
CONTRIBUTED RESEARCH ARTICLE 208

kStatistics: Unbiased Estimates of Joint
Cumulant Products from the Multivariate
Faà Di Bruno’s Formula
by Elvira Di Nardo and Giuseppe Guarino

Abstract kStatistics is a package in R that serves as a unified framework for estimating univariate and
multivariate cumulants as well as products of univariate and multivariate cumulants of a random
sample, using unbiased estimators with minimum variance. The main computational machinery of
kStatistics is an algorithm for computing multi-index partitions. The same algorithm underlies the
general-purpose multivariate Faà di Bruno’s formula, which therefore has been included in the last
release of the package. This formula gives the coefficients of formal power series compositions as
well as the partial derivatives of multivariable function compositions. One of the most significant
applications of this formula is the possibility to generate many well-known polynomial families as
special cases. So, in the package, there are special functions for generating very popular polynomial
families, such as the Bell polynomials. However, further families can be obtained, for suitable choices
of the formal power series involved in the composition or when suitable symbolic strategies are
employed. In both cases, we give examples on how to modify the R codes of the package to accomplish
this task. Future developments are addressed at the end of the paper

1 Introduction

Joint cumulants are usually employed for measuring interactions among two or more random variables
simultaneously, extending the familiar notion of covariance to higher orders. More in details, suppose
Y a random vector with moment generating function MY (z), for z = (z1, . . . , zm) in a suitable
neighborhood of 0. Thus MY (z) can be expressed as

MY (z) = exp
(
KY (z)

)
(1)

where KY (z) is the cumulant generating function of Y . If1 i ∈Nm
0 and

MY (z) = 1 + ∑
|i|>0

E[Y i]

i!
zi KY (z) = ∑

|i|>0

ki(Y)
i!

zi (2)

then {ki(Y)} are said the joint cumulants of {E[Y i]}. From a theoretical point of view, cumulants are a
useful sequence due to the following properties (Elvira Di Nardo 2011):

• Orthogonality: Joint cumulants of independent random vectors are zero, that is ki(Y) = 0 for
|i| > 0 if Y = (Y1, Y2) with Y1 independent of Y2.

• Additivity: Cumulants linearize on independent random vectors, that is
ki(Y1 + Y2) = ki(Y1) + ki(Y2) for |i| > 0 with Y1 independent of Y2.

• Multilinearity: ki(AY) = ∑j1,...,jm (A)
j1
i1
· · · (A)jm

im kj(Y) for |i| > 0 with A ∈ Rm ×Rm.

• Semi-invariance: If b ∈ Rm then ki(Y + b) = ki(Y) for |i| ≥ 2.

Thanks to all these properties, joint cumulants have a wide range of applications: from statistical
inference and time series (Jammalamadaka, Rao, and Terdik 2006) to asymptotic theory (Rao and Wong
1999), from spatial statistics modeling (Dimitrakopoulos, Mustapha, and Gloaguen 2010) to signal
processing (Giannakis 1987), from non-linear systems identification (Oualla et al. 2021) to Wiener
chaos (Peccati and Taqqu 2011), just to mention a few. Indeed it is also well known that cumulants
of order greater than two are zero for random vectors which are Gaussian. Therefore, higher order
cumulants are often used in testing for multivariate Gaussianity (Jammalamadaka, Rao, and Terdik
2006).

The i-th multivariate k-statistic is a symmetric function of the multivariate random sample whose
expectation is the joint cumulant of order i of the population characters. These estimators have
minimum variance when compared to all other unbiased estimators and are built by free-distribution
methods without using sample moments. Due to the properties of joint cumulants, multivariate
k-statistics are employed to check multivariate gaussianity (Ferreira, Magueijo, and Silk 1997) or

1If i ∈Nm
0 is a multi-index then we set i! = i1! · · · im ! and |i| = i1 + · · ·+ im.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 209

to quantify high-order interactions among data (Geng, Liang, and Wang 2011), for applications in
topology inference (Smith et al. 2022), in neuronal science (Staude, Rotter, and Grün 2010) and in
mathematical finance (E. Di Nardo, Marena, and Semeraro 2020). Polykays are unbiased estimators
of cumulant products (Robson 1957) and are particularly useful in estimating covariances between
k-statistics (McCullagh 1987). In the kStatistics package (E. Di Nardo and Guarino 2021), the nPolyk
function provides k-statistics and polykays as well as their multivariate generalizations. Further
implementations are in Phyton (Smith 2020), in Maple (Guarino, Senato, and Di Nardo 2009) and in
Mathematica (Rose and Smith 2002).

All these estimators are described with a wealth of details by Stuart and Ord (1994) and McCullagh
(1987) and their construction relied on some well-known change of bases in the ring of symmetric
polynomials. In Elvira Di Nardo (2011) a different approach is followed using suitable polynomial
families and symbolic strategies. This procedure was the core of the first release (version 1.0) of the
kStatistics package (E. Di Nardo and Guarino 2019), as the initial goal was to implement tools for
the estimation of cumulants and cumulant products, both in the univariate and in the multivariate
case. As the referred polynomial families can be traced back to the generalized (complete exponential)
Bell polynomials, the latest version of the package (E. Di Nardo and Guarino 2021) has also included
procedures to generate these polynomials together with a number of special cases.

Let us recall that the generalized (complete exponential) Bell polynomials are a family of polynomi-
als involving multivariable Sheffer sequences (Brown 1979). Among its various applications, we recall
the cumulant polynomial sequences and their connection with special families of stochastic processes
(E. Di Nardo 2016a). Indeed, cumulant polynomials allow us to compute moments and cumulants of
multivariate Lévy processes (E. Di Nardo and Oliva 2011), subordinated multivariate Lévy processes
(E. Di Nardo, Marena, and Semeraro 2020) and multivariate compound Poisson processes (E. Di Nardo
2016b). Further examples can be found in Reiner (1976), Shrivastava (2002), Withers and Nadarajah
(2010) or Privault (2021).

The generalized (complete exponential) Bell polynomials arise from the multivariate Faà di Bruno’s
formula, whose computation has been included in the latest version of the kStatistics package. In
enumerative combinatorics, Faà di Bruno’s formula is employed in dealing with formal power series.
In particular the multivariate Faà di Bruno’s formula gives the i-th coefficient of the composition (E.
Di Nardo, Guarino, and Senato 2011)

h(z) = f (g1(z)− 1, . . . , gn(z)− 1) (3)

where f and gj for j = 1, . . . , n are (exponential) formal power series

f (x) = ∑
|t|≥0

ft
xt

t!
and gj(z) = ∑

|s|≥0
gj;s

zs

s!
, (4)

with x = (x1, . . . , xn), z = (z1, . . . , zm) and2 xt = xt1
1 · · · x

tn
n , zs = zs1

1 · · · z
sm
m , ft = ft1,...,tn , gj;s =

gj;s1,...,sm for j = 1, . . . , n, and f0 = g1;0 = · · · = gn;0 = 1. For instance, from (1) and (2) joint
moments can be recovered from joint cumulants using the multivariate Faà di Bruno’s formula for
n = 1, g(z) = 1 + KY (z) and f (x) = exp(x). As 1 + KY (z) = 1+ log([MY (z) − 1] + 1) then joint
cumulants can be recovered from joint moments using the multivariate Faà di Bruno’s formula for
n = 1, g(z) = MY (z) and f (x) = 1 + log(1 + x). Let us remark that the exponential form (4) of the
formal power series f and {gj} is not a constraint. To work with ordinary formal power series, the
multi-index sequence { ft} needs to be replaced by the sequence {t! ft} as well as the multi-index
sequence {gj;s} by the sequence {s!gj;s} for j = 1, . . . , n. In this case, the multivariate Faà di Bruno’s
formula gives the coefficient i!h̃i with h̃i the i-th coefficient of the (ordinary) formal power series
composition (3).

The problem of finding suitable and easily manageable expressions of the multivariate Faà di
Bruno’s formula has received attention from several researchers over the years. This is because the
multivariate Faà di Bruno’s formula is a very general-purpose tool with many applications. We
refer to the paper of Leipnik and Pearce (2007) for a detailed list of references on this subject and a
detailed account of its applications. Further applications can be found in Savits (2006), Chacón and
Duong (2015), Shabat and Efendiev (2017) and Nguwi, Penent, and Privault (2022). A classical way to
generate the multivariate Faà di Bruno’s formula involves the partial derivatives of a composition of
multivariable functions. Suppose f (x) and g1(z), . . . , gn(z) in (3) be differentiable functions a certain
number of times. The multivariate Faà di Bruno’s formula gives the partial derivative of order i of
h(z) in z0

hi =
∂|i|

∂zi1
1 · · · ∂zim

m
h(z1, . . . , zm)

∣∣∣
z=z0

for |i| > 0, (5)

2We use these notations independently if the powers or the subscripts are row vectors or column vectors.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 210

assuming the partial derivatives of order t of f (x) exist in x0 = (g1(z0), . . . , gn(z0))

ft =
∂|t|

∂xt1
1 · · · ∂xtn

n
f (x1, . . . , xn)

∣∣∣
x=x0

for 0 < |t| ≤ |i|,

and the partial derivatives of order s of gj(z) exist in z0 for j = 1, . . . , n

gj,s =
∂|s|

∂zs1
1 · · · ∂zsm

m
gj(z1, . . . , zm)

∣∣∣
z=z0

for 0 < |s| ≤ |i|.

There are various ways to express hi in (5), see for example Mishkov (2000), Hernández Encinas
and Muñoz Masqué (2003) and Ma (2009). Symbolic manipulation using Macsyma, Maple, Mathematica,
etc. can produce any required order of (5), by applying the chain rule recursively and using a function
that provides partial derivatives. Also in R, there are some functions for computing partial derivatives
(Clausen and Sokol 2020). Despite its conceptual simplicity, applications of the chain rule become
impractical for its cumbersome computation even for small values of its order. As the number of
additive terms becomes huge, the output is often untidy and further manipulations are required to
simplify the result. By using combinatorial methods, Constantine and Savits (1996) have carried out
the following expression of the multivariate Faà di Bruno’s formula

hi = i! ∑
1≤|t|≤|i|

ft

|i|

∑
k=1

∑
pk(i,t)

k

∏
j=1

(gl j)
qj

qj!(l j!)
|qj |

(6)

where (gs)q = ∏n
j=1(gj,s)

qj with q = (q1, . . . , qn) and

pk(i, t) =

(q1, . . . , qk; l1, . . . , lk) : |qj| > 0,
k

∑
j=1

qj = t,
k

∑
j=1
|qj|l j = i

with q1, . . . , qk ∈Nn

0 and l1, . . . , lk ∈Nm
0 such that3 0 ≺ l1 ≺ . . . ≺ lk.

