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ABSTRACT

This thesis studies the effects of the two rounds of Whole Genome Duplication
(WGD) at the origin of the vertebrate lineage on the architecture of the human gene
regulatory networks. We integrate information on transcriptional regulation, miRNA
regulation, and protein-protein interactions to comparatively analyse the role of WGD
and Small Scale Duplications (SSD) in the structural properties of the resulting multi-
layer network.

We show that complex network motifs, such as combinations of feed-forward loops
and bifan arrays, deriving from WGD events are specifically enriched in the network.
Pairs of WGD-derived proteins display a strong tendency to interact both with each
other and with common partners and WGD-derived transcription factors play a promi-
nent role in the retention of a strong regulatory redundancy. Combinatorial regulation
and synergy between different regulatory layers are in general enhanced by duplication
events, but the two types of duplications contribute in different ways.

Overall, our findings suggest that the two WGD events played a substantial role in
increasing the multi-layer complexity of the vertebrate regulatory network by enhancing
its combinatorial organization, with potential consequences on its overall robustness
and ability to perform high-level functions like signal integration and noise control.
We discuss more in detail the RAR/RXR pathway as an illustrative example of the
evolutionary impact of WGD duplications in human and present extensive evidence of
the robustness of our analyses.
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Chapter 1

Introduction

In this chapter we give a brief overview of the main concepts that are needed to un-
derstand our work and correctly frame it in the context of the existing literature. In
particular, we discuss whole-genome duplications, gene regulatory networks and net-
work motifs. In the last section we show how these concepts are interconnected in the
context of our work and why this interplay is important and interesting to analyze.

1.1 Whole-Genome Duplications

Gene duplication is one of the main drivers of evolutionary genomic innovation [1, 2,
3]. Most of the gene duplication events belong to one of two main categories: Small-
Scale Duplications (SSDs) or Whole-Genome Duplications (WGDs). Small Scale Du-
plications typically involve a single gene, or a small set of genes within a well defined
genomic locus. Whole-Genome Duplications, on the other hand, happen at a much
larger scale and involve a macroscopic portion of the genome. Although even the mere
existence of such events was initially met with high skepticism, it is by now clear that
they played a major role in evolution instead [4, 5].

From the evolutionary standpoint, the two types of duplications produce very differ-
ent outcomes. SSD events have a relatively low chance of having a huge impact on the
organism in which they happen. The most likely outcome is that they introduce small
and incremental (positive or negative) changes to the genome and consequently to cell
functions, thus promoting a local exploration of the phenotypic landscape. WGD events
in normal conditions, on the other hand, typically produce immediate dire consequences
on the fertility and fitness of the organism, compromising its short-term survival [6].
As a result, most WGD events are not fixated in the population. When they do, though,
they typically produce sudden and dramatic phenotypic changes, which could hardly be
achieved by SSDs alone. In this sense, WGD events allow species to take big jumps in
the phenotypic landscape, promoting a non-local exploration of the latter. In some pe-
culiar circumstances though, like in harshly adverse environmental conditions, WGDs
can provide an immediate evolutionary advantage to the organism, and help reducing
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the risk of extinction of the affected lineage [7]. Also, increasing evidence points to-
wards a central role of WGD in the successful response to the stress induced by sudden
environmental changes [5]. On a much longer timescale, instead, fixated WGD events
can contribute to the creation of biological complexity in the organism [5].

This thesis aims at quantifying the different impacts of such two different gene du-
plication mechanisms on the evolution of the human gene regulatory networks. For this
reason, we will focus on the two rounds of WGD that occurred about 500−550 Millions
of years ago, at the origin of the vertebrate lineage. These two are the only WGD events
known today that were retained along the evolutionary trajectory leading to Homo Sapi-

ens. More than 50 years ago, the geneticist Susumu Ohno [1] hypothesized for the first
time, based on observations on the clustering of HOX genes, that two rounds of WGD
were at the origin of the vertebrate lineage. This theory was met with skepticism for a
long time, and it was only with the advent of high-throughput sequencing that reliable
evidence supporting the existence of ancient WGD events became available. In 1997,
a WGD event was unambiguously detected for the first time in Saccharomyces cere-
visiae [8, 9] and a few years later in Arabidopsis thaliana [10]. In 2005 Ohno’s original
intuition regarding the two WGD events at the origin of the vertebrate lineage was also
confirmed [11]. Paralogue genes that descend from a whole-genome duplication event
are nowadays also called ohnologs, to honor Ohno’s early intuition. Vertebrate-specific
double round of ancient WGD events is also often abbreviated with the acronym ”2R-
WGD”. Since we will be dealing mainly with such events, we will stick to the simpler
”WGD” acronym.

Whole-genome duplication events have evolutionary consequences which substan-
tially differ from the ones introduced by small-scale duplication events. In fact, WGDs
are thought to have played a central role in the evolution of complex traits associated
with vertebrates. This conjecture has not found final confirmations yet, but is supported
by many different and converging observations. For example, a multi-omics analysis
of the Amphioxus genome has shown that the two rounds of vertebrate WGD signif-
icantly increased the complexity of the vertebrate regulatory landscape, and possibly
boosted the evolution of morphological specializations [12]. It was also shown that
the emergence of an important class of human highly interacting proteins, involved in
processes that are crucial for the organization of multicellularity, was mainly due to
vertebrate WGDs [13]. More generally, WGD events are recognized to have influenced
many important evolutionary processes, such as gene retention and selection, dosage
balance and subgenome dominance effects among others. Whole-genome duplication
events are much more commonly found in plants, where these phenomena are especially
well studied, in particular in A. thaliana [14, 15, 16]. Acting through such mechanisms,
WGDs are acknowledged to have played a major role in the introduction of evolutionary
novelties in many species. The findings presented in this thesis provide further support
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to this theory.
Because of their ancient origin, the identification of WGD pairs or quartets in verte-

brates has proven to be a highly non trivial task [17]. In fact, a stable and reliable list of
human WGD gene pairs was only recently proposed [18, 19, 20]. This advance made
it finally possible to analyze the evolutionary role of WGD and SSD also in human. As
a consequence, few interesting features have been identified to be uniquely associated
to WGD pairs. For example, WGD genes are subject to more stringent dosage bal-
ance constraints and are more frequently associated with disease with respect to other
genes [21]. Moreover, WGD genes are threefold more likely than non WGD ones to
be involved in cancers and autosomal dominant diseases [18]. This observation led to
the suggestion that WGD genes are intrinsically “dangerous”, in the sense that they are
more susceptible to dominant deleterious mutations than other genes [22]. From a func-
tional point of view, WGD genes are more frequently involved in signalling, develop-
ment and transcriptional regulation and they are enriched in Gene Ontology categories
generically associated to organismal complexity [18, 19, 23, 24, 25]. From the gene ex-
pression point of view, both the gene expression profile and the subcellular localization
seem to be more divergent between the two partners of a WGD-derived pair than for
gene pairs derived from SSD [19]. In the same work, the authors also note that WGD-
derived genes contain a larger proportion of essential genes than the SSD ones and that
they are more evolutionary conserved than SSD. Remarkably, several of these recent
observations on vertebrates WGD genes agree with what was found years ago both in
yeast [26] and in A. thaliana [24, 27]. This “universality” supports the hypothesis of
general principles or mechanisms behind the unexpected retention of WGD genes and
their interactions.

1.2 Gene Regulatory Networks

Cells can be regarded as very complex information-processing machines acting at the
micron scale. They evolved the ability of sensing different signals both from their
internal and external environment, successively integrating and elaborating them with
the ultimate goal of triggering the best available response to a specific situation. For
example, a cell sensing the presence of a specific nutrient in the environment might
decide, depending on the type of nutrient an on the current state of the cell itself, to start
producing the enzymes needed for the digestion of that nutrient. Cells also respond to
signals sent from other cells around them. In multicellular organisms this ability plays
a particularly important role, as cell-to-cell communications orchestrate, among others,
organismal development, homeostasis and single-cell functions [28]. This wealth of
signals need to be integrated, in order for cell to take decisions about its fate and the kind
of machinery that it needs to produce. There are many ways in which cells can internally
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Fig. 1.1 Gene Regulatory Networks. Interactions involving an illustrative subset of
TFs are shown for each of the regulatory mechanisms studied in the present work, i.e.
for (A) transcriptional regulations from the ENCODE network, (B) protein-protein in-
teractions in the PrePPI network, and (C) miRNA-gene regulatory interactions in the
TarBase network. TFs are represented as colored circles, target genes as small black
dots (here appearing as a thick black lines due to large number of genes), and miRNAs
as black triangles. Black lines indicate interactions between TFs, while other interac-
tions have the color of the involved TF. Yellow lines are interactions between non-TFs.

represent and process the information about their internal and external environments,
many of which are yet to be fully understood and, most probably, discovered. To the
best of our current knowledge, though, the main mechanism seems to be the regulation
of gene expression. Gene products can interact with other gene products or with DNA
itself to modulate the expression of other genes in the cells, orchestrating a systemic
response to the environmental cues.

