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Abstract. It is known that any dot-product kernel can be seen as
a linear non-negative combination of homogeneous polynomial kernels.
In this paper, we demonstrate that, under mild conditions, any dot-
product kernel defined on binary valued data can be seen as a linear
non-negative combination of boolean kernels, specifically, monotone con-
junctive kernels (mC-kernels) with different degrees. We also propose a
new radius-margin based multiple kernel learning (MKL) algorithm to
learn the parameters of the combination. An empirical analysis of the
MKL weights distribution shows that our method is able to give solu-
tions which are more sparse and effective compared to the ones of state-
of-the-art margin-based MKL methods. The empirical analysis have been
performed on eleven UCI categorical datasets.

Keywords: Multiple Kernel Learning, radius-margin optimization, boolean
kernels

1 Introduction

In the context of kernel machines, the choice of the kernel function is a key step
to build good predictors. Kernel learning (KL), and the multiple kernel learning
(MKL) paradigm in particular, aims at learning the best representation, i.e., the
kernel function, directly from data. In the case of MKL, the used kernel is a
combination of many base kernels. There exists several methods for combining
kernels. In this paper, we consider only linear non-negative combinations of base
kernels, in the form κ(x, z) =

∑R
r=0 µrκr(x, z), µr ≥ 0.

Learning is usually supported by a validation step, where a user estimates
the effectiveness of different kernels on a subset of training data, namely the
validation set. More recently, alternative criteria have been proposed to estimate
the goodness of a representation [4]. An important example of these strategies is
the minimization of the radius-margin bound [2], that is the ratio between the
radius of the minimum enclosing ball (MEB) and the margin observed on training
data. In [5], for example, this strategy has been used for MKL optimization.

It is well known [3, 8] that any dot-product kernel (DPK) of the form κ(x, z) =
f(〈x, z〉) can be seen as a dot product polynomial (DPP), that is a non-negative
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linear combination of homogeneous polynomial kernels (HP-kernels), i.e., κ(x, z) =∑D
d=0 ad〈x, z〉d, with appropriate coefficients ad ≥ 0. Recently, it has been shown

that it is possible to generalize any DPK by making this combination non-
parametric and by optimizing the coefficients ad from data via a maximum
margin MKL algorithm in both binary [3] and multiclass [6] contexts.

A first important contribution of the present paper is an extension of the
above-mentioned result in the case of boolean input vectors x, z ∈ {0, 1}n. Specif-
ically, we demonstrate that any DPK defined on boolean vectors can be seen as a
non-negative linear combination of monotone conjunctive kernels (mC-kernels)
of different degrees. The mC-kernel of degree d basically counts the number of
common true d-degree (positive) conjunctions of variables in the two input vec-

tors and can be easily computed by a binomial coefficient κd∧(x, z) =
(〈x,z〉

d

)
. The

combination is referred to as monotone conjunctive kernel polynomial (mCKP).
Similarly to [3], here we propose to optimize the coefficients of a general

mCKP via MKL. However, in our case, we propose a new gradient-descent
method able to effectively minimize the exact radius-margin ratio. A similar
kind of minimization have been proposed in [5] for MKL. However, in that work,
different approximations were made to make the problem tractable.

We compare the proposed MKL algorithm (here dubbed RM-GD) in terms
of AUC and the obtained radius-margin ratio on several categorical datasets,
against two MKL baselines. Interestingly, we observed that, in almost every
dataset, the distribution of the weights obtained by our MKL algorithm is very
sparse and typically picked around two (one low degree and one high degree)
mC-kernels. Hence, we refine our proposal by giving another simpler version of
the algorithm that combines just one conjunctive kernel of a given degree with
the identity matrix. This version has the advantage to be easily parallelizable.

2 Notation and background

Let X ∈ {0, 1}l×n be the binary training matrix, and let y ∈ {+1,−1}l be the

vector of labels. We denote by κd∧(x, z) =
(〈x,z〉

d

)
and κdHP(x, z) = 〈x, z〉d the d-

degree monotone conjunctive kernel (mC-kernel) and the d-degree homogeneous
polynomial kernel (HP-kernel) between x and z, respectively.

