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Abstract

In several systems modularity is a crucial ingredient at the basis of com-
plexity and heterogeneity. Prominent examples are genomes, which can be
viewed as an assembly of genes, written texts composed of words, or man-
made systems built from basic modules. Our work proposes a general the-
oretical tool to represent modular systems, called component system, where
sets of objects are a collection of elementary components, exactly as LEGO
toys are made of bricks. The present thesis focuses on emerging statistical
patterns/laws that component systems show. These patterns, in principle,
can unveil information about underlying architectural constrains, or the sys-
tem generative process, thus leading to a better comprehension of modular
structures. We present five works in this context, which addresses differ-
ent approaches to understand the origin of these simple patterns, and what
they can teach us about empirical systems. In short, the first works tack-
les the problem about dependencies between statistical laws, providing new
insights about the well-known “U” shaped distribution of shared genes in
genomes, which can be mainly considered as a derivative phenomenon of
a scale-free Zipf’s law. The next three works are dedicated to reproduce
statistical patterns by means of stochastic growth models. In particular, we
show that statistical laws of a component system can be linked to topolog-
ical properties of functional dependencies between the system-components.
We also investigated how such patterns can emerge as a consequence of the
“sample space reducing” mechanism, i.e. a recently introduced model based
on the assumption that the number of potentially new components reduces
as the system evolves. The fourth work considers the growth of the object
“vocabulary” as a function of its “size”, well-known in linguistics as the
Heaps’ law. We show that empirical systems display a non-trivial and uni-
versal vocabulary’s fluctuations scaling, which can be generated by specific
conditions of the innovation dynamics. Finally, the fifth work tackles the
problem of ranking the system-components according to their “importance”
(with a similar spirit of the Google PageRank). To this end, we employ a
non-linear iterative algorithm to efficiently rank species in mutualistic eco-
logical network, according to their importance in determining the system
robustness.
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Chapter 1

Summary of the work

1.1 Purpose of the work

The present thesis describes the research work that I carried out during my
PhD program in complex systems for life sciences. As a general context, the
project studies the emerging statistical patterns/laws of complex systems.
This field of research has grown in the last twenty/thirty years as a conse-
quence of the increasing number of data that new technologies can extract
from empirical systems and process. Examples of involved disciplines are
biology, ecology, economics, linguistics or social sciences. Basically, the ap-
proach consists of computing simple qualities across all the “microscopic”
entities, giving rise to statistical patterns which describe the system as a
whole. Resembling the concept of macroscopic observables in thermody-
namics, the obtained statistical laws ignore a lot of “microscopic” details,
providing a global description in simple mathematical terms. This often
highlights surprising regularities across very different fields, and, in princi-
ple, may unveil fundamental properties of the system and how it has been
generated. For example, one can study a large ensemble of genomes and
their composition in terms of gene families. This structure has been shaped
by evolution, and therefore its emerging statistical properties contain infor-
mation about the organisms evolutionary history and the evolutionary forces
acting on them. Analogously, the statistical laws shown by the occurrences
of words among books are related to fundamental properties of human lan-
guage, and how it has evolved trying to optimize communication efficiency
(Section 2.2 will present a more extended introduction to statistical laws).

We approached the problem of studying statistical laws proposing a gen-
eral theoretical framework, called component system. It takes advantage of
the modular structure shown by several empirical systems. For instance,
genomes can be viewed as a collection of genes, exactly as books are made
of words or man-made buildings are composed of basic modules. In other
words, the component-system framework describes whatever ensemble of
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realizations/objects made of elementary components. Such a description
can be applied to a huge variety of systems, belonging to very different
fields. Some examples are genomics, linguistics, technological systems, biol-
ogy, ecology and economy.

Several well-known statistical laws find a natural definition within the
component-system representation. We can then investigate statistical pat-
terns within a general and abstract framework, which allows us to compare
the laws between very diverse fields. This may highlight general features
across systems, maybe generated by statistical constrains of the modular
representation, or due to universal mechanisms. On the contrary, the speci-
ficities should be related to system-specific properties, unveiling functional
features. A further advantage of this approach is that it creates bridges
between different disciplines. As a consequence, techniques and ideas spe-
cific of a certain field can be extended and generalized to all the modular
systems.

The present thesis will describe five works within this context. Trying to
summarize their common purpose in one sentence, we want to understand
the origin and the meaning of the statistical and topological properties of
empirical modular systems by employing the component system framework.
We can then categorized the five works in three more refined topics:

• Dependencies between statistical laws. Considering different sta-
tistical patterns of complex systems, a first crucial question is about
the dependencies between them. If they are independent, one can ex-
pect that they highlight different aspects of the system under study,
otherwise laws can emerge as a statistical (or null) consequence of
other laws, carrying redundant information. This problem is better
addressed in the first work, “U-shaped law as a statistical consequence
of the Zipf’s law”, which focuses on the relationship between two im-
portant statistical patterns. The work proposes a null-model which
takes into account such dependency, providing new insights about the
origin of so called “U”-shaped law very famous in genomics.

• Generative process of component systems. A classical approach
to extract information form statistical laws is to build mathematical
models reproducing the observed patterns with the minimal set of in-
gredients and parameters. If a model succeeds, it is reasonable to
assume that such ingredients are at the basis of the system generative
process, providing then information on how the system evolves. The
next three works of this thesis, “Zipf and Heaps laws from dependency
structures”, “Heaps and U-shaped laws in sample space reducing pro-
cesses”, and “the Heaps’ law fluctuations unveil information on the
innovation dynamics”, focus on this aspect. Specifically, the first one
considers a model based on functional dependencies between compo-
nents, and how the statistical patterns can emerge as a consequence
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of the topological properties of the dependency network. The second
work focuses on a recently introduced stochastic model based on the
shrinking of the state space as the system evolves, and how differ-
ent laws can emerge form that assumption. Finally, the third study
is dedicated to the investigation of a specific observable, namely the
fluctuation scaling of the so-called Heaps’ law, which is strictly related
to the innovation dynamics of the system.

• Ranking of components. The fifth work, “towards the optimal
ranking in ecological mutualistic networks”, tackles the problem of
ranking the system components and realizations according to a certain
definition of importance. Specifically, we look for the most important
species in a mutualisitic ecosystem (which can be represented as a
component system) whose extinction would lead to a faster collapse of
the system. To this end, we generalize a non-linear iterative algorithm
recently introduced in economics.

The thesis is arranged as follows: the current chapters will continue
presenting the abstracts of all the five different works. Then, chapter 2
describes the component-system framework, and presents some well-known
statistical laws, focusing on how they find a representation in our framework.
These concepts are at the basis of the five works, which are presented in the
next five chapters: 3, 4, 5, 6, 7.

1.2 Abstracts

1.2.1 U-shaped law as a statistical consequence of the Zipf’s
law

Authors: Andrea Mazzolini, Marco Gherardi, Michele Caselle, Marco Cosentino
Lagomarsino, Matteo Osella.

Here we focus on the statistics of shared components, i.e., the dis-
tribution of the number of basic components shared by different system-
realizations, such as the number of common bricks found in different LEGO
sets, common genes in different organisms or common words in different
books. The shared components distribution is well-known in genomics and
technological system, showing a characteristic and apparently universal “U”-
shape. The common approach to understand the meaning of this distribu-
tion is to investigate generative models leading to the “U” shape under
system-specific functional constraints. However, considering a simple null
model based on random extractions of the component, we prove that this
law can be qualitatively generated assuming the heterogeneity of the compo-
nent abundances, whose broad distribution is known as Zipf’s law in several
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contexts. Moreover, the null model provides analytical estimates of compo-
nent occurrence features, such its power law decay and its “core component”
fraction, and how these features are related to the Zipf’s law and the sys-
tem parameters. The range of validity of such predictions seems to be very
wide, since they are confirmed in all the considered data: bacterial genomes,
LEGO sets, and book chapters. Therefore, efficient detection of specific ar-
chitectural features and system functional information from the occurrence
distribution have to keep these emergent regularities into account. In this
way, system-specific statistical anomalies can be identified as deviations from
null predictions. These deviations can highlight functional constraints, as
we show for the illustrative case of bacterial genome composition.

1.2.2 Zipf and Heaps laws from dependency structures

Authors: Andrea Mazzolini, Jacopo Grilli, Eleonora De Lazzari, Matteo
Osella, Marco Cosentino Lagomarsino, Marco Gherardi.

Zipf’s and Heaps’ laws are broadly studied examples of statistical laws,
concerning the distribution of component abundances, and their number
as a function of system size. Interestingly, they show emergent regularities
quantitatively invariant across very different systems. Despite the effort, the
debate is still open regarding their origin, robustness, and universality. In
this work, we propose a positive model, based on the concept of dependency
structures between components, which constrain the statistical properties
of the component system under study, leading to the two quantitative laws.
Such dependency structures (i.e., networks encoding the dependency rela-
tions between the components in a system) were proposed recently as or-
ganizing principles underlying some of the regularities observed, specifically
the so-called “U”-shaped component frequency distribution. However, only
binary descriptions (absence/presence of components) have been utilized.
Here, we consider a simple model that generates, from a given ensemble of
dependency structures, a statistical ensemble of sets of components, allow-
ing for components to appear with any multiplicity. A mean-field analytical
approach (analogous to what is called Zipfian ensemble in the linguistics
literature) is able to capture the relevant laws involving the occurrence and
the abundance of the components, as we show by comparison with numerical
computations. In particular, we recover a power-law Zipf rank plot (with
a set of core components) and a Heaps law displaying three consecutive
regimes (linear, sub-linear and saturating) that we characterize quantita-
tively.
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1.2.3 Heaps and U-shaped laws in sample space reducing
processes

Authors: Andrea Mazzolini, Alberto Colliva, Michele Caselle, Matteo Osella.

This work aims to analyse a generative model for complex component
systems called Sample Space Reducing process, SSR. The basic model idea
is that as the system evolves, the number of possible state diminishes, i.e.
the state space shrinks. This provides a novel mechanism for the generation
of power laws, reproducing the Zipf’s law. We show that, in addition to the
Zipf’s law, other well-known scaling laws may emerge as a consequence of
the sample space reducing assumption: the sub-linear growth of the vocabu-
lary size as a function of the text size, i.e. the Heaps’ law, and the U-shaped
distribution of the fraction of realizations which share a component. Within
the model framework, the behavior of both these laws can be predicted ana-
lytically, and it is in agreement with random sampling models which assume
the Zipfs law. We also apply the SSR model in a specific example, trying to
reproduce the Zipf’s and the Heaps’ laws of a book, which are qualitatively
in agreement with the empirical ones. At the same time, statistical laws
which look at correlations between words, showing non-trivial behaviour in
books, cannot be reproduced by the model.

1.2.4 How the Heaps’ law fluctuations are related to the in-
novation dynamics

Authors: Andrea Mazzolini, Alberto Colliva, Michele Caselle, Matteo Osella.

Even though the average behaviour of the Heaps’ law has been exten-
sively studied in linguistics, there are very few attempts to characterize the
full statistics of the book vocabularies at fixed text-length. Here, tacking-
advantage of the component system framework, we tackle the study of the
Heaps’ law variance in linguistic and genomic databases. The fluctuation
scaling show a surprising Taylor’s law with exponent 2, which seems to
be very general in all the datasets and deviates from random-models pre-
dictions. The origin of this non-trivial scaling is analysed in the context
of duplication-innovation models, allowing us to connect the Heaps’ vari-
ance with the innovation dynamics. Our findings shows that the scaling
is correctly reproduced by models in which the probability of discovering
new components is linear with the vocabulary (i.e. the number of distinct
components/words), as in the Chinese restaurant process. This suggests a
rich-gets-richer mechanism in terms of vocabulary usage: the more realiza-
tions have a rich vocabulary, the more they will discover new components.
This mechanism can find interesting context-specific interpretations. For
example, we speculate that it may be originated by phylogenetic history in
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genomes, or the topical aspect of written texts in linguistics.

1.2.5 Towards the optimal ranking in ecological mutualistic
networks

Authors: Andrea Mazzolini, Matteo Osella, Michele Caselle.

The stability of mutualistic ecological systems relies on a network of com-
plex interactions between species. A challenging problem is determining the
“importance” of any given species when evaluating the system resilience
and robustness to perturbations. This task has been tackled with promis-
ing results by using a non-linear iterative algorithm originally introduced in
economics, called fitness-complexity map. Specifically, from the binary com-
ponent system composed of countries and exported products, the algorithm
highlights the most “important” nations in terms of non-monetary compet-
itiveness. Surprisingly, the same algorithm applied to mutualistic systems
(which share the same structure as a binary component system) ranks species
according to their ecological “importance” in a very efficient way. Our work
proposes a one-parameter generalization of the fitness-complexity map. The
free parameter allows us to tune the concept of “importance” assigned to
species (or countries), which is instead fixed in the standard map. Test-
ing the algorithm in mutualistic systems, we find that the generalization
leads to much better performances, which can be quantitatively evaluated
by computing the so-called extinction area. An unexpected consequence of
the optimal ranking is that, rearranging the adjacency matrix of the system
according to the obtained ranking, a surprising geometric pattern emerges,
which seems to really capture the “nested” architecture of the system.
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Chapter 2

Statistical laws in component
systems

2.1 The component system framework

Several empirical systems are modular, that is to say that the complex enti-
ties of the systems can be viewed as a collection of basic building blocks. For
instance, LEGO toys can be regarded as an assembly of bricks (Figure 2.1a),
books are a collection of words (Fig. 2.1b), and genomes are composed of
protein domain families (Fig. 2.1c). We call this structure component sys-
tem. Modular representations of complex systems have emerged in diverse
fields, some examples are genomics [1, 2], quantitative geography [3, 4], lin-
guistics [5, 6, 7], and technological systems [2, 8]. However, these works use
the modular representation to study problems within the specific contexts,
without referring to a general and abstract structure. A first aim of this the-
sis is to define such generalization (i.e. the component system framework)
and to take advantage of the bridges and links between distant fields that
it creates.

The precise mathematical definition of a component system will be pre-
sented in Section 2.1.1, but in several cases such systems can be simply
identified with the component matrix, Figure 2.2a. The matrix elements
indicate the quantity of the component (e.g. LEGO brick, word, protein
domain family) in the realization (e.g. LEGO toy, book, genome). Note
that a component matrix can be interpreted as the adjacency matrix of a
weighted bipartite network, Figure 2.2b, where the two layers of nodes are
the realizations and the components.

Her we introduce an important class of component systems, which are
characterized by the order of the component within the realization. For
example in written texts the order is naturally defined as the position of
the words in the text string (Fig. 2.2c), or in LEGO toys the order can be
obtained by the time in which a brick joins the construction following the

10



System realizations Basic components

LEGO toys LEGO bricks

x2 x2

x6 x8
....

whale x1200

....

Ahab x900
typhoon x15

Books Words

Eschirichia 
coli Yersinias

pestis

Gloeobacter
violaceus

....

TRP-like x74

Chaperone-j
domain x900

Genomes Protein domain families

(a)

(b)

(c)

Figure 2.1: Three examples of component systems

instruction manual. In such cases, we refer to component system with order
(defined in Section 2.1.3). Note that the component-order information is not
encoded in the component matrix, which can be still associated to this kind
of systems, but it does not provide a complete description. It is important
to introduce component systems with order because some later definitions
and results are defined only for this special class.

It is worth mentioning that the component-system-description leads a
simplification of the original system complexity. For instance, if one de-
scribes books just as a bag of words, then he ignores the super-structures,
such as chapters or paragraphs, as well as the statistics of the letters and the
syllabuses. To take into account the more complex architecture of empirical
systems one can generalize our framework introducing multiple matrices,
each associated to a different “resolution”. For example, in the cited lin-
guistic case, the elementary components can be words, letters, or syllabuses,
while the system-realizations can be books, chapters or paragraphs. Simi-
larly, in genomics the basic components of genomes can be genes, protein
domains, or whatever kind of component inside the cell. At the same time,
genomes can be chosen as single species but also at different taxonomic lev-
els. In such a way, all the different choices of the basic components and
the system-realizations lead to different component matrices, implying that
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12000
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Figure 2.2: Mathematical representation of component systems.
Panel (a) shows the component matrix associated to a toy example of LEGO
buildings. Each row represents a component, each column a realization, and
the entries are the instances of the component in the realization. Panel (b)
displays the component system representation as a weighted bipartite net-
work, where the first layer of nodes are the realizations, the second layer the
components, and the link weight indicates the abundance of the component
in the realization. Finally, panel (c) shows an example component system
with order, specifically a set of books. The component matrix can be derived
from this representation, but the vice-versa is not true.

several matrices can be associated to the same system. The matrix-set pro-
vides, in principle, a more detailed description of the system and a more
complete view of its complexity. However, when one perform a quantitative
analysis of the system, he has to take into account the properties of each
matrix and how they vary at the different resolutions, making the investi-
gation much more complicated (with respect to a single matrix). Moreover,
the “excess” of information could hide the essential features which one wants
to study. This highlight a typical trade-off in complex system: the system
representation must simplify the original complexity as much as possible (in
order to allow mathematical tractability) but without loosing the essential
properties of interest. Typically, a priori, there is not a general answer about
the right “level of simplification” to chose (the most detailed description is
not always the optimal choice), and it depends on the features of interest.

In this thesis we will show that a single component matrix contains a
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large amount of information by itself, and our analysis will consider only
this simplest description. However the study of multiple “resolutions” could
provide an interesting extension of the framework.

2.1.1 Mathematical notation

We define a component system as a set of R realizations: {r1, r2, . . . , rR}.
Each realization is a set: rj = {x1, x2, . . . , xsj}, where sj is the size of the
realization. The variables xk are instances of the elementary components:
xk ∈ {c1, c2, . . . , cN}. The set of unique components {c1, c2, . . . , cN} is called
system vocabulary, and its cardinality, N is the system vocabulary size. To
illustrate this notation with an example, let us consider an ensemble of
books. Each book is a realization rj , which is a string of word-tokens.
Then, each word-token, xk, is an instance of the unique words-types which
compose the vocabulary {ci}.

This set of realizations can be completely described by the associated
component matrix. The matrix elements are defined through the relation:
nij =

∑
xj∈{x1,...,xsj }

δxj ,ci . Therefore nij , with i = 1, . . . , N , j = 1, . . . , R,

represents the number of instances of the component i in the realization
j, called also “local abundance”. In Figure 2.2a is shown an illustrative
example.

In the following, we present some definitions based on the component
matrix {nij}, which are summarized in the table 2.1. The global abundance
of a component is defined as the total number of times that the compo-
nent appears in the ensemble: ai =

∑
j nij . Considering the analogy with

a bipartite network, Figure 2.2, the abundance is exactly the strength of
the node. The abundance normalized by the total number of components is
called frequency: fi = ai∑

i ai
. A second observable is the component occur-

rence oi, which is instead defined as the fraction of realizations in which the
component is found, thus oi = 1

R

∑
j(1− δnij ,0). The occurrence is propor-

tional to the node degree of the associated bipartite network. Considering
the realizations, the counterpart of the abundance is the realization size:
sj =

∑
i nij , which represents the total number of components in the real-

ization j. Note that sometimes it will be used l instead of s. The distinction
is that s refers to the final size of a realization, while l is the “partial” size
that a realization have during a dynamical growth process, l ∈ [1, s]. Finally,
the last quantity is the number of distinct component in a realization, called
realization vocabulary : vj =

∑
i(1 − δnij ,0). Again, we change the notation

for the partial vocabulary during a growth process, using the letter h, with
h ∈ [1, v].
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Table 2.1: Some key quantities of a component system.

Symbol Formula

System vocabulary size N

Number of realizations R

Component abundance ai
∑R

j=1 nij

Component frequency fi
ai∑N
i=1 ai

Component occurrence oi
1
R

∑R
j=1(1− δnij ,0)

Realization size sj (or lj)
∑N

i=1 nij

Realization vocabulary vj (or hj)
∑N

i=1(1− δnij ,0)

2.1.2 Binary component systems

This subsection introduces a special case of component system called binary
component system. It is defined by the fact that a component in a real-
ization can be only present or absent, implying that it is described by a
binary matrix, nij ∈ {0, 1}. A typical example is a group of personal com-
puters (i.e. the system-realizations) and the software packages installed on
them (i.e. the system-components). Each software cannot be installed more
than one time, implying that the system is binary. Furthermore, whatever
component system can be “binarized” choosing a threshold θ on the matrix
elements, and fixing the new elements as n′ij = H(nij − θ), where H(x) is
the Heaviside function. It is important to note that a binary component
system has the following properties: the component occurrence is propor-
tional to the abundance, ai = Roi, and the realization size is equal to the
realization vocabulary, sj = vj . As a consequence, a couple of statistical
laws (introduced later) are trivial, and several results derived in this thesis
become trivial.

2.1.3 Component order in realizations

As discussed previously, some systems have the additional property that
their components are ordered. A typical example is an ensemble of written
texts as shown in Fig. 2.2c. In a peak of creativity, we call this class
of systems component systems with order. This is defined considering the
system-realization as an ordered sequence of component-instances (instead
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as a set of component-instances): (x1, x2, . . . , xsj ), where, as before, xk ∈
{c1, c2, . . . , cN}. Clearly the component matrix can be derived from the
sequences (nij =

∑
xj∈(x1,...,xsj ) δxj ,ci), but the vice-versa is not true. Indeed,

a different order of a realization-sequence is associated to the same column
of the component matrix. Note that a component system with order is no
longer equivalent to a bipartite network.

Using the component-matrix-definition or the ordered-sequence-definition
will depend on the system under study (whether or not the component order
is well defined) and the property under analysis (if it is related with the com-
ponent order). For the sake of simplicity, we will use the component-matrix
definition whenever it will be possible.

Systems with partial order

This thesis will discuss only the two classes of component systems described
so far, that are systems with order, and without order. However, they can be
viewed as two extremes of a more general mathematical structure, which will
be briefly presented in this paragraph, and could provide a really interesting
generalization of the framework. We can refer to this generalization as
component system with partial order, because it considers realizations as
partially ordered sets [9]. Trying to give the basic ideas of this mathematical
object, the set r = {x1, x2, . . . , xs} (i.e. the realization composed of its
component instances) can be associated to a second set named partial order
P . The elements of this second set are binary relations between the elements
of the first set r. These binary relations (or “order relations”) are indicated
with xi < xj , where the symbol “<” can be interpreted as xi is followed by
xj . Note that the meaning of numerical inequality typically associated to
“<” can be viewed as a particular case of this definition. To be a “partial
order”, P must satisfy the condition of antisymmetry (if xi < xj then the
element xj < xi does not exist) and transitivity (if xi < xj and xj < xk
then xi < xk). Given such a definition, the component system without
order can be recovered simply considering an empty set of order relations P .
Differently, the component systems with order is obtained when there exists
an order relation between every pair of elements of r, defining the so-called
total order, which implies that all the elements can be written in a unique
ordered sequence, as the words in a book. An important example of totally
ordered set is N, where the order relations are the numerical inequalities
(0 < 1, 0 < 2, 1 < 2, ...), which allows the natural numbers to be written in
the sorted sequence: 0, 1, 2, 3, . . ..

Therefore, the intermediate case (between the total and the absence of
order) provides a less constraining definition of order, which could find appli-
cation also in the component system framework. For example, LEGO toys
are perfect examples of realizations with partial order. Think for instance to
a small village composed of different houses made of LEGO bricks. Bricks
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needed to build a certain house have order relations (the doors and the walls
must be built before the roof). On the contrary, the bricks belonging to dif-
ferent houses do not have such relations. This follows from the fact that
the final village can be obtained independently of which house is built first.
Therefore the component system with partial order can potentially provide
a more reliable description of systems in several contexts. One can wonder,
for example, whether its properties can be translate into statistical laws,
and than compared between different systems unveiling crucial information
and regularities.

2.2 Statistical laws in complex systems

A possible way to characterize a complex system is looking at its global
statistical patterns. These patterns can be defined as distributions of simple
quantities computed among all the entities of the system, or specific depen-
dencies between such quantities. This approach has been widely used across
different fields. For example, in genomics the increasing number of complete
genome sequences has made possible the computation of statistical patterns
across very different organisms. This has led to the discover of “universal”
laws [10], in the sense that they seem to be conserved in every region of
the phylogenetic tree. Some examples are the log-normal distribution of
the evolutionary rates [11], the power law distributions of gene family sizes
[12], or the category-dependent power law scaling of the number of genes
in a category with the genome size [13]. These universal regularities can be
reproduced with simple mathematical models which mimic the evolutionary
process, linking therefore the universal patterns to fundamental evolutionary
mechanisms [10, 14, 15, 1, 16].

The emerging statistical patterns have been extensively investigated also
in quantitative linguistics [5, 17]. The most famous example is the Zipf’s
law, studied in the ’30s by George Zipf [18]. It states that the ranked
abundances of words follow a power law decay with exponent −1, i.e. the
abundance of the r-th most abundant word in a text is inversely proportional
to its rank r (this law and its interpretation will be described more in detail
in section 2.2.1). Other examples are the Menzerath-Altmann law [19],
according to which the increase of a linguistic construct results in a decrease
of its constituents, and the Heaps’ law [20], which states that the number of
different words in a text scales with the text size as a sub-linear power law.
In addition to genomics and linguistics, statistical laws has been studied
and characterized in countless fields, such as ecology [21, 22], economics
[23], technological systems [24, 8], and social systems [25].

The main purpose of this thesis is to employ the component system
framework to address the study of these statistical patterns, indeed, most
of the cited laws can be defined within our representation. In this way, such
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laws can be studied from a more general perspective, comparing their fea-
tures between all the modular systems. Such comparison may highlight
general behaviours related to universal mechanisms, as well as context-
dependent features, which should lead to a better understanding of the
system-specific functional properties. Furthermore, the developed common
theoretical language can help the exchange of ideas, models and data-analysis
techniques between distant fields and communities of researchers.