A completely different approach concerns the combinatorics of partial derivatives as Hardy (2006)
pointed out for the univariate-multivariate composition using multisets and collapsing partitions.
Motivated by his results and using the umbral calculus, which is a symbolic method particularly
useful in dealing with formal power series (4), the combinatorics behind (6) has been simplified and a
different expression has been given in E. Di Nardo, Guarino, and Senato (2011). The key tool is the
notion of partition of a multi-index which parallels the multiset partitions given in Hardy (2006).

The contribution of this paper is multi-sided. We explain how to recover in R a multi-index partition,
which is a combinatorial device. For statistical purposes, we show how to recover k-statistics and their
multivariate generalizations using the referred polynomial approach and multi-index partitions. Then,
we explain the main steps of the MFB function producing the multivariate Faà di Bruno’s formula,
without any reference to the umbral calculus or chain rules and whose applications go beyond
statistical purposes. The main idea is to expand the multivariable polynomial

∑
(

i
s1, . . . , sn

)
q1,s1 (y1) · · · qn,sn (yn)

where q1,s1 (y1) . . . qn,sn (yn) are suitable polynomials and the sum is over all the compositions of i in n
parts, that is all the n-tuples (s1, . . . , sn) of non-negative integer m-tuples such that s1 + · · ·+ sn = i.
Readers interested in the umbral setting may refer to Elvira Di Nardo (2011) and references therein.

Consequently, the MFB function gives an efficient computation of the following compositions:

• univariate with univariate, that is n = m = 1;

• univariate with multivariate, that is n = 1 and m > 1;

• multivariate with univariate, that is n > 1 and m = 1;

• multivariate with multivariate, that is n > 1 and m > 1.

The kStatistics package includes additional functions, for some of the most widespread applica-
tions of the multivariate Faà di Bruno’s formula. Indeed, not only this formula permits to generate
joint cumulants and their inverse relations, but also further general families of polynomials. Therefore,
we have set up special procedures for those families used very often in applications. These functions

3If µ, ν ∈Nm
0 we have µ ≺ ν if |µ| < |ν| or |µ| = |ν| and µ1 < ν1 or |µ| = |ν| and µ1 = ν1, . . . , µk = νk, µk+1 <

νk+1 for some 1 ≤ k < m.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 211

should be considered an easy to manage interfaces of the MFB function, with the aim of simplifying
its application. Moreover, since the R codes are free, the user might follow similar steps to generate
polynomial families not included in the package but always coming from the multivariate Faà di
Bruno’s formula. The construction of new families of polynomials can be done mainly in two ways.
The first way is to choose appropriately the coefficients { ft} and {gj;s} in (4). The second way is to use
some suitable symbolic strategies, as discussed in Elvira Di Nardo (2011). For both cases, we provide
examples.

The paper is organized as follows. The next section explains the main steps of the algorithm that
produces multi-index partitions with particular emphasis on its combinatorics. Then we present the
symbolic strategy to generate k-statistics and their generalizations using suitable polynomial sequences
and multi-index partitions. The subsequent section deals with generalized (complete exponential) Bell
polynomials and some special cases corresponding to well-known families of polynomials. We have
also included the procedures to generate joint cumulants from joint moments and vice versa. In the
last section we explain the main steps of the algorithm to produce the multivariate Faà di Bruno’s
formula. We give examples of how to build new polynomials not included in the package. Some
concluding remarks end the paper.

2 Partitions of a multi-index

Most routines of the kStatistics package use the partitions of a multi-index i. Therefore, before
describing any of these routines, we recall the notion of multi-index partition and describe the
algorithm for its construction as implemented in the mkmSet function of the package.

A partition of the multi-index i = (i1, . . . , im) ∈Nm
0 is a matrix Λ = (λr1

1 , λr2
2 , . . .) of non-negative

integers with m rows and no zero columns such that

• r1 ≥ 1 columns are equal to λ1, r2 ≥ 1 columns are equal to λ2 and so on;

• the columns λ1 < λ2 < . . . are in lexicographic order4;

• the sum of the integers in the t-th row is equal to it, that is λt1 + λt2 + · · · = it for t = 1, 2, . . . , m.

We write Λ ⊢ i to denote that Λ is a partition of i. Some further notations are:

• m(Λ) = (r1, r2, . . .), the vector of multiplicities of λ1, λ2, . . .

• l(Λ) = |m(Λ)| = r1 + r2 + · · · , the number of columns of Λ with l(Λ) = 0 if Λ ⊢ 0

• Λ! = (λ1!)r1 (λ2!)r2 · · ·

Example 1: The partitions of i = (2, 1) are the matrices(
2
1

)
,
(

0 2
1 0

)
,
(

1 1
0 1

)
,
(

0 1 1
1 0 0

)
= (λ1, λ2

2),

with

λ1 =

(
0
1

)
and λ2 =

(
1
0

)
.

The algorithm to get all the partitions of a multi-index resorts to multiset subdivisions. Let’s start
by recalling the notion of multiset. A multiset M is a “set with multiplicities”. Suppose a ∈ M. Then
the multiplicity of a is the number of times a occurs in M as a member. For example, the integers 3 and
2 are the multiplicities of a and b respectively in M = {a, a, a, b, b}. A subdivision of the multiset M is
a multiset of sub-multisets of M, such that their disjoint union returns M. Examples of subdivisions of
M = {a, a, a, b, b} are

S1 = {{a}, {a, b}, {a, b}}, S2 = {{a}, {a, a, b}, {b}}, (7)

S3 = {{a}, {a, a}, {b}, {b}}. (8)

The subdivisions of the multiset M = {a, a, a, b, b} are in one-to-one correspondence with the partitions
Λ ⊢ (3, 2). For example, the subdivisions (7) correspond to the partitions Λ1 = (λ2, λ2

3) and Λ2 =

(λ1, λ2, λ5) respectively, while (8) to Λ3 = (λ2
1, λ2, λ4) with

λ1 =

(
0
1

)
→{b} λ2 =

(
1
0

)
→{a}

4As example (a1, b1) < (a2, b2) if a1 < a2 or a1 = a2 and b1 < b2.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 212

λ3 =

(
1
1

)
→{a, b} λ4 =

(
2
0

)
→{a, a} λ5 =

(
2
1

)
→{a, a, b}.

Multiset subdivisions can be recovered by using collapsing set partitions (Hardy 2006). If the members
1, 2, 3 of the set {1, 2, 3, 4, 5} are made indistinguishable from each other and called a, and 4 and 5 are
made indistinguishable from each other and called b, then the set {1, 2, 3, 4, 5} has “collapsed” to the
multiset M = {a, a, a, b, b}. Therefore the subdivisions of M can be recovered using the same substitu-
tion in the partitions of {1, 2, 3, 4, 5}. For example, S1 in (7) can be recovered from {{1, 4}, {2, 5}, {3}}
or {{3, 5}, {2, 4}, {1}} and so on. As this last example shows, a subdivision might correspond to
several partitions. The number of partitions corresponding to the same subdivision can be computed
using the countP function of the package. However, to find multi-index partitions using set partitions
is not a particularly efficient algorithm since the computational cost is proportional to the n-th Bell
number, if n is the sum of the multi-index components (Charalambides 2002).

The mkmSet function is based on a different strategy which takes into account the partitions of the
multi-index components. When m = 1, the mkmSet function lists all the partitions λ of the integer
i. Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . .) of weakly decreasing positive
integers, named parts of λ, such that λ1 + λ2 + · · · = i. A different notation is λ = (1r1 , 2r2 , . . .), where
r1, r2, . . . are the number of parts of λ equal to 1, 2, . . . respectively. The length of the partition is
l(λ) = r1 + r2 + · · · . We write λ ⊢ i to denote that λ is a partition of i. In the following, we describe
the main steps of the mkmSet function by working on an example.

Suppose we want to generate all the partitions of (3, 2). First consider the partitions of (3, 0)
obtained from the partitions (3), (1, 2), (13) of the integer 3, and the partitions of (0, 2) obtained from
the partitions (2), (12) of the integer 2, that is

Λ1 =

(
3
0

)
, Λ2 =

(
1 2
0 0

)
, Λ3 =

(
1 1 1
0 0 0

)
⊢
(

3
0

)
(9)

Λ4 =

(
0
2

)
, Λ5 =

(
0 0
1 1

)
⊢
(

0
2

)
. (10)

The following iterated adding-appending rule is thus implemented.

1. Consider the partition Λ5 in (10).

1.1 Add the first column of Λ5 to each column of Λ1, Λ2 and Λ3 in (9) one by one with the following
rules: the sum must be done only once (if the column has multiplicities greater than one) taking as
reference the first column; the sum can be done only to columns whose second component is zero and
without subsequent elements (in the same row) greater than or equal to the integer we are adding.
Then we have

Λ(1,1)
1 =

(
3
1

)
Λ(1,1)

2 =

(
1 2
1 0

)
Λ(2,1)

2 =

(
1 2
0 1

)
Λ(1,1)

3 =

(
1 1 1
1 0 0

)
. (11)

1.2 Append the same column to each partition Λ1, Λ2 and Λ3 in (10), that is

Λ(1,2)
1 =

(
3 0
0 1

)
Λ(1,2)

2 =

(
1 2 0
0 0 1

)
Λ(1,2)

3 =

(
1 1 1 0
0 0 0 1

)
. (12)

1.3 Repeat steps 1.1 and 1.2 for the second column of Λ5 with respect to the partitions generated in
(11) and (12) :

Λ(1,1)
1 =

(
3
1

)
add⇒ rule out append⇒

(
3 0
1 1

)
Λ(1,1)

2 =

(
1 2
1 0

)
add⇒

(
1 2
1 1

)
append⇒

(
1 2 0
1 0 1

)
Λ(2,1)

2 =

(
1 2
0 1

)
add⇒ rule out append⇒

(
1 2 0
0 1 1

)
Λ(1,1)

3 =

(
1 1 1
1 0 0

)
add⇒

(
1 1 1
1 1 0

)
append⇒

(
1 1 1 0
1 0 0 1

)
Λ(1,2)

1 =

(
3 0
0 1

)
add⇒ rule out append⇒

(
3 0 0
0 1 1

)
Λ(1,2)

2 =

(
1 2 0
0 0 1

)
add⇒ rule out append⇒

(
1 2 0 0
0 0 1 1

)
Λ(1,2)

3 =

(
1 1 1 0
0 0 0 1

)
add⇒ rule out append⇒

(
1 1 1 0 0
0 0 0 1 1

)
2. Repeat step 1 for Λ4 in (10) :

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 213

Λ1 =

(
3
0

)
add⇒

(
3
2

)
append⇒

(
3 0
0 2

)
Λ2 =

(
1 2
0 0

)
add⇒

(
1 2
2 0

)
,
(

1 2
0 2

)
append⇒

(
1 2 0
0 0 2

)
Λ3 =

(
1 1 1
0 0 0

)
add⇒

(
1 1 1
2 0 0

)
append⇒

(
1 1 1 0
0 0 0 2

)
More generally, the mkmSet function lists all the partitions Λ ⊢ i, with the columns reordered in
increasing lexicographic order, together with the number of set partitions corresponding to the same
multi-index partition, that is i!/Λ!m(Λ)!. In the latest version of the kStatistics package, among the
input parameters of the mkmSet function, an input flag parameter has been inserted aiming to print the
multi-index partitions in a more compact form. See the following example.