The normalized version of a given kernel κ, here denoted κ̃, can also be
considered. Note that, when needed, it can be easily computed by means of the
well-known formula κ̃(x, z) = κ(x, z)/

√
κ(x,x)κ(z, z).

Given a training kernel matrix K such that Ki,j = κ(xi,xj), it can be shown
that the margin obtained by a (hard-margin) SVM using that kernel can be
computed as ρ2 = minγ∈Γ γ>YKYγ, where Y is the diagonal matrix of training
labels Y = diag(y) and Γ = {γ ∈ Rl+|

∑
i:yi=+1 γi = 1 ∧

∑
i:yi=−1 γi = 1}.

Furthermore, it can be seen that, when a kernel is normalized, the radius of
the MEB enclosing training data in feature space can be obtained by solving
R2 = 1−minα∈Aα>Kα where A = {α ∈ Rl+,

∑
i αi = 1}.

Finally, given x ∈ Rn and p ∈ Nn0 , the symbol xp will denote the product
among variables exponentiated component-wise, that is xp = xp11 , . . . , x

pn
n .
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3 DPKs as linear combinations of mC-kernels

The feature space of the HP-kernel of a given degree d is formed by all the
monomials of degree d, each weighted by some coefficient. When the input vectors
are binary, then many of these monomials collide in a single value, since the
factors of the monomials xpi will have the same value for every p ≥ 1. This
observation allows us to give the following results concerning the relationship
between HP-kernels and mC-kernels.

Theorem 1. Given x, z ∈ {0, 1}n, then any HP-kernel can be decomposed as a
finite non-negative linear combination of mC-kernels (a mCKP) of the form:

κdHP(x, z) =

d∑
s=0

h(s, d) κs∧(x, z), h(s, d) ≥ 0.

Proof. Given x, z ∈ {0, 1}n, by definition:

κs∧(x, z) =

(
〈x, z〉
s

)
=
∑
b∈Bs

xbzb (1)

where Bs ≡ {b ∈ {0, 1}n
∣∣ ‖b‖1 = s}. Moreover, we have:

κdHP(x, z) = 〈x, z〉d =

(
n∑
i=1

xizi

)d
=
∑
p∈Pd

(
d!
∏
pi∈p

1

pi!

)
︸ ︷︷ ︸

q(p,d)

xpzp =
∑
p∈Pd

q(p, d)xpzp,

(2)
with Pd ≡ {p ∈ Nn0

∣∣ ‖p‖1 = d}. Hence, Eq. 2 can be written as

κdHP(x, z) =

d∑
s=0

∑
p∈Ps

d

q(p, d)xpzp, (3)

where Psd ≡ {p ∈ Pd
∣∣ ∑n

i=1Jpi > 0K = s} and J·K the indicator function.
Let us now partition the set Psd in such a way to have two vectors taken from

Psd in the same class of equivalence if and only if they share the same components
greater than zero. Specifically, given b ∈ Bs, then Psd(b) ≡ {p ∈ Psd | ∀i : pi >
0 ⇐⇒ bi = 1}. With this notation, we can rewrite Eq. 3 as:

κdHP(x, z) =

d∑
s=0

∑
b∈Bs

xbzb
∑

p∈Ps
d(b)

q(p, d). (4)

Now, we can observe that, when s is fixed, then
∑

p∈Ps
d(b)

q(p, d) is constant over

the elements b ∈ Bs. This is because the terms of the summations are the same.
So, by taking any representative bs ∈ Bs, we can rewrite Eq. 4 as:

κdHP(x, z) =

d∑
s=0

 ∑
p∈Ps

d(bs)

q(p, d)


︸ ︷︷ ︸

h(s,d)

(∑
b∈Bs

xbzb

)
=

d∑
s=0

h(s, d) κs∧(x, z). �
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In the following we will show that, assuming boolean input vectors with the
same number of active variables, a similar result of Theorem 1 also holds when
using normalized monotone conjunctive kernels.

