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Abstract

This doctoral thesis addresses some open problems, of a non-perturbative nature, in the
context of quantum chromodynamics (QCD), the theory that describes the strong nu-
clear interaction in the Standard Model of elementary particle physics, and in statistical
models of spin systems, by means of lattice field theory. The main topic addressed in
this work is the investigation of inclusive semileptonic decays of heavy mesons through
numerical simulations of lattice QCD and through the reconstruction of spectral func-
tions by means of a variant of the Backus-Gilbert method. After presenting the original
results obtained, the future prospects and possible generalizations in this research line
are discussed.
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Riassunto in italiano

Questa tesi di dottorato affronta alcuni problemi aperti, di natura non perturbativa,
nell’ambito della cromodinamica quantistica (QCD), la teoria che descrive l’interazione
nucleare forte nel Modello Standard della fisica delle particelle elementari, e nei mod-
elli statistici dei sistemi di spin, mediante la teoria dei campi su reticolo. L’argomento
principale affrontato in questo lavoro è lo studio di decadimenti semileptonici inclusivi
di mesoni pesanti attraverso simulazioni numeriche di QCD su reticolo e attraverso
la ricostruzione di funzioni spettrali per mezzo di una variante del metodo di Backus-
Gilbert. Dopo aver presentato i risultati originali ottenuti, vengono discusse le prospet-
tive future e le possibili generalizzazioni in questa linea di ricerca.
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Chapter 1

Introduction

Exactly solvable models are relatively rare in quantum field theory, and most often
they are not of direct phenomenological relevance. While many interesting phenomena
occurring in nature can be described by theories that can be studied by means of per-
turbative techniques (whereby one typically starts from an idealised limit of the theory,
in which interactions between the fundamental degrees of freedom are neglected, and
then introduces the effects of the interaction, parameterised in terms of a “small” nu-
merical coefficient, by computing subsequent corrections to the non-interacting limit),
many others are of intrinsically non-perturbative nature, and consequently evade any
attempt to capture them through weak-coupling-expansion methods.

Hadrons, which are composite states bound by the strong nuclear interaction, pro-
vide a prime example: while the theory of the Standard Model describing the strong
nuclear interaction is quantum chromodynamics (QCD), which reduces to a theory of
non-interacting quarks and gluons at an infinitely high energy scale, and can be ap-
proximated analytically by perturbation theory at very large, but finite, energy scales,
the perturbative approach misses the most relevant physical phenomena determining
the low-energy spectrum of the theory, namely confinement of colour charges in colour
singlets, and the dynamical breaking of chiral symmetry.

Even though over the years many analytic and numerical methods have been devel-
oped to obtain a quantitative understanding of the physics underlying these phenom-
ena, the most fundamental and most reliable one consists in regularising the theory on
a spacetime lattice. This method, which was proposed by Kenneth G. Wilson in ref. [1],
provides a mathematically well-defined, gauge-invariant, non-perturbative definition of
the path integrals to quantise the theory, and allows one to estimate these integrals
numerically, by means of Monte Carlo calculations. With present (super-)computing
resources, this approach (which is systematically improvable and directly based on the

1



CHAPTER 1. INTRODUCTION

underlying microscopic theory) leads to very precise theoretical predictions. While peo-
ple who are not lattice-QCD practitioners occasionally regard the lattice regularisation
simply as a crude approximation of the theory defined in the continuum, it is worth
remarking that this is a misconception. In the limit of vanishing lattice spacing, lattice
QCD is QCD; more precisely, one can state that continuum QCD is a good low-energy
effective description of the lattice theory, where, in this case “low energies” means “en-
ergies much smaller than the lattice cutoff scale”, which is inversely proportional to the
lattice spacing a and, thus, goes to infinity in the a → 0 limit. This crucial property,
which holds not only at the classical but also at the quantum level, is a consequence of
the way in which the symmetries of the continuum theory are explicitly partially bro-
ken (like the Lorentz-Poincaré symmetries, which are reduced to discrete subgroups)
or are explicitly preserved (like the gauge symmetry) by the lattice regularisation at
every value of the lattice spacing.

The regularisation of QCD on a lattice was motivated by the close analogy between
Euclidean quantum field theory and statistical field theory, and, following this analogy,
one of the problems addressed in this doctoral thesis deals with the properties of a
particular type of excitations in the Heisenberg spin model.

Another problem that is studied in this thesis has to do, instead, with the mech-
anism by which, in confining non-Abelian gauge theories, the flux lines generated by
colour sources form thin tubes, whose energy grows with their length (implying lin-
ear confinement of colour charges) and whose dynamics can be modelled in terms of
a bosonic string theory. It is particularly interesting to study the behaviour of such
confining flux tubes at finite temperature, in particular in the proximity of a transition
point, in which one expects the long-distance properties of the theory to be captured
by a spin model.

Finally, it is worth remarking that, in addition to serving as a tool to study im-
portant properties of QCD, lattice QCD also play a very important role in flavour
physics, due to the fact that quarks undergoing processes mediated by the weak in-
teraction are not isolated particles: instead, these processes occur for quarks that
are bound by the non-perturbative effects of the strong interaction into colour-singlet
states. Among these processes, semileptonic decays play a pivotal role in our under-
standing of flavor physics and the determination of important parameters, such as the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb|. These processes are of par-
ticular interest due to their sensitivity to possible new physics effects, as they may be
indirectly affected by the dynamics of particles with masses even higher than those
potentially accessible at the Large Hadron Collider at CERN.

For many years, lattice QCD provided precise theoretical predictions for quanti-
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CHAPTER 1. INTRODUCTION

ties related to exclusive semileptonic decays, in which a single hadron state decays
into another single state with a different valence quark content. The computation of
inclusive semileptonic decays, on the other hand, requires the simultaneous computa-
tion of several different hadronic states which has been considered for many years as
prohibitively complicated for lattice QCD simulations. The situation, however, has
dramatically changed in recent years, with the advent of new formal methods to cap-
ture inclusive decays on the lattice, and with the parallel development of sophisticated
spectral-reconstruction techniques that allow one to access precise information on the
physical states contributing to lattice QCD correlation functions. The combination of
these two novel methods into a lattice QCD study of inclusive semileptonic decays of
heavy mesons is the third and main problem addressed in this thesis.

Overall, this thesis aims therefore to contribute to the growing body of knowledge
in the field of lattice QCD, with a specific focus on inclusive semileptonic decays of
heavy mesons and tackling various challenging problems in non-perturbative QCD,
such as the extraction of spectral functions from lattice correlators, the study of con-
finement in Yang-Mills theory and the behaviour of non-trivial topological excitations
in spin models. By shedding light on these physical phenomena, we hope to deepen
our understanding of strongly coupled theories.

The structure of this doctoral thesis is the following: In chapter 2 we introduce the
theoretical background of lattice gauge theories and discuss its connection to statistical
mechanics. In chapter 3 we will describe how the full theory of QCD can be regularised
on the lattice and we will introduce the formalism used in order to simulate quarks
on the lattice, while in chapter 4 we will review the numerical techniques employed
in modern day lattice field theory simulations. In chapter 5, we discuss our results in
the study of monopole-like configurations in the classical Heisenberg spin-model and
in chapter 6 we investigate the description of confinement due to vibrating strings at
finite temperatures. In chapter 7 we discuss the HLT method used in the extraction of
spectral functions from lattice correlation functions and we also show how they can be
used in order to extract glueball masses in SU(3) Yang-Mills theory, before describing
the details of our new method to compute inclusive semileptonic decays on the lattice
in chapter 8. Finally, in chapter 9 the main findings of this work are summarised.
Some notations and technical details are collected in the Appendices.

The original research work discussed in this doctoral thesis has resulted in the
publication of three peer-reviewed scientific articles [2, 3, 4] and was presented at
various international conferences [5, 6, 7, 8].
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Chapter 2

Lattice gauge theory

Quantum field theories are the cornerstone of the modern theoretical description of
elementary particle physics. They combine the two main advances that shook funda-
mental physics during the first half of the XX century, namely, quantum mechanics
and the theory of (special) relativity, into a tight theoretical framework, from which
one can derive far-reaching implications.

The predictions of quantum field theories (including those that can be formulated
in terms of invariance under local internal symmetries, i.e., gauge theories) are often
derived in a perturbative approach, in the path-integral framework due to Richard P.
Feynman [9]. Yet, the existence of various types of divergences makes a mathematically
well-defined, gauge-invariant formulation of these theories beyond perturbation theory
non trivial. This may be surprising, given that effects not captured by perturbation
theory are predominant in at least one of the gauge theories in the Standard Model of
elementary particle physics – namely quantum chromodynamics (QCD), the theory of
the strong nuclear interaction, which is based on the unbroken gauge invariance under
the SU(3) group acting on “colour” degrees of freedom. In particular, the nature and
the structure of the lightest physical states in the spectrum of the theory is determined
by phenomena of non-perturbative nature, namely confinement of colour charges into
color-singlet states and the dynamical breaking of the (approximate) chiral symmetry
for the lightest quark species (“flavours”).

The formulation on a discrete lattice (rather than in a continuous space-time) is a
way to provide a mathematically rigorous, gauge-invariant, non-perturbative definition
of a gauge theory. The first formulation of a lattice gauge theory was presented in a
seminal article by Kenneth G. Wilson in 1974 [1]. In the article, Wilson set up an
Abelian gauge theory (the generalisation to non-Abelian gauge theories being straight-
forward) on a four-dimensional Euclidean lattice with a lattice spacing a, which provide
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CHAPTER 2. LATTICE GAUGE THEORY

a natural ultraviolet cutoff – the modulus of each component of the momentum that
can be probed on a lattice of spacing a cannot exceed π/a.

The most common method for regularising a quantum field theory on the lattice is
based on a Wick-rotated version of the original space-time (replacing the Minkowski
time t with Euclidean time τ , namely: t → −iτ), whereby the Minkowski metric
gµν = diag(−1, 1, 1, 1) traded for the Euclidean one ηµν = diag(1, 1, 1, 1): this explicitly
reveals the connection between a quantum field theory and a statistical-mechanics
model, allowing one to make use of techniques such as Monte Carlo simulations to
evaluate expectation values of operators as well as correlation functions.

Thus, trough the lattice regularisation one is able to study intrinsically non-perturbative
phenomena, such as colour confinement in Yang-Mills theories, with the aid of numer-
ical simulations.

2.1 Path integral formalism

In order to evolve a quantum state from time ti to tf one can define the time-evolution
operator in Euclidean space-time as

Û(tf , ti) = e−Ĥ(tf−ti), (2.1)

where Ĥ is the quantum Hamiltonian operator. One can note the difference with
the time-evolution operator in Minkowski space-time UM(t) = e−iĤt, where the extra
imaginary unit comes from the Wick rotation. The discrete energy states of the system
and the Hamiltonian operator are related by the familiar eigenvalue equation

Ĥ|φn〉 = En|φn〉, (2.2)

where |φn〉 are eigenvectors; one can choose an orthonormal basis of states fulfilling the
condition ∫

d3φn|φn〉〈φn| = 1. (2.3)

In the path integral formalism, one can evaluate the matrix element associated with
the evolution of a state from an initial to a final time as

〈φf |Û(tf , ti)|φi〉 = lim
N→∞

∫ N∏
n=0

dφne
−τ

∑
n=0 L(φn) (2.4)

=

∫
Dφ e−

∫
d4xL(φ), (2.5)
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CHAPTER 2. LATTICE GAUGE THEORY

which makes it explicit that the matrix element of the time-evolution operator is equal
to the integral over all possible classical paths. Thus, borrowing the terminology from
statistical mechanics, one can define the partition function as

Z =

∫
Dφ e−

∫
d4xL(φ) =

∫
Dφ e−S(φ), (2.6)

where S(φ) is the Euclidean action of the quantum field theory.
In order to clarify the parallelism between a quantum field theory on the lattice

and a statistical field theory, it is convenient to think of a lattice field theory as a spin
model. Indeed, a statistical field theory in D dimensions is related to a quantum field
theory in D− 1 dimensions. This connection is very important in order to understand
the role of the transfer matrix in lattice field theory. The Euclidean action is real and
bounded from below, so the above equation can be understood as the partition function
of a statistical mechanics system in which the exponential of the Euclidean action e−SE

plays the role of the weight of a given configuration of the fields, replacing the familiar
Boltzmann factor e−βH [10].

Once a lattice field theory has been formulated, the original field theory problem
becomes one of statistical mechanics [11].

2.2 Transfer matrix

The analogy between QFT and classical statistical field theory suggests that there
exists an analog of the quantum time-evolution operator in the context of classical sta-
tistical mechanics. This operator is the transfer matrix T̂ . Imposing periodic boundary
conditions in time we have for a generic scalar field

φ(0,x) = φi(x), φ(T,x) = φf (x). (2.7)

The Hamiltonian operator induces infinitesimal translations in time. In classical statis-
tical mechanics what we have is a D-dimensional spatial lattice. Therefore, the transfer
matrix induces translation by one lattice spacing a, which is the smallest possible dis-
tance on an Euclidean lattice.

T̂ = exp(−aĤ). (2.8)
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CHAPTER 2. LATTICE GAUGE THEORY

Given that the partition function for a classical statistical mechanics system is Z =∏
x

∑
s e

βH and assuming periodic boundary conditions, the transfer matrix obeys

Z = Tr[T̂N ], (2.9)

where N is the number of lattice sites in the direction of the evolution.
Another quantity which is often used in statistical mechanics and in finite temper-

ature QFT is the equilibrium density matrix ρ̂, which describes an ensemble of states.
One can define the density matrix in terms of the transition matrix

ρ̂ =
1

Z
e−aNĤ =

1

Z
T̂N ; (2.10)

it is then possible to estimate the expectation value of a generic operator as an average
over an ensemble of states described by the density matrix

〈Ô〉 =
1

Z
Tr[T̂N Ô] = Tr[ρ̂ Ô]. (2.11)

At this point, it is convenient to discretise the Euclidean quantum field theory
defined on a hyper-cubic lattice Λ4 of lattice spacing a

Λ4 =
{
x : x =

4∑
µ=1

anµ, nµ ∈ Z4

}
(2.12)

where nµ label the lattice sites and a is the lattice spacing [10, 12]. The lattice spatial
volume is defined as L3 (where, for simplicity, we take the lattice size in all spatial
dimensions to be L) while T denotes the extent of the lattice along the Euclidean-time
direction.

Then, the integration measure appearing in equation 2.6 can be rewritten as a
multiple and high-dimensional, but ordinary, integration measure

D[φ] =
∏
n∈Λ

dφ(n) (2.13)

and we can write the partition function of the system described by the QFT as

Z =

∫ ∏
n∈Λ

dφ(n)e−S[φ] = 〈φf |T̂NT |φi〉 = Tr[T̂NT ], (2.14)

where NT = T/a is the number of lattice sites along the Euclidean-time direction.
On the lattice, the operator responsible for translations is the transfer matrix, hence
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CHAPTER 2. LATTICE GAUGE THEORY

the Hamiltonian becomes a derived quantity

Ĥ ≡ lim
a→0
−1

a
ln T̂ . (2.15)

In order for Ĥ to be a self-adjoint Hamiltonian, one needs T̂ to be a symmetric,
bounded, and positive operator acting on a Hilbert space of states with a positive
norm. The necessary condition for this is the Osterwalder-Schrader reflection positivity
[13] which was demonstrated to hold for lattice gauge theories by Martin Lüscher in
[14]. The consequence of this is that the correlation functions in the desired physical
Minkowski space-time can be obtained by analytic continuation of their Euclidean
counterpart. In other words, it means that the operator T̂ will give us the same
physics one would normally obtain with Ĥ.

When we evaluate the partition function, as in equation 2.14, we sandwich the
operator between vectors of an orthonormal basis and sum over all basis vectors. Using
|α(p)〉 as the basis of the eigenstates of Ĥ, where p is the state momentum. These
states are the eigenstates of the Hamiltonian, which is invariant under translation and
therefore commutes with the momentum operator [Ĥ, P̂ ]. Therefore, the eigenstates
of the Hamiltonian are also momentum eigenstates

P̂ |α(p)〉 = p|α(p)〉, (2.16)

Ĥ|α(p)〉 = Ep(α)|α(p)〉, (2.17)

with E2
p(α) = m(α)2 + |p|2. Here m(α) is not necessarily a one-particle mass, since

|α(p)〉 could represent a multi-particle state with total momentum p belonging to the
energy level α. Using the completeness relation for the full Hilbert space:

1 = |0〉〈0|+
∑
α

∫
d3p

(2π)32Eα(p)
|α(p)〉〈α(p)|, (2.18)

one can write the partition function as

Z =
1

L3

∑
α

1

2Eα(p)
〈φi|e−NT Ĥ |α(p)〉〈α(p)|φf〉 (2.19)

=
1

L3

∑
α

1

2Eα(p)
〈φi|α(p)〉e−NTEα〈α(p)|φf〉. (2.20)

Finally, taking the limit in which the time extent becomes infinitely large, one gets
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CHAPTER 2. LATTICE GAUGE THEORY

lim
NT→∞

Z = 〈φi|0〉e−NTE0〈0|φf〉. (2.21)

The ground state of the Hamiltonian |0〉 defines the vacuum with energy E0 = E0(0)

and it is normalised to one. In the NT →∞ only the states with E0 survive and |φi,f〉
become a linear combination of all the states with vacuum quantum numbers.

Exactly like in statistical field theory, one can define Euclidean correlation functions
of two generic operators Ô1,2

〈Ô1(x)Ô2(y)〉NT =
1

Z
〈φf |e−(NT−n0

x)ĤÔ1(nx)e
(n0
x−n0

y)ĤÔ2(ny)e
−n0

yĤ |φf〉, (2.22)

where n0
x and n0

y are the time components of the position 4-vectors nx, ny. Again,
inserting a complete set of states

〈Ô1(x)Ô2(y)〉NT =
1

Z

1

L9

∑
α,β,γ

1

(2π)3Eα(q)Eβ(p)Eγ(s)
〈φf |α(q)〉e−(NT−n0

x)Eα(q) (2.23)

× 〈α(q)|Ô1(nx)|β(p)〉e−(n0
x−n0

y)Eβ(p)〈β(p)|Ô2(ny)|γ(s)〉e−n0
yEγ(s)〈γ(s)|φi〉.

(2.24)

The two exponentials with temporal arguments (NT−n0
x) and n0

y produce contributions
from the boundary states φi,f . Then, upon very large time separations (NT −x0), y0 →
∞ the only surviving contributions come from Eα(q) and Eβ(s), which in this limit are
equivalent to E0 and therefore will cancel with the argument coming from the partition
function. Thus, all the energy states propagating between the two operators will be
correctly normalised with the ground state energy Ẽα(q) = Eα(p) − E0(0). In this
limit, the matrix elements 〈φf |0〉 and 〈0|φi〉 drop out in the ratio with the partition
function, giving the familiar vacuum expectation value of two-point correlator

lim
NT→∞

〈Ô1(x)Ô2(y)〉NT =
1

L3

∑
α

1

(2π)Eα(p)
〈0|Ô1(nx)|α(p)〉e−(n0

x−n0
y)Ẽα(p)〈α(p)|Ô2(ny)|0〉.

(2.25)
The formula above should be familiar. For large time separations n0

x − n0
y, the

Euclidean correlation function of two operators decays exponentially in terms of the
energy gap of the system Eα − E0. This is the same behaviour of Euclidean correla-
tion functions in spin systems for large spatial separations |nx − ny| where the decay
is exponential in terms of the inverse of the correlation length ξ. From this simple
argument it is natural to establish a connection between the correlation length of two
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operators and the energy gap of the theory, giving the relation

1

ξ
= Eα − E0 = m. (2.26)

Assuming the invariance of the vacuum state under the transfer matrix T̂ and
exploiting the fact that Ĥ and P̂ commute, one can write the matrix elements as

〈0|Ô(x)|α(p)〉 = 〈0|eiP̂ ·nxÔ(0)e−iP̂ ·nx|α(p)〉 (2.27)

= 〈0|Ô(0)|α(p)〉e−ip·nx|p0=Eα(p), (2.28)

which allows to write the Euclidean two-point correlation function in the Källén-
Lehmann representation

〈Ô1(x)Ô2(y)〉 =
1

L3

∑
α

eip·(nx−ny)

2πEα(p)
|〈α(p)|Ô(0)|0〉|2e(n0

x−n0
y)(Eα(p)−E0) (2.29)

=
1

L3

∑
ω

ρ(ω,p)e−ω(n0
x−n0

y)eip·(nx−ny) (2.30)

where ρ(ω,p) is the finite volume spectral density function. In a finite volume, the
energy spectrum is naturally discretised, thus, ρ(ωα) is not a continuous function of
ω but rather a distribution of isolated δ-functions spanning the discretised energy
spectrum. A formal treatment of spectral functions will be introduced in sec. 7.1.
As one approach the continuum limit, sending a→ 0, the summation in equation 2.30
becomes an integral and the spectral density ρ(ω) will become a function of a continuous
spectrum of states.

On the lattice, one can build quantum operators from field operators and their
conjugate momenta, defined at each lattice site φ

ÔA = φ̂(n0)†, ÔB =
∑
n∈Λ3

φ̂(n)e−an·p, (2.31)

where in this example the operator ÔA creates a field from the vacuum at some position
n0, and the operator ÔB annihilates a field with projected momentum p.

Using the eigenvalue equation and considering a complete set of orthogonal state

φ̂(n)|φ〉 = φ(n)|φ〉, (2.32)

〈φ′|φ〉 = δ(φ′ − φ) ≡
∏
n∈Λ3

δ(φ′(n)− φ(n)), (2.33)

10
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one can write the matrix elements as

〈φ̃|Ô|φ〉 = O[φ]δ
(
φ̃− φ

)
. (2.34)

The object O[φ] is no longer an operator, but a functional of the classical field variables
φ. The functional maps a field configuration φ, specified by the set of all field values
φ(n), n ∈ Λ3, into the complex numbers C. One can then rewrite the operators in
equation 2.33 as functionals

OA[φ] = φ(n0)∗, OB[φ] =
∑
n∈Λ3

φ(n)ean·p, (2.35)

and write the Euclidean two-point correlation function as the path integral of func-
tionals

〈O2(t)O1(0)〉 =
1

Z

∫
D[φ]e−Se[φ]O2[φ(n, nt)]Oq[φ(n, 0)]. (2.36)

2.3 Purely gluonic theory in the continuum

In pure gauge theory, the action is a function of gauge fields only. Theories based on
non-Abelian gauge group are known as Yang-Mills theories and their action can be
written in Euclidean space as

SYM [A] =
1

2g2

∫
d4xTr[Fµν(x)Fµν(x)]. (2.37)

Fµν is the field strength tensor and is defined as the commutator

Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)], (2.38)

and Dµ is the covariant derivative which ensure the gauge invariance of the action

Dµ(x) = ∂µ + iAµ(x). (2.39)

The gauge fields Aµ(x) are Hermitian, traceless matrices. When we work in SU(3)

Yang-Mills theory, the gauge fields are elements of the su(3) Lie algebra

A(a)
µ (x) =

8∑
a=1

a(a)
µ (x)Ta. (2.40)

The components A(a)
µ , a = 1, 2, . . . 8, are real-valued fields, the so-called colour com-

11



CHAPTER 2. LATTICE GAUGE THEORY

ponents, and the Ta are a basis for traceless Hermitian 3 × 3 matrices, also known as
Gell-Mann matrices. The internal index a denotes the different “colour” of the gauge
boson of the theory which in SU(3) are 8 and are known as gluons.

Making explicit the dependence on the colour indices, one can redefine the field
strength tensor as

Fµν(x) =
8∑

a=1

F (a)
µν Ta, (2.41)

F (a)
µν (x) = ∂µA

(a)
ν (x)− fabcA(b)

µ (x)A(c)
ν (x). (2.42)

Evaluating the trace, the Euclidean Yang-Mills action becomes

SYM =
1

4g2

8∑
a=1

∫
d4x F (a)

µν (x)F (a)
µν (x). (2.43)

From the right-hand side of equation 2.42 one can see that cubic and quartic terms
are present in the definition of the field strength tensor. This is something which does
not appear in Abelian gauge theories. These extra terms are responsible for the self
interaction of gluons which make pure non-Abelian gauge theories highly non-trivial.

2.4 The Wilson gauge action

Following Wilson’s seminal work (ref. [1]), the first step to build a lattice gauge theory
is to discretise the action on a hyper-cubic lattice with the gauge fields defined on
the links connecting the lattice sites. In contrast to continuum gauge theories, on the
lattice one does not need to introduce a gauge fixing because the lattice formulation
preserves gauge invariance [1].

Following the discussion introduced in section 2.2, one needs to replace continu-
ous space-time by a 4D finite lattice Λ4: The first thing to notice when going from
continuum to discrete space-time is to replace derivatives with finite difference approx-
imations and space-time integrals with a sum over all lattice points:

∂µφ→
1

2a
(φ(n+ aµ̂)− φ(n− aµ̂)), (2.44)

∫
d4x→

∑
n∈Λ4

a4. (2.45)

The next step is to discretise the action on the lattice. The local gauge transforma-
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tion is implemented by introducing an element Ω(x) of the gauge group defining the
theory discretised on the lattice

ψ(n)→ ψ′ = Ω(n)ψ(n), ψ(n)→ ψ
′
(n) = ψ(n)Ω(n)†. (2.46)

However, this result in an action which is not gauge-invariant for non-zero values of
a [1, 10]. For this reason, one can instead build a gauge-invariant action starting by
defining a gauge-invariant field:

Uµ(n) = P

[
e(iag

∫ n+aµ̂
n Aµ)

]
(2.47)

where P is the path-ordering operator, Aµ is the continuum gauge field operator and
g is the bare coupling. Uµ is called a link variable as it acts as a parallel transporter
connecting two lattice sites n and n + µ̂. The link variables U(n) are elements of the
gauge group of the gauge theory defined in the continuum.

The link variables transform under gauge transformation as

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ aµ̂), (2.48)

so we can form a gauge invariant quantity by attaching fermion fields to the link
variables: ψ(n)Uµ(n)ψ(n+ aµ̂). This is true for any product of link variables along an
ordered path P . Alternatively, one can form a gauge invariant object by taking the
trace of any path ordered closed loop of link variables: The Wilson Loop [1]

W = Tr

[ ∏
n,µ∈P

Uµ(n)

]
. (2.49)

The simplest way of forming a Wilson loop is by attaching link variables to form the
shortest possible, non-trivial closed loop on the lattice which takes the name of the
plaquette

Pµν = Uµ(n)Uν(n+ aµ̂)Uµ(n+ aν̂)†Uν(n)†. (2.50)

The Wilson action is defined in terms of plaquettes and it is a gauge invariant action
for the gauge fields from which one can recover the standard continuum action after
the naive continuum limit a→ 0 is taken

SG =
β

N

∑
n∈Λ

∑
µ<ν

Re Tr[1− Pµν ] (2.51)

13
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where β is the inverse coupling 2N
g2
, N being the degree of the gauge group [1].