Example 2: To get all the partitions of (2, 1) run

> mkmSet(c(2,1),TRUE)
[(0 1)(1 0)(1 0), 1]
[(0 1)(2 0), 1]
[(1 0)(1 1), 2]
[(2 1), 1]

Note that the integers 1, 1, 2, 1 correspond to the coefficients 2!1!/Λ!m(Λ)!.

Example 3: To get all the partitions of the integer 3 run

> mkmSet(c(3),TRUE)
[(1)(1)(1), 1]
[(1)(2), 3]
[(3), 1]

The mkmSet function is called by the intPart function, specifically designed with the purpose of
listing only all the partitions of a given integer in increasing order. The input flag parameter allows us
to print the partitions in a more compact form.

Example 4: To get all the partitions of the integer 4 run

> intPart(4,TRUE)
[1 1 1 1]
[1 1 2]
[2 2]
[1 3]
[4]

The parts function of the partitions package (Hankin 2006) lists all the partitions of a given integer,
but in decreasing order. Instead the get.partitions function of the nilde package (Arnqvist et al.
2021) finds all the partitions of a given integer with a fixed length l(λ) (Voinov and Pya Arnqvist 2017).
If l(λ) is equal to the given integer, the get.partitions function lists all the partitions in increasing
order.

3 kStatistics

The i-th k-statistic κi is the (unique) symmetric estimator whose expectation is the i-th cumulant ki(Y)
of a population character Y and whose variance is a minimum relative to all other unbiased estimators.

The nKS function generates the numerical value of the i-th k-statistic starting from a data sample.
The computation relies on the following polynomials

Pt(y) =
t

∑
j=1

yjS(t, j)(−1)j−1(j− 1)! for t = 1, . . . , i (13)

where {S(t, j)} are the Stirling numbers of second kind, generated trough the nStirling2 function. In
detail, suppose to have a sample {a1, . . . , aN} of N numerical data and denote with pt the t-th power
sum in the numerical data

pt(a1, . . . , aN) =
N

∑
j=1

at
j , for t ≥ 1. (14)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=partitions
https://CRAN.R-project.org/package=nilde
https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 214

To carry out the numerical value of the i-th k-statistic for i ≤ N, the nKS function computes the explicit
expression of the polynomial of degree i

Qi(y) = ∑
λ⊢i

dλPλ(y)pλ (15)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, and

dλ =
i!

(1!)r1 r1!(2!)r2 r2! · · · Pλ(y) = [P1(y)]r1 [P2(y)]r2 · · · pλ = [p1]
r1 [p2]

r2 · · · (16)

with {Pt(y)} and {pt} given in (13) and (14) respectively. The final step is to replace the powers yt in
the explicit form of the polynomial (15) with (−1)t−1(t− 1)!/(N)t for t = 1, . . . , i.
The main steps of the nKS function are summarized in the following.

Function nKS

i) Compute the power sums pt in (14) for t = 1, . . . , i.

ii) Compute S(t, j)(−1)j−1(j− 1)! in (13) for j = 1, . . . , t and t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions λ ⊢ i.

iv) For a given partition λ, expand the product Pλ(y) in (15) and compute the coefficient
dλ pλ of each monomial in Qi(y) using (16).

v) For t = 1, . . . , i multiply (−1)t−1(t− 1)!/(N)t with the coefficients of the monomial of
degree t carried out at the previous step and do the sum over all the resulting numerical
values.

vi) Repeat steps iv) and v) for all the partitions λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 5: Using (15) for i = 1, we have Q1(y) = P1(y)p1 = y ∑N
j=1 aj and plugging 1/N in place of

y, the sample mean is recovered. Using (15) for i = 2, we have

Q2(y) = P2(y)p2 +
(
P1(y)p1

)2
= y

N

∑
j=1

a2
j + y2

((N

∑
j=1

aj
)2 −

N

∑
j=1

a2
j

)

and plugging 1/N in place of y and −1/N(N − 1) in place of y2, the sample variance is recovered.
Compare the values of the sample mean, computed with the nKS function and the mean function, and
the sample variance, computed with the nKS function and the var function, for the following dataset:

> data<-c(16.34, 10.76, 11.84, 13.55, 15.85, 18.20, 7.51, 10.22, 12.52, 14.68,
16.08, 19.43, 8.12, 11.20, 12.95, 14.77, 16.83, 19.80, 8.55, 11.58, 12.10, 15.02,
16.83, 16.98, 19.92, 9.47, 11.68, 13.41, 15.35, 19.11)
> nKS(1,data)
[1] 14.02167
> mean(data)
[1] 14.02167
> nKS(2,data)
[1] 12.65007
> var(data)
[1] 12.65007

Using the nKS function, for instance, the sample skewness and the sample kurtosis can be computed.
Let us recall that the sample skewness is a measure of the central tendency of a univariate sample
and can be computed as κ3/κ3/2

2 where κ2 and κ3 are the second and the third k-statistics respectively
(Joanes and Gill 1998). The sample kurtosis is a measure of the tail-heaviness of a sample distribution.
The sample excess kurtosis is defined as the sample kurtosis minus 3 and can be computed as κ4/κ2

2
where κ2 and κ4 are the second and the fourth k-statistics respectively (Joanes and Gill 1998).

> nKS(3,data)/sqrt(nKS(2,data))^(3/2)
[1] -0.03216229
> nKS(4,data)/nKS(2,data)^2 + 3
[1] 2.114708

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 215

A similar strategy is employed to compute multivariate k-statistics (the nKM function) of a sample
data matrix whose columns each represent a population character. To simplify the notation, in
the following we deal with the case of a bivariate data set {(a1,1, a2,1) . . . , (a1,N , a2,N)} of N paired
numerical data. Denote with p(s,t) the bivariate power sum in the paired data

p(s,t)[(a1,1, a2,1), . . . , (a1,N , a2,N)] =
N

∑
j=1

as
1,ja

t
2,j for s, t ≥ 1. (17)

Suppose i = (i1, i2) with i1, i2 ≤ N and set i = i1 + i2. To carry out the numerical value of the i-th
multivariate k-statistic, the nKM function finds the explicit expression of the polynomial

Qi(y) = ∑
Λ⊢i

dΛPΛ(y)pΛ (18)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, and

dΛ =
i!

Λ!m(Λ)!
PΛ(y) = [P|λ1|(y)]

r1 [P|λ2|(y)]
r2 · · · pΛ = [pλ1]

r1 [pλ2]
r2 · · · (19)

with {Pt(y)} and {p(s,t)} given in (13) and (17) respectively. As for the univariate k-statistics, the
final step consists in replacing the powers yj in the explicit expression of the polynomial (18) with the
numerical values (−1)j−1(j− 1)!/(N)j for j = 1, . . . , i.
The main steps of the nKM function are summarized in the following.

Function nKM

i) Compute the bivariate power sums p(s,t) in (17) for s = 1, . . . , i1 and t = 1, . . . , i2.

ii) For i = i1 + i2, compute S(t, j)(−1)j−1(j− 1)! in (13) for j = 1, . . . , t and t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions Λ ⊢ i.

iv) For a given partition Λ, expand the product PΛ(y) in (18) and compute the coefficient
dΛ pΛ of each monomial in Qi(y) using (19).

v) For j = 1, . . . , i, multiply (−1)j−1(j− 1)!/(N)j with the coefficient of the monomial of
degree j carried out at the previous step and do the sum over all the resulting numerical
values.

vi) Repeat steps iv) and v) for all the partitions Λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 6: To estimate the joint cumulant c2,1 of the following dataset, run

> data1<-list(c(5.31,11.16),c(3.26,3.26),c(2.35,2.35),c(8.32,14.34),
c(13.48,49.45),c(6.25,15.05),c(7.01,7.01),c(8.52,8.52),c(0.45,0.45),
c(12.08,12.08),c(19.39,10.42))
> nKM(c(2,1),data1)
[1] -23.7379

If the first column are observations of a population character X and the second column obser-
vations of a population character Y, then c2,1 measures how far from connectedness (as opposite to
independence) are X2 and Y (E. Di Nardo, Marena, and Semeraro 2020). A similar meaning has the
estimation of the joint cumulant c2,2,2 of the following dataset:

> data2<-list(c(5.31,11.16,4.23),c(3.26,3.26,4.10),c(2.35,2.35,2.27),
c(4.31,10.16,6.45),c(3.1,2.3,3.2),c(3.20, 2.31, 7.3))
> nKM(c(2,2,2),data2)
[1] 678.1045

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 216

4 Polykays

Similarly to k-statistics, polykays are symmetric unbiased estimators of cumulant products. More
in detail, when evaluated on a random sample, the i-th polykay gives an estimation of the product
ki1 (Y) · · · kim (Y), where i = (i1, . . . , im) ∈Nm

0 and {kij (Y)} are cumulants of a population character Y.

