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Abstract 

The prediction of free energy changes upon protein residue variations is an important application in 
biophysics and biomedicine. Several methods have been developed to address this problem so far, 
including physical-based and machine learning models. However, most of the current computational 
tools, especially data-driven approaches, fail to incorporate the antisymmetric basic thermodynamic 
principle: a variation from wild-type to a mutated form of the protein structure (XW → XM) and its 
reverse process (XM → XW) must have opposite values of the free energy difference: ∆∆GWM = 
−∆∆GMW. Here, we build a deep neural network system that, by construction, satisfies the 
antisymmetric properties. We show that the new method (ACDC-NN) achieved comparable or better 
performance with respect to other state-of-the-art approaches on both direct and reverse variations, 
making this method suitable for scoring new protein variants preserving the antisymmetry. The code 
is available at: https://github.com/compbiomed-unito/acdc-nn. 
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1. Introduction  

Disruptions of protein stability and its normal functions are linked to several diseases [1]. Protein 
stability perturbation can also contribute to the loss of function in haploinsufficient genes [2]. Usually, 
normal protein activity is accomplished by switching among a few folding structures representing 
local minima of the unfolding free energy. These minima might be affected by one or more non-
synonymous DNA variations able to alter the amino acid sequence and, therefore, to increase or 
decrease the protein stability [3]. The main experimental measure for studying the effects of non-
synonymous variants on protein stability is the difference of the Gibbs free energy of unfolding (∆∆G) 
between the mutated structure of the protein and its wild-type form (∆∆G = ∆GM − ∆GW). The ∆∆G 
prediction is of great interest in protein engineering and in the interpretation of non-synonymous 
DNA variations. 

The accurate prediction of ∆∆G is still an open challenge and several computational tools have been 
developed to tackle this problem so far [4–18]. However, as recently pointed out [3, 16, 19–22], most 
of the current methods suffer from biases due to the lack of antisymmetric predictions. The ∆∆G 
antisymmetry can be summarized as follows: given the wild-type (W) and mutated (M) protein 
structures, differing by one residue in position X, the quantity ∆∆GWM = ∆GW − ∆GM represents the 
change in the protein stability caused by the amino acid substitution XW → XM. Similarly, given the 
symmetry between the two molecular systems M and W, for the reverse variation XM → XW the 
corresponding change in the Gibbs free energy has the opposite sign:  
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This is due to the thermodynamic rule linking unfolding (U) and folding (F) states, which can be 
described at the equilibrium by the relationship:  
 

 
 

For the reverse transformation from F to U we have: 

 

 

If we then consider the two proteins W and M, which differ by a residue along the sequence, we can 
easily find the previous equation: 

 

 
 
Antisymmetric predictions are not easy to achieve; Usmanova et al [20] showed that, in order to fulfill 
perfect antisymmetry, structure-based methods should be able to generate the low- est energy structure 
of the variant starting from the native one and vice-versa. This is a challenging task due to the intrinsic 
features of the tools. Therefore, biases δMW and δWM in both directions should be considered in the 
equation: 

 

 
 

In this paper, we present ACDC-NN, a new method that scores protein stability changes in protein 
variants while pre- serving the physical property of antisymmetry that character- izes ∆∆G measures. 
The main points provided by this new tool and investigated in this study are: 

• The lack of experimental data currently available [3] and the related strategies to address the problem. 
• The development of an antisymmetric method through a specifically designed loss function and the 

implementation of physical constraints in the network structure. 
• The construction of a novel deep neural network architec- ture able to encode pairwise contact potentials and 

evolu- tionary information in convolutional filters. 
• The proper evaluation of the methods taking into account the sequence similarity between the protein 

sequences, an issue seldom addressed in the assessment of most of the cur- rent approaches [3]. 