The following subsections describe three important statistical laws and
how they find a description within the component system framework.

2.2.1 The Zipf’s law

As anticipated above, the Zipf’s law is one of the most famous statistical
laws, introduced in linguistics in the ’30s. Using the component system
notation, one can define two versions of the Zipf’s law. The first definition,
probably the most common one, regards the rank plot of the component
local-abundances in a single realization, panels (a), (b), (c) of Figure 2.3.
Specifically, given the list of the number of instances of each component
in the realization j, sorted in descending order: (n1j , n2j , . . . , nvjj), where
nrj ≥ nr′j , ∀r, r′, the rank plot is defined as the variation of nrj as a function
of the rank r (i.e. the position in the sorted list). The observation made by
George Zipf [18] is that the number of times that a word appears in the text
j is inversely proportional to its rank:

nrj ∝
1

r
(2.1)

One can also define the Zipf’s law of the entire component system, Figure
2.3d, as the rank plot of the global component abundances ai (see table 2.1),
where, again, the Zipf’s expectation is: ar ∝ r−1.

Looking at the Figure 2.3, it is evident that the power law decay can
deviate from the classical prediction. Indeed, modern formulations consider
the Zipf’s law as a power law function with a generic exponent less than −1
[5]:

nrj ∝
1

rγ
, γ ≥ 1 (2.2)

However, even this expression is not satisfactory in several cases. In litera-
ture there are several work looking for the most suitable generalization. We
do not enter into this discussion, but we cite a common definition used in
linguistics [7], which is a double power law, where the scaling of the low
ranks is r−1, while for higher ranks the exponent becomes smaller.

The intriguing aspect of the law is that its shape seems to be qualita-
tive similar across a wide variety of complex systems [26, 27]. Indeed, in
addition to the words in texts, the Zipf’s law is shown also, for example,
by the population in different cities [26], the gene family sizes in genomes
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Figure 2.3: Global and single-realization Zipf’s law The panels (a), (b),
(c) show the single-realization Zipf’s law for three examples of three datasets:
2613 Lego toys, 3036 books (Gutenberg project), and an ensemble of 1060
bacterial genomes (the datasets are described in details in the appendix A).
All the empirical curves are compared with the theoretical slope r−1 (black
dotted lines). Panel (d): global Zipf’s law as the global abundance rank
plot (ranked list of the variable ai in the table 2.1) for the three considered
datasets.

[12], the number of papers that scientists write [28], and the firm sizes [29].
From the law’s discovery until now, a large body of theoretical work have
addressed the origin of the law, and, in general, of power law distributions.
Several models are based on stochastic processes which mimic the growth
of the system, and try to reproduce the component usage heterogeneity us-
ing the most simple possible ingredients. In this regard, the most famous
mechanism is preferential attachment, first introduced with the Yule-Simon
process [30, 31], and extensively used, for instance, at the basis of evolution-
ary models in genomics [32, 15, 33], or for text generation [34, 7]. Other
examples are the random typewriter model [35], models based on multiplica-
tive processes [36, 37, 38], or the sample space reducing mechanism [39].
A second different approach explains the Zipf’s law assuming optimization
principles: regardless of the microscopic growth dynamics, the system aims
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to optimize a certain function which, in turns, imposes constraints on the
system statistical properties. For example, in linguistics the optimization
of the communication efficiency leads to the power law of the word abun-
dance rank plot [40, 41]. Similar arguments have been also applied in other
fields, where the system tries to maximize its performance/robustness un-
der uncertain conditions [42, 43]. A third approach refers to the concept of
self-organized criticality. Generally speaking, this approach states that com-
plex systems naturally pose themselves in a critical state, showing similar
properties of statistical mechanical systems near the phase transition [44].
Within this framework the Zipf’s emerges as the probability distribution of
the microscopic states, which takes a power law shape [45]. Finally, we cite a
couple of recent works which study the Zipf’s law in a really general setting,
deriving it as a consequence of a random partitioning of items into groups
[46], or due to the presence of fluctuating hidden variables [47].

Even though the list above is far from being exhaustive, it provides a
sketch of the wide variety of different mechanisms proposed in the last 30-40
years to better understand Zipf’s laws. This reflects the great interest of the
scientific community about the law universality, which is still central in the
current debate in complex systems.

2.2.2 The Heaps’ law

A second famous law of quantitative linguistics is the Heaps’ law (called also
Herdan’s law), which is typically defined as the sub-linear power-law scaling
of the number of distinct words with the text size [20]. Using the component
system notation, this law can be defined from a single-realization perspective
and from the global one (analogously to the Zipf). It is important to point
out that the single-realization definition requires that the order of the com-
ponents within the realization is well-defined (see paragraph 2.1.3). Then,
given a realization as (x1, . . . , xsj ), the scaling of the number of distinct
components, h, in the first l components of the sequence (according to the
given order) defines the Heaps’ law, which has the following behaviour:

h(l) ∝ lµ, 0 < µ < 1 (2.3)

where 1 ≤ l ≤ sj , 1 ≤ h ≤ vj . The maximal values vj and sj refer to the
final vocabulary and the final size of the realization (see table 2.1). Some
empirical examples are shown in Figure 2.4a.

The global Heaps’ law has two alternative definitions. The first one is
the scatter-plot of the realizations sizes {sj} (on the x-axis) versus the re-
alization vocabularies {vj} (y-axis), as shown in the Figure 2.4b,c,d. Note
that each point corresponds to a realization, and its coordinates, (sj , vj),
identify exactly the final point of the single-realization vocabulary trajec-
tory: vj = h(l)|l=sj (if it can be defined). Importantly, realization-sizes and
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Figure 2.4: Single-realization and global Heaps’ law The panel (a)
shows the single-realization Heaps for three books (“Ulysses” by James
Joyce, “The origin of species” by Charles Darwin and “Dracula” by Bram
Stoker). The lines correspond to the number of distinct word in the first red
words. The panels (b), (c), (d) display the global Heaps for three datasets.
Genomes and books are to the same data used in the Figure 2.3. The de-
tails of the Wikipedia dataset can be found in the appendix A as well. The
dots correspond to the system-realizations having a certain size (x-axis) and
a certain vocabulary (y-axes), while the red crosses are the average of the
cloud.

realization-vocabularies can be derived from the component matrix, imply-
ing that this definition does not require the component-order information.
This property is crucial to extend the law to all the systems where the
component-order is not well defined, for example in genomes ([33], and Fig.
2.4d). On the contrary, when the component-order is known, one can define
the global Heaps’ law as the ensemble of all the single-realization trajectories.
This second definition is much more informative than the size-vocabulary
scatter plot. Indeed, if one wants to study the statistics of h at a given
size l, here the number of samples is equal to the number of realizations
having size larger than l (while the former definition contributes only with
the realizations having exactly size l).

Since there are two alternative definitions of the global law, the question
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about their equivalence immediately arises. Even though a rigorous math-
ematical analysis for this purpose is lacking, in linguistic datasets it seems
to be true (as discussed in A.2.4). Because of that, for the rest of the thesis
we will assume this equivalence, employing the first or the second definition
depending on the convenience of the moment (the first can be extended to
all the “non-ordered” systems, the second leads to a larger statistics). As
for the single-realization Heaps, the average of the global law is expected to
shows the same scaling of the equation (2.3).

The Heaps’ law has gained interest in the scientific community because
of its universal behaviour, becoming one of the most important statisical
laws in quantitative linguistics [20, 5], and infometrics [48]. It is worth
mentioning that this law has been observed also in the occurrences of tags
for online resources [49], the keywords of scientific papers [50], the growth
of the vocabulary in modern Java, C++ and C programs [51], and even in
the protein domain families in genomes [33]. In addition to that, this law
finds some concrete applications, for example in infometrics, where it was
used for optimization of the memory allocation [52], and also in linguistics
for the estimation of the vocabulary size of language [53].

Several works try to address the law origin. In this regard, we can classify
these attempts into two categories. The first approach considers stochastic
growth models, trying to generate the Heaps’ law with the minimal set of
ingredients (similar to the stochastic models discussed in the previous section
for the Zipf). In particular, a generalization of the Yule-Simon model can
lead to the observed scaling of the Heaps’ law and Zipf’s law at the same
time [34]. A further generalization of the model [7], which introduces the
distinction between core and non-core words, leads to a more accurate fit the
two empirical laws, reproducing the observed “double-scaling” behaviour.
In genomics, the Chinese Restaurant Process (CRP) was used to reproduce
the global Heaps’ law and the single-realiazation-Zipf shown by the protein
domain families in genomes [33]. The second approach considers the Heaps’
law as a derivative phenomenon of the Zipf’s law [54]. Some of these models
are called “Zipfian ensembles”, and assume that the occurrence of every
possible word is governed by random extractions [55, 6] (or a Poisson process
[56]) with probabilities proportional to the word abundances. Since the
word-abundance statistics is coded by the Zipf’s law, the Heaps’ law emerges
as a statistical consequence of the power law Zipf. Under this setting, it can
be proven the exponents of the Zipf, γ (equation (2.2)), and the Heaps’ law,
µ (equation (2.3)), are asymptotically connected by a simple expression:
γ = 1

µ .

2.2.3 The distribution of shared components

The third and final law introduced in this section is known in genomics as
“gene frequency distribution” or “U”-shaped law [57, 2]. Note that in the
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section 2.1.1 we already used the term “frequency” with a different meaning
(as the normalized component abundance). Therefore, for the rest of the
thesis we will refer to the “U”-shaped law as the “distribution of shared
components” or “occurrence distribution”. As this latter name suggests,
within the component system framework the law is defined as the proba-
bility distribution of the variable “occurrence” (table 2.1). Specifically, the
occurrence of a component is the fraction of realizations in which the com-
ponent is present, or, in other words, the fraction of realizations which share
the component (e.g. oi = 1 means that i is present in all the realizations,
while if oi = 1

R , the component is present only in one object of the system).
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Figure 2.5: Distribution of shared components. The distribution is
shown for the genome dataset, panel (a) (lin-log scale) and (b) (log-log
scale), where we considered five different classifications of the protein domain
families (see Appendix A for the details). Panels (c) and (d) show the
distribution of shared components for the LEGO and the book datasets
respectively, where the insets display the same curve in log-log scale.

The distribution of shared components is well-known in genomics be-
cause of its characteristic “U” shape (Figure 2.5a), which seems to be uni-
versal across several taxonomic levels [57, 58, 59, 60]. This shape implies
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that there are two enriched groups of basic components (typically protein
domain families): the rare ones, which are present in a small fraction of
genomes (occurrence near 0, peak on the left), and the common/core fami-
lies, which tend to be present in all the species (occurrence near 1, peak on
the right). From the Figure 2.5a it is clear that the shape is conserved even
for different classifications of the protein domain families (the five datasets
are described in the appendix A). The panels (c) of Figure 2.5 shows that the
occurrence distribution in LEGO toys does not present this characteristic
shape, while the linguistic dataset, panel (d), displays an asymmetric shape
with a very small peak associated to the core words. The second general
feature is the power law decay at low values of the component occurrence
[2], which is present in all the considered data (Figure 2.5b,c,d), and also in
technological systems [2].

In evolutionary genomics, the origins of this statistical law are still under
discussion, and the debate is mainly focused on the importance of natural
selection in shaping this pattern. In particular, the “U”-shaped law has been
rationalized theoretically by population dynamics models combining birth-
death and gene transfer events [59], evolutionary models on the phylogenetic
tree which assume the “infinitely many genes” hypotheses [61, 62], infinite
allele models based on the distribution of gene replacement rates and the
phylogenetic tree [60], or as a consequence of functional dependencies among
different components [2].

For component systems outside of genomics, the distribution of shared
components remains under-explored.
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Chapter 3

U-shaped law as a statistical
consequence of the Zipf’s law

Authors: Andrea Mazzolini, Marco Gherardi, Michele Caselle, Marco Cosentino
Lagomarsino, Matteo Osella.

3.1 Introduction

This first work is dedicated to the distribution of shared components (or
component occurrence distribution), described in section 2.2.3. As said be-
fore, this statistical law is well-known in genomics [57, 58, 59, 60], presenting
a power law decay followed by a peak at maximal occurrence. This peculiar
“U”-shape seems to be a very general feature of genomic datasets, giving
rise to questions about its origin and its relationship with the evolutionary
process. Almost all the attempts to reproduce the empirical distribution
focus on the system generative models [59, 61, 62, 60], trying to identify
the crucial mechanisms of evolution at the basis of the law shape. Here we
employ an alternative approach. First, we study the occurrence distribu-
tion within the component system framework, allowing us to generalize the
law and to compare its features between systems of very different origin,
such as texts or LEGO toys (see Figure 2.5 and 3.1a-d). Second, instead of
focusing on the system-specific generative process, we claim that this law
is a general derivative phenomenon of the component abundance statistics
(i.e. the Zipf’s law). In particular, using theoretical model based on ran-
dom sampling of components from their overall abundances, we show that
a distribution of shared components with a power-law behavior naturally
emerges, and its properties are mainly fixed by the component abundance
statistics. In other words, given a component system with a heterogeneous
component usage (i.e. a power law Zipf, but also other broad distributions,
as shown later), the U-shaped law arises as a statistical consequence, regard-
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less of the system generative process. These predictions are confirmed in the
three analyzed datasets: an ensemble of genomes (described in the appendix
A.1.1), a set of book chapters (appendix A.2.1) and a group of LEGO toys
(appendix A.3), suggesting that the strong relationship between occurrence
and abundance statistics is a general phenomenon of any modular systems.

The third important point of this work is that, even though the distri-
bution generated from the random sampling model provides a very good
approximation of the empirical law, there can be small deviations. In this
regard, it is useful to consider the model-distribution as a first order approx-
imation which takes into account the system “structural information” (i.e.
the abundance statistics and a couple of other properties described later).
The small deviations between the model and the data are then independent
of this general information, and highlight system-specific and functional in-
formation.

This concepts are presented in following sections. The first one, 3.2,
describes the random sampling model, how it is related to the abundance
statistics, and how it reproduces the empirical distribution of shared com-
ponents through simulations. Section 3.3 focuses on analytic calculations,
which allows us to better understand how the features of the distribution
of shared components (e.g. the power law decay and the peak at maximal
occurrence) are related to the Zipf’s law and other system properties. Then,
section 3.4 tests this analytic predictions on the datasets, and, finally, in 3.5,
we show an example of deviation between the model and the empirical law
in genomics, which highlight a functional property of the system.

3.2 The random sampling model generates the dis-
tribution of shared components

As anticipated in the introduction, in order to identify the statistical con-
sequences of the abundance statistics on the distribution of shared com-
ponents, a suitable model is needed. Referring to the component system
framework introduced in the section 2.1, we would like to generate R system
realizations starting from a fixed component frequency set {fi}, i = 1, . . . , N .
To this end, we employ a random-sampling procedure, similar to the linguis-
tic models used to generate the Heaps’ law as a consequence of the Zipf’s
law [55, 54, 56, 6]. The artificial realizations are built through an iterative
random extraction (with replacement) of components from their frequencies
{fi} (note that the frequencies can be considered probabilities, since fi > 1
and

∑
i fi = 1). Each realization size s specifies the number of random

extractions. Therefore, given the list of component frequencies {fi} and
the list of realization sizes {sj}, the random sampling model generates a
new system without any additional functional information or constraint. In
Figure 3.1e is shown a schematic representation of the model.
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Figure 3.1: The random-sampling model captures the main fea-
tures of the empirical statistics of shared components. The plots
show the normalized distribution p(o) of component occurrences for the
three datasets: genomes (a) book chapters (b) and LEGO sets (c). The
log-log scale highlights the power-law like decay. The black dashed lines
represent the prediction of the random-sampling model assuming the em-
pirical component frequencies and realization sizes. The model reproduces
very well the power-law decay, but may differ quantitatively from the empir-
ical laws in the high-occurrence region. Panel (d) plots the same quantities
in log-lin scale, to highlight the quantitative differences between systems
and the presence/absence of a peak of core components. (e) Scheme of the
random-sampling process: samples of size s are generated from independent
draws from the “universe” of all possible components with their specific
abundances. Therefore, the probability of a component extraction is pro-
portional to its global abundance, i.e., the sum of its abundances over all
realizations of the systems.

Figure 3.1 compares the empirical occurrence distributions with simula-
tions of a random sampling, where the frequency and size lists are chosen
equal to the empirical ones. The null-model curves (dashed lines) provide
very good approximations of the empirical laws, particularly for low com-
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ponent occurrences. Additionally, the model matches well the power law
decay with the system-specific exponent. Finally, the model predicts also
the qualitative behaviour of core components (those with high occurrence),
and specifically that only genomes show a U-shaped distribution of shared
components. The relative core sizes of the three systems are also well approx-
imated, although there are some quantitative deviations from the empirical
values that will be addressed in detail in section 3.5. These results suggest
that the shape of the distribution of shared components in the three widely
different empirical systems considered here is well described by a random-
sampling model that only conserves the empirical component frequencies,
and the realization sizes.

3.3 On the origin of the “U”-shape

This section is dedicated to understand what kind of “U”-shaped law can be
expected for a given distribution of component frequencies. To address this
question, we have computed analytically the distribution of shared compo-
nents under general prescriptions for the component frequency distributions
within the random-sampling model.

3.3.1 Occurrence distribution in the random sampling model

The iterated extractions of the model define a multinomial process, ac-
cording to which the probability of a specific configuration (n1, n2, . . . , nN ),
where ni is the number of the components with frequency fi, is:

P (n1, n2, . . . , nN ; s) =
s!∏N
i=1 ni!

N∏
i=1

fnii , (3.1)

under the constraint that
∑N

i=1 ni = s. Since the marginal distribution for a
single component is a binomial one, the probability qi that a component of
rank i is present in a realization of size sj is qi(sj) = 1−(1−fi)sj . Therefore,
the expectation value for the occurrence of component i (see table 2.1) over
a set of R realizations is:

oi =
1

R

R∑
j=1

qi(sj) = 1− 1

R

R∑
j=1

(1− fi)sj . (3.2)

In order to obtain the probability distribution associated to this rank repre-
sentation, one can use the fact that the rank of a component with occurrence
o is the number of components with occurrence higher than o. In fact, these
naturally correspond to components with higher frequency and thus lower
rank. Therefore, we can write the rank i(o) as

i(o) = rank(o) =

o1∑
o′=o

Np(o′) ' N
∫ o1

o
p(o′)do′ , (3.3)

27



where o1 is the highest possible occurrence, which corresponds to the compo-
nent of rank 1. The function i(o) is simply the inverse function of Eq. (3.2).
From the approximate integral representation of i(o), the occurrence prob-

ability distribution p(o) is defined by the simple relation di(o)
do = −Np(o).

Occurrence constraints

This paragraph is dedicated to understand the range of values in which the
variable occurrence is correctly defined for a generic component system (not
necessarily a random sampling). Clearly the occurrence assumes values in
the interval [1/R, 1], i.e. the minimal value is the presence in a single realiza-
tion, while o = 1 if the component appears in all the realizations. However,
given a certain list of frequencies and sizes, additional constraints are in
place. The first one is a frequency-dependent upper boundary: if a com-
ponent has abundance a, then it cannot appear in a number of realizations
greater than a, implying Ro ≤ a. Since the frequency is fi = ai/

∑
j sj , and

the occurrence cannot exceed 1, this translates into the relation:

oi ≤ min{ 〈s〉fi , 1 }, (3.4)

where 〈s〉 is the average size. It can be noted that the expected value of
the random sampling formula 3.2 for very small f can be approximated to
oi ≈ 〈s〉fi, overlapping the upper boundary. This is due to the fact that it
is very unlikely that a component with very few instances appear more than
one time in a single realization.

The second constraint defines instead a lower boundary: if the abundance
is greater than the sum of the sizes of the n most large realizations, than the
component must be present in at least n realizations. An implicit expression
for this condition is:

if

n∑
k=1

sk < ai ≤
n+1∑
k=1

sk then Ro > n, (3.5)

where the sizes sk are sorted in descending order: sk ≥ sk′ for k < k′. In the
case of equally-sized realizations, an explicit solution can be easily found,
reading: oi > int(fR)/R, where int(x) indicates the integer part of the real
number x.

3.3.2 Explicit expressions and power law scaling from power
law and exponential rank distributions

Explicit solutions for the occurrence distribution can be derived assuming
a simple scenario, in which all realizations have the same size s, and the
component frequency statistics follows a specific function. We first consider
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Figure 3.2: Power-law decaying and U-shaped component occur-
rence distributions may descend from both power-law and expo-
nential distributed universe component frequencies. (a): A power-
law rank-plot for the frequency (and thus for the abundance), whose ex-
ponent is −γ (γ = 1.2 in the plot), produces a power-law decay of the
component occurrence distribution with exponent −1 − 1

γ , independently
of the realization size s and the number of components N (for sufficiently
large values of these parameters). (b): Agreement between the theoretical
prediction of Eq (3.7) (black line) and a simulated random sampling with
parameters R = 1000, N = 2000, γ = 1.2, s = 2000 (the black vertical
dashed line is the left boundary of the p(o) domain). Panels (c) and (d) are
the counterpart of (a) and (b) for an exponential frequency rank plot. In
this case p(o) always decreases with exponent −1, for every value of λ, s, and
N (sufficiently large). Parameter values: R = 1000, N = 2000, λ = 0.005,
s = 5000.
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the empirically relevant case of a power-law frequency rank plot (Figure 3.2,
left panel) defined by

fi =
1

α
i−γ , α =

N∑
i=1

i−γ . (3.6)

Under these assumptions and using Eq. (3.2) and (3.3), the exact expression
of the occurrence distribution can be calculated:

p(o) =
(1− o)

1
s
−1

γsNα
1
γ

(
1− (1− o)

1
s

) 1
γ

+1
. (3.7)

The distribution is defined in the interval of occurrences [oN ; o1], where oi is
computed by Eq. (3.2). This expression can be simplified taking the limit
of large realizations s� 1:

p(o) = k(γ, s,N)
(1− o)−1

γ (− log(1− o))1+ 1
γ

, (3.8)

where k is defined as:

k(γ, s,N) =
s

1
γ

α(γ,N)
1
γN

. (3.9)

It is worth pointing out that in this limit the number of independent param-
eters defining the occurrence distribution reduces to two: γ and k, which is
a combination of s (realization size), N (system vocabulary) and γ. A test
of these “rescaling property” is shown in Figure 3.3. The expression can be
further approximated for low values of the occurrence, o� 1, leading to the
empirically observed power-law decay:

p(o) ' k(γ, s,N)o
− 1
γ
−1

, (3.10)

where the power-law exponent depends only on the exponent γ of the fre-
quency rank-plot. The agreement between these predictions and simulations
are shown in Figure 3.2a,b.

Analogous calculations can be performed assuming a frequency distribu-
tion described by an exponential rank plot fi ∼ e−λi (right panels of Figure
3.2). In this case, the distribution of shared components, for large enough
realizations, s� 1, has the expression:

p(o) ' (1− o)−1

Nλ log [(1− o)−1]
. (3.11)

which is a function of a single effective parameter λN , and does not depend
on the realization sizes s. In other words, the shape of the distribution,
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and whether it is clearly U-shaped, only depend on the decay of component
frequencies and on the total number of components. In fact, occurrence
distributions corresponding to different exponential frequency rank plots
collapse if λN is constant, even if the realizations have widely different size.
This is shown in Figure B.1 of Appendix B.1.

Interestingly, for rare families the above expression simplifies again to a
power-law decay

p(o) ' 1

Nλ
o−1, (3.12)

with a “universal” exponent −1. This indicates that also systems with
a heterogeneous but more compact frequency distribution are expected to
show a power-law decay in the occurrence distribution.

3.3.3 When the “U” shape emerges: the core size

We now turn our attention to the conditions for a U-shaped distribution
of shared components in the random-sampling model. In particular, we
can now estimate the “core size” by computing the fraction of components
with occurrence greater that a given threshold θc as a function of the only
two effective parameters γ and k. Considering the random sampling from a
power law rank distribution, the core size estimate can be derived integrating
Eq. (3.7) from θc to the maximum occurrence o1. Taking the s � 1, this
quantity reads {

c = 1 if oN ≥ θc
c = k [− log(1− θc)]−

1
γ otherwise

, (3.13)

where oN is the left boundary of the occurrence distribution, corresponding
to the component with lowest frequency. Starting from this estimate of the
core size, Figure 3.3ab shows how the scaling property of the Eq. (3.8) is
verified in simulations.

Fig. 3.3c compares the analytical predictions for the core size with sim-
ulations for different values of γ, showing perfect agreement. Equally, one
can obtain analytical estimates for the fraction of rare components (occur-
rence below a fixed threshold), which are tested in Fig. 3.3d. Thus, with
increasing k, core families increase linearly with a γ-dependent slope until
all components are shared, and concurrently rare components decrease lin-
early until they hit zero (when the lower cut-off of occurrence exceeds the
chosen threshold value). Component number and realization size only enter
through the combination defined by the rescaling parameter k. This phe-
nomenology fully characterizes the distribution of shared components with
varying parameters.