Theorem 2. Given x, z ∈ {0, 1}n such that ‖x‖1 = ‖z‖1 = m , then any
HP-kernel can be decomposed as a finite non-negative linear combination of nor-
malized mC-kernels, that is:

κdHP(x, z) =

d∑
s=0

h(m, s, d) κ̃s∧(x, z), h(m, s, d) ≥ 0.

Proof. Consider the normalized mC-kernel, defined as follows:

κ̃s∧(x, z) =

(〈x,z〉
s

)
(〈x,x〉

s

) 1
2
(〈z,z〉

s

) 1
2

.

Since we assume ‖x‖1 = ‖z‖1 = m, we can write:

κ̃s∧(x, z) =

(〈x,z〉
s

)(
m
s

) 1
2
(
m
s

) 1
2

=
1(
m
s

)κs∧(x, z)

where we used the fact that for binary vectors ‖ · ‖1 = ‖ · ‖22 always holds and
hence, by Theorem 1 we can conclude:

κdHP(x, z) =

d∑
s=0

h(s, d)

(
m

d

)
︸ ︷︷ ︸
h(m,s,d)

κ̃s∧(x, z) =

d∑
s=0

h(m, s, d) κ̃s∧(x, z).

�

As discussed by Donini et al. in [3], under mild conditions, any DPK of the form
κ(x, z) = f(〈x, z〉) can be seen as a DPP, that is κ(x, z) =

∑+∞
d=0 adκ

d
HP(x, z).

Exploiting this result and the theorems above, we can get the following corollary.

Corollary 1. Given x, z ∈ {0, 1}n such that ‖x‖1 = ‖z‖1 = m , then any DPK
can be decomposed as a finite non-negative linear combination of normalized
mC-kernels:

κ(x, z) = f(〈x, z〉) =

m∑
s=0

g(m, s) κ̃s∧(x, z), g(m, s) ≥ 0

Proof. (sketch) By using Theorem 1 we can see that κdHP(x, z) can always be seen
as a non-negative linear combination of the first m mC-kernels (since κs∧(x, z) =
0 always holds when s > m). Hence, using the result in [3] and Theorem 2, the
claim can be easily demonstrated.

�
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4 The proposed algorithm

In the previous section we have shown that any DPK defined on binary vectors
can be seen as a parametric linear combination of mC-kernels (a mCKP). In this
section, we propose to make the combination non-parametric and to learn the
coefficients of the mCKP by optimizing the radius-margin ratio of the combined
kernel. Basically, we search on the kernel space κ(x, z) =

∑d
s µsκ̃

s
∧(x, z), where

µs ≥ 0,
∑
s µs = 1 are the parameters to optimize. In this space we want to

obtain the kernel that minimizes the radius-margin ratio.
First of all, we perform a change of variables by introducing a new vector

of variables β and replacing µs(β) = eβs/(
∑
r e

βr ). This allows us to obtain an
unconstrained problem easier to optimize. Specifically, we are now able to write
the radius-margin ratio minimization problem as in the following:

min
β
Ψ(β), where Ψ(β) =

1− α̂(β)>
(∑R

r=1 µr(β)Kr

)
α̂(β)

γ̂(β)>Y
(∑R

r=1 µr(β)Kr

)
Yγ̂(β)

,

α̂(β) = arg min
α∈A

α>

(
R∑
r=1

µr(β)Kr

)
α and γ̂(β) = arg min

γ∈Γ
γ>Y

(
R∑
r=1

µr(β)Kr

)
Yγ.

