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Abstract
We show Laplacian algebras are maximal, and give applications to the Classical Invariant 
Theory of real orthogonal representations of compact groups, including: The solution of 
the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when 
a separating set is a generating set. And the introduction of a class of generalized polari-
zations which, in a certain class of representations (including all representations of finite 
groups), always generates the algebra of invariants of their diagonal representations.

Keywords  Singular Riemannian foliations · Invariant Theory

Mathematics Subject Classification  53C12 · 13A50

1  Introduction

1.1 � Invariant Theory without groups

Given a representation V of a group G, Invariant Theory studies the algebra of polynomials 
f on V which are invariant under the G-action (g.f )(x) = f (g−1x).

We will restrict ourselves to the case where V is a real, finite-dimensional inner product 
space (a Euclidean vector space, for short), and G is a compact group acting by orthogonal 
transformations. In this case, the algebra ℝ[V]G of invariant polynomials can be thought 
of as the algebra of polynomial functions V → ℝ which are constant along the fibers of 
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the quotient map � ∶ V → V∕G . Moreover, ℝ[V]G separates orbits, in particular the orbit 
space V/G is Hausdorff.

This picture can be generalized to a setup not involving any group at all: notice, in fact, 
that the fibers of � ∶ V → V∕G (i.e. the G-orbits) are smooth, embedded and pair-wise 
equidistant submanifolds of V. Using these properties as a definition, one arrives at the 
notion of infinitesimal manifold submetry � ∶ V → X , from V onto a metric space X, see 
[13] for a precise definition (which we also recall in Sect. 3 for the reader’s convenience). 
In addition to being a generalization of orbit decompositions, the fibers of manifold sub-
metries also generalize classical objects from Foliation Theory, such as: transnormal sys-
tems; singular Riemannian foliations; and isoparametric foliations, that is, the foliation 
given by the parallel and focal submanifolds of isoparametric submanifolds. In particular, 
there exist many important examples of infinitesimal manifold submetries which are inho-
mogeneous, that is, not given by the orbits of some orthogonal action by a compact group, 
see Sect. 5.4.

The “Invariant Theory” of infinitesimal manifold submetries has its roots in the study, 
by many authors, of the algebraic aspects of singular Riemannian foliations and isopara-
metric foliations of Euclidean space. It starts with the definition of the algebra B(�) of 
polynomials constant along the fibers of an infinitesimal manifold submetry � , called basic 
polynomials, generalizing the algebra ℝ[V]G of invariant polynomials. Crucially, B(�) sep-
arates fibers, and thus determines � , like in the homogeneous case. An early version of this 
was proved for isoparametric foliations in [14, 15], then for singular Riemannian foliations 
in [11], and later for general manifold submetries in [13].

One of the goals of the present paper is to show how this more general theory can give 
back to Classical Invariant Theory. Some of the applications we present (Corollaries D, E, 
and Theorem A) have purely algebraic proofs, and thus could be proved without leaving 
the realm of Classical Invariant Theory. Others (Corollary C and Theorem G) rely heavily 
on the geometric machinery of [13] and previous works.

1.2 � Maximality of Laplacian algebras

Define Laplacian algebras, as the sub-algebras A ⊂ ℝ[V] that contain the “distance-
squared” polynomial r2 =

∑
i x

2
i
 and are preserved by the differential operator “dual” to 

r2 , namely the Laplacian Δ =
∑

i �
2∕�x2

i
 . To define maximality, note that any A ⊂ ℝ[V] 

defines an equivalence relation ∼A on V where x ∼A y if and only if f (x) = f (y) for all 
f ∈ A . Then we say that a sub-algebra A ⊂ ℝ[V] is maximal if any strictly larger algebra 
would define an equivalence relation strictly finer than ∼A.

It was conjectured in [13] that Laplacian implies maximal, and the solution of this con-
jecture is the technical heart of the present paper:

Theorem A  Let A ⊂ ℝ[V] be a Laplacian algebra. Then A is maximal.

1.3 � Inverse Theory

One indication that infinitesimal manifold submetries are a natural setting for Invariant 
Theory is that it allows for the solution of problems that seem to have been out of reach of 
classical Invariant Theory. Take, for example, the Inverse Invariant Theory Problem, about 
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characterizing the sub-algebras of ℝ[V] which are algebras of invariants of some represen-
tation. This seems to only have been solved over finite fields [16, Section 8.4], but in our 
more general context there is a satisfying solution, namely the Laplacian algebras defined 
above:

Corollary B  Let V be a Euclidean vector space. Then, taking algebras of basic polynomials 
gives a one-to-one correspondence between infinitesimal manifold submetries from V, and 
Laplacian sub-algebras of ℝ[V].

Corollary B is an immediate consequence of Theorem A and [13, Theorem A]. Indeed, 
the only difference between Corollary  B and [13, Theorem A], is that, in the latter, the 
algebras are required to be both Laplacian and maximal.

Analogously, the maximality condition can be removed from [13, Theorems B and C], 
which provides the following solution to the Inverse Invariant Theory Problem for finite 
groups:

Corollary C  Let A ⊂ ℝ[V] be a sub-algebra. Then 

(a)	 A is the algebra of invariants of a finite subgroup G ⊂ O(V) if and only if A is Laplacian 
and the field of fractions of A has transcendence degree (over ℝ ) equal to dim(V).

(b)	 A is the algebra of basic polynomials of a transnormal system if and only A is Laplacian 
and integrally closed in ℝ[V].

1.4 � Application to separating sets

Another application to Classical Invariant Theory concerns separating sets, which is a 
topic of much recent research — see [1, Section 2.4] and references therein. In our context, 
a set S of G-invariant polynomials is called separating if it separates G-orbits. The follow-
ing characterizes the separating sets which generate the whole algebra of invariants:

Corollary D  Let V be a real orthogonal representation of the compact group G, and let 
ℝ[V]G denote its algebra of invariants. Let S ⊂ ℝ[V]G be a separating set containing r2 , 
and B the subalgebra generated by S . Then B = ℝ[V]G if and only Δf  and ⟨∇f ,∇g⟩ belong 
to B, for every f , g ∈ S.

We note that the condition on S given in Corollary D is equivalent to B being Laplacian 
(see [13, Proposition 37] or Lemma 12 below), so that Corollary D is a direct consequence 
of Theorem  A. With a bit more work, we in fact prove a stronger version, which holds 
for infinitesimal manifold submetries, and only requires S to be “locally” separating (see 
Theorem  15). For a different criterion for a separating set to be generating, in the con-
text of rational representations of reductive groups over algebraically closed fields, see [1, 
Theorem 2.4.6].
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Corollary D can be a useful tool to prove First Fundamental Theorems, that is, to show 
that certain sets of polynomials generate the algebra of basic polynomials of a given mani-
fold submetry, see Sect. 4.1 for a few illustrative examples.