Having discretised the gauge action on the lattice, one can then see how to discretise
a quantum gauge theory on the lattice starting with the path integral formulation. In
particular, one can obtain the expectation value of a certain observable O by evaluating
the Euclidean path integral

〈O〉 =
1

Z

∫
D[U ] e−SG[U ]O[U ] (2.52)

where the partition function Z is defined as

Z =

∫
D[U ] e−SG[U ] (2.53)

and SG is the Wilson gauge action [10].
The integration measure D on the lattice can be written as the product measure of

link variables ∫
D[U ] =

∏
n∈Λ

4∏
µ=1

∫
dUµ(n). (2.54)

Now, since the link variables are elements of the gauge group, one needs to introduce
the concept of Haar measure in order to define the integration over a continuous group.
In particular, this is needed in order to make sure that the integration measure will
also be invariant under gauge transformation. Indeed, upon gauge transformation, we
have

dUµ → dU ′µ = d(Ω(n)Uµ(n)Ω†(n)). (2.55)

One of the defining properties of the Haar measure is that for any element V of the
group, the following is true [10]

dU = d(UV ) = d(V U). (2.56)

This avoids the introduction of gauge fixing term in the path integral when working
with lattice gauge theories. Hence, there are no divergences and one can normalise the
measure by defining ∫

dU = 1. (2.57)

14



CHAPTER 2. LATTICE GAUGE THEORY

2.5 Static quark-antiquark potential and confinement

One of the main purposes behind the formulation of lattice gauge theories has always
been the study of colour confinement in Yang-Mills theories. Yang-Mills theories are
gauge theories based on the special unitary group SU(N), which is the Lie group of
N × N unitary matrices with determinant equal to one. When studying Yang-Mills
theories one usually refers to the number N as the number of colour charges of the
Yang-Mills theory in analogy to the additional quantum numbers introduced with the
quark-model. Confinement is a mechanism which arises from the self-interaction of
the gauge bosons of the theory, such as gluons in SU(3), which results in a linear
term appearing in the definition of the potential between two colour charged quarks,
and implies that the energy increases together with the space separation. Thus, two
particles with different colour charges will be “confined” in a strongly bound colour
neutral state that can be observed, while the same is not true for colour charged
particles [10].

The two main observables used to study the static quark-antiquark potential are
the Wilson and Polyakov loops. As shown in equation 2.49, Wilson loops are defined as
the trace of the product of link variables along a closed path P . In fact, Wilson loops
are formed by two objects: Wilson lines, which propagate a point on a spatial site in
the temporal direction and temporal transporters which connects two spatial points on
the same time-slice. Now, temporal transporters in the temporal gauge (A4(x) = 0)
become trivial. Therefore, one can rewrite the Wilson loop simply as the correlation
function between two spatially separated Wilson lines S(m,n;nt) and S(m,n; 0)

〈W〉 = 〈Tr[S(m,n;nt)S
†(m,n; 0)]〉 (2.58)

where the distance between the Wilson lines is defined as r = a|m− n|. Using equa-
tion 2.25 and inserting a complete set of states |k〉 one can write the correlator as

lim
NT→∞

〈Tr[S(m,n;nt)S
†(m,n; 0)]〉NT =

∑
k

〈0|S(m,n;nt)|k〉〈k|S†(m,n, 0)|0〉e−tEk ,

(2.59)
where the Euclidean time t is related to nt via t = ant. The states S†(m,n;nt)ab|0〉
have a non-zero overlap with a quark-antiquark pair, hence, they transform in exactly
the same way under gauge transformations. The accurate definition of fermion fields
on the lattice will be given in chapter 3. In the discussion that follows, one can
consider the Wilson lines equivalent to an infinitely quark-antiquark pair located at
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different spatial sites m and n. Thus, the lowest energy state E0 will be the energy
associated with the static quark-antiquark pair, with the excited states describing
additional particle-antiparticle combinations with the same quantum numbers of the
vacuum. Therefore, the energy E0 can be identified as being the quark-antiquark
potential at spatial separation r

E0 = V (r), r = a|m− n|. (2.60)

This means that we can calculate the static quark-antiquark potential from the large
time behaviour of the Wilson loop. Furthermore, Wilson loops may also be used as
operators for purely gluonic bound states known as glueballs. The detailed discussion
on how one can study these objects on the lattice will be presented in section 2.7.

One can exploit the periodic boundary conditions in the time direction to modify
the Wilson loop. In particular, one can increase the temporal extent of the Wilson loop
to be equivalent to the total number of lattice points in the time direction nt = NT .
This means that we create two disconnected paths, oriented in opposite directions
located in space at the two positions m and n: T (m;NT ), T †(n;NT ). Both paths
wind around the temporal dimension of the lattice but with opposite orientations.
This new observable, known as Polyakov loop, can be made gauge invariant if we take
the trace of each of the two paths individually

P (m) = Tr

[
NT−1∏
j=0

U4(m, j)

]
, (2.61)

which, as any trace over a closed loop is gauge invariant. The static quark-antiquark po-
tential can also be obtained by the correlation function of oppositely oriented Polyakov
loops

〈P (m)P †(n)〉 ∝ e−NT aV (r)
(

1 +O(e−NT aV (r))
)
. (2.62)

with r = |m− n|.
The general form of the static quark-antiquark potential can be parametrised as

V (r) = A+
B

r
+ σr. (2.63)

The linear rising term depends on σ which is known as the string tension. This name
comes from the fact that the mechanism which leads to the linearly rising term is
the formation formation of a flux tube between the two colour sources which can be
thought of as a string connecting the quark-antiquark pair. The linearly rising term in
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the potential implies that the energy keeps rising as one tries to pull the two constituents
apart. Thus, the quark and antiquark will be confined in a strongly bound meson state.
Due to the fact that in Yang-Mills theories the gauge field are self-interacting, we can
have quarkless colour neutral bound states i.e. the glueballs. In general, one can state
that confinement is the phenomenon for which only colour neutral combinations can
be observed.

2.6 Lattice Yang-Mills theory at finite temperature

In the previous sections the relation between lattice gauge theory and statistical me-
chanics has been discussed in details. However, when discussing how to extract the
energy levels from correlation functions we stressed that one would need to take the
NT →∞ limit, with NT being the maximum time extent of the lattice. In other words,
space and time extent were considered much larger than the largest correlation length
of the system [10]. Keeping the time extent finite, while still sending the spatial extent
to infinity, one can study the system at a finite temperature exploiting the relation

aNT =
1

T
, (2.64)

where T is the temperature of the system.
The fact that the temperature is kept finite has important physical consequences.

If one performs a Fourier transformation on the finite time lattice points, one finds that
only discrete energy levels are allowed ωn = 2πTn, known as Matsubara frequencies.
Due to the lattice structure, the Matsubara frequencies are limited to the Brillouin
zone (−π/a, π/a] .

Now, exploiting the relation between time and temperature, we can rewrite equa-
tion 2.62 as

〈P (m)P †(n)〉 ∝ e−
V (r)
T . (2.65)

Identifying V (r) as the free energy of the system, we need to normalise it by studying
its long distance behaviour which gives us the following factorisation

lim
a|m−n|→∞

〈P (m)P †(n)〉 = 〈P (m)〉〈P †(n)〉 = |〈P 〉|2, (2.66)

where in the last step P is averaged over all spatial sites, and therefore is independent of
position. For static potentials that grow with separation, which is the case of the static
quark-antiquark potential, one can see that for σ > 0, |〈P 〉| has to vanish. Therefore
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one can study of confinement is related to |〈P 〉|:

〈P 〉 = 0 ⇐⇒ confinement,

〈P 〉 6= 0 ⇐⇒ no confinement. (2.67)

At low temperature, Yang-Mills theories are confining. As temperature is increased
pure gauge theory undergoes a phase transition at a certain critical temperature Tc
[15, 16], and 〈P 〉 acquires a non-vanishing value. The Polyakov loop is then an order
parameter distinguishing between a confining phase, where free (colour) charges cannot
be found in isolation, and a deconfined phase, where isolated colour charges are screened
and can be observed.

The deconfinement transition in pure gauge theory has an interesting interpretation
in terms of the centre symmetry (ZN symmetry in SU(3) Yang-Mills theory). Acting
with a centre transformation on the temporal links will result in

U4(n, t0)→ zU4(n, t0) z ∈ Z3. (2.68)

The symmetry arises from the fact that the gauge action is built from products of
variables in trivially closed loops, so that the action is invariant under centre transfor-
mations. The Polyakov loop, on the other hand, does not close trivially and therefore
is not invariant under the transformation. For temperatures below Tc, the sum over
the centre elements is zero and the symmetry is left intact, while above the critical
temperature the symmetry is spontaneously broken. The centre symmetry property
resembles that of three-state spin-model with spin variables ∈ Z3, living on the sites of
a 3D spatial lattice [17, 18].

2.7 Glueballs

Glueballs are colour singlet quarkless bound states which have been predicted in the
early days of Quantum Chromodynamics (QCD) and the quark-gluon model [19]. Ex-
actly like for the other hadrons, each glueball state can be characterised by spin J ,
parity P and charge C quantum numbers: JPC .

One can interpret glueballs as the eigenstates of the Hamiltonian of the pure Yang-
Mills theory with Lagrangian density

LYM =
1

4
Ga
µνG

aµν , (2.69)
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J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1

Table 2.1: Subduced representations J ↓ GO of the octahedral group up to J = 4. The
elements 1 of the matrix correspond to representation RPC that become part of the
representation J in the continuum limit

with Ga
µν = Aaν,µ − Aaµ,ν + igfabcA

b
µA

c
ν , fabc being the gauge group structure constants

and g the gauge coupling.
As discussed in the previous sections, when we discretise the theory on the lattice

we lose the Lorentz symmetry of the continuum. The complete rotational symmetry,
which exists throughout the entire continuum theory, is only restored when the lattice
spacing is sent to zero a→ 0. In the lattice framework, the eigenstates of the Hamilto-
nian must belong to the irreducible representations of the octahedral point group GO,
which represents the symmetry of a cube. The octahedral point group consists of five
irreducible representations, namely A1, A2, E, T1 and T2 with dimensions 1, 1, 2, 3,
3 respectively. Since our focus is on the glueball spectrum of the gauge theory in the
continuum, one can consider GO as a subgroup of the complete rotation group SO(3).
The irreducible representations of integer spin J in SO(3), now restricted to GO, are
referred to as subduced representations J ↓ GO. Thus, the degeneracy of a continuum
spin state J is divided among the different irreducible representations of GO. As one
approaches the continuum limit, one can determine the masses of spin J glueballs by
comparing the patterns of degeneracies of the subduced representations J ↓ GO, with
the degeneracy coefficients provided in table 2.1 taken from ref. [20].

On order to construct the correct form of lattice operator O, one need to introduce
a rotation transformation denoted as Ri(O), where the index i denotes the elements of
the group GO. Since a generic representation of the group is not necessarily irreducible,
in order to construct states that transform exclusively within a specific symmetry
channel, one must combine the rotations of the original operator in a suitable linear
combination. This is done by defining an operator in the irreducible representation R
as

ΦR(t) =
∑
i

c
(R)
i Ri(O(t)), (2.70)

where the coefficients c(R)
i involved in the summation are derived from a unitary opera-

tor that facilitates the basis transformation from our chosen 24 dimensional representa-
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Figure 2.1: A sample of the lattice paths on which the glueball operators are defined.
Taken from ref. [20]

tion into an orthonormal basis for for each of the 5 invariant subspaces [21]. By adding
parity and charge conjugation to the group of pure rotations, one get the full symmetry
group of glueball states on the lattice, which is referred to as GPCO . The group GPCO
has a total of 20 irreducible representations labeled by RPC , where R indicates one of
the 5 irreducible representations of GO, P is the parity eigenvalue and C is the charge
conjugation eigenvalue.

When performing lattice simulations one is constrained by the volume of the lattice
being finite. In this case, the single-particle glueball spectrum can get significant
corrections from multi-glueball states. Moreover, if one consider periodic boundary
conditions in time, as it is often the case, one can get contributions from topological
excitations which wrap around the compact time direction, also known as torelons.
Torelons have the same quantum numbers of the glueball operators, thus if not correctly
accounted for could affect significantly the glueball spectrum. In order to control and
possibly remove these contributions one need to use techniques like the variational
method including also a set of operators that best overlap with two-glueballs and
torelon states.

The operators used in order to create and annihilate glueball states are gauge-
invariant and vacuum-subtracted

O(t) = O(t)− 〈0|O(t)|0〉. (2.71)

The single-trace operator that is used to project onto glueball states is defined simply
as

O(t) = φ(t), (2.72)

20



CHAPTER 2. LATTICE GAUGE THEORY

where φ is a zero-momentum operator given by the wall average over the temporal slice

φ(t) =
1

N3
L

∑
x∈Λ3

φ(x, t) φ(x, t) = Tr
∏

(i,µ̂)∈C

Uµ(i). (2.73)

C is a closed Wilson loop with lengths usually between 4 and 8 lattice spacings. Fig-
ure 2.1 shows some of the basic shapes of the Wilson loop.

In a given symmetry channel, the operators are built in the following form

Φ(R)(t) =
∑
i

c
(R)
i Ri(φ(t))−

∑
i

c
(R)
i Ri(〈φ(t)〉) (2.74)

=

(R)∑
i

Ri(φ(t))− 〈φ(t)〉
∑
i

c
(R)
i , (2.75)

where the last term in the second line is different from zero only when R = A++
1 .

The variational method has been used in the lattice calculation of the glueball
spectrum since the very early days of the formulation of lattice gauge theories [22, 23].
The method requires the computation of a matrix of correlators for a given set of
interpolating operators Φi, i = 1, . . . , N

Cij(t) =
∑
τ

〈0|Φ†i (t+ τ)Φj(τ)|0〉 (2.76)

All the operators need to have the same quantum number as the state that one is
interested in, so in the case of glueball states one need to include also multi-glueball
and torelon operators to the set. The goal of the variational procedure is to find an
appropriate linear combination of the basis operator by finding the optimal vi

Φ̃(t) =
∑
i

viΦi(t). (2.77)

This is done by solving the generalised eigenvalue problem (GEVP), which may be
written as ∑

j

Cij(t0)vj =
∑
j

λj(t0)Cij(0)vj, (2.78)

where the eigenvalues λj(t0) of the correlation matrix can be shown to behave as
λj(t0) = e−Ej(t0)t0 . Each eigenvalue corresponds to an energy state Ej, with the biggest
eigenvalue corresponding the the ground state E0. By diagonalising the correlator
matrix C(t0) = C−1(0)C(t0) one can solve the eigenvalue problem, which allow to
disentangle the physical states contained in the correlation functions. For a given
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eigenvalue, the corresponding eigenvector vj is used to construct the operator which
best overlap with the corresponding energy state Ej, as shown in equation 2.77.

Once the optimal operators are found, one get the corresponding optimal correlator
from the matrix of correlation functions. The ground state mass of the glueball can
then be found in the usual way by studying the long time behaviour of the correlator.
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Chapter 3

Lattice QCD

There is firm experimental evidence that the laws of particle physics are accurately
described by quantum field theory (QFT), and there is little doubt that quantum
chromodynamics (QCD) is the quantum field theory that correctly describes the strong
nuclear interaction in elementary particle physics. The fundamental degrees of freedom
of QCD are quarks and gluons, respectively the fermion fields and gauge fields of the
theory.

Discretising QCD on the lattice is not a trivial task and a lot of effort has been
done over the years to bring the field to its modern state. One of the most delicate
aspects in discretising QCD on the lattice is the treatment of chiral symmetry, which
is severely limited by a no-go theorem due to Nielsen and Ninomiya [24]. This fact led
to the development of different fermion actions, each of which bypassing some of the
assumptions of the Nielsen-Ninomiya no-go theorem.

3.1 QCD in the continuum

For each flavour, quark fields have a total of twelve independent components, resulting
from the four Dirac components for each of the three colour indices. In addition, quarks
can come in six different flavours: up (u), down (d), strange (s), charm (c), bottom (b)
and top (t). The up and down (and sometimes also the strange) quarks are referred to as
light quarks while the charm and bottom quarks are referred to as heavy quarks; finally,
the top quark is the heaviest elementary particle in the Standard Model (SM) and since
its lifetime is one order of magnitude smaller than the timescale characteristic of the
strong interaction, unlike the other flavours it does not form observable bound states.
For this reason, the top quark does not enter lattice QCD calculations. In Minkowski
space-time, the spinor field ψ(x) is related to ψ(x) by the Dirac gamma matrix γ0,
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namely: ψ(x) = ψ†(x)γ0. This is not true in Euclidean space-time where ψ(x) and
ψ(x) are treated as independent integration variables in the path integral. The Dirac
gamma matrices are also different in Euclidean space-time, as they respect the anti-
commutation relation {γµ, γν} = 2δµν1, where δµν is the Kronecker delta. An explicit
representation of the Euclidean gamma matrices can be found in the appendix A.

The continuum QCD action in Euclidean space-time can be written (suppressing
the colour indices for clarity) as

SQCD =

∫
d4x

∑
f

ψf (γµDµ +mf )ψf + SYM , (3.1)

where SYM is the gauge action defined in eq. 2.37, Dµ is the covariant derivative of
eq. 2.39, ψf and ψs are the spinor fields describing the quark flavour labeled by f , with
an associated bare mass mf .

At the classical level, the QCD action is invariant under Lorentz-Poincaré symmetry
and under the discrete symmetries C (charge conjugation), P (parity1), and T (time
reversal). In addition, it is also invariant under SU(3) gauge symmetry acting on the
internal colour degrees of freedom. Finally, for massless quarks, QCD is also invariant
under chiral symmetry: the latter (and its fate at the quantum level), together with
confinement of colour degrees of freedom within colour-neutral bound states, plays a
major role in determining the properties of the physical spectrum of the theory, as we
shall now discuss shortly.

In the case in which the fermion masses are zero, the classical QCD action is
invariant under a global chiral symmetry U(Nf )L×U(Nf )R, which encodes the fact that
QCD “treats equally” all quark flavours with the same mass, and when mf = 0 the left-
and right-handed components of the spinor fields are decoupled from each other. (With
a slight abuse of mathematical notation,) it is convenient to rewrite the chiral symmetry
in terms of “vector” and “axial” (rather than left and right) symmetry groups, and to
single out the U(1) subgroup associated with the complex phase of the determinant
for each of the two unitary groups, yielding SU(Nf )V × SU(Nf )A × U(1)V × U(1)A.
Once the theory is quantised, the axial symmetry U(1)A is broken explicitly, leading
to the axial anomaly, which leaves SU(Nf )V × SU(Nf )A × U(1)V . Moreover, the
SU(Nf )A part of this symmetry is dynamically broken by the existence of a non-
vanishing quark condensate 〈ψψ〉 in the QCD vacuum; the associated (pseudo-)Nambu-
Goldstone bosons are the pions (if only the up and down quarks are considered as

1Note that here we follow the most commonly used notation for the parity symmetry operator,
with the same symbol that we previously used for the path-ordering prescription. The distinction
between the two meanings of this symbol should be clear from the context.
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approximately massless) or the pions, the kaons and the η meson (if, in addition to
the up and down, also the strange quark is approximated as a massless particle). In
contrast, both the SU(Nf )V and the U(1)V symmetries hold also at the quantum level:
the former is responsible, for instance, for the near-degeneracy in mass between the
proton and the neutron, while the latter simply encodes the fact that QCD is a theory
in which baryon number is conserved. Note that introducing non-vanishing degenerate
masses breaks the left-right symmetry explicitly, reducing the classical symmetry of
QCD to SU(Nf )V × U(1)V .

It should be noted that in the real world, the masses of all quark flavours are non-
zero (even though those of the up and down quarks are small, of the order of some MeV,
namely two orders of magnitude smaller than the typical masses of hadrons) and all
different from each other; thus, for example, the pions are lighter than other hadrons,
but not massless. Additionally, the masses of light hadrons also receive corrections
due to the electroweak interactions, which contribute to break, for instance, the mass
degeneracy between the proton and the neutron. Nevertheless, the approximate chiral
symmetry and its breaking pattern that we described above remains a useful tool to
interpret the physical hadron spectrum, at least at a qualitative or semi-quantitative
level.

3.2 Discretising QCD

The naive approach to the discretisation of the QCD action on the lattice involves the
definition of the quark spinors on the lattice sites ψ(n); these lattice fields will then be
coupled with the link variables Uµ(n)

S[ψ, ψ] = a4
∑
n∈Λ

∑
f

ψ
(f)

(n)
1

2
[γµ(∇µ +∇∗µ) +m(f)]ψ(f)(n), (3.2)

where we substituted the integral over d4x with
∑

n∈Λ and used the gauge covariant
derivatives

∇µψ(n) =
1

a
[U(n, µ)ψ(n+ µ̂)− ψ(n)],

∇∗µψ(n) =
1

a
[ψ(n)− U−1(n− µ̂, µ)ψ(n− µ̂)]. (3.3)

In order to write the correct integration measure over the fermion fields in the path
integral, one has to regard ψ and ψ in as the generators of a 2N Graßmann algebra
η, η. As such, the generators will anti-commute with each other, enforcing the correct
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Fermi-Dirac statistics in the path integral formulation of the quantum theory.
In particular, the mapping between the generator of the Graßmann algebra and the

fermion spinors is

{η1, . . . , ηN ; η1, . . . , ηN} → {ψα;ψα}α=1,...,4
a , (3.4)

where α is the Dirac index and a the colour index.
One can use the Matthews-Salam formula [25, 26] to write the partition function

for a pair of Graßmann generators η, η

Z =

∫
dηNηN . . . dφ1dη exp

( N∑
i,j=1

ηiMijηj

)
= det[Mij]. (3.5)

This can be further generalised by Wick’s theorem for fermions, whereby an n-point
fermionic correlation function can be written as

〈ηi1ηj1 . . . ηinηjn〉 =
1

Z

∫ N∏
k=1

dηkdηk ηi1ηj1 . . . ηinηjn exp

(
N∑

l,m=1

ηlMlmηm

)
(3.6)

= (−1)n
∑

P (1,2,...,n)

sign(P )(M−1)i1jP1
(M−1)i2jP2

. . . (M−1)injPn , (3.7)

where the sum is over all the permutations P (1, 2, . . . , n) and sign(P ) is the sign of the
permutation.

The above formula can be readily applied to the fermion fields, so that one can
write the fermion propagator as

〈ψ(f)(n)αaψ
(f)

(n)βb 〉 =

∫
D[ψ, ψ]e−S[ψ,ψ,U ] =

1

a4
D
−1 (f)α,β
a,b , (3.8)

where in the above equation, the action has all the indices written explicitly.
Writing the Dirac operator in momentum space will give us

D̃(p) = m1+
i

a

4∑
µ=1

γµ sin(pµa), pµ ∈ (−π/a, π/a]. (3.9)

The above equations can be used to write the massless propagator in momentum space

D̃−1(p) =
−ia−1

∑
µ γµ sin(pµa)

a−2
∑

µ sin(pµa)2

a→0−−→
−i
∑

µ γµpµ

p2
, (3.10)

which leads to the correct pole for the massless propagator in the continuum, that
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is pµ = 0. However, one immediately notes that the propagator has additional poles
coming from the zeros of the sin(pµa) functions at pµ = π/a. Therefore, the naive
discretisation of the fermion action produces fifteen additional poles, which are known
as doublers.

3.2.1 Wilson fermions

The first solution to the fermion doubling problem was proposed by K. G. Wilson, who
suggested the addition of a term to the momentum space Dirac operator, which can
then be written as

D̃(p) = m1+
1

a

4∑
µ=1

γµ sin(pµa) + 1
1

a

4∑
µ=1

(1− cos(pµa)). (3.11)

The extra term does not modify the pµ = 0 pole, while it acts as an extra mass
term for all the momentum components pµ = π/a: m + 1

a
. In the limit of a → 0

the doublers’ mass becomes extremely heavy so that they naturally decouple from the
theory, leaving only the true pµ = 0 pole. The extra term is known as the Wilson term,
it is the discretisation of the negative Laplace operator

−ar
2

4∑
µ=1

∇∗µ∇µ, (3.12)

where r is known as the Wilson parameter. Simple dimensional analysis shows that
the Wilson term is (in the language of the renormalisation group) an irrelevant one.
Including the Wilson term in the coordinate space Dirac operator gives

Dm = D
(f)
W +m(f) =

1

2
[γµ(∇∗µ +∇µ)− ar∇∗µ∇µ] +m(f), (3.13)

where DW is referred to as the Wilson’s Dirac operator and Dm is the massive Dirac
operator.

In lattice calculations, the Wilson’s Dirac operator is sometimes expanded in terms
of the quark mass in what is known in literature as hopping expansion

Dm = 1− κH, κ =
1

2(am+ 4)
, (3.14)

where κ is the hopping parameter and H is the hopping matrix.
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3.2.2 Nielsen-Ninomiya theorem

While solving the doubling problem, the Wilson term introduces a new one: the explicit
breaking of chiral symmetry also in the massless case. In fact, this undesired feature
is one of the consequences of the Nielsen-Ninomiya theorem [27], a no-go theorem for
lattice fermions which states that on the lattice, regardless of the discretisation strategy
used, one cannot respect simultaneously all the following conditions:

1. D̃(p) is a periodic analytic function of pµ, i.e. D(n) is a local operator;

2. D̃(p) = iγµpµ +O(a), hence the Dirac operator reproduces the correct physics in
the limit a→ 0;

3. D̃(p) is invertible everywhere except pµ = 0, where the zero correspond to a single
particle;

4. {γ5, D} = 0, Dirac operator respects chiral symmetry.

From the discussion above, it is clear that the naive discretisation of eq. 3.2 violates
the third of these, while the Wilson’s Dirac operator violates the fourth condition (and,
ultimately, leads to additive mass renormalisation for Wilson fermions, implying that
to represent massless fermions using the Wilson’s Dirac operator one has to fine-tune
the bare mass).