Interactions between components in a complex system have a very natural abstract
representation as networks. In a network, each of the system’s component is repre-
sented as a node and a connection is established between two nodes whenever the two
corresponding components interact with each other in the real system. Connections can
be undirected when the relation is symmetric (e.g. the two components are in contact
with each other) or directed, when the relation is asymmetric (e.g. one component ac-
tivates or switches off the other one). This representation proved very powerful, in that
it was used to describe and extract useful information from a wide variety of complex
systems and opened new perspectives in the analysis of biological systems [29]. Reg-
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ulatory interactions among genes in a cell can also be represented in this way. In our
case, genes are represented as nodes in the network and their interactions are described
as links between nodes. Different networks can be built with the same set of genes,
by considering different interaction mechanisms. This specific kind of networks, repre-
senting interactions between genes, are commonly known as Gene Regulatory Networks

(GRNs).
Gene regulation can take place at many different levels. At the transcriptional level,

when proteins produced by specific genes bind to the promoter or the enhancer region
of another gene, activating or repressing its activity. Genes that regulate other genes’
expression in this way are called Transcription Factors (TFs). In Fig. 1.1A a portion
of the human transcriptional regulatory network: we can see that a small number of
transcription factors regulate a host of target genes, while also regulating each other’s
activity at the same time. At the post-transcriptional level, the activity of some genes
can be modulated by micro-RNAs (miRNAs), very short RNA sequences (around 22
nucleotides long) that target the RNA molecules transcribed from the target gene, lead-
ing to their degradation. Fig. 1.1C shows the miRNAs that target the same TFs shown
for the transcription network. Gene products can also physically interact at the pro-
tein level. Proteins generated by different genes might participate in the same protein
complex, or one of the two could act as an activator or repressor by inducing chemical
or structural changes in the other one. Fig. 1.1B portrays the protein-protein interac-
tion occurring between six transcription factors and their target, and among the targets
themselves.

Gene duplication is widely recognized as one of the main mechanisms underlying
the evolution of gene regulatory networks [30, 31, 32]. Gene duplications, both at small
and large scales, generate a lot of redundant interactions, that provide raw material for
the subsequent evolution of the network. It is indeed easier to rewire existing duplicated
interactions, than creating de novo interactions between genes from scratch. Moreover,
the presence of duplicated interactions confers additional robustness to the system, that
can keep one of the old functional interactions as backup and let the other one evolve
freely to implement new functions. All of these processes deeply influence the topology
of regulatory networks, by adding and deleting nodes and links and rewiring existing
links. Such changes evidently also shape network functions and, ultimately, the ability
of cells to elaborate complex signals and decision-making strategies.

1.2.1 Network Motifs

If we look at the local structure of complex networks, we find that there are some
combinations of nodes and regulatory interactions that are statistically over-represented
in networks [33], commonly called network motifs. In this case, ”over-represented”
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means that their occurrence in the network is much higher than what we would expect
to see if the links in the network were arranged in a random manner. The presence
of networks motifs was assessed in many complex networks of very different kinds,
social, technological and biological. They assumed a special importance in the analysis
of gene regulatory networks in particular, both in bacteria [34] and higher organisms,
notably humans [35].

In the context of transcriptional networks, network motifs were shown to perform
elementary regulatory functions [36, 37, 38] and the common lore is that some motifs
were positively selected for by evolution precisely because of their ability to perform
elementary computations. Such elementary modules can then be composed together to
implement more complex regulatory functions in the network [31].

This thesis focuses on network motifs involving pairs of duplicated genes, as illus-
trated in Fig. 1.2. Two duplicated transcription factors may regulate the same target
(or set of targets) without interactions between the two duplicated genes, in a config-
uration we refer to as V motif. On the contrary, a couple of genes may be regulated
by the same TF or by a common miRNA, giving rise to a Λ motif. We will explicitly
distinguish between transcriptional and miRNA-mediated Λ motifs. If the duplicated
genes involved in a Λ motif also interact at the protein level, we have a ∆ motif, which
again can be transcriptional or miRNA-mediated. The duplicated genes may be si-
multaneously involved in transcriptional and miRNA-mediated Λ or ∆ motifs, hence
resulting in mixed-type network motifs. More complex transcriptional motifs will also
be analyzed, such as feed-forward loops (FFL) and feedback loops (FBL), including
self-regulations and toggle-switch-like architectures. We will also consider Bifan mo-
tifs, where a couple of duplicates regulates another one but there are no interactions
between the two regulators, and FFL+Bifan motifs, which have the additional regula-
tory interaction between one regulator and the other. We will also quantify the effects
of the different types of duplications on the structure of the PPI network.

1.3 Motivation and outline of the work

The goal of the present work is to pinpoint the different roles played by the two types of
gene duplications - SSD and WGD - in shaping the architecture of the human gene reg-
ulatory network. In particular, we investigate the local structure - mainly by analysing
the network motif enrichments - of the transcriptional regulatory network, the protein-
protein interaction network and the miRNA-gene interaction network, which are par-
tially represented in Fig. 1.1 A, B, and C respectively. As exposed in the previous
section, network motifs assume particular significance in biology and for gene regula-
tory networks in particular. In this context, network motifs identified gene circuits that
can perform relatively simple computations with specific biological functions. These
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Fig. 1.2 Network Motifs considered in this thesis. An overview of the network motifs
that will be considered in this work. Gray circles represent generic genes, same-color
circles (green or yellow) are paralogues, and miRNAs are represented in a stylized form.
Solid arrows represent regulatory interactions, while dashed lines represent protein-
protein interactions.

simple modules can then assemble into a larger network to implement complex and ro-
bust regulatory strategies [38]. As shown in Fig. 1.3, gene duplications - and WGD in
particular - can create motifs in a very straightforward way by duplicating the genes in-
volved in a simple regulatory interaction. Even though this is certainly not the only way
in which motifs may be created, we expect duplication events to have a major impact on
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the creation and, most importantly, the subsequent retention of these local structures.
We therefore analyzed the statistical enrichment of a selection of motifs - repre-

sented in Fig. 1.2 - whose functional importance is widely recognized [38]. We observe
that SSD and WGD gene pairs are statistically over-represented in different types of
motifs. This result is in general agreement with previous observations on the yeast
transcriptional network [39]. We will show that also the structure of additional lay-
ers of regulation present in the human genome, such as miRNA regulation, has been
influenced by duplication events. In conclusion, this work will show that SSD and
WGD events shaped the multiple layers of regulation in the human genome in different
ways and jointly contributed to their current structure. We will argue that the specific
consequences of WGD events on the regulatory network seem to be associated to an
increased redundancy and complexity, that would be hard to obtain (and retain) through
a sequence of small-scale duplication events.

Fig. 1.3 Gene duplications generate network motifs. Illustration of how a WGD
event can easily create FFLs and Bifans, by duplicating the components of a simple
regulatory interaction in which the regulator also has self-regulation. Many of the cre-
ated interactions will then be lost during the evolutionary process, leaving only those
that are not negatively selected.
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Chapter 2

Materials and Methods

2.1 Gene Nomenclature

This thesis uses data from many different sources, some of them produced in times
pretty distant from one another. It was therefore necessary to unify consistently the
notation for the unique identifiers of the genes, in order to make them comparable in
a sensible way. The Gene Symbol format was chosen, and all the genes appearing in
the various datasets were translated to their official Gene Symbol, as indicated by the
HGNC (HUGO Gene Nomenclature Committee - https://www.genenames.org).

Gene Symbols can come in different possible statuses, and different actions were
taken depending on it:

• APPROVED: symbol left untouched.

• PREVIOUS: obsolete gene symbol, updated to the official one.

• WITHDRAWN: the gene symbol does not exist anymore, deleted.

For data available only in Ensembl ID format, we used the official mapping from
one nomenclature to the other obtained from the Ensembl BioMart interface.

2.2 Transcriptional Regulatory Network

We used the human transcriptional regulatory network presented in [40], a portion of
which is displayed in Fig. 1.1A. The network was obtained by the curation of data
from ChIP-seq experiments by the ENCODE project, so we will be referring to it in the
following as the “ENCODE network”. Our aim in this work is to analyze the effects of
gene duplication events on the regulatory interactions in general, so we combined the
information regarding proximal and distal regulation into a single regulatory network,
with 122 transcription factors (TFs) and 9986 target genes. Since this choice of the
network is at the foundation of all of the results that will follow, it is worth discussing
it in some more detail.

9



The fundamental requirement of the transcriptional regulatory network to be used
in our work is that it must not introduce - ideally - any kind of bias that could mislead
our statistical analyses. In particular, we require that the chosen network present the
least possible amount of bias with respect to specific kinds of network motifs and with
respect to the duplication status of the considered genes. Such requirements are all met
by the network in [40], which was indeed already used by the same authors to carry
out motif enrichment analyses in a spirit similar to the one of this work.

In this paragraph we instead briefly outline the reasons that led us to discard other
possible network candidates. Besides the Chip-seq derived networks, there are essen-
tially three other methods to construct transcriptional regulatory networks, see for in-
stance [41] for a recent review. Literature-based collections (such as TRRUST [42]
or HTRIdb [43]) are by definition biased towards genes that received more attention
from the scientific community. As pointed out in the Introduction, WGD-derived genes
were shown to be often associated with diseases and organismal complexity, which are
preferential subjects of published papers. Another possible approach is based on in

silico predictions of the interactions from TF binding sequences. However, many of
the duplicated TFs (especially the recent ones) can still present very similar binding
sequences. Therefore, a network constructed in this way would lead to an artificially
strong enrichment of some motifs (e.g., V motifs, shown in Fig. 1.2). In the end, meth-
ods based on reverse engineering gene expression data, such as the popular ARACNE
algorithm [44], involve a pruning step that leads to an artificial decrease of the network
clustering coefficient, and thus to an alteration in the statistics of three-node motifs.

2.3 Protein-Protein Interaction Networks

We extracted two protein-protein interaction (PPI) networks from the PrePPI database [45]
and the STRING database [46]. We downloaded the high-confidence predictions from
the PrePPI database, selecting only the experimentally validated interactions, and up-
dated the gene identifiers. The result is a network of 15,762 genes and 237,272 PPIs.
From the STRING database, we selected interactions that were both experimentally
validated and with high confidence score (interaction score > .700, a parameter pre-set
by the authors), in order to enforce stringency and to have a network size comparable
with the size of the PrePPI network. We ended up with a STRING PPI network with
10,725 genes and 108,129 PPIs. There is a large overlap in the nodes present in the two
networks (10,087 genes are in common) but a much lower overlap in the interactions
(only 36,863 interactions are present in both networks). In order to limit possible con-
fusions, we will talk mainly about the results obtained with the PrePPI network, which
was deemed more robust due to the presence of experimentally validated interactions.
However, all of the results are confirmed by analysis of the STRING network, which
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will also be shown and commented more briefly.