In Appendix B.1 is shown a similar analysis for the occurrence distribu-
tion generated by an exponential frequency rank plot, deriving the analogous
equation of (3.13).
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Figure 3.3: Scaling of the distribution of shared components and
fraction of rare and core components. (a) The fraction of core compo-
nents (defined by the occurrence threshold o > θc = 0.95) for a power-law
component frequency distribution with exponent γ = 1.2, plotted as a func-
tion of component size s for three values of realization number N . (b)
Collapse of the curves shown in panel (a) when plotted as a function of the
rescaled parameter k, defined in Eq. (3.9). (c) and (d): fraction of core
and rare (o < 0.05) plotted as a function of k for different values of γ. For
sufficiently large k (i.e. typically when s dominates over N), the fraction of
core components saturates to 1. Conversely, the fraction rare components
drops to zero for increasing k. Symbols refer to numerical simulations of
the random-sampling model, while the lines are the theoretical predictions
of Eq. (3.13).

3.4 Predictions confirmed in the data

3.4.1 Power law decay of the occurrence distribution

One can ask whether the general analytical predictions discussed in the pre-
vious section can be applied to empirical data. In particular, we first asked
how the power-law decay exponent of the distribution of shared components
relates to the component frequency rank plot in empirical systems, and if this
relation follows our analytical prediction (Eq. (3.10)). An analytical map-
ping would give a more synthetic and powerful description than the direct
simulations discussed in Section 3.2. Importantly, the analytical formulas
for the distribution of shared components are derived under the hypothesis
of a pure power-law or exponential component frequency rank plot. How-
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ever, the three empirical datasets show a more complex phenomenology, and
can be better approximated with a double-scaling power-law frequency rank
distribution (see Figure 2.3 and panels a,c,e of Figure 3.4). To override this
issue, we restricted the frequency rank plot range in which the predictions
are applicable. The procedure to perform this comparison is described below
and applied in Fig. 3.4. First, we chose an arbitrary threshold θr defining
the rare components and we mapped it to the frequency rank plot (assuming
the model), by using the inverse function of Eq. (3.2). The frequency rank
associated to the occurrence threshold θr, i(θr) in the figure, is the rank
above which the model prediction for the decay of the distribution of shared
components should apply as long as i(θr) does not cross the position of the
change in scaling. In other words, since in the model there is a monotonic
relation between occurrence and frequency (Eq. (3.2)), all components with
rank greater than i(θr) (and frequency smaller that fi(θr)) are assumed to
be the components with occurrence lower than θr. We then estimated the
behaviour of the frequency rank plot in the high-rank region (after i(θr))
as the best fit with a power-law function or an exponential. This leads to
a prediction for the decay exponent of the distribution of shared compo-
nents (using Eq. (3.10) or Eq. (3.12) for the exponential case) in the range
[oN , θr]. Fig. 3.4 shows that the predicted decay exponents correspond well
with the data.

3.4.2 Scaling relationship for the core size

The random-sampling model also gives qualitative analytical predictions for
the expected fraction of core components, and thus for the expected shape of
the distribution of shared components for a given empirical system. While
the analytical relations between exponents applied in Figure 3.4 do not de-
pend on the realization sizes, the analytical formulas for the fraction of core
components (see e.g. Eq. (3.13)) were derived assuming realizations of fixed
size s. The actual size distributions for the three empirical systems are quite
broad (Figure A.1, A.3, and A.5 in Appendix A), but we can still use the
analytical framework to get an estimate of the core fraction considering the
average realization size of each empirical system. Following the same line of
reasoning as for the low-occurrence tail of the distribution of shared compo-
nents, we can use a restricted region of the frequency rank plot. In this case,
the low-rank region (with exponent around 1 for all the datasets) is expected
to contain the core components. Therefore, the parameter γ can be fixed to
1, implying that the fraction of core components, given by Eq. (3.13), should
be simply proportional to the rescaling parameter k (Eq. (3.9)). However,
the function α(γ,N), which is present in the definition of k and defined
in Eq. (3.6), takes an approximately constant value with respect to N for
large values of N , as it is the case for the empirical examples considered.
As a consequence, the core fraction should be simply proportional to s

N .
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Figure 3.4: The relation between the exponents of frequency rank
plot and occurrence distribution is satisfied in all the three
datasets. The plots consider the low occurrence region, below the arbi-
trary threshold θr = 0.025 which corresponds to the high-rank region above
i(θr) in the frequency rank plot (see main text). Panel (a) and (b) refer to
book chapters, for which the tail of rank plot is a power law with exponent
γ = 1.96, which implies a power law decay of p(o) with exponent 1+ 1

γ = 1.51.

Panel (c) and (d) show the LEGO dataset (γ = 2.8, 1 + 1
γ = 1.36). Panel

(e) and (f) correspond to protein domains in genomes, where the best fit
of the tail region the rank plot is an exponential function (note that (e) is
in linear-logarithmic scale), which implies a power law decay with exponent
−1.

This estimate can be used to explain why the core fraction is much larger in
genomes than in the other two empirical systems (see Figure 3.1d). In fact,
genome sizes are typically of the same order as the total number of families
(s ' 3000, N = 1531) leading to a large expected core. By comparison,
book chapters have similar realization sizes but a much larger vocabulary
(N ' 50000), and LEGO sets have very small sizes (s ' 100) compared to
vocabulary size (N ' 13000).

More in general, Eqs. (3.9) and (3.13) lead to a scaling estimate (depen-
dent on the decay of the frequency rank plot) as a function of the system
parameters s and N , which can be applied to data, in order to generate
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expectations for the core components. For example, for Zipf-like (exponent
−1) frequency distributions, we expect the absolute number of core com-
ponents to be linearly dependent on the average size of realizations s, and
essentially insensitive to the vocabulary size N and the total number of
realizations R.

The predicted linear relation between core fraction and average realiza-
tion sizes is tested in Figure 3.6a for prokaryotic genomes and seems accu-
rately verified. However, the fraction of core components predicted by the
random-sampling model is actually much smaller than the empirical one.
This highlights the presence of additional functional constraints and/or spe-
cific correlations in the empirical system that the model can not capture.
Section 3.5 addresses this point more in detail.

3.4.3 Core size scaling with the system-vocabulary in genomes

Besides the growth of the core size fraction with the typical realization size,
the relation (3.13) states that the core size is inversely proportional to the
number of different components present in the ensemble N . This holds true
under the condition that N is sufficiently large such that α(γ,N) is approxi-
mately constant. To test this prediction we take advantage of the concept of
multiple resolution mentioned in Section 2.1 applied to the genomic dataset.
Indeed, there not exists a unique prescription to build the protein-domain-
family classification. Even following the same rules for defining similarity
between families (such as evolutional and functional similarity used in the
SUPERFAMILY database [63]), one can tune the “parameters” to obtain
different resolutions. For example, when the constraints are weaker, the
average number of protein domains in a family enlarges, while the total
number of families, N , diminishes. This allows us to compare ensembles
having different vocabulary sizes. It is important to mention that to test
the dependency on N , the different systems must conserve the other param-
eters, that are the realization size and the Zipf’s law exponent. These two
conditions are satisfied in the five considered protein domain family classifi-
cations described in Appendix A.1. In fact, they come from two databases
(SUPERFAMILY and PFAM) whose collection of genomes share a similar
size distribution (Figure A.1a). Moreover, the exponents of the global Zipf’s
laws for low ranks (those affecting the core components as explained in the
section before) are qualitatively the same (Figure A.1b).

Figure 3.5 displays the core size fraction as a function of the vocabulary
size for the five ensembles, showing a qualitative agreement with the equa-
tion (3.13). The multiplicative coefficient is roughly fixed choosing s as the
average value of the size distribution, while γ and α are estimated by the
fit of the “average rank plot” (for each rank we consider the average of the
five frequencies with that rank). Even though the theoretical expectation
is derived under very strong assumptions, it reproduces quite well the data,
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Figure 3.5: The random sampling model predicts the core size
scaling with the system vocabulary. Fraction of the common fami-
lies (threshold: θc = 0.95) as a function of the total number of different
families, N , for five different protein domain family classifications (family,
superfamily and fold classifications from the SUPERFAMILY database, and
Pfamily and clan from the PFAM database, Appendix A.1). The empirical
values are compared with the random sampling prediction (continuous line),
which scales as N−1, according to the equation (3.13.)

providing a further proof that the distribution of shared components and its
features can be reliably predicted from the abundance and size statistics.

3.5 Deviations from the model highlight functional
information

Beyond the striking agreement with null predictions for shared components,
the deviations from sampling can be used to quantify specific functional
and architectural features of a component system. While the scope of this
work is to highlight the common trends and their origins, here we discuss a
simple procedure to quantify deviations from the random sampling, applied
below to a specific example. Let us consider a generic component system
and its associated random sampling (computed from the frequencies and
sizes of the original system). Then one can test the deviation in a small bin
of occurrence (or a slice of the the occurrence distribution) [o1, o2] with the
Z-score:

Z(o1, o2) =
ndata(o1, o2)− 〈nsampling(o1, o2)〉

σsampling(o1, o2)
, (3.14)

where ndata(o1, o2) is the number of components with o ∈ [o1, o2] in the em-
pirical system, 〈nsampling(o1, o2)〉 is the average of the same quantity over
an ensemble of sampling models, and σsampling(o1, o2) their standard devia-
tion. The value of Z(o1, o2) can be associated to a p-value quantifying the
statistical significance of the deviation.
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3.5.1 Deviations of protein domain categories

Of the three data sets considered here, the case where the clearest devi-
ations emerge are genomes. For example, Figure 3.6a illustrates how the
random sampling underestimates the empirical core size by a constant off-
set, for genomes of increasing size. Generally speaking, this larger core of
components is due to the components that tend to occur in most realiza-
tions, but in few copies. The natural explanation is that there are specific
basic functions that are essential for all (or most) genomes, but the domains
involved in these functions are not necessarily needed in many copies per
genome, and thus their presence in all realizations does not simply correlate
with high global abundances as the random sampling would entail [64].

To test this hypothesis, we divided the domain families in functional
categories (see Appendix A.1.1 for the functional annotation), and com-
puted the Z-score 3.14 for components of each family in different bin of
occurrences. The result of this analysis is reported in Figure 3.6b. Dif-
ferent parts of the distribution of shared components are indeed enriched
in components of different biological functions with respect to the random-
sampling expectation. In particular, protein domains that play a functional
role in information processes, (such as DNA transcription, and DNA repli-
cation) are clearly enriched in the core. At the same time, they seem sta-
tistically under-represented at occurrences around 0.6. These two devia-
tions can be explained as two sides of the same coin if this category con-
tains domain families that empirically occur in all genomes but in a single
copy per genome. Indeed, the global frequency (i.e, across all genomes)
of families that are both single-copy and ubiquitous is f = R

Rs = 1/s.
Therefore, their occurrence predicted by the random-sampling model is
o = 1 − (1 − 1

s )s = 1 − eslog(1− 1
s

) ' 1 − e−1 ' 0.6 (where the rough ap-
proximation holds for large enough s), thus naturally leading to an excess
of those families in the core and to a depletion around o ' 0.6.

The observation of a strong presence of protein domains related to basic
cellular function in the core genome is not new [64]. However, the random-
sampling model allows in principle to distinguish families whose presence
in the core could be simply explained by their high abundance in the pan-
genome and thus it would be expected also in a simple scenario of random
gene exchange. Finally, the observed correlation between biological func-
tions and deviations from random sampling predictions seems coherent with
a picture, recently proposed [60], in which natural selection and functional
constraints have played an important role in defining the empirical U-shaped
distribution of gene occurrences.
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Figure 3.6: Specific functional constraints can be detected by de-
viations from the predictions of a random sampling. a) Fraction of
common protein domain families as a function of the genome sizes. Each
point of the curves corresponds to the core families (o > θc = 0.95) given
the occurrence distribution of a genomes’ subset whose sizes are inside a
certain window. The average of the size windows defines the x axis. b)
Enrichment analysis in the occurrence distribution for specific functional
categories. Considering domain families relative to a single functional cate-
gory, their relative component occurrence distribution was evaluated for an
ensemble of systems built with a random sampling. From this, the average
value and the standard deviation for the expected fraction of components
at each occurrence value o can be calculated. This provides a measure (Z
score) of over- or under-representation of domain families belonging to each
functional category in the empirical dataset. c) Excluding from the analysis
the domain families associated to information processes (i.e., DNA replica-
tion, transcription and translation) significantly reduces the offset between
the random-sampling prediction and the empirical trend.

3.6 Discussions

This work employs a simple statistical model based on random sampling of
components to describe the distribution of shared components in complex
component systems. A similar approach was employed in quantitative lin-
guistics to explain the so-called “Heaps’ law” (Section 2.2.2) while assuming
Zipf’s law for component frequencies [56, 48, 55, 54, 6]. We extended the
model to show that there is a general link between the Zipf’s law of the
system (i.e. the rank plot of the component abundances) and the statistics
of shared components, regardless of the mechanisms that generate Zipf’s
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law. Consequently, models or generative processes able to explain the het-
erogeneity in component abundance implicitly carry information about the
statistics of shared components.

The model can be also investigated analytically, characterizing the occur-
rence distribution features and how they depend on the abundance statistics
and few others component-system parameters. Specifically, its power law de-
cay is related to Zipf’s law behavior (Eq. (3.10) and Fig. 3.2), while the
fraction of common components (or core size) depends on the realization
sizes, the system vocabulary and the Zipf’s law exponent (Eq. (3.13) and
Fig. 3.3). These results have been derived within an over-simplified setting
with respect to the data, but the fact that the power law exponent does not
depend on the size distribution allows us to apply the prediction to the em-
pirical curves, Fig. 3.4. By contrast, the formula (3.13) cannot be directly
confront to the data, but it provides still qualitative predictions about the
scaling of the core size with the realizations size, Fig. 3.6a, and the system
vocabulary, Fig. 3.5.

It is important to point out that the relationship between the two sta-
tistical laws is solid in three very different empirical systems (LEGO sets,
genomes, book chapters), and it is confirmed by simulations, Fig. 3.1 as
well as theoretical predictions (Section 3.4). Therefore, it is reasonable to
claim that the link between the two statistical laws is a “universal” prop-
erty of modular systems. This justifies the introduction of the concept of
“component system”, which can capture in a unified framework a large class
of complex systems which may show convergent phenomena. Furthermore,
component-system-representation has been proven useful since we took ad-
vantage of the bridges between distant fields that it creates, for example,
extending the random-sampling approach developed in quantitative linguis-
tics to our specific problem, and generalizing the distribution of shared com-
ponent in the context of natural languages.

As said above, the main result of this work is that the patterns of shared
components can be largely predicted by the null model. However “small
deviations” can emerge. We have considered here a specific example for
the case of shared protein domain families in genomes (Fig. 3.6), but this
question still needs to be approached systematically. In this specific case,
core components are particularly enriched by specific functional classes of
components with respect to the sampling prediction. In evolutionary terms,
the random sampling defines a scenario in which the pan-genome fully de-
termines the overall abundance of the gene families in each genome, while
in empirical bacterial genomes genome-specific functional constraints are
clearly in place [1, 65, 66]. Deviations from the null scenario can thus high-
light the role of selection for specific functions, supporting from a different
perspective the idea that the empirical U-shaped gene occurrence distribu-
tion is affected by selective rather than neutral processes [60, 62, 61, 59].
In general, the random sampling model generates a “first order approxima-
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tion” of the distribution of shared components, based on a purely random
scenario constrained only by the component-abundance and realization-size
statistics. As a consequence, the deviations highlight system-specific con-
straints, which can be informative about functional properties of the system.
In our view, the study the occurrence distribution should always be ap-
proached through the comparison with the null-prediction, in order to take
into account the “redundant” information contained already in the abun-
dance statistics. In this regard, model-data deviations provides “higher
order” observables which can be used to validate generative models.
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Chapter 4

Zipf and Heaps laws from
dependency structures

Authors: Andrea Mazzolini, Jacopo Grilli, Eleonora De Lazzari, Matteo
Osella, Marco Cosentino Lagomarsino, Marco Gherardi.

4.1 Introduction

Dependency structures have emerged recently as a promising framework for
the rationalisation of the regularities observed in complex systems [2]. They
have been proposed in various contexts and forms, and have helped achieving
remarkable results, for instance in the scope of preference prediction [67],
or for addressing causality in financial data [68]. A dependency structure
is a directed graph (most often, but not necessarily, acyclic), whose nodes
are the components (e.g. genes, Linux packages) and whose links are the
dependency relations occurring between them. A component depends on
another if it is not functional unless the latter is present, for example, genes
involved in metabolism typically depend on chemical reactions involving
other metabolic genes, or specific software packages need other low-level
packages (e.g. Python, gzip) to be functional.

In this work we assume that the component system is constrained by
the underlying dependency structure between the system-components. To
this end, a system-realization is constructed with the following prescription:
if a certain node/component belongs to the realization, then all its direct
and indirect dependencies must be included in the realizations. This simple
model allows to link statistical laws of component systems to topological
properties of the dependency structure. For instance, a broad ensemble
of dependency networks has the property that the number of total depen-
dencies of each node is scale-free. This topological property explains the
fat-tailed distribution of shared components, both in genomes and techno-
logical systems [2]. A limitation of this model is that the components are
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constrained to have binary abundance in a single realization, i.e., to either
be present in one copy or to be absent (see Section 2.1.2). Such a description
is expected to be accurate for some components (e.g., for software packages)
but is a rough approximation for those systems where components appear
with non-negligible abundances (e.g., coarse-grained evolutionary families of
genes such as superfamilies, and words in a text).

The work presented in this section extends the model proposed in [2] to
the case where components appear with non-trivial abundances. This allows
us to explore how dependency structures affect abundance-related features,
such as Heaps’ (Section 2.2.2) and Zipf’s laws (Section 2.2.1).

4.2 Model

4.2.1 The dependency network

In order to generate a meaningful dependency structure, we use the model
introduced in [2] and briefly summarized here. Such a network defines de-
pendency relationships between components, and it will be used as input of
the novel generative process described in the next section.

A dependency structure is a directed acyclic graph G on a given set
of nodes/components {c1, . . . , cN}. An edge i → j between two nodes i
and j represents the relation “i depends on j”, which means that i is not
functional without j (e.g. a software package i that depends on a low-level
package j). Such a relation can be more or less strict depending on the
system; for instance it is enforced in software operating systems, where a
package cannot function unless all its dependencies are installed [69], but
not in metabolic networks, where alternative pathways can be chosen [1].
We assume here strict unbroken dependencies. Notice that acyclicity of G is
not stringently necessary; however, as will be clear in the following, a cycle
in G would behave as a single node in the model.

The network is generated through a very simple growth process with
an incremental node-addition mechanism. Starting with an initial set of m
nodes without links, called seeds, (where we typically consider m = 1 for
all the following calculation), the full network is built node by node, where
at each step of time a new node enter the system. The new node is linked
to d randomly chosen existing nodes, where d is a random variable of mean
D (typically extracted from a Poisson distribution). The process is stopped
when the network reaches the total number of components N (therefore
after N − m time steps). The Figure 4.1a shows an illustrative example
with N = 9 nodes and m = 3 seeds. In this specific case, the variable d is
considered deterministic and always equal to 2. As a consequence, all the
nodes have out-degree 2 except for the three seeds. Note also that labelling
each node in order of appearance t = m+1, . . . , N , the network satisfies the
property that for each link t → t′, the time t is always less than t′. This
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Figure 4.1: Component-system-realization constrained to the de-
pendency structure. a) Toy example of a dependency network generated
through the model described in the main text with N = 9 components,
three seeds {1, 2, 3}, and fixed out-degree D = 2. b) Illustrative example of
the generative model for a system-realization constrained to the dependency
network of the panel (a). Three precursor components are chosen at random
{4, 8, 7}. For each extraction, the node and all its dependencies (its forward
cone) are added to the realization (each forward cone is illustrated with a
coloured area). At the end of the process the obtained realization has a
number of instances of components as shown in the panel (c).

implies that the obtained graph is acyclic.

4.2.2 Component system from the dependency network

This section introduces a possible model to generate a component system
constrained by a dependency structure. Although whatever dependency
network can be used as input of the model, the current analysis considers
the network defined in [2] and described in the previous section. This is
motivated by the fact that it shows statistical properties qualitatively similar
to the empirical ones.

Before explaining the details of the algorithm, it is crucial to introduce
the definitions of forward cone and backward cone of the dependency network
G. Given a node c, we define its forward cone, ∧(c), the set of all nodes c′

such that there exists at least one directed path in G starting from c and
arriving at c′. On the other hand, the backward cone ∨(c) of c is the set of
all nodes c′ such that there exists a path from c′ to c. In other words, ∧(c) is
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the set of all components from which c depends on (directly or indirectly),
whereas ∨(c) is the set of the nodes that depend on c (directly or indirectly).

Let us fix a positive integer ρ, which represents the number of “precursor”
components determining a realization. For each realization, the ρ precursors
are chosen randomly and independently among the nodes of G. Then the
corresponding realization is produced by taking all the components from
which the precursors depend on (i.e. belonging to their forward cones). A
toy example is shown in Figure 4.1b, where the ρ = 3 precursors are {4, 8, 7},
and their forward cones are highlighted with areas having different colours.
At each extraction, each node within the cone is added to the realization,
whose final configuration of component abundances is shown in the panel
4.1c. Given this recipe, one can generate a component system composed
of R realizations according to a set of numbers of precursors, {ρ1, . . . , ρR}.
Note that the realization sizes sj are a stochastic variable depending on the
number of precursor ρj . Specifically, the average size depends linearly on
the number of precursors through the relation:

EG [sj ] = ρj〈| ∧ |〉G , (4.1)

where the expected size is the average over an ensemble of realization with
same ρj and fixed dependency network G, while 〈| ∧ |〉G = 1

N+m

∑
i∈G | ∧ (i)|

is the average of the number of nodes in the forward cones of the network
G.

The model in [2] can be viewed as a special case of the presented algo-
rithm for ρ = 1. It is important to point out that, differently from [2], here
the components have “multiplicity” within the realization (i.e. the system
is not binary), allowing us to compute the so-called Zipf’s and Heaps’ laws.

4.3 The Zipf’s law from the dependency structure

Let us consider a a component system constrained by a dependency structure
G and composed of R realizations generated through a fixed number of
precursors ρ. As defined in Table 2.1, the abundance of the node/component
i is the total number of times that it appears in the system. It can be
computed by knowing the probability of choosing a cone that contains i:
|∨(i)|
N , where |∨(i)| is the size of the backward cone of the component. The

expected abundance of i is then:

ai = Rρ
|∨(i)|
N

, (4.2)

where Rρ is the total number of extraction, which also fixes an upper bound-
ary to this quantity.

Sorting the component abundances in descending order, the indexes in
this sorted list become the “ranks” of the components, defining the Zipf’s
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law. Following [2], an approximate relation can be derived between |∨(i)|
and the component rank i. Indeed, one can derive the functional form of the
backward cone size of a node added at time t in the network (the one added
at the t-th step of the construction, when a network of size t−1 has already
been generated). This result can be obtained by writing an equation based
on the observation that the backward cone of the t-th node is the union
of the backward cones of all the nodes that, at later times t′, will directly
attach to the t-th node. Neglecting the intersections between these cones
allows to write the recursion

|∨(t)| = 1 +
N∑

t′=t+1

D

t′
∣∣∨(t′)

∣∣ , (4.3)

where the factor D/t′ estimates the probability that the t′-th node attaches
to the t-th node. By approximating the sum by an integral and taking a
derivative with respect to t, one obtains a differential equation that is solved
by |∨(t)| = (N/t)D. For small t, however, (N/t)D is greater than the size of
the network N . In fact, the relation can hold only down to a cut-off tmin,
which can be estimated by the condition that the whole network depends
on the tmin-th node, i.e., (N/tmin)D = N , which gives tmin = N1−1/D. For
any node below tmin, the size of its backward cone is ≈ N :

|∨(t)| ≈

{
N t < N1−1/D

(N/t)D t ≥ N1−1/D
(4.4)

Identifying the rank of a node with the time in which it enters the network
(the first introduced nodes have larger abundance, on average), and putting
together Eq. (4.2) and (4.4), one obtains the expression for the Zipf’s law:

ai ≈

{
Rρ i < N1−1/D

RρND−1i−D i ≥ N1−1/D.
(4.5)

This relation has the form of a Zipf power-law (with exponent −D) with an
initial set of of N1−1/D components having maximal abundance. Figure 4.2a
compares the analytical form (4.5) with the results of simulations, showing
good accord, especially in the behaviour of the fat tail. The transition
between the core and the tail, instead, is less sharp than predicted. This is
tied to the fact that the relation |∨| = (N/t)D starts to break down before
reaching N , and saturates more smoothly than in the approximation made
above.

In addition to the abundance, this model allows us to compute the com-
ponent occurrence (which defines the distribution of shared components dis-
cussed in Sections 3 and 2.2.3). In particular, we can ask whether the
occurrence-abundance relation is equivalent to the universal (or “null”) pre-
diction under the random sampling assumption, Equation (3.2). This would
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Figure 4.2: Zipf’s law prediction and occurrence-abundance rela-
tion. Zipf’s laws of component systems constrained to dependency net-
works are shown in panel (a). Three systems at different D are compared
(the other parameters are fixed: R = 1000, ρ = 50, N = 5000). The lines
follow the theoretical prediction (4.5), which define a “saturation” region for
ranks greater than N1−1/D, meaning that all these nodes are directly and
indirectly connected to all the N nodes. This region is followed by a power
law decay whose exponent is fixed by D. Panel (b) shows the occurrence-
frequency dependence (where the frequency is the abundance divided by the
total number of components in the system). This behaviour is well fitted by
Equation (3.2), implying that the occurrence statistics is determined by a
random sampling of components.

imply that the occurrence statistics can be predicted only by the knowledge
of the Zipf’s law (main result of Chapter 3), and it is independent of the
detailed structure of the dependency network. In fact, we show here that a
simple probabilistic argument gives a relation that is asymptotically equiv-
alent to Eq. (3.2) (in the case of R realizations having the same size s). In
the limit of large N , we can assume that the occurrence of a component i is
equal to the probability of choosing i at least once in a single realization:

oi = 1−
(

1− |∨(i)|
N

)ρ
. (4.6)

Using the expression (4.5), and introducing the normalized abundance: fi =
ai/
∑

i ai = ai/(sR), one obtains:

oi = 1−
(

1− s

k
fi

)ρ
.