1.5 � Application to polarizations

Taking the sum of k copies of a G-representation V produces a G-representation Vk . 
Recall that, given a homogeneous G-invariant polynomial f of degree d, its polariza-
tions (which we will sometimes call classical polarizations to distinguish them from a 
generalization described below) are the multi-variable invariants f� ∈ ℝ[Vk]G , where 
� = (�1,… , �k) runs through the multi-indices with ��� = ∑

i �i = d , defined by

where si are formal variables.
Alternatively, the algebra generated by all polarizations can also be seen as the small-

est sub-algebra of ℝ[Vk] containing ℝ[V]G (seen as polynomials depending only on the 
first variable v1 ) and closed under a certain family of differential operators called polari-
zation operators, see Sect. 5.1.

Inspired by the latter form of the definition, we introduce a sub-algebra A(k) ⊂ ℝ[Vk] , 
which we call the algebra of generalized polarizations, associated to any Lapla-
cian algebra A ⊂ ℝ[V] . It is defined as the smallest Laplacian algebra containing A 
(seen as polynomials depending only on the first variable v1 ) and the inner products 
(v1,… , vk) ↦ ⟨vi, vj⟩ for all i, j. When A = ℝ[V]G for a compact G, the algebra A(k) con-
tains all classical polarizations, and is contained in ℝ[Vk]G.

For most G-representations V, classical polarizations do not generate ℝ[Vk]G . It is 
conjectured, for example, that for G finite, ℝ[V2]G can only be generated by classical 
polarizations if G is generated by reflections, see [21] and Remark 32 below for a more 
complete discussion. In contrast, one has:

Corollary E  Let V be a real orthogonal representation of the finite group G, and k ≥ 2 . 
Then the algebra of invariants of the G-representation Vk is generated by generalized 
polarizations.

Corollary E is an immediate consequence of Corollary D and the fact that classical 
polarizations separate G-orbits in Vk for finite G, see [2, Theorem 3.4].

The idea of using the Laplacian was also employed in [8] to find generators for the 
algebra ℂ[Vk]G in the special case where V is a complex finite-dimensional simple alge-
bra with a non-degenerate inner product and a real form, and G is the automorphism 
group of V.

The authors suspect that taking the diagonal representation does not have an analogue 
for inhomogeneous infinitesimal manifold submetries, and, relatedly, that the algebra of 
generalized polarizations A(k) is homogeneous for every k ≥ 2 and every Laplacian alge-
bra A. The second main result in the present paper is a partial result in this direction, 
under the additional assumption (called “k-NS”, see Definition 25 and Lemma 27) that, 
for generic x1,… , xk ∈ V  , the normal spaces to the �-fibers at these points span V:

(1)f

(∑
i

sivi

)
=

∑
|�|=d

s
�1
1
⋯ s

�k
k
f�(v1,… , vk)
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Theorem F  (Homogeneity of generalized polarizations) Let � ∶ V → X be an infinitesimal 
manifold submetry satisfying k-NS, with associated algebra of basic polynomials A = B(F) . 
Let O(�) be the closed subgroup of O(V) consisting of all g ∈ O(V) that map each �-fiber 
to itself, and consider the diagonal action of O(�) on Vk . Then A(k) = ℝ[Vk]O(�).

Because of Corollary  D (more precisely, its local version Theorem  15), the proof of 
Theorem F is reduced to showing that A(k) locally separates O(F)-orbits. Thus Theorem F 
is analogous to [2, Theorem 3.4], and can replace its use in the proof of Corollary E, see 
Remark 30.

To discuss how Theorem F leads to a generalization of Corollary E for certain G-repre-
sentations V, where G is an infinite compact group, we assume for simplicity that the rep-
resentation is faithful, so that we may treat G as a subgroup of the orthogonal group O(V).

Since G is infinite, one faces a new difficulty in that a different subgroup G′ may have 
the same orbits as G, so that in particular ℝ[V]G = ℝ[V]G

� . Such a pair of groups are called 
orbit-equivalent, the simplest example being SO(n) and O(n) acting on ℝn for n > 1 . In 
such a case, ℝ[Vk]G and ℝ[Vk]G

� will necessarily be different for k large enough. Therefore, 
no procedure that produces elements of ℝ[Vk]G out of ℝ[V]G can possibly be enough to 
generate all of ℝ[Vk]G for a general subgroup G. To fix this, we impose the condition that 
G be maximal (with respect to inclusion) in its orbit-equivalence class. In the notation of 
Theorem F, this is equivalent to G = O(�) , where � is the natural map V → V∕G . Thus we 
immediately obtain the first part of the Theorem below, where we also list two natural con-
ditions that imply k-NS:

Theorem G  Let G ⊂ O(V) be a closed subgroup, with algebra of invariants A = ℝ[V]G . 
Assume that G is maximal in its orbit-equivalence class, and that the decomposition of V 
into G-orbits satisfies k-NS, for k ≥ 2 . Then the algebra of invariants of the G-representa-
tion Vk coincides with the algebra of generalized polarizations A(k).

Moreover, either condition below implies k-NS: 

(a)	 the connected component of G is a torus;
(b)	 k ≥ dim(V);

The authors do not know if the k-NS condition is necessary:

Question 1  Let G be a compact subgroup of O(V) , maximal in its orbit-equivalence class, 
and k ≥ 2 . Is the algebra of invariants of the G-representation Vk is generated by general-
ized polarizations?

Finally, we mention that generalized polarizations can be used to give a sufficient crite-
rion for a manifold submetry to be homogeneous, see Sect. 5.4.

1.6 � Sketch of the proofs

To prove that a Laplacian algebra A is maximal (Theorem A), we consider the unit sphere 
SV in V, and its quotient X = SV∕ ∼A by the equivalence relation given by A as above. 
Then A is an algebra of continuous functions on the compact Hausdorff topological space 
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X, which separates points of X by definition, so the Stone–Weierstrass Theorem implies 
that A is dense in C0(X).

Assuming A is not maximal, there is a homogeneous polynomial f ∉ A that is constant 
on the equivalence classes of ∼A , and hence descends to a continuous function on X. The fact 
that A is Laplacian means that A is compatible with the Theory of Spherical Harmonics. This 
implies that f may be taken orthogonal to A in the appropriate sense, and that the induced ele-
ment of C0(X) is orthogonal to A in the L2 inner product, contradicting density of A.

We turn to Theorem  F. By a local version of Corollary D (Theorem 15 below), it is enough 
to show that A(k) generically separates �-fibers, because A(k) is Laplacian by definition.

For simplicity, assume k = 2 . Given (x, y), (z,w) ∈ V2 such that F(x, y) = F(z,w) for all 
F ∈ A(2) , we need to find g ∈ O(�) such that g(x, y) = (z,w) . Since A(2) contains all inner 
products by definition, we have ‖x‖ = ‖z‖ , ‖y‖ = ‖w‖ , and ⟨x, y⟩ = ⟨z,w⟩ , and so there exists 
g ∈ O(V) such that g(x, y) = (z,w) . Making F run through all classical polarizations, the orig-
inal definition given by (1) shows that f (sx + ty) = f (sz + tw) for all f ∈ A , so that sx + ty 
and g(sx + ty) belong to the same �-fiber, for all s, t ∈ ℝ.