The Nielsen-Ninomiya theorem suggests that the treatment of chiral symmetry on
the lattice is a delicate topic. In a seminal work (ref. [28]) Ginsparg and Wilson
proposed an equation for chiral symmetry on the lattice

γ5D +Dγ5 = aDγ5D. (3.15)

One solution of the Ginsparg-Wilson equation is the overlap Dirac operator [29]

Dov =
1

a
(1+ γ5 sign[H]), H = γ5A, (3.16)

where A is a γ5-Hermitian kernel Dirac operator and H is Hermitian with real eigenval-
ues. The simplest available choice for A is the Wilson’s Dirac operator (eq. 3.13. Note,
however, that, because of the sign function appearing in its definition, the overlap op-
erator is not ultra-local (namely, it does not involve interactions that are non-vanishing
only up to a finite distance), which allows it to evade the first hypothesis of the Nielsen-
Ninomiya theorem. While the overlap operator provides a mathematically elegant way
to formulate fermions on the lattice, its numerical simulation is particularly costly,
hence it is used less frequently than Wilson’s Dirac operator.
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The Wilson formulation of lattice QCD is invariant under the action of charge C
and parity P transformations, as well as their product operation CP . This is an im-
portant statement as these quantum numbers are used in the construction of meson
operators on the lattice. The third important discrete symmetry of the continuum is
time reflection T . This symmetry is well defined in Minkowski space-time where the
time direction is explicitly different from the spatial directions by having the opposite
sign in the metric. In Euclidean space-time there is no such distinction as the time
direction is Wick rotated, hence the Wilson action is actually invariant under the more
general transformations: Pµ with µ = 1, 2, 3, 4, where the transformation flips the sign
of all the components of n except for nµ. In this context, the product operation P1P2P3

is the Euclidean equivalent to the Minkowskian time reflection. This is an essential op-
eration when it comes to simulations with fermions, and indeed anti-periodic temporal
boundary conditions are used to implement the correct physical transformations.

3.2.3 Correlation functions

Let us use for now the Wilson fermion action for lattice QCD (eq. 3.13) in order to
discuss how to calculate fermion propagators. From the discussion in the previous
sections, one can exploit the properties of Graßmann variables in order to write the
expectation value of an operator O in full lattice QCD as

〈O〉 = 〈〈O〉F 〉G =
1

Z

∫
D[U ]e−SG[U ]D[ψ, ψ]e−SF [ψ,ψ,U ]O[ψ, ψ, U ]. (3.17)

The physical content of a quantum field theory can be extracted from the set of its
n-point correlation functions. A particularly simple correlation function of this type is
the two-point correlation function of meson operators. Meson operators in lattice QCD
are functionals of lattice fermion fields with the quantum numbers of the physical state
one is interested in studying. The particle states are generated on the lattice by the
action of meson interpolators that create and annihilate the state at different lattice
sites

OM(n) = ψ
(f1)

(n)Γψ(f2)(n), (3.18)

where OM is the meson interpolator, ψ(f1)(n) is a specific flavour fermion field and Γ is
a combination of Euclidean Dirac gamma matrices. One can also construct baryonic
interpolators in a similar manner.

To compute correlation functions of mesonic interpolators, one starts by writing
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explicitly the fermionic part of the expectation value

〈O(n)O(m)〉F = 〈ψ(f1)
(n)Γψ(f2)ψ

(f2)
(m)Γψ(f1)(m)〉, (3.19)

then, applying Wick’s theorem it is possible to contract the fermion fields and one can
rewrite the above equation as

〈O(n)O(m)〉F = −Tr[ΓD−1
f1

(n|m)ΓD−1
f2

(m|n)f2 ], (3.20)

where it is made explicit how the propagator D−1 propagates fermion fields from one
lattice site to another. In particular, one often refers to the O(n) and O(m) operators as
source and sink respectively. The above equation is true for any combination of flavours
and represents a connected correlator. In the case in which one requires an isospin-
singlet meson interpolator containing a linear combination of quark flavour fields, one
needs to add additional terms coming from the fermion contractions of the quark fields
being transported back to the same lattice point. These additional terms are known
as disconnected propagators and their numerical computation is challenging. The final
step is to perform the Graßmann integration and then compute the gluonic expectation
value, which allows one to write the two-point correlation function as

〈O(n)O(m)〉 = − 1

Z

∫
D[U ]e−SG[U ] det[Df1 ] det[Df2 ] Tr[ΓD−1

f1
(n|m)ΓD−1

f2
(m|n)f2 ],

(3.21)
where (assuming that the only quark flavours contributing to the dynamics of the
theory are f1 and f2, e.g., the up and down quark flavours)

Z =

∫
D[U ]e−SG[U ] det[Df1 ] det[Df2 ] (3.22)

denotes the partition function of the theory. The formula in eq. 3.21 can then be used
in Monte Carlo simulations in order to numerically estimate the two-point correlation
function. The quark flavours contained in the determinant of the Dirac operators in
eq. 3.21 are called sea quarks and their dynamics has to be included in the gauge
configurations generation in order to produce accurate results. However, as it will be
discussed in chapter 4, their inclusion in numerical simulations implies a significant
increase in computational costs, which was prohibitive in the early days of lattice QCD
(so that, until the end of the 1990’s, most numerical calculations in lattice QCD ignored
the effect of sea quarks: this rather crude approximation, which leads to a number of
unphysical effects, was called the quenched approximation of lattice QCD and has now
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become obsolete). The quark flavours contained in the operator definition, on the other
hand, are referred to as valence quarks.

Temporal correlation functions of the form of eq. 3.21 are often constructed in terms
of spatially-averaged operators defined at a fixed Euclidean time (this average amounts
to project each operator onto its zero-momentum Fourier component, in which case the
relativistic energy reduces to the mass) and can also be written in terms of a spectral
decomposition as was done in eq. 2.30

C(nt) = 〈O(nt)O(0)〉 =
∑
k

〈0|Ô|k〉〈k|Ô|0〉e−antEk . (3.23)

Studying the long time behaviour of eq. 3.23 on a periodic lattice, one can compute
the effective mass of the correlator

meff (nt) = cosh−1
[C(nt + 1) + C(nt − 1)

2C(nt)

]
(3.24)

and extract the ground state energy from fits of the data in the plateau of the effective
mass plot. Note that the presence of (the inverse of) the hyperbolic cosine function,
rather than the exponential function, is due to the periodicity of the lattice.

The interpolating operators from which the lattice correlation functions are built
are defined at a source and sink point (eq. 3.18), connected by the appropriate quark
propagator. The simplest type of source that one can choose is a point source placed
at the lattice site where the meson interpolator is defined. All possible operators with
the same quantum number as the meson interpolator will contribute to the two-point
correlation functions, although with a different overlap to the matrix elements shown in
eq. 3.23. This plethora of possible contributions could potentially spoil the possibility
to extract, e.g, the mass of a state from the lattice correlation function; for this reason,
one often chooses to apply a smearing procedure to the point source: this has the
effect of improving the overlap of the ground-to-ground matrix element, suppressing
the contamination of the signal coming from excited states. A typical choice of smearing
is the Gaußian shaped one, defined in ref. [30], which can be obtained by applying the
following operator to the source site

M =
N∑
n=0

κHn, (3.25)

whereH is the hopping matrix defined in eq. 3.14 andN is the total number of smearing
steps. In typical simulations, one computes the lattice propagator G, which propagates
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fermions from the smeared source to a point-like sink, solving the set of linear equations

DG = ηH , (3.26)

where ηH is the smeared source andD is the lattice Dirac operator. The above equation
is solved iteratively for every quark flavour considered in the correlation function. An
example of a propagator solver can be found in refs. [31, 32], which allows to invert the
Dirac operator for several quark masses at a relatively low computational cost.

The application of smearing is not the only method which improves the signal of
correlation functions that are computed in numerical lattice QCD calculations. In
refs. [33, 34], a stochastic method was proposed to improve the way quark sources
are dealt with; this method is known as the “one-end-trick”. The method reduces
the statistical uncertainties affecting the numerical estimates of lattice propagators by
diluting the set of stochastic sources used in the propagator inversion.

In order to evaluate the effects of the application of the smearing operators, one can
construct lattice correlation functions with different combinations of smearing sources
and compare the results. In figure 3.1 we studied the effective mass plots of two-point
correlation functions computed using the stochastic method with 10 spatial stochastic
sources and Gaußian smearing with N = 30 and κ = 4. These correlators were ob-
tained using meson interpolators with the same quantum numbers as the Bs meson,
computing quark propagators for the s and b quarks 2. The difference between the two
lattice correlation functions used to produce the plot in figure 3.1 is that the correlator
corresponding to the orange data points was constructed applying the smearing opera-
tor only at the source, keeping the sink local, while the correlator corresponding to the
data in blue was constructed applying the smearing operator at both the source and
sink lattice points. Figure 3.1 shows clearly that in the case in which the correlator was
smeared also at the sink, the data approach the plateau more rapidly compared to the
case in which only the source was smeared. This behaviour in the effective mass plot
reflects the stronger suppression of the excited state contamination to the correlator
when smearing is applied. Finally, fitting the correlation function in the plateau region
it is possible to extract the ground state mass of the Bs meson (in units of the inverse
of the lattice spacing used for this simulation) using eq. 3.24, giving

amBs = 1.2712(12), (3.27)

which corresponds to a value of the Bs-meson mass of mBs = 3.08(11) GeV. The
2In fact, as it will be explained in section 4.3, we could only simulate a heavier version of the c

quark as the bottom quark is too heavy to be simulated relativistically on the lattice
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Figure 3.1: Effective mass plots of the two-point correlation functions with Bs interpo-
lators. The blue points are obtained applying smearing at the sink and source points,
while the orange points are obtained applying smearing only at the sink. The purple
band corresponds to the plateau which was used to extract the ground state of the Bs

meson. Plot generated using pyerrors [35].

correlation function discussed above was also used in the calculation of inclusive heavy-
meson decays discussed in chapter 8.

In order to be able to calculate all the physical states in lattice QCD, one needs to
be able to simulate hadrons also at non-vanishing spatial momentum. One can define
a meson interpolator on a single time-slice nt projected to definite spatial momentum

Õ(p, nt) =
1√
Λ3

∑
n∈Λ3

O(n, nt)e
−ian·p, (3.28)

where the momentum can only take the discrete values allowed by the Fourier transform

pi =
2πni
L

, (3.29)

where L is the spatial extent of the lattice. When building the correlation function, it
is sufficient to project the momentum for only one operator, typically the sink opera-
tor. The limitation imposed by the Fourier transform can be lifted employing twisted
boundary condition in the spatial directions [36, 37, 38]. The use of this type of
boundary condition for one of the flavour implies a shift of the quark field of the type:
ψ(n + eiL) = eiθiψ(n). This is automatically translated in Fourier space giving the
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allowed values of the spatial momentum

pi =
θi
L

+
2πni
L

, (3.30)

where the momentum is still quantised as in the case of periodic boundary conditions
(eq. 3.29) with an additional shift equal to θi/L. The shift is not restricted by the lattice
formulation and can be any continuous value, which gives the possibility to simulate
mesons having different valence quark flavours at any value of the spatial momentum.
The effect of adding the term θ naturally affects also the covariant lattice derivatives
shown in eq. 3.3

∇µψ(n) =
1

a
[λµU(n, µ)ψ(n+ µ̂)− ψ(n)],

∇∗µψ(n) =
1

a
[ψ(n)− U−1(n− µ̂, µ)ψ(n− µ̂)], (3.31)

where λµ = e
iaθµ
L . Finally, one can write the dispersion relation for the simulated

particle as

E2
ij = M2

ij +
( θ
L

)2

. (3.32)

3.2.4 Exceptional configurations

In eq. 3.21 it is manifest the dependence of the Dirac operator with respect to the link
variable U , and any fluctuation of the latter will directly affect the form of D[U ]. In
order to see this one can consider the eigenvalues of the Dirac operators, obtained by
the standard eigenvalue equation

DWvλ = λvλ. (3.33)

Considering that the massless Wilson’s Dirac operator is γ5 Hermitian γ5DWγ
†
5 =

D†W , one can show that the characteristic polynomial satisfies P (λ) = P (λ∗)∗. As a
consequence, the possible eigenvalues of the Dirac operator are either real or will come
in complex conjugate pairs. Now, since the Dirac operator depends on U , so will the
eigenvalues λ[U ]. When we add the mass term, the eigenvalues of the Wilson’s Dirac
operator will be of the form

m+ λi[U ]. (3.34)

As long as λi[U ] is positive there is no issues regarding the inversion of the Dirac
operator. However, due to fluctuations in U , λi[U ] can be real and negative, which can
drive the eigenvalue very close to zero. When this exceptional configurations occur, the
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inversion of the Dirac operator breaks down.
One solution to the problem of exceptional configuration is the introduction of a

twisted mass term in the expression of the Wilson’s Dirac operator of eq. 3.13. This
modification leads to what is known in literature as twisted mass action which is one
of the actions currently used for modern lattice QCD simulations.

3.3 Twisted mass action

In order to best describe the twisted mass formalism, we will first consider only the two
lightest mass-degenerate quark flavours, u and d, and we will add the heavier flavours
later on in the section. According to the review of Ref. [39], the first work to introduce
the twisted mass term in a lattice QCD action was ref. [40]. However, there is little
doubt that the discussion of the twisted mass term as an infrared regulator and then
as a O(a) improved regulator of lattice QCD appear for the first time in the works
published in [41, 42, 43].

We begin writing the discretised twisted mass QCD action in the twisted basis χ, χ

StmF [χ, χ, U ] = a4
∑
n∈Λ

χ(n)
(
DW +m0 + iµqγ5τ

3
)
χ(n) (3.35)

where DW is Wilson’s Dirac operator (eq. 3.13), m0 is the bare untwisted quark mass
and iµqγ5τ

3 is the twisted mass term. The twisted mass term is trivial in colour space,
it contains the γ5 gamma matrix acting in Dirac space and τ 3, the third Pauli matrix
(for an explicit definition see app. A), acting in flavour space. A non-vanishing values
of the twisted mass µq ensures that the determinant of the twisted mass Dirac operator
is strictly positive, and consequently zero eigenvalues which otherwise would give rise
to exceptional configurations, are excluded [39, 41]. The mass term of the action can
be written as

mq + iγ5µqτ
3 = Meiω (3.36)

where M is known as the polar mass and defined as M =
√
m2
q + µ2

q and ω is the twist
angle tan(ω) = µq/mq. The untwisted mass parameter mq is defined as mq = m0−mcr,
wheremcr is the critical mass counter-term which arise from the fact that due to the loss
of chiral symmetry the mass term renormalises also additively. To close the description
of the twisted mass action it is useful to write equation 3.35 in the physical basis

StmF [ψ, ψ, U ] = a4
∑
n

ψ(n)
(1

2
γµ(∇µ +∇∗µ)− iγ5τ

3[m0 −
a

2
∇µ∇∗µ] + µ

)
ψ(n). (3.37)
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If one re-writes eq. 3.35 in the continuum, it can be revealed that the continuum
twisted mass formulation is equivalent to the standard formulation of QCD upon a
basis axial rotation

ψ = exp
(iωγ5τ

3

2

)
χ , ψ = χ exp

(iωγ5τ
3

2

)
. (3.38)

In the twisted basis, one can then define axial and vector currents as

Aaµ = χγµγ5
τa

2
χ, V a

µ = χγµ
τa

2
χ, (3.39)

and the pseudo-scalar and scalar densities

P a = χγ5
τa

2
χ, Sa = χχ. (3.40)

At the continuum level, all the symmetries of the standard QCD action (eq. 3.1) will
be transcribed into the twisted mass basis by the action of the axial transformation.
One important example are chiral SU(2)V × SU(2)A symmetry transformations

δχ(x) = i[αaV (x)
τa

2
+ αaA(x)

τa

2
γ5]χ(x), (3.41)

δχ = iχ(x)[−αaV (x)
τa

2
+ αaA(x)

τa

2
γ5], (3.42)

which through Ward-Takahashi identities [44, 45] give the partially conserved axial
current (PCAC) and partially conserved vector current (PCVC)

∂µA
a
µ(x) = 2mqP

a + iµqδ
3aS0, (3.43)

∂µV
a
µ = −2µqε

3abP b. (3.44)

The equivalence between the standard and the twisted formalism is not trivial
once we study the regularised theory on the lattice as the Wilson term breaks chiral
symmetry explicitly. However, it is possible to prove rigorously the twisted mass QCD
(tmQCD) and QCD are equivalent also at finite lattice spacing if one uses the overlap
Dirac operator (eq. 3.16), as it is the only discretisation obeying the Ginsparg-Wilson
equation which guarantees the correct chiral transformation on the lattice. If tmQCD
and QCD are the same also in the lattice regularisation then they must share the same
continuum limit. Based on universality, one can then expect that this equivalence still
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holds even when one employs a regularisation not necessarily chirally invariant and
that renormalised correlation functions computed in tmQCD are equivalent to those
in standard QCD up to cutoff effects [42].

In fact, the twist angle ω parametrises a family of twisted mass regularisations all
sharing the same continuum limit. Among the possible values of the twist angle, the
most important one is the case in which ω = π/2 referred to as maximal twist. At
maximal twist one has an automatic O(a) improvement of the discretisation effects,
with the leading correction appearing only at O(a2). In order to understand where
does this automatic improvement come from, it is useful to consider the twisted mass
propagator in momentum space

G̃(p) =
−iγµp̂µ +M(p)− iµqγ5τ

3

p̂2
µ +M(p)2 + µ2

q

, (3.45)

where we defined p̂µ andM(p) as

p̂µ =
1

a
sin(apµ) , M(p) = m0 +

2r

a
sin2

(apµ
2

)
. (3.46)

The poles of the propagator gives us the spectrum of the theory. Expanding with
respect to a and neglecting any O(a2) contribution, one gets

p2 +m2
0 + arp2m0 + µ2

q. (3.47)

At maximal twist, the bare mass term m0 vanishes and so does the only O(a) term
in the expansion. This can be understood by saying that the Wilson term and the
mass term m0 in the twisted mass formalism point point in different directions in the
chiral-flavour space.

In order to understand the chiral orthogonality of the Wilson term and the mass
parameter, one needs to first describe how tmQCD on the lattice behaves under vector
and axial transformations. As mentioned before, while in the continuum vector and
axial transformations in tmQCD are related to the axial and vector transformations
in standard QCD, on the lattice different terms in the action break different sectors of
the axial and vector transformations. To begin with, the ordinary iso-vector SU(2)V

symmetry is broken explicitly by the µq term down to UV (1)3 subgroup. At maximal
twist, the Wilson term breaks the “charged” twisted vector symmetry and is invariant
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under “charged” twisted axial symmetry which are defined respectively as

[
UA(1)π

2

]
1,2

: χ(n)→ exp
(
± iα

1,2
A

2
τ 2,1
)
χ(n), χ(n)→ χ(n) exp

(
∓ iα

1,2
A

2
τ 2,1
)
,

(3.48)

[
UV (1)π

2

]
1,2

: χ(n)→ exp
(
± iα

1,2
V

2
γ5τ

2,1
)
χ(n), χ(n)→ χ(n) exp

(
± iα

1,2
V

2
γ5τ

2,1
)
.

(3.49)
The mass term has an orthogonal behavior and breaks “charged” twisted axial symme-
try while being invariant under “charged” twisted vector symmetry.

In fact, the “charged” axial transformation is only softly broken by the mass term
and is an exact symmetry of tmQCD in the massless limit. This statement as important
consequences, since the pion is then protected from chiral symmetry breaking cutoff
effects and the vector current is protected from renormalisation. One then does not
require renormalisation for the pseudo-scalar decay constant of the charged pion as
the current does not need to be renormalised. Another important characteristic of
the tmQCD formalism is that since the twist transformations of eq. 3.38 are non-
anomalous, they do not change the integration measure in the path integral formalism
giving the same result for the expectation value of a certain observable [10]. In more
general terms, it is possible to write correlation functions in standard QCD as a linear
combination of correlation functions computed in tmQCD [39].

In order to be certain that the physical content of QCD in Minkowski space can
be reconstructed from Euclidean Green’s functions, the regularised theory, in this case
tmQCD is required to satisfy some necessary and sufficient conditions formulated by
Osterwalder and Schrader [13]. One of these conditions is the requirement that the
transfer matrix of the Euclidean theory (see sec. 2.2) is strictly positive. This condition
was demonstrated by Lüscher for Wilson fermions and the argument can be extended
to twisted mass fermions [14, 43].

Exploiting the relation between the twist angle ω and the two mass parameters
mq,µq it is possible to find a prescription to tune ω to maximal twist. This is often
done by computing the PCAC mass (eq 3.50) from lattice correlation function and
studying its long Euclidean time behaviour

mPCAC =

∑
n〈∂0A

a
0(n)P a(0)〉

2
∑

n〈P a(n)P a(0)〉
. (3.50)

Using the definition for the renormalised mass in terms of the PCAC mass mR =
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(ZA/ZP )mPCAC and the definition of the renormalised mass in terms of the critical
mass mR = Zmmq = Zm(m0−mcr), one gets an expression of the twist angle in terms
of mPCAC

tanω =
µq

ZAmPCAC

. (3.51)

The renormalisation constants ZA, Zm, ZP , Zµ depend on the bare gauge coupling
squared g2

0 and the lattice twisted mass aµ and can be determined non-perturbatively
in a mass independent scheme. The most commonly used scheme is the regularisa-
tion independent (RI’/MOM) scheme, sometime referred to as Rome-Southampton
method [10, 46].

As the PCAC mass vanishes in the long time regime of the numerical study of
eq. 3.50, the critical mass gets tuned to the same value of m0, the twist angle acquires
the value for maximal twist π/2 and we get automatic O(a) improvement. Together
with the PCAC mass method, there are currently many other methods which can be
used to tune the twist parameter, most of which can be found in ref. [39].

Until now, the discussion involved only light degenerate flavour of quarks, namely
u, d. Following ref. [47] it is possible to write the twisted mass action for non-degenerate
heavy flavour quarks in the physical basis

StmF [ψ, ψ, U ] = a4
∑
n

ψ(n)
(1

2
γµ(∇µ +∇∗µ)− iγ5τ

1[m0 −
a

2
∇µ∇∗µ] + µσ + µδτ

3
)
ψ(n),

(3.52)
where µσ and µδ are the twisted masses which can be related to the renormalised
strange and charm masses using the relation [48]

mc,s =
1

ZP

(
µσ ±

ZP
ZS

µδ

)
. (3.53)

3.3.1 Osterwalder-Seiler fermions

In principle, it is possible to simulate both sea quarks and valence quarks using the
same fermion action. However, since the twisted mass formalism does not preserve
chiral symmetry, positive parity operators are allowed to mix [49, 50]. Moreover, at
finite lattice spacing, the misalignment in chiral space between the mass term and
the Wilson term leads to the disruption of both iso-spin and parity symmetry. These
symmetries appear as O(a2) cutoff effects, in particular the iso-spin breaking which
can induce splitting among flavour multiplets.

In order to mitigate these effects and avoid operator mixing, it is convenient to em-
ploy a non-unitary set-up and use different actions to simulate different quark flavours
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which possibly do not break flavour symmetry. This mixed action technique was used
in order to compute the correlation functions used in chapter 8. In particular, all
the sea quark flavours were simulated using the twisted mass fermion action, eq. 3.35
for the light degenerate and eq. 3.52 for the strange and charm quarks. The valence
quarks, which in chapter 8 are the strange and the charm, were simulated using the
Osterwalder-Seiler action [51]

SOSF [ψ, ψ, U ] = a4
∑
n

ψ
(f)

(n)

(
1

2
γµ(∇µ +∇∗µ)− iγ5r

(f)[m0 −
a

2
∇µ∇∗µ] + µ(f)

)
ψ(n),

(3.54)
where the Wilson parameters r(f) are set to unity and opposite in sign, which guarantees
that the squared pseudo-scalar meson mass differs from its continuum counterpart only
by terms of O(a2µ) [52, 53].

3.4 Improvements to the gluon action

As we it was discussed in the previous section, it is possible to improve the lattice
fermion action, one example being the twisted mass action. In modern lattice QCD
simulations it is now widely common to use improved versions of the naive lattice
gauge action of eq. 2.51 in order to reduce discretisation effects. The results discussed
in chapter 8 were obtained using the improved Iwasaki action [54, 55].

In fact, the Wilson gauge action of eq. 2.51 belongs to a set of several possible
lattice actions that can be used to simulate a pure gauge theory. The actions differ
from each other by the number of different shapes of Wilson loops included in their def-
inition together with the plaquette operator, each of this contributions being weighted
by a coefficient. However, universality guarantees that all these lattice gauge actions
all share the same fixed point and therefore will give the same result in the contin-
uum limit. In other words, all these lattice actions will approach asymptotically the
same renormalised trajectory. However, the rapidity of the asymptotic approach is
determined by the form of the action.

The strategy used to select the improved lattice action is to first assume a general
form for the lattice action that describe the system at the renormalised trajectory in
terms of some coefficients K. Then, starting from the simplest lattice gauge action,
one can perform block link transformations which modify the lattice spacing a and
therefore produce different actions along a trajectory towards the fixed point. The
correlation functions for each of the lattice actions produced following this method can
be computed in perturbation theory. The next step is to expand the action on the
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renormalised trajectory and compute the correlation functions in perturbation theory.
The correlation functions obtained following the block link transformations in the limit
of an infinite number of such operations will all approach that on the renormalised
trajectory, and so will the corresponding lattice actions. By defining a distance between
the set of improved lattice action and the one on the renormalised trajectory it is
possible to determine the coefficients which minimise such distance. These coefficients
will then select the improved Iwasaki lattice gauge action.

Finally, another improvement that has been implemented in the lattice simulations
discussed in chapter 8 is the use of APE smearing of the gauge links [56]. The smearing
consists in averaging each link variable its six perpendicular staples together with a
parameter α which is tuned with respect to the gauge coupling. In particular, the
results shown in this documents were obtained using α = 0.5.
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Numerical methods for lattice field
theory

One of the advantages of the Euclidean lattice regularisation of gauge theories is the
possibility to use numerical methods to compute physical observables.