Finally, one can distinguish two regimes: if fi � 1, the expression simplifies
as follows:

oi ' 1− e−sfi ' 1− (1− fi)s

which is equivalent to the formula (3.2) for large s. In the case of fi . 1,
assuming ρ� 1, the occurrence saturates to 1, as for the “null” prediction
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in the large s limit. Figure 4.2b shows that a scatter-plot of occurrence
versus abundance occurrence in simulations perfectly matches the theoretical
curve (3.2). This fact allows us to use the results presented in Chapter 3
to characterize the “U”-shaped distribution of the model. For example, the
exponent of the rare-components-region should be 1−1/D (using the result
3.10).

4.4 The Heaps’ law from the dependency struc-
ture

4.4.1 Analytical derivation

This section is dedicated to the derivation of the so-called Heaps’ law (Sec-
tion 2.2.2), h(s), i.e. the number of unique components in a realization of
size s. This calculation can be performed in a mean-field approximation,
where the correlations between nodes are neglected. Note that the fact that
the occurrence-abundance relation follows the random sampling prediction
(Figure 4.2b) suggests that this assumption is justified. A second hypothe-
ses is that the abundance rank plot has the expression (4.5). Even though
simulated systems may show small deviation from the prediction in the “sat-
uration” regime (Figure 4.2a), the expression catches the essential features
of the law (i.e. the power law scaling, and deviation from this scaling at low
ranks).

In order to derive the number of different components in a realization of
size s, let us consider the probability of drawing the node added at time t:

p(t) =
1

Ω
|∨(t)| , (4.7)

which is proportional to the size |∨(t)| of its backward cone. In a continu-
ous approximation, the normalization Ω can be fixed by the normalization
condition

∫ N
1 p(t) dt = 1, which reads (for D > 1):

Ω =
ND

D − 1

(
N1−1/D − 1

)
≈ DN2−1/D

D − 1
, (4.8)

where the approximation holds true for N1−1/D � 1. Analogously to qi(sj)
in Equation (3.2), we now consider the probability that the t-th node in the
network is present in a realization of size s:

qt(s) = 1− (1− p(t))s .

A mean-field estimate of h (i.e. the number of distinct components) can
then be obtained as

h(s) =
N∑
t=1

qt(s) ≈
∫ N

1
qt(s) dt = N −

∫ N

1
(1− p(t))s dt, (4.9)
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which can be written down using the explicit expressions p(t) and considering
1 negligible with respect to N1−1/D:

h(s) = N −N1−1/D

(
1− N

Ω

)s
−H

(
s,N1−1/D,

ND

Ω

)
, (4.10)

where the last addendum corresponds to the summation (B.7) in Appendix
(approximated as an integral):

H
(
s,N1−1/D,

ND

Ω

)
=

∫ N

N1−1/D

(
1− 1

Ω

(
N

t

)D)s
dt. (4.11)

As discussed in Appendix B.2, the term above can be approximated for
s � 1 and N � 1, Eq. (B.8). Substituting this approximation in the
expression (4.10), one finally obtains:

h(s) = N −N1−1/D

(
1− N

Ω

)s
−

− N

D

( s
Ω

)1/D
(

Γ

(
− 1

D
,
s

Ω

)
− Γ

(
− 1

D
,
Ns

Ω

))
,

(4.12)

where Γ is the incomplete Gamma function. Fig. 4.3 shows that the ana-
lytical mean-field expression (4.12) nicely matches the results of numerical
simulations of the model.

Realization size, s

h
(s

)

Realization size, s

h
(s

)

sc ss

s

s
1/D(a) (b)

h(s)=N

Figure 4.3: Heaps’ law from dependency structures. A component
system constrained by a dependency structure generates the well-know sub-
linear scaling of the number of different components with the realization size.
The expression (4.12) approximately reproduces the average of the simula-
tions, panel (a), with parameters: N = 500, R = 2000, and ρ uniformly
distributed in [1, 2000]. The panel (b) shows the law in double logarithmic
scale, highlighting the three expected regimes: the linear growth for s < sc,
Eq. (4.14), the sub-linear scaling,, and the saturation for s > ss, Eq. (4.16)
(parameters: N = 500, D = 2, R = 2000, ρ ∈ [1, 3000]).
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4.4.2 Linear, sub-linear, and saturating regimes

Most of the studies about the Heaps’ law consider the limit of an infinite
vocabulary of the component-universe [55, 56], leading to the classical pre-
diction that the law grows as a sub-linear power-law function. This is jus-
tified by the fact that literary texts and, in general, component systems
show this phenomenology, i.e. the vocabulary of the “universe” is actually
infinite, or the data-set is a sample of the universe with a vocabulary much
smaller that the original one. However, the presented model allows us to
fully characterize the vocabulary scaling.

Naively, if a realization is constructed by incremental addition of ran-
domly chosen components, one expects h(s) to be approximately linear for
small s, as it is unlikely to draw the same component twice. At the same
time, this innovation probability decreases with s, up to a point where ap-
proximately all components in the universe will have been included, and
h(s) will saturate to N . This behaviour is brought out clearly by plotting
h(s) in log-log scale (see Fig. 4.3b). There emerge three distinct regimes: a
linear increase for small s, a saturation to N for large s, and an intermediate
regime where the sub-linear increase of h(s) appears to be well described by
the classical power law prediction h(s) ≈ s1/D (where the exponent is fixed
by the Zipf’s law) [52, 55, 56].

In order to quantitatively characterize these three distinct regimes, it is
useful to apply the recurrence relation of the incomplete Gamma function
(Eq. (B.11)) to Eq. (4.12). This leads to the following expression:

h(s)

N
= 1− e−

s
Ω +

( s
Ω

) 1
D

(
Γ

(
1− 1

D
,
s

Ω

)
− Γ

(
1− 1

D
,
sN

Ω

))
. (4.13)

The initial linear regime holds true if the term sN
Ω is much less then one, or,

in other words, if:

s� sc =
Ω

N
=

D

D − 1
N1−1/D, (4.14)

which allows us to express the difference between the two incomplete upper
Gamma function as an incomplete lower Gamma function, and then to apply
the expansion for sN

Ω � 1 :

Γ

(
1− 1

D
,
s

Ω

)
− Γ

(
1− 1

D
,
sN

Ω

)
≈ γ

(
1− 1

D
,
sN

Ω

)
≈ D

D − 1

(
sN

Ω

)1− 1
D

.

Combining the identity above and the equation (4.13), one finds the expected
linear growth:

h(s) ≈ s. (4.15)

The opposite regime appears when all the different components have
been extracted, and the realization vocabulary is then equal to the vocabu-
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lary of the “universe” N . This happens for:

s� ss = Ω =
D

D − 1
N2−1/D, (4.16)

or, equivalently, s
Ω � 1. Under this condition, one can approximate the

upper Gamma function at the first power of its asymptotic series, neglecting
terms of order Ω

s or smaller. This eventually leads to:

h(s) ≈ N. (4.17)

In the intermediate region of these two extremes the vocabulary grows
sub-linearly. As said above, the classical prediction for such a region is a
power law function with an exponent equal to 1/D. We can recover that
imposing sc � s� ss. The first incomplete Gamma function of Eq. (4.13)
becomes approximately equal to the Euler Gamma with argument 1− 1/D,
while the second one can be approximated again with the asymptotic series.
After some calculations one finally finds:

h(s) ≈ Γ

(
1− 1

D

)
N
( s

Ω

) 1
D
. (4.18)

4.5 Discussion

The main purpose of the present work is to establish a quantitative relation-
ship between statistical properties of a component system and its underlying
dependency structure, i.e. the functional dependencies between its compo-
nents. To this end, we introduced a generative model (Section 4.2.2) which
generates a new component system considering a dependency network, and
constraining the system to obey such dependencies. Although whatever net-
work can be used as a input of the model, we focused on the dependency
structure defined in [2]. There are two main reasons for that. The first one is
that the generative model of the network is extremely simple (defined only
by two parameters), though leading to non-trivial topological properties.
The second reason is that the work [2] employs such a network to take into
account statistical properties of binary component systems with promising
results. By means of our model, we can extend these results to component
systems with abundances (i.e. non-binary), which show a richer set of sta-
tistical patterns, including the Zipf’s and Heaps’ laws. Both these two laws
can be analyzed by simulations and approximate calculations as shown in
Sections 4.3, 4.4. Specifically, the model reproduces a scale-free rank plot of
the abundances with an exponent related to the average out-degree of the
dependency network, Eq. 4.5 and Fig. 4.2a. The model also leads to an ap-
proximate prediction of the sub-linear scaling of the realization-vocabulary
with the size, h(s), Eq. 4.12 and Fig. 4.3a, and allows us to identify the
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different scaling regimes, Fig. 4.3b: linear (s < sc), sublinear (sc < s < ss),
and at saturation (s > ss).

A possible question is whether the relationships between statistical laws
predicted by random models are satisfied in the presented framework. We
proved in Chapter 3 that the occurrence distribution can be viewed as a
derivative phenomenon of the Zipf’s law. This specific prediction seems to
be confirmed also here, as shown by Figure 4.2b, where the occurrence-
frequency scatter plot follows the random sampling expectation. Analo-
gously, the Heaps’ law can be viewed as a statistical consequence of the
abundance statistics (as discussed in Section 2.2.2). Here, the analyical
prediction of h(s) is derived neglecting correlations (and leading to good ap-
proximations of the simulations), therefore suggesting that the null Heaps-
Zipf relation is satisfied as well. The fact that the null-predictions give good
results seems to be in contradiction with the inner definition of the model,
which assumes dependencies between components, and therefore the pres-
ence of non-trivial correlations (which instead a random model neglects).
We can better understand the problem looking at the mutual information
between pair of components, which can be used as a measure of correlation:

I(i, j) =
∑

x,y∈{0,1}

px,y(i, j) log

(
px,y(i, j)

px(i)py(j)

)
(4.19)

where p0(i) is the fraction of realizations in which the component ci is ab-
sent, while p1(i) = 1−p0(i) is the fraction of realization in which ci is present
(exactly equal to the definition of occurrence, oi, of Table 2.1). px,y(i, j) de-
fines the co-occurrences of the components ci and cj , for example p0,0(i, j)
is the fraction of realizations in which they are both absent, or p0,1(i, j)
is the fraction where ci is present and cj is absent. Note that the mu-
tual information is maximal, and equal to the Shannon entropy of one of
the nodes, when the two components have the same co-occurrence pattern:
px,y(i, j) = px(i)δx,y = px(j)δx,y, while it is null if the two components are
independently distributed among the realizations: px,y(i, j) = px(i)py(j).
Figure 4.4 shows the distribution the mutual information comparing a sys-
tem generated through our model (blue line) and its “reshuffeld” version
(grey dotted line, using the random sampling described in Section 3.2).
Most of the component-pairs in both the two distributions have very small
mutual information and generate a large peak around 0 (note that the y-axis
scale is logarithmic). This can explain the fact that relationships between
statistical laws can be predicted with null models, indeed the majority of the
pair-correlations are indistinguishable from a random sampling. However,
there is a small but significant difference between the two distributions: the
model shows a fat-tail, which clearly deviate form the reshuffling, highlight-
ing the presence of the expected correlations generated by the dependency
structure.
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Figure 4.4: Mutual information distribution. The panel shows the dis-
tribution of the mutual information between each pair of nodes (Eq. (4.19))
in three systems: one generated through the dependency-network model
(D = 1, N = 2000, R = 1000, ρ ∈ [50, 1000]), a random sampling at fixed
abundance and size distribution of the previous system, and the protein
domains-genomes matrix (Appendix A.1.1).

Figure 4.4 also shows the distribution of the empirical genomic system,
which displays a similar behaviour of the dependency-network-model, de-
viating from the null-distribution with a fat-right-tail. This suggests the
presence of dependency relations (or at least non-trivial correlations be-
tween components) also in genomes. However, it is important to point out
that the presented model (at least in its current basic formulation) is not
a suitable reference framework for genomes. This because it does not re-
produce the empirical phenomenology of the abundance rank distribution
(power-law decay + exponential cut-off as shown in Fig. 2.3d and A.1b).
Since the dependency network is strongly affected by this distribution, we
cannot infer properties of the empirical dependency structure by the com-
parison with the discussed model. Therefore, Fig. 4.4 provides just an hint
that there are non-trivial dependencies in genomes which a random model
cannot take into account.
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Chapter 5

Heaps and U-shaped laws in
sample space reducing
processes

Authors: Andrea Mazzolini, Alberto Colliva, Michele Caselle, Matteo Osella.

5.1 Introduction

As discussed in Section 2.2.1, the Zipf’s law is a central topic in the study
of complex systems. A large variety of models have been proposed to un-
derstand its origin the reason of its generality across very different systems.
In recent works [39, 70, 71] Corominas-Murtra and co-workers introduced a
simple stochastic model, called Sample Space Reducing process, SSR, which
joins the mechanisms for the Zipf’s law generation. The model is based
on the idea that, given a finite set of states, the number of possible vis-
iting states diminishes as the time passes, with a sort of shrinking of the
configuration space. Intuitively, this mechanism resembles ageing systems,
where the number of “new states/possibilities” reduces as the system ages,
or also the writing process, where, after each written word, the number of
possible following words reduces as a consequence of significance or syntac-
tic constrains (i.e. the state space shrinks). The SSR process provides a
minimal description for all the system characterized by a reduction of the
state space during their evolution, linking this mechanism to the generation
of power laws in a very elegant way (the definition of this model is presented
in Section 5.2).

The simplest implementation of this mechanism leads to the classical
Zipf’s law (with exponent −1) [39, 70], which is proven to be very general
also for non-homogeneous visiting probabilities of the state space [71]. Re-
cently, the author have proposed also a generalization which combines the
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SSR mechanism with a multiplicative process (called Sample Space Reduc-
ing Cascading process, SSRC), allowing them to recover the full spectrum of
scaling exponents of the Zipf’s law [72]. A further generalization including
a space-dependent noise leads to several other classes of statistical distribu-
tions different from power laws [73].

The present work addresses the question whether the discussed mecha-
nism is able to take into account other statistical patterns shown by complex
systems, and therefore to what extent the SSR model reproduces the global
statistical properties of empirical systems.

The first statistical law considered here is the Heaps’ law, which describe
how the number of different words in a text grows with the text size (see Sec-
tion 2.2.2). Typically this law presents a sub-linear growth (approximately
a power law function with exponent lesser than 1), which is essentially due
to the fact that, after reading few words in a book, there is an high chance
that the next word is new, while as the number of read words increases
this chance decreases, because the most frequent words have been already
discovered and the vocabulary enlarges only by reading specific and rare
words. Therefore, the Heaps’ law is strictly related with the statistics of
the word frequencies, coded by the Zipf’s law, and indeed the relationship
between the two laws is indeed investigated in some papers [55, 54, 56, 6].
The section 5.3 will show that the SSR model is able to catch this statis-
tical pattern, reproducing the same features of the empirical Heaps’ law.
Moreover the Zipf-Heaps relationship known in literature is satisfied also in
the SSR process, allowing us to derive a reliable analytical estimation of the
Heaps’ average of the model.

In addition to the Heaps’ law, the section 5.4 shows that the SSR model
can generate the “U”-shaped law or distribution shared components (see
Section 2.2.3). In particular, the SSR model can be used to generate a
component system, where the different realizations are different instances
of the model, and the system-components are the states of the sample-
space. This allows us to compute the component-occurrence distribution as
a consequence of the sample state reducing mechanism. As for the Heaps’
law, an analytical expectation of “U” shaped law will be derived in the
section 5.4, linking its features to the model parameters.

Finally, the section 5.5 will discuss a linguistic example (the book “The
Origin of Species”), showing that the model is able to take into account its
Zipf’s law and Heaps’ law, but not other quantities related to temporal cor-
relations between words. These “higher order” statistical properties cannot
be generated through the SSR mechanism, posing an interesting challenge
on finding the minimal ingredients at the basis of their non-trivial behaviour.

54



5.2 The Sample Space Reducing Process

The basic definition of the sample space reducing (SSR) process [39], is the
following: given a system composed of N states labelled from 1 to N , at
the first time step one of those states is chosen randomly, for instance the
number k. At the second step only the first k − 1 elements are accessible,
and the second state is drawn randomly among them. The process iterates,
each time with a sort of shrinking of the accessible states, and ends when the
number 1 is chosen. In other words, a single instance of the SSR process,
which is denoted with φ, generates a strictly decreasing sequence of the
selected states, which always ends with 1.

We can define a generative stochastic process through independent rep-
etitions of φ, where a repetition means that, once the state 1 is selected, the
process restarts. The repetition of φ for S times can be used to create a
certain realization adding each selected state/component during the process
to the realization. At the end of these iterations, the realization is a string
of several components, such as a book composed of words, and the differ-
ent words are the different states of the process. Clearly, the components
labelled with low numbers are chosen more frequently, and for instance the
component 1 has the abundance equals to S because is selected at each run
of φ. On the other hand, the component N can be chosen only at the first
step of φ with probability 1

N , leading to an expected abundance equal to S
N .

Indeed, it can be proven that the average abundance of the i-th component
is proportional to i−1 in the limit S → ∞, which is the well-known Zipf’s
law.

A more general model can be defined adding a multiplicative process to
the SSR prescription [72]. This new model is called Sample Space Reducing
Cascade process, SSRC, and its definition is described in the following (a
schematic representation is shown in Fig. 5.1). Given a space composed
again of N states, at the first time step µ balls are thrown at random,
hitting independently one of the states ({c1, . . . , cµ}, ci ∈ {1, . . . N}) with
uniform probability (P (ck = i) = 1

N ). Then, at the next step, each of these
µ balls, for example that one in ck, splits up into new µ balls, which are
thrown at random under the SSR condition: only the first ck − 1 states are
accessible. When a ball reaches the state 1, it is removed from the process.
Eventually, all the generated balls will hit the state 1, concluding then a
“cascade”. After that, the process can restart repeating the move of the
first step. Note that the model is equivalent to the SSR model for µ = 1.
It can be proven that, asymptotically, the number of times that the state
i is selected is proportional to i−µ, reproducing whatever exponent of the
Zipf’s law. This result is true for every µ > 0, where the processes with
a non-integer µ can be defined extracting the number of new balls at each
step from a distribution with average µ.

For the rest of this paper we will refer to the notation φ
(µ)
s , which indi-
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(a) Sketch of the SSRC process, μ=2, N=8

12345678

Step 1

Step 2

Step 3

Step 4

Step 5

Accessible state
Not accessible

12345678

(b) Associated realization

Figure 5.1: Schematic representation of the SSRC processes. a) At
the first step all the state are accessible and µ of them are chosen with
uniform probability (red balls in the states 7 and 4). At the next step, each
ball divides into µ new balls, which jump “forward” to a state whose index is
lesser than the one occupied by the original ball (e.g. the red ball in the state
4 splits up into two other balls, which can access only to the states {1, 2, 3}).
When the state 1 is chosen, the ball does not divide anymore. When all the
balls hit the state 1 a “cascade” finishes, and the process restarts throwing
at random µ balls as in the step 1 of the figure. The SSR model can be
associated to the growth process of a certain realization (e.g. a book) in
which the selected states (e.g. the words) are added to it, as shown in the
panel (b).
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cates a SSRC process that stops after s drawn components. The value of s
will be chosen always much greater than 1, regime in which the component
abundances follow approximately a power law function. Note that the indi-

cation φ
(µ)
s does not specify completely the process. Indeed, in the general

case of a real positive µ, one has to define the distribution from which the
number new of balls is extracted at each iteration (which must have average
µ). To avoid ambiguity, for the rest of this paper a Poisson distribution
will be always chosen (if not specified differently), also in the case of integer
values of µ. It must be pointed out that the following results for the Heaps’
law and the “U” shaped law are derived in a mean field approximation, im-
plying that they depend on the average µ but not on the other moments
of the distribution. However, in general, the statistical properties of the
string of components can change varying the distribution shape, as for the
inter-occurrence distance shown in the section 5.5.

5.3 The sample space reducing mechanism gener-
ates the Heaps’ law

In linguistics, the single-realization Heaps’ law is defined as the number of
different words, h(l), in the first l words of a text. Note that this law can
be computed only if the order of the states/components in the realization is
defined. In this regard, within a SSR realization the order is given by the
time in which the states are selected during its run. As shown in Fig. 5.2,

the SSR process φ
(µ)
s shows the expected power law distribution of the state

abundances (the Zipf’s law), panel a, and it generates also a Heaps’ law
displaying the sub-linear growth typical of empirical systems, panel b. For
each set of parameters we have plotted four independent trajectories, giving
a qualitative idea of the dispersion around the average. The rest of this
section is dedicated to derive the analytical formula of the Heaps’ average
〈h(l)〉.

It is known that a SSR model, φ
(µ)
s , with s→∞, generates the following

occupation probability of a generic state i, as derived in [72]:

p(µ)(i) =
i−µ

α
, α =

N∑
k=1

k−µ. (5.1)

Assuming that the realization grows through independent extractions of the
components with probabilities fixed by the expression above, the chance of
choosing for the first time the component i at after l extracted components
is given by: (

1− p(µ)(i)
)l−1

p(µ)(i),
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Figure 5.2: Zipf’s law and Heaps’ law of the SSRC model. The panel
(a) shows the rank plot of the component frequencies of four realization
of a SSRC model, where the number of states chosen at each time step
is drawn from a poissonian distribution with average µ. The simulations
confirm the theoretical expectation (5.1), in which the power law exponent
is equal to the parameter µ. The number of different components, h(l),
grows in a sub-linear fashion with the number of extracted components, l,
as shown in the panel (b). All the trajectories saturate to the asymptotic
value h(l) = N (black dotted line), where N is the second parameter of
the model representing the total number of components, i.e. the dictionary
size, and is chosen equal to 10000 for all the simulations. The black dashed
lines, which overlap the heaps trajectories, are computed with the analytical
function (5.4), providing a very good estimate of the mean value of the
Heaps’ process.

which implies that, after l steps, the component i is selected at least one
time with probability:

q
(µ)
l (i) =

l∑
k=1

(
1− p(µ)(i)

)k−1
p(µ)(i) = 1−

(
1− p(µ)(i)

)l
, (5.2)

and then, in a mean field approximation we can write down the expected
value of the Heaps’ curve, i.e. the number of different components after l
selected components:

〈h(l)〉 =

N∑
i=1

q
(µ)
l (i) = N −

N∑
i=1

(
1− i−µ

α

)l
. (5.3)

This expression can be simplified under the approximation of large l and
large N . To this end, the summation appearing in the formula above
can be expressed as the summation (B.7) in Appendix B.2, specifically as
H(l, 1, 1/α). Using the result (B.9) and omitting the expected value nota-
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tion, one finds:

h(l) ≈ N − 1

µ

(
l

α

)1/µ

Γ

(
− 1

µ
,

l

Nµα

)
, (5.4)

where Γ is the incomplete Gamma function. This function is verified in Fig.
5.2, where it overlaps the simulation trajectories. As for the the Zipf’s law,
Eq. (5.1), this estimate depends only on the average µ of the new-balls-
distribution.

For γ > 1 it is also possible to recover the classical sub-linear power law
growth of the Heaps’ law [55]. Indeed, when l

Nµα � 1 (i.e. realization far
away from the saturation point) the result (B.12) leads to:

h(l) ≈
(
l

α

)1/µ

Γ

(
1− 1

µ

)
, (5.5)

where Γ is the Euler Gamma function, and the exponent of growth is the
inverse of the Zipf’s law exponent.

H(s, a, c) ≈ (cs)1/γ

γ
Γ

(
−1

γ
, cN−γs

)
. (5.6)

5.4 Distribution of shared components form an
ensemble of SSR realizations

Given an ensemble of realizations, the distribution of shared components is
defined as the distribution of the occurrences, i.e. the fraction of realiza-
tions which contain the component (see table 2.1). As discussed previously
(see Section 2.2.3), several genomic studies investigate the law for differ-
ent strains and phyla, finding a “universal” shape characterized by a power
law decay followed by a peak at maximal occurrence. Here we tackle the
question whether the sample space reducing mechanism can reproduce a
similar behaviour. It is worth mentioning that the components/states of
the SSR model are “labelled”, i.e. each one is identified by an index from 1
to N , allowing us to study the properties of each component across different
realizations. In other words, given an ensemble of SSR strings generated
independently and sharing the same state space, one can study the be-
haviour of a generic component in each realizations, for example computing
its total abundance or the fraction of realizations in which it is present (i.e.
its occurrence). Other well-known generative models, such as the Chinese
Restaurant Process [74] or the Simon’s model [31], do not show this prop-
erty. Indeed, when a new component is added to the realization, it has no
relationship with the components in other realizations. Therefore, differ-
ently from these models, the SSR process provides a natural framework to
study the component occurrence statistics.
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In order to reproduce the distribution, we generate a set of R realizations
in a state space composed of N states/components. Each realization is a

sequence of components provided by the process φ
(µ)
s . The Fig. 5.3a shows

three examples of the occurrence distribution, P (o), computed for three
values of µ. All the three examples show the characteristic U-shape present
in empirical data: a peak at the minimal occurrence, a second peak at o = 1,
and a power law decay for small occurrences (inset of Fig. 5.3a).
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Figure 5.3: Component occurrence distribution. The first panel shows
the component occurrence distribution for three ensembles of R = 1000
realizations of the SSRC process. Each ensemble has a different value of µ,
while the other two parameters are fixed: s = 10000 and N = 10000. The
three distributions are in good agreement with the analytical predictions
(5.8) (dashed black curves), whose left boundaries, oleft, is indicated with
vertical dotted lines. The inset shows the same distribution in logarithmic
scale, displaying the power law decay, with an exponent given by the relation
(5.10). In the panel (b) this exponent is computed for different ensemble
parameters (µ on the x-axis, s and N are indicated in the legend), and they
are compared with the theoretical expectation (black dashed line), which is
independent of s and N . Each dot is obtained through a least square fit of
the occurrence distribution. The fitted region is: [oleft+ε1; oright−ε2], where
oleft/oright are the left/right domain boundaries (equation (5.9)), while ε1/ε2
are two positive constants, which have been manually tuned in order to
remove the “finite-size” cut-off for occurrences near oleft, and the increasing
part on the right side of the distribution.