ACDC-NN outperforms the state-of-the-art methods when applied to an unbiased dataset for sequence 
similarity, accounting for the reverse variants. The source code of ACDC-NN is publicly available at 
the github repository https://github.com/compbiomed-unito/acdc-nn. 
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2. Results 

2.1 Learning antisymmetry using DDGun3D predictions  

To address the deficiency of experimental data, we used the transfer learning technique (see section 
3). The pre-training phase was performed on a subset of artificially created variants starting from the 
Ivankov dataset [20], that we named IvankovDDGun. The ∆∆G values for this dataset were calculated 
using DDGun3D [23], an untrained predictor mainly based on statistical potentials. DDGun3D uses 
sequence and structure-based features and is able to achieve comparable performance with the other 
state-of-the-art predictors while maintaining antisymmetric properties. The ability to reconstruct the 
predictions is measured using the Pearson correlation coefficient r and root mean squared error 
(RMSE); the ∆∆G antisymmetry is measured with rd − i (equation (6)) and the bias ⟨δ⟩. On the 
IvankovDDGun test set, ACDC-NN reproduced the DDGun3D predictions (r = 0.97 − 0.98) while 
achieving almost perfect antisymmetry with rd − i close to −1 (table 1). The obtained results showed 
that using only sequence and structure information, ACDC-NN could encode the information that 
DDGun3D calculates using the statistical potentials by Bastoll et al [24] and Skolnick et al [25], the 
BLOSUM62 substitution matrix [26], the Kyte–Doolittle hydrophobicity [27] and the residue solvent 
accessibility. 

2.2. Learning to predict experimental ∆∆G values  

After the pre-training phase on simulated data, ACDC-NN was trained on the experimentally derived 
∆∆G values from S2648 through 10-fold cross-validation, achieving r = 0.55 and RMSE = 1.33. As 
expected, the performance on real data was significantly lower than those obtained from the 
simulation. However, the results are in line with the current state-ofthe-art methods on the same 
dataset [3]. To evaluate and compare the antisymmetry property and the prediction performance on 
the experimental data, we used Ssym dataset [21], which was specifically built to assess the ability of 
predicting equally well both the direct and reverse variants of free energy. In particular, we predicted 
each variant from Ssym using in the training sets the proteins showing less than 25% identity with 
respect to those reported in Ssym (see section 3). The comparative performance of the different 
methods on the prediction of direct and related reverse variants, as well as the correlation between 
them on the Ssym dataset, were reported in table 2 in terms of Pearson correlation coefficient (r) and 
root mean square error (RMSE) between the predicted values and the experimental ∆∆Gs. The 
antisymmetry was assessed through rd − i and the bias ⟨δ⟩. RMSE and ⟨δ⟩ are expressed in kcal 
mol−1. 

The results reported in table 2 showed that, considering the correlation of the reverse variants, ACDC-
NN outperformed all the other predictors, with similar performance obtained by DDGun3D, the 
method used for the pre-training. Other predictors with higher performance on direct variants 
performed worse when considering the reverse, indicating the missing thermodynamic antisymmetry, 
as previously highlighted in Pucci et al [21, 22]. It is worth highlighting that, among the methods 
reported in table 2, only Inps-NoSeqId, ThermoNet, ACDC-NN and ACDC-NN∗ were trained in 
cross-validation removing the sequence identity (i.e. sequence similarity y <25%). In addition, 
ACDC-NN showed excellent results in antisymmetry (−0.98) when only one structure was available 
(ACDC-NN) and it achieved perfect antisymmetry (−1.00) with both structures (ACDC-NN∗). Both 
versions of the model outperformed all the other methods on both direct and reverse variants of the 
Ssym dataset. 

2.3. Evaluation of ACDC-NN on p53 and myoglobin variants  

We also evaluated ACDC-NN on two other experimental datasets consisting of single-variants in two 
clinically relevant proteins: the p53 transcription factor and the myoglobin. The p53 dataset was 
created by Pires et al [14], and consists of 42 variants within the p53 DNA binding domain. The 
myoglobin dataset consists of 134 variants (113 variants with some multiple experiments) collected 
by Kepp [30]. Since both myoglobin and p53 are present in the S2648 training dataset, we predicted 
the variants using ACDCNN in cross-validation (see section 3), removing sequence similarity with 
the two proteins. In order to predict the reverse variants we used MODELLER [31] to generate the 
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mutated structures, which are available at our on-line repository https://github.com/compbiomed-
unito/acdc-nn. ACDC-NN predictions were compared with the experimentally-determined ∆∆G 
values as reported in figure 1. The performance obtained in both datasets is in agreement with the 
results observed on Ssym dataset (table 2). The other available deep-learning approach, Thermonet, 
performed slightly worse than ACDC-NN, as reported in tables 3 and 4. 