A similar argument using generalized polarizations instead of classical polarizations yields 
g ∈ O(V) such that g(x, y) = (z,w) , and such that ∇f (x) + ∇h(y) and g(∇f (x) + ∇h(y)) belong 
to the same �-fiber for all f , h ∈ A . The 2-NS condition implies that, for (x, y) generic, every 
v ∈ V can be written in the form ∇f (x) + ∇h(y) for appropriate choices of f, h. Thus g ∈ O(V) 
takes every �-fiber to itself, that is, g ∈ O(�).

1.7 � Organization of the paper

In Section 2 we recall some basic definitions, and the theory of Spherical Harmonics, and give 
a proof of Theorem A. Section 3 contains definitions and basic facts involving submetries. In 
Section 4 we introduce the notion of local separating set, prove Theorem 15 (a strengthening 
of Corollary D), and illustrate how it can be used to prove First Fundamental Theorems. Sec-
tion 5 is devoted to the study of generalized polarizations. It includes the proofs of Theorem F, 
Theorem G, and of a sufficient criterion for a manifold submetry to be homogenous.

2 � Laplacian algebras are maximal

This section is devoted to the proof of Theorem A, given in Sect. 2.5. To fix notations and for 
the sake of completeness, the definitions and basic facts needed in the proof are laid out in 
the first four subsections. The material in Sect. 2.1 and 2.2 is well-known, see for example [6, 
Exercise 12(e), page 118] or [5, Introduction, Section 3]. The material in Sect. 2.3 and 2.4 is 
either contained in, or follows easily from, [13].

2.1 � Polynomials

Let V be a Euclidean vector space, that is, a real finite-dimensional vector space with inner 
product ⟨ , ⟩ (which we will occasionally write ⟨ , ⟩V ), and denote by O(V) the corresponding 
orthogonal group.

Let ℝ[V] be the algebra of polynomial functions V → ℝ , which is graded in the sense that
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where ℝ[V]d denotes the space of homogeneous polynomials of degree d. The group O(V) 
acts on ℝ[V] by (Uf )(v) = f (U−1v) for f ∈ ℝ[V] and U ∈ O(n) , and this action preserves 
the grading.

Choose an orthonormal basis e1,… en of V, and dual basis x1,… xn of V∗ . In particular 
we have an identification of ℝ[V] with ℝ[x1,… , xn] , and of O(V) with the group of orthog-
onal n × n matrices O(n).

Given f ∈ ℝ[V]d , its dual is the differential operator f̂  , of order d, obtained from f by 
replacing each variable xi with the partial derivative �

�xi
 , and products with composition. 

Define a bilinear form ⟨ , ⟩d on each ℝ[V]d by

It is not hard to see that this is an inner product, that the monomials x�1
1
… x

�n
n  (where �i ≥ 0 

and �1 +⋯ �n = d ) form an orthogonal basis, and that ‖x�1
1
⋯ x

�n
n ‖2

d
= �1!⋯ �n! . Note 

also that the dual operation satisfies �fg = f̂ ĝ , so in particular multiplication with a poly-
nomial h is adjoint to ĥ . More precisely, for every triple of homogeneous polynomials with 
deg(fh) = deg(g) , one has ⟨hf , g⟩deg(g) = ⟨f , ĥ(g)⟩deg(f ).

Lemma 2  The inner product ⟨ , ⟩d on ℝ[V]d defined in (2) above is O(V)-invariant.

Proof ℝ[V]d is isomorphic, as an O(V)-representation, to the space of symmetric tensors 
Symd(V∗) , that is, to the subspace of all elements of (V∗)⊗d that are fixed by the natu-
ral action of the permutation group Sd . Namely, the multilinear map � ∈ Symd(V∗) corre-
sponds to the polynomial function f = �(�) given by f (v) = �(v,… , v).

The inner product on V induces a natural inner product on V∗ , which we also denote 
by ⟨ , ⟩ , which then induces the following inner product on (V∗)⊗d , which is clearly O(V)
-invariant:

Thus it suffices to show that ⟨�(�),�(�)⟩d = d!⟨�, �⟩ for all �, � ∈ Symd(V∗) . To this end, 
note that x�1

1
… x

�n
n = �(�) with

and that ⟨�, �⟩ =

which equals �1!⋯�n!

d!
 . 	�  ◻

ℝ[V] =

∞⨁
d=0

ℝ[V]d

(2)⟨f , g⟩d = f̂ (g).

⟨𝜆1 ⊗⋯⊗ 𝜆d,𝜇1 ⊗⋯⊗ 𝜇d⟩ = ⟨𝜆1,𝜇1⟩⋯ ⟨𝜆d,𝜇d⟩.

𝛼 =
1

d!

∑
𝜎∈Sd

𝜎
(
(x1)

⊗𝛼1 ⊗⋯⊗ (xn)
⊗𝛼n

)

1

(d!)2

�
𝜎,𝜏∈Sd

⟨𝜎�(x1)⊗𝛼1 ⊗⋯⊗ (xn)
⊗𝛼n

�
, 𝜏
�
(x1)

⊗𝛼1 ⊗⋯⊗ (xn)
⊗𝛼n

�⟩
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2.2 � Harmonic polynomials

We keep the same notations as in the previous subsection. Let r2 denote the quadratic 
polynomial

and let Δ denote the Laplace operator

For each d ≥ 0 , let Hd denote the subspace of ℝ[V]d consisting of the harmonic polynomi-
als, that is, polynomials f satisfying Δ(f ) = 0 . Then one has the following ⟨ , ⟩d-orthogonal 
direct sum decomposition of ℝ[V]d.

The summands above are also the irreducible components of ℝ[V]d as an O(V)-representa-
tion, and they are pairwise inequivalent. These facts are usually called the theory of spheri-
cal harmonics, see for example [6, Exercise 12(e), page 118].

Another, more geometric, inner product one can define on ℝ[V]d is the L2-product given 
by

where SV denotes the unit sphere in V, and dvol its natural Riemannian volume form. Since 
this inner product is also O(V)-invariant, we can apply Schur’s Lemma to conclude that 
there exist positive constants Cd

i
 such that

according to the decomposition of f , g ∈ ℝ[V]d in (3). That is, f =
∑

i fi , and g =
∑

i gi , 
with fi, gi ∈ r2iHd−2i.

2.3 � Laplacian algebras

Laplacian algebras were introduced in [13]:

Definition 3  Let A ⊂ ℝ[V] be a sub-algebra. It is called Laplacian if it contains r2 and is 
preserved by the Laplace operator Δ.

Lemma 4  Let A ∈ ℝ[V] be a Laplacian algebra. Then 

(a)	 A is graded, that is, 

r2 = x2
1
+⋯ + x2

n
∈ ℝ[V],

Δ = r̂2 =
�2

�x2
1

+⋯ +
�2

�x2
n

.