In particular, the numerical evaluation of expectation values in a lattice theory
requires Monte Carlo integration: the need to resort to Monte Carlo calculations to
evaluate the path integrals of a lattice theory can be understood by considering one
of the simplest models defined on a lattice, namely the classical Ising spin model in
3 dimensions, in which the spins are defined at every lattice site and can take either
the value +1 or −1. Counting all possible combinations of values, this gives a number
of possible configurations equal to 2N

3 . Thus, calculating the expectation value of an
operator exactly would require summing over all of the 2N

3 configurations. This task is
clearly impossible for every value of N (except for the smallest ones) so one has to use
Monte Carlo methods to find an approximate estimate for the expectation values of the
model; these approximate values will be affected by finite uncertainties. By choosing
a random xn from a uniform distribution ρu(xn) = 1/(b− a), in the interval [a, b], one
can evaluate an integral of the function f(x) writing

1

b− a

∫ a

b

dxf(x) = 〈f〉ρu = lim
N→∞

1

N

N∑
n=1

f(xn). (4.1)

In eq. 4.1, N denotes the order of a finite sample of the possible configurations; it can
be proven that the statistical error associated to the estimator for the expectation
value of f behaves like 1√

N
[57]. When evaluating the Euclidean path integrals, the

probability distribution of the various configurations of lattice fields is proportional to
e−S, which acts as a Boltzmann weight factor, giving different importance to different
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configurations when evaluating the Monte Carlo integration. This importance sampling
of the possible configurations is at the heart of lattice simulations.

The generalisation of the Monte Carlo simulation to lattice gauge theory and lattice
QCD is quite straightforward: basically, one simply needs to replace the integration
over the random variable xn with the integration over Uµ(n). Considering that (focusing
on QCD with two dynamical quark flavours for simplicity) one can write the expectation
value of a generic operator as

〈O〉 =
1

Z

∫
D[U ]{detD[U ]}2e−SG[U ]O[U ], (4.2)

it is possible to identify the measure of the probability distribution for the various
configurations as

dP [U ] =
1

Z
D[U ]{detD[U ]}2e−SG[U ]. (4.3)

Thus, it follows that one can use a similar version of equation 4.1 to evaluate an
approximation of the expectation value of O as

〈O〉 = lim
N→∞

N∑
n=1

O[Un], (4.4)

where the variables Un are sampled according to the dP [U ] measure, also known as
Gibbs measure.

4.1 Markov chain Monte Carlo

Given an initial gauge configuration taken from a certain type of distribution, one can
build a stochastic sequence of configurations along what is known as Markov chain

U1 → U2 → . . .→ Un, (4.5)

where the subscripts running from 1 to n denote the Monte Carlo time. Markov chains
are constructed in such a way that configurations with a larger Boltzmann factor will
be visited more frequently in configuration space. The updates from one configuration
to the next one along the Markov chain are regulated by a certain transition probability
T (U ′ ← U). The transition probability is independent of the Monte Carlo time and
must obey the conditions

0 ≤ T (U ′ ← U) ≤ 1,
∑
U ′

T (U ′ ← U) = 1. (4.6)
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As the Markov chain evolves in Monte Carlo time, it will eventually reach an “equilib-
rium” state in which the transition probability of moving into a certain configuration
will be the same to the probability of moving out from that configuration. The time it
takes for the Markov process to reach equilibrium is called thermalisation time; as will
be discussed below, its estimate in numerical simulations may be non-trivial. As well
as being stable, Markov processes must satisfy ergodicity, meaning that they must be
able to access all possible configurations in configuration space. The simplest update
algorithm that satisfies all the above conditions on the transition probability was ini-
tially proposed by Metropolis et al. in ref. [58] for symmetric probability distributions
and later generalised by Hastings in ref. [59]. The algorithm consists in starting from
an arbitrary configuration U followed by an accept/reject updating step based on the
transition probability and the Boltzmann factor

TA(U ′ ← U) = min

(
1,
T0(U ← U ′)e−S[U ′]

T0(U ′ ← U)e−S[U ]

)
, (4.7)

where TA is the transition probability and T0 is the selection probability. The process
is then iterated over all the available configurations. In the case of symmetric selection
probability, the accept/reject step is based on the change in the action appearing in the
Boltzmann factor ∆S = S[U ′] − S[U ]. In particular, the proposed new configuration
is accepted when it reduces the action, but it can also be accepted, with probability
exp(−∆S[U ]), if the action increases. This allows for the existence of fluctuations,
which are natural in a statistical or in a quantum system.

Over time, newer and more efficient algorithms have been developed for the sim-
ulation of lattice gauge theory and lattice QCD, for instance the pseudo heath-bath
algorithm of ref. [60]. Nowadays, a very popular choice when simulating Yang-Mills
theory or spin systems is the heat-bath algorithm, first proposed in ref. [61]. The
heat-bath algorithm is essentially an iterated Metropolis-Hastings algorithm with an
improved local acceptance rate. Often, the heat-bath algorithm is alternated with
some overrelaxation steps [62] which consist in taking as the new configuration U ′ a
variable with the same probability weight as U but as far away in configuration space
as possible. Overrelaxation updates improve the efficiency of the in sampling the con-
figuration space, however they are not ergodic, hence they have to be combined with
some ergodic updates.

44



CHAPTER 4. NUMERICAL METHODS FOR LATTICE FIELD THEORY

4.2 Simulating dynamical quarks

For many years since the advent of lattice gauge theory, calculation of lattice QCD could
only be performed in quenched approximation, which consisted in simulating gauge
configurations without including the determinant of the Dirac operator describing sea
quarks. The reason it took some time before the appearance of simulations including
the full dynamics of quarks is that the computation of the light quark Dirac operator
determinant is particularly challenging from the numerical point of view. The way
to include the dynamical contribution of (one flavour of) dynamical quarks in lattice
simulations is to include the Dirac operator determinant as a probability weight factor
when generating the Markov chain of gauge configurations

ρ(U) =
1

Z
e−SG[U ] det[Dq], (4.8)

where Dq is the Dirac operator. Often, in order to guarantee the positivity of the
determinant, the light quark flavours up and down are taken to be degenerate allowing
to raise the Dirac operator to an even power. The Dirac operator determinant is
conveniently expressed in terms of pseudo-fermions [63], which allow one to express
the determinant in terms of bosonic fields∫

D[ψ]D[ψ]e−ψuDψu−ψdDψd = π−N
∫
D[φR]D[φI ]e

−φ†(DD†)−1φ = det[DD†], (4.9)

where the contribution are divided into real and imaginary parts and π−N is an irrele-
vant factor, which will cancel out in expectation values. The above equation suggests to
treat the pseudo-fermion action as an effective action to be added to the gauge action in
order to have a correct Boltzmann weight factor when generating gauge configurations
for the Markov chain process. However, computing the pseudo-fermion weight factor
requires new numerical algorithms.

4.2.1 Hybrid Monte Carlo

In a nutshell, the central idea behind the hybrid Monte Carlo (HMC) algorithm [64] is
that, starting from the gluonic action and the part of the action involving the pseudo-
fermions, one can introduce conjugate momenta to these bosonic variables (which are
interpreted as “coordinates” in a generalised phase space), and construct an Hamilto-
nian defined as the sum the original action plus the kinetic terms constructed from
these conjugate momenta. Then, one lets the coordinates and momenta appearing
in the new Hamiltonian evolve according to (a discretised version of) their classical
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equations of motion, which allows the original system to efficiently explore the config-
uration space, without incurring into large, positive variations of the action; typically,
a leap-frog strategy is used for the alternating updating of coordinates and momenta,
and an accept/reject step is included to ensure that the discretisation of the equations
of motion do not bias the actual dynamics that one wants to simulate.

To clarify this procedure, it is particularly convenient to discuss the HMC algorithm
for a scalar field φ (while the results for the case of lattice QCD will only be mentioned
at the end of the discussion).

When looking at the problem of updating many configurations, it is convenient to
consider the system as a microcanonical ensemble described by the classical Hamilto-
nian evolving the fields in Monte Carlo time τ

H[π, φ] ≡ 1

2

∑
n

π2
n + S[φ], (4.10)

where in this case π are the conjugate momenta of the bosonic field variables φ. The
evolution is governed by the equations of motion

∂π

∂τ
= −∂H

∂φ
= −∂S

∂φ
,

∂φ

∂τ
=
∂H

∂π
= π, (4.11)

also known as molecular dynamic equations. The path of configurations with a certain
(π, φ) lies on a hypersurface with constant energy, hence, all the configurations on
that path will be automatically accepted. The conjugate variables evolve according to
the Hamiltonian in small steps following the molecular dynamic evolution creating a
trajectory. The first step in the implementation of the HMC algorithm, is the generation
of momenta π from a Gaußian distribution for a given configuration.

In order to have an exact algorithm, i.e., one that is ergodic, stable and without
bias in the implementation, the molecular dynamic trajectories need to fulfill the con-
ditions of (i) Area preservation of integration measures D[φ]D[π] and (ii) Reversibility
of trajectory i.e. Tmd(π

′, φ′ ← π, φ) = Tmd(−π, φ ← −π′, φ′). In order to check the
reversibility condition, it is necessary to solve the equations discussed above, which
are called “molecular dynamics” equations. The solution is obtained numerically, using
some numerical integrator such as the leapfrog algorithm which evolve the conjugate
variables alternatively. The numerical integration requires to divide the time interval
[0, τ ] into a finite number of steps of sufficiently small size ε. In the leapfrog solver, the
two variables are evolved at different rates, with the conjugate momenta being evolved
by a half-step ε/2, followed by the evolution along one full step of the variable φ, fol-
lowed again by a final half-step for π. The procedure is repeated for all the interval
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in which one divides the time evolution. It can be shown that solvers like the leapfrog
preserve the integration measures [10]. For small values of τ , it is possible to formally
prove that the HMC is ergodic [65]. The same cannot be obtained for generic lengths of
the time interval, since the proof is based on an expansion in powers of τ . However, it
is possible to rigorously ensure ergodicity by choosing a random τ ∈ [0, τmax] from one
updating step to another [65]. Regardless of the type of algorithm used to evolve the
variables along the trajectory, any numerical solver will necessarily carry a non-zero
rounding error O(εk), with k depending on the type of algorithm. It follows that one
cannot guarantee reversibility and the algorithm, as described so far, would not be ex-
act. This problem, however, has a simple solution, by means of the introduction of an
accept/reject step, of the same type as the Metropolis-Hastings algorithm, which fixes
any numerical error occurred during the molecular dynamics evolution. This makes
the HMC algorithm exact and a viable numerical method for lattice QCD simulations.
One can summarise the HMC strategy for a single trajectory as follows:

1. Given a configuration φ, generate a new set of conjugate momenta π from a
Gaußian distribution.

2. Using the molecular dynamics equations, let (φ, π) evolve to (φ′, π′) along a tra-
jectory with (approximately) constant H.

3. Compute acceptance probability Pacc = min[1, e−∆H ] with the conditions Pacc ≥
r, r being a uniformly distributed pseudo-random number between 0 and 1.

The strategy is iterated for the given number of steps along the molecular dynamics
trajectory. Typical lattice QCD simulations are performed with 50 to 100 steps for a
complete trajectory, with an estimated computational cost proportional to V

5
4 , where

V is the lattice hypervolume [66, 67]
In lattice QCD simulations the variables that are updated are the pseudo-fermions

and the link variables that are elements of the SU(3) gauge group U = exp
(
i
∑8

i=1 ω
(i)Ti

)
,

Ti being the algebra generators. The corresponding conjugate momenta are then
πµ =

∑8
i=1 π

(i)
µ Ti. The variables are evolved along the molecular dynamic trajectory

by the force F [U, φ] defined as

F [U, φ] =
8∑
i=1

Ti∇(i)
[
SG[U ] + φ†(DD†)−1φ

]
∈ su(3), (4.12)

where φ in this case is the pseudo-fermion field. Here one can notice that the contri-
bution of the fermion action requires the evaluation of the term ∇(i)(φ†(DD†)−1φ) for
each step along the trajectory.
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4.3 Autocorrelation

In a Markov process, any variable will typically be affected by some form of correla-
tion with the previously generated values in the chain, as it evolves in Monte Carlo
time. This inevitably reduces the statistical independence of the variables in a Markov
chain, and has an impact on the uncertainties of the observables that have to be esti-
mated from the configurations generated in the Markov chain. Given a set of primary
observables aα enumerated by the α, for instance the plaquette operator in eq. 2.50,
each observable can be obtained applying some valid update algorithm. The average of
these observables will correspond to a stochastic estimator of the path integral expec-
tation value Aα = 〈aαi 〉. One can then repeat the simulation with the same number of
updating steps, generating a statistically independent set of primary observables called
replica. Finally, averaging over all of the replicas gives the true statistical mean of the
primary observables Aα = 〈〈aαi 〉〉. One can then define the autocorrelation function
between two subsequent variables in the Markov chain as [68]

Γα(t) = 〈(aiα − Aα)(ai+1
α − Aα)〉, (4.13)

where t here is the Monte Carlo time and the average is over statistically independent
replica ensembles. In the limit of large number N of updating steps, one can determine
the error on the estimator Aα as

σ2
α =

1

N

∞∑
t=−∞

Γα(t)

[
1 +O

(
1

N

)]
≈ Γα(0)

N
2τint(A

α), (4.14)

where we introduced the integrated autocorrelation time τint defined in terms of the
normalised autocorrelation function

τint(A
α) =

1

2
+
∞∑
t=1

ρ(t), ρ(t) =
Γα(t)

Γα(0)
. (4.15)

In practice, in simulations one can only compute a biased estimator of the autocorre-
lation function such that in eq. 4.13, the true mean Aα needs to be replaced by the
one that can actually be measured aα. Consequently, also ρ(t) and τint are biased.
Understanding the nature of the bias in autocorrelation functions is very important as
it characterises the dynamics of the Monte Carlo process relevant for the observable A.
Unfortunately, the integrated autocorrelation time is difficult to determine since the
errors on Γα(t) remain roughly constant as a function of t [69]. Following the methods
proposed by Madras and Sokal [70], later generalised by Wolff [68], we can estimate
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τint introducing a window of updating steps W

τint(A
α) =

1

2
+

W∑
t=1

ρ(t). (4.16)

The window is chosen to balance the systematic error due to the truncation of the
infinite series. For typical simulations, the normalised autocorrelation function decays
exponentially for large t

ρ(t) ∼ exp
(
− t

τn,exp

)
, (4.17)

where τn,exp is the exponential autocorrelation time for the n mode contributing to the
autocorrelation function. The slowest mode is the one with the largest autocorrela-
tion time. This number provides information on the magnitude of the autocorrelation
between two configurations separated by a single updating step. This suggest that
the order of the systematic errors goes as O

[
exp

(
t

τexp

)]
[10, 68]. The exponential

autocorrelation time can only be known at the end of the simulation, computing the
expectation value of a primary quantity. Assuming the value of τexp is known, a con-
servative estimate of τint can be obtained using

τint =
[1

2
+

W∑
t=1

ρ(t)
]

+ τexpρ(W ), (4.18)

together with a judicious choice of W 1 [69].

4.3.1 Critical slowing down

Autocorrelation is related to a phenomenon known as critical slowing down, which
becomes particularly problematic when approaching the critical point of a theory (e.g.,
approaching the continuum limit in a lattice QCD simulation, namely for a→ 0). It is
therefore important to study the scaling of quantities like integrated and exponential
autocorrelation time in the limit a → 0. For the dynamical critical exponent z which
depends on the updating algorithm, one has [69]

τa,int ∼ (ξa)
z, τexp ∼ ξz, (4.19)

where ξ is the correlation length as defined in eq. 5.9 and discussed in section 2.2. For
the HMC algorithm in full lattice QCD simulations the dynamical critical exponent is
z ≈ 5 [69, 71], with the computational effort expected to scale like a−10 [71].

1For example minimising the functional E(W ) as proposed in [69]
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Yang-Mills theories (and QCD) are theories characterised by different topological
sectors, hence, it is important that our updating algorithm correctly samples all of these
sectors when performing lattice simulations. For coarse values of the lattice spacing,
the HMC algorithm is indeed able to sample these sectors efficiently as it lets the
system evolve along the molecular dynamics trajectory. However, as one approaches the
continuum limit, changing topological sector becomes harder and harder; this results
into an increase in the autocorrelation time and into an eventual breakdown of the
ergodicity of the algorithm: this is due to the fact that, as one decreases the lattice
spacing, it becomes increasingly more likely that the HMC trajectories get trapped
within a topological sector. For values of the lattice spacing lower than 0.05 fm, this
effect is particularly severe and the HMC trajectory gets completely trapped within a
topological sector, realising what is known in the literature as topological freezing [72,
73, 69].

Considering that the lattice spacing is the UV cutoff of the lattice theory, critical
slowing down and topological freezing put a limit on the type of particles which can
be simulated on the lattice. In order to be able to get accurate results from numerical
simulations and treat all particles in a fully relativistic way, the masses mM of the
physical states have to satisfy the following constraints:

L−1 � mM � a−1. (4.20)

This means that even if one could perform simulations with a lattice spacing as small as
0.05 fm, which corresponds to a−1 ≈ 3.9 GeV, this would not be sufficient to properly
simulate B mesons, since their mass is mB ≈ 5 GeV.

This is a non-trivial problem that has to be taken into account when one wants to
study heavy mesons on the lattice, for example in the case of inclusive semileptonic
decays. As it will be discussed in more detail in chapter 8, we performed the simulations
with a lattice spacing a = 0.0815(30) and a bottom quark whose mass had an unphysical
value, equal to twice the physical charm quark mass, giving a simulated Bs-meson with
a mass mBs ≈ 3 GeV. Obviously, this unphysically light value of the meson mass
affects the available phase space of the inclusive semileptonic decay and consequently
the results of our study.
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Chapter 5

Monopoles in the Heisenberg model

In this chapter we shall present an original lattice study of the classical Heisenberg spin
model, which was published in ref. [4]. In particular, we shall focus on the behaviour
of monopole-like excitations that are created in the system by imposing appropriate
boundary conditions. We shall show that the profiles of the magnetisation and of the
energy density profiles are consistent with analytical calculations that were previously
derived in quantum field theory in ref. [74].

5.1 Definition of the model

Consider a four-dimensional, isotropic, hyper-cubic lattice of lattice spacing a and
spatial extent L. At each lattice site one can define the spin field variable s(x), a
three-component real vector of unit length, with a certain orientation which defines its
state.

Considering only nearest-neighbour interactions, the Hamiltonian of the Heisenberg
model in D dimensions can be written as

H = −J
∑
〈x,y〉

s(x) · s(y), (5.1)

where s(x) is the spin variable defined at the site x of a regular Euclidean lattice in
D dimensions, the summation runs over all distinct nearest neighbours sites and J

is the ferromagnetic coupling. It is trivial to note that the Heisenberg model enjoys
a global O(3) rotational symmetry: as the Hamiltonian depends only on the relative
orientation between neighbouring spin variables, the latter can always be redefined by
a global orthogonal transformation, i.e., by an element of the O(3) group.
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The partition function of this statistical system is written as

Z =
∏
x

∑
〈x,y〉

e−H[s]/T , (5.2)

where T denotes the temperature (natural units are assumed).
As usual in spin systems, one can define the magnetisation at a given site as

〈s(x)〉 =
1

Z

∏
y

∑
〈y,z〉

s(x)e−H[s]/T . (5.3)

This is an important quantity, as it tells us in which phase the system is at a given
value if the temperature. When the temperature is high, thermal fluctuations dominate,
preventing distant spins to align and correlate. This is the disordered phase as the spins
are randomly aligned and the magnetisation of the system is zero 〈s(x)〉 = 0. As the
temperature is lowered the correlation among distant spins increases until one reaches
a critical temperature Tc. At Tc the system undergoes a second-order phase transition
where the magnetisation changes to 〈s(x)〉 6= 0, meaning that the spins become aligned
along the same direction. Therefore, for T < Tc the system is in its ordered phase and
the global O(3) symmetry gets spontaneously broken.

In order to measure the correlation between spins at different locations, and capture
the effect of thermal fluctuations, it is useful to define the correlation function

〈s(x)s(y)〉 =
1

Z

∏
z

∑
〈z,w〉

s(x)s(y)e−
H[s]
T (5.4)

and the connected correlation function

〈s(x)s(y)〉conn. = 〈s(x)s(y)〉 − 〈s(x)〉2. (5.5)

While in the disordered phase the correlation function falls of exponentially with the
distance, in the ordered phase the system is magnetised.

In ref. [4] we studied the classical Heisenberg model in D = 4 dimensions, where a
long-range-order phase is known to exist at sufficiently low temperatures [75]. More-
over, being D = 4 the upper critical dimension, one can obtain analytic results for
the critical exponents at the phase transition from calculation based on the mean-field
technique (up to logarithmic corrections) [76, 77]. In the study, we used a Markov chain
Monte Carlo simulation of vector-field configurations, generated by a combination of
local heat-bath [78] and over-relaxation [79] updates.
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In the ordered phase (T < Tc) of the spin system, the correlation function vanishes
and the magnetisation becomes non-zero. In this phase it is interesting to study how
the value of the magnetisation scales as we approach the critical point Tc, i.e. the
point at which a second order phase transition occurs. By imposing a specific type of
boundary conditions, it is possible to enforce the existence of topological excitations
in this phase. Using an analytic field-theoretic approach, in ref. [74] it was shown that
the magnetisation of the spin-system depends on the mass of the topological excitation
enforced by the boundary conditions, which could then be interpreted as a “mono-pole”
propagating in the Euclidean time direction. In our study we enforced the boundary
conditions enforcing such “monopole-like” configurations on a four-dimensional lattice.
This was done by constructing a map between the direction of s(x) at the spatial
boundary with the direction of the spatial component x with respect to the centre of
the system.

5.2 Results of the Monte Carlo simulations

The results for the i-th component of the magnetisation 〈s(x)〉 for different values of
the reduced temperature t = (T−Tc

Tc
) are shown in figure 5.1. In the figure one can

see the excellent agreement between the numerical results of the simulations and the
analytic prediction derived in ref. [74],

〈si(xi)〉 = v

[(
1− 1

2z2

)
erf(z) +

exp(−z2)√
πz

]
, (5.6)

with z = xi
√

2M/R, where, according to ref. [74], M would represent the mass associ-
ated to the topological excitation and v the asymptotic value of the magnetisation at
large distances.

By fitting the numerical results to the analytic function in eq. 5.6, it is possible to
extract the value of v and study its scaling as we approach the critical temperature.
The scaling of these quantities near the critical temperature is particularly important
because Tc is what is known as critical point. It turns out that a spin system in a
given dimension d near the critical point exhibits the same behaviour as other theories
which are described by the same critical point. This concept is known as universality.
Two systems that share the same critical point are said to be in the same universality
class [80]. This is also an important feature in lattice field theories. In particular,
regardless of the method that is chosen to discretise the continuum action on the
lattice, all these different approaches should belong to the same universality class, in
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Figure 5.1: Left-hand side: Numerical results at L/a = 90 and R/a = 20 for the mag-
netisation profile as a function of the xi coordinate. The plot shows the results obtained
at different temperatures and the fit to eq: 5.6. Right-hand side: Magnetisation value
at long distances v, obtained from fits to eq. 5.6, plotted against the temperature in
units of the coupling, from different sets of simulations on lattices with R = 20a and
L = 90a, and their fit to eq. 5.7

order to recover the same theory when the dependence on the lattice spacing is removed
at the critical point a = 0.

In the infinite volume limit, the modulus of the magnetisation is predicted to scale
as v ∝ (−t)β, where β is the critical exponent expected to take the Gaußian value
β = 1

2
. This scaling is confirmed by our results fitted by

v = Av

√
1− T

Tc
(5.7)

where Av = 1.376(5) and Tc/J = 2.2195(7), as shown in figure 5.1.
In contrast with the conclusions drown in ref. [74], our results show that the pa-

rameter Ma depends on the time-extent R and therefore cannot be interpreted as a
particle. In particular, figure 5.2 shows that the numerical results of 〈si(xi)〉 obtained
with different values of R, all collapse on the same curve. From this one can con-
clude that M is proportional to R and one can infer that the topological excitation is
characterised by an approximately constant µ = M

R
.

For this reason, in our study we proposed a different interpretation for the nature of
the topological excitation as the duration of the excitation propagation. This statement
is confirmed by looking at the scaling of aM which is predicted to be aM = aµR =

µ(R/a)a2 ∝ t2ν . This is indeed the scaling observed in figure 5.2 where the numerical
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Figure 5.2: Left-hand-side panel: dependence of the spin profile 〈si(xi)〉 on the spatial
coordinate xi/a, as measured with respect to the center of the system, at a fixed
temperature and for different values of the Euclidean-time extent of the lattice. All
results shown in this plot were obtained from simulations with T/J = 2.062725. Right-
hand-side panel: temperature dependence of the Ma parameter, extracted from the
fits of our numerical data to eq. (5.6), for lattices with different values of R/a, and
their fits to eq. (5.8).

results are fit to the function

aM = AM

(
1− T

T + c

)E

. (5.8)

The results in table 5.1 show that the critical exponent is indeed twice the value of ν
obtained in the Gaußian approximation.

R/a AM E χ2
red

20 21.3(1.5) 1.021(23) 0.50
28 23.4(1.8) 0.981(24) 2.34
36 34.6(2.3) 1.039(21) 1.76

Table 5.1: Results of the two-parameter fits of the data shown in the right-hand-side
panel of figure 5.2 to eq. (5.8).

In the disordered phase (T > Tc), the thermal fluctuations dominate the tendency of
the spins to correlate, which results in the correlation function to fall off exponentially
with the distance between the spins

〈s(x)s(y)〉 ∼ exp
(
− |x− y|

ξ(T )

)
, |x− y| � ξ, (5.9)

where ξ is the correlation length. As the critical temperature is approached, the cor-
relation length diverges and one observes the universal behaviour characterised by the
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critical point.
The inverse of the correlation length 1

ξ
is analogous to the energy gap, and hence

to a particle mass in Euclidean quantum field theory. For this reason, one can rewrite
the correlation function as

G(τ, R) =
a

R
〈S(x0)S(x0 + τ) = A{e−mτ + e−m(R−τ)}, (5.10)

where τ is a generic point in the “temporal” direction, R is the temporal extent of the
lattice, S(x0) is the zero momentum spin operator S(x0) = a3

L3

∑
x1,x2,x3

s(x), m is the
mass of the lightest particle state and e−m(R−τ) is the term which arise from the fact that
we are using periodic boundary conditions (PBC) and account for back-propagating
particles.

In our work, we extracted the mass of the particle for different values of the reduced
temperature t by fitting our numerical results to the function in eq. 5.10.

Now, as the temperature decreases and one approaches the critical temperature,
the mass of the particle is expected to get smaller and eventually vanish at T = Tc. In
order to quantitatively study the scaling of m, one needs to also to take into account
the finite size corrections which follow a 1

L
-decay. This scaling behaviour is reproduced

by our numerical results at t ≈ 0, shown in table 5.2.