2.4. Analysis of the convolutional filters  

ACDC-NN consists of two independent convolutional layers, one spanning the 3D residue contacts 
(KT) and the other one spanning the sequence nearest neighbors (KS). Figures 2 and 3 report 
heatmaps of the two filters highlighting the original residue positions (from alanine (A) to tyrosine 
(Y)). Interestingly, KS filters span an input containing the central residue (the one that undergoes the 
residue substitution) while the KT filters span an input containing only the 3D neighbors. This 
difference leads to the generation of a main diagonal appearing in the KS filters only. It is worth 
highlighting that the filters generate two 20 × 20 matrix and that those matrices can be correlated with 
both pairwise contact potentials and evolutionary substitution matrices. The filter matrix KS showed 
statistically significant correlation with both evolutionary-based substitution matrices and pairwise 
contact potential, specifically −0.75 with BLOSUM62 [26] and 0.54 with Simons statistical potential 
[32], respectively. On the other hand, the filter matrix KT significantly correlates only with contact 
potentials, particularly with the BastollaVendruscolo statistical potential [24], achieving a Pearson 
correlation equal to 0.51. These findings indicate that not only the network has learnt both the 
physical-based and the evolutionary information embedded in the DDGun3D score, but also it is able 
to generalize by blending the information to other statistical potentials (as in [32]), which showed that 
the network can also extract consistent physical relationships from the data. 

 

3. Materials and methods  

3.1. Datasets and cross-validation  

Three previously collected datasets and an artificial dataset were used: 

 • S2648, which contains 2,648 manually curated variants with experimentally measured ∆∆G 
values [7].  

• Ssym, which provides variations on proteins whose wildtype and mutated 3D structures are 
solved by x-ray crystallography. It contains 684 variations, and half of them are reverse variations 
[21].  

• Ivankov2000, which contains 2,000 single-point variants with available structures, 1,000 in a 
given direction and 1,000 in the opposite one [20]. This dataset does not report measured ∆∆G 
values because it has been specifically designed to score the anti-symmetric properties of the 
available predictors.  

•  IvankovDDGun, an artificial dataset derived from Ivankov2000 by generating all the possible 
direct and revers variations in every sequence position and assigning the corresponding 
DDGun3D predictions as ∆∆G values. This dataset was used only to pre-train the neural network. 

Since these datasets also contain variants in the same proteins or in proteins with remarkable 
sequence similarity, to properly assess the predictive performance of a method avoiding 
overfitting issues, it is mandatory to consider the sequence identity between the proteins whose 
variants are used to fit the model and those used to test it [3]. Therefore, we generated cross-
validation folds by generating validation and test sets characterized by proteins sufficiently 
different from those available in the training sets. To this aim, blastclust algorithm [33] was used 
to generate clusters of proteins with sequence identity lower than 25% (command blasclust -i 
infile.fasta -o out.custers -p T -L 0.5 -b F -S 25). 
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3.1.1. Sequence profiles. 

For each protein containing at least one variation, the sequence was derived from the ATOM field of 
the PDB coordinate file. Multiple sequence alignments were applied against the Uniprot database 
(release 2016) using hhblits tool [34] with default parameters. From each alignment, a profile was 
derived, i.e. a matrix N × 20 where N is the length of the protein while the 20 columns represent the 
20 amino acid types. Each profile entry Prof(i, a) corresponds to the frequency of the residue type a in 
the protein-sequence position i. 