(3)ℝ[V]d = Hd ⊕ r2Hd−2 ⊕⋯⊕ r2⌊d∕2⌋Hd−2⌊d∕2⌋

⟨f , g⟩L2 = ∫SV

fg dvol

(4)⟨f , g⟩L2 =
⌊d∕2⌋�
i=0

Cd
i
⟨fi, gi⟩d
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 where Ad = A ∩ℝ[V]d.
(b)	 Each Ad is graded with respect to the decomposition in (3): 

Proof 

(a)	 Since A is preserved by Δ and by multiplication with r2 , it is preserved by the Lie 
bracket [Δ, r2] of these two linear maps. The latter is a linear endomorphism of ℝ[V] 
with eigenspaces ℝ[V]d , so A is graded.

(b)	 Note that the ⟨ , ⟩d-orthogonal complement of r2Ad−2 in Ad is exactly Ad ∩Hd . Indeed, 
f ∈ Ad is orthogonal to r2Ad−2 if and only if Δ(f ) = 0 , because Δ(f ) is an element of 
Ad−2 that satisfies ⟨Δ(f ), g⟩d−2 = ⟨f , r2g⟩d for all g ∈ Ad−2 . The result now follows by 
induction.

	�  ◻

2.4 � Partitions of vector spaces and maximal algebras

Given a sub-algebra A ⊂ ℝ[V] (or, in fact, any subset), define the equivalence relation 
∼A on V by

In words, v, w are equivalent if and only if they cannot be separated by any element of A.
Denote by L(A) the partition of V into the equivalence classes (also called leaves) of 

∼A . The symbol L stands for Level sets, because the elements of L(A) are the common 
level sets of polynomials in A.

In the opposite direction, given a partition F  of V, we define the sub-algebra 
B(F) ⊂ ℝ[V] as the algebra of all ( F -)basic polynomials, that is, polynomials that are 
constant on the leaves of F .

Given a partition F  of V, a subset of V is called F -saturated if it is a union of F
-leaves. Partially order partitions by F < F

′ when F  is coarser than F′ , that is, when 
every F -leaf is F′-saturated. On the other hand, we partially order sub-algebras of ℝ[V] 
by inclusion. Then both L and B preserve these partial orders. Moreover, one has the 
tautologies A ⊂ B(L(A)) and L(B(F)) < F  . In particular, B◦L◦B = B and L◦B◦L = L.

Definition 5  ([13]) A sub-algebra A ⊂ ℝ[V] is called maximal if A = B(L(A)) , or, equiva-
lently, if it is the algebra of basic polynomials of some partition of V.

Lemma 6  Let A ⊂ ℝ[V] be a graded sub-algebra. Then B = B(L(A)) is also graded.

Proof  Since A is graded, the homothetic transformations h� ∶ V → V  (defined by 
h�(v) = �v ) send L(A)-leaves onto L(A)-leaves, for all � ∈ ℝ ⧵ {0}.

A =

∞⨁
d=0

Ad,

Ad = (Ad ∩Hd)⊕ (Ad ∩ r2Hd−2)⊕⋯⊕ (Ad ∩ r2⌊d∕2⌋Hd−2⌊d∕2⌋).

v ∼A w ⟺ f (v) = f (w) ∀f ∈ A
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Let f ∈ B be a polynomial of degree d, and, for each i = 0,… , d , let fi be its homogene-
ous component of degree i. Thus f =

∑d

i=0
fi and so

for all � ≠ 0 . Taking � → ∞ shows that fd ∈ B , so that f − fd ∈ B , and one can proceed by 
induction on the degree of f. 	�  ◻

2.5 � Laplacian algebras are maximal

Proof of Theorem A  Let B = B(L(A)) . Assume for a contradiction that the inclusion A ⊂ B 
is strict. By Lemmas 4 and 6, the algebras A and B are graded, so there exists d such that 
the inclusion Ad ⊂ Bd is strict. Let f ∈ Bd ⧵ {0} orthogonal to Ad with respect to the inner 
product ⟨ , ⟩d defined in (2).

Let X = SV∕∼A be the quotient topological space of the unit sphere SV ⊂ V  by the 
equivalence relation ∼A , which restricts to SV because r2 ∈ A . Since SV is compact, so is 
X. Let C0(X) denote the algebra of continuous real-valued functions on X, and consider the 
algebra homomorphism

where, given h ∈ B , �(h) is the function on X induced by the restriction h|SV ∶ SV → ℝ.
Then �(A) is a sub-algebra of C0(X) which separates points, and contains the constant 

functions. By the Stone–Weierstrass Theorem (see [20, Theorem 7.32 on page 162]) �(A) 
is dense in C0(X) with respect to the supremum norm.

Since f is homogeneous and non-zero, we have ∫
SV

f 2 dvol > 0 . Choose g ∈ A such that 
the C0-distance

is small enough so that

Assume d = deg f  even. (The case d odd is analogous and is left to the reader.) Since f |SV 
is an even function, we may assume g is also even, that is, has only even degree homogene-
ous components. Indeed, A is graded so that the even part of g belongs to A, and the inte-
gral in (5) does not change after replacing g with its even part. Moreover, by multiplying 
the homogeneous components of g with appropriate powers of r2 , we may assume g is a 
homogeneous element of A, deg(g) is an even number ≥ d , and (5) still holds.

On the other hand, for any k, the polynomial r2kf  is a non-zero element of Bd+2k which 
is ⟨ , ⟩d+2k-orthogonal to Ad+2k , because A is Laplacian. Thus, after replacing f with r2kf  for 
an appropriate choice of k (so that (5) still holds), we may assume f, g are homogeneous of 
the same (even) degree d.

Decompose f,  g with respect to (3). That is, f =
∑

i fi , and g =
∑

i gi , with 
fi, gi ∈ r2iHd−2i . By Lemma 4, gi ∈ Ad for every i. Since f is orthogonal to Ad , Lemma 4 
implies that each fi is orthogonal to Ad . Thus, by (4), we obtain ∫

SV
fg dvol = 0 , contradict-

ing (5). 	�  ◻

�−df◦h� = �−df0 +⋯ + �−1fd−1 + fd ∈ B

� ∶ B → C0(X)

sup
x∈X

|�(g)(x) − �(f )(x)| = sup
v∈SV

|g(v) − f (v)|

(5)∫SV

fg dvol > 0.
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3 � Manifold submetries

For the reader’s convenience, and to fix notations, we recall definitions and basic facts 
regarding submetries. For more information, see [9, 13] and references therein.

Definition 7 

•	 A submetry is a map between metric spaces which maps closed metric balls to closed 
metric balls of the same radius.

•	 A manifold submetry is a submetry from a Riemannian manifold to a metric space, 
such that each fiber is a possibly disconnected embedded smooth submanifold.

•	 A spherical manifold submetry is a manifold submetry from the unit sphere SV in a 
Euclidean vector space V.

•	 An infinitesimal manifold submetry is a manifold submetry from a Euclidean vector 
space V, such that the origin is a fiber.

We note the fibers of a submetry form a partition of the domain into closed equidis-
tant subsets, and that, conversely, any such partition comes from a submetry. We also note 
that, given an infinitesimal manifold submetry � ∶ V → X , the unit sphere SV is a union of 
fibers, and the restriction �|SV ∶ SV → �(SV) is a spherical manifold submetry. Moreover, 
this procedure establishes a one-to-one correspondence between these two types of mani-
fold submetries, see [13, Appendix B1].