L/a ma L/a ma

40 0.1043(11) 80 0.05105(35)
48 0.08373(60) 88 0.04694(34)
56 0.06749(41) 96 0.04005(12)
64 0.06099(45) 104 0.03302(19)
72 0.05829(32)

Table 5.2: Results for the lightest mass contributing to the G(τ, R) correlator at t ≈ 0,
for different values of L = R.

Following this argument, we fit the data in table 5.2 to the function

am(L) = am+
ak1

L
, (5.11)

and find the result for am as L
a
→∞ to be am = −0.0058(37) which is compatible to

0 within less than two standard deviations.
Thus, assuming the finite volume effects are small, we expect the mass to scale with

the reduced temperature as

am =
mtν

Λ+

, (5.12)
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Figure 5.3: Mass values in units of the inverse lattice spacing at different reduced
temperatures, extrapolated to the thermodynamic limit (circles), and their fit according
to eq. (5.12) (dashed line).

where Λ+ is a constant with dimension of an energy and according to a renormalisation-
group analysis, the critical exponent near the Gaußian fixed point is expected to be
ν = 1

2
. This scaling is confirmed by our numerical results in figure 5.3, which clearly

show the fact that the mass vanishes at t = 0. Fitting the numerical results to eq. 5.12
we obtain m/Λ+ = 1.995(24).

5.3 Discussion

Our study of the Heisenberg model on a four-dimensional Euclidean lattice allowed us
to test the approximate analytical predictions that were derived by Delfino in ref. [74].
Even thoughD = 4 is the upper critical dimension, the model has interesting dynamical
features: implementing boundary conditions that enforce topologically non-trivial field
configurations (which, in a continuum version of the model, could be characterized by
a non-trivial topological number under the second homotopy group π2(S2)), confirming
the predictions for the energy-density and magnetisation profiles derived in ref. [74].
Our simulation results, however, also reveal that the scaling of the parameters (which,
in this context, can be thought of as the “low-energy constants” appearing in the
quantum-field-theoretical description of the spin model for T → T−c ) is not completely
trivial, questioning a naïve interpretation of such topological configurations as bona
fide particles. In particular, the parameter that was interpreted as the particle mass in
ref. [74] is, instead, proportional to the duration of its propagation in Euclidean time.

Our findings have interesting implications. In particular, they can be contrasted
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with those reported in an analogous numerical study in three dimensions [81], in which
it was argued that Derrick’s theorem [82] could be violated at the quantum level. While
this possibility would be an intriguing one (especially in the view of recent arguments
from axiomatic quantum field theory [83]), it should be noted that it would imply far-
reaching consequences, including ones with dramatic phenomenological implications.
For example, in relativistic astrophysics, a violation of Derrick’s theorem would allow
for the existence of bosonic stars consisting of particles that are the excitations of real
scalar fields [84].

The study of topologically stable, monopole-like field configurations of finite energy
in physical systems characterized by an intrinsic cutoff scale may also be of relevance
in condensed-matter theory. Interpreting the statistical model that we simulated as
the lattice regularisation of a quantum system in three spatial dimensions, the pos-
sible existence of artificial monopole-like excitations in this theory [85, 86, 87] may
have important applications, including for quantum simulation [88] and for informa-
tion communication [89]: recent work in this research area was reported, for instance,
in the study of manganese germanide discussed in ref. [90].
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Chapter 6

Confining strings in Yang-Mills theory
at finite temperature

In this chapter we present an original lattice study of the effective string describing the
low-energy regime of SU(2) Yang-Mills theory in three dimensions, that was published
in ref. [3]. In particular, we discuss the behaviour of Polyakov-loop correlators at finite
temperatures close to the deconfinement transition and analyse our numerical results
in a comparison with analytical constraints from renormalisation-group arguments,
from known results about the two-dimensional (Ising) universality class that describes
the critical point of the theory, from conformal perturbation theory, and from Lorentz
invariance, deriving quantitative bounds on the corrections to the effective string action
beyond the Nambu-Gotō approximation.

In the “effective string theory” (EST) description, the flux tube joining together
two colour sources in a confining gauge theory can be modeled as a thin vibrating
string [91, 92, 93, 94, 95]. The EST enjoys a remarkable property: due to the peculiar
features of the string action and to the symmetry constraints due to Poincaré invariance
in the target space, the first few terms of the long-distance expansion of the EST action
are universal [96, 97, 98, 99, 100, 101, 102].

The simplest Lorentz-invariant EST, which is the well-known Nambu-Gotō model [91,
92], is an exactly integrable, irrelevant, perturbation of the two-dimensional free Gaußian
model [103], driven by the TT operator of the D − 2 free bosons. Using an S-matrix
bootstrap approach, it has been recently possible to constrain the EST action be-
yond the Nambu-Gotō approximation [104, 105]. Going beyond this approximation is
an interesting open problem, since the terms beyond the Nambu-Gotō action encode
important information about confinement.

An efficient way to study these corrections is through high-precision numerical
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simulations of the interquark potential in lattice gauge theories at finite temperatures
close to the thermal deconfinement transition, but still in the confining phase. With
this motivation, ref. [3] addressed a study of the SU(2) Yang-Mills theory in (2 +

1) dimensions, in the range of temperatures 0.8Tc ≤ T ≤ Tc, where Tc denotes the
deconfinement temperature. This is a particularly simple lattice gauge theory based
on a non-Abelian Lie group, in which the non-perturbative features of Yang-Mills
theories can be studied to much higher precision than in quantum chromodynamics.
Moreover, the fact that the finite-temperature deconfinement transition for this model
is a second-order one [106, 107], in the neighborhood of the deconfinement transition the
model is expected to be in the universality class of the bidimensional Ising model [17]
and the Polyakov loop correlator should correspond to the spin-spin correlator of the
two-dimensional Ising model (which is known analytically).

6.1 Definitions and lattice setup

To simplify notations, in the following we will set the lattice spacing a to 1. We regu-
larise the theory on a finite cubic lattice of spacing a and sizes Nt in the 0̂ (“Euclidean-
time”) direction and Ns in the two other (“spatial”) directions, denoted as 1̂ and 2̂. We
use the Wilson action and introduce the parameter β, defined as β = 4/g2.

Following ref. [108], the scale-setting of the model can be defined in terms of the
equation: √

σ0(β) =
1.324(12)

β
+

1.20(11)

β2
+O(β−3), (6.1)

where σ0 denotes the zero-temperature string tension.
The relation between the temperature T and the extent of the shortest compact size

of the lattice is Nt = 1/T , hence T can be varied by changing Nt, or the lattice spacing
(by tuning β). We studied the system in the temperature range 0.8 ≤ T/Tc ≤ 1. Very
accurate estimates of Tc for various values of Nt were reported in ref. [109].

The Polyakov loop through a point of spatial coordinates ~x is defined as:

P (~x) =
1

2
Tr

Nt∏
t=0

U0 (t, ~x) (6.2)

and the correlator of two Polyakov loops is

G(R) =

〈∑
~x

P (~x)P
(
~x+Rk̂

)〉
, (6.3)
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where k̂ denotes one of the two spatial directions, the sum ranges over all spatial
coordinates ~x, and the 〈. . . 〉 average is normalised in such a way that the expectation
value of the identity operator is 1.

6.1.1 Interquark potential at finite temperature

In a finite-temperature setting, the potential energy V associated with two static fun-
damental color sources V can be obtained as:

G(R) ≡ exp

[
−V (R,Nt)

T

]
= exp [−NtV (R,Nt)] . (6.4)

For large spatial separation R between the color sources, in the confining phase one
expects V (R,Nt) to be linearly rising as a function of R:

G(R) ' exp [−σ(T )NtR] , (6.5)

where σ(T ) denotes a temperature-dependent string tension, which decreases with T
and vanishes at T = Tc.

The periodic boundary conditions for the gauge fields along the compactified Euclidean-
time direction leads to the interpretation of the thermal deconfinement transition
as the breaking of a symmetry based on the center of the gauge group, Z2 in this
case [110, 111, 112]. In particular, in the high-temperature phase (T > Tc), the cen-
ter symmetry gets spontaneously broken and the Polyakov loop develops a non-zero
expectation value; accordingly, the free energy associated with a static color source is
finite, i.e. the theory is in its deconfined phase.

6.2 Svetitsky-Yaffe mapping

The behaviour of the theory in the vicinity of the deconfinement transition is expected
to be described in terms of an effective action obtained by integrating out the spacelike
link variables and projecting each Polyakov loop to the center of the gauge group. Thus,
this maps a (d + 1)-dimensional lattice gauge theory to a d-dimensional spin model,
having the center of the original gauge group as a global symmetry, as can be deduced
from renormalisation-group arguments [17]. For the continuous deconfinement transi-
tion of the SU(2) lattice gauge theory in three dimensions one thus expects to arrive at
the universality class of the order-disorder phase transition of the two-dimensional Ising
model, which can be solved exactly [113]. In particular, the ordered (low-temperature)
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phase of the spin model corresponds to the deconfined (high-temperature) phase of the
original gauge theory. These are the phases in which the order parameters of the two
theories have non-zero expectation values.

One also notes that, while the Polyakov loop of the gauge theory can be mapped to
the spin operator, the plaquette corresponds to the energy operator of the spin model.
Thus, in particular, thermal perturbations from the critical point in the original gauge
theory, which are driven by the plaquette operator, are mapped to perturbations of
the effective spin model driven by the energy operator. Finally, close to the deconfine-
ment temperature, the spin-spin correlator of the Ising model is expected to share the
behaviour of the Polyakov loop correlator of the lattice theory, which can be used to
derive information on the EST that describes this correlation function.

6.3 The spin-spin correlator of the two-dimensional

Ising model

The expression of the spin-spin correlator of the two-dimensional Ising model is known,
and has the form of the determinant of a matrix of finite size – the size being related
to the distance between the spins [114]. In the scaling limit, these determinants can
be reduced to a simpler form [115], which takes two different forms in the two phases
of the model.

• In the R� ξ regime, the two-point spin correlator reads

〈σ(0)σ(R)〉 =
ks

R
1
4

[
1 +

t

2
ln

(
eγEt

8

)
+

1

16
t2 +

1

32
t3 ln

(
eγEt

8

)
+O(t4 ln2 t)

]
, (6.6)

γE = 0.57721 . . . being the Euler-Mascheroni constant, and ks a non-universal
constant.

• In the R� ξ regime, the two-point spin correlator reads

〈σ(0)σ(R)〉 = klK0(t) (6.7)

where, again, kl is a non-universal constant, while K0 is the modified Bessel
function of order zero, which, for large values of its argument, behaves as:

K0(t) '
√
π

2t
e−t
[
1 +O

(
1

t

)]
. (6.8)

62



CHAPTER 6. CONFINING STRINGS IN HOT YANG-MILLS THEORY

Note that the short-distance expansion of eq. (6.6) can also be obtained using conformal
perturbation theory [116]. The importance of this approach is that it does not rely on
the integrability of the spin model, and holds for any pair of lattice gauge theory and
spin model with a second-order deconfinement/symmetry-breaking transition.

6.4 Effective string theory predictions

The literature on the EST description of confining flux tubes is large; see, for instance,
the reviews [102, 117, 118]. The EST approach assumes that confining flux tubes can be
described as thin, vibrating strings [91, 92, 93, 94, 95], whose energy is (approximately)
proportional to their length. This implies a linearly confining potential between color
sources.

At finite temperatures, the EST model predicts [96, 97]:

〈
P (0)P †(R)

〉
=
∑
n

|vn(Nt)|22R

(
En

2πR

)D−1
2

K(D−3)/2(EnR), (6.9)

where D denotes the number of spacetime dimensions (D = 3 in our case), En denote
the energy levels of the string and vn(Nt) their amplitudes.

Note that, for large R, the dominant contribution in eq. (6.9) is the lowest energy
level E0 and, for D = 3, one obtains the same expression that characterises the long-
distance behaviour of the spin-spin correlator in the two-dimensional Ising model.

In the Nambu-Gotō string model [91, 92], each configuration of the string world-
sheet has a weight proportional to the area of the world-sheet surface. this model is
the simplest Poincaré invariant EST, and is a direct generalisation of the relativistic
action for a pointlike particle to a bosonic string. The action of this EST is:

SNG = σ0

∫
Σ

d2ξ
√
g, (6.10)

where g ≡ det gαβ and gαβ = ∂αXµ ∂βX
µ is the induced metric on the reference world-

sheet surface Σ, where we denote the world-sheet coordinates as ξ ≡ (ξ0, ξ1). Note that
the only free parameter appearing in the action is the string tension σ0 (with energy
dimension two).

The Nambu-Gotō action admits a low-energy expansion in the number of derivatives
of the transverse degrees of freedom of the string. The first few terms in this expansion
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are

S = σ0RNt +
σ0

2

∫
d2ξ

[
∂αXi · ∂αX i +

1

8
(∂αXi · ∂αX i)2 − 1

4
(∂αXi · ∂βX i)2 + . . .

]
.

(6.11)
Interestingly, one can show that all the additional terms in the expansion of eq. (6.11)

beyond the Gaußian one yield an integrable, irrelevant perturbation of the Gaußian
term [103]. This allows one to write the partition function of the model can be written
explicitly; for the EST describing the two-point Polyakov-loop correlation function, the
expression in D spacetime dimensions is

G(R) =
∞∑
n=0

wn
2Rσ0Nt

En

(
π

σ0

)D−2
2
(
En

2πR

)D−1
2

K(D−3)/2(EnR), (6.12)

where the energy levels En are

En = σ0Nt

√
1 +

8π

σ0N2
t

(
n− D − 2

24

)
. (6.13)

and the weights wn can be obtained from the expansion in powers of q of the Dedekind
function that describes the large-R limit of eq. (6.12):(

∞∏
r=1

1

1− qr

)D−2

=
∞∑
k=0

wkq
k. (6.14)

In D = 3 dimensions, wk reduces to the number of partitions of the integer k.
For the effective Nambu-Gotō string we have an exact expression both for the v(Nt)

amplitudes and for the energy levels En. The lowest energy level reads

E0 = σ0Nt

√
1− π

3σ0N2
t

= σ(T )Nt, (6.15)

where the “temperature-dependent string tension” is

σ(T ) ≡ σ0

√
1− π

3σ0N2
t

. (6.16)

E0 is the inverse of the correlation length, thus the Nambu-Gotō EST predicts the
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critical temperature [119, 120]

Tc,NG√
σ0

=

√
3

π(D − 2)
(6.17)

and the critical index ν = 1/2. This prediction, however, is inconsistent with the
Svetitsky-Yaffe correspondence, as the two-dimensional Ising-model value is ν = 1.
This suggests that the correct EST describing the gauge theory must include terms
beyond the Nambu-Gotō approximation: these “bulk terms” and “boundary terms”.

Bulk terms can be studied by assuming the most general form for the EST:

S = Scl+
σ0

2

∫
d2ξ
[
∂αXi · ∂αX i + c2(∂αXi · ∂αX i)2 + c3(∂αXi · ∂βX i)2 + . . .

]
; (6.18)

then the ci coefficients can be fixed by imposing the Poincaré invariance of the gauge
theory in the target space [96, 97, 98, 99, 100, 101]. In D = 3 dimensions, one then
finds that the first few terms of the expansion coincide with those that are obtained
from the expansion of the Nambu-Gotō action, while the first correction appears at
order 1/N7

t and can be written as [104, 105]

−32π6

225

γ3

σ3N7
t

(6.19)

where γ3 is constrained to be larger than − 1
768

. This parameter encodes information
on the EST.

Boundary corrections to the EST, on the other hand, describe possible interactions
of the colour flux tube with the sources at its ends. At low temperatures the boundary
correction behaves as 1/R4 and is the leading correction to the Nambu-Gotō EST. As
for the bulk terms, Poincaré invariance also constrains the boundary terms: the leading
correction compatible with the spacetime symmetries of the gauge theory can be shown
to be [121]

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X

1 + ∂1X · ∂1X
− (∂0∂1X · ∂1X)2

(1 + ∂1X · ∂1X)2

]
, (6.20)

with a non-universal coefficient b2. The dominant term in the expansion of eq. (6.20)
is

S
(1)
b,2 = b2

∫
dξ0(∂0∂1X)2 (6.21)
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and in in ref. [122] it was shown that:

〈S(1)
b,2 〉 = −b2

π3Nt

60R4
E4(e−

πNt
R ) (6.22)

where E4 is the fourth-order Eisenstein series:

E4(q) ≡ 1 +
2

ζ(−3)

∞∑
n=1

n3qn

1− qn
(6.23)

while ζ(s) denotes the Riemann ζ function.
At low temperatures, eq. (6.22) induces a 1/R4 contribution to the interquark po-

tential, while at high temperatures regime, the boundary correction leads to

〈S(1)
b,2 〉 = −b2

4π3

15N3
t

E4

(
e
− 4πR

Nt

)
, (6.24)

which does not contribute to the temperature-dependent string tension.

6.5 Simulation setting and results

In this section we present the results of a our Monte Carlo simulations, obtained with
the parallel C++ code developed in refs. [123, 124]. The gauge field configurations are
updated using a local heat-bath [125, 126] and overrelaxation [79] algorithms.

We first tested the Svetitsky-Yaffe mapping, then we studied in detail the correc-
tions to the Nambu-Gotō action.

6.5.1 Test of the Svetitsky-Yaffe conjecture

To test the Svetitsky-Yaffe mapping, we run simulations at Nt = 6, 7, 8, and 9 at
various temperatures T/Tc ≤ 1, see tab. 6.1.

Nt ×N2
s β T/Tc nconf

9× 962
11.3048 0.80 2.5× 105

11.72873 0.83 2.5× 105

9× 1602 12.15266 0.86 2.5× 105

7× 962
9.228023 0.83 2.5× 105

9.561566 0.86 2.5× 105

Nt ×N2
s β T/Tc nconf

8× 962

10.10736 0.80 2.5× 105

10.486386 0.83 2.5× 105

10.865412 0.86 2.5× 105

6× 962
8.258494 0.86 2.5× 105

8.546581 0.89 2.5× 105

Table 6.1: Parameters of the first set of simulations.

In fig. 6.1 we show data at T = 0.62Tc: the plot displays the Polyakov loop cor-
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relator against the separation R between the colour sources (in units of the inverse
temperature). The correlator is described well by a single exponential. Apart from the
points at values of R of the order of a only few lattice spacings (which are expected to
be affected by non-negligible discretisation effects), the bending of the data from short
to intermediate distances, before the onset of the purely exponential decay, reveals the
effective string corrections.

Figure 6.1: Polyakov-loop correlator G(R) obtained for Nt values from 6 to 9 at the
temperature T = 0.62Tc.

We tested the Svetitsky-Yaffe conjecture by fitting our data to the Ising-model
predictions for the spin-spin correlator in eq. (6.6) and in eq. (6.7). The long-distance
fits were performed with the following function

G(R) = kl

[
K0

(
R

ξ

)
+K0

(
Ns −R

ξ

)]
(6.25)

to account for the firs periodic copy of the lattice. Note that, like eq. (6.7), eq. (6.25)
has only kl and ξ as free parameters. The results of the fits are listed in tab. 6.2 and
shown in fig. 6.2 and in fig. 6.3.

Table 6.2 shows that both at short and at long distances the fits yield good values
of the reduced χ2.

The results of the fits are shown in fig. 6.3.
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Figure 6.2: Fit of the simulation results at Nt = 9, β = 12.15266, T/Tc = 0.86 to the
short-distance approximation of the spin-spin Ising correlator in eq. (6.6).

Rmin Rmax amplitude ξ χ2
red

eq. (6.6) 5 26 ks = 0.1534(2) 22.05(6) 0.92
eq. (6.25) 6 47 kl = 0.0415(4) 22.13(17) 0.33

Table 6.2: Results of the fits of the Polyakov loop correlator for Nt = 9, β = 12.15266
(corresponding to T/Tc = 0.86) to the short- and long-distance behaviours predicted
according to the Svetitsky-Yaffe conjecture.

6.5.2 Effective string theory corrections to the Nambu-Gotō

approximation

To study the EST corrections beyond the Nambu-Gotō approximation we analysed the
behaviour of the ground-state energy E0 as a function of the temperature, approaching
the deconfinement transition temperature from below. This was done with the sets
of simulations described in tab. 6.4, in tab. 6.5, and in tab. 6.6. For each of these
ensembles, the value of E0 was computed as the inverse of the correlation length ξ,
obtaining the results summarised in tab. 6.7, in tab. 6.8, and in tab. 6.9.

The predicted critical index for the correlation length ξ = 1/E0 is ν = 1/2: this
is incompatible with the one expected from the Svetitsky-Yaffe conjecture, which is
ν = 1, namely:

ξ ∼
(

1− T

Tc

)−1

, (6.26)

68



CHAPTER 6. CONFINING STRINGS IN HOT YANG-MILLS THEORY

Nt T/Tc Rmin Rmax amplitude ξ χ2
red

6

eq. (6.6) 0.86 5 16 ks = 0.1630(4) 14.13(5) 1.10
eq. (6.25) 0.86 6 47 kl = 0.0491(5) 14.25(15) 0.09
eq. (6.6) 0.89 5 26 ks = 0.1660(4) 18.65(7) 1.30
eq. (6.25) 0.89 6 47 kl = 0.0473(6) 18.40(24) 0.33

7

eq. (6.6) 0.83 5 15 ks = 0.1562(4) 13.37(5) 1.15
eq. (6.25) 0.83 6 47 kl = 0.04716(24) 13.62(7) 0.33
eq. (6.6) 0.86 5 22 ks = 0.1587(3) 17.03(5) 0.83
eq. (6.25) 0.86 6 47 kl = 0.0458(3) 17.03(10) 0.19

8

eq. (6.6) 0.80 5 15 ks = 0.1497(4) 12.75(5) 1.55
eq. (6.25) 0.80 6 47 kl = 0.0454(7) 13.07(17) 0.13
eq. (6.6) 0.83 5 20 ks = 0.1526(4) 15.65(6) 1.35
eq. (6.25) 0.83 6 47 kl = 0.0445(4) 15.86(13) 0.09
eq. (6.6) 0.86 6 32 ks = 0.1543(3) 20.36(7) 0.96
eq. (6.25) 0.86 6 47 kl = 0.0429(4) 20.05(20) 0.05

9

eq. (6.6) 0.80 5 17 ks = 0.1462(3) 14.47(4) 0.75
eq. (6.25) 0.80 6 47 kl = 0.0432(4) 14.74(13) 0.16
eq. (6.6) 0.83 5 25 ks = 0.1492(3) 17.81(7) 1.01
eq. (6.25) 0.83 6 47 kl = 0.0422(4) 17.96(18) 0.23
eq. (6.6) 0.86 5 26 ks = 0.1534(2) 22.05(6) 0.92
eq. (6.25) 0.86 6 47 kl = 0.0415(4) 22.13(17) 0.33

Table 6.3: Fits of the Polyakov-loop correlator to the short- and long-distance be-
haviour expected from the Svetitsky-Yaffe mapping for different values of Nt and β.

or, alternatively:

ξ ∼
(

1− Nt,c

Nt

)−1

, (6.27)

which corresponds to ground-state energy close to the deconfinement transition:

E0 ∼ 1− Nt,c

Nt

. (6.28)

Thus, the dependence of E0 on the temperature can be used to study the corrections to
the Nambu-Gotō approximation of the EST. In addition, we note that the bootstrap
calculations presented in refs. [104, 105] suggest

E0(Nt) = Ntσ0

√
1− π

3N2
t σ0

− 32π6γ3

225σ3
0N

7
t

. (6.29)

We first tried to fit our lattice results data with a form based on the Nambu-Gotō
model (with ν = 1/2) and with one derived from the Ising model (ν = 1). Neither fit
describes the data well, as shown in fig. 6.4, in fig. 6.5, and in fig. 6.6: the Nambu-
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Figure 6.3: Fit of the results of our numerical simulations at Nt = 9, β = 12.15266,
T/Tc = 0.86 using the short- and long-distance approximations of the spin-spin Ising
correlator given in eq. (6.6) and in eq. (6.25).

β Nt Ns T/Tc nconf

9

6 160 0.935 2.0× 105

7 96 0.801 2.0× 105

8 96 0.701 2.0× 105

9 96 0.623 2.0× 105

10 96 0.561 2.0× 105

11 96 0.510 2.0× 105

12 96 0.468 2.0× 105

Table 6.4: Parameters of the simulations at β = 9.

Gotō curve fits the data well at low temperatures, but not close to the deconfinement
transition. Conversely, the linear fit describes well the results close to the critical
point, albeit only for the first few values of Nt. This is consistent with the expected
low-energy universality, which suggests that the correct behaviour at short distances
should include a 1/N7

t correction to the Nambu-Gotō approximation. One can then
assume the following form for the Nt dependence of the ground state energy:

E0(Nt) = Taylor4(E0) +
k4

(σ0)3N7
t

, (6.30)
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β Nt Ns T/Tc nconf

12.15266

8 240 0.960 2.0× 105

9 160 0.853 2.0× 105

10 96 0.768 2.0× 105

11 96 0.698 2.0× 105

12 96 0.640 2.0× 105

13 96 0.591 2.0× 105

14 96 0.549 2.0× 105

Table 6.5: Parameters of the simulations at β = 12.15266.

β Nt Ns T/Tc nconf

13.42445

9 240 0.947 2.0× 105

10 160 0.852 2.0× 105

11 160 0.775 2.0× 105

12 96 0.710 2.0× 105

13 96 0.655 2.0× 105

14 96 0.609 2.0× 105

15 96 0.568 2.0× 105

Table 6.6: Parameters of the simulations at β = 13.42445.

with

Taylor4(E0) ≡ σ0Nt −
π

6Nt

− π2

72(σ0)N3
t

− π3

432(σ0)2N5
t

− 5π4

10368(σ0)3N7
t

, (6.31)

where the Taylor expansion is known, and the only free parameters of the fit are σ0

(the zero-temperature string tension) σ0 and k4.
The fits have good reduced χ2 values, see tab. 6.10, and fig. 6.7, fig. 6.8 and fig. 6.9.

We also note that the quality of the fits improves approaching the continuum limit,
and the results for σ0 are consistent with those from the literature [127, 108].

We also checked that our analysis yields values of k4 that are consistent with each
other (within their uncertainties), since the scale dependence of this coefficient is al-
ready accounted for by the 1/σ3

0 normalisation in eq. (6.30): see tab. 6.10 and tab. 6.11.
Our final result for the k4 coefficient is a weighted average of the three values from
tab. 6.10: k4 = 0.050(8), from which one obtains

γ3 = − 225

32π6
k4 = −0.00037(6). (6.32)

This value is consistent with the bound γ3 ≥ − 1
768
' −0.0013 derived in refs. [104, 105].