2.4 miRNA-gene Interaction Networks

The miRNA-target interaction networks we considered come from the TarBase database [47]
and the mirDIP database [48]. The TarBase network was constructed by selecting all
the interactions coming from normal (non-cancer) cell lines or tissues, with positive
evidence for a direct interaction between the miRNA and the target gene. This leaves
us with 913 miRNAs regulating 10,497 genes, with 89,736 interactions. The mirDIP
database integrates instead miRNA-target predictions coming from different databases
and prediction methods, combining the different database-specific scores into a unified
integrative score. Since no specific method is provided in order to choose an integrative
score threshold, we chose to keep the 90,000 top-scoring interactions. Such a stringent
threshold allows us to make a sensible comparisons with the TarBase network. The re-
sulting mirDIP network has 513 miRNAs and 7965 genes with 89,991 interactions. As
for the PPI networks, the overlap between the nodes is very high (406 miRNAs and 6241
genes are in common), but the overlap in edges is pretty low (only 9320 interactions are
found in both networks). Also in this case, the TarBase network was deemed more de-
pendable due to the fact that the interactions are not mere predictions and to absence of
an arbitrary limitation in the amount of interactions that were retained. The Results and
Discussion chapters will therefore be mostly concerned with commenting the behavior
of the TarBase network, while results for the mirDIP network will be briefly exposed.
Again, the trends we find in the two cases show some degree of robustness, despite the
low overlap in interactions between the two networks.

2.5 Small-scale and Whole-genome duplicates

2.5.1 WGD paralogues

The Whole-Genome Duplicate (WGD) gene pairs were obtained by merging the results
of Makino and McLysaght [21] with the latest available OHNOLOGS database [20]. In
order to have a high-confidence list of paralogies, we considered only WGD couples
corresponding to the strict criterion in the OHNOLOGS database. Moreover, all the
couples that were not recognized as paralogues in the current version of the Ensembl
database were excluded. To ensure full compatibility among all of the datasets em-
ployed, we updated the gene names to the latest officially accepted version - data about
the status of gene names were obtained from the HGNC online service [49]. In this
work we only consider paralogue couples composed of protein-coding genes, so we
restricted all the obtained paralogues’ lists accordingly. Data about the protein coding
nature of the genes were also obtained from the Ensembl database. After such pre-
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liminary data manipulations, we ended up with a list of 8070 WGD-derived paralogue
couples, comprising 7324 different genes.

2.5.2 SSD paralogues

SSD-derived paralogues were obtained from the list of all human paralogues involving
protein-coding genes in the Ensembl database [50], subtracting from this list all of the
couples that were previously identified as derived from a WGD. One additional factor
that must be taken into account when dealing with the distinction between WGD and
SSD couples is the huge spread of duplication ages of the SSD paralogues. The two
rounds of WGD happened relatively close in time, approximately around the appear-
ance of the Vertebrate lineage ∼ 500 Mya. Given this timescale, it is reasonable to
assume that the currently retained WGD gene couples have experienced similar evo-
lutionary forces (neutral or selective). This assumption is not valid for SSD couples,
since they do not have an overall precise time location, but are generated continuously
throughout the history of human evolution. It is therefore reasonable to expect that a
portion of the SSD couples are more or less contemporary to the WGD ones, while
some others are younger or considerably younger. Following this recent duplication
events, sequence evolution had relatively less chances to modify and rewire the gene
interactions involving the resulting paralogues. In order to make a sensible comparison
between SSD and WGD couples, it is necessary to rule out possible confounding effects
due to the different ages of paralogues. Such effects are indeed present, even if small,
as we show in detail in Fig. 4.2 of the Discussion chapter.

The duplication age of paralogue gene couples was estimated by considering their
most recent common ancestor, as reported in the Ensembl database. Data obtained in
this way are not suitable to give a precise date of duplication for each couple of genes,
but can be used in an heuristic fashion to discern SSD couples that roughly date back to
the same time period when WGD couples were generated from more recent duplicates.
More specifically, we considered SSD couples whose most recent common ancestor is
older than Sarcopterygii as roughly contemporary to WGD couples. This approach is
in line with previous approaches [18] and indeed the estimated ages are compatible,
as shown below in Fig. 2.1. Following these criteria, we identified 8663 young SSD
duplicates (comprising 3442 genes) which we excluded from the comparison, and a
final list of 13,618 SSD genes organized in 122,889 gene couples that we can safely use
for a comparison with WGD genes couples.

2.5.3 Age distributions of paralogues

Duplication age was shown to bear sizable effects on the evolution of gene networks,
in protein-protein interactions in particular [51]. It is thus important to account for this
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Fig. 2.1 Age distribution of WGD and SSD paralogues contained in the interaction
networks. The insets zoom in on the portion of the distribution after Sarcopterygii.
The distribution for the ENCODE network is subdivided into TF couples (A) and target
couples (B) for clarity.

additional factor when comparing duplicates of different ages, as it happens for SSD
and WGD couples. We show in Fig. 2.1 that the dating of the paralogues with their
most recent common ancestor is consistent with the independently found distinction
between SSD and WGD couples. The shown distributions also justify the heuristic
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choice of considering SSD couples duplicated before Sarcopterygii as evolutionarily
comparable to WGD couples. The figure also highlights the presence of SSD couples
that were duplicated in relatively recent times, but which are a very small percentage of
the total number of SSD couples. Such recent couples were not taken into consideration
in all of the subsequent analyses.

2.5.4 Non-duplicated gene couples

In the analyses that follow we will sometimes compare the results obtained for SSD and
WGD couples to those obtained for non-duplicated gene couples. We consider as non-
duplicated couples all of the couples that one can construct with the genes in a specific
network that are neither SSD couples nor WGD couples.

2.6 Network Motif enrichment

The standard way to measure network motif enrichment is by reporting the Z-score
associated with the motif counts. The Z-score is calculated in the following way:

Z =
n− n̄null

σnull

where n is the motif count in the real data, n̄null and σnull are the mean value and
the standard deviation of the motif count distribution in the null model. Z-scores are
considered to be significant when their absolute value is larger than ∼ 5. We generated
100 realizations for each of the random models that are defined in a following section.

2.7 Regulatory redundancy and Similarity coefficient

As a measure of the interaction similarity between two duplicated genes, we used the
Sorensen-Dice Similarity coefficient, defined in the following way for two sets A and
B:

S(A,B) =
2|A ∩B|
|A|+ |B|

.

In our case, A and B are the sets of interactions (regulators, targets or PPI depending
on the task at hand) of two different genes a and b. This measure ranges from 0, when
the two genes have no common interactions, to 1, when two genes share all of their in-
teractions. Note that this similarity score is more general than motif enrichment, since
we only take into account interactions common to both genes in a couple of paralogues
and do not restrict in any way the connectivity between them. In some cases, for exam-
ple for mixed-type motifs, the definition and interpretation of a similarity score is not
straightforward and we resort to the Z-scores to gain more clear insights on the contri-
bution of gene duplication. A more in-depth discussion on the differences between the
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Fig. 2.2 Calculation of network motif enrichment. First the number of occurrences
of each motif is calculated in the real network (top). Then an ensemble of randomized
networks is created, in such a way that the degree sequence of the original network is
conserved. The occurrence of each motif is calculated in each of the null networks and
the obtained distribution is compared to the real count to obtain a Z-score.

Fig. 2.3 An example of similarity calculation. Example of the structure of a Dense
Overlapping Regulon (DOR) embedded in a gene regulatory network, with the target
similarity S calculated for an illustrative couple. In this case the gene on the left has a
total of 2 targets and the one on the right a total of 4, while they have 2 common targets.
Plugging these numbers into the similarity formula gives the shown result of S = 2/3
for the selected gene couple.

similarity scores and the motif Z-scores can be found in the next section. A clarifying
graphic example of how the similarity between two regulators is calculates is shown in
Fig. 2.3.
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The statistical significance of the comparison between the similarity distributions
of two different categories of gene couples is assessed by means of a two-tail Mann-
Whitney U Test, with its associated P-value. The P-values of the comparisons between
the real distributions and the null models are reported directly in the figures. If a com-
parison between two distributions is statistically significant (P < 0.01) we show in the
figures the following symbols: ∗ for SSD-WGD comparison, ■ for WGD-NOT DU-
PLICATED comparison and ▲ for SSD-NOT DUPLICATED comparison. Should one
or more of such symbols not be reported, it would mean that the corresponding compar-
ison is not statistically significant. Note that when the symbol is reported, the P-value is
typically much lower than the 0.01 threshold, and usually we have at least P < 1e− 5.

2.7.1 Similarity score vs. Z-scores

It is worth noting that the motif enrichment Z-score and the similarity score distribu-
tions do not convey the same information. Since these two different measures are at the
core of our results, in this section we discuss how they differ and why it is important to
show them both, with the aim of clarifying their role and interpretation in the context
of the present work. The Z-score counts the overall number of times we encounter a
motif in the network, thus generically measuring the contribution of a type of duplicate
to the non-random local structure of the whole network and the tendency to retain a spe-
cific motif when it is created in the network, either by chance or by other mechanisms
(such as gene duplications). It does not, however, convey any information regarding
the way in which motifs are distributed among different couples of duplicates, which
is instead captured by our similarity measure. This is a very important statistic for our
purposes, since we can interpret the similarity score of a duplicate couple as a proxy
of the evolutionary constraints that act on it. In fact, higher similarity implies that a
stronger evolutionary pressure is preventing the duplicated genes from changing their
interactions, and thus their role in the regulatory network. Note that, in principle, the
same kind of effect can derive from the duplication age of the paralogues - younger
paralogues did not have enough time to lose or rewire connections and thus share more
interactions than older ones. This effect is indeed present and shown in Fig. 4.2 of the
Discussion chapter. We mitigated this kind of bias by considering only SSD couples
that were duplicated approximately in the same distant time when also the two rounds
of WGD took place, as explained above.

