′ =
√

1 + q2/m2
D = ED/mD. The last line is a well-known formula for the

B → D`ν decay rate.
The vector meson D∗ contributes in three channels: AA‖, AA⊥, V V⊥. The contributions

are

X̄AA‖ =
1

4mD∗ED∗

[
(mB − ED∗)ED∗hA1(1 + w)

+q2

(
hA1(1 + w)− hA2 −

mB

mD∗
hA3

)]2

, (A.9.7)

X̄AA⊥ =
[
(mB −mD∗)

2 − 2mB(ED∗ −mD∗)
] (1 + w)2

2w
h2
A1 , (A.9.8)

X̄V V⊥ =
[
(mB −mD∗)

2 − 2mB(ED∗ −mD∗)
] q2

2mD∗ED∗
h2
V . (A.9.9)

Adding them together, we obtain

ΓB→D
∗

=
G2
F |Vcb|2
8π3

∫
dq2 |q|

3

{
(q2

0 − q2)

[
(1 + w)2

2w
h2
A1 +

q2

2mD∗ED∗
h2
V

]
+

1

4mD∗ED∗

[
(mB − ED∗)ED∗hA1(1 + w)

+q2

(
hA1(1 + w)− hA2 −

mB

mD∗
hA3

)]2
}
, (A.9.10)

where r = mD∗/mB and ED∗ = mD∗w = mBrw, while q2 = m2
D∗(w

2− 1) = m2
Br

2(w2− 1), and
q2

0 − q2 = (mB −mD∗)
2− 2mB(ED∗ −mD∗) = mB[(1− r)2− 2r(w− 2)]. Eq. (A.9.10) can then
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be rewritten as

ΓB→D
∗

=
G2
F |Vcb|2m5

B

48π3

∫
dw (w2 − 1)1/2r3(1− r)2(w + 1)2|hA1|2

×
{

2
r2 − 2rw + 1

(1− r)2

[
1 +

w − 1

w + 1
R2

1

]
+

[
1 +

w − 1

1− r (1−R2)

]2
}
, (A.9.11)

with R1 ≡ hV /hA1 and R2 ≡ (hA3 + rhA2)/hA1, which confirms a well-known formula.
From this analysis, the contributions of the S-wave ground states, D and D∗, to the inte-

grands X̄V V ‖, X̄V V⊥, X̄AA⊥, and X̄AA‖ can be identified.
The contribution of the V A and AV insertions vanishes for the total decay rate as well as

for the hadronic mass moments, but it is non-zero for the lepton energy moments. In the SM
the contribution of the AV interference from the ground state B → D∗ to the first leptonic
moment can be written as

X̄AV = −
[
(mB − ED∗)2 − q2

] q2

4ED∗
(1 + w)hV hA1 . (A.9.12)

A.10 Cut dependence

In figs. A.10.1 to A.10.3 we present the dependencies of the moments on the phase space cuts
applied in experiments.
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Figure A.10.1: Cut dependence of the first lepton energy moment
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Figure A.10.2: Cut dependence of the first hadronic mass moment
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Figure A.10.3: Cut dependence of the first leptonic invariant mass moment
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Appendix B

Exclusive Decays of B Mesons

B.1 Summary of input values

GF (1.1663787± 0.0000006)× 10−5 GeV−2

α 1/133.48
|VcbVcs| (41.0± 0.5)× 10−3

mBs 5.36688± 0.00014 GeV
mB 5.27966± 0.00014 GeV
mB+ 5.27934± 0.00012 GeV
mφ 1.019461± 0.000016 GeV
mK∗ 0.89555± 0.0002 GeV
mK+ 0.493677± 0.000016 GeV
τB+ (2.489± 0.006)× 1012 GeV−1

mJ/ψ 3.096900± 0.000006 GeV
mψ(2s) 3.6861± 0.00006 GeV
ΓJ/ψ 0.0000926± 0.0000017 GeV
Γψ(2s) 0.000294± 0.000008 GeV