Note that the term appearing with the γ3 coefficient is only the first term of an
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Nt Rmin Rmax kl E0 χ2
red

6 7 47 0.0417(6) 0.0294(5) 0.07
7 7 47 0.0495(9) 0.0871(13) 0.58
8 8 47 0.0475(15) 0.1250(25) 0.56
9 8 47 0.0501(15) 0.1691(36) 0.30
10 9 47 0.0432(33) 0.1941(63) 2.00
11 9 47 0.0469(41) 0.2381(80) 0.72
12 9 47 0.0392(32) 0.2581(69) 0.09

Table 6.7: Numerical estimates for E0 at different values of Nt and for β = 9.

Nt Rmin Rmax kl E0 χ2
red

8 8 47 0.0338(10) 0.0135(5) 0.36
9 10 47 0.0416(4) 0.0452(3) 0.33
10 9 47 0.0416(13) 0.0695(17) 0.45
11 10 47 0.0423(16) 0.0922(22) 0.35
12 10 47 0.0414(20) 0.1132(32) 0.13
13 11 47 0.0408(26) 0.1334(42) 0.25
14 11 47 0.0355(16) 0.1440(30) 0.18

Table 6.8: Estimates for E0 at different Nt values and for β = 12.15266.

Figure 6.4: Fits of our lattice data for E0 at β = 9 to the expectation for the string
ground state (red line) and according to eq. (6.28) (blue curve).

infinite series of higher-order corrections to the Nambu-Gotō action. The statistical
precision of our lattice results is not sufficient to obtain conclusive information about
the subleading terms.
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Nt Rmin Rmax kl E0 χ2
red

9 9 47 0.0338(13) 0.0151(7) 0.32
10 11 47 0.0391(6) 0.0401(5) 0.06
11 12 47 0.0407(8) 0.0619(8) 0.05
12 11 47 0.0387(7) 0.0777(9) 0.52
13 12 47 0.0399(12) 0.0979(16) 0.06
14 12 47 0.0390(13) 0.1135(20) 0.19
15 12 47 0.0359(17) 0.1254(27) 0.25

Table 6.9: Estimates for E0 at various values of Nt and for β = 13.42445.

β Nt,min Nt,max k4 σ0 χ2
red literature

9 6 12 0.040(8) 0.02603(19) 1.60 0.02583(3)
12.15266 8 14 0.054(5) 0.01366(5) 0.89 0.01371(29)
13.42445 9 15 0.053(8) 0.01104(5) 1.33 0.01108(23)

Table 6.10: Fits of our numerical data to eq. (6.30). The last column shows the values
of σ0 reported in ref. [127] for β = 9, and in ref. [108] for β = 12.15266 and for
β = 13.42445.

Figure 6.5: Same as in fig. 6.4, but for β = 12.15266.

Finally, it is interesting to compare our results with those that were reported in
ref. [128] at β = 16.0: the values for E0 reported in that work can be fitted to eq. (6.30)
obtaining a k4 value compatible with the one that we found at smaller values of β.
Similarly, our results for γ3 can be compared with those derived in refs. [129, 130, 131]
for the SU(6) Yang-Mills theory in D = 3 from the lattice data of ref. [132], which was
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β Nt,min Nt,max k4 χ2
red

9 6 12 0.048(3) 1.62
12.15266 8 14 0.049(2) 0.89
13.42445 9 15 0.048(4) 1.24

Table 6.11: Fits of the lattice data to eq. (6.30) with the values for σ0 from the
literature.

Figure 6.6: Same as in fig. 6.4, but for β = 13.42445.

Figure 6.7: Fit of our lattice results for the ground-state energy at β = 9 to eq. (6.30).
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Figure 6.8: Same as in fig. 6.7, but for β = 12.15266.

Figure 6.9: Same as in fig. 6.7, but for β = 13.42445.

of similar magnitude but had the opposite sign. This dependence of the coefficient on
the gauge group suggests that, at this level of precision, the EST is not universal, and
encodes, as expected, specific properties of the underlying Yang-Mills theory.

75



CHAPTER 6. CONFINING STRINGS IN HOT YANG-MILLS THEORY

6.6 Conclusions

In this chapter we discussed a lattice study of the Polyakov-loop correlation function
in the SU(2) lattice gauge theory in three dimensions, that was reported in ref. [3]. We
compared our simulation results at finite temperatures, close to (and below) the decon-
finement transition, with EST predictions and with expectations from the Svetitsky-
Yaffe conjecture. We found good agreement between our lattice results and the form of
correlator predicted in the Ising model close to the deconfinement temperature. We also
obtained precise values for the ground-state energy E0 of the effective string describing
this gauge theory, from which we could study the deviations from the Nambu-Gotō
approximation of the EST.

It would be interesting to explore the same type of contribution to the EST de-
scribing gauge theories in four dimensions, as analogous predictions can be formulated
for the low-energy dynamics of quantum chromodynamics [133].
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Chapter 7

Spectral functions and the inverse
problem

Hadronic spectral functions are important quantities as they encode a lot of information
about non-perturbative QCD. From their knowledge it is possible to extract all the in-
formation required to study phenomena like hadron scattering, hadron interaction and
generally hadron’s properties at zero and non-zero temperatures. Spectral functions
appear naturally in the standard QFT description of correlation functions when using
the Källén-Lehmann representation (eq. 2.30). For many years now, there has been a
growing interest in trying to extract spectral functions from Euclidean lattice correla-
tion functions, with the first attempt dating back to the mid eighties [134]. However,
as will be discussed in this chapter, performing this task is highly non-trivial, leading
to different approaches to the problem. We will start discussing spectral functions
at finite temperature in order to introduce the relevant notation and draw explicitly
the relations among spectral functions, Euclidean correlation functions and Minkowski
retarded correlation functions. For the sake of notational clarity for the next two chap-
ters we will replace nt,ni with t,x and we will leave the relations t = ant, xi = ani

implied. However, we will keep explicit the difference between Minkowski time t and
Euclidean time τ .

7.1 Finite temperature spectral functions and corre-

lation functions

An important feature of QFT is the possibility to organise field operators and their
products according to their space-time position. In particular, for two generic field
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operators φA, φB, we can define the time-ordering operation as

T
(
φA(t1)φB(t2)

)
= θ(t1 − t2)φA(t1)φB(t2)± θ(t2 − t1)φB(t2)φA(t1), (7.1)

where θ denotes the Heaviside step-function. The sign in front of the second term in the
right-hand-side of the equation 7.1 depends on whether the field operators represent
bosons (+) or fermions (−).

The vacuum expectation value of time ordered operators can be used to construct
the time-ordered correlator in Minkowski space-time by performing the integral trans-
form

GT (ω) =

∫ ∞
−∞

dt eiωt〈0|T
(
φA(t)φB

)
|0〉, (7.2)

which is familiar from standard QFT time-dependent perturbation theory.
In the case in which we have bosonic field operators, the expectation value of the

commutator coming from the time-ordering operation vanishes outside the Minkowski
light-cone for causal quantum field theories. For this reason, it is convenient to define
the causal or retarded correlation function in terms of the commutator of field operators

GR(ω) = i

∫ ∞
0

dt e−ωt〈0|[φA(t), φB(0)]|0〉. (7.3)

Looking at the form of the time-ordered correlator (eq. 7.2) and the retarded correla-
tor (eq. 7.3), it is clear that they are related depending on whether the frequency ω is
positive or negative

GR(ω) = iGT (ω) for Reω > 0, GR(ω) =
(
iG†T
)∗

for Reω < 0. (7.4)

From this considerations, we highlight that the integral transform in the definition
of the retarded correlator (eq. 7.3) is performed over the positive half-axis and GR is
analytic in the half complex plane Imω > 0.

Vacuum expectation values of Minkowski space-time Wightman functions at fi-
nite temperature are defined in terms of the trace over the equilibrium density ma-
trix (eq. 2.10)

GM(t) = 〈0|φA(t)φB(0)|0〉 ≡ Tr{ρ̂φA(t)φB(0)}, (7.5)

and like ρ̂ enjoy time-translation invariance and reality condition

GM(t)θ(t) = GM(−t)θ(−t), G†M(t)θ(t) = GM(−t∗)∗θ(t), (7.6)

where θ(t) enforces the correct time ordering. Furthermore, thermal Wightman func-
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tions respect the Kubo-Martin-Schwinger (KMS) condition, which guarantees period-
icity in Euclidean time

GM(t)θ(t) = GM(−t− iβ)θ(t), (7.7)

where β = 1/T .
Now, as already discussed in sections 3.3 and 2.2, the Osterwalder-Schrader theo-

rem [13] guarantees the analytic continuation between the Euclidean correlation func-
tions (eq. 7.9) and the Minkowski Wightman function (eq. 7.5)

G(τ) = GM(−iτ). (7.8)

Then, it is possible to write the Euclidean correlation function in frequency space in
terms of the Fourier series

GE(τ) = T
∑
l∈Z

G
(l)
E (ω)e−iωlτ , (7.9)

where ωl are the Matsubara frequencies, ωl = 2πlT for boson fields and ωl = (2l+1)πT

and G(l)(ω) are the Fourier coefficients defined as the integral transform

G
(l)
E (ω) =

∫ β

0

dt eiωτG
(l)
E (τ). (7.10)

Finally, one can define the thermal spectral function as the Fourier transform of
the thermal Wightman function of the commutator [φA(t), φB(0)]

ρ(ω) =
1

2πi

∫ ∞
−∞

dt e−iωt〈0|[φA(t), φB(0)]|0〉. (7.11)

Once again, we notice the similarity between the spectral function ρ(ω) (eq. 7.11)
and the retarded correlation function (eq. 7.3). Using time-translation and the reality
condition of equation 7.6, one can show that the thermal spectral function can be
written as

ρ(ω) =
1

2πi

[
GR(ω)− G†(ω)∗

]
. (7.12)

In particular, if one chooses the field operators to be a creation and annihilation
field operators, that is choosing φA(t) = φ(t) and φB(0) = φ†(0), then the spectral
function is equal to the imaginary part of the retarded correlator (eq. 7.3)

ρ(ω) =
1

π
ImGR(ω). (7.13)
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7.1.1 Spectral representation and correlators

All the functions defined above are useful in order to draw a connection between Eu-
clidean correlation (eq. 7.9) functions which we can compute on the lattice and spec-
tral functions (eq. 7.11). In this subsection, following ref. [135], we start by writing
the Minkowski (eq. 7.5) and Euclidean correlation function (eq.7.9) in the spectral
representation inserting a complete set of states between the two field operators

GM(t) =
2i

Z

∑
n,m

|φnm|2eβ
(En+Em)

2 e−iEnmt sinh
(βEnm

2

)
, (7.14)

GE(τ) =
1

Z

∑
n,m

|φnm|2e−βEme−Enmτ , (7.15)

where we used the definition of correlators with the field operators being a pair of
creation and annihilation operators and we introduced φnm = 〈n|φ|m〉, Enm = En−Em.

From equation 7.14, one can write also the spectral representation of the retarded
correlator (eq. 7.3)

GR(ω) =
2

Z

∑
n,m

−|φnm|2

ω − Enm
e−β

(En+Em)
2 sinh

(βEnm
2

)
, (7.16)

where we used ∫ ∞
0

dteiωte−iEnmt =
i

ω − Enm
. (7.17)

The spectral function can then be obtained from the imaginary part of the retarded
correlator, using equation 7.13. This is done by evaluating the pole in the upper half-
plane, where the retarded correlator is analytic

ImGR(ω + iε) ∝ Im
−1

(ω + iε)− Enm
=

−ε
(ω − Enm)2 + ε2

(7.18)

In the upper-half plane, one can define the Poisson kernel as

δε(ω) =
1

π

ε

ω2 + ε2
, (7.19)

from which we have ImGR ∝ δε(ω−Enm)π and can write the thermal spectral function
as

ρε(ω) =
1

Z

∑
n,m

|φnm|22 sinh
(βω

2

)
e−β

(En+Em)
2 δε(ω − Enm). (7.20)

From equation 7.19, one can see how the Poisson kernel is simply a smeared version
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of a Dirac delta function. From this consideration follows that the spectral function
defined in term of the Poisson kernel is understood as a smeared distribution of delta
functions, with the weight given by the matrix element. Furthermore, it states that
the smeared spectral function is the analytic continuation of the retarded correlator in
Minkowski space-time [136]. These statements are particularly important once we will
move our discussion to finite volume correlation functions.

The Fourier coefficients of equation 7.10 in the spectral representation can be writ-
ten as

G
(l)
E (ω) =

2

Z

∑
n,m

|φnm|2

−iω + Enm
e−β

(En+Em)
2 sinh

(βEnm
2

)
, (7.21)

which show its relation with the retarded correlator GR(iω) = G
(l)
E (ω), for l 6= 0. From

equation 7.21, one can infer that the retarded correlator is the analytic continuation of
the Fourier coefficient. Now, since the retarded correlator is analytic only in the upper
half plane, for l = 0 one can only study the value at the origin as limε→0+ GR(iω).

Finally, exploiting the relation among the retarded correlator (eq. 7.16), the ther-
mal spectral function (eq. 7.20) and the Euclidean correlator (eq. 7.15), one finds the
Euclidean correlator expressed in terms of the spectral function

GE(τ)±GE(β − τ) =

∫ ∞
0

dω ρε(ω)
eω
(
β
2
−t
)
± e−ω

(
β
2
−t
)

2 sinh
(
βω
2

) , (7.22)

where the sign depends on whether we use fermionic (−) or bosonic (+) operators.
The type of the field operator used also determines whether the spectral function is
even (−) or odd (+).

Equation 7.22 is the starting point for the lattice computation of the spectral func-
tion as the Euclidean correlator can be computed in lattice QCD simulation. However,
the extraction of the spectral function from lattice correlator is an ill-posed inverse
problem as it will be discussed in the next section. In the remaining sections, our
focus will be towards problems in zero temperature QCD, hence we can obtain a zero
temperature relation between Euclidean correlation functions and the spectral function
sending β →∞

GE(τ) =

∫ ∞
0

dω ρε(ω)e−ωτ , (7.23)

with
ρε(ω) =

∑
n

|φ0n|2δε(ω − En). (7.24)
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7.2 Correlation functions computed on the lattice and

the inverse problem

The problem of extracting spectral densities from lattice correlation function belongs
to the class of inverse problems and in principle can be solved mathematically by
performing the Laplace transform of equation 7.23. However, because lattice correla-
tors are obtained from Monte Carlo simulations, as discussed in chapter 4, the input
data are necessarily affected by a certain statistical error. In ref. [137], the authors
studied how the introduction of uncertainty in the input data affects the solution of
the inverse problem, concluding that although a solution can be found, it will not
be a stable solution and will possibly be obtained with an infinite uncertainty. This
leads to the violation of one of the condition for a well-posed problem formulated by
Hadamard [138], which make the extraction of spectral density from lattice correlators
an ill-posed inverse problem. Furthermore, the problem gets even more complicated
when we consider the fact that lattice simulations are necessarily performed in a fi-
nite volume, making the spectral density a badly-behaving distribution of Dirac delta
functions due to the discretisation of the energy spectrum.

Over the years, many methods have been developed in order to tackle ill-posed
inverse problems as they occur not only in physics but in many other areas of sci-
ence [139, 140]. In the context of lattice QCD the most popular methods are the max-
imum entropy method (MEM) [141], methods based on Bayesian inference [142, 143]
and the Backus-Gilbert method [144]. Recently a few more techniques have been de-
veloped, such as a reconstruction method based on the Chebyshev polynomials [145], a
method based on conformal maps [136] and methods based on Machine Learning tools
and Neural Networks [146, 147, 148]. Regardless of the different strategies, all these
methods introduce some sort of regularisation which allows one to get a reasonable
solution for the inverse problem.

In the following sections, we employed what is now known in the literature as HLT
method, named after the initials of the authors of ref. [149]. This method is a modifi-
cation of the strategy outlined in ref. [150] based on the Backus-Gilbert method. The
starting point is the finite volume two-point, time-ordered Euclidean lattice correlation
function

G(τ) =
1

L3

∑
x

T 〈O(x, τ)O(0)〉, (7.25)
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which, upon insertion of a complete set of state can be written as

G(τ) =
1

L3

∑
n

〈0|O(0)|n〉L〈n|O(0)|0〉L
2ωn(L)

(
e−τωn(L) + e−(T+τ)ωn(L)

)
, (7.26)

where T is the maximum time extent of the hyper-cubic lattice and the term e−(T+τ)ωn(L)

is there to include contributions coming from back-propagating states due to periodic
boundary conditions. Now, using equation 7.23, we can express the correlator in terms
of the finite volume spectral density

G(τ) =

∫ ∞
0

dτ ρL(ωn)
(
e−ωn(L)τ + e−(T+τ)ωn(L)

)
, (7.27)

with

ρL(ω) =
∑
n

〈0|O(0)|n〉L〈n|O(0)|0〉L
2ωn(L)

δ(ω − ωn(L)). (7.28)

The notation ωn(L) highlights the fact that at finite volume the energy spectrum is a
distribution of δ-functions which depends on the physical extent of the lattice volume.
For this reason, even if we were able to solve the inverse problem we would still get a
distribution which is not going to be the same as the infinite-volume spectral function.

For this reason, in ref. [150] the authors proposed as a possible solution to this
problem, the introduction of a smeared integration kernel, which allows to study the
spectral distribution extrapolating the results at infinite volume. We write the smeared
spectral density as the result of the following convolution integral

ρσL(ω) =

∫ ∞
0

∆σ(ω − ωn(L))ρL(ω), (7.29)

where ∆σ = exp(−ω2/2σ2)/
√

2πσ is a Gaußian function which tends to a δ-function
in the limit σ → 0.

Smeared spectral densities are smooth function of the energy and as such it is
possible to study their infinite-volume limit. By choosing the same smearing function
for different physical volumes, it is possible to obtain the physical spectral density,
which is a continuous function, by performing the double limit

ρ(ω) = lim
σ→0

lim
L→∞

ρσL(ω). (7.30)

Again, we stress that the order of the limit cannot be inverted because removing the
smearing would give back a distribution of δ-functions, which is radically different from
the continuous physical spectral density and for which the extrapolation to infinite-
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volume would not converge to correct result.

7.2.1 The HLT method

In order to extract smeared spectral density from lattice correlation functions, one can
use the HLT method [149], which is a model-independent algorithm based on the linear
Backus-Gilbert regularisation [144]. The work in ref. [149] presents the first version
of the HLT method, which was later improved and optimised in ref. [151, 152, 153].
In the following discussion we will mainly follow ref. [153], in which the updates are
discussed thoroughly.

One can start by defining a generic lattice correlation function in terms of a basis
function bT

G(aτ) =

∫ ∞
ω0

dω ρL(ω)bT (τ, ω), (7.31)

where by comparison with equation 7.27, we identify bT (τ, ω) =
(
e−aτω + e(−T+τ)aω

)
,

in which we wrote the lattice spacing explicitly. In QCD, the spectral density vanishes
for ω < ωmin = 2mπ. Then, the value of ω0 can freely be chosen from zero and ωmin.

The central idea of the algorithm is to introduce a smearing kernel as shown in
equation 7.29. Since any choice of smearing kernel will always be a smooth function,
standard theorems of numerical analysis guarantee that it can be approximated to
arbitrary precision in terms of polynomials in the basis function

K(ω; g) =
∞∑
τ=1

gτ (σ)bT (τ, ω), (7.32)

and one can write the formula for the smeared spectral density as

ρσL(ω) = a

∞∑
τ=1

gτ (σ)G(aτ) =

∫ ∞
0

dω ρL(ω)∆σ(ω − ωn(L)). (7.33)

The problem of extracting the spectral density is then restricted to solving the linear
problem of finding the polynomial coefficients gτ (σ).

In practical lattice simulations, lattice correlators can only be known at a finite
number of times, which means that we need to introduce a truncation of the infinite
sums and define the reconstructed smearing kernel as

K(ω; g) =
τmax∑
τ=1

gτ (σ)
(
e−aτω + e−(T+τ)aω

)
, (7.34)
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which inevitably introduces systematic errors in our determination of the spectral den-
sity.

One can then introduce the following functional to define the distance between the
target and the reconstructed smearing kernel

An[g] =

∫ ∞
ω0

dω wn(ω)
∣∣K(ω; g)−∆σ(ω − ωn(L))

∣∣. (7.35)

This corresponds to the L2 norm in functional space and its minimisation gives us the
coefficients g which best approximate the target smearing kernel.

The weight-functions wn(ω) can be chosen from

wα(ω) = eaωα with α =
{

0,
1

2
, 2−
}
, wc(ω) =

1√
ea(ω−ω0) − 1

, (7.36)

and can be distinguished from the tag n = {0, 1/2, 2−, c}. The weigh functions wα
correspond to Jacobi polynomials (Legendre polynomials for α = 0) as introduced al-
ready in ref. [149]. The parameter α effectively changes the rapidity of the convergence
to the most stable result, reducing the systematic errors introduced by the imperfect
reconstruction of K(ω; g), as it was demonstrated quantitatively in ref. [153]. Perform-
ing a change of variable in the expression for wc, it can be shown after a few line of
algebra that minimising Ac[g] corresponds in searching for the best approximation of
the smearing kernel in terms of Chebyshev polynomials.

As already argued in ref. [149], minimising the functional An[g] without any sort
of regularisation leads to gigantic polynomial coefficients g regardless of the weight
function used. This happens as a consequence of the fact that we are trying to solve an
ill-posed problem and, as already discussed in this section, this leads to very unstable
solution with huge uncertainties.

For this reason, the HLT method uses the Backus-Gilbert regularisation which
consists in minimising the functional

Wn[g] =
An[g]

An[0]
+ λB[g], (7.37)

under the unit area constraint ∫ ∞
0

dωK(ω; g) = 1. (7.38)
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The error functional B[g] is defined as

B[g] = Bnorm

τmax∑
τ1,τ2=1

gτ1gτ2 Cov(τ1, τ2), (7.39)

where Cov(τ1, τ2) is the covariance matrix of the lattice correlator G(aτ) and Bnorm is
often chosen to be Bnorm = ω2

n/G
2(aτnorm), making the error functional dimensionless.

For fixed values of the algorithmic parameters p = (n, λ, ω0, τmax, τnorm), the min-
imisation of equation 7.37 consists in solving the linear problem

∂Wn[g]

∂gτ

∣∣∣∣∣
g=gp

= 0, (7.40)

which needs to be done for each energy and smearing radius considered in the deter-
mination of ρσL(ω). In the end, this will give the result of the smeared spectral density

ρσL(ω; gp) =
τmax∑
τ=1

gpτG(aτ). (7.41)

The HLT procedure, as any method used for extracting the spectral density from
lattice correlator, needs a reliable strategy to estimate both the statistical and system-
atic errors of the result. The statistical error can be estimated from the error functional
B[g]

∆stat(ω; gp) =

√
B[gp]

Bnorm

. (7.42)

Its form suggests that in the ideal case of infinitely precise input data, the error func-
tional vanishes and the regularisation is no longer needed as we are not in the case of
an ill-posed problem anymore.

The systematic error can be obtained monitoring how the smeared spectral density
changes alongside the quantity

d(gp) =

√
A0[gp]

A0[0]
. (7.43)

In particular, following the procedure introduced in ref. [151] called stability analysis,
one quotes as the best estimate for ρσL(ω), one of the results from the region in which
d(gp) is small and therefore the result is dominated by the statistical uncertainty. In
this region, the result is stable within the statistical error to the variation of any al-
gorithmic parameter contained in p. The reason behind the stability analysis can be
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understood by noticing that large values of d(gp) correspond to a large value of the
norm functional A0[gp] and thus to a larger distance between the target and recon-
structed kernel. In this region of large d(gp), results corresponding to different choice
of weight function wn and/or different λ are very different not only with respect to
the target kernel but also with each other, making it almost impossible to select a
single result. Instead, small values of d(gp), corresponding to a small distance between
the reconstructed and target kernel, tend to be closer together and therefore agree
within the statistical errors. Moreover, as a consequence of the Backus-Gilbert regu-
larisation (eq. 7.37) and the minimisation (eq 7.40), small values of d(gp) are typically
obtained for small values of λ meaning that the minimisation is focusing on the norm
functional A0[gp] and not on the error functional. Thus, for small d(gp) the results
tend to agree within the statistical errors because in this regime ∆stat tend to grow
because of the ill-posed nature of the problem.

An example of the stability analysis plot can be seen in figure 7.1, in which one can
clearly see how the statistical error of ρσL(ω) grows as we reduce d(gp).

Figure 7.1: Stability analysis of the two-point correlation function with Bs meson
interpolating operators, the same of figure 3.1. The data shows the results of the
spectral density at σ = 0.2/a and ω/E0 = 0.9, the full results are shown in figure 7.2.
The plot shows the initial scan over λ and highlights two points satisfying the condition
of equation 7.44. The red data point is the one selected as the final result with the red
band showing that it is indeed compatible within the statistical error with all the other
results. The red data point correspond to the optimal balance A2− [g∗∗]/A2−[g∗∗] =
B[g∗∗].

Following the procedures of ref. [149, 151], we estimate the central value of the
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smeared spectral density and the residual systematic error from the results satisfying
the conditions

A2− [g∗]

A2−[0]

= 10B[g∗],
A2− [g∗∗]

A2−[0]

= B[g∗∗]. (7.44)

Typically, both results for g∗ and g∗∗ will fall within the statistically dominated region
for small d(gp). In the few cases when this does not happen, it is still possible to
estimate the systematic error associated to the smeared spectral density by taking
the difference ρσL(ω, g∗) − ρσL(ω, g∗∗), even though it often gives a rather conservative
estimate.

Figure 7.2: Smeared spectral density extracted using the HLT method from two-point
correlation function using smeared meson interpolators of the Bs meson, the same of
figure 3.1. The results show the peak corresponding the the ground state of the Bs

meson previously found in equation 3.27, E0 = 1.2712 in lattice units.