2.8 Null models

We evaluated the motif enrichment by suitably rewiring the regulatory and protein inter-
action networks. More precisely we constructed randomized versions of the networks
using the degree-preserving procedure proposed in [52] and illustrated in Fig. 2.4. This
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Fig. 2.4 Null models creation with degree-preserving randomization. Graphical
representation of the degree-preserving procedure used to generate the null models.
The dashed links are randomly chosen and their ends swapped, thus generating the new
bold links. Note that all of the involved genes maintain their in and out degree in the
process.

randomization algorithm destroys the local topology of the network but leaves the node
degree intact, so that each gene retains the same number of interactions as in the real
network, only with different neighbors. In this way we can rule out the possibility that
the enrichment patterns we observe are only due to degree-degree correlations in the
paralogues, since these correlations are kept unaltered in the ensemble of randomized
networks. This is a standard procedure and has also been implemented in widely used
motif counting software packages [33, 53].

If the motif under study involves interactions of different types, e.g. transcriptional
and protein-protein interactions, we constructed several null models, each one with a
randomized version of a different network while keeping the others fixed. Since this
work is mainly focused on the effects of duplications at the transcriptional level, we
report in the main text only the Z-scores referred to the randomizations of the ENCODE
transcriptional regulatory network for mixed-type motifs. The complete results can be
found in Fig. 4.3 of the Discussion chapter.

We also compare the results about interaction similarities of the paralogues with
interaction similarities of random non-duplicated gene couples (labelled as “not DUP”
in the figures), in order to highlight the role of duplication mechanisms in shaping the
network structure.
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2.9 Data and code availability

The raw data used for this study are all publicly available from their respective sources.
The data and the code required to replicate the analyses and figures in this work are
available on Zenodo with the following DOI: 10.5281/zenodo.5110112

Our processed lists of SSD and WGD paralogues and the processed regulatory net-
works are also easily downloadable from the following GitHub repository:
https://github.com/fmottes/wgd-network-motifs.
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Chapter 3

Results

This chapter presents the results of our motif enrichment analyses, in order of increasing
topological and functional complexity of the circuits considered.

3.1 Degree distributions

Fig. 3.1 Degree distributions (ENCODE, PrePPI, TarBase networks). Indegree (kin)
and outdegree (kout) distributions of (A) the ENCODE transcriptional regulatory net-
work and of (B) the TarBase miRNA-gene regulatory interactions network, and the
degree (k) distribution of (C) the PrePPI protein-protein interactions network. Each
degree distribution is shown both as a probability distribution (upper figure) and as a
boxplot (lower figure). The global degree distribution of each network is represented in
green, while the degree distributions of genes involved in a SSD couple and in a WGD
couple are represented in blue and red, respectively. Dotted lines, corresponding to the
reported scaling of the degree, are not the result of a fit and are shown as a reference
only. The boxplot representation, although less commonly used for degree distributions,
clearly shows the similarity of the distributions in all of the three networks.

In network theory, the degree of a node, which in our case represents a gene, is the
number of interactions it has with other nodes in the network. For directed networks,
such as transcriptional networks, one can further distinguish between the in-degree of
a node, i.e., the number of incoming links, and the out-degree, i.e., number of outgo-
ing links. The degree distributions of the different networks considered are shown in
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Fig. 3.2 Degree distributions (STRING and mirDIP networks). Indegree (kin) and
outdegree (kout) distributions of (A) the mirDIP miRNA-gene regulatory network and
the degree (k) distribution of (B) the STRING protein-protein interactions network.
Each degree distribution is shown both as a probability distribution (upper figure) and as
a boxplot (lower figure). The global degree distribution of each network is represented
in green, while the degree distributions of genes involved in a SSD couple and in a WGD
couple are represented in blue and red, respectively. Dotted lines, corresponding to the
reported scaling of the degree, are not the result of a fit and are shown as a reference
only.

Fig. 3.1 for the ENCODE, TarBase and PrePPI networks and in Fig. 3.2 for the mirDIP
and STRING networks. The degree distributions and the average degree of genes dupli-
cated by SSD and WGD do not display any striking difference with respect to the global
degree distributions. As it is often observed in this type of networks, the distributions
are power-like. However, as far as the present work is concerned, it does not really
matter which is the exact shape of the various distributions, as long as any macroscopic
difference in degree distribution for the two types of duplicates is ruled out. Therefore,
we conclude that duplications do not display specific biases in terms of gene degree in
the different networks considered. This is an important preliminary observation, since
in the following we will focus on regulatory circuits whose statistics could be depen-
dent on the degree of the nodes. The absence of relevant differences suggests that the
peculiar role of duplicated genes in the regulatory network is not associated to the sheer
number of their interactions, but it must be due to more complex topological proper-
ties (i.e. network motifs). As we discuss in the next sections, this is exactly what we
observe.
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Fig. 3.3 Interactions of duplicated genes in the PrePPI network. The percentages
of gene pairs that present an interaction at the protein level according to the PrePPI
database are indicated by the bold horizontal lines and explicitly stated in the labels on
the right. The null model distributions are reported in the boxplots and the correspond-
ing Z-scores are shown at the top.

3.2 Duplicated genes often interact at the protein level

In this section we analyze the tendency of duplicated genes to interact at the protein
level. The PPI network (see the Methods section) is very sparse, with 15,762 nodes and
only 237,272 links. In this network, we identified 65,057 SSD pairs and 6,182 WGD
pairs. Among these duplicated genes, approximately 4% of SSD pairs and (17% of
WGD pairs show evidence of a protein-protein interaction in the PPI database. Such
percentages, shown in Fig. 3.3, are remarkably high. In the null models used for com-
parison the proportion of duplicates with an interaction never exceeds 1% and it is
usually much lower. This leads to the impressive Z-scores reported in the figure. This
behavior is also in stark contrast with the ∼ 0.2% of couples of non-duplicated genes
with a protein-protein interaction. Overall, we observe a strong correlation between
presence of links in the PPI network and the pairing organization of duplicated genes.
In other words, duplicated genes have a high probability of interaction in the PPI net-
work. This effect is more pronounced for WGD duplications with almost 1 in 5 couples
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Fig. 3.4 Pairs of duplicated genes interacting with a third protein in the PrePPI
network. (A) Similarity distributions for WGD, SSD and not duplicated gene couples
in the PrePPI network. All of the pairwise comparisons between distributions are statis-
tically significant, as indicated by the presence of the symbols explained in the Methods
chapter. (B) Z-scores measuring the enrichment of the co-interaction motif with respect
to the null model. (C) Pairwise comparison between each real similarity distribution
and the null distribution for the respective duplication type.

presenting a protein-protein interaction, compared to just 1 in 25 in the SSD case.
We also analyzed the tendency of couples of duplicated genes to form protein com-

plexes with a third common protein, which is captured by the statistics of co-interaction
motifs presented in Fig. 3.4. In particular, Fig. 3.4A shows that WGD couples have a
higher interaction similarity with respect to SSD couples and, generally, duplicates have
a significantly larger proportion of common interactions than non-duplicated couples.
This is confirmed by the comparison with the null model obtained by rewiring the PPI
network, as discussed in the Methods section (Fig. 3.4C). This tendency explains the
enrichment of co-interaction motifs shown by the Z-scores in Fig. 3.4B.

The evolutionary tendency to retain WGD couples that participate in common pro-
tein complexes agrees with previous observations in yeast [26, 54], where the observed
tendency was less significant but exactly in the same direction. This result also agrees
with a previous observation that proteins belonging to protein complexes were retained
more frequently after WGD events than SSD events [55]. The same trend was reported
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for the human genome using a database of transient protein complexes [22]. We shall
see in the Discussion chapter a nice example (the RAR/RXR pathway) of how the re-
tention of protein-protein interactions among WGD pairs and the tendency to maintain
their interactions with common partners may increase the variety and complexity of the
functions performed by the genes involved in the WGD event.

3.2.1 Comparison between the PrePPI and STRING networks

The results referred to the PrePPI network, presented in the section above, are indepen-
dently confirmed by analyzing the STRING protein-protein interaction network. By
comparing Fig. 3.3 and Fig. 3.5, we can easily see that the proportion of paralogue
couples which also have a protein-protein interaction are almost identical in the PrePPI
and in the STRING case. The Z-scores associated to the STRING results in this case
are also of the same order of magnitude of the ones found in the PrePPI network, con-
firming the overall statistical significance of the observed signal. As observed in Fig.
3.6, the effects of paralogy relations on the tendency of couples of duplicated genes to
form protein complexes with a third common protein are even more pronounced in the
STRING network than in the PrePPI network. The similarity in common contacts is
much higher in the STRING network for both SSD and WGD couples, while the simi-
larity distribution of non-duplicated is comparable in the two different networks. All of
the pairwise comparisons between the three different types of couples are statistically
significant (see Fig. 3.6A), as well as the comparisons with the null model (see Fig.
3.6C). The Z-scores associated to the co-interaction motif are well beyond statistical
significance and an order of magnitude higher than the ones observed for the PrePPI
network (Fig. 3.6B), strongly supporting all of the findings presented in the previous
section.

3.3 V motifs are enriched of WGD Transcription Factors

Transcriptional V motifs are genetic circuits in which a couple of duplicated transcrip-
tion factors regulate a common target gene. The motif enrichment analysis and the
similarity distributions indicate that WGD pairs of TFs tend to co-regulate the same
target genes more than SSD pairs, whose behaviour is instead comparable with that
of non duplicated TF couples (Fig. 3.7A). Since the number of duplicated TFs (both
through WGD and SSD events) is rather small, motif enrichment analysis and simi-
larity scores are expected to show larger fluctuations and smaller Z values. However,
Fig. 3.7 shows that the result are still consistent. These findings indicate that WGD
had a crucial role in shaping the transcriptional regulatory mechanisms, by introducing
regulatory redundancies that were retained by evolution over millions of years. On the
other hand, regulatory redundancies created by SSD duplications have been generally
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Fig. 3.5 Interactions of duplicated genes in the STRING network. The percentages
of gene pairs that present an interaction at the protein level according to the STRING
database are indicated by the bold horizontal lines and explicitly stated in the labels on
the right. The null model distributions are reported in the boxplots and the correspond-
ing Z-scores are shown at the top.

lost or rewired during evolution. A similar phenomenon was observed in yeast [39],
and thus seems to be an universal trend characterizing WGD-derived genes.