B (B+ → J/ψK+) (1.020± 0.019)× 10−3

B (J/ψ → µ+µ−) (5.961± 0.033)× 10−2

Table B.1.1: Experimental inputs for the determination of the constants ηλj and δλj
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mMS
c (mMS

c ) 1.2719± 0.0078 GeV

m
MS(µb)
b 4.209± 0.021 GeV
mc 1.68± 0.2GeV
mb 4.87± 0.2GeV
mµ 0.106 GeV

1/αEW 133
|VtbV ∗ts| 0.04185± 0.00093
C1(µb) −0.294± 0.009
C2(µb) 1.017± 0.001
C3(µb) −0.0059± 0.0002
C4(µb) −0.087± 0.001
C5(µb) 0.0004±
Ceff,0

7 (µb) −0.2957± 0.0005
Ceff

8 (µb) −0.1630± 0.0006
C9(µb) 4.114± 0.014

Ceff,0
9 (µb) C9(µb) + Y (q2)
C10(µb) −4.193± 0.033
Γ(B+) (4.018± 0.010)× 10−13

Γ(B0) (4.333± 0.011)× 10−13

µ m
MS(µb)
b

Vts (−0.041233− 0.00056) ei(1.056±0.032) π
180

Vtb (0.999112± 0.000024)

Table B.1.2: Input parameters

B.2 Summary of the resonance parameters

V ηV δV
J/ψ 32.3± 0.6 −1.50± 0.05
ψ(2s) 7.12± 0.32 2.08± 0.11
ψ(3770) (1.3± 0.1)× 10−2 −2.89± 0.19
ψ(4040) (4.8± 0.8)× 10−3 −2.69± 0.52
ψ(4160) (1.5± 0.1)× 10−2 −2.13± 0.33
ψ(4415) (1.1± 0.2)× 10−2 −2.43± 0.43

Table B.2.1: Resonance amplitudes and phases for B+ → K+µ+µ−
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V Polarization ηV δV

J/ψ
⊥ 26.6± 1.1 1.46± 0.06
‖ 12.3± 0.5 −4.42± 0.06

longitudinal 13.9± 0.5 −1.48± 0.05

ψ(2s)
⊥ 3.0± 0.9 3.2± 0.4
‖ 1.11± 0.30 −3.32± 0.22

longitudinal 1.14± 0.06 2.10± 0.11

Table B.2.2: Resonance amplitudes and phases for B → K∗µ+µ−

V Polarization ηV δV

J/ψ
⊥ 27.8± 1.3 1.59± 0.16
‖ 11.0± 0.6 1.74± 0.16

longitudinal 10.7± 0.5 −1.48± 0.05

ψ(2s)
⊥ 3.2± 1.0 5.4± 0.4
‖ 1.02± 0.28 5.74± 0.19

longitudinal 0.90± 0.05 2.10± 0.11

Table B.2.3: Resonance amplitudes and phases for BS → φµ+µ−

B.3 The Vj rest frame

In the J/ψ rest frame, we have p̃J/ψ = (mJ/ψ, 0, 0, 0), while in the B rest frame pJ/ψ =
(EJ/ψ, 0, 0,−p), where EJ/ψ and p are defined by the kinematics of the process. We can hence
define a Lorentz transformation along the ẑ axis as

p̃J/ψ = ΛpJ/ψ , (B.3.1)

where the parameter of the Lorentz transformation are

γ =
EJ/ψ
mJ/ψ

, βγ =
p

mJ/ψ

. (B.3.2)

We can use these findings to boost the polarization vectors in the J/ψ rest frame. We find:

ε̃J/ψ(L) = (0, 0, 0, 1) , ε̃φ(L) =

( √
λ

2mJ/ψmφ

, 0, 0,
m2
J/ψ +m2

φ −m2
B

2mJ/ψmφ

)
, (B.3.3)

ε̃J/ψ(+1) =
1√
2

(0,+1,−i, 0) , ε̃φ(+1) =
1√
2

(0,−1,−i, 0) , (B.3.4)

ε̃J/ψ(−1) =
1√
2

(0,−1,−i, 0) , ε̃φ(−1) =
1√
2

(0, 1,−i, 0) . (B.3.5)

For completeness, we also report the momenta of the φ

p̃φ = −
(
m2
J/ψ +m2

φ −m2
B

2mJ/ψ

, 0, 0,

√
λ

2mJ/ψ

)
(B.3.6)
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We define 3-momenta in bold characters. We further define a unit vector p̂ = (0, 0,−1). In
the notation of [120], we get

ε̃∗LJ/ψε̃
∗L
φ =

m2
B −m2

J/ψ −m2
φ

2mJ/ψmφ

, (B.3.7)