 

3.1.2. Measure of performance 

To evaluate the performance, Pearson correlation (indicated by r) and RMSE were estimated between 
the predicted and observed ∆∆G values. To assess the antisymmetric property of ∆∆G predictors, we 
adopted two scoring indices: rd − i and ⟨δ⟩. rd − i is the Pearson correlation coefficient between the 
direct and the corresponding reverse variations: 

 

 
 

where Cov is the covariance and σ is the standard deviation. ⟨δ⟩ is the average bias quantifying the 
prediction shift: 

 

 
 

A perfectly antisymmetric method should have rd − i equal to −1 and ⟨δ⟩ equal to 0. 

 

3.2. Building ACDC-NN 

 

To address the antisymmetry property, we built an intrinsically antisymmetric neural network 
architecture, specifically an Antisymmetric Convolutional Differential Concatenated Neural Network 
(ACDC-NN). The ACDC-NN is a convolutional network that takes two separated inputs for direct 
and reverse variations, processes these variations through convolutional operations and then uses the 
extracted features as input for two siamese neural networks with shared weights. Since a perfectly 
antisymmetric predictor should hold the equality ∆∆GWM = −∆∆GMW, we designed a specific loss 
function that constrains the Neural Network to learn this property by considering the following 
equations: 
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We implemented these constraints through the following customized loss function: 

 

 
 

where y is the experimental ∆∆G value, while OD and OI are the outputs of the direct and reverse 
modules of the Differential Siamese Network, respectively. log(cosh(x)) was used since it is less 
sensitive to outliers than the classical mean square error loss. Each of the two inputs consists of 620 
elements to code variation, sequence and structure information: 

 

• Variation (V): 20 features (one for each amino acid) coding for the variation by setting all the entries 
to 0 with the exception of the wild-type and the variant residue positions set to −1 and 1, respectively. 
This input corresponds to a one-dimensional matrix V ∈ R 20×1 .  

• Sequence (S or 1D-input): 100 features representing protein profile information of the sequence 
neighborhood. Considering i as the variant position in the sequence, we used a window of 2 residues, 
i.e. [i − 2,i − 1,i,i + 1,i + 2], so to obtain 20 × 5 elements, with the profile information of these 5 
positions. This input corresponds to a matrix S ∈ R 5×20 .  

• Structure (T or 3D-input): 500 features representing protein profile information of the 3D-structure 
neighborhood. We considered residues up to 5 Å from the variation, taking a maximum of 25 residues 
sorted according to their distance in Å from the amino acid of interest. This input corresponds to a 
matrix T ∈ R 25×20 . 

On both S and T, a 2D convolutional layer was applied with 20 filters, i.e. a kernel equal to (1, 20) 
and stride (1, 1), reported as Keras-style parameters. This layer generates two 20 × 20 filter matrices 
KS and KT shown in figures 2 and 3. 

 

 
 

The filter matrices KS and KT were learned during the training phase. To make the model invariant to 
the order of the 3D neighbors, 2D global average pooling operation (2D-GAP) was applied on T ′ 
(which encodes the structure information): 

 

 
 

Then the Dot product was calculated between the variant vector V and both T ′ ′ and S ′ : 

 

 
 

After all these operations, we obtained six processed features, computed for both the direct variation 
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and its reverse. These features were then concatenated with the variant vector V and used as input to 
the Differential Siamese Networks, which have shared weights, and their outputs were combined in 
two final Lambda layers of ‘difference/2’ and average. Thanks to the loss function described above 
(9), the average output is minimized and the difference is as close as possible to the true ∆∆G values. 
The ACDC-NN architecture is displayed in figures 4 and 5. 

 

3.2.1. Pre-training 

Pre-training was performed on a subset of artificial ∆∆G values extracted from IvankovDDGun 
dataset. For all the direct and reverse variations, each sequence position was generated and the ∆∆G 
values predicted with DDGun3D were used as output. ACDC-NN was trained on 400,000 simulated 
variations split in half for direct and reverse variations. A validation set (100,000), built without 
intersections or sequence identity with the training dataset, was generated to search for the optimal 
parameters. The final model was then tested on a blind test set built in the same way (100,000) (see 
section 2). We found that the optimal configuration for the differential net consisted of two hidden 
layers with 32 and 16 units, respectively. For a full overview of all the optimal parameters, see table 
5. 