The different behavior of WGD and SSD derived couples is corroborated by the
observation that WGD pairs of TFs tend to maintain the same DNA Binding Sequence
(DBS) much more than SSD pairs. In fact, out of the 25 pairs of WGD TFs, 20 (i.e
80%) kept the same DBS (more precisely they belong to the same motif family, as
defined in [56]), while in the SSD case this happens only for 7 out of 41 TFs pairs.
The specific conservation of DBS in WGD pairs was observed also in yeast [57], thus
suggesting that it could be a general phenomenon.

3.4 Λ motifs are enriched in duplicated targets

Λ motifs are simple circuits in which a regulator acts on a couple of targets. We consid-
ered transcriptional and miRNA-mediated Λ motifs as reported in Fig. 3.8 and Fig. 3.9
respectively. The similarity distributions of WGD and SSD genes are both larger than
the non-duplicate one for both types of Λ motifs. Coherently, the Z-scores indicate en-
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Fig. 3.6 Pairs of duplicated genes interacting with a third protein in the STRING
network. (A) Similarity distributions for WGD, SSD and not duplicated gene couples
in the PrePPI network. All of the pairwise comparisons between distributions are statis-
tically significant, as indicated by the presence of the symbols explained in the Methods
chapter. (B) Z-scores measuring the enrichment of the co-interaction motif with respect
to the null model. (C) Pairwise comparison between each real similarity distribution
and the null distribution for the respective duplication type.

richment for both SSD and WGD motifs. The Z values suggest that motifs derived from
SSD have been retained with higher significance with respect to WGD ones. The same
trend is present in miRNA-mediated motifs, but with lower enrichment scores. Overall
we observe a tendency of duplicated couples to share the same regulatory interactions.
The pattern is more evident at the trascriptional level, and it is stronger for SSD than
for WGD pairs.

3.4.1 Comparison between the TarBase and the mirDIP networks

We conducted the same analyses for the enrichment of miRNA-mediated Λ motifs on
the mirDIP network. The results are reported in Fig. 3.10 and completely confirm all
of the observations made in the previous section, which were based on the TarBase
network instead. In particular, we see in Fig. 3.10A that the similarity distributions of
SSD and WGD couples differ from the one for non-duplicated couples in a statistically
significant manner, but are compatible with each other. Fig. 3.10C also confirms that
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Fig. 3.7 Transcriptional V motifs. (A) Similarity distributions for WGD, SSD and
not duplicated TF couples in the ENCODE network. As indicated by the presence of
the symbols explained in the Methods chapter, the difference between SSD and not-
duplicated distributions is not statistically significant while the comparisons involving
the WGD distribution are instead significant. (B) Z-scores measuring the enrichment of
the V motif with respect to the null model. (C) Pairwise comparison between each real
similarity distribution and the null distribution for the respective duplication type.

both SSD and WGD similarity distributions are significantly higher than the null model.
In the end, Fig. 3.10B shows that motifs enrichments for SSD and WGD couples are
even stronger than in the TarBase network, but go in the exact same directions.

3.5 More complex motifs are enriched in duplicated genes.

The role played by WGD-derived genes in shaping the regulatory network emerges
more clearly if we look at more complex network motifs, such as Feed-Back Loops
(FBLs), Feed-Forward Loops (FFLs) and BiFan-type motifs (Fig. 3.11, and 3.12). These
motifs were all shown to be associated to specific and relevant functions, that will be
discussed in the corresponding sections.
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Fig. 3.8 Transcriptional Λ motifs. (A) Similarity distributions for WGD, SSD and not
duplicated target genes couples in the ENCODE network. As indicated by the pres-
ence of the symbols explained in the Methods chapter, the difference between SSD and
WGD distributions is not statistically significant, while both of them are significantly
greater that the similarity distribution of non duplicated genes. (B) Z-scores measuring
the enrichment of the Λ motif with respect to the null model. (C) Pairwise compari-
son between each real similarity distribution and the null distribution for the respective
duplication type.

3.5.1 FBLs involving pairs of WGD TFs are predominant.

Feedback Loops (FBLs) are a key component of regulatory networks, since they can
implement bi-stable switches [38] that represent an excellent decision-making circuit.
FBLs can be easily created by duplicating a TF with a self-regulating loop and self
regulation is a widespread network motif, from bacteria to humans [38]. This simple
motif is associated to several important functions, such as the the modulation of the
expression response time, robustness to stochastic noise, and bimodality in the protein
levels [38]. In our analysis, the number of observed FBLs is so small that statistical
tests are not meaningful, therefore we simply categorised the 25 pairs of WGD TFs and
the 41 pairs of SSD TFs according to their topological configuration. Fig. 3.11 reports
the duplicated TF couples that contain at least one gene with a self-loop or that display
a mutual regulatory interaction. We immediately see that FBLs involving SSD pairs are
completely absent in the network, while 3 out of the 25 pairs of WGD TFs present in
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Fig. 3.9 miRNA Λ motifs in the TarBase network. (A) Similarity distributions for
WGD, SSD and not duplicated target genes couples. The difference between SSD and
WGD distributions is not statistically significant, while both of them are significantly
greater that the similarity distribution of non duplicated genes. (B) Z-scores measuring
the enrichment of the Λ motif with respect to the null model. (C) Pairwise compari-
son between each real similarity distribution and the null distribution for the respective
duplication type.

the network display a FBL topology and, interestingly, all 3 pairs involved in a FBL
motif also present two self-loops. In general, the data presented in Fig. 3.11 show that
it is more likely for a pair of WGD-derived TFs to retain a self-regulatory mechanism,
together with some kind of mutual regulatory interaction. These observations suggest
that the evolutionary pressure favoured the retention of new FBLs created during the
two WGD rounds while disfavouring the retention of those created by a SSD event.

The tendency for SSD events not to maintain the cross-regulations generated after
the duplication of a self-regulating gene was also noted in E. Coli [58], strengthening
our confidence that the effect we see might not only be due to the small number of
couples present in this case.
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Fig. 3.10 miRNA Λ motifs in the mirDIP network. (A) Similarity distributions for
WGD, SSD and not duplicated target genes couples. Also in this case the difference
between SSD and WGD distributions is not statistically significant, while both of them
are significantly greater that the similarity distribution of non duplicated genes. (B)
Z-scores measuring the enrichment of the Λ motif with respect to the null model. (C)
Pairwise comparison between each real similarity distribution and the null distribution
for the respective duplication type.

3.5.2 FFLs involving pairs of WGD genes are strongly enriched in the regulatory
network.

Feed-Forward Loops (FFLs) are another fundamental component of gene regulatory
networks and are often strongly enriched in regulatory networks [38]. Depending on
the exact nature and strength of the interactions, they can implement complex func-
tions such as detection of signal persistence, pulse generation, noise buffering and fold-
change detection [38].

Fig. 3.12A shows that FFL motifs generated by WGD events are strongly conserved,
while the statistics of FFLs involving SSD TFs is compatible with the null model. Once
again this clearly shows that evolutionary constraints applied to WGD genes are very
different from the ones that affect SSD couples.
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Fig. 3.11 Feedback Loops and Self-Loops in couples of duplicated Transcription
Factors. (A) SSD and (B) WGD duplicate TF couples that contain at least one gene
with a self-loop or that display a mutual regulatory interaction in the ENCODE regula-
tory network, subdivided by topological arrangements.

3.5.3 Gene duplications shaped Bifan and FFL arrays.

Bifan and FFL+Bifan motifs (also called “Multi-output Feed-Forward Loops” in the
literature) are shown in Fig. 3.12B and 3.12C respectively. The main function of these
motifs is to integrate different input signals, in order to organize the transcription of
downstream target genes. They can both be seen as combinatorial decision-making
devices, but with an important difference: the additional presence of a regulatory in-
teraction between the two TFs in the second case transforms a simple Bifan into a
double FFL, which allows to combine the input signals in a nonlinear fashion, leading
to more complex regulatory programs. Another peculiarity of Bifan motifs is their ten-
dency to cluster together, forming extensive superstructures named “Bifan arrays” [57]
or “Dense Overlapping Regulons” (DORs) [38], that were identified for the first time
in E. Coli [34]. In such superstructures, regulators and targets are arranged on two dif-
ferent layers, with a very large number of regulatory interactions between them. The
situation is similar to the one depicted in Fig. 2.3 and 2.4, but in real regulatory net-
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Fig. 3.12 Transcriptional FFL, Bifan and FFL+Bifan motifs. (A) Transcriptional
Feed-Forward Loops (FFLs). (B) Transcriptional Bifan motifs (in which no regulatory
is present between the two TFs). (C) FLL+Bifan motif. The extra connection between
the two regulators transforms the array of simple regulations into an array of FFL mo-
tifs. In both (B) and (C) the two regulators and the two targets are duplicated couples
of the same type (i.e. both WGD or both SSD pairs).

works Bifan arrays can involve dozens of genes. The additional presence of regulatory
interactions among regulators further increases the complexity of the functions that can
be implemented.

We consider the special case where both the regulators and the targets are two -
different - duplicated couples, along with motifs that do not contain any duplicated
couple. Their levels of enrichment in the ENCODE transcriptional network are shown
in Fig. 3.12B for simple Bifans and in 3.12C for the FFL+Bifan configuration.