ε̃∗TJ/ψ · ε̃∗Tφ =− 2 , (B.3.8)

ε̃∗J/ψ × ε̃∗φ · p̂ = + 2i . (B.3.9)

We then redefine the amplitudes as

A0 =A0 ×
√ √

λ

16πm3
B

m2
B −m2

J/ψ −m2
φ

2mJ/ψmφ

, (B.3.10)

A‖ =A‖ × (−2)

√ √
λ

16πm3
B

, (B.3.11)

A⊥ =A⊥ × (2i)

√ √
λ

16πm3
B

. (B.3.12)

B.4 Charmonium decay

The electromagnetic decay V → e+e− probes the matrix element of the electromagnetic current.
We parametrize it as

〈V (p)|jµem|0|V (p)|jµem|0〉 = 2fV (p2)εµ∗V (p) . (B.4.1)

Then the decay matrix element is given by

M
(
V (p, k)→ e+(q1)e−(q2)

)
= 〈V (p, k)|jµem|0|V (p, k)|jµem|0〉

〈
0|jem,µ|e+(q1)e−(q2)

∣∣0|jem,µ|e+(q1)e−(q2)
〉

= fV (p2)εµ∗V (p, k)(−ie)u(q2)γµu(q1), (B.4.2)

from which we obtain the spin-averaged matrix element

1

3

∑
k,s,s′

∣∣M (
V (p, k)→ e+(q1)e−(q2)

)∣∣2 =
1

3
e2f 2

V (p2)
∑
k

εµ∗V ε
ν
V Tr

[
/q2γµ

(
1− γ5

)
/q1γν

(
1− γ5

)]
=

1

3
e2f 2

V (p2)

(
−gµν +

pµpν

m2
V

)
Tr
[
/q2γµ

(
1− γ5

)
/q1γν

(
1− γ5

)]
=

64π

3
αemfV (m2

V )m2
V , (B.4.3)

where we neglected the electron mass and set p2 = m2
V in the last line. The differential

V (p)→ e+(q1)e−(q2) decay rate is then given by

Γ
(
V → e+e−

)
=

1

32π2

∫
PS

1

3

∑
k,s,s′

|M|2 q1

m2
V

dΩ

=
4

3
αemf

2
V (m2

V )mV (B.4.4)

We can therefore extract fV (m2
V ) from the experimental measurement of B(V → `+`−) ,

B(V → `+`−) =
4αemf

2
V (m2

V )mV

3ΓV
, (B.4.5)

which yields fψ(2s) = (4.87± 0.07)× 10−3 and fJ/ψ = (1.36± 0.02)× 10−2.
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B.5 Covariance Matrices
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Figure B.5.1: Theory covariances for B+ → K+µ+µ− from the form factors.

1 5 10 17

1

5

10

17

1 5 10 17

1

5

10

17

-0.4

0.

0.5

1.0

1.5

1.9

2.4

Figure B.5.2: Theory covariances for B+ → K+µ+µ− from the resonance parameters.
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Figure B.5.3: Full covariances for B+ → K+µ+µ−.
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Figure B.5.4: Theory covariances for B0 → K0∗µ+µ− from the form factors.
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Figure B.5.5: Theory covariances for B0 → K0∗µ+µ− from the resonance parameters.
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Figure B.5.6: Full covariances matrix for B0 → K0∗µ+µ−.
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quarks Beyond Tree Level. Phys. Rev. D 101, 3 (2020), 035024.

[138] Fuentes-Martin, J., Isidori, G., Pagès, J., and Stefanek, B. A. Flavor Non-
universal Pati-Salam Unification and Neutrino Masses.

[139] Fuentes-Mart́ın, J., Isidori, G., Pagès, J., and Yamamoto, K. With or without
U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays. Phys.
Lett. B 800 (2020), 135080.

[140] Gambino, P. B semileptonic moments at NNLO. JHEP 09 (2011), 055.

[141] Gambino, P., et al. Challenges in semileptonic B decays. Eur. Phys. J. C 80, 10
(2020), 966.

[142] Gambino, P., and Giordano, P. Normalizing inclusive rare B decays. Phys. Lett. B
669 (2008), 69–73.

[143] Gambino, P., and Hashimoto, S. Inclusive Semileptonic Decays from Lattice QCD.
Phys. Rev. Lett. 125, 3 (2020), 032001.
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