 

3.2.2. Transfer learning using the experimental data 

Starting from the original network, ACDC-NN was re-trained on the S2648 dataset of experimental 
∆∆G values [7], splitting the data and removing the sequence similarity between training, validation 
and test sets. We fixed the weights of the convolutional part that learned a compact representation of 
the structure and sequence features, while the differential siamese network part was re-trained. To 
increase the size of the training set we also added the experimentally-determined structures from 
Ivankov2000 dataset and assigned the DDGun3D predictions as outputs.  

3.2.3. Predictions  

The ACDC-NN model was built so that it can be used to make predictions in two different cases:  

• When both the wild-type and variant structures are available, these are respectively used as direct 
and reverse inputs so that the network can provide a prediction that, by construction, is perfectly 
antisymmetric with respect to the network itself.  

• When only the wild-type structure is available, as usual, the reverse input is created starting from the 
direct one by inverting the variation encoding, but preserving the same structure. The prediction in 
this case is not perfectly antisymmetric, but still very close, as shown in section 2. 

 

4. Discussion and conclusion 

Very few methods in the literature satisfy the principle of antisymmetry imposed by thermodynamics, 
either due to the skewed datasets on which they are trained or the intrinsic characteristics used. The 
main ACDC-NN novelty is the introduction of the physical property of antisymmetry in the learning 
process, exploiting a specifically designed loss function which minimizes the absolute difference of 
the direct and reverse predictions. Thanks to its architecture, ACDC-NN achieves perfect 
antisymmetry when both 3D structures (reverse and direct) are available. When only one structure is 
known, ACDC-NN creates an artificial reverse, preserving remarkable predictions and nearly perfect 
antisymmetry (table 2). This may lead to a mild break of the antisymmetry as shown in table 2 by the 
results of ACDC-NN∗ (when both structures are provided) vs ACDC-NN (only one structure at a time 
is provided and the reverse is simulated). Only recently, another deep learning approach (ThermoNet) 
has been introduced [18], which showed to have learnt the antisymmetry of the problem (table 2). 
Although ThermoNet and ACDC-NN are both based on deep learning architectures, they adopt very 
different input data types [18]. Another relevant point is that ACDC-NN has been evaluated using 
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variants in proteins which are not similar to those used for the training. When testing the performance 
of any method on a dataset, the correct procedure (considered only by a few methods so far) is to 
remove sequence similarities between the training and test data to avoid overfitting. Following this 
procedure, we therefore divided the Ssym dataset into ten subsets as described in the Method section. 
As shown in table 2, on this dataset ACDC-NN consistently outperformed all the existing methods. In 
conclusion, ACDC-NN is a user-friendly tool that shows comparable or better performance with the 
state-of-the-art methods while preserving perfect thermodynamic antisymmetry. In future studies, this 
method can be used for further improvements in order to predict multiple site variations and to build a 
robust sequencebased method when the structure information is not available. To reproduce the 
results presented in this work and to test new protein variants, the code is publicly available at 
https://github.com/compbiomed-unito/acdc-nn. 
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Table 1. Results on the IvankovDDGun test set and on Ivankov2000: the performance of ACDC-NN 
in learning DDGun3D was measured in terms of Pearson correlation coefficient (r) and root mean 
square error (RMSE). The antisymmetry property was assessed in terms of Pearson correlation 
coefficient (rd − i) and the bias (⟨δ⟩) between the predicted values. ⟨δ⟩ are expressed in kcal mol−1. 
IvankovDDGun (Test) is the test set extracted from the IvankovDDGun artificial dataset (never seen 
during training). Ivankov2000 consists of the original dataset whose ∆∆G values were derived from 
the predictions of DDGun3D and both direct and reverse 3D structures were evaluated. 