The relevance of these two motifs in the structure of the regulatory network is con-
firmed by their statistical enrichment. In particular, simple Bifans are retained with
higher probability when they are created by SSD duplications, while WGD pairs are
preferentially involved in FFL+Bifan motifs. This result again confirms that WGD-
derived genes are subjected to different evolutionary constraints with respect to SSD-
derived genes, and that WGD has driven the formation of motif that are associated to
more complex functions.

3.6 Synergy between different layers of regulation is facilitated by dupli-
cation events.

By analysing different layers of regulation combined together, we can quantify the role
of duplication events in fostering the synergy between different regulation layers. For
example, considering ∆ motifs we can assess the tendency of a particular type of reg-
ulators to act on a couple of duplicated genes that also interact at the protein level
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Fig. 3.13 Motifs with mixed-type regulatory interactions. (A) Transcriptional ∆
motifs. (B) miRNA-mediated ∆ motifs. (C) Mixed Bifan motifs, in which a pair of
target genes are regulated both by a common TF and a common miRNA. (D) Mixed
Bifan motif in which the two target genes interact at the protein level. The reported
Z-scores are referred to the null model obtained by randomizing the transcriptional
regulatory network (apart from the miRNA ∆ motif for which the miRNA-gene network
is randomized).

(Fig. 3.13A). We observe a strong enrichment of both SSD and WGD motifs, with a
slight preference for the former type, which is in line with the results reported in the
section on Λ motifs. In the case of miRNA-mediated ∆ motifs (Fig. 3.13B), we again
observe a clear role of duplicated genes in their retention but there are no clear prefer-
ences for SSD or WGD genes.

The enrichment analysis for the mixed-type Bifans in absence of protein-protein in-
teractions, i.e., the motif observed when a duplicated pair is simultaneously involved
in a transcriptional and miRNA-mediated Λ motif, are reported in Fig. 3.13C. The en-
richment of mixed-type Bifans with additional protein-protein interactions between the
duplicated genes, is instead shown in Fig. 3.13D. Different types of duplicates appear
to promote different integration strategies between layers of regulation. SSD couples
are strongly associated with integration between miRNA and transcriptional regulators,
when there is no direct PPI interaction between the targets. On the other hand, WGD
couples promote the retention also of a direct PPI link between them. This clearly
shows that gene duplications facilitate the creation of a significant three-way synergy
among the three layers of regulation. This effect can in principle lead to more complex
and robust regulatory mechanisms. In fact, the combination of miRNA-mediated and
transcriptional regulatory interactions has been shown to ensure optimal noise control,
together with a set of interesting complex properties like adaptation and fold-change
detection, depending on the parameters of the regulatory interactions [59, 60].
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Chapter 4

Discussion

In this chapter we discuss the results presented in the previous chapter. We will draw
connections between our observations and known facts about gene regulatory strategies
and genome evolution, and analyze the evolutionary implications of our findings.

4.1 Target redundancy and dosage balance

The exact mechanisms involved in the retention of duplicated genes are still debated,
but most proposed explanations focus on dosage balance constraints [61, 62, 63]. For
example, a recent analysis of genetic interactions involving WGD couples in yeast pro-
posed that evolutionary trajectories of duplicated genes are dictated by the combination
of dosage balance constraints with functional and structural entanglement factors [64].
Another recent study on A. thaliana similarly concluded that dosage balance constraints
operate immediately after WGD and that duplicate gene retention patterns are shaped
by selection to preserve dosage balance [65].

The dosage balance explanation relies on the importance of keeping the correct sto-
ichiometric ratios of protein products within the cell. If the balance is preserved by
the duplication event, the duplicated genes will be conserved by evolution with higher
probability. This scenario was first proposed to explain the retention of WGD dupli-
cates, since the duplication of the whole genome facilitates an overall balancing of gene
expression [63]. This is especially important for classes of genes which show a high
level of dosage sensitivity: such genes are preferentially retained in double copy over
long evolutionary timescales [66]. Studies conducted on the metabolic network of A.

thaliana also suggested that different types of dosage constraints - relative and absolute
- influence the retention of duplicates at different timescales after WGD events [67].

The dosage-balance principle was also recently invoked to explain SSD retention [68].
In this case, dosage balance (and thus duplicate retention) is granted by a substantial de-
crease in gene expression of the duplicated pair, which allows to re-balance gene dosage
after duplication. Examples of this last type of behaviour have been found both in yeast
and in mammals [68].
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The decrease in expression levels needed for dosage balance could be achieved more
easily if both duplicated genes were regulated by the same set of TFs, possibly the same
TFs which regulated the ancestral gene [68]. The presence of an evolutionary pressure
to keep co-regulation of duplicated targets is also supported by recent observations: du-
plicated gene pairs are enriched for co-localization in the same Topologically Active
Domain (TAD), share more enhancer elements than expected, and have increased con-
tact frequencies in Hi-C experiments [69]. From a regulatory network perspective, this
evolutionary pressure would imply the selective enrichment we observe of the transcrip-
tional Λ motifs stemming from duplicated targets.

However, this is not the only reason for which one could expect an over-representation
of the Λ motif. Motifs of this type ensure a reduction of the relative fluctuations of the
two targets [60] and improve the stochastic stability of the duplicated genes. This noise
buffering action is particularly effective in presence of a combined and coordinated ac-
tion of transcription factors and miRNAs [60, 59], i.e., in presence of a “mixed”-type
network motifs. All of these considerations are indeed confirmed by the findings pre-
sented in Fig. 3.8, 3.9 and 3.13C.

Dosage balance constraints and stochastic stability are particularly important if the
two duplicated proteins are in interaction between them or are involved in a com-
plex [70]. If this is the case, we should expect a specific enrichment of protein-protein
interactions between the two duplicated genes and of ∆ motifs. These effects are indeed
observed in our analysis (Fig. 3.3, 3.4 and 3.13).

The tendency to interact and to share interacting proteins is even more evident for
WGD-derived gene couples. This could be again a consequence of how the two differ-
ent mechanisms of duplication alter the dosage balance [21].

4.2 Regulatory redundancy

It is widely recognized that gene duplications played a central role in the evolution of
gene regulatory networks [31, 71] and in setting the TF repertoire [56].

An immediate consequence of TF duplication is the creation of a regulatory redun-
dancy, meaning that after the duplication event the two TFs regulate the same set of
target genes. However, this potential functional redundancy is expected to be transient.
In fact, during evolution one gene copy may be lost or become a pseudogene, it may
acquire a new function (neofunctionalization) [1], or it may share the ancestral func-
tions of the original gene with the other copy (subfunctionalization) [72]. The typical
completion time for these processes is of a few millions of years [73], thus for most of
the SSD and for all the WGD gene pairs, we should expect no functional redundancy
at all. On the contrary, there are strong indications that this is not the case and that
for several pairs of both SSD and WGD redundancy is preserved, in some cases, for
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billions of years [74].
Our study suggests that the retention of regulatory redundancy is strongly depen-

dent on the duplication mechanism. The topological enrichment of V motifs an the
distribution of target similarity (Fig. 3.7) suggest a significative preference for WGD
TF pairs to retain common targets. SSD couples display instead a weak similarity in
targets, compatible with null models. Therefore, WGD events seem to have promoted
regulatory redundancy during network evolution.

Interestingly, there is a non-trivial relation between redundancy in the interactions
of the transcription factor repertoire and organismal complexity [56]. Most of the dupli-
cated TFs kept almost unchanged their DNA binding sequence leading to an organiza-
tion of TFs in “motif families”. The TFs within one of these families have similar DNA
binding sequences and are thus expected to perform redundant regulatory functions.
The size and distribution of these motif families is well fitted by a simple Birth-Death-
Innovation evolutionary model [56] which is controlled by a single parameter θ. This
parameter encodes the level of regulatory redundancy of the TFs repertoire of the organ-
ism, i.e. the tendency of TFs to keep the same binding preferences [56]. It was shown
in [56] that the parameter θ increases with the complexity of the organism. It takes
rather small values for yeast (θ ∼ 0.2) and C. elegans (θ ∼ 0.3), intermediate values for
D. melanogaster (θ ∼ 0.5) and much higher values for mouse and human (θ ∼ 0.75).
The fact that the tendency to maintain high redundancy in couples of duplicated TFs
is much stronger for WGD paralogues once again associates WGD events to a higher
complexity.

There are several possible explanations connecting increased genetic regulatory re-
dundancy with increased complexity. First of all, regulatory redundancy can increase
the robustness against mutations [75], a safety mechanism that is more and more nec-
essary as the interplay of regulatory interactions increase in complexity. Moreover,
regulatory redundancy facilitates the implementation of articulated combinatorial reg-
ulations. In many cases two duplicated TFs could keep the same set of target genes,
but evolved to respond to different cellular signals or to interact with different upstream
proteins [76, 2]. We shall see a nice example of this pattern in the RAR/RXR pathway
which we discuss more in depth in one of the next sections.

In principle, combinatorial regulation - and the associated benefit of an increased
environmental responsivity - could arise by combining the regulatory interactions of
any two TFs, with no need for specifically retaining duplicated TFs. However, such a
mechanism would unavoidably increase the noise in the regulatory process. There is in-
deed a tension between environmental responsivity and noise control in gene regulation,
and it has been suggested that it could be resolved by gene duplications [77, 78]. This
hypothesis was tested in yeast for the specific Msn2-Msn4 pair of WGD-derived Tran-
scription Factors [77], and our results suggest that it could be a general evolutionary
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trend that applies also to gene regulation in vertebrates.
Most of the results mentioned above on duplication mechanisms are based on ob-

servations and experiments performed in model organisms like S. cerevisiae and A.

thaliana. The newly available data on WGD genes give us the unique opportunity to
extend previous studies, also encompassing the vertebrate lineage. We observed that
several trends are conserved across different species and overall it seems that ancient
WGD events had a relevant role in shaping current regulatory redundancy.