Using a similar approach of the previous section, these features and their
relationship with the model parameters can be derived analytically. Here
the relevant observable is the component occurrence, which can be computed
considering the probability that the component i is present in a realization
of size s. This probability is given by the expression (5.1), leading to the
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following expected value:

E[oi] =
1

R

R∑
j=1

q(µ)
s (i) = 1−

(
1− i−µ

α

)s
. (5.7)

Note that here we are considering the most simple case in which the prob-

abilities q
(µ)
s (i) are identical for each realization (all of them have the same

s and µ). Therefore they do not depend on the index j and the summation
is trivial. In general, one can generate an ensemble of realizations with dif-
ferent sizes {sj}, and different duplication parameters {µj}, providing much
more complicated scenarios.

This expression is equivalent to the expected occurrence derived in Chap-
ters 3, Eq. (3.2) for random extractions at fixed power law abundance dis-
tribution with exponent µ. Therefore we can extend the results derived in
that work to the present study. In particular, the analytical formula for the
component occurrence distribution is:

p(o) =
(1− o)

1
s
−1

µsNα
1
µ

(
1− (1− o)

1
s

) 1
µ

+1
, (5.8)

which is defined in the interval [oleft, oright], where:

oleft = E[oN ] = 1−
(

1− N−µ

α

)s
,

oright = E[o1] = 1−
(

1− 1

α

)s
.

(5.9)

This expressions are verified in the Fig. 5.3a, main panel, (dashed lines, the
vertical dotted lines represent the left domain boundaries). Note that for
s � 1 one has: oright ' 1, indeed the three examples in the figure are in
this regime (s = 10000), showing o = 1 as right boundary.

It can be proven that the occurrence distribution decays as a power law
function for rare components imposing the limit o � 1 and s � 1 in (5.8),
which becomes:

p(o) ' s
1
µ

α
1
µµN

o
− 1
µ
−1
. (5.10)

Therefore the exponent of the occurrence distribution decay is dependent
only on µ through a very simple relationship verified in the Fig. 5.3b.

5.5 Comparison with data: where the SSR model
succeeds and where it fails

In the following, the SSR process is used as a generative model for the book
“The Origin of Species”. In principle, the model can mimic the growth
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process of whatever “entity” made of elementary components, such as, for
example, a genome made of genes or a man-made building made of basic
modules. However, a linguistic example is a natural choice since the writing
process resembles the sample space reducing mechanism.
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Figure 5.4: Comparing the SSR model the Origin of Species The
panel (a) shows the Zipf’s law of the Origin of Species (blue line), of a
basic SSR process (red dashed line), and a SSRC model where the number
of new balls are extracted from a Poisson distribution with average µ = 1
(green line-dot line). The number of different words N and the text size
s of the two models are the same of the book (N = 9132, s = 178820).
The models generate a power law Zipf with exponent equals to −1, which
is qualitatively similar to the real rank distribution. Analogously, the panel
(b) displays the qualitative agreement between the Heaps’ laws. The plot
(c) is the rescaled inter-occurrence distance distribution, equation (5.11),
computed considering only the words with abundance greater than 2 and
lesser than 1000. The distribution is shown for the book, the two SSR
models, and also for the reshuffled string of the SSR model (violet dashed
line) and the theoretical expectation of a random process (black dotted line).
The curves generated through the SSR, the SSRC and the reshuffled list are
the average over 20 independent realizations.

The purpose of the section is to compare the empirical statistical pat-
terns with those generated by the model, specifically the Zipf’s law, the
Heaps’ law, and the inter-occurrence distance (defined below), looking for
the statistical properties that arise as a consequence of the sample space re-
ducing assumption. To this end, we have chosen the most simple definition
of the model, which is the basic SSR formulation (beginning of Section 5.2),
and a SSRC model with µ = 1. Note that the difference between the two
models is the distribution from which the number of new balls is generated,
specifically a delta function centred in 1 for the basic SSR, and a Poisson
distribution with average 1 for the SSRC. The Fig. 5.4a,b shows that the
models generate statistical laws qualitatively similar to the empirical ones,
specifically a power law Zipf’s function and a sub-linear growth of the vocab-
ulary as a function of the book size. It is worth mentioning that the overlap
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between the curves of the two models is in agreement with the theoretical
expectation that the Zipf’s and Heaps’ law are independent of the shape of
the distribution of new balls (but they depend only on the average which is
µ = 1 in both the cases).

However, even though the SSRC model is able to reproduce two impor-
tant statistical patterns of texts, it does not take into account the properties
related to temporal correlations between components. Such correlations be-
tween words have been extensively studied in linguistics, showing interesting
non-trivial features [75, 76, 77]. A simple example of these statistical pat-
terns is called inter-occurrence distance [78, 6]. It is intimately related to
the words auto-correlations, and describes the clustering of words in certain
regions of texts. For instance, if a character appears only in one chapter of a
book, its name is localized in a small region, and completely absent in other
parts of the book. This cannot be taken into account by a random model
without correlations, which would predict that each word is homogeneously
scattered across all the book. In order to quantify this phenomenon, given
a given word i ∈ V , one can compute the number of other words between
two consecutive instances of i, and weight this value with the frequency fi.
Specifically the inter-occurrence distance of the word i between its (k−1)th
and kth appearance is:

τk = (lk − lk−1) f (5.11)

where lk represents the position of the kth appearance of the word, and l0 is
the beginning of the book. It can be proven that for a random generation of
the book (e.g. assuming a Poisson growth process), the stochastic variable
τk follows approximately an exponential distribution with average 1, inde-
pendently of the word frequency f and the position k. The Fig. 5.4c shows
the comparison between the empirical curve and those generated by the two
models. As a null expectations the panel displays also the curve generated
by the reshuffled list of the SSR process, which is very similar to the ex-
pected exponential function, but with a small deviation at small values of
τk because of the presence of a frequency-dependent lower boundary in the

formula (5.11) (τ
(min)
k = f). Only the empirical text presents an enrichment

at small and large distances with respect the null prediction, which is due
to the word clustering discussed above.

Looking at the figure, it can be also noted that the two versions of the
model show slightly different inter-occurrence distributions at small τ . This
implies that, even though the Zipf and the Heaps’ laws depend only on
the average of the distribution of new balls µ, in general, other statistical
patterns can depend on the shape of this distribution.
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5.6 Discussion

In summary we have shown that the sample space reducing mechanism, in
addition to the Zipf’s law, generates two other important statistical laws:
the sub-linear vocabulary growth as a function of the entity size (the Heaps’
law) and the U-shaped distribution of shared components, reproducing qual-
itatively features observed in empirical data. Moreover, the analytical be-
haviour of the three laws can be derived, linking their properties with the
model parameters, equations (5.4), (5.8), (5.10). This extends the range
of applicability of the SSR process, which can be used as a benchmark
for the study of these statistical laws, joining the models used to repro-
duce the Heaps’ curve [79, 33, 7] and the distribution of shared components
[2, 59, 62, 60, 61]. It is remarkable that in the SSR formulation the state
space is shared by all the independent realizations of the model, allowing
us to study the statistics of the components across realizations, and, in
particular, the occurrence distribution. Differently, this is not possible in
several commonly used innovation-duplication models, such as the Chinese
Restaurant process or the Simon’s model.

We have also considered a statistical law based on the temporal auto-
correlations between components, named the inter-occurrence distance dis-
tribution, equation (5.11) [78, 6]. Its shape in texts is characterized by
an enrichment at short inter-occurrence distances, which is not shown by
the process, displaying instead a similar behaviour of random models (i.e.
without correlations). The non-trivial shape of this distribution highlights
a complex generative dynamics posing an interesting challenge on finding
the minimal ingredients to generate the observed pattern. A possible way
could be considering a process with memory [80, 81] which should lead to
the temporal autocorrelations at the basis of this behaviour.

It can observed that the absence of such correlations in the model sug-
gests why the obtained predictions about the Heaps’ and the U laws (equa-
tions (5.4), (5.8)) are so accurate. Indeed, to derive those equations, it is
assumed that at each step the states are extracted independently with a
probability fixed only by the Zipf’s law (this is necessary to write down the
equation (5.2)). The fact that the SSR does not show correlations between
components confirms that this hypothesis can be applied, and consistently,
the obtained predictions reproduce the simulations. In other words, the
SSR model is, somehow, a recipe to generate a realization with a power law
abundance distribution, without introducing other constrains on the order
of appearance of the components, allowing us to predict the Heaps’ laws
and the U-shaped distribution with a method based on random and uncor-
related extractions of the components. It can be also noted that models used
to establish a null relationship between Zipf’s and Heaps’ laws are based on
similar prescriptions, for example extracting with replacement components
with probabilities fixed by a power law function [55], or considering a Pois-
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son growth process where the arrivals of different components follow a rate
given by the Zipf’s law [56]. As a consequence, in both the two cases the
derived Heaps’ law are asymptotically equivalent to (5.3). Similarly, the
SSR occurrence distribution is equivalent to the one generated by a random
sampling from a power law function, Section 3.
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Chapter 6

The Heaps’ law fluctuations
unveil information on the
innovation dynamics

Authors: Andrea Mazzolini, Alberto Colliva, Michele Caselle, Matteo Osella.

6.1 Introduction

The approach of the previous two chapters is based on specific assump-
tions for the system growth, namely the presence of a dependency struc-
ture between components, and the sample space reducing mechanism. We
then study whether these assumptions are able to reproduce the empirical
statistical laws. The present work focuses again on generative models for
component systems, but using a different perspective. The starting point
is a single and specific observable which shows a non-trivial and universal
behaviour across systems. Then, given a wide class of models, we look for
the minimal condition that a model must satisfy to explain such observable.
In this way, the identified minimal ingredient suggests a key mechanisms at
the basis of the empirical systems growth.

More specifically, here we study the fluctuations of the Heaps’ law. As
discussed in Section 2.2.2, the Heaps’ law is largely studied in linguistics, and
defines how the vocabulary of system-realizations scales with the realization-
sizes. Almost all the studies about this law consider the average behaviour
of the vocabulary, which follows a sub-linear growth typically approximated
as a power law function (with an exponent between zero and one). However,
the huge number of digitalized books, allows, in principle, to characterize
the full statistics of the number of different words at a given book-size. Even
though this kind of analysis may improve the applications of the Heaps’ law
in linguistics and memory allocation (see Section 2.2.2), as far as we know,
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there is only one attempt in this direction [82]. Interestingly, the authors
have found that the Heaps’ law variance scales quadratically with the average
in three different linguistic datasets. This behaviour is called Taylor’s law
(i.e. the power law scaling of the variance with the average). It was first
introduced in ecology [83, 22], where the variable of interest is typically the
density of a censused population, whose statistics is computed over a set of
different spatial or temporal samples. Several models have been proposed to
take into account the super-linear scaling of the variance with the average
population density, e.g. [84, 85, 86]. Beyond ecology, this deviation from
the classical Poisson-variable expectation (where the variance scales linearly
with the average) has been found across several other complex systems, from
biology to physics [87, 88, 89, 90].

In [82], the explanation of the quadratic fluctuations of Heaps’ law is
based on the “topical” aspect of written language, that is to say that the
different topics of a text ensemble increase the variability of vocabulary
usage. To prove this statement, the authors employ the Latent Dirichlet
Allocation (LDA) model [91] to infer the topic composition of a given text
ensemble, and also the topic-dependent word frequency distributions (i.e.
each topic is characterized by a certain Zipf’s law). Performing then a
random sampling of words (equivalent to the model presented in Sec. 3)
from the topic-dependent frequencies, they recover the empirical fluctuation
scaling. As a null-comparison, a random sampling from the global frequency
distribution would lead to a variance always less than the average.

Here we focus on the same observable of [82], showing that the Taylor’s
law with exponent 2 is not only present in linguistics, but also in genomics,
suggesting that it is a universal feature of Heaps’ law of component systems.
We then address the question of its origin using an alternative way (but not
necessary in contrast with [82]), i.e. looking for the minimal generative
model which reproduces the Taylor’s law. Our investigation proves that
only a certain class of duplication-innovation growth models is able to take
into account a super-linear scaling. These findings suggest that empirical
systems grow with a rich-gets-richer mechanism in terms of “vocabulary
richness”.

6.2 Universal Taylor’s law of the vocabulary growth

A universal scaling shown by complex component systems is the sub-linear
growth of the number of distinct components, h, with the realization size,
s, i.e. the Heaps’ law. Figure 6.1 shows this statistical patterns in three
datasets: books from the Gutenberg database (panel a, datasets described
in Appendix A.2.2), genomes made of protein-domain families (panel b,
Superfamily database, Appendix A.1.1), and Wikipedia articles (panel c,
Appendix A.2.3).
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Figure 6.1: Heaps’ law and its fluctuation scaling shown in three
datasets. Data: 3036 books from the Gutenberg database (panels a,b),
1060 bacterial genomes from the Superfamily database (c,d), 8334005 arti-
cles from the English Wikipedia (e,f). The Heaps’ law (panels a,c,e) shows
the growth of the vocabulary size h with the realization size s. The average
of h over x-axis bins (red crosses) grows in a sub-linear fashion, and it is well
fitted by the mean-field CRP prediction (6.9), with parameters: α = 0.57,
θ = 110 for books, α = −0.31, θ = 436 for Superfamily, α = 0.68, θ = 27
for Wikipedia. The right panels (b,d,f) display the variance of h, i.e. the
dispersion of the vocabulary size at fixed entity size, as a function of the
average, growing approximately as a parabolic function (continuous lines).
The procedure to compute these lines is discussed in the main text. The em-
pirical variance is compared with a classical Poisson’s process, Var[h] = E[h]
(dotted lines), and the variance of a simulated CRP (dashed lines) with the
parameters fixed by the fit of the average . The dash-dot lines are the best fit
of the empirical variance assuming a quadratic scaling: Var[N ] = c · E[N ]2.
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Here we focus on the fluctuations of Heaps’ law around its average, that
is how much realizations of similar size are diverse in terms of vocabulary
richness. Intuitively, in the linguistic case, diversity of vocabulary usage
means that there are books with a tendency to repeat always the same
words (and then having a small vocabulary), as well as books which try to
use as many different words as possible.

Before describing the Heaps variance in datasets, it is worth mentioning
a technical point about its computation. As described in Section 2.2.2,
given an ensemble of realizations, the global Heaps’ law can be defined
in two alternative ways: (a) it can be the scatter plot of the realization-
vocabulary versus the realization-size (where each dot is a realization, as
in Fig. 6.1a,c,e), or (b) one can compute the vocabulary-size trajectory for
each realization, and then consider the law as the ensemble of all the trajec-
tories. Note that for this latter prescription one needs a certain definition
of the component-order within a realization (e.g. in books it is naturally
defined as the temporal order in which the words appear). Summarizing,
according to (b), each realization contributes to the Heaps’ law with the
entire trajectory h(l) with l ∈ [1, s], while, according to (a), the realization
contributes only with the last point of the trajectory, h(s) (which is always
known regardless of the component-order). Importantly, even though the
definitions (a) and (b) may not be equivalent in terms of h statistics, for
the linguistics datasets it seems to be true, as discussed in Appendix A.2.4.
This allows us to study the vocabulary statistics unambiguously in the lin-
guistic data. The genomics case needs a separate discussion. The number
of genomes in the ensemble (around 1000) is not sufficient to have a solid
statistics of the vocabulary fluctuation scaling considering the definition (a)
(Fig. A.2a shows the variance computed with this procedure). The defini-
tion (b) would lead to a much larger number of samples per size-bin, but
since the protein domain order is not well-defined, the genome-trajectories
cannot be computed. To overcome this problem we adopted the procedure
described in Appendix A.1.3, in which we defined artificial trajectories of
genome growth through a weighted under-sampling of the protein domains,
allowing us to use (b) and obtain a smoother line for Var(h), panel 6.1d.

The fluctuation scaling of the Heaps’ law in the three datasets are shown
in Fig. 6.2b,d,f, where the vocabulary variance, Var(h), at fixed size-bin
is plotted as a function of the vocabulary average in that bin, 〈h〉. The
clear quadratic scaling in all the three panels allows us to identify a general
Taylor’s law for the vocabulary fluctuations in component systems:

Var(h) ∝ 〈h〉2. (6.1)

Interestingly, a classical poissonian random variable (dotted lines) cannot
predict this scaling, showing a linear growth. Moreover, also the random
sampling model (described in Section 3.2) deviates from the empirical data.
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Indeed, the variance of the Heaps’ law can be computed (as discussed in
Appendix B.3, Eq. (B.15)) and reads:

Var[h(l)] = 〈h(l)〉 −
N∑
i=1

qi(l)
2, (6.2)

where qi(l) is the probability of extracting at least one time the component
with a given frequency fi after l extractions, Equation (B.13). Since the
second term is always negative, the variance is always bounded by the linear
growth, and cannot reproduce the Taylor’s law. The deviation from this
null-predictions says that the observed pattern is due to non-trivial features
of component system statistics, requiring more refined models to be taken
into account.

6.3 Duplication-innovation models

To explain the Taylor’s law (6.1) we considers a simple but wide class of
models called duplication-innovation processes. Some of the most famous
examples are the Yule-Simon model [30, 31], the Pólya’s urn [92, 93], and
the Chinese Restaurant process [94, 95, 96]. These are used, for instance,
in genomics to mimic the evolutionary process of organisms [15, 97, 98], or
in linguistics to generate books and their statistical patterns [34, 7]. They
are based on the idea that a system-realization grows adding components
through two moves: a duplication of an existing component-instance, or a
discovery of a new component. Actually, a third move is often considered:
the deletion of a component. However, we will show that duplication and
innovation are sufficient to fully characterize the dynamics at the basis of
the observation (6.1).

A generic duplication-innovation model can be defined as follows. Let
us consider the notation described in 2.1.3, where a realization is a sequence
of component-instances (x1, x2, . . .), and such instances belong to the set of
unique components xk ∈ {c1, c2, . . .}, where the cardinality of this latter set
is called vocabulary size. At the first time-step, the realization is composed
of one instance of the component c1. Its associated sequence is then: (x1),
the unique-components set is {c1}, and trivially x1 = c1. At the generic
time step l a new component-instance is added to the realization and the
sequence enlarges by one unit:

(x1, . . . , xl−1)→ (x1, . . . , xl−1, xl).

An innovation event occurs with probability pnew, meaning that the instance
xl is a new component, i.e. it is not present in the set of unique components
at the previous step: xl /∈ {c1, . . . , ch(l−1)}. Therefore, also the component-
set enlarges by one unit, which is the new introduced component: ch(l) = xl.
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With probability pold, one of the existing component-instances duplicates.
In such a case, the unique-component-set does not change, and xl is chosen
equal to one of the existing components according to a rule prescribed by
the specific model. To summarize:

Probability Vocabulary size
Innovation pnew h(l) = h(l − 1) + 1
Ducplication pold h(l) = h(l − 1).

(6.3)

Of course pnew + pold = 1. Note also that without deletion events, the
realization size corresponds exactly to the time step l of the model.

Duplication-innovation models are typically used to reproduce the power
law behavior of the component frequency/abundance distributions within
a realization [30, 31, 95, 34, 33]. Indeed, they are a perfect framework to
include the “preferential attachment” assumptions, which can be encoded in
the duplication probabilities, leading to scale-free patterns. Note that these
results consider the “local” abundance of a component within a realization
(ni =

∑
k δxk,ci), not the “global” abundance ai defined in Table 2.1. For

the rest of this chapter we will always refer to this “local” definition of
abundance.

In addition to the abundance distribution, these models can be also
used to investigate the statistics the number of unique components as a
function of the realization size: h(l), which exactly defines the Heaps’ law
trajectory. For a generic duplication-innovation model, the average h(l) can
be computed with a mean-field approximation, by knowing that in a single
step of time the average increment of the number of different components
corresponds to the innovation probability: 〈h(l)− h(l− 1)〉 = pnew(l). This
leads to the following mean-field formula:

d〈h(l)〉
dl

= pnew(l). (6.4)

Even though this expression is extremely useful for the average, a mean field
analysis cannot be performed to compute the variance of h(l) (the actual
quantity which we are interested in). In this regard, alternative analytical
approaches will be shown later on.

The remaining of this section will describe three innovation-duplication
models, which have been used in previous papers to reproduce the sub-linear
behaviour of the Heaps’ law average and the power law distribution of the
abundances. We are going to analyze the Heaps law fluctuations of such
models, in order to better understand how the variance is affected by the
model-specific assumptions.
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6.3.1 Three models for the sub-linear growth of the vocab-
ulary

Generalized Simon’s model

The first model is based on the Yule-Simon’s process [30, 31, 99], which
can reproduce the power law abundance distribution of words (the single-
realization Zipf’s law) but not the sub-linear vocabulary growth. The au-
thors in [34] proposed then the following generalization for the innovation
and duplication probabilities:

pnew = β lµ−1 poldi =
1− β lµ−1

l
ni, (6.5)

where 0 ≤ β ≤ 1, 0 < µ < 1, and pold =
∑

i p
old
i = 1 − β lµ−1, which

correctly normalizes adding pnew. Note that the duplication probability of
a component is proportional to the local abundance ni, encoding a “pref-
erential attachment” mechanism, which eventually leads to the Zipf’s law
(ni ∝ i1/µ).

The Heaps average can be easily computed with the mean field formula
(6.4), leading to:

〈h(l)〉 ≈ β

µ
l µ, (6.6)

which is exactly the wanted sub-linear power law growth. However, look-
ing at the variance of h(l), Fig. 6.2a, one finds that it is lower than the
poissonian line Var(h) = 〈h〉, and therefore cannot reproduce the quadratic
scaling. Using the same procedure of Section 6.3.2, the analytical formula for
the variance can be computed (for l� 1, and approximating the summation
with an integral):

Var[h(s)] ≈ β

µ
l µ − β2

(2µ+ 1)
l 2µ+1 ≤ 〈h(l)〉, (6.7)

where the first addendum is exactly the average (6.6), and the second term is
always positive (in absolute value). Therefore, this proves that the variance
of the generalized Simon’s model is always bounded by the poissonian line.

Chinese Restaurant Process

Analogously to the generalized Simon’s model, the Chinese Restaurant pro-
cess (CRP) [94, 95, 96], has been used to reproduce the power law Zipf and
the sub-linear Heaps. In particular, it was used to fit the statistical patters
of an ensemble of bacterial genomes [33]. The model is typically defined as
a customer seating-plan in a Chinese restaurant. When a customer enter
the restaurant, he can choose to sit at an already occupied table, preferring
the tables with a higher number of people (preferential attachment), or he
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can choose to sit at an unoccupied table. The first move corresponds to a
duplication event (the abundance of a table/component increases), while the
second move is an innovation event (a new table/component is discovered).
This can is formalized with the following probabilities:

pnew =
θ + αh

θ + l
poldi =

ni − α
θ + l

, (6.8)

where θ > 0, 0 ≤ α < 1, and pold =
∑

i p
old
i = l−αh

θ+l . Again, using the
mean field approximation, the average number of unique components can
be computed:

〈h(l)〉 ≈ 1

α

(
(α+ θ)

(
θ + l

θ

)α
− θ
)
, (6.9)

which (for large l) scales as a power law with exponent α. In Appendix
B.4, Eq. (B.24), we derived the exact expression for the average vocabu-
lary (without the mean field approximation) leading to the same scaling.
Therefore, similarly to the generalized Simon’s model, the CRP leads to
the empirical sub-linear power-law Heaps’ law. However, the innovation
probabilities in the two processes have different dependencies, generating
the power law growth through diverse mechanisms. Both the two pnews
decrease as l increases (a necessary condition for the sub-linear growth).
But, in the generalized Simon’s model, the innovation probability is a power
law function of the realization-size, and this directly leads to the power-law
growth of h. Instead, the CRP innovation rate is a balance between the
realization-size (at denominator) and the vocabulary-size (at numerator),
which (in a less intuitive way) constrains the vocabulary size to grow as a
power-law.