To simplify the notation, in the following we show how to compute the i-th polykay of N numerical
data {a1, . . . , aN} using the nPS function for i = (i1, i2). Set i = i1 + i2 and suppose i ≤ N. The
computation relies on the so-called logarithmic polynomials

P̃t(y1, . . . , yi) = ∑
λ⊢t

yλdλ(−1)l(λ)−1(l(λ)− 1)! (20)

for t = 1, . . . , i where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ t, dλ is given in (16) and
yλ = yr1

1 yr2
2 · · · . To compute the polykay of order (i1, i2), the nPS function finds the explicit expression

of the polynomial
Ai(y1, . . . , yi) = ∑

λ⊢i
dλ P̃λ(y1, . . . , yi)pλ (21)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ and pλ are given in (16) and

P̃λ(y1, . . . , yi) = [P̃1(y1, . . . , yi)]
r1 [P̃2(y1, . . . , yi)]

r2 · · ·

with {P̃t(y1, . . . , yi)} given in (20). Note that the monomials in Ai(y1, . . . , yi) are of type yλ = yr1
1 yr2

2 · · ·
with λ = (1r1 , 2r2 , . . .) ⊢ i. The final step is to plug suitable numerical values in place of yλ depending
on how the partition λ is constructed. Indeed, set

q̃(i1, i2) =
{

λ′ + λ′′ ⊢ i
∣∣ λ′ = (1s1 , 2s2 , . . .) ⊢ i1, λ′′ = (1t1 , 2t2 , . . .) ⊢ i2

}
(22)

where λ′ + λ′′ = (1r1 , 2r2 , . . .) with rj = sj + tj for j = 1, 2, Then yλ is replaced by 0 if λ ̸∈ q̃(i1, i2)
otherwise by

(−1)l(λ′)−1(l(λ′)− 1)!(−1)l(λ′′)−1(l(λ′′)− 1)!
(N)l(λ′′)+l(λ′′)

dλ′dλ′′

dλ′+λ′′
. (23)

Note that dλ′ and dλ′′ in (23) are recovered from (16).

The main steps of the nPS function are summarized in the following.

Function nPS

i) Set i = i1 + i2 and compute the power sums pt in (14) for t = 1, . . . , i.

ii) Generate the polynomials P̃t(y1, . . . , yi) in (20) for t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions λ ⊢ i.

iv) For a given partition λ, expand the product P̃λ(y1, . . . , yi) in (21); then plug (23) or 0
in each monomial yλ, depending if λ is or not in the set q̃(i1, i2) given in (22).

v) Multiply the numerical value of P̃λ carried out at step iv) with dλ pλ given in (16).

vi) Repeat steps iv) and v) for all the partitions λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 7: Suppose we need to estimate the square of the variance σ2 of the population character Y
from which the data of Example 5 have been sampled. We have

> nKS(2,data)^2
[1] 160.0243
> var(data)^2
[1] 160.0243

but k2
2 is not an unbiased estimator of the square of σ2. An unbiased estimator of such a square is the

polykay of order (2, 2), that is

> nPS(c(2,2),data)
[1] 154.1177

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 217

Multivariate polykays are unbiased estimators of products of multivariate cumulants and the nPM
function returns a numerical value for these estimators when evaluated on a random sample. As
before, to show how the nPM function works, we consider a bivariate sample of N numerical data,
that is {(a1,1, a2,1) . . . , (a1,N , a2,N)}. If we choose i = (i1, i2) and j = (j1, j2) with i1 + i2 + j1 + j2 ≤
N as input of the nPM function, the output is a numerical value which represents an estimated
value of the product ki(X, Y)kj(X, Y), where ki(X, Y) and kj(X, Y) are cumulants of the population
characters (X, Y). The computation relies on suitable polynomials in the indeterminates {y(s,t)} for
s = 0, . . . , w1, t = 0, . . . , w2, with s + t > 0 and w1 = i1 + j1, w2 = i2 + j2. These polynomials are a
multivariable generalization of (20), that is

P̃k

(
{y(s,t)}

)
= ∑

Λ⊢k
yΛdΛ(−1)l(Λ)−1(l(Λ)− 1)! (24)

for 0 < k ≤ w = (w1, w2), where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ k and
yΛ = yr1

λ1
yr2

λ2
· · · . To compute the multivariate polykay of order (i, j), the nPM function finds the

explicit expression of the polynomial

Aw

(
{y(s,t)}

)
= ∑

Λ⊢w
dΛ P̃Λ

(
{y(s,t)}

)
pΛ (25)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ w, dΛ and pΛ are given in (19), and

P̃Λ

(
{y(s,t)}

)
= [P̃λ1

(
{y(s,t)}

)
]r1 [P̃λ2

(
{y(s,t)}

)
]r2 · · ·

with {P̃λ

(
{y(s,t)}

)
} given in (24). The monomials in Aw

(
{y(s,t)}

)
are of type yΛ with Λ ⊢ w. The

final step is to plug suitable numerical values in place of yΛ depending on how the partition Λ is
constructed. Indeed, set

q̃(w) =

{
Λ′ + Λ′′ ⊢ w

∣∣ Λ′ = (λ′s1
1 , λ′s2

2 , . . .) ⊢ i, Λ′′ = (λ′′t1
1 , λ′′t2

2 , . . .) ⊢ j
}

, (26)

where Λ′ + Λ′′ = (λ̃
r1
1 , λ̃

r2
2 , . . .) is built with the columns of Λ′ and Λ′′ rearranged in increasing

lexicographic order and such that rj = sj if λ̃j = λ′j or rj = tj if λ̃j = λ′′j or rj = sj + tj if λ̃j = λ′j = λ′′j .
Therefore in the explicit expression of (25), yΛ is replaced by 0 if Λ ̸∈ q̃(w) otherwise by

(−1)l(Λ′)−1(l(Λ′)− 1)!(−1)l(Λ′′)−1(l(Λ′′)− 1)!
(N)l(Λ′)+l(Λ′′)

dΛ′dΛ′′

dΛ′+Λ′′
. (27)

Note that dΛ′ and dΛ′′ in (27) are recovered from (19).

The main steps of the nPM function are summarized in the following.

Function nPM

i) Set w1 = i1 + j1 and w2 = i2 + j2; compute the power sums p(s,t) in (17) for s = 1, . . . , w1
and t = 1, . . . , w2.

ii) Generate the polynomials P̃k

(
{y(s,t)}

)
in (24) for 0 < k ≤ w = (w1, w2).

iii) Using the mkmSet function, compute all the partitions Λ ⊢ w.

iv) For a given partition Λ, expand the product P̃Λ

(
{y(s,t)}

)
in (25) and plug (27) or 0 in

each obtained monomial of type yΛ depending if Λ is or not in q̃(w) given in (26).

v) Multiply the numerical value of P̃Λ obtained at step iv) with dΛ pΛ given in (19).

vi) Repeat steps iv) and v) for all the partitions Λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 8: For the same dataset employed in Example 6, to estimate k(2,1)(X, Y)k(1,0)(X, Y) run

> nPM(list(c(2,1),c(1,0)),data1)
[1] 48.43243

Remark 1: The master nPolyk function runs one of the nKS, nKM, nPS and nPM functions depending if
we ask for simple k-statistics, multivariate k-statistics, simple polykays or multivariate polykays.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 218

5 Bell polynomials and generalizations

The algorithms to produce k-statistics and polykays rely on handling suitable polynomial families
which are special cases of generalizations of Bell polynomials, as introduced in this section. Moreover,
there are further families of polynomials widely used in applications which are special cases of these
polynomials. For the most popular ones, we have implemented special functions in the kStatistics
package. The list is not exhaustive, see for instance Roman (1984). Furthermore additional families of
polynomials might be recovered using the multivariate Faà di Bruno’s formula. We will give some
examples in the next section.

The i-th generalized (complete exponential) Bell polynomial in the indeterminates y1, . . . , yn is

hi(y1, . . . , yn) = i! ∑
Λ⊢s1,...,Λ̃⊢sn
s1+···+sn=i

yl(Λ)
1 · · · yl(Λ̃)

n
g1,Λ · · · gn,Λ̃

Λ! · · · Λ̃!m(Λ)! · · ·m(Λ̃)!
(28)

where the sum is over all the partitions Λ ⊢ s1, . . . , Λ̃ ⊢ sn with s1, . . . , sn m-tuples of non-negative
integers such that s1 + · · ·+ sn = i and

g1,Λ = gr1
1;λ1

gr2
1;λ2
· · · for Λ = (λr1

1 , λr2
2 , . . .)

...
gn,Λ̃ = gt1

n;λ̃1
gt2

n;λ̃2
· · · for Λ̃ = (λ̃

t1
1 , λ̃

t2
2 , . . .)

(29)

with {g1;λ}, . . . , {gn;λ̃}multi-indexed sequences. These polynomials are the output of the GCBellPol
function.

Example 9: To get h(1,1)(y1, y2) run

> GCBellPol(c(1,1),2)
[1] (y1)(y2)g1[0,1]g2[1,0] + (y1)(y2)g1[1,0]g2[0,1] + (y1^2)g1[0,1]g1[1,0] +
(y1)g1[1,1] + (y2^2)g2[0,1]g2[1,0] + (y2)g2[1,1]

The e_GCBellPol function evaluates hi(y1, . . . , yn) when its indeterminates y1, . . . , yn and/or its
coefficients are substituted with numerical values.

Example 10: To plug the values from 1 to 6 respectively into the coefficients g1[,] and g2[,] of
the polynomial h(1,1)(y1, y2) given in Example 9 run

> e_GCBellPol(c(1,1), 2, "g1[0,1]=1, g1[1,0]=2, g1[1,1]=3, g2[0,1]=4, g2[1,0]=5,
g2[1,1]=6")
[1] 13(y1)(y2) + 2(y1^2) + 3(y1) + 20(y2^2) + 6(y2)

To evaluate h(1,1)(1, 5) run

> e_GCBellPol(c(1,1), 2, "y1=1, y2=5, g1[0,1]=1, g1[1,0]=2, g1[1,1]=3, g2[0,1]=4,
g2[1,0]=5, g2[1,1]=6")
[1] 600

When the multi-indexed sequences {g1;λ}, . . . , {gn;λ̃} are all equal, the number of distinct addends
in (28) might reduce and the corresponding generalized Bell polynomial is denoted by h̃i(y1, . . . , yn).
To deal with this special case, we have inserted an input flag parameter in the e_GCBellPol function.