4.3 FFL and Bifan arrays

The specific combination of FFL+Bifan arrays that, we found, is promoted by WGD-
derived genes can have important consequences on the network dynamics. By com-
bining the combinatorics of Bifan with the nonlinear signal integration of FFLs, these
circuits can process signals in a highly non-trivial way. As is graphically represented in
Fig. 1.3, WGD events can create FFL+Bifan motifs in a very easy and natural way. Du-
plication of a TF with a self-loop interaction generates a couple of TF paralogues with
a mutual regulatory interaction and a commmon set of targets. If the original regulator
does not have a self-regulatory interaction, the WGD event creates a simple Bifan motif
instead.

In principle, Bifan and FFL+Bifan circuits can also be generated by a succession of
SSD events. The chances of duplicating a TF and its target in two distinct SSD events is
reasonably low, but SSD events occur quite frequently. However, there is no guarantee
that the created motif will survive. In a relatively short evolutionary timescale many
of the created connections could be rewired and duplicated genes could be lost. The
presence of complex structures retained for more than 500 millions of years is highly
non-trivial, since they must have survived a lot of selective pressure. Interestingly,
Fig. 3.12 shows that there are specific retention biases for different circuits depending
on the the duplication mechanism at the origin of their formation. Our findings suggest
that SSD duplications favoured the retention of the less complex Bifan motif, while
WGD duplications are associated to more complex FFL arrays.

The fact that WGD events selectively favoured the enrichment of more complex
FFL+Bifan configuration only might sound surprising. In general, common sense sug-
gests that mechanisms that are able to produce structures with a certain degree of com-
plexity should be able to produce also the less complex ones. We can make some
hypotheses on the reasons why we observe this peculiar pattern. First of all, we observe
that WGD events duplicated every single gene by definition and that SSD events target
every gene with (approximately) the same probability. Therefore, we have no specific
reason to believe that some genes were preferred over the other at duplication time and
every difference we see must be due to the subsequent evolution of the gene network.
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We can then speculate that the absence of excess Bifan motifs could be then explained if
couples of duplicated TFs which interact with each other had a much higher probability
of being retained. Note that this evolutionary dynamics must be WGD-specific, since
SSD couples present exactly the opposite pattern. This hypothesis is also supported by
the results shown in Fig. 3.11.

A similar retention pattern (over-representation of Bifan motifs for duplicated TFs
and in particular for WGD versus SSD pairs) was also observed in yeast [57]. These
observations again support the conjecture that WGD-derived genes follow a different
evolutionary trajectory with respect to SSD ones, and that their emergence favoured the
development of complex regulatory strategies.

4.4 Synergy of different layers of regulation

Besides the vertebrates’ WGDs, there are other well known examples of WGD events
in eukaryotes, such as those observed in S. cerevisiae [57, 39] and in A. thaliana [10].
Several of the trends we identified in human are in agreement with previous analy-
sis in those two model organisms, suggesting some universality of the results despite
the increase in organism complexity. This increase in complexity is also linked to the
presence of several post-transcriptionl layers of regulation, such as miRNA regulation,
that are much less developed in simpler organisms like yeast. Analyzing the human
regulatory network, we could identify an important role of gene duplication events in
promoting the interplay between different layers of regulation. Specifically, we iden-
tified an emergent statistical enrichment of motifs involving both protein-protein inter-
actions and trascriptional regulation, as well as motifs combining transcriptional and
post-transcriptional regulation. This agrees with the general observation that complex
regulatory functions like adaptation, fine tuning, fold change detection or noise buffer-
ing can be better achieved by suitable combinations of miRNAs and TFs, arranged in
well defined network motifs [60, 59, 79]. Our analysis indicates that several of these
mixed motifs arose with ancient gene duplication events - both SSD and WGD - at the
beginning of the vertebrate lineage and were then conserved by evolution for more than
500 million years.

4.5 An example of WGD importance: The RAR/RXR pathway

In this section we discuss more in depth the RAR/RXR pathway (schematized in Fig.
4.1A and 4.1B), a tangible example that hints at the importance of WGD events in con-
tributing to the evolution of complex traits in vertebrates. The pathway is composed
by four sets of WGD-derived genes: the RAR family (RARA,RARB,RARG), the RXR
family (RXRA,RXRB,RXRG), the NCOA family (NCOA1,NCOA2,NCOA3) and the
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Fig. 4.1 RAR/RXR pathway is an example of WGD importance. (A) In pres-
ence of Retinoid Acid (RA) the RAR/RXR complex recruits Nuclear CoActivators
(NCOA), activating the transcription of the downstream gene. (B) In absence of RA the
RAR/RXR complex recruits Nuclear CoRepressors (NCOR) instead, blocking the tran-
scription of the downstream gene. (C) Protein-protein interactions among the genes in-
volved in the RAR/RXR pathway, common interactions with other genes are not shown
for clarity. Genes colored in the same way are WGD copies of a common ancestral
gene.

NCOR family (NCOR1,NCOR2). They densely interact among themselves at the pro-
tein level (see Fig. 4.1C) and they co-interact with a host of other genes. The choice of
this particular example is due both to its central role in the embryonic development of
vertebrates and to the high statistical significance of the number of common interactions
of the genes involved. An hypergeometric test conducted on the overlap of interactions
between any two of the considered genes gives a p-value smaller than 1e− 35.

The Retinoic Acid Receptors (RAR) genes are nuclear receptors of the Retinoic
Acid (RA) which is a metabolite of retinol (vitamin A). They form heterodimeric com-
plexes with the Retinoid X Receptors (RXR), which then target a DNA binding se-
quence known as Retinoic Acid Response Element (RARE) and act as transcriptional
regulators for a host of target genes. Binding of the RAR/RXR complex at the RARE
site induces the recuitment of either the Nuclear Receptor CoActivators (NCOA), in
presence of the retinoic acid (Fig. 4.1A), or the Nuclear Receptor CoRepressors (NCOR),
when RA is absent (Fig. 4.1B), thus directly activating or repressing the transcription of
the target genes. The RAR pathway is known to be involved in the formation of the body
axis and is essential for the development of several organs including the hindbrain, the
spinal cord, the skeleton, the heart, the eye, the pancreas, the lung and the reproductive
tract. Importantly, it plays a prominent role in the development of the central nervous
system. It mediates the anteroposterior regionalization, by regulating the transcription
of Hox genes and subsequently stimulating neurogenesis and promoting neuronal dif-
ferentiation. For an in-depth review of the RAR/RXR pathway see for instance [80] and
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references therein.
The three components of the RAR family, RARα (RARA), RARβ (RARB) and

RARγ (RARG), happen to be WGD copies of an ancestral RAR gene. Such ancestral
gene can still be found in several non-chordate organisms like, for instance, anellids
and mollusks [81, 82]. By comparing the ligand affinity and the expression patterns of
the three versions of the vertebrates’ RARs with that of the ancestral RAR, it has been
shown that the ancestral RAR has a much lower affinity with its ligand with respect to
the vertebrate RARs[81, 82] and that each of the three WGD copies of RARs evolved
to gain a different ligand specificity and expression pattern [83]. At the same time, we
observe a large number of common interactions among the three, sign that a significant
regulatory redundancy has nonetheless been retained.

The scenario which emerges from these observations (for a thorough discussion see
for instance [82]) is that before the WGD event the ancestral RAR was only involved
in neuronal differentiation, with no involvement in spatial patterning. After WGD on
the other hand, thanks to the higher affinity with the ligand and to the specificity of
the binding interactions, the RAR system developed the ability of reading the spatial
distribution of the RA. In particular the RAR pathway became, via the regulation of
the Hox genes, the controller of the anteroposterior patterning in chordates. Evidently,
this important gain of functionality is connected to the two rounds of WGD that created
redundant copies of the genes involved in the pathway.

There is one last interesting fact to notice in connection to our discussion on the
role of WGD events in the evolution of the RAR/RXR pathway. The anteroposterior
patterning must be ultimately due to an increased complexity of the spatial distribution
of the RA, otherwise the increased ability of the RAR system to read the RA distribution
would have been useless. Such non trivial spatial organization requires an articulated
degradation machinery for the RA. This degradation is performed in vertebrates by the
CYP26 family, which is also composed by a triplet of WGD-derived paralogues, namely
the CYP26A1, CYP26B1, CYP26C1 genes[84]. This fact, once again, strongly points
to a fundamental role of WGD duplications in the evolution of some complex vertebrate
traits.

4.6 Robustness of the results

The nature of the motifs that we studied and the type of enrichment in which we are
interested (WGD versus SSD, or pairs of duplicated genes versus non-duplicated ones)
require a careful control over possible spurious signals. The first necessary control is
that the three gene classes do not differ significantly in the distribution of the number
of interactions, since this could affect the motif statistics. In all of the networks we
studied, all kinds of genes (duplicated and not) follow the same degree distribution. It
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is only when genes are combined into network motifs that we can really appreciate the
effects of different gene duplications on the topology of the networks. The observations
in Fig. 3.1 and Fig. 3.2 ensure that the observed network motif enrichments are not
spuriously produced by anomalies in the degree distributions, but are instead robust
signatures of the statistical significance of the interactions among the elements of the
motif.

In the next two sections we expose two other very important checks that confer fur-
ther robustness to our analyses and greater confidence in the soundness of the patterns
we observe. In the first section we will show that duplication age indeed has an effect
on the interaction similarity between SSD couples, supporting our choice of excluding
recent SSD duplicates from our analyses, as explained in the Methods chapter. In the
other one we will show that our results on mixed-type motifs are robust with respect to
the choice of different networks of miRNA-gene and protein-protein interactions and to
null models constructed from different networks.

4.6.1 Interaction similarity is influenced by duplication age

In this section we assess the effects of duplication age on the retention of interaction
similarity in SSD paralogues. We divided the SSD paralogues into two different age
classes, based on the estimated node in the phylogenetic tree where the couple was gen-
erated. We considered SSD couples generated before the appearance of Srcopterygii

as roughly contemporary to the WGD-generated couples. We then compared their in-
teraction similarity distribution, calculated in different networks for different kinds of
interactions, to the one of SSD couples generated in more recent times.