Example 8  Let G be a compact group, and V be an orthogonal G-representation. Then the 
quotient map V → V∕G is an infinitesimal manifold submetry, and SV → SV∕G is a spher-
ical manifold submetry.

Definition 9  Given an infinitesimal manifold submetry � ∶ V → X , denote by F� the parti-
tion of V into the fibers of � , and define its algebra of basic polynomials by B(�) = B(F�).

We will frequently abuse notation and write “let (V ,F) be a manifold submetry” when 
we mean “let � ∶ V → X be a manifold submetry, and F = F�”.

4 � Separating versus generating invariants

In this section we prove a result (Theorem 15 below) that generalizes Corollary D in two 
directions: the orthogonal representation is replaced with a manifold submetry, and the set 
S is only assumed to separate leaves on a certain open set.

Definition 10  Let � ∶ V → X be an infinitesimal manifold submetry, and S ⊂ B(𝜎) a sub-
set of the algebra B(�) of basic polynomials.

•	 The set S is called a separating set for � if it separates the fibers of � , that is, if 
L(S) = F�.
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•	 The set S is called a local separating set for � if there exists an open subset U ⊂ V  with 
the following properties. (1) U is L(S)-saturated, hence also F�-saturated. And (2) S 
separates fibers of � contained in U, that is, L(S)|U = F�|U.

Example 11  To illustrate the requirement that the open set U be saturated with respect to 
both L(S) and F� in the definition above, consider V = X = ℝ , and � = Id . Then the leaves 
of F� are points, and every polynomial on V is �-basic, so B(�) = ℝ[t] . The set S = {t2} 
separates fibers of � contained in U = (0,∞) , an open set which is F�-saturated but not 
L(S)-saturated. In fact, S is not a local separating set for �.

In the context of group actions, sets of separating invariants have been intensely studied 
in the recent past, see [1, Section 2.4] and references therein.

We will need [13, Proposition 37], which we state for the reader’s convenience:

Lemma 12  Let S ⊂ ℝ[V] be a subset containing r2 . Then the sub-algebra B ⊂ ℝ[V] gener-
ated by S is Laplacian if and only if Δf  and ⟨∇f ,∇g⟩ belong to B, for every f , g ∈ S.

Remark 13  Suppose A is an algebra containing r2 and generated by homogeneous polyno-
mials of degree 2, and let A2 be its degree two graded part. Then, identifying V = ℝ

n and 
quadratic polynomials f ∈ ℝ[V]2 with the symmetric matrices Hess(f )∕2 ∈ Sym2(ℝn) , 
Lemma 12 implies that A is Laplacian if and only if A2 is closed under the standard Jordan 
product on Sym2(ℝn) given by M ∙ N = (MN + NM)∕2 . This observation leads to a classi-
fication of Laplacian algebras generated by quadratic polynomials: they are essentially the 
ones given in Examples 16 and 18 below — see [12].

Lemma 14  Let F,F′ be the decompositions of V into the fibers of infinitesimal manifold 
submetries �, �′ from V, and let U ⊂ V  be an open subset which is both F  - and F′-satu-
rated. If F|U = F

�|U , then F = F
�.

Proof  Let x, y ∈ V  on the same F -leaf. Let L ⊂ U an F  -, hence also F′-leaf. Take a mini-
mizing geodesic � ∶ [0, l] → V  from x to L, with �(0) = x , and �(l) ∈ L . Choose a vector 
v ∈ TyV  whose image in (the appropriate space of directions in) the quotient V∕F  coin-
cides with the image of � �(0).

By [13, Proposition 14(4)], �(t) and y + tv belong to the same F -leaf for all t. In particu-
lar, there is 𝜖 > 0 such that, for all t ∈ (l − �, l + �) , the points �(t) and y + tv belong to the 
same F′-leaf. Thus � �(l) and v ∈ Ty+lv map to the same vector in V∕F�.

Applying [13, Proposition 14(4)] again, we conclude that x = �(0) and y belong to the 
same F′-leaf.

Thus F′ is coarser than F  . Reversing the roles of F,F′ in the argument above yields F  
coarser than F′ , therefore F = F

� . 	�  ◻

Theorem 15  Let � be an infinitesimal manifold submetry from V, and S a local separating 
set for � containing r2 . Then the sub-algebra B ⊂ ℝ[V] generated by S coincides with B(�) 
if and only if Δf  and ⟨∇f ,∇g⟩ belong to B, for every f , g ∈ S.

Proof  Suppose B = B(�) . Then, by [13, Theorem A], B is Laplacian, and therefore Δf  and
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belong to B, for every f , g ∈ S.
For the converse implication, assume Δf  and ⟨∇f ,∇g⟩ belong to B, for every f , g ∈ S . 

By Lemma  12, B is a Laplacian algebra. By Corollary  B, B = B(��) for some manifold 
submetry �′.

Denoting by F,F′ the fiber decompositions associated to �, �′ , the fact that 
S ⊂ B ⊂ B(𝜎) implies that L(S) < F

� < F  (recall that “<” means “coarser than”).
By definition of local separating, there exists an L(S)-saturated open subset of V 

(hence both F  -, and F′-saturated) such that L(S)|U = F|U . Thus F�|U = F|U , which, by 
Lemma 14, implies that F� = F  . In particular, B = B(F�) = B(F) = B(�) . 	�  ◻

4.1 � Applications to First Fundamental Theorems

We collect here a few simple examples which illustrate how Corollary D and Theorem 15 
can be used to prove First Fundamental Theorems, that is, to prove that certain sets of 
invariant (respectively basic) polynomials actually generate the algebra of all invariant 
(respectively basic) polynomials. Our method is loosely analogous to the method illus-
trated in [22, Section 5] to prove FFT’s for general tensors (as opposed to symmetric ten-
sors, that is, polynomials).

Example 16  The standard diagonal action of G = O(n) (respectively, U(n) , Sp(n) ) on 
V = (ℝn)k (respectively (ℂn)k , (ℍn)k ). Generators for the algebra of invariants ℝ[V]G are 
given by the polynomials fij(v1,… , vk) = ⟨vi, vj⟩ , and similarly in the complex and qua-
ternionic cases. This is sometimes called Weyl’s First Fundamental Theorems for O(n) 
(respectively U(n) , Sp(n) ), see [25].

Indeed, these polynomials are clearly G-invariant, and it is an elementary fact in Linear 
Algebra that they separate the G-orbits. Moreover, being quadratic polynomials, it follows 
that Δ(fij) are constant, hence belong to the algebra generated by fij . Finally, a simple com-
putation shows that ⟨∇fab,∇fcd⟩ belongs to the span of {fij} for every a, b, c, d.

Example 17  The standard diagonal action of G = SO(n) on V = (ℝn)k . A set of generators 
for ℝ[V]G is given by the fij from the previous example when k < n . If k ≥ n , one needs 
to add certain polynomials hS , one for each n-element subset S = {s1,… , sn} ⊂ {1,… , k} , 
defined by hS(v1,… vk) = det(vs1 ,… vsn ).