Example 11: To compare h̃(1,1)(y1, y2) with h(1,1)(y1, y2) given in Example 9 run

> GCBellPol(c(1,1),2,TRUE)
[1] 2(y1)(y2)g[0,1]g[1,0] + (y1^2)g[0,1]g[1,0] + (y1)g[1,1] + (y2^2)g[0,1]g[1,0] +
(y2)g[1,1]

Set n = 1 in (28). Then hi(y1, . . . , yn) reduces to the univariate polynomial

hi(y) = ∑
Λ⊢i

yl(Λ)dΛgΛ (30)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and gΛ = gr1
λ1

gr2
λ2
· · · .

Example 12: To get h(1,1)(y) run

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 219

> GCBellPol(c(1,1),1)
[1] (y^2)g[0,1]g[1,0] + (y)g[1,1]

Remark 2: For all i ∈Nm
0 , we have hi(y1 + · · ·+ yn) = h̃i(y1, . . . , yn), where h̃i(y1, . . . , yn) is the i-th

generalized Bell polynomial (28) corresponding to all equal multi-indexed sequences {g1,λ}, . . . , {gn,λ̃}
(Elvira Di Nardo 2011). Therefore the e_GCBellPol function, with the input flag TRUE, produces also
an explicit expression of hi(y1 + · · ·+ yn).

The algorithm to generate joint moments in terms of joint cumulants and vice versa follows the
same pattern designed to generate {hi(y)}. Indeed if {ki(Y)} and {mi(Y)} denote the sequences of
joint cumulants and joint moments of a random vector Y respectively, then

mi(Y) = ∑
Λ⊢i

dΛkΛ(Y) and ki(Y) = ∑
Λ⊢i

(−1)l(Λ)−1(l(Λ)− 1)!dΛmΛ(Y), (31)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and

mΛ(Y) = [mλ1 (Y)]
r1 [mλ2 (Y)]

r2 · · · kΛ(Y) = [kλ1 (Y)]
r1 [kλ2 (Y)]

r2 · · ·.

In particular

• the mom2cum function returns the right hand side of the first equation in (31), using the same
algorithm producing hi(y) in (30) with the sequence {kλ} in place of {gλ} and with 1 in place
of y;

• the cum2mom function returns the right hand side of the latter equation in (31), using the same
algorithm producing hi(y) in (30) with the sequence {mλ} in place of {gλ} and with (−1)j−1(j−
1)! in place of the powers yj for j = 1, . . . , |i|.

When the multi-index i reduces to an integer i, formulae (31) are the classical expressions of
univariate moments in terms of univariate cumulants and vice versa. The mom2cum and cum2mom
functions do the same when the input is an integer.

Example 13: To get m(3,1) in terms of k(i,j) run

> mom2cum(c(3,1))
[1] k[0,1]k[1,0]^3 + 3k[0,1]k[1,0]k[2,0] + k[0,1]k[3,0] + 3k[1,0]^2k[1,1] +
3k[1,0]k[2,1] + 3k[1,1]k[2,0] + k[3,1]

To get k(3,1) in terms of m(i,j) run

> cum2mom(c(3,1))
[1] - 6m[0,1]m[1,0]^3 + 6m[0,1]m[1,0]m[2,0] - m[0,1]m[3,0] +
6m[1,0]^2m[1,1] - 3m[1,0]m[2,1] - 3m[1,1]m[2,0] + m[3,1]

Remark 3: There are different functions in R performing similar computations for cumulants and
moments: for instance see De Leeuw, J. (2012) for the multivariate case. A different strategy would
rely on the recursive relations between cumulants and moments (Domino, Gawron, and Pawela 2018).

Similarly to (31), some of the polynomials employed in the previous sections are generated using
the same pattern developed to find the explicit expression of hi(y) in (30):

• The generation of an explicit expression of Qi(y) in (18) parallels the one implemented for hi(y)
with 1 in place of y and with the polynomial sequence {P|λ|(y)pλ} in place of the sequence
{gλ};

• the same for the polynomials P̃k

(
{y(s,t)}

)
in (24) with (−1)j−1(j− 1)! for j = 1, . . . , |i| in place

of the powers yj and with the polynomial sequence {yλ} in place of the sequence {gλ};

• the same for the polynomials Aw

(
{y(s,t)}

)
in (25) with 1 in place of y and with the polynomial

sequence
{

P̃λ

(
{y(s,t)}

)
pλ

}
in place of the sequence {gλ}.

Note that when the multi-index i in (30) reduces to a positive integer i, then the polynomial hi(y)
becomes

hi(y) = ∑
λ⊢i

dλyl(λ)gλ (32)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16) and gλ = gr1
1 gr2

2 . . .
with {gj} a suitable sequence.

Example 14: To get h3(y) run

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 220

> GCBellPol(c(3),1)
[1] (y^3)g[1]^3 + 3(y^2)g[1]g[2] + (y)g[3]

With a combinatorial structure very similar to (32), the i-th general partition polynomial has the
following expression in the indeterminates y1, . . . , yi

Gi(a1, . . . , ai; y1, . . . , yi) = ∑
λ⊢i

dλal(λ)yλ (33)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16), {aj} is a suitable
numerical sequence and yλ = yr1

1 yr2
2 It’s a straightforward exercise to prove that

Gi(a1, . . . , ai; y1, . . . , yi) =
i

∑
j=1

ajBi,j(y1, . . . , yi−j+1), (34)

where {Bi,j} are the (partial) exponential Bell polynomials

Bi,j(y1, . . . , yi−j+1) = ∑
p̄(i,j)

dλyλ (35)

where p̄(i, j) = {λ = (1r1 , 2r2 , . . .) ⊢ i|l(λ) = j}, dλ is given in (16) and yλ = yr1
1 yr2

2 · · · . The
polynomials in (33) are widely used in applications such as combinatorics, probability theory and
statistics (Charalambides 2002). As particular cases, they include the exponential polynomials and
their inverses, the logarithmic polynomials (20), the potential polynomials and many others (Roman
1984). The general partition polynomials are the output of the gpPart function.

Example 15: To get G4(a1, a2, a3, a4; y1, y2, y3, y4) run

> gpPart(4)
[1] a4(y1^4) + 6a3(y1^2)(y2) + 3a2(y2^2) + 4a2(y1)(y3) + a1(y4)

When a1 = . . . = ai = 1, the i-th general partition polynomial in (34) reduces to the complete
(exponential) Bell polynomial

Gi(1, . . . , 1; y1, . . . , yi) =
i

∑
j=1

Bi,j(y1, . . . , yi−j+1) (36)

where {Bi,j} are the (partial) exponential Bell polynomials (35). For instance, the polynomial Qi(y) in
(15) is generated using the same pattern developed to generate (36) with Pj(y)pj in place of yj.

The eBellPol function returns the complete (exponential) Bell polynomials (36). The same function
also produces the (partial) exponential Bell polynomial Bi,j(y1, . . . , yi−j+1) using (33) with ak = δk,j
(the Kronecker delta) for k = 1, . . . , i. Mihoubi (2008) gives a rather extensive survey of applications of
these homogeneous polynomials.

Example 16: To get B5,3(y1, y2, y3) run

> eBellPol(5,3)
[1] 15(y1)(y2^2) + 10(y1^2)(y3)

To get G4(1, 1, 1, 1; y1, y2, y3, y4) run

> eBellPol(4)
[1] (y1^4) + 6(y1^2)(y2) + 3(y2^2) + 4(y1)(y3) + (y4)

The oBellPol function returns the partial (ordinary) Bell polynomials

B̂i,j(y1, . . . , yi−j+1) =
j!
i!

Bi,j(1!y1, 2!y2, . . . , (i− j + 1)!yi−j+1)

and the complete (ordinary) Bell polynomials

Ĝi(y1, . . . , yi) = Gi(1, . . . , 1; 1!y1, 2!y2, . . . , i!yi).

Example 17: To get B̂5,3(y1, y2, y3) run

> oBellPol(5,3)
[1] 1/120(360(y1)(y2^2) + 360(y1^2)(y3))

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 221

To get Ĝ3(y1, y2, y3, y4) run

> oBellPol(4)
[1] 1/24(24(y1^4) + 72(y1^2)(y2) + 24(y2^2) + 48(y1)(y3) + 24(y4))

The e_eBellPol function evaluates the exponential Bell polynomials when the indeterminates are
substituted with numerical values. In Table 1 some special sequence of numbers are given obtained
using this procedure.

Table 1: Numerical sequences (second column) obtained evaluating the exponential Bell polynomials (last
column) when suitable numerical values replace indeterminates.

Sequence Bell polynomials

Lah numbers i!
j!

(
i− 1
j− 1

)
Bi,j(1!, 2!, 3!, . . .)

Stirling numbers of first kind s(i, j) Bi,j(0!,−1!, 2!, . . .)
unsigned Stirling numbers of first kind |s(i, j)| Bi,j(0!, 1!, 2!, . . .)

Stirling numbers of second kind S(i, j) Bi,j(1, 1, 1, . . .)

idempotent numbers
(

i
j

)
ji−j Bi,j(1, 2, 3, . . .)

Bell numbers Bi ∑i
j=0 Bi,j(1, 1, 1, . . .)

By default, the e_eBellPol function returns the Stirling numbers of second kind, as the following
example shows.

Example 18: To get S(5, 3) run

> e_eBellPol(5,3)
[1] 25
> e_eBellPol(5,3,c(1,1,1,1,1))
[1] 25

To get the 5-th Bell number B5 run

> e_eBellPol(5)
[1] 52

To get s(5, 3) run

> e_eBellPol(5,3, c(1,-1,2,-6,24))
[1] 35

6 Composition of formal power series

In (3), suppose ft the t-th coefficient of f (x) and g1;s1 , . . . , gn;sn the s1-th,. . . ,sn-th coefficients of
g1(z), . . . , gn(z) respectively. Using multi-index partitions, the multivariate Faà di Bruno’s formula (6)
can be written as (E. Di Nardo, Guarino, and Senato 2011)

hi = i! ∑
Λ⊢s1,...,Λ̃⊢sn
s1+···+sn=i

f(l(Λ),...,l(Λ̃))

g1,Λ · · · gn,Λ̃

Λ! · · · Λ̃!m(Λ)! · · ·m(Λ̃)!
(37)

where g1,Λ, . . . , gn,Λ̃ are given in (29) and the sum is over all the partitions Λ ⊢ s1, . . . , Λ̃ ⊢ sn, with
s1, . . . , sn m-tuples of non-negative integers such that s1 + · · ·+ sn = i.