By definition
∑R
r=1 µr(β) = 1, so

Ψ(β) =

∑R
r=1 e

βr

ar(β)︷ ︸︸ ︷(
1− α̂(β)

>
Krα̂(β)

)
∑R
r=1 e

βr

(
γ̂(β)

>
YKrYγ̂(β)

)
︸ ︷︷ ︸

br(β)

≈ 〈e
β,a〉
〈eβ,b〉

= Ψ̄(β),

where eβ = [eβ1 , . . . , eβR ], a = [a1, a2, . . . , aR]>, b = [b1, b2, . . . , bR]> and
we assume a,b constants around a given β. In order to optimize the function
Ψ(β) we then perform a series of steps of gradient descent on the approximated
function Ψ̄(β) followed by a new computation of a = a(β), and b = b(β). The
gradient step can be easily found as ∀r ∈ {1, . . . , R} we have the following:

∂Ψ̄(β)

∂βr
=
are

βr 〈eβ,b〉 − breβr 〈eβ,a〉
〈eβ,b〉2

=
eβr (ar〈eβ,b〉 − br〈eβ,a〉)

〈eβ,b〉2

Summarizing, starting from β = 0 and µ(β) the uniform distribution over base
kernels, at each iteration, the kernel combination K is computed using the cur-
rent µ(β) and then the vectors a = a(β) and b = b(β) can be computed as
described above. Finally, the update of β and µ(β) are performed as follows:

βr ← βr − η
eβr
∑
s e

βs(arbs − asbr)
〈eβ,b〉2

∀r ∈ {1, . . . , R}, µ← 1∑
r e

βr
eβ

where η is the learning rate. This iterative procedure continues until a maximum
number of iterations (max iter) is reached.
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5 Experimental assessment

Experiments have been performed using 11 binary and categorical datasets ob-
tained from the UCI Machine Learning Repository [7]. The datasets have dif-
ferent sizes and characteristics, which are reported in Table 1. A preprocess-
ing phase has been performed to make all these datasets binary. In particular,
categorical features have been mapped into binary features by one-hot encod-
ing, examples with missing values have been removed, and multiclass problems
(audiology, zoo, primary-tumor, soybean, dna) transformed to binary ones by
manually splitting the original classes in two groups. Different MKL settings for
the combination of normalized mC-kernels have been compared. Namely:

– Kavg
C : the average of normalized mC-kernels of degrees 1 to 10, that is
∀r, µr = 1

10 ;
– KMKL

C : the MKL solution where coefficients µ are computed by the EasyMKL
method [1] on normalized mC-kernels of degrees 1 to 10;

– KRM-GD
C : the MKL solution of the gradient descent based algorithm pro-

posed in this paper for the minimization of the radius-margin ratio when
combining normalized mC-kernels of degrees 1 to 10;

For each MKL method, an SVM model has been trained using the obtained
kernel. Available data have been split into training (50%) and test (50%); train-
ing data has been used to select the kernel and fit the SVM, then the AUC
score has been calculated on the test set. To improve the statistical significance
of the results, for each method, 50 runs with different splits (the same set for
all the methods) have been performed. The average AUC in the test sets and
the average ratio obtained in the training sets are reported in Table 1. Results
show a significant AUC improvement of the proposed methodology KRM-GD

C with
respect to MKL baselines, for the large majority of tasks.

In order to better evaluate the behaviour of the proposed algorithm for the
radius-margin optimization, in Figure 1 the distribution of weights is reported
with respect to the one of EasyMKL, a MKL algorithm which aims at maximizing
the margin alone. From the figure it is self-evident that margin maximization
can give very different results with respect to the minimization of the radius-
margin ratio. We observe that the weight vectors learned by our algorithm are
very sparse, and hence only a small subset of kernels are combined to form the
final kernel. The most typical configuration sets only two coefficients with large
values, one low degree mC-kernel and one high degree mC-kernel.