The final step to follow at the end of the HLT method would be to perform the
ordered double limit of equation 7.30. However, as will be discussed in the next section
and in chapter 8, all the numerical results discussed in this document were obtained
with only a single physical lattice volume. Therefore, it would be impossible for the
results discussed here to perform the infinite-volume extrapolation. Regardless of this
limitation, in chapter 8, we will show how to perform the σ → 0 extrapolation in the
context of inclusive semileptonic decays as in that specific case we assume that our
statistical errors are going to be larger than the finite volume effects. For an example
of a correctly performed ordered double limit, one can see the discussion sections of
references ref. [151, 153].
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7.3 Glueball spectral function in SU(3) Yang-Mills

theory

Since the early days of QCD, obtaining precise predictions for the glueball spectrum
has been a particularly challenging task, either using analytical or numerical meth-
ods. Moreover, clean experimental evidence of the very existence of glueballs is still
missing, due to particularly difficult to understand mixing effects and to the fact that
their masses are probably close to other hadronic bound states appearing in the decay
channel of the J/ψ meson [154, 155, 156], making it a long standing unsolved problem.

The contamination of glueball states by additional hadronic bound states is a com-
plication also in lattice QCD simulations, where despite the implementation of smeared
operators, excited states often contribute to the correlation function, resulting in effec-
tive mass plots in which it is particularly difficult to identify the correct plateau. For
this reason, as discussed in section 2.7, most lattice QCD studies of the glueball spec-
trum employ methods like the GEVP [22, 23]. The difficulty behind identifying and
controlling excited states contaminations can be understood looking at the formula for
the finite volume smeared spectral density, i.e., the smeared version of equation 7.28

ρσL(ω) =
∑
n

〈0|O(0)|n〉L〈n|O(0)|0〉L
2ωn(L)

∆σ(ω − ωn(L)), (7.45)

where ∆σ is the Gaußian kernel. The weight of the Gaußians ∆σ located at a particular
energy ωn(L) is given by the magnitude of each matrix element 〈n|O(0)|0〉L. For this
reason, in those cases in which the energies are too close together or the matrix elements
are too large, resolving individual states might be a particularly laborious effort.

These considerations make the determination of glueball masses from effective mass
plots and asymptotic exponential fits particularly prone to large systematic errors which
could affect the calculation of the glueball spectrum. It is to address these difficulties
that we decided to investigate an alternative method based on the extraction of smeared
spectral functions [157]. The calculation of bound state masses from spectral functions
was proposed for the first time in ref. [152] and in the context of glueball states in
ref. [158].

In our study, we focused on the quenched QCD theory, that is SU(3) Yang-Mills
theory with no dynamical fermions, and we extracted the smeared spectral density
from two-point correlation functions with glueball interpolating operators, defined in
equation 2.73. Because of the broken Lorentz symmetry on the lattice, we built the
correlation functions using the representations defined in section 2.7, and obtained
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JPC β L3 × T Ncnfg

A++
1 5.8941 323 × 32 3420

A++
1 6.0625 323 × 32 15000

A++
1 6.3380 323 × 32 10000

E++ 5.8941 323 × 32 3420

Table 7.1: Ensembles details for the glueball correlation functions.

results in the A++
1 and E++ channels, corresponding respectively to the 0++ and 2++

glueball states in the continuum limit. As already discussed in section 2.7, in the A++
1

we subtracted the vacuum expectation values from the two-point correlation functions.
The details of the numerical results can be found in table 7.1.

Glueball correlators are notoriously noisy due to a particularly severe signal-to-noise
ratio problem [159, 160]. One of the strategies which have been developed in order to
overcome this issue is the variational method discussed in section 2.7. For each channel
considered in this section, we built the GEVP correlator matrix including a large basis
of glueball operators. Then after diagonalising the matrix and solving the eigenvalue
equation 2.78 we were able identify the optimal operator defined in equation 2.77 with
which construct the optimal correlation function.

One of the advantages of extracting spectral functions from glueball correlators
is that we can explicitly verify that the correlator with the lowest eigenvalue coming
from the solution of the GEVP equation is indeed the one that contribute the most
to the optimal correlator. This is because the matrix elements 〈n|Φ(0)|0〉L appearing
in equation 7.45 in the case of the optimal correlator are in fact obtained from the
linear combination of the matrix elements of the correlation functions used in the
definition of equation 2.77, which correspond to the highest eigenvalues of the correlator
matrix (eq. 2.76). The correlator corresponding to the highest eigenvalue is also the
one with the highest overlap with the ground state energy. This can be seen clearly in
the plot shown in figure 7.3.

The spectral functions shown in figure 7.3 were extracted from glueball correlation
functions using the HLT method. As discussed in the section above, one of the im-
portant features of the method is the stability analysis shown in figure 7.1. Because
glueball correlators are particularly noisy, much more than the meson lattice correla-
tors shown in figure 3.1, we notice that the HLT algorithm tends to further minimise
the error functional which results in a stability plot shown in figure 7.4. The difference
between the plots in figure 7.4 and figure 7.1 highlight the fact that the study of the
stability plots is a delicate stage of the HLT method, which sometimes could give as
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Figure 7.3: Smeared spectral density for the two-point glueball correlation function in
the A++

1 channel obtain from simulations with β = 5.8941 and L3×T = 323× 32. The
Gaußian kernel used in the reconstruction had a smearing radius of σ = 0.15/a. The
energies are all in lattice units. The points in blue show the smeared spectral density
of the optimal correlator, while the points in orange show the smeared spectral density
of the single correlator with the highest overlap with the ground-state energy.

the best result a conservative estimate of the systematic errors. Because of the noisy
correlators, the HLT algorithm selects as the optimally balanced result (k = 1) a value
with a large statistical uncertainty. However, studying carefully the stability plots
for each energy value considered in the plot, one soon realises that there are points
satisfying a different condition

Aα[g∗]

Aα[0]
= kB[g∗], (7.46)

which are well within the stability plateau but with a smaller statistical uncertainty.
For this reason, we decide to use the points satisfying the condition of equation 7.46
with k = 2.5 as the final values of our spectral reconstruction.

7.3.1 Fits of smeared spectral functions

In order to extract glueball masses from smeared spectral densities one can exploit the
form of the smearing kernel used in the HLT method and define the model fit function
as

fσk (ω) =
∑
k

ak e
−(ω−ωk)

2

2σ2 , (7.47)
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Figure 7.4: Stability plot for the smeared spectral function extracted from two-point
glueball correlators obtained from simulations with β = 5.8941 and L3×T = 323× 32.
The data show the results of the HLT with σ = 0.15/a and ω = 1.1 in lattice units.

where k is an integer representing the number of states encoded in the model function
and ak, ωk are the fit parameters related to the finite volume matrix elements and
energies respectively. The fit parameters are determined by minimising the χ2 functions
containing the covariance matrix of the lattice correlators

χ2
fσk

=
∑
ω,ω′

(
fσk − ρσL(ω)

)
Cov−1

ω,ω′ [ρ
σ
L]
(
fσk (ω′)− ρσL(ω′)

)
, (7.48)

with

Covω,ω′ [ρ
σ
L] =

1

N − 1

N−1∑
n=0

[
ρσL,n(ω)− 〈ρσL(ω)〉

][
ρσL,n(ω′)− 〈ρσL,n(ω′)〉

]
. (7.49)

Now, in principle there is no limit in the number of energies that can be used to
extract smeared spectral functions. However, it is a well known fact that lattice corre-
lation function can contain only a limited number of time slices, due to the fact that we
perform simulations in a finite volume. Moreover, the number of degrees of freedom is
further constrained by the covariance matrix which takes into account the correlation
between different time slices. These restriction in the number of degrees of freedom
inevitably affects the number of degrees of freedom available in the fit of spectral den-
sities. This happens because the spectral density evaluated at a single energy depends
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on the temporal correlation functions at each lattice time. As a consequence, the prob-
lem of isolating the ground state energy from excited state contributions in temporal
correlators is shifted to the problem of resolving to small values of σ the energy states
in the spectral density.

Another important feature of fitting the spectral density comes from the fact that
thanks to the Backus-Gilbert regularisation in the HLT method, the covariance matrix
contained in the error functional B[g∗∗] is automatically regularised by the norm func-
tional Aα[g∗∗]. What this means in practice is that the values of the covariance matrix
will never get too small, due to the fact that whenever this may happen, the algorithm
will try to minimise the norm functional instead of the error functional. In other words,
this procedure guarantees that the covariance matrix will always be well-conditioned
so that the inversion required in equation 7.48 will always be possible.

After reconstructing the smeared spectral density, we follow the procedure intro-
duced in ref. [152] and perform a combined fit of spectral functions including the
number of energy values which minimise the condition number of the covariance ma-
trix Covω,ω′ [ρ

σ
L], and so maximise the information passed to the χ2 function in equa-

tion 7.48. The condition number of the covariance matrix is also used in order to
determine the smallest value of σ that can be used in order to get sensible results for
our fit results. The non-linear fit was performed with the Levenberg-Marquardt al-
gorithm implemented in the python function scipy.optimize.curve_fit, with prior
guesses 1.0 for the matrix elements and 0.5, 0.5+0.2 for the two glueball states included
in the fit. In figure 7.6, we show the results of the Gaußian fits using equation 7.47
including the first two states, i.e. k = 2. In the plot we also show the results for the
first two states obtained with standard effective mass plots and temporal correlator fits
by Athenodorou and Teper in ref. [161].

We obtained results from the fits of spectral densities for several values of the smear-
ing radius σ = {0.15, 0.2, 0.24, 0.28, 0.3, 0.4}, however, in table 7.2 we only compare the
results obtained with the smallest σ. The choice of the smearing radius is naturally
dictated by the quality of the data, which for glueball lattice correlator is unfortunately
very poor. Results with a different value of smearing radius can be seen in figure 7.7.

The results obtained from the fits of spectral densities for our smallest value of
σ are close yet not perfectly compatible with the results obtained by in ref. [161]
for both the ground state mass and the first excited state. Despite this not perfect
agreement, we can consider our results to be acceptable considering that in a finite
volume the separation between energy states should be around 2π/L ≈ 0.2 which is
indeed confirmed by the values of the glueball masses extracted from the fits.

The fact that our results are very close to those obtained in ref. [161] is highly non-
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Figure 7.5: Effective mass plot for the ground state of A++
1 glueball correlation func-

tions, obtained from simulations with β = 5.8941. The early onset of the plateau region
is an effect of the use of the variational method to compute the optimal correlation
function. The growth of the statistical error as we go to larger lattice times is due to
the increase in noise that affects glueball correlation functions. The large statistical
uncertainty affects the accuracy of the glueball mass calculation from fits of temporal
correlators, as it may hint possible contributions from excited states.

trivial since the approach used to calculate the glueball masses is completely different
and in principle there is no guarantee that they would yield the same results. The
fact that we find reasonably close values for the glueball masses is an indication that
we are indeed probing the same physics. However, the fact that both values obtained
using the “standard” method in ref. [161] are larger than the values we obtain from
our spectral density fits could suggest an overestimation of the glueball masses due
to the contaminations of excited states in temporal correlation functions. As already
mentioned, the “standard” method relies on fits of temporal correlation functions in the
temporal region where one can safely identify a plateau in the corresponding effective
mass plot, in the same way that was shown in figure 3.1. Glueball correlators are
particularly noisy, which makes it particularly difficult to identify the plateaus used
to extract glueball masses. The procedure for determining the glueball masses from
effective mass plots is particularly challenging as one can often use only the first few
lattice point in order to define the plateau region, which is often also affected by
large uncertainties as one goes to larger times. This is clearly shown in figure 7.5
Consequently, it is hard to gauge whether the plateau is indeed purely a manifestation
of the ground state, with the risk that contamination from other states could remain
indistinguishable. Conversely, our alternative method based on the extraction of the
glueball spectral functions allows to unequivocally identify the ground state mass and
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the first excited state simply identifying the peaks in the spectral functions, appearing
in correspondence of the matrix elements 〈|n|Φ|0〉L.

Figure 7.6: Smeared spectral density extracted from two-point glueball correlation
functions obtained from simulations with β = 5.8942, L3×T = 323×32. The smearing
radius is σ = 0.15/a, which is the smallest value of σ corresponding to the smallest
condition number for the covariance matrix defined in equation 7.49. The vertical lines
correspond to the fit results of temporal correlator in the plateau region of effective
mass plots obtained in ref. [161] by Athenodorou and Teper. The green and purple
Gaußian curves correspond respectively to the ground state mass and first excited state
of the glueball. The reduced χ2 of the two-Gaußian fit is χ2

red = 2.67

Another interesting feature of our method is that in principle it could allow us to
identify states which would otherwise be impossible to determine. In figure 7.8 one can
see a well recognisable peak exactly in between the two vertical lines corresponding to
the glueball masses extracted with the “standard” method and a small peak roughly
at ω = 0.4 in lattice units. The small peak corresponds to an extremely light glueball
mass which would be impossible to see using the “standard” method as it could only
be detected for extremely long lattice times, which are exactly the times in which the
glueball correlator is dominated by large statistical noise. While it could simply be a
statistical fluctuation that could disappear as we increase the number of configurations
of the ensemble, in the case in which the peak survived such a change, it would be a
signal that our method indeed allows to identify states which could not be identified
with any other method currently used within the lattice community. If this was indeed

95



CHAPTER 7. SPECTRAL FUNCTIONS AND THE INVERSE PROBLEM

JPC β Athenodorou-Teper spectral fits
A++

1 5.8941 am0 = 0.799(10) amσ
0 = 0.719(28)

am1 = 1.345(14) amσ
1 = 1.113(41)

6.0625 am0 = 0.6365(43) amσ
0 = 0.389(56)

am1 = 1.111(11) amσ
1 = 0.766(35)

Table 7.2: Comparison of the numerical results of the glueball masses obtained from
Athenodorou and Teper in ref.[161] and those obtained fitting the smeared spectral
density using equation 7.47 and the smeared spectral density extracted from two-point
glueball correlation functions. The results from spectral fits are obtained using the
smallest value of the smearing radius σ = 0.15

the case, it would certainly be an important aid in the quest for the calculation of the
glueball spectrum, both in a quenched and in an unquenched setting.

All the results shown in this section are to be considered as produced at a very
preliminary stage of our investigation. In fact, following the strategy of the HLT
method, we should extract the values of the glueball masses for each value of sigma
and for multiple values of the physical volume L3 × T . Only then, we would be able
to perform the ordered double limit of equation 7.30 with the glueball masses in place
of the spectral functions

lim
σ→0

lim
L→∞

amσ
L. (7.50)

Only at the end of this procedure we would be able to get an accurate comparison
with the results obtained by Athenodorou and Teper in ref. [161] and any other lattice
study of glueball masses. Moreover, exactly like for any other work involving lattice
simulations, we will need to perform the extrapolations to the continuum limit using
our results obtained with different values of β.

This is currently work in progress; the results of this study will be published in a
new article [157] in the near future.
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Figure 7.7: Smeared spectral density extracted from two-point glueball correlation
functions obtained from simulations with β = 5.8942, L3 × T = 323 × 32. The smear-
ing radius is σ = 0.24/a. The vertical lines correspond to the fit results of temporal
correlator in the plateau region of effective mass plots obtained in ref. [161] by Athen-
odorou and Teper. The green and purple Gaußian curves correspond respectively to
the ground state mass and first excited state of the glueball. The reduced χ2 of the
two-Gaußian fit is χ2

red = 1.209

Figure 7.8: Smeared spectral density extracted from two-point glueball correlation
functions obtained from simulations with β = 6.0625, L3 × T = 323 × 32. The smear-
ing radius is σ = 0.15/a. The vertical lines correspond to the fit results of temporal
correlator in the plateau region of effective mass plots obtained in ref. [161] by Athen-
odorou and Teper. The green and purple Gaußian curves correspond respectively to
the ground state mass and first excited state of the glueball. The reduced χ2 of the
two-Gaußian fit is χ2

red = 1.33
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Chapter 8

Inclusive semileptonic heavy-meson
decays

8.1 The Standard Model and flavour physics

With the discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC),
the Standard Model (SM) of particle physics finally got the experimental confirmation
for the process known as Higgs mechanism [162, 163], a fundamental piece in order to
construct a perturbatively renormalisable theory.

The SM is currently our best attempt at understanding the physical processes
involving fundamental forces and particles [164, 165, 166, 167]. It contains three gen-
erations of spin-1/2 fermions, which can interact through the strong, weak and elec-
tromagnetic forces by the exchange of spin-1 bosons. In each generation of fermions,
there are two quarks with different electric charges and two leptons, one of which is
the neutrally charged neutrino. Among each other, fermion generations differ only by
the value of their rest masses which gets larger as we go from the first (u, d, e, µe) to
the third (t, b, τ , µτ ).

The fundamental interactions described in the SM are mediated by gauge bosons.
We already defined the gluon as the mediator of the strong nuclear force. Then we
have the photon γ as the mediator of the electromagnetic interaction and the Z and
W± bosons as the mediators of the weak nuclear force. Unlike the photon and the
gluons, the Z and W± are massive bosons which acquire mass due to the spontaneous
breaking of the Electroweak symmetry [164].

The Standard Model Lagrangian density can be written as a linear combination of
different sectors

LSM = Lgauge + LDirac + LY + LHiggs, (8.1)
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where Lgauge and LDirac contains the gauge and fermionic degrees of freedom and
coupling terms

Lgauge = −1

4
Ga
µνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν (8.2)

LDirac =
∑
ψ

iψL /DψL + iψR /DψR. (8.3)

LY the Higgs-Yukawa terms

LY = −Y d
ijQ

I

Liφd
I
Rj
− Y u

ijQ
I

Liεφ
∗uIRj + (lepton terms) + h. c., (8.4)

and LHiggs the Higgs terms

LHiggs = Dµφ
†Dµφ+ µ2φ†φ− λ(φ†φ)2. (8.5)

The Standard Model Lagrangian is invariant under the local symmetry SU(3)C ×
SU(2)L×U(1)Y , where SU(3)C is the QCD colour gauge group, SU(2)L represent the
weak isospin while U(1)Y the weak hypercharge. The fermion content is organised in
five fields for each fermion generation. Using the notation (C,L)Y , one can write

Qi
L(3, 2)+1/6, U

i
R(3, 1)+2/3, D

i
R(3, 1)−1/3, L

i
L(1, 2)−1/2, E

i
R(1, 1)−1, (8.6)

where QL are left-handed quark doublets, UR are right-handed, up-type quark singlets,
DR are right-handed, down-type quark singlets, LL are left-handed charged lepton
doublet and ER are right-handed charged lepton singlet. This structure gives a global
flavour symmetry to the SM Lagrangian density

U(3)5 ×Gq ×Gl, (8.7)

where Gq and Gl are the flavour symmetries of the quark and lepton fields

Gq = SU(3)QL × SU(3)UR × SU(3)DR , Gl = SU(3)LL ⊗ SU(3)ER . (8.8)

Calculations based on the SM have been tested and often confirmed to a very high
degree of precision by experimental measurements at very different energy scales. This
has been achieved by constructing quantum field theories that work only in a limited
energy or distance range called Effective Field Theories (EFT). For instance, one can
exploit the wide separation between the Fermi scale and the mass of B- or D-mesons
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in order to build an EFT and use it, together with renormalisation group arguments,
to calculate the expected (inclusive) decay rates of these mesons with astonishing ac-
curacy [168]. It is within this picture that many physicists advanced the idea that the
SM itself can be an EFT such that all the processes currently left unexplained can
eventually be described by a more fundamental theory accessible at an energy scale
much larger than mW .

In order to investigate this higher energy scale, one of the methods currently pur-
sued is the indirect approach, which tries to detect deviations between the Standard
Model and the experimental data coming from the particle colliders. If present, these
deviations can only be explained by the effect of Beyond the Standard Model (BSM)
physics occurring at loop-level and therefore highly suppressed at low energies.

One of the most promising sectors of the SM Lagrangian where we expect to find
new physics is quark flavour physics and, in particular, in processes involving flavour
changing neutral currents (FCNC). Flavour-changing interactions amongst quarks are
mediated by the weak force. In a weak quark decay at tree-level, a quark of one flavour
emits a W± boson and decays to a quark of a different flavour. The decay conserves
electric charge so weak decays are from an up-type to a down-type quark or vice versa.
FCNC on the other hand can only occur at loop-level in the SM through the so called
box diagrams in which we have the exchange of two W bosons between the quarks.
For instance, a promising physical process mediated by FCNC in which there might
be a signal of new physics is the mixing of neutral B-mesons [169, 170, 171, 172] and
K-mesons [173].

FCNC, together with the mixing of quark flavours and CP violation by the Jarlsog
invariant define the flavour structure of the SM. All these features are encapsulated in
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [174, 175]. Determining the elements
of this matrix is not only important to determine fundamental parameters of the stan-
dard model but also because, considering their role in flavour changing processes, their
precise determination is fundamental in oder to check for possible deviations from the
SM and look for possible new physics contributions.

8.2 The Cabibbo-Kobayashi-Maskawa matrix

The Higgs-Yukawa terms in the Standard Model Lagrangian density with only quark
fields shown in equation 8.1 can be written as

LY = −Y d
ijQ

I

Liφd
I
Rj
− Y u

ijQ
I

Liεφ
∗uIRj + h. c., (8.9)
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where Y u,d are the Yukawa coupling, which are 3×3 complex matrices, i, j are fermion
generation labels, ε is the 2× 2 antisymmetric tensor and φ is the Higgs field.

QI
L =

(
UL

DL

)

are left-handed quark doublets, and dIR and uIR are right-handed down- and up-type
quark singlets, respectively, in the weak-eigenstate basis. The UL and DL quark fields
represent the up- and down-type for each generation of quarks. The above equation is
invariant under the SU(2)L × U(1)Y symmetry.

With the introduction of the Higgs field and its interaction with the Yukawa cou-
pling in equation 8.9, we break explicitly the global flavour physics of the SM, which
is reduced to the independent rotation of the fermion fields in equation 8.6 in flavour
space. Three of the five U(1) groups in equation 8.7 can be identified with the total
baryon and lepton numbers, which are not broken by the Yukawa Lagrangian density.
After the spontaneous symmetry breaking occurring through the Higgs mechanism, φ
acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), and the hypercharge group is

spontaneously broken into the U(1)em group. The non-Abelian gauge groups in equa-
tion 8.7 are responsible for the flavour changing dynamics of the fermion fields and are
explicitly broken by the Yukawa terms. Then equation 8.9 yields the mass terms for
the quarks, where the physical states in the mass basis are obtained diagonalising Y u,d

by four unitary matrices, V u,d
L,R, as

M f
diag = V f

L Y
fV f

R (v/
√

2), f = (u, d). (8.10)

As a result, the charged-currentW± interactions couple to the physical uLj and dLk
quarks according to the Lagrangian density

LW = −
√

1

2
guLiγ

µVCKMdLjW
+
µ + h. c. (8.11)

with

VCKM ≡= V u
L V

d†
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (8.12)

VCKM is the Cabibbo-Kobayashi-Maskawa matrix, which allows to relate the weak
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eigenstates (d′, s′, b′) with the mass eigenstates (d, s, b)d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (8.13)

The CKM matrix is a complex unitary matrix, V †V = V −1V = 1. A generic 3× 3

complex unitary matrix is dependent on N(N − 1)/2 = 3 rotation angles, which in
the case of the CKM matrix are known as Cabibbo mixing angles and N(N + 1)/2 =

6 complex phases. Working in the mass basis, the Yukawa couplings are diagonal
Y u = diag(yu, yc, yt), Y d = diag(yd, ys, yb), which leaves a residual invariance under the
flavour group and allow the elimination of five of the six complex phases, corresponding
to the relative phases of the quark fields. Therefore, the CKM matrix can be described
using four physical parameters: three mixing angles and one CP -violating phase.

8.3 The |Vcb| puzzle

In the previous section, we discussed the fundamental importance of the CKM matrix
elements in the quest for signals of new physics beyond the SM. Considering the level of
precision required to test the current tensions within the SM, a long standing effort has
been done in trying to determine all the CKM matrix elements with precisions around
the per-cent levels. This is not an easy task because the CKM matrix elements, be-
ing fundamental parameters of the SM, cannot be calculated directly from theoretical
calculations. Hence, the only way to estimate these parameters is to study physical
processes involving weak decays of quarks and combine theoretical calculations of cer-
tain quantities involved in the decay with experimental measurements of observables
such as the decay rate.

Over the years, a puzzling discrepancy emerged from the determination of the |Vcb|
and |Vub| CKM elements. In particular, the values of |Vcb| determined from inclusive
and exclusive semileptonic B decays have differed at the level of about 3σ for quite
some time. The latest results quoted by the flavour lattice averaging group (FLAG)
world average [176] are reported in table 8.1, with figure 8.1 showing the current bounds
obtained studying exclusive semileptonic and leptonic decays.

The discrepancy between the exclusive and inclusive determination, although being
a persistent tension, is probably not going to be a signal of new physics, as it has
been argued that models based on a new physics contribution struggle to explain this
discrepancy in a consistent and significant way [177, 178]. Nevertheless, since the
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|Vcb| |Vub|
exclusive |Vcb| = (39.48± 0.67) · 10−3 |Vub| = (3.57± 0.13) · 10−3

inclusive |Vcb| = (42.00± 0.64) · 10−3 |Vub| = (4.32± 0.29) · 10−3

Table 8.1: Latest results for the magnitude of the CKM matrix elements |Vcb| and |Vub|
obtained studying exclusive and inclusive semileptonic decays, taken from ref. [176].

Figure 8.1: The plot show the summary of the determination of the CKM matrix
elements |Vub| and |Vcb|. The black dot shows the global fit of exclusive theoretical
and experimental contributions with dashed and solid circular lines representing the
68% and 98% confidence level contours respectively. The blue dot represent the latest
results of the inclusive determinations. The plot is taken from ref. [176], in which all
the works which contribute to the bounds are reported.

CKM matrix elements involved in the exclusive and inclusive processes parametrise
the same quark mixing process, they should in principle be the same, regardless of the
approach used in the analysis, which leads to the particle data group (PDG) average
of the inclusive and exclusive determination of |Vcb| = (40.8 ± 1.4) · 10−3. As one
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can imagine, the average has a much larger uncertainty compared with the individual
determinations, and this larger uncertainty can affect FCNC studies in an important
way by limiting the precision of the calculations and therefore making it harder to find
discrepancies with the experimental measurements [179, 180].

In the effort to better understand and possibly resolve this discrepancy, on the
theoretical side a key role has been played by lattice QCD calculations of exclusive
semileptonic decays. Lattice QCD allows to obtain accurate and systematically im-
provable predictions for a variety of quantities, including those relevant for decays of
heavy mesons like decay constants and form factors. These quantities can then be
combined with experimental measurements coming from B factories in order to get
the estimate of the CKM matrix elements quoted in table 8.1. Modern lattice QCD
estimation of the CKM matrix elements have reached an impressive level of precision
which has helped to constrain the uncertainty related to the exclusive determination
of |Vcb| [176]. However, until recently, lattice QCD calculations were restricted to ex-
clusive decays. This is due to the fact that dealing with multiple hadrons present in
inclusive calculations with the current lattice methodology is exceedingly difficult if
not impossible.