The MFB function generates all the summands of (37). Its first step is to find the set p̃(n, i) of all the
compositions of i in n parts, that is all the n-tuples (s1, . . . , sn) of non-negative integer m-tuples such
that s1 + · · ·+ sn = i. This task is performed by the mkT function.

Function mkT

i) Find all the partitions Λ ⊢ i, using the mkmSet function.

ii) Select the first partition Λ. If l(Λ) = n, then the columns of Λ are the m-tuples
(s1, . . . , sn) such that s1 + . . . + sn = i. If l(Λ) < n, add n− l(Λ) zero columns to Λ.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 222

iii) Generate all the permutations of the columns of Λ as collected at step ii).

iv) Repeat steps ii) and iii) for each partition Λ carried out at step i).

In the mkT function an input flag variable permits to obtain the output in a more compact set up.
See the following example.

Example 19: Suppose we are looking for the elements of the set p̃(2, (2, 1)), that is the pairs (s1, s2)
such that s1 + s2 = (2, 1). Then run

> mkT(c(2,1),2,TRUE)
[(0 1)(2 0)]
[(2 0)(0 1)]
[(1 0)(1 1)]
[(1 1)(1 0)]
[(2 1)(0 0)]
[(0 0)(2 1)]

Consider the partitions of (2, 1) as given in Example 2. Note that [(2 1)(0 0)] and [(0 0
)(2 1)] are obtained adding a zero column to the partition [(2 1), 1], and then permuting
the two columns. No zero columns are added to [(2 0)(0 1)] as the length of the partition is 2.
The same is true for [(0 1)(2 0)] or [(1 1)(1 0)] which are only permuted.

The MFB function produces the multivariate Faà di Bruno’s formula (37) making use of the following
steps.

Function MFB

i) Find all the m-tuples (s1, . . . , sn) in p̃(n, i) using the mkT function.

ii) Let y1, . . . , yn be indeterminates. For each j = 1, . . . , n, compute all the partitions Λ ⊢ sj
using the mkmSet function and find the explicit expression of the polynomial

qj,sj (yj) = sj! ∑
Λ⊢sj

yl(Λ)
j

gj,Λ

Λ!m(Λ)!
.

iii) Make the products q1,s1 (y1) · · · qn,sn (yn) in the multivariable polynomial

hi(y1, . . . , yn) = ∑
(s1,...,sn)∈ p̃(n,i)

(
i

s1, . . . , sn

)
q1,s1 (y1) · · · qn,sn (yn)

and compute its explicit expression.

iv) In the explicit expression of the polynomial hi(y1, . . . , yn) as carried out at the previous

step iii), replace the occurrences of the products yl(Λ)
1 · · · yl(Λ̃)

n with f(l(Λ),...,l(Λ̃)).

Step iii) is performed by the joint function. This function is not directly accessible in the package,
as defined locally in the MFB function. The joint function realizes a recursive pair matching: each
coefficient g1,Λ of q1,s1 (y1) is matched with each coefficient g2,Λ̃ of q2,s2 (y2), then each paired coefficient
g1,Λg2,Λ̃ is matched with each coefficient g3,Λ∗ of q3,s3 (y3) and so on. Step iv) consists of multiplying
each coefficient found at step iii) with ft , where t is the multi-index whose j-th component gives how
many times gj,· appears in this coefficient. See the following example.

Example 20: Suppose n = m = 2 and i = (1, 1). To get h(1,1) in (37) run

> MFB(c(1,1),2)
[1] f[1,1]g1[0,1]g2[1,0] + f[1,1]g1[1,0]g2[0,1] + f[2,0]g1[0,1]g1[1,0] +
f[1,0]g1[1,1] + f[0,2]g2[0,1]g2[1,0] + f[0,1]g2[1,1]

Taking into account (4), in the previous output f[i,j] corresponds to f(i,j) as well as g1[i,j]
and g2[i,j] correspond to g1;(i,j) and g2;(i,j) respectively for i, j = 0, 1, 2. Note that g1[1,1] is mul-
tiplied with f[1,0] as there is one occurrence of g1 and no occurrence of g2. In the same way,
g1[1,0]g1[0,1] is multiplied with f[2,0] as there are two occurrences of g1 and no occurrence of g2
and g1[1,0]g2[0,1] is multiplied with f[1,1] as there is one occurrence of g1 and one occurrence of
g2 and so on. Compare the previous output with the one obtained in Maple running

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 223

diff(f(g1(x1,x2),g2(x1,x2),x1,x2):

D2,2(f)(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g2(x1, x2)

)(
∂

∂x2 g2(x1, x2)
)

+D1,2(f)(g1(x1, x2), g2(x1, x2))
(

∂
∂x2 g1(x1, x2)

)(
∂

∂x1 g2(x1, x2)
)

+D1,2(f)(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g1(x1, x2))

)(
∂

∂x2 g2(x1, x2)
)

+D1,1(f)(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g1(x1, x2))

)(
∂

∂x2 g1(x1, x2))
)

+D2(f)(g1(x1, x2), g2(x1, x2))
(

∂2

∂x2∂x1 g2(x1, x2)
)

+D1(f)(g1(x1, x2), g2(x1, x2))
(

∂2

∂x2∂x1 g1(x1, x2)
)

where D1(f) denotes ∂ f (x1, x2)/∂x1, D2(f) denotes ∂ f (x1, x2)/∂x2 and similarly

D1,1(f)← ∂2 f (x1, x2)

∂x2
1

, D2,2(f)← ∂2 f (x1, x2)

∂x2
2

, D1,2(f)← ∂2 f (x1, x2)

∂x1∂x2
.

The eMFB function evaluates the multivariate Faà di Bruno’s formula (37) when the coefficients of
the formal power series f and g1, . . . , gn in (4) are substituted with numerical values.

Example 21: To evaluate the output of Example 20 for some numerical values of the coefficients, run

> cfVal<-"f[0,1]=2, f[0,2]=5, f[1,0]=13, f[1,1]=-4, f[2,0]=0"
> cgVal<-"g1[0,1]=-2.1, g1[1,0]=2,g1[1,1]=3.1,g2[0,1]=5,g2[1,0]=0,g2[1,1]=6.1"
> cVal<-paste0(cfVal,",",cgVal)
> e_MFB(c(1,1),2,cVal)
[1] 12.5

The polynomial families discussed in the previous sections are generated using the MFB function.
Indeed, the generalized (complete exponential) Bell polynomials in (28) are coefficients of the following
formal power series

H(y1, . . . , yn; z) = 1 + ∑
|i|>0

hi(y1, . . . , yn)
zi

i!
= exp

[n

∑
i=1

yi(gi(z)− 1)
]

, (38)

which turns to be a composition (3), with f (x1, . . . , xn) = exp(x1y1 + · · ·+ xnyn) and ft = yt1
1 · · · y

tn
n

for t ∈ Nn
0 . In this case, y1, . . . , yn play the role of indeterminates. The i-th coefficient hi(y1, . . . , yn)

- output of the GCBellPol function - is obtained from the multivariate Faà di Bruno’s formula (37)
dealing with y1, . . . , yn as they were constants. When {g1(z), . . . , gn(z)} are the same formal power
series g(z), the formal power series H(y1, . . . , yn; z) in (38) reduces to

H(y1, . . . , yn; z) = exp
[
(y1 + · · ·+ yn)(g(z)− 1)

]
(39)

with coefficients h̃i(y1, . . . , yn) as given in the previous section.

If n = 1 then H(y1, . . . , yn; z) reduces to the composition exp
[
y(g(z)− 1)] whose coefficients are

the polynomials given in (30). More in general the coefficients of f (g(z)− 1) are

hi = ∑
Λ⊢i

dΛ fl(Λ)gΛ (40)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and gΛ = gr1
λ1

gr2
λ2
· · · .

If also m = 1, then hi in (40) reduces to

hi = ∑
λ⊢i

dλ fl(λ)gλ (41)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16) and gλ = gr1
1 gr2

2 · · · .
Formula (41) corresponds to the univariate Faà di Bruno’s formula and gives the i-th coefficient of
f (g(z)− 1) with

f (x) = 1 + ∑
j≥1

f j
xj

j!
and g(z) = 1 + ∑

s≥1
gs

zs

s!
.

Example 22: To get h5 in (41) run

> MFB(c(5), 1)
[1] f[5]g[1]^5 + 10f[4]g[1]^3g[2] + 15f[3]g[1]g[2]^2 + 10f[3]g[1]^2g[3] +
10f[2]g[2]g[3] + 5f[2]g[1]g[4] + f[1]g[5]

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 224

For instance, the i-th general partition polynomial in (33) is generated using the MFB function: in
such a case the univariate Faà di Bruno’s formula (41) is generated with {ys} in place of {gs} and {aj}
in place of { f j}.

Examples of how to generate polynomials not included in the kStatistics package

In the following we give some suggestions on how to use the R codes of the kStatistics package to
generate additional polynomial families.

The pPart function is an example of how to use the univariate Faà di Bruno’s formula and a
symbolic strategy different from those presented so far. Indeed the pPart function generates the
so-called partition polynomial Fi(y) of degree i, whose coefficients are the number of partitions of i
with j parts for j = 1, . . . , i (Boyer and Goh 2008). The partition polynomial Fi(y) is obtained from the
univariate Faà di Bruno’s formula (41) setting

f j = 1/i! and grs
s = (s!)rs rs!yrs (42)

for s = 1, . . . , i − j + 1, j = 1, . . . , i and rs = 1, . . . , i. Note the symbolic substitution of grs
s with the

powers yrs .

Example 23: To get F5(y) run

> pPart(5)
[1] y^5 + y^4 + 2y^3 + 2y^2 + y

Note that F5(y) is obtained from the output of Example 22 using (42).

Example 24: The following code shows how to evaluate F11(y) in y = 7.