 

 

 
 

 

 
Table 2. Results on Ssym: the performance on direct and reverse variants was measured in terms of 
Pearson correlation coefficient (r) and root mean square error (RMSE). The antisymmetry was 
assessed using the correlation coefficient rd − i (6) and the bias ⟨δ⟩ (7). RMSE and ⟨δ⟩ are expressed 
in kcal mol−1 . All the predictions of the methods were taken from Pucci et al [21], except for INPS-
NoSeqId, INPS, INPS3D, DDGun3D and ThermoNet. The results of DDGun3D, INPS and 
ThermoNet were taken from Montanucci et al [23], Fariselli et al [8] and from [18], respectively. 
ACDC-NN∗ reports the cross-validation performance using in input both structures, wild-type and 
mutated (as experimentally defined). Only Inps-NoSeqId, ThermoNet, ACDC-NN and ACDC-NN∗ 

were trained in cross-validation addressing the sequence identity issue (sequence similarity <25%). 
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Table 3. Results on p53: comparison between ACDC-NN and Thermonet, the other available deep-
learning approach, on p53. ACDC-NN∗ values were obtained when both direct and reverse structures 
were used as input. The results of ThermoNet were taken from [18]. 
 

 
 

 
 
 
 

Table 4. Results on myoglobin: comparison between ACDC-NN and Thermonet, the other available 
deep-learning approach, on myoglobin. ACDC-NN∗ values were obtained when both direct and 
reverse structures were used as input. The results of ThermoNet were taken from [18]. 
 
 
 

 
 
 
 
Table 5. The optimal architectures of the differential net before and after transfer learning. The 
optimal parameters were selected on a validation set without intersections or homologies with the 
training set. 
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Figure 1. (A) Performance of ACDC-NN in predicting ∆∆G for the direct mutations in p53 (r = 0.62, 
RMSE = 1.67 kcal mol−1 ). (B) Performance of ACDC-NN in predicting ∆∆G for the reverse 
mutations in p53 (r = 0.61, RMSE = 1.72 kcal mol−1 ). (C) Direct versus reverse ∆∆G values of all 
p53 mutations predicted by ACDC-NN (rd−i = −0.99 and ⟨δ⟩ = −0.01 kcal mol−1 ). (D) Performance 
of ACDC-NN in predicting ∆∆G for the direct mutations in myoglobin (r = 0.58, RMSE = 0.89 kcal 
mol−1 ). (E) Performance of ACDC-NN in predicting ∆∆G for the reverse mutations in myoglobin (r 
= 0.57, RMSE = 0.89 kcal mol−1 ). (F) Direct versus reverse ∆∆G values of all myoglobin mutations 
predicted by ACDC-NN, with a Pearson correlation of rd−i = −0.99 and ⟨δ⟩ = −0.01 kcal mol−1 . 
 
 
 
 

 
 
 
 

Figure 2. Heatmap of the filter matrix KS spanning over the sequence nearest neighbour of the 
variant residue. The rows indicate the filters while the columns represent the residue position in the 
input matrix. This matrix is significantly correlated with both substitution matrices and statistical 
potentials. 
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Figure 3. Heatmap of the filter matrix KT spanning over the three-dimensional neighbors of the 
variant residue. The rows indicate the filters while the columns represent the residue position in the 
input matrix. This matrix is significantly correlated with statistical contact potentials. 
 
 

 
 
 

 
 
 
 
 
Figure 4. Constituent module of ACDC-NN. The module consists in a 2D-convolutional operation 
applied to both T (3D inputs) and S (1D inputs) using 20 filters with kernel (1, 20) and stride (1, 1); 
3D information underwent 2D-global average pooling (GAP). Dot product was then applied to both 
T′′ and S ′ processed information with the variation encoding vector V. Finally, all the 26 features 
were concatenated and used as input in a dense network. The notation used in the figure is the same as 
in the text. 
 
 

 
 
 



14 
 

 
 
Figure 5. Complete ACDC-NN architecture. The module displayed in figure 4 was used for both 
direct and reverse variations. A final layer takes the average and the difference between the two 
outputs (representing the ∆∆G predictions for direct and reverse variations, respectively). The two 
Siamese networks have shared weights, both in the convolutional and dense parts of the network, 
represented by the dashed lines. 
 
 
 
 

 