As we can easily oobserve in Fig. 4.2, younger SSD couples present interaction
similarities that are higher or much higher than the ones showed by older duplicates. We
can hypothesize that this is due to the fact that the binding sequences of the two young
duplicates did not have enough time to diverge significantly. For this reason, including
such young couples in our analysis would have introduced an unwanted bias, which
is the reason why we excluded them in the first place, as explainded in the Methods

chapter.
As a side note, it is also interesting to notice that the bias introduced by the presence

of younger SSD couples would have been negligible, at least when considering simi-
larity distributions. This can be seen in Fig. 4.2, since the similarity distributions of
the pre-Sarcopterygii SSD cuples and the overall distribution of similarities are almost
indistinguishable. While the more recent SSD couples present a higher degree of simi-
larity, in fact, they are also in a much smaller number compared to the older duplicates.
This numerical imbalance is well represented in Fig. 2.1. For this this reason, their
presence would not have hampered our analyses in any case.
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Fig. 4.2 The effect of SSD duplication age on interaction similarity. For each net-
work considered in this work, we compare interaction similarity distributions of, from
left to right in the plots: all of the SSD couples, SSD couples roughly contemporary to
WGD events, younger SSD couples and WGD couples. Transcriptional interactions are
further divided into (A) TF couples and (B) target couples. Notice on the hand end the
striking difference between young and old duplicates and, on the other hand, the lack of
appreciable differences between the overall SSD distributions and the distributions for
the older copies only.

4.6.2 Mixed-type motifs enrichments with different null models

in the case of mixed-type motifs, there is no obvious way to define a single null model
with respect to which one needs to calculate motif enrichments. In our case in partic-
ular, is not clear which of the different networks participatng in the definition of the
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motif we would need to reshuffle. We therefore calculated different Z-scores for each
mixed-type motif, each obtained by shuffling one of the networks participating in the
motif and keeping the others fixed. Moreover, we considered two alternative protein-
protein interaction networks (the PrePPI and STRING-DB network) and two alternative
miRNA-gene networks (the TarBase and the mirDIP network). This generates a wealth
of possible combinations of networks that have to be checked for each of the considered
motifs. Take for example a miRNA-mediated ∆ motif, as shown in Fig. 4.3B. We need
to check four possible combinations of networks: TarBase-PrePPI, TarBase-STRING,
mirDIP-PrePPI and mirDIP-STRING. For each of these combinations we calculate two
different Z-scores, one obtained by shuffling the miRNA-gene network and the other
obtained by shuffling the protein-protein interaction network. The results we obtain
when carrying out this procedure for every mixed-type motif are reported in figure 4.3.

Despite significant differences both in the genes and in the interactions found in the
different databases, we found quite consistent enrichment patterns. This observation is
quite reassuring, boosting our confidence in the fact that the effects we see are a real
biological signal and are not simply due to experimental artifacts or to some other bias.
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Fig. 4.3 Motifs with mixed-type regulatory interactions (different null models and
network combinations). Each table is referred to a different combination of databases,
always comprising transcriptional, miRNA-gene and protein-protein interactions. In
each table, from left to right: Transcriptional ∆ motifs, miRNA-mediated ∆ motifs,
Mixed Bifan motifs, in which a pair of target genes are regulated both by a common TF
and a common miRNA, and Mixed Bifan motif in which the two target genes interact
at the protein level. The Z-scores are referred to the randomization of the network
indicated in the column header. The table shown in the main text is a subset of (A).
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Chapter 5

Conclusions

Gene duplications played a crucial role in the evolution of the human genome, and it
is by now widely accepted that two rounds of whole genome duplication happened at
the origin of the vertebrate lineage [1]. How these two global-scale events affected
the gene regulatory networks, however, is still to be fully understood. Thanks to the
recently published lists of WGD pairs [21, 18, 20], we had the possibility of tackling
this problem. This thesis quantifies for the first time the effects of WGD and SSD events
on the structure of regulatory networks in human, and the results support the idea that
these networks were significantly and peculiarly shaped by the two rounds of WGD at
the beginning of the vertebrate lineage. These two ancient events seem to have played
a central role in promoting the impressive plasticity and complexity of the regulatory
networks of vertebrates.

In order to support these conclusions, we studied how small-scale duplications
(SSDs) and whole-genome duplications (WGDs) differently affected the statistics of
simple building blocks of complex networks, that go under the name of network motifs.
We considered, in particular, three different layers of gene regulatory interactions in hu-
man, namely transcriptional regulation, protein-protein interactions and miRNA-gene
interactions.

At the transcriptional level, we showed that both SSD and WGD events played a
significant role in promoting target redundancy. We argued that the retention of such
redundancy could be connected both to its role in facilitating the satisfaction of dosage
balance constraints applied to the targets and to the improved stochastic stability of the
resulting gene circuits. We also showed that, on the contrary, WGD events seem to
have played a much more important role in the retention of transcription factor redun-
dancy with respect to SSD events. Regulatory redundancy increases robustness against
mutations and facilitates the implementation of articulated gene regulatory strategies,
therefore playing an important role in increasing the complexity of transcriptional pro-
grams.

WGD events also display a very strong preference for the retention of self-interactions
and mutual transcriptional interactions between duplicates, although this result could
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not be statistically validated. Gene circuits featuring these kind of interactions present
a set of desirable properties, such as reduced response times and bi-stable toggle-
switch-like behavior, fundamental for the implementation of decision-making strate-
gies. Lastly, we showed how WGD events promoted the retention of feed-forward loop
(FFL) configurations and their coupling with Bifan structures. This coupling allows
to combine the ability to generate temporal activation programs typical of Bifans with
the non-linear response to input signals typical of FFLs, opening up many opportuni-
ties for the development of complex regulatory strategies. On the contrary, SSD events
favoured the retention of the less complex Bifan motifs.

At the protein-protein interaction level, we showed that WGD events favoured the
retention of contacts between two duplicated genes in a much stronger way with re-
spect SSD events, indicating a stronger tendency of WGD duplicates to participate in
the same protein complexes. In the same spirit, we observed a similar preference for
WGD couples to form complexes with many common co-interactors. At the miRNA-
gene interaction level, instead, we observe a generic tendency for duplicated couples to
be regulated by many common miRNAs, although there seem to be no big difference
connected to the two different duplication processes.

By looking at motifs composed of interactions at different levels, that we refer to
as ”mixed-type motifs”, we conclude that both SSD and WGD duplications acted in
the direction of promoting synergy between different regulatory mechanisms, although
in different ways. These kind of mixed interactions are known to be prominent in the
implementation of fundamental regulatory functions, such as noise buffering and fold-
change detection. In the end, we discussed a concrete example of the importance of
WGD events in the evolution of regulatory networks. We considered, specifically, the
effects of whole-genome duplications on the RAR/RXR pathway, showing how such
events allowed to develop a refined control over the spatial distribution of retinoic acid,
leading to an increase in the organisms’ complexity.

Overall, our results support the hypothesis that whole-genome duplicated paralogues
follow a different evolutionary trajectory with respect to small-scale duplicated par-
alogues. They shaped the topology of regulatory networks at many different interaction
levels, favouring the retention of network motifs that are typically associated to complex
functions and to a more refined control of gene expression levels.
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[67] Michaël Bekaert, Patrick P. Edger, J. Chris Pires, and Gavin C. Conant. Two-
Phase Resolution of Polyploidy in the Arabidopsis Metabolic Network Gives Rise
to Relative and Absolute Dosage Constraints. Plant Cell, 23(5):1719–1728, 2011.

[68] Xun Lan and Jonathan K. Pritchard. Coregulation of tandem duplicate genes slows
evolution of subfunctionalization in mammals. Science, 352(6288):1009–1013,
2016.

[69] Jonas Ibn-Salem, Enrique M. Muro, and Miguel A. Andrade-Navarro. Co-
regulation of paralog genes in the three-dimensional chromatin architecture. Nu-

cleic Acids Res., 45(1):81–91, 2017.

[70] Wenfeng Qian and Jianzhi Zhang. Gene dosage and gene duplicability. Genetics,
179(4):2319–2324, 2008.

[71] M. Madan Babu, Nicholas M. Luscombe, L. Aravind, Mark Gerstein, and Sarah A.
Teichmann. Structure and evolution of transcriptional regulatory networks. Curr.

Opin. Struct. Biol., 14(3):283–291, 2004.

[72] M. Lynch and J. S. Conery. The evolutionary fate and consequences of duplicate
genes. Science, 290(5494):1151–1155, 2000.

[73] Michael Lynch and John S. Conery. The evolutionary demography of duplicate
genes. J. Struct. Funct. Genomics, 3(1-4):35–44, 2003.

[74] Tanya Vavouri, Jennifer I. Semple, and Ben Lehner. Widespread conservation of
genetic redundancy during a billion years of eukaryotic evolution. Trends Genet.,
24(10):485–488, 2008.

52



[75] Zhenglong Gu, Lars M. Steinmetz, Xun Gu, Curt Scharfe, Ronald W. Davis, and
Wen-Hsiung Li. Role of duplicate genes in genetic robustness against null muta-
tions. Nature, 421(6918):63–66, 2003.

[76] Christopher R. Baker, Victor Hanson-Smith, and Alexander D. Johnson. Follow-
ing gene duplication, paralog interference constrains transcriptional circuit evolu-
tion. Science, 342(6154):104–108, 2013.

[77] Michal Chapal, Sefi Mintzer, Sagie Brodsky, Miri Carmi, and Naama Barkai. Re-
solving noise-control conflict by gene duplication. PLoS Biol., 17(11):e3000289,
2019.

[78] Johan Hallin and Christian R. Landry. Regulation plays a multifaceted role in the
retention of gene duplicates. PLoS Biol., 17(11):e3000519, 2019.

[79] Carla Bosia, Matteo Osella, Mariama El Baroudi, Davide Corà, and Michele
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