Indeed, it is easy to see that these polynomials are G-invariant, and separate G-orbits. 
Moreover, ΔhS = 0 because each variable only appears once, and ⟨∇hS,∇hT⟩ , being O(n)
-invariant, can be written as polynomials in the fij , by the previous example. Finally, the 
fact that the gradient of the determinant function is the adjugate matrix, together with 
Cramer’s rule, shows that ⟨∇fij,∇hS⟩ vanishes if |S ∩ {i, j}| = 0 or 2, and equals ±hj∪S⧵i if 
i ∈ S and j ∉ S.

Example 18  Clifford foliations. Let P0,…Pm be a Clifford system, that is, a set of 2l × 2l 
real symmetric matrices such that P2

i
= I for every i, and PiPj = −PjPi for every i ≠ j . The 

associated Clifford foliation in ℝ2l is defined as L({r2, f0,… , fm}) , where fi(x) = ⟨Pix, x⟩ , 
see [19]. Then the algebra of basic polynomials is generated by the quadratic polynomials 

⟨∇f ,∇g⟩ = Δ(fg) − fΔg − gΔf

2
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r2, f0,… fm . (This was originally proved in [12], with a considerably more complicated 
argument.)

Indeed, they separate leaves by definition, their Laplacians are constant, and 
⟨∇fi,∇fj⟩(x) = ⟨(PiPj + PjPi)x, x⟩ , which equals either 0 or 2‖x‖2 , according to whether 
i ≠ j or i = j.

5 � Polarizations

Polarizations are a classical tool in Invariant Theory, used to produce multi-variable invari-
ants from single-variable invariants. We introduce a generalization and show that in many 
situations these “generalized polarizations” are enough to generate all multi-variable invar-
iants. For a general reference on (classical) polarizations, see [10, Section 7.1] and [25].

5.1 � Definitions

Definition 19  Let S be an arbitrary subset of ℝ[V] . The Laplacian sub-algebra generated 
by S is defined to be the smallest Laplacian sub-algebra A of ℝ[V] that contains S . That is, 
A is the intersection of all Laplacian sub-algebras of ℝ[V] containing S.

Remark 20  In the notation of Remark 13, if the elements of S are homogeneous polynomi-
als of degree two, then the Laplacian algebra generated by S is the sub-algebra of ℝ[V] 
generated by the smallest Jordan sub-algebra of Sym2(ℝn) ≃ ℝ[V]2 containing S and Id.

Remark 21  If S generates A as a Laplacian algebra as in the definition above, one can pro-
duce a larger set which generates A as an algebra in the following way. In particular, if S is 
a local separating set for an infinitesimal manifold submetry � , this produces a generating 
set for A = B(�) by Theorem 15.

Let S1 = S ∪ {r2} . For l ≥ 2 , define Tl as all the elements of

that do not belong to the algebra generated by Sl−1 , and define Sl = Sl−1 ∪ Tl.
Then ∪∞

l=1
Sl generates A as an algebra by Lemma 12. Moreover, since A is finitely gen-

erated by [13, Lemma 24], the nested sequence Sl stabilizes, and A is generated, as an alge-
bra, by Sl for some l that depends only on S.

Definition 22  Let A ⊂ ℝ[V] a Laplacian sub-algebra, associated to the infinitesimal 
manifold submetry F  , and k ≥ 1 an integer. The algebra of generalized polarizations 
on Vk , denoted A(k) , is the Laplacian sub-algebra of ℝ[Vk] generated by the polynomials 
fij(v1,… , vk) = ⟨vi, vj⟩ , and the polynomials (v1,… , vk) ↦ f (v1) , for all f ∈ A.

Denote by F(k) the infinitesimal manifold submetry of Vk corresponding to A(k) accord-
ing to Corollary B.

ΔSl−1 ∪ {⟨∇f ,∇h⟩ ∣ f , h ∈ Sl−1}
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Note that the subspaces V1 = V × {0} ×⋯ × {0} , V2 = {0} × V × {0} ×⋯ × {0} , etc are 
F

(k)-saturated (also called F(k)-invariant). In particular, A(k) is multi-graded with respect to 
the product structure of Vk , by [12, Proposition 19].

Note also that, if F  is homogeneous, given by the orbits of some G ⊂ O(V) , then A(k) is 
contained in the algebra of invariants ℝ[Vk]G , where G acts on Vk diagonally. In particular, 
A ↦ A(k) can be seen as a procedure that produces a set of multi-variable invariants from 
the single-variable invariants.

Example 23  Classical polarizations. Fix an orthonormal basis x1,… , xn of V∗ , and obtain 
from it an orthonormal basis

for (Vk)∗ . Then, for any 1 ≤ i, j ≤ k , the classical polarization differential operator Pij on 
ℝ[Vk] , defined by

preserves A(k) . Indeed, for any H = H(x1,… xk) ∈ A(k) , which we may assume to be 
(multi-)homogeneous, we have

because A(k) is Laplacian. Since PijH and PjiH are homogeneous of different multi-degrees 
(unless i = j , in which case they are equal), and A(k) is multi-graded, they both belong to 
A(k).

Given f ∈ A , homogeneous of degree d, define F(x1,… , xn) = f (x1) , which is in A(k) 
by definition. The polynomials obtained from such F by repeated application of classical 
polarization operators are called classical polarizations, and the algebra pol(A, k) ⊂ A(k) 
generated by all classical polarizations of all f ∈ A is called the algebra of classical polari-
zations. Note that since the classical polarization operators are of order one, they satisfy 
the Leibniz rule, and so we would obtain the same algebra pol(A, k) if we only let f run 
through a set of generators of A. Moreover, pol(A, k) equals the smallest sub-algebra of 
ℝ[V] that contains all polynomials F of the form above, and is preserved by the polariza-
tion operators.

In particular, note that (Pi1)
d(F)(x1,… , xk) = d!f (xi) is a classical polarization. Thus, 

the restriction A(k)|Vi
 of A(k) to each invariant subspace Vi ⊂ Vk contains a copy of A. If F  

is homogeneous, then A(k)|Vi
= A . In contrast, for inhomogeneous F  and k ≥ 2 , the authors 

do not know of a single example where these two algebras coincide, see Sect. 5.4 below.

Example 24  Wallach’s polarizations [24, Appendix 2]. Given i, j, and f (x) ∈ A homogene-
ous, let F(x1,… , xk) = f (xi) , and define the Wallach polarization operator, denoted Pf

ij
 , by

Note that for f = r2∕2 , one recovers the classical operator Pij.
The operators Pf

ij
 preserve A(k) . Indeed, let Q = Pji(F) ∈ A(k) . Then, for any multi-homo-

geneous H ∈ A(k) , we have

{xa
i
| i = 1,… , k, a = 1,… , n}

Pij =

n∑
a=1

xa
i

�

�xa
j

,

⟨∇fij,∇H⟩Vk = PijH + PjiH ∈ A(k)

P
f

ij
=

n∑
a=1

�F

�xa
i

�

�xa
j

.
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If i = j , the two summands above coincide, while for i ≠ j , they are homogeneous with dif-
ferent multi-degrees. In either case, Pf

ij
(H) ∈ A(k).