> s<-pPart(11) # generate the partition polynomial of degree 11
> s<-paste0("1",s) # add the coefficient to the first term
> s<-gsub(" y","1y",s) # replace the variable y without coefficient
> s<-gsub("y", "*7",s) # assign y = 7
> eval(parse(text=s)) # evaluation of the expression
[1] 3.476775e+182

We give a further example on how to generate a polynomial family not introduced so far but
still coming from (41) for suitable choices of { f j} and {gs}. Consider the elementary symmetric
polynomials in the indeterminates y1, . . . , yn

ei(y1, . . . , yn) =

 ∑
1≤j1<···<ji≤n

yj1 · · · yji , 1 ≤ i ≤ n,

0, i > n.
(43)

A well-known result (Charalambides 2002) states that these polynomials can be expressed in terms of
the power sum symmetric polynomials (14) in the same indeterminates y1, . . . , yn, using the general
partition polynomials (34), that is

ei =
(−1)i

i!
Gi(1, . . . , 1;−p1,−1!p2,−2!p3, . . . ,−(i− 1)!pi) (44)

for i = 1, . . . , n. The following e2p function expresses the i-th elementary symmetric polynomial ei in
terms of the power sum symmetric polynomials p1, . . . , pi, using (44) and the MFB function.

> e2p <- function(n=0){
+ v<-MFB(n,1); # Call the MFB Function
+ v<-MFB2Set(v); # Expression to vector
+ for (j in 1:length(v)) {
+ # ----- read -----------[fix block]-----------------------#
+ c <- as.character(v[[j]][2]); # coefficient
+ x <- v[[j]][3]; # variable
+ i <- v[[j]][4]; # subscript
+ k <- strtoi(v[[j]][5]); # power
+ # ----- change --#
+ if (x=="f") {
+ c<-paste0(c,"*((-1)^",n,")");

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 225

+ x<-"";
+ i<-"";
+ }
+ else if (x=="g") {
+ c<-paste0(c,"*((-factorial(",strtoi(i)-1,"))^",k,")");
+ x<-paste0("(p",i,ifelse(k>1,paste0("^",k),""),")");
+ i<-"";k<-1;
+ }
+ # ----- write ---------[fix block]-----------------------#
+ v[[j]][2] <- c;
+ v[[j]][3] <- x;
+ v[[j]][4] <- i;
+ v[[j]][5] <- k;
+ # ---#
+ }
+ noquote(paste0("1/",factorial(n),"(",Set2expr(v), ")"));
+ }

This function starts by initializing the vector v with (41) by means of the MFB function. There
is a first code snippet [fix block] for extracting a set with the coefficients, variables, indexes and
powers of v by means of the MFB2Set function. This first code snippet should not be changed whatever
polynomial family we are generating. The second code snippet change includes instructions that can
be changed according to the expressions of the coefficients { f j} and {gs} in (41). To get (44), we set
f j = 1 and gs = −(s− 1)!ps. Once these coefficients have been changed, the last code snippet [fix
block] updates the vector v. The Set2expr function assembles the final expression.

Example 25: To get e4 in (44) run

> e2p(4)
[1] 1/24((p1^4) - 6(p1^2)(p2) + 3(p2^2) + 8(p1)(p3) - 6(p4))

7 Concluding remarks

We have developed the kStatistics package with the aim to generate univariate and multivariate
k-statistics/polykays, togheter with the multivariate Faà di Bruno’s formula and various user-friendly
functions related to this formula. The paper briefly introduces the combinatorial tools involved in
the package and presents, in detail, the core function of the package which generates multi-index
partitions. We emphasize that the algorithms presented here have been designed with the aid of the
umbral calculus, even if we did not mentioned this method in the paper.

One of the main applications we have dealt with is the generation and evaluation of various
families of polynomials: from generalized complete Bell polynomials to general partition polynomials,
from partial Bell polynomials to complete Bell polynomials. Numerical sequences obtained from the
Bell polynomials can also be generated.

All these utilities intend to make the kStatistics package a useful tool not only for statisticians but
also for users who need to work with families of polynomials usually available in symbolic software
or tables. Indeed, we have provided examples on how to generate polynomial families not included in
the package but which can still be recovered using the Faà di Bruno’s formula and suitable strategies,
both numerical and symbolic. Following this approach, also the estimations of joint cumulants or
products of joint cumulants is one further example of symbolic strategy coming from the multivariate
Faà di Bruno’s formula.

Future works consist in expanding the kStatistics package by including extensions of the multi-
variate Faà di Bruno’s formula, as addressed in Bernardini, Natalini, and Ricci (2005) and references
therein, aiming to manage nested compositions, as the BellY function in the Wolfram Language and
System does. Moreover, further procedures can be inserted relied on symbolic strategies not apparently
related to the multivariate Faà di Bruno’s formula but referable to this formula, as for example the
central Bell polynomials (Kim, Kim, and Jang 2019).

The results in this paper were obtained using the kStatistics 2.1.1 package. The package is currently
available with a general public license (GPL) from the Comprehensive R Archive Network.

8 Acknowledgements

The authors would like to thank the reviewers for their constructive feedback.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics

CONTRIBUTED RESEARCH ARTICLE 226

References

Arnqvist, Natalya Pya, Vassilly Voinov, Rashid Makarov, and Yevgeniy Voinov. 2021. Nilde: Nonnegative
Integer Solutions of Linear Diophantine Equations with Applications. https://CRAN.R-project.org/
package=nilde.

Bernardini, A., P. Natalini, and P. E. Ricci. 2005. “Multidimensional Bell Polynomials of Higher Order.”
Comput. Math. Appl. 50 (10-12): 1697–1708. https://doi.org/10.1016/j.camwa.2005.05.008.

Boyer, Robert P., and William M. Y. Goh. 2008. “Partition Polynomials: Asymptotics and Zeros.” In
Tapas in Experimental Mathematics, 457:99–111. Contemp. Math. Amer. Math. Soc., Providence, RI.
https://doi.org/10.1090/conm/457/08904.

Brown, James Ward. 1979. “On Multivariable Sheffer Sequences.” J. Math. Anal. Appl. 69 (2): 398–410.
https://doi.org/10.1016/0022-247X(79)90151-3.

Chacón, José E., and Tarn Duong. 2015. “Efficient Recursive Algorithms for Functionals Based on
Higher Order Derivatives of the Multivariate Gaussian Density.” Statistics and Computing 25 (5):
959–74. https://doi.org/10.1007/s11222-014-9465-1.

Charalambides, Charalambos A. 2002. Enumerative Combinatorics. CRC Press Series on Discrete
Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL.

Clausen, Andrew, and Serguei Sokol. 2020. Deriv: R-Based Symbolic Differentiation. https://CRAN.R-
project.org/package=Deriv.

Constantine, G. M., and T. H. Savits. 1996. “A Multivariate Faà Di Bruno Formula with Applications.”
Transactions of the American Mathematical Society 348 (2): 503–20. https://doi.org/10.1090/S0002-
9947-96-01501-2.

De Leeuw, J. 2012. “Multivariate Cumulates in R.” https://escholarship.org/uc/item/1fw1h53c.
Di Nardo, E. 2016a. “On Multivariable Cumulant Polynomial Sequences with Applications.” Journal of

Algebraic Statistics 7 (1): 72–89. https://doi.org/10.18409/jas.v7i1.49.
———. 2016b. “On Photon Statistics Parametrized by a Non-Central Wishart Random Matrix.” Journal

of Statistical Planning and Inference 169: 1–12. https://doi.org/10.1016/j.jspi.2015.07.002.
Di Nardo, E., and G. Guarino. 2019. Unbiased Estimators for Cumulant Products. https://cran.r-

project.org/web/packages/kStatistics/index.html.
———. 2021. kStatistics: Unbiased Estimators for Cumulant Products and Faa Di Bruno’s Formula. https:

//CRAN.R-project.org/package=kStatistics.
Di Nardo, E., G. Guarino, and D. Senato. 2011. “A New Algorithm for Computing the Multivariate

Faà Di Bruno’s Formula” 217 (13): 6286–95. https://doi.org/10.1016/j.amc.2011.01.001.
Di Nardo, Elvira. 2011. “Symbolic Calculus in Mathematical Statistics: A Review.” Séminaire

Lotharingien de Combinatoire 67: Art. B67a, 72. https://www.mat.univie.ac.at/~slc/wpapers/
s67dinardo.pdf.

Di Nardo, E., M. Marena, and P. Semeraro. 2020. “On Non-Linear Dependence of Multivariate
Subordinated Lévy Processes.” Statistics & Probability Letters 166: 108870–77. https://doi.org/10.
1016/j.spl.2020.108870.

Di Nardo, E., and I. Oliva. 2011. “On a Symbolic Version of Multivariate Lévy Processes.” American
Institute of Physics Conference Proceedings 1389 (1): 345–48. https://doi.org/10.1063/1.3636735.

Dimitrakopoulos, Roussos, Hussein Mustapha, and Erwan Gloaguen. 2010. “High-Order Statistics
of Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian
and Non-Linear Phenomena.” Mathematical Geosciences 42 (1): 65–99. https://doi.org/10.1007/
s11004-009-9258-9.

Domino, Krzysztof, Piotr Gawron, and Łukasz Pawela. 2018. “Efficient Computation of Higher-
Order Cumulant Tensors.” SIAM J. Sci. Comput. 40 (3): A1590–610. https://doi.org/10.1137/
17M1149365.

Ferreira, Pedro G, Joao Magueijo, and Joseph Silk. 1997. “Cumulants as Non-Gaussian Qualifiers.”
Physical Review D 56 (8): 4592. https://doi.org/10.1103/PhysRevD.56.4592.

Geng, Min, Huaqing Liang, and Junwu Wang. 2011. “Research on Methods of Higher-Order Statistics
for Phase Difference Detection and Frequency Estimation.” In 2011 4th International Congress on
Image and Signal Processing, 4:2189–93. https://doi.org/10.1109/CISP.2011.6100593.

Giannakis, G. B. 1987. “Cumulants: A Powerful Tool in Signal Processing.” Proceedings of the IEEE 75
(9): 1333–34. https://doi.org/10.1109/PROC.1987.13884.

Guarino, G., D. Senato, and E. Di Nardo. 2009. “Fast Maple Algorithms for k-Statistics, Polykays
and Their Multivariate Generalization.” https://www.maplesoft.com/applications/view.aspx?
SID=33041.