These two different mechanisms at the basis of the vocabulary growth are
asymptotically equivalent looking at the average, but they lead to completely
different results considering the variance of h. Indeed, in Fig. 6.2 the CRP
line shows a quadratic scaling of Var(h) as a function of 〈h〉. This behavior
is confirmed also by the analytical resolution of the vocabulary size statistics
shown in Appendix B.4, and, in particular, by the analytitcal expression of
the variance (B.26) for l� 1:

Var[h(l)] ≈
(

(θ + α)Γ(θ + α)2

Γ(θ + 2α)Γ(θ + 1)
− 1

)
〈h(l)〉2. (6.10)

Generalized Pólya’s urn

The third model is based on the definition of the Pólya’s urn [92, 93]. The
authors of [79] generalized the well-known model with the assumption that
the space of new possible components enlarges when a novelty occurs (i.e.
an innovation event). Specifically, at the initial time, the urn contains h0

distinct components. At each further time, a uniform random extraction is
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performed: the selected component is added to the realization and then put
back in the urn together with ρ additional instances of its type (this leads
to the preferential attachment). In the case of a novel component (i.e. not
present in the realization-sequence), ν + 1 brand new distinct components
are added to the urn. In such a way, a novelty increases the possibility of
discovering other novelties. This definition leads to the following innovation-
duplication probabilities:

pnew =
h0 + νh

h0 + (ν + 1)h+ ρl
pold =

ρni + 1

h0 + (ν + 1)h+ ρl
(6.11)

The mean field expression for the Heaps’ law average reads (for large l, and
ρ > ν):

h(l) ≈ (ρ− ν)
ν
ρ l

ν
ρ , (6.12)

where, again, the power-law growth with an exponent lesser than one is
recovered. This could have been predicted looking at the innovation prob-
ability in the large l limit, pnew ≈ ν

ρ
h
l . This expression is equivalent to

the innovation probability of the Chinese restaurant process (again for large
l) identifying ν

ρ with α, and therefore one can expect the same scaling be-
haviour. This equivalence seems to be present also for the variance of h.
Even though, we were not able to derive an exact analytic prediction, the
Figure 6.2a shows the quadratic scaling as in the CRP and in the empirical
systems.

6.3.2 A necessary condition for the quadratic scaling

The vocabulary size statistics is independent of the specific mechanism of the
component duplication (defined by poldi ). Indeed, the growth of h(l) is driven
only by the innovation probability, which determines whether h(l) grows by
one unit (probability equals to pnew), or remains constant (1−pnew). Let us
consider the probability of having h different tables at time l: P (h, l). The
recurrence relation for this quantity reflects the considerations above:

P (h, l + 1) = P (h, l) + pnewP (h− 1, l)− pnewP (h, l)

= pnewP (h− 1, l) + (1− pnew)P (h, l)
(6.13)

with the initial condition P (h, 1) = δh,1.
Therefore, also the mechanism behind the quadratic scaling of the Heaps’

fluctuations should be encoded in pnew. Looking at the three described mod-
els, the Chinese restaurant process and the generalized Pólya’s urn succeed
in reproducing the empirical scaling, while the generalized Simon’s model
fails. The key ingredient in the innovation probabilities seems to be the
dependency on h, present only in the two successful models (6.8), (6.11).
Here, we are going to prove this statement. Specifically, we will show that if
pnew does not depend on h, then its variance is always bounded by the line
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Figure 6.2: Fluctuation scaling and innovation rates for the three
considered models. The model parameters are fixed by the average heaps
fit of the Gutenberg database (α = 0.57, θ = 110 for the CRP, h0 = 7.43·104,
ν = 147, ρ = 250 for the generalized Polya’s urn, and β = 10.8, µ =
0.59 for the generalized Simon’s model). In panel (a) the dots refer to the
simulations, while the continuous lines are given by the analytical formula
(6.7) and (6.10). The blue line is the variance of the Gutenberg dataset
(Fig. 6.1), which scales as the square of the average, like the CRP and
the Polya’s urn, but with a greater multiplicative coefficient. The Simon’s
model shows a sub-poissonian scaling as expected. The quadratic scaling
is related to the increasing innovation rate with the vocabulary size, panels
(b), (c), and (d). Indeed, the pnew grows with h in the simulations of the
CRP and the Polya’s urn, while it is constant for the Simon’s model. The
black lines are the known innovation probabilities (6.5), (6.8), (6.11), which
are in agreement with the binning averages (white dots).

Var(h) = 〈h〉. This is equivalent to state that the innovation-probability
dependency on h is a necessary condition for the quadratic scaling.

To prove the thesis we look for the recurrence relation of the variance
starting from (6.13). First, let us multiply both the terms of by h, and then
apply the summation over h:

∞∑
h=1

hP (h, l + 1) =
∞∑
h=1

h [pnew(l)P (h− 1, l) + (1− pnew(l))P (h, l)] .

Note that the left term becomes the average of h at time l + 1. Since
pnew does not depends on the vocabulary size (by hypothesis), it can filter
outside the summation. This property is crucial to find the following simple
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expression for the average (by knowing that P (0, l) = 0 and
∑

h P (h, l) = 1):

〈h(l + 1)〉 = 〈h(l)〉+ pnew(l) = . . . =

=

l∑
k=1

pnew(k) + 1.
(6.14)

In a similar way, one can find the second moment of h (multiplying by h2

instead of h):

〈h(l + 1)2〉 = 〈h(l)2〉+ pnew(l)2 (2〈h(l)〉+ 1),

and putting together the first and the second moment, the variance reads:

Var[h(l + 1)] = Var[h(l)] + pnew(l) (1− pnew(l)) = . . . =

=
l∑

k=1

pnew(k) (1− pnew(k)) =

= 〈h(l + 1)〉 − 1−
l∑

k=1

pnew(k)2

< 〈h(l + 1)〉,

(6.15)

where the third line is written using (6.14). Since the innovation probabil-
ity is greater than zero, it is clear that the variance is always less than the
average. Therefore, the hypothesis that pnew does not depend on the vocab-
ulary size implies that the variance scaling of the process cannot cross the
line Var(h) = 〈h〉, and therefore the model cannot reproduce the empirical
quadratic scaling.

6.4 Empirical data suggests a rich-gets-richer mech-
anism in terms of vocabulary richness

The previous section proved that the innovation probability must depends
on the vocabulary size in order to give rise to the Taylor’s law (6.1). The
simplest dependency on h is the linear one, shown, for example, by the Chi-
nese restaurant process (6.8) (which, at the same time, must be inversely
proportional to l for taking into account the sub-linear scaling of the aver-
age). We proved that, in this case, the variance grows quadratically with the
average (6.10). Also the innovation probability of the generalized Pólya’s
urn depends linearly on h (in the limit l � 1), and consistently, the model
shows the parabolic Taylor’s law (Fig. 6.2). Unfortunately, our analytic in-
vestigation can handle only this special case of pnew linearly dependent on h
(the mathematical “trick” which allows us to solve the CRP variance works
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only for this linear case, see Appendix B.4), and we do not have any analyt-
ical predictions for more complex cases. However, the data seems to be well
described by this simple scenario. One can obtain an estimation of the in-
novation probability looking at the discrete derivative of a single-realization
trajectory:

pnew ≈
〈
h(l + ∆l)− h(l)

∆l

〉
, (6.16)

which well approximates pnew for small ∆l. Figure 6.3 shows the numerically
computed innovation probability which grows linearly (on average) with the
vocabulary size. As a comparison, we also compute the discrete innovation
probabilities for the vocabulary trajectories of the three models, as shown in
Figure 6.2b,c,d. As expected the CRP and the generalized Pólya’s urn have
an asymptotic linear dependency (well fitted by their innovation probability
formula).
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Figure 6.3: Innovation rates in data show a linear dependency on the
vocabulary-size. Innovation probabilities versus vocabulary-sizes for the
three datasets: (a) Gutenberg database’s books, (b) Superfamily’s genomes,
(c) Wikipedia’s articles. The scatter plot has been computed considering
the ensemble of vocabulary trajectories h(l), and, for each trajectory, we
calculated the discrete derivative (6.16) as an estimation of the innovation
probability. The red dots are the binned averages, where the x-axis has been
divided into bins which have the same number of samples.

Putting all together, we can conclude that the Taylor’s law shown by data
can be explained by innovation-duplication models with innovation rates lin-
early dependent of the vocabulary size. This simple mechanism reflects the
fact that realizations with a large vocabulary tend to innovate more with
respect realizations with similar size but a smaller vocabulary. Imagining
several realizations growing together in the size-vocabulary plane, the ones
that stay above at the beginning (with a larger vocabulary) tend to inno-
vate more than the others, growing faster because of this self-reinforcement
mechanism. At the same time, realizations with small vocabulary grow much
slower, leading, at the end, to a variance of the ensemble much larger than
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the one generated by vocabulary-independent innovation rates. In other
words, rich realizations in terms of vocabulary size get richer, acquiring
novel components with higher probability than the poor ones.

6.5 Discussion

In this work, the component system framework allows us to generalize the
word-vocabulary fluctuation scaling known in linguistics [82]. Interestingly,
the scaling is conserved also in genomic systems (Taylor’s law with exponent
2), deviating from random predictions in a general and non-trivial way. To
explain such observation we employ a duplication-innovation model frame-
work, which establishes a solid connection between the emerging fluctuation
scaling of component-system vocabularies and the “microscopic” innovation
dynamics of the generative process. Specifically, the minimal hypothesis to
reproduce the Taylor’s law is that the innovation probability of empirical
systems must be linearly dependent on the vocabulary size, as in the Chi-
nese restaurant process. This suggests that empirical systems grows with a
rich-gets-richer mechanism in term of vocabulary usage, where the realiza-
tions with a larger vocabulary will innovate more than those ones with a
smaller number of distinct components (but similar size).

The explanation of Taylor’s law proposed here is based on the assump-
tion that a component systems evolves according to a duplication-innovation
model. However, in principle, other classes of models can succeed as well.
For example, in ecology Taylor’s law is very popular, and one can take in-
spiration from one of the several models employed in that context. Here
we consider a recent work as a comparison [86], which derives the quadratic
scaling of the variance assuming a very general multiplicative process for the
population in a Markovian environment. It must be pointed out that in such
a model the variable of reference is the population density. According to the
process, it grows proportionally to the density at the previous step and to
the environmental state. This model can be safely applied to the Heaps’ law
growth (i.e. substituting the density with the vocabulary size), and it would
provide a valid explanation for the vocabulary fluctuation scaling. However,
while the multiplicative process in a stochastic environment has a direct
interpretation in ecology, it provides a much less intuitive description of
the vocabulary diversity evolution. On the contrary, duplication-innovation
models are a natural way to imagine the component systems growth. More-
over, they not only describe how the diversity grows (the vocabulary size is
a marginal statistic of the complete process), but they also take into account
several other properties of component realizations, such as the abundance
statistics (differently from the cited multiplicative process). Summing up,
both the methods take into account Taylor’s law, but duplication-innovation
models (and specifically the CRP) provide a more natural representation of
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the component system growth, allowing us to make broader predictions, and
to give a direct interpretation of the microscopic generative mechanism.

Coming back to the rich-gets-richer mechanism discussed above, one can
try to interpret this behaviour in specific empirical systems. For example, in
genomics it can be due to specific mechanisms of the evolutionary process,
or in linguistics to “topicality”, as discussed in the next paragraphs.

6.5.1 Interpretation in genomics

Before speculating on the possible evolutionary mechanisms which can gen-
erate the “rich-gets-richer vocabulary diversity” in genomics, here we dis-
cuss a testable prediction of this behaviour. It is known that genomes evolve
along a phylogenetic tree. Then, let us consider a speciation event. Because
of random fluctuation, it can happen that the ancestors of two species have
different vocabularies, for example the first organism is “richer” h1 > h2. We
also assume that these two ancestor gives rise two different phyla. Since we
are hypothesizing that “diversity generates diversity”, we can expect that
all the descendant of the first phylum will have a larger vocabulary then
the organisms of the second one. Therefore, it can be expected that each
phylum (or whatever taxonomic classification) has a specific trend in terms
of vocabulary diversity.

Figure 6.4 shows Heaps’ law of genomes, colouring the organisms of the
three largest phyla in our dataset. Roughly, the behaviour seems to be in
agreement with the statement above: the Actinobacteria tend to stay below
the average, the Proteobactoeria above, while the Firmicutes are mostly cen-
tral. To better highlight these trends, we introduce the relative vocabulary
size, which quantifies the distance of each bacteria from the global average,
〈h〉, in units of standard deviation σ[h] =

√
Var[h]:

ṽj =
vj − 〈h〉
σ[h]

. (6.17)

We expect this metric to be independent of the realization size, allowing us
to compare all the different organisms together. The probability distribution
of the relative vocabulary for the three phyla is shown in the figure inset. As
expected, the three distribution separate, showing a specific trend for each
taxonomic group. We can also employ a two samples Kolomgorv-Smirnov
test to reject the null hypothesis that the distributions are identical (D =
0.71, p-value = 3 · 10−35 for Proteobacteria vs. Actinobacteria; D = 0.3,
p-value = 2 · 10−11 for Proteobacteria vs. Firmicutes; D = 0.47, p-value =
7 · 10−13 for Firmicutes vs. Actinobacteria). Moreover, the same test has
been applied to the six largest phylum, testing if their relative vocabulary
sizes belong to the global distribution of all the other species (results in
Table 6.1).
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Figure 6.4: The vocabulary of different phyla show separate trends.
The main panel shows the Heaps’s law of the genome dataset, highlighting
the bacteria of the three largest phyla: Proteobacteria (in blue, 416 organ-
isms), Firmicutes (in green, 195 organisms) and Actinobacteria (in red, 93
organisms). All the other 356 genomes are in gray, while the white dots
connected by black lines are the binning average, where a bin on the x-axes
conserves the number of samples. The inset shows the relative vocabulary
size for the three phyla, Eq. 6.17.

Table 6.1: Two sample Kolmogorov-Smirnov test, where the first sample
is the relative vocabulary size of a taxonomy, compared with the relative
vocabulary size of all the other genomes.

Taxonomy Size D p-value

Proteobacteria 416 0.37 4 · 10−30

Firmicutes 195 0.14 3 · 10−3

Actinobacteria 93 0.57 2 · 10−25

Bacteroidetes/Chlorobi group 72 0.31 4 · 10−6

Tenericutes 31 0.15 0.49

Spirochaetes 31 0.36 4 · 10−4

Therefore, the “diversity-generates-diversity” behaviour implies the quadratic
scaling of the Heaps’ variance (Fig. 6.1d), and also the “separation” of vo-
cabularies of different phyla (Fig. 6.4). Following this line of reasoning, a
question immediately arises: what is the evolutionary mechanism at the ba-
sis of such a behaviour? In this respect, here we briefly address two possible
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ideas, which could be analyzed and tested in a quantitative way in future
works. The first considers the feedback between the environment and gene
repertoire. Coming back to the speciation event mentioned above, if the first
ancestor has a greater vocabulary of gene families, it can be able to colonize
an environment requiring a high diversity. Then, it is reasonable to assume
that, since this environment favours the vocabulary diversity, the organism
is subject to selective pressure, which acts in a way to increase further its
vocabulary size and the one of its descendants (the rich gets richer). In other
words, species which can colonize more complex environments increases fur-
ther their repertoire to fully exploit it. A second interesting explanation
is about the mechanism of innovation. It is known that an important way
to acquire new genes is duplicating existing ones and than mutating the
obtained copies [100]. Let us then assume that, first, innovation events are
obtained mainly by this mechanism, and, second, that each gene family can
generate a finite small number of different new families. Within this sce-
nario the “rich-gets-richer” behaviour can be recovered, indeed if there are
very few families, the number of potential new families is low, implying that
there are few possibilities to enlarge the vocabulary size. On the contrary,
if the number of different families is large, the space of possible new families
is much greater , favouring then the innovation events. Of course, a more
exhaustive investigation is needed to better characterize the validity of the
two assumptions, and a quantitative analysis is necessary to understand
their consequences on the innovation dynamics. A possible objection to the
first hypothesis is that the horizontal transfer is the dominant evolutionary
force in prokariots [101], making negligible the contribute of innovation-by-
duplication to the vocabulary growth. However it is biased for phylogenetic
dinstance [102], implying that, probably, considering group of evolutionary
similar organisms as “super-genomes”, innovation-by-duplication becomes a
relevant force.

6.5.2 Interpretation in linguistics

As said in the introduction, the quadratic fluctuations in linguistics can
be explained by the topical aspect of texts [82]. We speculate that the
“innovation reinforcement” mechanism proposed here is not in contradiction
with “topicality”, but instead it is an effective consequence of this. Our naive
picture of how texts grow and generate Taylor’s law is based on the fact
each text is associated to a specific mixture of topics, and this composition
determines the innovation rates. We expect that a text associated with a lot
of different topics expresses a great variety of concepts, which need a large
number of different words. This, in turns, implies that its innovation rate
is larger with respect texts composed of few topics. As a consequence, if
one compares two partial trajectories with different vocabulary size, the one
with larger vocabulary should be associated to a greater number of topics
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an it will continue to grow faster. This effectively gives rise to the rich-gets-
richer mechanism observed in Fig. 6.3. However, this is just an intuitive
idea, and the scenario does not necessarily imply an innovation probability
linearly dependent on the vocabulary size. Further investigations are needed
to better quantify the relation between innovation dynamics and topicality.
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Chapter 7

Towards the optimal ranking
in ecological mutualistic
networks

Authors: Andrea Mazzolini, Matteo Osella, Michele Caselle.

7.1 Introduction

Instead of focusing on emerging statistical laws, this final chapter aims to ex-
tract information from component systems exploiting its “topological struc-
ture”. This has been inspired by recent works introduced in economy and
ecology [103, 104], where looking at bipartite systems (specifically binary
bipartite networks, equivalent to binary component systems, Section 2.1.2)
they aim to identify the “most important” realizations and components.
The meaning of realization-“importance” is based on two properties:

(1) The vocabulary of the realization, i.e. how many different components
it contains. Looking at the system as a bipartite network, this property
is the node/realization degree.

(2) The fact that the realization contains rare components (with low oc-
currence/degree), and those components tend to be present only in
other “important” realizations.

Note that there is a sort of circularity in this definition. Indeed, looking
at (2), a realization is “important” if it contains components present in
other “important” realizations. However, this can be elegantly translated
into a recursive algorithm called fitness-complexity map [103], which, at
the stationary state, provides a score for each realization related to the
coupling of the properties above (this algorithm will be presented in Section
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7.2). The original field of application has been economics, in particular the
binary-bipartite system of countries (the realizations) and their exported
products (the components). In this context, the “importance” of a country
highlights its non-monetary competitiveness [103, 105, 106, 107]: in order to
have a high score, the country must export a lot of different products (high
vocabulary/degree, property (1)), and those products must be “complex”
(they are exported only by few and important countries, property (2)).

Clearly the fitness-complexity map can be extended to all the binary
component systems. Indeed, a second example [108] is a system of countries
contributing to scientific topics. The element of the country-topic matrix is
1 if a nation provides a relevant contribution to that particular topic (that
is quantified on basis of scientific paper citations). Here the map helps to
evaluate the scientific competitiveness of a nation. A totally different kind
of systems are mututalistic ecological networks, where a set of active species
can interact with a second set of passive species. For example, consider-
ing interactions between plants and pollinators, the map ranks the animal
pollinators according to their ecological importance within the ecosystem
[104].

The present work starts from the fitness-complexity map employed by
all the cited works, and defined in Section 7.2. We then propose a one-
parameter generalization of the map (Section 7.3), which among all the
possible generalizations shows useful symmetry properties. The free param-
eter controls the balance between the statement (1) and (2), while in the
standard-map it is fixed. Mutualistic ecological systems will be used as a
benchmark to evaluate our proposal. Indeed, in such systems, a quantitative
measure of the goodness of a ranking can be defined, the so-called extinction
area. Taking advantage of this, we show that the generalization gives bet-
ter results than the standard map in several cases (Section 7.4). The final
section, 7.5, is dedicated to illustrate a curious geometric pattern shown by
binary-component matrices ordered according to the algorithm scores. We
prove that the origin of the pattern is intimately related to the extinction
area maximization.

7.2 Fitness-complexity map in component systems

The fitness-complexity map was introduced in recent years with the purpose
to quantify the non-monetary competitiveness of a country on the basis of
its exported products [103, 106, 107]. The exported basked of countries can
be represented as a binary-component system (Section 2.1.2), where coun-
tries (the system-realizations) are a collection of their exported products
(the system-components). Specifically, the binary component matrix has
elements nij equal to 1 if the country i exports the product j, and 0 oth-
erwise. The fitness-complexity map takes as input this matrix, and defines
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a non-linear iterative process where two vectors of scores are updated until
convergence. The first vector quantifies the fitness of countries, related to
the economic strength of a nation. The second score is associated to prod-
ucts. Its called product-complexity, and encodes the fact that some goods
provide more competitiveness than others. Starting form an initial condition

of fitness F
(0)
i , for each country i, and complexity Q

(0)
j , for each product j

(we will use vectors of ones), the values of these two observables evolve in
time following the equations below (which encode the statements (1) and
(2) described in the introduction):

F̃
(t)
i =

∑
j nijQ

(t−1)
j F

(t)
i = F̃

(t)
i /〈F̃ (t)〉

Q̃
(t)
j =

(∑
i nij

(
F

(t−1)
i

)−1
)−1

Q
(t)
j = Q̃

(t)
j /〈Q̃(t)〉,

(7.1)

where, at each step of time, F and Q are updated according to the expres-
sions on the left, and normalized through the formula on the right, so that
their average is 1 at each step of time. Looking at the first equation, it is clear
that the fitness of a country is proportional to the sum of the complexities
of its exported products, i.e. producing a lot of products with high com-
plexity will lead to a high fitness. At the same time, the product-complexity
evolves in a way that if the product is made by very few countries with high
fitness (few and small addenda at the denominator of the second line) its
complexity will be high. On the contrary, if a lot of nations are able to
make the product, including countries with low fitness, then its complexity
is expected to be low. These rules couple fitness and complexity in a non-
linear way, leading, after a sufficient number of iterations, to a stationary
state which defines then final scores: F ∗i , Q∗j . As discussed in the introduc-
tion, even thought this metric was introduced specifically in an economic
context, it provides remarkable results also in other fields and, in particular,
in ecology [104]. Specifically, in mutualistic ecological systems, where the
“realizations” are active species while the “components” are passive species.
A typical example is a system of plants (passive species/components) which
interact with the animal pollinators (active species/realizations). Interac-
tions between two species (one active i and one passive j) is represented with
nij = 1 in the binary component matrix. Applying the fitness-complexity
map to such a system, the fitness of an active species seems to be signifi-
cantly related to its ecological importance within the ecosystem, while the
complexity of a passive species to its vulnerability to system perturbations.

Since we will use this ecological system as a reference example, it is neces-
sary to point out that “animal pollinator importance” and “plant vulnerabil-
ity” can a be more meaningful nomenclature than “animal fitness” (which
can be confused with the evolutionary meaning) and “plant complexity”.
However, at the same time, we want to maintain the standard mathemati-
cal notation F and Q, referring to the two vector of scores. Therefore, for
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the rest of the work, we will employ both the two nomenclatures. To avoid
confusion it is sufficient to be aware that the term fitness is unrelated by its
evolutionary-biology meaning, and the pairs complexity - vulnerability and
fitness - importance are synonymous.

7.3 Map generalization

7.3.1 Definition and limit cases

We propose a one-parameter generalization of the fitness-complexity map
7.1 which reads as follows:

F̃
(t)
i =

∑
j nij

(
Q

(t−1)
j

)γ
F

(t)
i = F̃

(t)
i /〈F̃ (t)〉

Q̃
(t)
j =

(∑
i nij

(
F

(t−1)
i

)−γ)−1

Q
(t)
j = Q̃

(t)
j /〈Q̃(t)〉,

(7.2)

where the new parameter is the exponent γ, and the standard map is recov-
ered for γ = 1. Even if the map is well defined for each real value of γ, in
the current work we will consider only the case the case γ ≥ 0. This because
in the opposite regime, γ < 0, the concept of fitness and complexity does
not find a direct interpretation in the considered ecological systems.

In principle, one could generalize the map (7.1) in a lot of different ways,
for example one possibility is discussed in [109]. Our proposal, aside from
the useful properties which we will show in the next sections, seems to be a
natural choice because of its equivalence to the following symmetric map: F̃

(t)
i =

∑
j nij

(
S

(t−1)
j

)−γ
F

(t)
i = F̃

(t)
i /〈F̃ (t)〉

S̃
(t)
j =

∑
i nij

(
F

(t−1)
i

)−γ
S

(t)
j = S̃

(t)
j /〈S̃(t)〉

(7.3)

where we impose the substitution: S̃j = Q̃−1
j . Since the new observable

S is the inverse of the complexity (for γ = 1), we can call it simplicity.
Considering an ecological system, S is the opposite of the vulnerability of a
plant species, therefore it is related to its ecological strength and importance
within the system, becoming, somehow, the counterpart of the fitness for
the passive species. In addition to aesthetic reasons, the symmetric shape
of this map helps us to interpret its behaviour in limit cases. The first
immediate observation is that γ = 0 is trivial: fitness and simplicity are no
longer coupled, and after the first iteration they become proportional to the
species degree (i.e. with how many other species it interacts). Therefore,
considering values of γ much less than one, the map assigns more importance
(i.e. a large fitness) at those active species which interact with a lot of passive
ones, without considering their vulnerability. In other words, the property
(1) of the introduction dominates over (2).
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In order to understand the opposite limit: γ → ∞, let’s consider the
approximation for large γ of the equation 7.3, first line:

F̃
(t)
i ∝

(
min
j∈J(i)

S
(t−1)
j

)−γ
〈F̃ (t)

i 〉 ∝
(

min
j
S

(t−1)
j

)−γ
where, given an active species (pollinator) i, J(i) is the set of passive ones
(plants) linked to i (nij = 1 if and only if j ∈ J(i)). The expression on

the left means that the non normalized fitness of each pollinator, F̃
(t)
i is

determined only by the plant with minimum simplicity (i.e. maximal vul-
nerability/complexity) with which it interacts. Indeed, in this limit all the
other addenda associated with simpler plants are negligible. Let us also
consider the fitness average, on the right, which is proportional to the sum

of all the non-normalized fitness. Since each F̃
(t)
i is dominated by the less

simple plant that contains, the sum over all the animals i is dominated by
the less simple plant among all. As a consequence, since the actual value
of fitness is the ratio between the terms above, only the pollinators linked
to the less simple plant (the most vulnerable) have a positive normalized
fitness, which instead goes to zero for all the other animals. For the map

symmetry, this reasoning is true also for the plant simplicities S
(t)
j , which

are dominated by the less fit animals. Of course we cannot have an intuitive
comprehension of all the dynamics in this limit, and also we cannot make
a prediction about which animals will have the greater or the lower fitness,
however we can state that, in this regime, the fitness of an animal is de-
termined only by the most vulnerable plants with which interacts (property
(2) of the introduction) independently of how many links it has.