In particular, if we put H(x1,… , xk) = h(xj) for some h ∈ A , we obtain the generalized 
polarization Pf

ij
(H) , given by

5.2 � Homogeneity of generalized polarizations

The goal of this subsection is to prove Theorem F.

Definition 25  (k normal spaces) Let (V ,F) be an infinitesimal manifold submetry. We say 
F  satisfies the k normal spaces condition, abbreviated k-NS, if there exists a non-empty 
open subset U ⊂ Vk such that, for all (x1,… , xk) ∈ U , we have

where for any x ∈ V  , 𝜈x(Lx) ⊂ V  denotes the normal space to the F -leaf Lx at x.
If G ⊂ O(V) is a compact subgroup, we say G satisfies k-NS if its orbit decomposition 

does.

Remark 26  The following are immediate consequences of the definition. If F  satisfies k-
NS, then it also satisfies l-NS for all l ≥ k . Denoting by F0 the decomposition of V into the 
connected components of the F -leaves, F0 satisfies k-NS if and only if F  does. If F < F

′ 
(coarser than) and F  satisfies k-NS, then so does F′.

Recall that the principal stratum of an infinitesimal manifold submetry (V, F) is the 
subset V0 ⊂ V  of all points x ∈ V  such that �x(Lx) is spanned by {∇f (x) ∣ f ∈ B(F)} . It is 
non-empty and Zariski-open, in particular it is dense in the Euclidean topology.

The next lemma implies that k-NS is equivalent to the condition that k generic nor-
mal spaces span V, and will ensure that Theorem  15 may be applied in the proof of 
Theorem F below.

Lemma 27  Let (V ,F) be an infinitesimal manifold submetry satisfying the k-NS condition. 
Then the open subset U in Definition 25 may be assumed to be dense, F(k)-saturated, and 
contained in (V0)

k , where V0 denotes the principal stratum of F .

Proof  Let �1,… �r ∈ A be a generating set. Since ∇f (x) ∈ �x(Lx) for every x ∈ V  and 
f ∈ A , the set

satisfies the condition in Definition 25. Moreover, it is the complement of a Zariski-closed 
set, defined by polynomial equations in the polynomials ⟨(∇�a)(xi), (∇�b)(xj)⟩V . Since 

A(k) ∋ ⟨∇Q,∇H⟩Vk = P
f

ij
(H) +

�
a,b

xa
j

�2F

�xa
i
�xb

i

�H

�xb
i

.

(x1,… , xk) ↦ ⟨(∇f )(xi), (∇h)(xj)⟩V .

�x1 (Lx1 ) +⋯ + �xk (Lxk ) = V ,

U� =
{
(x1,… , xk) ∈ (V0)

k | span{∇�a(xb) | 1 ≤ a ≤ r, 1 ≤ b ≤ k} = V
}
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these are generalized polarizations by Example 24, we conclude that U′ is F(k)-saturated. 
Finally, U′ contains U ∩ (V0)

k . In particular, the Zariski-open set U′ is non-empty, therefore 
dense. 	�  ◻

Proof of Theorem F  Let F = F� be the decomposition of V into �-fibers, and 
G = O(�) = O(F) . Since A ⊂ ℝ[V]G , we have A(k) ⊂ ℝ[Vk]G . With Theorem 15 in mind, 
in order to prove the equality A(k) = ℝ[Vk]G , it suffices to show that A(k) is a local sep-
arating set for the decomposition of Vk into the G-orbits, because A(k) is Laplacian by 
definition.

Let U ⊂ Vk be an open subset as in Definition 25, which, by Lemma 27, we may assume 
to be F(k)-saturated and contained in (V0)

k . We will show that A(k) separates G-orbits con-
tained in U. Explicitly, given

such that every generalized polarization H ∈ A(k) takes the same value on them, that is, 
H(x1,… , xk) = H(y1,… , yk) , we will construct an orthogonal transformation g ∈ O(V) 
such that g(x1,… , xk) = (y1,… , yk) , and then prove that g ∈ G.

Let �1,… �r ∈ A be a generating set. We may assume �1 = r2∕2 . Consider the following 
two kr-tuples of vectors in V:

The inner product of any two entries in the first tuple coincides with the inner product of 
the corresponding entries in the second tuple, because such inner products are generalized 
polarizations, see Example 24. By Weyl’s First Fundamental Theorem for the orthogonal 
group (see Example  16), there exists g ∈ O(V) such that g∇�a(xi) = ∇�a(yi) for all a,  i. 
Since �1 = r2∕2 , this implies that gxi = yi for all i. Incidentally, g is uniquely determined 
because {∇�a(xi)}a,i span V.

It remains to show that g ∈ G , that is, that g takes each F -leaf to itself. Let v ∈ V  be 
arbitrary. We will show that x1 + v and g(x1 + v) = y1 + gv belong to the same F -leaf. By 
the k-NS assumption, there exist scalars �ai such that

We will need the following Claim, which follows immediately from the definition of the 
Wallach polarization operators (see Example 24) :

Claim: Let H ∈ A(k) be an arbitrary generalized polarization. Consider the function 
Ω ∶ ℝ × Vk

→ ℝ given by

Then

where H̃ =
∑

a,i 𝜆aiP
𝜌a
i1
(H) ∈ A(k) . In particular, �

bΩ

�tb
|t=0 ∈ A(k) for all b.

(x1,… , xk), (y1,… , yk) ∈ U,

(∇�a(xi))a,i (∇�a(yi))a,i

v =
∑
a,i

�ai∇�a(xi).

Ω(t, z1,… , zk) = H

(
z1 + t

∑
a,i

�ai∇�a(zi), z2, … , zk

)

𝜕Ω

𝜕t
(t, z1,… , zk) = H̃

(
z1 + t

∑
a,i

𝜆ai∇𝜌a(zi), z2, … , zk

)
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We apply the Claim above to the case where H(z1,… , zk) = h(z1) for an arbitrary h ∈ A . 
It follows that the polynomials t ↦ h(x1 + tv) and t ↦ h(g(x1 + tv)) are equal, because they 
have the same derivatives, of all orders, at t = 0 . Since h ∈ A is arbitrary, this shows that 
x1 + v and g(x1 + v) belong to the same orbit, and, since v was arbitrary, we conclude that 
g ∈ G . 	�  ◻

We finish this subsection with a couple of open questions regarding the k-NS 
condition.

Question 28  When k ≥ 2 , can the hypothesis that F  satisfy the k-NS condition be dropped 
from Theorem F?

Question 29  Is the k-NS condition equivalent to k dim(V∕F) ≥ dim(V)?

5.3 � When generalized polarizations generate

Let G ⊂ O(V) be a closed subgroup, with algebra of invariants A = ℝ[V]G , k a positive 
integer, and let A(k) be the algebra of generalized polarizations. As mentioned earlier, we 
have A(k) ⊂ ℝ[Vk]G . The objective of this subsection is to give sufficient conditions for 
equality to hold, and in particular to prove Theorem G.