Given the considerations above, we tried to apply the same gradient-descent
radius-margin ratio optimization algorithm using only one non trivial mC-kernel
combined with the identity matrix (note that high degree mC-kernels approx-
imates the identity matrix). The optimal degree of the mC-kernel to combine
is then chosen by selecting the one with the best ratio of the combined kernel.
The obtained results, together with the average parameter selected in validation
(the degree of the mC-kernel selected and the weight given to the identity ma-
trix), are presented in the last column of Table 1. Not surprisingly, the obtained
ratio is always worse than the ratio obtained by considering all the kernels at
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dataset Kavg
C KMKL

C KRM-GD
C KRM-GD

C,id

audiology 99.99±0.04 99.99±0.04 100.00±0.00 100.00±0.00(2.64, 0.0023)
(92,84,c) 6.08±0.33 5.99±0.32 5.38±0.25 5.41±0.25

zoo 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00(2.10, 0.0021)
(101,21,c) 3.01±0.23 2.62±0.28 2.24±0.32 2.27±0.34

promoters 96.37±1.99 96.38±1.96 95.83±1.93 95.82±1.95(1.00, 0.0068)
(106,228,c) 11.27±0.25 11.02±0.32 8.77±0.63 8.79±0.65

primary-tumor 72.55±4.37 72.69±4.30 74.58±4.58 75.53±4.76(1.38, 0.7079)
(132,24,c) 15.87±1.30 15.05±0.87 14.31±0.72 14.37±0.69

house-votes 99.11±0.41 99.10±0.42 99.20±0.41 99.21±0.45(2.30, 0.1992)
(232,16,b) 8.90±1.13 8.90±1.17 8.49±1.13 8.60±1.12

soybean 99.73±0.19 99.73±0.19 99.70±0.25 99.69±0.25(3.30, 0.0008)
(266,88,c) 11.49±0.73 11.32±0.82 10.86±0.96 10.93±0.98

spect 82.01±3.14 82.06±3.02 83.39±3.10 83.81±3.11(1.04, 0.5154)
(267,23,b) 18.91±1.32 18.56±1.15 17.53±1.08 17.63±1.09

tic-tac-toe 98.82±0.46 99.04±0.39 99.74±0.20 99.76±0.20(4.00, 0.0001)
(958,27,c) 73.39±1.57 70.93±1.45 60.75±1.49 60.92±1.61

dna-bin 98.46±0.21 98.53±0.20 98.71±0.18 98.69±0.18(2.00, 0.0001)
(2000,180,b) 118.49±1.98 108.87±2.46 103.45±2.43 104.16±2.53

splice 98.98±0.13 99.04±0.12 99.14±0.15 99.08±0.13(2.00, 0.0001)
(3175,240,c) 195.50±2.13 143.85±2.99 133.39±3.26 134.35±3.30

kr-vs-kp 99.90±0.05 99.91±0.04 99.92±0.04 99.95±0.04(3.80, 0.090)
(3196,38,c) 109.84±2.75 109.19±2.89 107.92±2.95 112.28±2.79

Table 1. AUC score (1st row) and radius-margin ratio (2nd row) for all the methods.
In the case of KRM-GD

C,id the average parameters obtained in validation, i.e. average of
degrees and average of the weights given to the identity matrix, are also indicated. For
each dataset, in parenthesis, the information about #examples, #features and type of
the dataset: binary (‘b’) or categorical (‘c’).

once. However, the difference is not so significant and the AUC score obtained
by this simplified method is comparable, with the advantage of being highly
parallelizable.

6 Conclusions

In this work we showed that, under mild conditions, any dot-product kernel
applied to binary data can be decomposed in a linear non-negative paramet-
ric combination of monotone conjunctive kernels with different degrees. Then, a
procedure to learn the (non-parametric) coefficients of the combination is pro-
posed which exploits a radius-margin optimization algorithm based on gradient
descent (here called RM-GD). The solutions returned by RM-GD are generally
characterized by high sparseness and high AUC performance when compared to
state-of-the-art margin-based MKL methods. Finally, our experiments also con-
firmed that the minimization of the radius-margin bound is an effective principle
to pursue in order to minimize the expected test error.
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Fig. 1. Distribution of the weights obtained by EasyMKL (in white) and RM-GD (in
blue) when combining mC-kernels of degrees 1 to 10 on nine UCI datasets.
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