Therefore, we have a naive understanding of the generalized map be-
haviour: the variation of γ tunes the map of being in an intermediate state
between the two limit cases. For large gammas the feature that dominates
the fitness dynamics is the pollinator connection with the most complex
plants, (2). Decreasing γ, the plant complexities loose importance, and
progressively the pollinator degree becomes the only relevant property, (1).
The dynamics is then completely dominated by the degree for γ � 1. The
standard map with exponent γ = 1 seems to be an intermediate case be-
tween the two extremes, giving relevance both to the species degree and the
connection with the most complex plants. Nevertheless, we do not know a
priori which is the best choice of γ in determining the fitness rank in a given
context, and sometimes the best results are obtained for γ different from 1,
as we will see later.

7.3.2 Map convergence phenomenology at different expo-
nents

Before testing the generalized map in ecological systems (next Section), it is
worth analysing the map convergence properties. The map outputs are the
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stationary values of the trajectories F
(t)
i and Q

(t)
j , which can show three dif-

ferent behaviours: (a) the convergence to a stationary positive fixed point,
(b) the convergence to a fixed point which is zero, and (c) the absence of a
fixed point, for example showing oscillations. Note that the divergence to in-
finite values is not allowed since the trajectories are normalized at each time
step. The most informative scenario is obtained if all the trajectories con-
verge to positive values, (a), allowing us to assign a real score to each species.
This is not always possible since some trajectories often tend to zero, (b),
implying that all those species have the same null score and cannot be com-
pared. However, in these cases one can consider the species ranking, putting
at higher positions those with higher fitness, while, if the trajectories go to
zero, those with a ”slower” decay will be ranked at higher position (a more
detailed explanation of the ranking computation is illustrated in Appendix
C.1). This is the typical scenario that one finds, and therefore the typical
outcome of the procedure is a ranking of species. Finally, the case (c) nei-
ther allows us to to associate a score to the realizations/components, nor can
be used to compute the species ranking, and therefore it does not provide
any useful information. However, although there are no mathematical proofs
that a fixed point always exists, all the studied empirical matrices for a wide
range of the parameter γ, never show oscillations in the fitness/complexities
trajectories. The convergence behaviour clearly depends on the input ma-
trix, and, as far as we know, there are no possibilities to predict a priori how
many (a) or (b) trajectories there will be. In [110] there is an exhaustive
discussion about the relation between the input binary matrix and the map
convergence outcome for the standard fitness-complexity map.

Moreover, the convergence behaviour depends on the chosen exponent
γ, as shown the the figure 7.1, where we analyze the plant pollinator matrix
introduced in Appendix A.4 (Robertson 1929). An informative observable
describing the convergence scenario is the fraction of trajectories which tend
to positive fixed points, fc (i.e. the number of (a) cases over the total number
of cases), which is displayed as a function of the map exponent in Figure
7.1a. We know that for exponents much less than one the animal fitness
becomes proportional to the degree, implying that all the fixed points are
positive, fc = 1. This convergence scenario is conserved increasing the
exponent from zero to values near 1, for instance at γ = 0.75 in figure 7.1b.
Approaching 1, a small fraction of trajectories begins decaying to zero, in
particular for γ = 1, panel 7.1c, about the 2 percent of the animals have
a null fitness. Moving from 1 towards a “critical” exponent, the fraction
of positive trajectories decreases, while the convergence time enlarges, as
shown in 7.1d, for γ = 1.1. Finally, after a discontinuous transition, only
few animals converge to positive fitness, panel 7.1e for γ = 1.3, while the
majority have a null decaying fitness.

From a statistical mechanics perspective, the plot 7.1a resembles a first
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Figure 7.1: Convergence phenomenology for fitness trajectories.
Panel (a) shows the fraction of trajectories which converge to positive sta-
tionary values as a function of the map exponent γ. The blue line refers to
the pollinator fitness, while the green one to the flower complexity (data:
plant-pollinator matrix Robertson 1929). The four red circles are associ-
ated to the fitness trajectories at specific exponents, shown in the other
four plots. In particular, panel (b) is the outcome of the map at γ = 0.75,
where all the trajectories converge to positive values. The standard map,
γ = 1, is shown in panel (c), while plot (d) is near the critical exponent:
the convergence time is much larger and an intermediate number of positive
trajectories survive. Increasing then the exponent by an small quantity, the
map enter the regime where only very few pollinator show positive fitness,
as in panel (e).

order phase transition where the temperature is the map exponent and the
order parameter is the fraction of trajectories which converge to positive
values, fc. This phenomenon is present across all the different empirical
cases that we have considered (see Figure C.4 in Appendix). Indeed, in
general, for exponents less than 1, all the trajectories converge to positive
values, while, after the discontinuous transition, only very few trajectories
do not drop to zero dominating all the other species. The critical value of
gamma is dataset specific, and depends on a lot of different properties of the
input binary matrix, including the matrix size, the ratio between height and
width, the density of ones, and the degree distribution. As a consequence,
the identification of general common trends is really complex. Analytic
results can be derived only for very simple input matrices, for example,
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large uniform random matrices, as discussed in Appendix C.3. Within this
very simple setting, we computed a condition for the trajectory convergence,
Eq. (C.2), which provides an estimate of how the critical exponent depends
on the matrix parameters (the size, and the density of ones), tested in Fig.
C.2.

Interestingly, in many ecological cases the transition is exactly at the
value of the standard map, γ = 1, and in general the critical exponent is
always localized not far away from 1 (Fig, C.4). One can speculate that
around the phase transition the algorithm could work better, since it is
more sensitive to the non-trivial long-range correlation of the system. If
this naive statement is assumed true, one can notice that the standard map
(with γ = 1) gives interesting results because it is put exactly near this
critical transition.

7.4 Looking for the specie ranking which maxi-
mizes the extinction area

As discussed in [104], the standard fitness-complexity map (γ = 1) provides
a really informative ranking of species based on their importance within
the ecosystem. The authors evaluated the map ranking using an observable
called extinction area [111], whose computation through a toy example is
shown in the figure 7.2. Basically, given an animal pollinator ranking, let’s
say (A1, A2, A3), at the first step the first animal, A1, and all its links are
removed from the system, and, as a consequence, a certain number of plants
remain without links and get extinct, like F1 in the panel 7.2b. Removing
all the animals according to the ranking and counting the extinct plants at
each step, one can draw the plots 7.2c, which keeps track of the fraction of
extinct plants as a function of the fraction of removed animals. The extinc-
tion area is defined as the integral of this curve, and quantifies, somehow,
the velocity of the whole ecosystem extinction given a certain ranking of
species importance. The fitness-complexity map provides a pollinator or-
dering which outperforms other algorithms used in the ecological context in
terms of extinction area maximization [104].

The figure 7.2d shows that the generalized map (7.2) performs even
better than the standard map. Indeed, varying the exponent γ the map
mechanism changes, leading to different rankings, and, therefore different
extinction areas. In particular, in the mutualistic network Robertson 1929
the extinction area as a function of the map exponent has a maximum at
γ ' 1.12, where the area is significantly larger than the value computed
with the standard map (i.e. at γ = 1). In general, there are no theoretical
argument which allows us to identify the value of γ which maximizes the
extinction area, and very often one have to explore a certain range of γ to
find it. As a general remark from the analysed cases, the area maximum
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Figure 7.2: Extinction area maximization. The panel (a), (b) and (c)
illustrate a toy example of the extinction area computation. Starting from
the complete network, (a), animals are removed according to a certain rank-
ing. In (b) the animal A1 (the first of the ranking) and its links have been
deleted, leading to the extinction of the flower F1 which remains without
links. The extinction area is the integral of the curve in (c), where at each
animal removal step (x-axis) the fraction of extinct flowers is computed (y-
axis). The panel (d) shows the extinction area for different map exponents
γ of the mutualistic system Robertson 1929. The blue continuous line is the
area computed in the same way of the toy example above, where the animal
ranking is provided by the fitness at the given γ. The green dash-dot line
is computed using the opposite procedure: the plants are removed follow-
ing the complexity ranking keeping track of the extinct animals. The red
dashed line highlights the standard map exponent which provides a smaller
extinction area.

is typically greater or equal than 1 (see some examples in Figure C.5). We
also compared the map performance with the generalized map proposed in
[109]. Appendix C.2 shows that the algorithm (7.2) always finds a larger or
equal extinction area than [109].

One can wonder if the obtained ranking is really the optimal one, or, in
other words, whether it is possible to find a ranking not accessible to the

91



generalized fitness-complexity map leading to better values of extinction ar-
eas. We approached this problem through the genetic algorithm described
in Appendix C.4. Even though we explored only a limited class of matri-
ces (having small dimensions), the best extinction area of the generalized
map always equals the best outcome of the genetic algorithm (Fig. C.3a).
At the same time, the map outperforms the genetic algorithm in terms of
computational time (Fig. C.3b).

7.5 Matrix packing

Looking at the adjacency matrix shape after the ordering of the rows and
the columns according to the map ranking, a geometric pattern emerges.
In Figure 7.3 is shown a mutualistic network matrix, where the ones are
represented with little black boxes, and the zero entries are in white. Rows
and columns are ordered differently, specifically using the ranking generated
by the generalized map with the indicated exponent γ. At first sight, it’s
quite surprising that the matrix assumes a curious configuration for the
ranking which maximizes the extinction area. In particular, it seems that
the area of contiguous zeros from the bottom right corner is maximized, and
it is separated by the top left area by a continuous border of ones.

Actually, the extinction area and the emergent area of contiguous zeros
are mathematically related as it is shown below. Therefore this emergent
pattern and the extinction area maximization are two sides of the same coin.
In order to prove this equivalence, let us define lj as the row-index of the
last non-zero column j element. For example, in the figure 7.4a, l1 = l4 = 2,
l2 = 4, and l3 = 1. Then the total number of consecutive zeros from the
bottom of each column is:

A(c) =

R∑
j=1

(N − lj) (7.4)

where the sum is over all the R column and N is the number of rows. Note
that we have used the superscript (c) to distinguish between the area from
the matrix bottom, and the area for the matrix right, A(r), i.e. the number
of consecutive zeros form the right side of each row. Clearly, A(r) is exactly
A(c) of the transposed matrix. We want to establish a relation between these
quantities and the extinction areas.

Let us consider the first step to compute the extinction area: the removal
of the first pollinator in the ranking. The plants which remain without links

define the fraction of extinct plants/columns during the first iteration: e
(c)
1 .

Considering the binary matrix, this procedure is equivalent to remove the
first row (the first pollinator), and to count the columns composed only of
zeros (the plants remaining without links). In the example, after the removal
of the first row, only the third column remains without ones, and therefore
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γ = 1 γ = 1.12 γ = 1.2
Extinction area maximum

Figure 7.3: The extinction area maximum provides the best matrix
packing. Interaction matrix matrix with rows and columns sorted accord-
ing to the F and Q ranking for three different map exponents (data: the
plant-pollinator system Robertson 1929). A black dot corresponds to the en-
try 1, while a white one in an entry 0. γ ' 1.12 is the value which maximizes
the extinction area as shown in the figure 7.2d. The maximum extinction
area corresponds to the visually best matrix ”packing”, in the sense that
the area of consecutive zeros from the bottom right corner is maximized.

the associated plant gets extinct. In general, the fraction of extinct plant
after the first removal step reads as follows:

e
(c)
1 =

1

R

R∑
j=1

δlj ,1

where the Kronecker delta is equal to 1 if lj = 1, which means that the sum-
mation counts the columns which are all zeros except for the first removed
element. Iterating this procedure, the fraction of extinct plants at the k-th
removal step is:

e
(c)
k = e

(c)
k−1 +

1

R

R∑
j=1

δlj ,k =
1

R

R∑
j=1

θ(k − lj) (7.5)
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Figure 7.4: Equivalence between the area of zeros form the matrix
bottom, (a), and the extinction area computed removing rows,
(b). If the first row is removed, the third column gets extinct, and therefore
the extinction curve increases by 1

4 . Note that this contribution to the curve
is represented by a box with the same shade of green of the extinct column.
The removal of the second row leads to the extinction of the first and the
fourth columns, therefore the extinct plant are now 3 as the boxes under the
second point in (b). The same happens for the third row removal. Looking
at the panel (b), each column contributes to the extinction area with a
number of boxes equals to its number of consecutive zeros from the bottom,
and this implies the proportionality between the two areas.

which is the fraction at the previous step, plus the new extinct columns.
The expression on the right is obtained writing down the explicit expression
of ek−1 and all the other terms for previous removal steps. Here the theta
function is 1 only if the last non-zero element is lesser or equal than the
number of removed columns k. The sequence of ek from k = 1 to N defines
the extinction curve, implying that the extinction area reads:

E(c) =
1

N

N∑
k=1

e
(c)
k =

1

NR

R∑
j=1

(N − lj) =
A(c)

NR
(7.6)

where we have used the expression 7.5 and the fact that
∑N

i θ(i − lj) =
N − lj , proving the equivalence between the extinction area and the area
of contiguous zeros. An intuitive derivation of this relation is shown in the
caption of the figure 7.4. It is straightforward to derive the same equivalence
between the extinction area removing the columns, E(r), and the area of
consecutive zeros from the right side of the matrix, A(r).

To summarize, we proved that a ranking of the rows defines a certain
area of contiguous zeros from the matrix bottom, which is proportional to
the extinction area removing rows. At the same time, the ranking of the
columns defines the area of zeros from the right side of the matrix, equivalent
to the extinction area removing columns. These two statements prove that
the extinction area and the area of contiguous zeros are connected, but the
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origin of the actual shape in Fig 7.3 is not fully understood yet. Specifically,
it is not clear why the two areas of contiguous zeros are equal and bounded
by a continuous monotonic border of ones. This can be a consequence of
the simultaneous maximization of A(r) and A(c) provided by the generalized
fitness-complexity algorithm, but at the moment a demonstration is lacking,
and the problem still under study.

7.6 Discussion

In conclusion, this work proposes and analyses a generalization of the fitness-
complexity algorithm, Eq. (7.2), which, among several possible generaliza-
tions, can be expressed in a useful symmetric formula Eq. (7.3). As for the
classical map, it leads to a ranking of realizations and components according
to a certain definition of “importance”. Intuitively, in our proposal, the con-
cept of realization-importance is a balance between two ideas: (a) the degree
of the realization, and (b) the connection with “complex” components. The
free parameter γ determines the weight of these two properties. In particular
for γ = 0 the importance (or fitness) is defined by (a), while for large γ, only
(b) becomes relevant. The standard map is recovered for γ = 1, providing
then a fixed definition of “importance”. Mutualistic ecological systems are a
perfect benchmark to test the ranking of species. Indeed, each order can be
quantitatively evaluated computing the extinction area (Section 7.4). The
analysis highlights that the generalization typically finds better extinction
areas than the standard map (with an optimal γ dependent on the dataset).
Moreover, for a limited class of small matrices, Appendix C.4 shows that a
genetic algorithm cannot find better areas than the generalized map, sug-
gesting that our proposal computes a solution very close to the optimal one
in a really short time (with respect the genetic algorithm for example).

An interesting observation is that the fraction of convergent trajectories
to positive values shows a discontinuous transition varying γ, Fig 7.1 and
C.4 (resembling a first order phase transition). One can argue that the algo-
rithm tuned around the transition better catches the non-trivial correlations
between components, providing therefore better results. This seems to be in
agreement with the extinction area maximization. Indeed, in almost all the
considered cases, the gamma maximizing the extinction area is very close
to the critical γ (see Figure C.4 and C.5 in Appendix). Among the differ-
ent examples shown in Figure C.4, panel (e) display the country-product
matrix studied in [103]. The fact that the discontinuous transition is at
γ ≈ 1.2 suggests that the generalized map could provide better results also
in economic contexts (where all the analysis have been performed with the
standard map).

A final remark regards the surprising geometric shape in Figure 7.3,
which we showed to be connected to the extinction area maximization. The
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authors of [104] already notice that ordering rows and columns according to
the standard fitness-complexity map enhance the “nested” structure of the
system. Our generalization provide even better matrix packing, as shown
in Figure 7.3, where the best configuration is for γ ≈ 1.2. This implies that
the generalized map can have implications in better defining the concept
of nestedness, since, despite its popularity, there are still ambiguities in its
definition [112].
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Appendix A

Datasets

A.1 Genomics

The genomic dataset considers genomes composed of families of protein
domains. Protein domains are the basic modular topologies of proteins
[113], which can be considered independently folded and thermodynamically
stable. These domains can be grouped into families according to functional
and evolutionary similarities. Different domains of the same family can be
found in each genome in the same or different proteins.

A.1.1 Superfamily classification

We used the classification of protein domains into families from the SUPER-
FAMILY database [63] considering a set of R = 1061 prokaryotic genomes
(“realizations”) and a total number of different families N = 1531 (“compo-
nents”). As a functional annotation of protein domains in SUPERFAMILY,
we considered the SCOP annotations mapped into 7 general function cate-
gories, as developed by C. Vogel [114].

A.1.2 Comparison between different classifications

In order to compare different family classifications we employed the three
classifications provided by the Superfamily database, which are “fold”, “su-
perfamily” (the main classification described above), and “family”. The
“fold” classification is the widest, in the sense that the families are defined
with weaker evolutionary and functional constraints. As a consequence, the
number of protein domains in a family is typically larger and the number of
different families, N , is less than the other two classifications. The “family”
classification is the less wide.

Together with the Superfamily database we also employed the PFAMILY
database [115, 116], and its two different classifications: CLAN (the wider)
and PFAM. It is important to note that the list of genomes considered in
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the PFAMILY and SUPERFAMILY database is slightly different. However
the size distribution of the genomes is similar, allowing us to compare the
two databases in Section 3.4.3.
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Figure A.1: Genome size distribution and abundance rank plot for
the SUPERFAMILY and PFAM databases.

A.1.3 Weighted under-sampling for Heaps’ law trajectories

Here we describe a procedure to generate an artificial vocabulary-size tra-
jectory for a single genome (i.e. a single realization Heaps’ law). The
vocabulary-size trajectory needs an ordering of the components within the
realization. We naively generate this order assuming that a genome “grows”
through an under-sampling (without replacement) of its own protein domain
families. In such a way, the components with higher abundance will be se-
lected in the first positions, and at the end of the sampling the genome j
will have the original abundance list {nij}. We also introduce an second
important ingredient: if a protein domain is not drawn yet in the sampling
procedure, its extraction probability is determined not only by its abun-
dance nij , but also by its occurrence in the ensemble. For example, the
first instance of a core-component (with high occurrence, and probably very
important for the organism survival), has a higher probability of being ex-
tracted than a specialized component.

According to those assumptions, we want to generate the ordered string
of components of the genome j: (x1, . . . , xsj ), where xk ∈ {ci}, with i =
1, . . . , N . The component abundance (inside the genome) is given by {nij},
and the global occurrence by {oi}. At each iteration t of the algorithm, a
new component xt is added to the sequence (x1, . . . , xt−1), and it is selected
among {ci} with the following probability:

P (xt = ci) ∝

{
n′ij + ωoi if ci /∈ (x1, . . . , xt−1)

n′ij otherwise
(A.1)
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which is normalized at every step dividing by
∑

i P (xt = ci). n′ij is the
remaining number of the component i in the genome j. At the first step,
the list {n′ij} is set equal to the abundances {nij}. At each next step, after
the extraction of the component ci, the number of remaining component is
updated as: n′ij = n′ij−1, in such a way, at the end of the procedure n′ij = 0,
∀i. Note that the algorithm depends on one parameter ω which determine
the weight of the occurrence in the first extraction of a component. For
example, if ω = 0 the algorithm is just a uniform under-sampling without
replacement, while if ω � 1 the first extraction of a component is determined
only by its occurrence.

The aim of this procedure is to create an ensemble of vocabulary-size
trajectories which allows us to have enough statistics to compute the Heaps’
law variance as a function of the average (Figure 6.1d). Indeed, the same
function computed with the vocabulary-size scatter plot (one dot for each
genome) shows a very noisy trend, Figure A.2a (even if the super-linear
scaling is still recognizable). Of course, one has to fix the parameter ω.
To this end, we assumed that the Heaps’ law defined as an ensemble of
trajectories must reproduce the statistics of the vocabulary-size scatter plot.
We then have chosen ω to minimize the distance between the binned average
of h (computed with the scatter plot, red crosses in Fig. A.2b) and average
of the ensemble of trajectories. This procedure leads to the optimal value
ω = 0.91. The Figure A.2b shows some examples of average of trajectories
for different values of ω.
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Figure A.2: Panel (a): Heaps’ law variance of the genome dataset computed
considering the vocabulary-size scatter plot. This observable is discussed in
Chapter 6.2. Panel (b): the Heaps’ law and its binned average (red crosses)
are compared with the average of four ensembles of trajectories computed by
the under-sampling procedure described in this section. The four ensembles
correspond to four choices of ω. ω = 0 is a pure under-sampling algorithm.
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A.2 Linguistics

A.2.1 Chapters from Gutenberg project

A first linguistic corpus is composed by R = 1721 book chapters of sev-
eral English books randomly chosen from the most popular ones in the
database “http://www.gutenberg.org”. In this first linguistic dataset, we
defined chapters as realizations, instead of entire books, to obtain a corpus
with a range of sizes (total number of components per realization, shown in
Figure A.3) comparable to the one of genomes (Figure A.1, SUPERFAM-
ILY) and LEGO toys (Figure A.5). The complete list of books considered
is reported in Table A.1. The elementary components are defined as the
words according to the following rules: the words are separated by white-
space or non-alphanumeric or non-underscore character, all the capital let-
ters are converted into lower-case letters, all the characters different from
ascii lower-case chars are removed (such as numbers or the punctuation).

Table A.1: List of the books whose chapters compose the analysed
linguistic corpus.

Title Author

Alice’s adventures in wonderland Lewis Carroll

Anna Karenina Lev Nikolayevich Tolstoy

A tale of two cities Charles Dickens

Dracula Bram Stoker

Emma Jane Austen

Great expectations Charles Dickens

Les miserables Victor Hugo

Moby Dick Herman Melville

Notre-Dame de Paris Victor Hugo

Pride and prejudice Jane Austen

The adventures of Tom Sawyer Mark Twain

The count of Monte Cristo Alexandre Dumas

The man in the iron mask Alexandre Dumas

The picture of Dorian Gray Oscar Wilde

The three musketeers Alexandre Dumas

War and peace Lev Nikolayevich Tolstoy

A.2.2 Books from Gutenberg project

This dataset is composed of 3036 books taken from the same database above
(http://www.gutenberg.org). We used the parsed dataset provided by [117],
where the meta-data, the licence information and the transcriber’s notes
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have been removed. In order to generate the component-system-realization,
and therefore to transform the book in a “list of words” we applied the rules
described above for the chapters.

A.2.3 Wikipedia

The analysed set of English Wikipedia articles can be freely downloaded
from the Wikipedia dumps: “https://dumps.wikimedia.org/enwiki/”. In
order to parse the raw articles we used the software provided at the following
url: “http://attardi.github.io/wikiextractor/”. Then, the cleaned articles
were parsed with the same rules described for the book chapters.

Text size
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Text size
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(a) Text size distributions (b) Zoom for chapters and Wiki

Figure A.3: Text size distribution for the linguistic databases.

A.2.4 Single-realization and trajectory definitions of the Heaps’
law in linguistics

As discussed in Section 2.2.2 and 6.2, the global Heaps’ law of a component
system can be defined as the scatter-plot of sizes and vocabularies, or as the
ensemble of the single realization-trajectories. Figure A.4 compares the first
momentum, panel (a), and the variance, panel (b), of the vocabulary size
statistics h of the two definitions. The two panels show a good accord, veri-
fying the equivalence of the two prescriptions. For the comparison has been
used the Gutenberg dataset composed of 3036 books. Of course, one can
compare the two definition only when the component-order is well-defined,
as in the considered linguistic ensemble.

A.3 LEGO

The composition in bricks of several LEGO sets (R = 2820) can be freely
downloaded from “http://rebrickable.com”. We excluded from the analysis
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Figure A.4: Heaps’ law average and variance for its two definitions.
Panel (a) compares the binned average of the scatter plot definition, red
crosses, and the average of the trajectory ensemble, black line. Similarly,
panel (b) displays the variance. The considered dataset is the ensemble of
3036 books from the Gutenberg database.

LEGO sets belonging to the category of “LEGO Technic” since, by construc-
tion, they share a very small number of bricks with the classic LEGO toys.
Similarly, we did not consider LEGO sets with less than 80 components or
belonging to the categories “Educational and Dacta” and “Supplemental” in
order to exclude sets that are actually collections of spare parts or additional
bricks for other sets.

LEGO toy size
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f

Figure A.5: LEGO toy size distribution.