As mentioned in the Introduction, equality cannot hold in full generality, because gen-
eralized polarizations depend only on the algebra of invariants A = ℝ[V]G , which in turn 
only depends on the G-orbits, and not on G itself. On the other hand, for k = dim(V) (and 
hence for all k ≥ dim(V) ), the group G itself is a G-orbit, in particular it is determined 
by ℝ[Vk]G . Indeed, Vdim(V) can be identified with End(V) , and G is the G-orbit through 
Id ∈ End(V) . For a concrete example, compare Examples 16 and 17: the groups O(n) and 
SO(n) have the same orbits, hence have the same algebra of invariants and algebras of gen-
eralized polarizations. But the algebras ℝ[Vk]O(n) and ℝ[Vk]SO(n) are distinct when k ≥ n.

Subgroups G,G� ⊂ O(V) are called orbit-equivalent if they have the same orbits. The 
discussion above shows that, at least when k is large, we can only expect A(k) = ℝ[Vk]G if 
G is maximal (with respect to inclusion) in its orbit-equivalence class.

Proof of Theorem G  Being “maximal in its orbit-equivalence class” is just another way of 
saying that G = O(�) , where � is the quotient map V → V∕G . Thus the first part of the 
statement follows immediately from Theorem F. 

a)	 By Remark 26, it suffices to take G to be a maximal torus in O(V) , and show that G 
has the 2-NS property. If V is even-dimensional, we may identify V with ℂn , and let 
G = U(1)n act on V in the standard way. Then the normal spaces at a pair points near 
(1,… , 1) and (

√
−1,… ,

√
−1) span V, so G has 2-NS. If V is odd-dimensional, we have 

V = ℂ
n ⊕ℝ with G = U(1)n acting only on the ℂn factor. Again, the normal spaces at a 

pair points near (1,… , 1, 0) and (
√
−1,… ,

√
−1, 0) span V, so G has 2-NS.

b)	 k ≥ dim(V) implies k-NS because the position vector v is normal to the G-orbit through 
v, for any v ∈ V .

	�  ◻
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Remark 30  Theorem  G gives an alternative proof of Corollary E, which avoids [2, Theo-
rem 3.4], because G finite implies both k-NS for all k, and maximality in its orbit-equiva-
lence class (see [23, Lemma 1]).

Remark 31  If G ⊂ O(V) is maximal in its orbit-equivalence class, the algebra A = ℝ[V]G 
determines G, hence it also determines ℝ[Vk]G for all k. As a corollary of Theorem  G, 
we obtain an explicit way to produce ℝ[Vk]G out of A = ℝ[V]G . Namely, out of A one 
constructs A(dim(V)) ⊂ ℝ[Vdim(V)] , which equals ℝ[Vdim(V)]G by Theorem G, and therefore 
ℝ[Vk]G is the restriction of A(dim(V)) to the subspace Vk ⊂ Vdim(V).

Remark 32  Theorem G applies to many groups G. In contrast, ℝ[Vk]G being generated by 
classical polarizations is quite special.

Schwarz [21] has classified the complex rational representations V of simple reductive 
algebraic groups G such that ℂ[Vk]G is generated by classical polarizations. In particular 
the irreducible ones are coregular, that is, ℂ[V]G is free, and the reducible ones are isomor-
phic to a direct sum of a certain number of copies of the standard action of SL(n) on ℂn . It 
is also conjectured in [21] that if G is a finite group and ℂ[Vk]G is generated by classical 
polarizations, then the action of G on V is generated by reflections.

Even if G is generated by reflections, ℂ[V2]G (and hence ℂ[Vk]G for k ≥ 3 ) may fail to 
be generated by classical polarizations, for example when G is the Weyl group of type D4 . 
As for Wallach polarizations, they are enough to generate ℂ[V2]G for G of type Dn for all n, 
but not for G of type F4 . See [24, Appendix 2] and [7].

5.4 � Homogeneity of infinitesimal manifold submetries

Not all infinitesimal manifold submetries (V ,F) are homogeneous, that is, given by the 
orbit decomposition of some compact subgroup G ⊂ O(V) . Historically, the first inho-
mogeneous examples were isoparametric foliations constructed in [17, 18], later gen-
eralized in [3], and the octonionic Hopf fibration of ℝ16 . The latter is an example of a 
Clifford foliation, see Example 18. All these are examples of composed Clifford folia-
tions, see [19]. In some sense “most” composed Clifford foliations are inhomogeneous 
[4], and, since this construction can be applied to any homogeneous foliation, one can 
reasonably argue that there are “at least as many” inhomogeneous manifold submetries 
as homogeneous ones.

There are many ways one can prove that a given manifold submetry (V ,F) is inho-
mogeneous. One method involves generalized polarizations. Recall from Subsection 5.1 
that the restriction of F(k) to the invariant subspace V × 0 ×⋯ × 0 ⊂ Vk is finer than 
the original manifold submetry F  , and that they coincide if F  is homogeneous. Thus, 
if one can find a number k and a generalized polarization in A(k) whose restriction to 
V × 0 ×⋯ × 0 is not constant on some F -leaf, then F  is inhomogeneous. The following 
result provides a converse to this method, under the technical k-NS assumption:

Theorem 33  Let (V ,F) be an infinitesimal manifold submetry with algebra of basic poly-
nomials A, and k ≥ 2 . Assume (V ,F) satisfies k-NS, and that the restriction of F(k) to the 
saturated subspace V × {0} ×⋯ × {0} is isomorphic to F  . Then F  is homogeneous.
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Proof  By Theorem F, F(k) is given by the orbits of the diagonal action of O(F) on Vk . In 
particular, its restriction to V × {0} ×⋯ × {0} is given by the orbits of O(F) acting on V. 
Thus F  is also given by these orbits, that is, F  is homogeneous. 	�  ◻

As a corollary, if the restriction of F
(dim(V)) to the saturated subspace 

V × {0} ×⋯ × {0} is isomorphic to F  , then F  is homogeneous. Note also that the con-
dition in Theorem   33 can be rephrased as an algebraic condition on A, namely “the 
restriction of A(k) to V × {0} ×⋯ × {0} is equal to A”.

Remark 34  In the notations of Remarks  13 and  20, let A be a Laplacian algebra gener-
ated by the homogeneous quadratic polynomials A2 , seen as a Jordan subalgebra 
A2 ≃ J ⊂ Sym2(Rn) . Let U ⊂ Matn×n(ℝ) be the enveloping algebra of J, that is, the span of 
all products of matrices in J. Then it is not hard to see that, for all k ≥ 2 , the algebra A(k) of 
generalized polarizations is the algebra generated by those quadratic polynomials in ℝ[Vk]2 
whose Hessians have the form

where Cij ∈ U for all i, j. In particular, the restriction of A(k) to V × {0} ×⋯ × {0} is inde-
pendent of k, for k ≥ 2 . Thus Theorem 33 implies that A is homogeneous if and only if 
the restriction of A(2) to V × {0} is equal to A if and only if every symmetric matrix in U 
belongs to J.

Since most Clifford foliations do not satisfy the 2-NS condition, Remark 34 makes one 
wonder:

Question 35  Does Theorem 33 hold without the k-NS condition?
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