Hankin, R. K. S. 2006. “Additive Integer Partitions in r.” Journal of Statistical Software, Code Snippets 16.
Hardy, Michael. 2006. “Combinatorics of Partial Derivatives.” Electronic Journal of Combinatorics 13 (1):

Research Paper 1, 13. http://www.combinatorics.org/Volume_13/Abstracts/v13i1r1.html.
Hernández Encinas, L., and J. Muñoz Masqué. 2003. “A Short Proof of the Generalized Faà Di Bruno’s

Formula.” Applied Mathematics Letters. An International Journal of Rapid Publication 16 (6): 975–79.
https://doi.org/10.1016/S0893-9659(03)90026-7.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=nilde
https://CRAN.R-project.org/package=nilde
https://doi.org/10.1016/j.camwa.2005.05.008
https://doi.org/10.1090/conm/457/08904
https://doi.org/10.1016/0022-247X(79)90151-3
https://doi.org/10.1007/s11222-014-9465-1
https://CRAN.R-project.org/package=Deriv
https://CRAN.R-project.org/package=Deriv
https://doi.org/10.1090/S0002-9947-96-01501-2
https://doi.org/10.1090/S0002-9947-96-01501-2
https://escholarship.org/uc/item/1fw1h53c
https://doi.org/10.18409/jas.v7i1.49
https://doi.org/10.1016/j.jspi.2015.07.002
https://cran.r-project.org/web/packages/kStatistics/index.html
https://cran.r-project.org/web/packages/kStatistics/index.html
https://CRAN.R-project.org/package=kStatistics
https://CRAN.R-project.org/package=kStatistics
https://doi.org/10.1016/j.amc.2011.01.001
https://www.mat.univie.ac.at/~slc/wpapers/s67dinardo.pdf
https://www.mat.univie.ac.at/~slc/wpapers/s67dinardo.pdf
https://doi.org/10.1016/j.spl.2020.108870
https://doi.org/10.1016/j.spl.2020.108870
https://doi.org/10.1063/1.3636735
https://doi.org/10.1007/s11004-009-9258-9
https://doi.org/10.1007/s11004-009-9258-9
https://doi.org/10.1137/17M1149365
https://doi.org/10.1137/17M1149365
https://doi.org/10.1103/PhysRevD.56.4592
https://doi.org/10.1109/CISP.2011.6100593
https://doi.org/10.1109/PROC.1987.13884
https://www.maplesoft.com/applications/view.aspx?SID=33041
https://www.maplesoft.com/applications/view.aspx?SID=33041
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r1.html
https://doi.org/10.1016/S0893-9659(03)90026-7

CONTRIBUTED RESEARCH ARTICLE 227

Jammalamadaka, S. Rao, T. Subba Rao, and György Terdik. 2006. “Higher Order Cumulants of
Random Vectors and Applications to Statistical Inference and Time Series.” Sankhyā. The Indian
Journal of Statistics 68 (2): 326–56. https://www.jstor.org/stable/25053499.

Joanes, Derrick N, and Christine A Gill. 1998. “Comparing Measures of Sample Skewness and
Kurtosis.” Journal of the Royal Statistical Society: Series D (The Statistician) 47 (1): 183–89.

Kim, Taekyun, Dae San Kim, and Gwan-Woo Jang. 2019. “On Central Complete and Incomplete Bell
Polynomials i.” Symmetry 11 (2). https://www.mdpi.com/2073-8994/11/2/288.

Leipnik, Roy B., and Charles E. M. Pearce. 2007. “The Multivariate Faà Di Bruno Formula and
Multivariate Taylor Expansions with Explicit Integral Remainder Term.” The ANZIAM Journal.
The Australian & New Zealand Industrial and Applied Mathematics Journal 48 (3): 327–41. https:
//doi.org/10.1017/S1446181100003527.

Ma, Tsoy-Wo. 2009. “Higher Chain Formula Proved by Combinatorics.” Electronic Journal of Combina-
torics 16 (1): N21, 7. https://doi.org/10.37236/259.

McCullagh, Peter. 1987. Tensor Methods in Statistics. Monographs on Statistics and Applied Probability.
Chapman & Hall, London.

Mihoubi, Miloud. 2008. “Polynômes Multivariés de Bell Et Polynômes de Type Binomial.” PhD thesis,
L’Université des Sciences et de la Technologie Houari Boumedienne.

Mishkov, Rumen L. 2000. “Generalization of the Formula of Faà Di Bruno for a Composite Function
with a Vector Argument.” International Journal of Mathematics and Mathematical Sciences 24 (7):
481–91. https://doi.org/10.1155/S0161171200002970.

Nguwi, Jiang Yu, Guillaume Penent, and Nicolas Privault. 2022. “A Deep Branching Solver for Fully
Nonlinear Partial Differential Equations.” arXiv. https://arxiv.org/abs/2203.03234.

Oualla, Hicham, Rachid Fateh, Anouar Darif, Said Safi, Mathieu Pouliquen, and Miloud Frikel. 2021.
“Channel Identification Based on Cumulants, Binary Measurements, and Kernels.” Systems 9 (2).
https://doi.org/10.3390/systems9020046.

Peccati, Giovanni, and Murad S. Taqqu. 2011. “Combinatorial Expressions of Cumulants and Mo-
ments.” In Wiener Chaos: Moments, Cumulants and Diagrams., edited by Milano Springer, 1:201–13.
Bocconi & Springer Series.

Privault, Nicolas. 2021. “Recursive Computation of the Hawkes Cumulants.” Statistics and Probability
Letters, 109161. https://doi.org/10.1016/j.spl.2021.109161.

Rao, T. Subba, and W. K. Wong. 1999. “Some Contributions to Multivariate Nonlinear Time Series and
to Bilinear Models.” In Asymptotics, Nonparametrics, and Time Series, 158:259–94. Statist. Textbooks
Monogr. Dekker, New York.

Reiner, David L. 1976. “Multivariate Sequences of Binomial Type.” Studies in Applied Mathematics 57
(2): 119–33. https://doi.org/10.1002/sapm1977572119.

Robson, D. S. 1957. “Applications of Multivariate Polykays to the Theory of Unbiased Ratio-Type Esti-
mation.” Journal of the American Statistical Association 52 (280): 511–22. https://www.tandfonline.
com/doi/abs/10.1080/01621459.1957.10501407.

Roman, Steven. 1984. The Umbral Calculus. Vol. 111. Pure and Applied Mathematics. Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], New York.

Rose, C., and M. D. Smith. 2002. Mathematical Statistics with Mathematica®. Springer Texts in Statistics.
Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-2072-5.

Savits, Thomas H. 2006. “Some Statistical Applications of Faà Di Bruno.” Journal of Multivariate
Analysis 97 (10): 2131–40. https://doi.org/10.1016/j.jmva.2006.03.001.

Shabat, A. B., and M. Kh. Efendiev. 2017. “On Applications of Faà-Di-Bruno Formula.” Ufa Mathemati-
cal Journal 9 (3): 131–36. https://doi.org/10.1007/s12572-017-0181-x.

Shrivastava, HSP. 2002. “Multiindex Multivariable Hermite Polynomials.” Math. Comput. Appl. 7 (2):
139–49. https://doi.org/10.3390/mca7020139.

Smith, Kevin D. 2020. “A Tutorial on Multivariate k-Statistics and Their Computation.” arXiv.
https://arxiv.org/abs/2005.08373.

Smith, Kevin D., Saber Jafarpour, Ananthram Swami, and Francesco Bullo. 2022. “Topology Inference
with Multivariate Cumulants: The Möbius Inference Algorithm.” IEEE/ACM Transactions on
Networking, 1–15. https://doi.org/10.1109/TNET.2022.3164336.

Staude, Benjamin, Stefan Rotter, and Sonja Grün. 2010. “CuBIC: Cumulant Based Inference of Higher-
Order Correlations in Massively Parallel Spike Trains.” Journal of Computational Neuroscience 29
(1-2): 327–50. https://doi.org/10.1007/s10827-009-0195-x.

Stuart, Alan, and J. Keith Ord. 1994. Kendall’s Advanced Theory of Statistics. Vol. 1. Sixth. Edward
Arnold, London; copublished in the Americas by Halsted Press [John Wiley & Sons, Inc.], New
York.

Voinov, Vassilly, and Natalya Pya Arnqvist. 2017. “R-Software for Additive Partitioning of Positive
Integers.” Mathematical Journal 17 (1): 69–76. http://www.math.kz/media/journal/journal2018-
05-1574083.pdf.

Withers, Christopher S., and Saralees Nadarajah. 2010. “Multivariate Bell Polynomials.” International
Journal of Computer Mathematics 87 (11): 2607–11. https://doi.org/10.1080/00207160802702418.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://www.jstor.org/stable/25053499
https://www.mdpi.com/2073-8994/11/2/288
https://doi.org/10.1017/S1446181100003527
https://doi.org/10.1017/S1446181100003527
https://doi.org/10.37236/259
https://doi.org/10.1155/S0161171200002970
https://arxiv.org/abs/2203.03234
https://doi.org/10.3390/systems9020046
https://doi.org/10.1016/j.spl.2021.109161
https://doi.org/10.1002/sapm1977572119
https://www.tandfonline.com/doi/abs/10.1080/01621459.1957.10501407
https://www.tandfonline.com/doi/abs/10.1080/01621459.1957.10501407
https://doi.org/10.1007/978-1-4612-2072-5
https://doi.org/10.1016/j.jmva.2006.03.001
https://doi.org/10.1007/s12572-017-0181-x
https://doi.org/10.3390/mca7020139
https://arxiv.org/abs/2005.08373
https://doi.org/10.1109/TNET.2022.3164336
https://doi.org/10.1007/s10827-009-0195-x
http://www.math.kz/media/journal/journal2018-05-1574083.pdf
http://www.math.kz/media/journal/journal2018-05-1574083.pdf
https://doi.org/10.1080/00207160802702418

CONTRIBUTED RESEARCH ARTICLE 228

Elvira Di Nardo
University of Turin
Department of Mathematics “G.Peano”
Via Carlo Alberto 10, 10123 Turin (Italy)
https://www.elviradinardo.it
ORCiD: 0000-0003-3447-9155
elvira.dinardo@unito.it

Giuseppe Guarino
Università Cattolica del Sacro Cuore
Largo Agostino Gemelli 8, 00168, Rome (Italy)
giuseppe.guarino@rete.basilicata.it

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://www.elviradinardo.it
https://orcid.org/0000-0003-3447-9155
mailto:elvira.dinardo@unito.it
mailto:giuseppe.guarino@rete.basilicata.it

	kStatistics: Unbiased Estimates of Joint Cumulant Products from the Multivariate Faà Di Bruno's Formula
	Introduction
	Partitions of a multi-index
	
	Polykays
	Bell polynomials and generalizations
	Composition of formal power series
	Concluding remarks
	Acknowledgements
	References