A.4 Mutualistic ecological systems

Ecological interaction matrices are taken from the Interaction Web Database,
IWDB (https://www.nceas.ucsb.edu/interactionweb/), an open access database
which shares a large number published data on species interaction networks.
In particular, the main ecological example discussed in Chapter 7 is an in-
teraction plant-pollinator matrix based on the work of C. Robertson in the
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1929, which studied the interactions between flowers and insects in Car-
linville, Illinoise. This dataset was validated and updated in [118], collecting
the data of 1429 animal species visiting flowers of 456 plant species.
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Appendix B

Calculations

B.1 Core size form exponential rank distribution

The mathematical calculation described in the section 3.3 of the main text
can be applied to an exponential rank distribution of the form

fi =
1

β
e−λi, β =

N∑
i=1

e−λi. (B.1)

Considering a random sampling of R realizations with fixed size s, one finds:

p(o) =
(1− o)

1
s
−1

λsN
(

1− (1− o)
1
s

) . (B.2)

Imposing the condition s� 1 this equation takes the form

p(o) ' (1− o)−1

Nλ log [(1− o)−1]
, (B.3)

which provides a good approximation for the overall distribution shape as a
function of one single effective parameter k = Nλ.

In the s� 1 limit, the occurrence extreme values are o1 ' 1 and oN ' 0.
This implies that the distribution is well defined over all possible values of
occurrence. Figure B.1 shows the rescaling properties of Eq. (B.3) by testing
its independence on s (panel a) and by varying N and λ while keeping their
product constant (panel b).

For rare families, one can further approximate the expression for p(o)
finding the expected power-law decay with exponent −1:

p(o) ' 1

Nλ
o−1. (B.4)

We now analyse the properties of the fraction of core components, i.e.,
those with occurrence greater than the threshold θc. In order to derive the
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core size one has to integrate the distribution described by Eq. (B.2) from
o = θc to the maximum occurrence value o1 (whose formula can be obtained
from Eq. (3.2) of the main text).

The result reads:{
c = 1 if oN ≥ θc
c = − 1

Nλ

(
λ+ log β + log

[
1− (1− θc)

1
s

])
otherwise.

(B.5)

In the limit of large s this expression becomes

c ' − 1

Nλ

(
λ+ log β + log

[
log (1− θc)−1

]
− log s

)
, (B.6)

which further simplifies only when the logarithm of s becomes dominant
over the other terms.
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Figure B.1: Rescaling property of the occurrence distribution gen-
erated by an exponential frequency rank distribution. a) The global
shape of the distribution does not depend on s in the limit s� 1, as shown
by the Eq. (B.3). The three curves are computed at fixed values of λ = 0.01
and N = 1500, and the black dotted line is the prediction of Eq. (B.3). The
only effective parameter determining the U-shape (for s� 1) is the product
λN . Indeed, panel b shows that the distribution does not change its shape
while varying N and λ if their product is kept to a constant.

It is worth mentioning that the expression above does not show rescaling
properties, even in the regime s� 1, and this may seem to be in contradic-
tion with Eq. (B.3). Nevertheless, this apparent inconsistency is basically
due to the singular behaviour of the occurrence distribution in o ' 1. In
the large s limit, the right boundary can be expressed as o1 = 1− ε, where
ε is an infinitesimal term depending on s and λ, whose effect on the overall
distribution shape is negligible (Eq. (B.3)). However, the core size is defined
as the integral of the distribution. Therefore, the variation of p(o1) due to
a change in s or λ provides a sufficiently large contribution (because of the
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function singular behaviour) which compensates the infinitesimal variation
of o1. Finally, this leads to a finite contribution to the integral and thus to
the core size as it is defined in the main text. In general, this finite contri-
bution has a non-trivial dependency on the parameters, explaining why the
equation (B.6) does not show the rescaling property.

B.2 Heaps’ integral

Here we discuss a summation that typically appears during the Heaps’ law
derivation which assumes a random sampling of components from a power-
law frequency distribution:

H(s, a, c) =
N∑
i=a

(
1− ci−γ

)s
, (B.7)

where s is the number of extracted components, γ is the Zipf’s law exponent,
c is the normalization coefficient of the frequency rank plot, and N is the
vocabulary size. The parameter a defines the onset of the power law region.
Here we want to approximate the summation above under the conditions
s� 1 and N � 1.

First we express the summation as an integral:

H(s, a, c) ≈
∫ N

a

(
1− ci−γ

)s
di+ ε,

where the error ε can be evaluated with the Euler-Maclaurin formula. In
the present case, s� 1 and N � 1 lead to a negligible value of ε.

The next approximation concerns the integrand, and it is based on the
observation that ci−γ is typically much less than one (since

∑N
i=a ci

−γ ≤ 1).
This allows us to express the integrand as an exponential function:

H(s, a, c) ≈
∫ N

a
exp

[
−ci−γs

]
di.

Note that imposing s � 1, the approximation above holds true also for
ci−γ . 1 because the large exponent drives those terms to negligible values.
In other words, the integral is dominated by the terms with i ≈ N , for which
the condition ci−γ � 1 is always satisfied (we are considering N � 1).

The expression above can be evaluated with the change of variables:
x = ci−γs, leading to:

H(s, a, c) ≈ (cs)1/γ

γ

∫ ca−γs

cN−γs
e−xx−1−1/γ dx.

106



Using the definition of the incomplete Gamma function Γ(n, t) =
∫∞
t e−xxn−1dx,

the formula above can be written down as:

H(s, a, c) ≈ (cs)1/γ

γ

(
Γ

(
−1

γ
, cN−γs

)
− Γ

(
−1

γ
, ca−γs

))
. (B.8)

A further approximation can be applied if ca−γs � 1. In such a case, the
second Gamma function is negligible:

H(s, a, c) ≈ (cs)1/γ

γ
Γ

(
−1

γ
, cN−γs

)
. (B.9)

One can also try to evaluate the expression above in the limit cases. The
key parameter is cN−γs, which defines when the realization size dominates
over the vocabulary (saturation regime, cN−γs� 1), or the vocabulary can
be considered infinite (cN−γs� 1). In the first case, it is immediate to see
that:

H(s, a, c) ≈ 0 if cN−γs� 1. (B.10)

The opposite limit (system far away from the saturation) can be evaluated
considering the recurrence relation of the incomplete gamma function:

Γ(n+ 1, t) = nΓ(n, t) + tne−t. (B.11)

Which implies:

H(s, a, c) ≈ Ne−cN−γs − (cs)1/γΓ

(
1− 1

γ
, cN−γs

)
,

and imposing the limit (when γ > 1):

H(s, a, c) ≈ N − (cs)1/γΓ

(
1− 1

γ

)
if cN−γs� 1. (B.12)

where Γ
(

1− 1
γ

)
is the Euler Gamma function.

B.3 Heaps variance in the random sampling model

The random sampling model is defined in Section 3.2. It states that a re-
alization of size s is generated through s independent extractions from the
pool of components, where the extraction probabilities are fixed by the com-
ponent frequencies {fi} (i = 1, . . . , N ,

∑
i fi = 1). The Heaps’ law counts

the number of different components after the first l selected components. It
can be derived considering the probability of extracting at least one time
the component with frequency fi after l extractions:

qi(l) = 1− (1− fi)l. (B.13)
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Then, the stochastic variable describing the Heaps’ process is:

h(l) =
N∑
i=1

x[qi(l)], (B.14)

where x[p] is a binary random variable which is 1 with probability p and 0
with probability 1− p. Its first two statistical moments are:

〈x[p]〉 = p, 〈x[p]2〉 = p.

Given (B.14), the average of the vocabulary size is:

〈h(l)〉 =
N∑
i=1

〈x[qi(l)]〉 =
N∑
i=1

qi(l),

while the second moment reads:

〈h(l)2〉 =

N∑
i=1

qi(l)

1 +

N∑
j=1,j 6=i

qj(l)

 ,

Finally, putting together the first and the second moment, one can easily
derive the variance:

Var[h(l)] =
N∑
i=1

qi(l) (1− qi(l)) . (B.15)

B.4 Chinese Restaurant process: number of tables
statistics

B.4.1 CRP notation

The Chinese Restaurant Process, CRP, is an innovation-duplication growth
model for component systems. It can be visualized as a restaurant sitting
plan, according to which:

• At the initial time one person is placed at one table.

• At each further time, s, a new person enter the restaurant and takes
a seat at a new table with probability pnew, or at an occupied table
with probability pold (pnew + pold = 1).

By this definition and since deletion events are not considered (e.g. a per-
son leaves the restaurant), the time step, s, corresponds to the number of
person in the restaurant at that time. The state of the process at time s is
completely defined by the set of table sizes: {ni}, where ni is the number of
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person at the table i, i = 1, . . . h, and
∑h

i=1 ni = s. Note that the number
of table, h, is a random time-dependent variable.

The two-parameters CRP is defined by the following probabilities [95]:

pnew =
θ + αh

θ + s
p

(i)
old =

ni − α
θ + s

, (B.16)

where 0 ≤ α ≥ 1 and θ > −α. It is immediate to verify that pold =
∑h

i=1 p
(i)
old

satisfies pold + pnew = 1.
This kind of model with s steps clearly generates a component entity

of size s, where the components are the tables, each of them with a cer-
tain abundance (i.e. the number of persons at that table). Note that the
probability of a table growth is proportional to the table size, ni, leading
to a preferential attachment mechanism generating a power law component
abundance distribution, typical feature of complex component systems. In
this section, however, we are going to describe the Heaps’ law generated by
such process, which is the characterization of the random variable h(s), i.e.
the number of different tables/components at time/size s. In particular we
will derive the exact and the asymptotic value of its average and its variance.

B.4.2 Implicit expression of the moment generative function

The probability of having h different tables at time s, P (h, s), is governed
by the following recurrence relation:P (h, s+ 1) =

θ + α(h− 1)

θ + s
P (h− 1, s) +

s− αh
θ + s

P (h, s)

P (h, 1) = δh,1

, (B.17)

where δh,1 is the Kronecker delta. From this equation one can derive the re-
currence relation for the moment generative function, G(z, s) =

∑∞
h=1 P (h, s)ehz,

summing both the equation terms over h and multiplying for ehz. (s+ θ)G(z, s+ 1) = (θez + s)G(z, s) + α (ez − 1)
∂G(z, s)

∂z
G(z, 1) = ez

. (B.18)

We now define the operator Ls groping together to all the terms acting
on G(z, s) on the right side of the equation above:

Ls = s+ θez + α (ez − 1)
∂

∂z
, (B.19)

so that the recurrence equation becomes: (θ + s)G(z, s) = Ls−1G(z, s −
1). This allows us to write down an implicit expression for the generative
function iterating the relation:

G(z, s) =
1

(θ + 1)s−1
Ls−1Ls−2 . . .L1e

z, (B.20)
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where the notation (θ + 1)s−1 refers to the rising factorial:

(x)N = x(x+ 1) . . . (x+N − 1) =
Γ(x+N)

Γ(x)
. (B.21)

Here we are interested in the first and second moment of P (h, s), which
can be obtained from the generative function by the formula: E[h(s)k] =
∂kzG(z, s)|z=0. In order to do this, we will not compute the explicit expression
of G(z, s) (which seems to be a very tough task), instead we will apply
the formula directly to the implicit form of the generative function, (B.20),
taking advantage of the following property of the operator Ls when z = 0:

Lsf(z)|z=0 = (s+ θez) f(z)|z=0 + α (1− ez) ∂

∂z
f(z)|z=0 =

=(s+ θ)f(0),
(B.22)

which is true for every derivable function f(z) in 0. As described in the
next sections, this property leads to strong simplifications which allows us
to obtain the exact expression for the first moment and the variance.

B.4.3 Heaps’ law first moment

Using Equation (B.20), the first moment of the Heaps’ law reads:

E[h(s)] =
1

(θ + 1)s−1

∂

∂z
Ls−1Ls−2 . . .L1e

z|z=0.

In order to use the property (B.22), the derivative must filter towards the
right end of the equation, so that there are no operators acting on L. To
this end, one has to use commutator:[

∂

∂z
,Ls
]

=
∂Ls
∂z
− Ls

∂

∂z
= L0 + α

∂

∂z
.

Therefore the action of the derivative on Ls−1 leads to the expression:

E[h(s)] =
1

(θ + 1)s−1

(
L0 + (Ls−1 + α)

∂

∂z

)
Ls−2 . . .L1e

z|z=0.

Iterating this procedure over all the operators L and using the notation
Lαs = Ls + α, one finds the following expression:

E[h(s)] =
1

(θ + 1)s−1

(
s−1∑
i=1

Lαs−1,i+1L0L
0
i−1,1 + Lαs−1,1

∂

∂z

)
ez|z=0,

where we have defined the new operator Lαi,j as:
Lαi,j =

i∏
k=j

(Lk + α) for i ≥ j

Lαi,j = 1 for i = j − 1

.
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We now can take advantage of the property (B.22), and, for example, the
terms outside the summation becomes:

Lαs−1,1e
z|z=0 = (s− 1 + θ + α)Lαs−2,1e

z|z=0 =

= (s− 1 + θ + α)(s− 2 + θ + α)Lαs−3,1e
z|z=0 =

= . . . = (θ + α+ 1)s−1,

which is a rising factorial, (B.21). Applying the property to all the terms, af-
ter some mathematical manipulations, the expression for the average Heaps’
curve becomes:

E[h(s)] =
θ

(θ)s

s−1∑
i=0

(θ + α+ i+ 1)s−i−1(θ)i,

which is an hypergeometric series that can be computed with numerical
methods, [119], (we used the Wolfram Mathematica software). The final
exact expression for the Heaps’ law average is then:

E[h(s)] =


θ

α

(
(θ + α)s

(θ)s
− 1

)
if α > 0

s−1∑
i=0

θ

θ + i
if α = 0

. (B.23)

Asymptotically, i.e. for s → ∞, for α > 0, one can rewrite the rising
factorials in terms of gamma functions, (B.21), and then use the Stirling
expansion. The result reads:

E[h(s)] ≈ Γ(θ + 1)

αΓ(θ + α)
sα, (B.24)

which is a power law increasing function as expected from mean field argu-
ments [33]. The asymptotic behaviour for α = 0 can be obtained with the
integral approximation of Equation (B.23) presenting a logarithmic growth.

B.4.4 Heaps’ law second moment and variance

To derive the second moment the procedure is similar, with the difference
that now the first derivative in z have to be substituted with the second
derivative:

E[h(s)2] =
1

(θ + 1)s−1

∂2

∂z2
Ls−1Ls−2 . . .L1e

z|z=0.

As described in the previous section, the second derivative must filter to-
wards ez, and this can be done by using the following commutator:[

∂2

∂z2
,Ls
]

= L0 + (α+ 2θez)
∂

∂z
+ 2ezα

∂2

∂z2
. (B.25)
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After some math, the second moment becomes:

E[h(s)2] =
1

(θ + 1)M−1

(
L2αes

M−1,1

∂2

∂s2
+

M−1∑
i=1

L2αes

M−1,i+1L0Li−1,1 + (2θes + α)

i−1∑
j=1

Lαi−1,j+1L0Lj−1,1 + Lαi−1,1

∂

∂s

 es.

Now the property B.22 can be safely applied. After some manipulation and
computing numerically two hypergeometric series, one finds the analytical
expression for the second moment (α > 0):

E[h(s)2] =
θ

α2(θ)s
((α+ θ)(θ + 2α)s − (α+ 2θ)(θ + α)s+ +θ(θ)s)

≈ θ + α

α2

Γ(θ + 1)

Γ(θ + 2α)
s2α,

(B.26)

where the second formula is the asymptotic expression for s→∞, obtained
using the Stirling expansion for the gamma function.

Finally, the variance of the Heaps’ process can now be derived, Var[H(M)] =
E[H(M)2]− E[H(M)]2, and, for large M , it reads:

Var[h(s)] ≈ Γ(θ + 1)

α2

(
θ + α

Γ(θ + 2α)
− Γ(θ + 1)

Γ(θ + α)2

)
s2α =

≈
(

(θ + α)Γ(θ + α)2

Γ(θ + 2α)Γ(θ + 1)
− 1

)
E[h(s)]2,

(B.27)

which shows the Taylor’s law observed in empirical systems. This formula
is not valid for α = 0, however in such a case pnew no longer depends on
h, implying that the growth of the variance is bounded by the Poisson’s
scaling, result 6.15.
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Appendix C

Fitness-Complexity
algorithm

C.1 Computational issues

The fitness - complexity map is simulated through the iteration of the equa-
tion (7.2) until the stationary state is reached. A first technical issue is
the presence of trajectories going to zero, since the presence of null fit-
ness/complexity terms lead to infinite addenda, and therefore to computa-
tional errors. In order to fix this problem we define a lower boundary for
each fitness and each complexity trajectory, such that values of Fi and Qj
lesser than the boundary are substituted with a value equal to the boundary.
In this way, the decaying trajectories cannot cross the boundary, and once
they reach the chosen threshold, they are imposed to be constant for all the
remaining time steps. In this work the boundary value is equal to 10−100.
Testing different boundary values, it seems that the map does not change
its behavior for sufficiently low values, lesser than 10−20, implying that this
alteration should not affect the map dynamics.

Another computational issue is the identification of the stationary con-
dition, at which the map iteration stops. We employ the following simple
procedure: at each time step we compute the average differential of the
fitness trajectory ensemble, which reads as follows:

〈d〉 =
1

R

R∑
i=1

| F (t)
i − F

(t−1)
i |,

where N is the total number of realizations/active species. The map stops if
one of the two following conditions are satisfied: 〈d〉 < θ, where the threshold
is chosen equal to 10−6, or the number of iterations exceeds a limit value
(about 2000 iterations). The latter condition is required in particular rare
cases where the relaxation time becomes extremely large, such as if there
are power law decaying trajectories, or when a stationary state not exists.
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A third crucial point is the ranking computation, i.e. the ordering of the
nodes based on the map fitness, and therefore related to the node importance
within the system. In a scenario where all the fitness trajectories converge to
positive values, this ranking can be computed trivially. However the presence
of trajectories which decay to zero is very common, and clearly these nodes
cannot be compared on the basis of their stationary value, which is zero for
all of them. In such cases, we distinguish between the nodes with positive
stationary fitness, and the nodes with trajectory decaying to zero. The
nodes in the first group are put at the top positions of the ranking, and
they are ordered according to their stationary fitness value. The decaying
trajectories are put at lower ranks, and, among this second group, the nodes
are ranked according to the ”velocity” of decaying. In order to determine
which trajectory goes faster to zero, we consider a fitness threshold (very
small but greater than the lower boundary described above, we have chosen
10−80), assuming that the trajectories which cross this threshold first (at
smaller time steps) have a faster decay, and therefore they are put at lower
positions.

C.2 Comparison with the Mariani map

Symmetric map
Mariani 2015
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Map exponent

(a) Robertson 1929 matrix

Map exponent

(b) Arroyo 1982 matrix (c) Country product 2005 matrix 

Map exponent

Figure C.1: Comapring two fitness-complexiy map generalizations.
Extinction area computed through the Mariani generalization [109] and the
symmetric one, for three different datasets. Consistently for γ = 1 both
the algorithms are equivalent to the standard one and find the same value
of extinction area. Panel (a) and (b) are mutualisitic system, dataset A.4,
while panel (c) is the country-product matrix described in [103] for the 2005.

The map generalization proposed in [109] reads as follows:
F̃

(t)
i =

∑
j nijQ

(t−1)
j F

(t)
i =

F̃
(t)
i

〈F̃ (t)〉

Q̃
(t)
j =

(∑
i nij

(
F

(t−1)
i

)−γ)− 1
γ

Q
(t)
j =

Q̃
(t)
j

〈Q̃(t)〉 ,
(C.1)

which is different from our symmetric generalization because of the inversion
of the complexity exponent. Clearly, they find different F ∗ and Q∗ rankings,
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and therefore different extinction areas, as shown in the figure C.1 as a
function of the map exponent γ. From the examples considered, it seems
that the generalization (7.2) finds always a larger or equal extinction area
maximum. The two maximums coincide only for γ = 1, where the two maps
are equivalent to the classical algorithm.

C.3 Critical exponent in uniform random matrices

In the following the generalized symmetric map (7.2) is applied to a large
uniform random matrix with dimensions d1 × d2 (d1, d2 � 1). The matrix
elements are Bernoulli random variables, such that nij = 1 with probability

p and nij = 0 with 1− p. Starting from the initial conditions F
(0)
i = 1 and

S
(0)
j = 1 the first map step leads to sums of independent and identically

distributed random variables, for example the non-normalized fitness reads:

F̃
(1)
i =

∑d2
i nij . By using the central limit theorem one can obtain the

following expressions (using the symmetric map (7.3)):F
(1)
i = 1 +

√
1−p
d2p

η

S
(1)
j = 1 +

√
1−p
d1p

η,

where η is the standard normal random variable (〈η〉 = 0 and Var(η) = 1).
At the next step the non-normalized fitness reads:

F̃
(2)
i =

d2∑
i

nij

(
1 +

√
1− p
d1p

η

)−γ

and a similar equation can be found for the simplicity S̃
(2)
j . The two expres-

sions can be simplified under the following conditions:

γ

√
1− p
d1p

� 1; γ

√
1− p
d2p

� 1 (C.2)

Approximating at the first order according to the conditions above and ap-

plying the central limit theorem again, after some algebra one finds that F
(2)
i

and S
(2)
j become equal to their counterparts at the previous step shown in

the equation above. This implies that the map converges immediately, and
the stationary values follows a normal distribution which does not depend
on γ. Moreover the condition (C.2) provides information about the conver-
gence behaviour of the map, defining a region of parameters in which all
the trajectories are positive. Indeed the critical exponent scaling with the
matrix sizes and the density of ones are tested in the figure C.2 satisfying
the prediction.
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Figure C.2: Critical exponent in unifrom random matrices. The
relation (C.2)can be used to predict the scaling of the map critical exponent,
defined as the largest value of γ for which all the trajectories converge. The
panel (a) tests the scaling in squared matrix having d rows and columns
for three values of the matrix density p, while (b) considers the critical
exponent as a function of a certain combination of p. The observed growth
as the square root of the x-axis variable in both the cases is in agreement
with the theoretical relation (C.2).

C.4 Genetic algorithm

Here we compare a genetic algorithm and the generalized fitness complexity
map (7.2) in terms of finding a ranking of realizations which maximizes the
extinction area (Fig. 7.2). The two algorithms are applied to a set of random
binary square matrices with growing size. Let us call d the matrix size, as the
number of rows and columns. The ensemble of random matrices is defined
by the condition that a generic element nij is equal to 1 with probability

2ij
d(d+1) , where i = 1, . . . d and j = 1, . . . d, and zero otherwise. In this way

the average of the row i degree is di =
∑

j pij = i, and similarly dj = j,
implying that there is heterogeneity of degrees (resembling empirical cases).
In Figure C.3 is shown the best extinction area (a) and the computational
time (b) as a function of the matrix size d, for the the two algorithm and
the standard fitness-complexity map.

The genetic algorithm is defined as follows. The starting population
is composed of of K row rankings generated at random (i.e. each on is a
random permutation of the row indexes). At each time step two rankings
are drawn from the population and the two associated extinction areas are
computed. The row ordering with the lesser extinction area is substituted
by a copy of the other “fitter” ranking, and this new copy can mutate with
probability µ, where a mutation means that two row indexes exchange their
position in the ranking. The algorithm stops if there is no improvement of
the extinction area for tstop iterations.

In order to compute Figure C.3 we need also a procedure to find the
exponent of the generalized fitness complexity map which maximizes the
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(a) (b)

Figure C.3: Comparison between a genetic algorithm, the standard
fitness-complexity map and our generalization. On the left there is
the best extinction area found by each algorithm for increasing matrix size
d, while on the right is shown the computational time (in seconds). The
two quantities are the average over an ensemble of 200 random matrices
for each size. The definition of the algorithms and procedure of the matrix
generation are explained in the main text. The parameters of the genetic
algorithm are: K = 500, µ = 0.05, and tstop = 104, while for the generalized
map γ0 = 0.8, ∆0 = 0.2, ∆̂ = 0.01.

extinction area. We employ a method inspired by the bisection algorithm.
This algorithm is based on the assumption that the extinction area grows
monotonically from the map exponent γ = 0, to the area maximum, which
seems to be approximately true in a lot of empirical cases, Figure C.5. The
method is the following: at a generic step t, the extinction area is computed
for an exponent γt and a second exponent γt+1 = γt + ∆t. If the extinction
area at γt+1 is greater than the area of the first exponent, this means that I
am approaching the maximum, and at the next time step we consider γt+2,
that is γt+2 = γt+1 + ∆t+1, with ∆t+1 = ∆t. Otherwise, if the area at γt+1

is lesser, then the algorithm has surpassed the maximum, and the increment
becomes smaller and changes sign: ∆t+1 = −∆t+1

2 . The method stops if the

exponent increment becomes smaller the a certain threshold ∆̂.
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(a) Arroyo et al. (1982) (b) Clements & Long (1923) (c) Kato et al. (1980) 

(d) Ramirez & Brito (1992) (e) Country product matrix (2005) (f) Superfamily matrix

Figure C.4: Fraction of convergent trajectories as a function of the
map exponent in different datasets. All the datasets display a phase
transition in the number of positive stationary trajectories, and the critical
exponent varies from one ((a), (b), (c), (d)) to larger values ((e), (f)).
The first four panels refer to ecological mutualistic systems taken from the
Interaction Web Database, whose dimensions are: 87 x 98, 96 x 276, 93 x
679, 33 x 53 respectively. The fifth panel is the country - product matrix
described in [103] for the 2005, composed of 148 countries and 1176 exported
products. The last plot refers to the binarized genomic system described in
A.1.1.
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Figure C.5: Extinction area vs. map exponent for the six datasets
described in the figure C.4.
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