For this reason, in ref. [2] we performed one of the first lattice QCD study of inclusive
decays based on the method proposed in ref. [181]. The study is based on a new strategy
for the computation of inclusive decay rates through the reconstruction of spectral
density contained in four-point correlation functions. This new technique in a certain
sense circumvent the necessity for analytical continuation and could potentially enable
the determination of arbitrary moments linked to general B → X`ν decays. Naturally,
an important test of this method is the comparison with the analytic results for the
inclusive decay rates obtained employing the operator product expansion (OPE) [182,
183], where the observable is expanded in inverse powers of the heavy-quark mass [184,
185, 186].

8.4 Inclusive semileptonic decays

Inclusive decays of heavy mesons can be described using an effective Hamiltonian, built
in order to separate the long-distance and the short distance energy scales

Lint = −Hint = −GF√
2
|Vcb|

(
cγµ(1− γ5)b

)(
lγµ(1− γ5)νl

)
(8.14)

≡ −GF√
2
|Vcb|Jq,µJµl . (8.15)
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Figure 8.2: Feynman diagram of the B → Xclν inclusive semileptonic decay

where we used the well known relation between the Fermi coupling constant GF and
the Yukawa couplings g: GF/

√
2 = g2/8M2

W , while integrating out the W -boson.
We will work in the rest frame of the mother particle and consider massless leptons,

such that we can write

p = (mBs ,0), q = pl + pν = (q0, q), r = p− q = (ω,−q) (8.16)

Then we write the general formula for the inclusive differential decay rate as

dΓ =
∑
Xc

∑
s

1

2mB

( 23pl
(2π)3

1

2El

)( d3pν
(2π)3

1

2Eν

)
|M(B → Xclν)|2 × (2π)4δ4(p− q − r),

(8.17)
where the matrix element is given by

M(B → lν) = 〈Xclν|Hint|B〉 (8.18)

=
GF√

2
|Vcb|〈Xclν|Jµ(0)Jµ(0)|B〉. (8.19)

Now, as the hadronic and leptonic part do not interfere, they can be separated into
a hadronic and leptonic tensor

Lµν(pl, pν) = pµ` p
ν
ν̄ − p` · pν̄gµν + pν`p

µ
ν̄ − iεµανβp`,αpν̄,β , (8.20)

W µν(p, q) =
∑
Xc

(2π)3δ(4)(p− q − r) 1

2mB(p)
〈B̄(p)|Jµ†(0)|Xc(r)〉〈Xc(r)|Jν(0)|B̄(p)〉,

(8.21)

where the sum over the charmed hadronic states Xc is defined as

∑
Xc

|Xc(r)〉〈Xc(r)| →
∑
Xc

∫
d3r

(2π)3

1

2EXc(r)

|Xc(r)〉〈Xc(r)|. (8.22)
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The hadronic tensor contains all the non-perturbative information on the hadron
dynamics, hence, it is one of the most important object in non-perturbative studies
of QCD. However, the hadronic tensor cannot be accessed analytically and for this
reason one can use the Optical Theorem in order to relate the hadronic tensor to the
imaginary part of the forward scattering amplitude, in a form which is equivalent to the
calculation of spectral functions from the imaginary part of the retarded correlator 7.13

− 1

π
ImTµν = Wµν (8.23)

with
Tµν =

1

2mB

∫
d4x eiqx〈B|T

(
Jµ(x)Jµ(0)

)
|B〉. (8.24)

A lattice calculation which exploited the Optical theorem was performed in [187], and
represents an alternative attempt to the strategy we will discuss in this section.

We can write the differential decay rate in terms of only three kinematic variables
q2, q0 and the lepton energy El

dΓ

dq2dq0dE`
=
G2
F |Vcb|2

8π3
LµνW

µν . (8.25)

The hadronic tensor in equation 8.21 can be decomposed in five invariant structure
functions

W µν(p, q) =− gµνW1(ω, q2) +
pµpν

m2
B

W2(ω, q2) +
qµqν

m2
B

W3(ω, q2)

+
pµqν + pνqµ

m2
B

W4(ω, q2)− iεµναβ pαqβ
m2
B

W5(ω, q2) . (8.26)

In the following discussion it will be more convenient to work with the hadronic
tensor written in its spectral representation

Wµν(ω, q) =
(2π)3

2mB

〈B̄(0)|J†µ(0)δ(Ĥ − ω)δ3(P̂ + q)Jν(0)|B̄(0)〉 , (8.27)

where Ĥ and P̂ are respectively the QCD Hamiltonian and four-momentum operators
and we changed the integration variable from (q0, q2) to (ω, q2).

Then, we can write the differential decay rate in terms of the contraction between
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the hadronic and the leptonic tensor as it was derived in appendix C

dΓ

dq2dωdE`

8π3

G2
F |Vcb|2

= LµνW
µν

= −{(mB − ω)2 − q2}W1 +
1

2
{q2 − (mB − ω − 2E`)}W2

+ 2[(mB − ω)2 − q2][2E` − (mB − ω)]W5. (8.28)

We can perform the integral over the lepton energy El analytically within the kine-
matic range [(q0 −

√
q2)/2, (q0 +

√
q2)/2], such that we are left with

dΓ

dq2dω

24π3

G2
F |Vcb|2

= −3(mB − ω)2|q2|W1 + |q|2(3W1 +W2) (8.29)

The form factors can be re-written in an alternative basis in the three-dimensional
space

n̂ =
q√
q2

, ε(a) · n̂ = 0 , ε(a) · ε(b) = δab , {a, b} = {1, 2} . (8.30)

As a consequence, we can write the following hadronic quantities in terms of the
hadronic tensor’s form factors

Y (1) = −
2∑

a=1

3∑
i,j=1

ε
(a)
i ε

(a)
j W ij , Y (2) = W 00 , Y (3) =

3∑
i,j=1

n̂in̂jW ij ,

Y (4) =
3∑
i=1

n̂i(W 0i +W i0) , Y (5) =
i

2

3∑
i,j,k=1

εijkn̂kW ij . (8.31)

Therefore, in the rest frame of the B-meson, all the information contained in the
hadronic tensor can be interchangeably parametrised in terms of Y (i) ≡ Y (i)(ω, q2).

This will allow us to express the differential decay rate in terms of the Y (i) basis

dΓ

dq2dω

24π3

G2
F |Vcb|2

= |q|3(Y (1) +Y (2))−(mB−ω)|q|2Y (4) +(mB−ω)2(Y (3)−Y (1)). (8.32)

Looking at both equation 8.29 and equation 8.32, we can see that there is no contribu-
tion to the total rate from the anti-symmetric part of the hadronic tensor decomposi-
tion. This will not be the case for the lepton energy moments and the other observables
we will describe below. However, for now we will focus on completing the derivation
of the inclusive calculation for the semileptonic decay rate.

In order to integrate the differential decay rate in equation 8.32, we need to define
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its integration limits in terms of the final energy of the charmed hadron states ω and
the transfer momentum q

ω ∈
[√

m2
D + q2,mB −

√
q2
]
, q2 ∈

[
0,

(m2
B −m2

D)2

4m2
B

]
, (8.33)

and we can re-write the expression of equation 8.32 in terms of ωmax

dΓ

dq2dω

24π3

G2
F |Vcb|2

= |q|(ωmax − ω)2(Y (3) − Y (1)) + |q|2(ωmax − ω)(2Y (3) − 2Y (1) − Y (4))

+ |q|3(Y (2) + Y (3) − Y (4)). (8.34)

For energies below ωmin =
√
m2
D + q2 arguments based on flavour and momentum

conservation imply that the hadronic tensor vanishes, hence, we can write the correct
integral over the phase space introducing the integration kernel

Θ(l)(x) = xlθ(x), (8.35)

where x = (ωmax − ω) and θ(x) is the Heaviside function. Therefore, the total decay
rate for inclusive semileptonic decays can be written as

Γ =
G2
F |Vcb|2

24π3

∫ qmax

0

dq
2∑
l=1

|q|3−l
∫ ∞

0

dω Θ(l)(ωmax − ω)Z(l)(ω, q), (8.36)

where we define Z(l)(ω, q) as a linear combination of the Y (i)

Z(0) = Y (2) + Y (3) − Y (4) , Z(1) = 2Y (3) − 2Y (1) − Y (4) , Z(2) = Y (3) − Y (1) .

(8.37)

A more compact version of equation 8.36 can be written as

Γ =
G2
F |Vcb|2

24π3

∫ qmax

0

dq
2∑
l=1

|q|3−lZ(q2), (8.38)

with
Z(q2) =

∫ ∞
0

dω Θ(ωmax − ω)Z(l)(ω, q). (8.39)

Finally, it is possible to decompose the differential decay rate dΓ/dq2 in different
contributions coming from parallel (‖) and perpendicular (⊥) components. The ⊥
components are defined as those involving the polarization vector ε∗(α), while the ‖
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ones are the rest. In addition, one can also decompose the differential decay rate in
terms of the contributions coming from the insertion of vector (V ) and axial-vector
(A) current. As was already discussed, in the differential rate there is no contribution
coming from the terms with AV and V A currents while for the lepton energy moments
this is not the case.

8.4.1 Moments

Using the same formalism of the total decay rate, we can also define the moments
of some interesting kinematic quantities. Among these, one can certainly count the
hadronic mass moments 〈(M2

X)n〉 and the lepton energy moments 〈En`
` 〉, which have

been measured experimentally. They are defined as

〈(M2
X)n〉 =

∫
dq2dq0dE` (ω2 − q2)n

[
dΓ

dq2dq0dE`

]
∫
dq2dq0dE`

[
dΓ

dq2dq0dE`

] , (8.40)

〈En`
` 〉 =

∫
dq2dq0dE`E

n`
`

[
dΓ

dq2dq0dE`

]
∫
dq2dq0dE`

[
dΓ

dq2dq0dE`

] . (8.41)

These quantities, like the case of the inclusive decay rate, require an integration over
the whole interval of q2. For, this reason, it is convenient to define also differential
moments obtained at fixed values of q2

Hn(q2) ≡ 〈(M2
X)n〉q2 =

∫
dq0dE` (ω2 − q2)n

[
dΓ

dq2dq0dE`

]
∫
dq0dE`

[
dΓ

dq2dq0dE`

] , (8.42)

Ln`(q
2) ≡ 〈En`

` 〉q2 =

∫
dq0dE`E

n`
`

[
dΓ

dq2dq0dE`

]
∫
dq0dE`

[
dΓ

dq2dq0dE`

] , (8.43)

and the second central moment or variance of the lepton energy distribution

L2c(q
2) = L2(q2)−

(
L1(q2)

)2

.

In the case of leptonic moments, the E` integral is modified with respect to equa-
tion 8.28, where an extra power of E` is added to the integral. Consequently, the
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integration over the lepton energy gives

dL1(q2)

dω
= q4Z

(0)
n`=1(ω, q2) + q3(ωmax − ω)Z

(1)
n`=1(ω, q2)

+ q2(ωmax − ω)2Z
(2)
n`=1(ω, q2) + q(ωmax − ω)3Z

(3)
n)`=1(ω, q2),

(8.44)

where the Z(l)
n`=1(ω, q2) are given by

Z
(0)
n`=1 =

Y (2) + Y (3) − Y (4)

2
, Z

(1)
n`=1 =

−2Y (1) + Y (2) + 3Y (3) − 2Y (4) + 2Y (5)

2
,

Z
(2)
n`=1 =

−3Y (1) + 3Y (3) − Y (4) + Y (5)

2
, Z

(3)
n`=1 =

−Y (1) + Y (3)

2
. (8.45)

One can then look at the differences with equation 8.32 and can notice how in equa-
tion 8.44 we have the contribution from Y (5) which contains the AV and V A compo-
nents of the hadronic tensor.

Exactly like for the differential decay rate, we can calculate the first lepton energy
moments introducing the integration kernel defined in equation 8.35

L1(q2) =
3∑
l=0

q4−lZ
(l)
n`=1(q2), (8.46)

with

Z
(l)
n`=1(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n`=1(ω, q2) . (8.47)

Exactly the same procedure is followed for the second energy lepton moment

L2(q2) =
4∑
l=0

q5−lZ
(l)
n`=2(q2), (8.48)

with
Z

(l)
n`=2(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n`=2(ω, q2) , (8.49)
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where

Z
(0)
n`=2 = 3

Y (2) + Y (3) − Y (4)

10
,

Z
(1)
n`=2 =

7Y (1) − 5Y (2) − 11Y (3) + 8Y (4) − 10Y (10)

10
,

Z
(2)
n`=2 =

−27Y (1) + 5Y (2) + 31Y (3) − 15Y (4) + 30Y (5)

20
,

Z
(3)
n`=2 =

4Y (1) − 4Y (3) + Y (4) − 2Y (5)

4
,

Z
(4)
n`=2 =

−Y (1) + Y (3)

4
. (8.50)

For the hadronic moment we have

H̄n=1(q2) =
4∑
l=0

Z
(l)
n=1(q2) , Z

(l)
n=1(q2) =

∫ ∞
0

dωΘ(l)(ωmax − ω)Z
(l)
n=1(ω, q2) ,

(8.51)

where the Z(l)
n=1(ω, q2) are given by

Z
(0)
n=1 = mB|q|3(mB − 2|q|)

(
Y (2) + Y (3) − Y (4)

)
,

Z
(1)
n=1 = 2|q|4

(
Y (2) + Y (3) − Y (4)

)
+m2

B|q|2
(
−2Y (1) + 2Y (3) − Y (4)

)
+mB|q|3

[
−2
(
Y (2) + Y (3) − Y (4)

)
+ 2

(
2Y (1) − 2Y (3) + Y (4)

)]
,

Z
(2)
n=1 = m2

B|q|
(
−Y (1) + Y (3)

)
+ |q|3

[
Y (2) + Y (3) − Y (4) − 2

(
2Y (1) − 2Y (3) + Y (4)

)]
+mB|q|2

[
−2
(
−Y (1) + Y (3)

)
+ 2

(
2Y (1) − 2Y (3) + Y (4)

)]
,

Z
(3)
n=1 = −2mB|q|

(
−Y (1) + Y (3)

)
+ |q|2

[
−2Y (1) + 2Y (3) + 2

(
−Y (1) + Y (3)

)
− Y (4)

]
,

Z
(4)
n=1 = |q|

(
−Y (1) + Y (3)

)
. (8.52)
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Bs

J†µ Jν

Bs

b
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b
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t2 t1

tsnk tsrc

Figure 8.3: Schematic representation of the four-point Euclidean correlation function
defined in eq. (8.53). The crosses represent the insertions of the weak currents at
times t1 and t2, the meson states are created at time tsrc and annihilated at time tsnk.
Between the currents we have the propagation of the charm quark, hence, the piece
of the correlation functions defined between the currents contained all the possible
charmed states Xc.

8.5 Inclusive decays from Euclidean correlation func-

tions

The decay rate can be calculated on the lattice following the strategy introduced in
ref. [187, 2], where the differential decay rate is given after the integration over ω and
the integration kernel Θ(l)(ωmax − ω).

In order to perform such calculation, we need to compute four-point lattice corre-
lation functions in which we have a double insertion of the weak current Jµ, as shown
in figure 8.3. The four-point Euclidean correlator can then be defined as

Cµν(tsnk, t2, t1, tsrc; q) =

∫
d3x eiq·x T 〈0| φ̃B(0; tsnk)J†µ(x; t2)Jν(0; t1)φ̃†B(0; tsrc) |0〉 ,

(8.53)

where φ̃B(0; t) is a B-meson creation/annihilation operator projected onto zero spatial
momentum by integrating over space at a time t.

A B-meson state with zero spatial momentum is then created at time tsrc and
annihilated at tsnk. The two currents are inserted in between, at times t2 and t1. The
charmed hadrons are created at time t1 with a momentum insertion −q and propagate
until they are transformed back to the B meson state at time t2.

The four-point function Cµν is saturated by the B-meson non-local matrix element

Mµν(t; q) = e−mBt
∫
d3x

eiq·x

2mB

〈B̄(0)|J†µ(x,t)Jν(0,0)|B̄(0)〉 , (8.54)
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when the double limit tsrc → −∞, tsnk →∞ is taken. To include a proper normaliza-
tion, one can analyse

Mµν(t2 − t1; q) = ZB lim
tsnk→+∞
tsrc→−∞

Cµν(tsnk, t2, t1, tsrc; q)

C(tsnk − t2)C(t1 − tsrc)
, (8.55)

where C(t) is the time-ordered B-meson two-point function

C(t) = T 〈0| φ̃B(0; t)φ̃†B(0; 0)|0〉 (8.56)

and ZB is its residue when a large time separation is taken, C(t)→ ZBe
−mBt.

It is possible to find a relation between the hadronic tensor in its spectral represen-
tation, defined in equation 8.27, and Mµν(t; q)

Mµν(t; q) =

∫
d3x

eiq·x

2mB

〈B̄(0)|J†µ(0,0)e−tĤ+iP̂ ·xJν(0,0)|B̄(0)〉

=
(2π)3

2mB

〈B̄(0)|J†µ(0,0)e−tĤδ3(P̂ + q)Jν(0,0)|B̄(0)〉

=

∫ ∞
0

dωWµν(ω, q) e−ωt . (8.57)

Hence, one can obtain the hadronic tensor from lattice correlation function by solv-
ing the inverse problem defined in equation 8.57. In fact, the four-point correlation
function following the normalisation by equation 8.56, is nothing else than a two-point
correlation function defined between the two current insertion and hence dependent
only on their time separation, in which all the possible charmed states Xc propagate.
Therefore, extracting the hadronic tensor from equation 8.53 is equivalent of extract-
ing the spectral density from a two-point correlation function which contains all the
charmed states Xc.

It is clear then that the problem we face is in many ways similar to those faced
in chapter 7, where we discussed how to extract spectral functions from two-point
lattice correlators. Once again, we need to face an ill-posed inverse problem due to the
fact that our lattice correlators have a non-zero statistical noise. The only difference
compared to the problems of chapter 7 is that the kernel which defines the integration
over the energy ω is not a delta-function but instead a Heaviside function, which is
required in order to integrate correctly over the phase space of the inclusive decay.

As discussed in chapter 7, there are now many different methods that allow to
overcome the ill-posed problem of an inverse Laplace transform, each with its own
benefits and drawbacks. In this work we decided to use the one introduced in ref. [149]
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known as HLT method. The HLT requires the introduction of smeared kernels in order
to perform the reconstruction of the spectral density, or in this case of the components
of the hadronic tensor. Hence, we defined a smeared version of the integration kernel
Θ(l)(ωmax − ω)

Θ(l)
σ (ωmax − ω) = ml

B

∞∑
τ=1

g(l)
τ (ωmax, σ) e−aωτ , (8.58)

and ∫ ∞
0

dωWµν(ω, q) Θ(l)(ωmax − ω) = lim
σ→0

ml
B

∞∑
τ=1

g(l)
τ (ωmax, σ)Mµν(aτ ; q) , (8.59)

As was already discussed in section 7.2.1, one of the fundamental step of the method
is the ordered double limit defined in equation 7.30. In order to improve the quality
of the extrapolation σ → 0, it is convenient to define more than one smeared kernel
as it was noticed in ref. [151]. Naturally, in the limit σ → 0 all the kernels defined
below will tend to the same, that is the unsmeared Θ(l)(ωmax−ω) kernel. The different
kernels considered in this work are

θsσ(x) =
1

1 + e−
x
σ

, θs1σ (x) =
1

1 + e− sinh( x
rs1σ )

, θeσ(x) =
1 + erf

(
x
reσ

)
2

. (8.60)

In the following we shall refer to θsσ(x) as the “sigmoid function”, to θs1σ (x) as the
“modified sigmoid function” and to θeσ(x) as the “error function”. The parameters rs1

and re appearing in the previous formulae have been set to the values rs1 = 2.2 and
re = 2.0 in order to produce similar (albeit not identical) shapes at finite values of σ
for the different kernels. The numerical reconstruction of these three kernels is shown
in figure 8.7

Another important issue to highlight is the fact that the smearing procedure is
not only necessary in order to apply the HLT algorithm, but it is also necessary for
theoretical reasons. Hadronic spectral densities, and therefore also Wµν(ω, q), are
elements in the space of distributions and their product with another distribution,
such as the θ-function, can only be defined through a regularisation procedure (when it
exists). As we have discussed in chapter 7, finite volume spectral densities are composed
by a distribution of δ-functions due to the quantisation of the energy spectrum. The
connection between finite volume distributions and physical quantities can only be
obtained following the ordered double limit defined in equation 7.30.
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a (fm) mπ (MeV) L3 × T Ncnfg

0.0815(30) 375(13) 323 × 64 150

Table 8.2: Details of the B55.32 ETMC gauge ensemble with Nf = 2+1+1 dynamical
quarks and mπL ' 5.0 generated in ref. [188, 189]. The number of analyzed gauge
configurations, separated by 20 trajectories, is 150.

8.5.1 Lattice QCD calculation

The ETMC gauge ensemble used in this work is the one named B55.32, generated by
ETMC together with other 14 ensembles with Nf = 2 + 1 + 1 dynamical quarks in
refs. [188, 189] for determining the average up/down, strange and charm quark masses.

The actions used to simulate the gluons and the dynamical quarks in the configu-
rations were the Iwasaki action [55] and the Wilson twisted-mass action [42, 47, 52],
respectively. Using the mass renormalisation constants determined in ref. [190] the
physical light, strange, and charm quark masses were found to be mphys

ud (MS, 2GeV) =

3.70(17) MeV,mphys
s (MS, 2GeV) = 99.6(4.3) MeV, andmphys

c (MS, 2GeV) = 1176(39) MeV,
respectively.

As it was discussed extensively in section 3.3, in order to avoid the mixing of K- and
D-meson states in the correlation functions, in the valence sector we used a non-unitary
setup [48], such that the strange and charm valence quarks are simulated according
to the Osterwalder-Seiler fermions [51], while the up and down valence quarks were
regularised using the Twisted Mass action. The details about the gauge configurations
are summarised in table 8.2,

The simulations of quark propagators were performed with valence quark masses
aµs = 0.021 and aµc = 0.25 which correspond to renormalised strange and charm
quark masses very close to their physical values. On the other hand, as it was already
argued in section 4.3, the bottom quark could not be simulated at its physical value
and for this reason we calculated two-point function using the interpolating operator
b(x)γ5s(x) with a simulated b-quark mass equal to twice the physical charm mass, i.e.
mb(MS, 2GeV) ' 2.4 GeV.

In order to improve the statistical precision of our correlation functions, we used
the “one-end trick” stochastic method [34, 33] with 10 randomly chosen stochastic
sources at a randomly chosen time-slice per gauge configuration. Then, in order to
guarantee that cutoff effects on the pseudo-scalar mass are O(a2µf ), we set opposite
Wilson parameters for the two valence quarks [52, 53, 191]. Moreover, in order to
suppress contributions of the excited states in the Bs-meson correlation function, we
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Figure 8.4: Effective mass aMeff(t) ≡ log (C(t)/C(t+ a)) in lattice units for the
Ds-meson (left panel) and the Bs-meson (right panel) correlation function (8.56),
evaluated using the ETMC gauge ensemble B55.32 for bare quark masses equal to
aµb = 0.50, aµc = 0.25 and aµs = 0.021, corresponding to renormalised quark masses
mb(MS, 2GeV) ' 2.4 GeV, mc(MS, 2GeV) ' 1.2 GeV and ms(MS, 2GeV) ' 100 MeV.
The values of the Wilson r-parameter of the two valence quarks are opposite, i.e.
rc = −rs in the Ds meson and rb = −rs in the Bs meson.

have used Gaußian smeared interpolating quark fields [30] both at the source and at
the sink, as it is shown in figure 3.1. The results for both the Ds and Bs two-point
correlation functions are shown in figure 8.4 For the values of the smearing parameters
we set kG = 4 and NG = 30. In addition, the APE smearing was applied to the gauge
links [56] with αAPE = 0.5 and NAPE = 20.

By averaging over the plateau regions shown in fig. 8.4, the fits of two-point correla-
tors give the values for the ground-state masses to be respectively mDs = 2.05(8) GeV
and mBs = 3.08(11) GeV.

The four-point lattice correlation functions defined in equation 8.53 are obtained
by inserting the first weak current at time t1, with fixed values for the pseudo-scalar
interpolator to be tsrc = 0 and tsnk = T/2 = 32a. The momentum is inserted together
with the weak currents along only one spatial direction q = (0, 0, q), with eleven
values ranging from q = 0 up to q = qmax ' 0.9 GeV. On the lattice, the momentum
values are inserted using twisted boundary conditions (BC’s) [36, 37, 38] in the spatial
directions and anti-periodic BC’s in time. For the sea quarks the BC are inverted
with periodic BC’s in the spatial directions while anti-periodic in time. The main
advantage of using the twisted BC’s for the valence quarks is that it lifts the limits of
only simulating fermions with momentum values corresponding to integer multiples of
2π/L. In refs. [192, 193] it was shown that for physical quantities which do not involve
final-state interactions the use of different BC’s for valence and sea quarks produces
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Figure 8.5: Time dependence of the correlators Y (i)(t; q) for |q| ' 0.5 GeV calculated
on the ETMC ensemble B55.32. The error bars are smaller than the point markers
on this scale and a similar quality of the numerical signal is observed for the other
momentum values considered in this work.

only finite-size effects that are exponentially small.
The weak currents are simulated using local vector and axial-vector quark currents,

b(x)γµc(x) and b(x)γµγ5c(x). In the simulations performed in order to get the four-
point correlators, the value of the Wilson r-parameter for the charm quark is chosen
to be opposite to that of the b quark, i.e. rc = −rb, and therefore in our maximally
twisted setup the vector and axial-vector currents renormalise respectively with the
axial and vector renormalisation constants, ZA and ZV , determined in ref. [190].

We extract the matrix elements Mµν(t2 − t1; q) using eq. (8.55). In order to cal-
culate the differential decay rate we first need to decompose the hadronic tensor i the
independent components Y (i) as it was discussed in the previous section, and then we
can apply the smearing kernel Θ(l)(ωmax − ω) to the quantities Z(l)(ω, q2), obtained
from equation 8.37. Decomposing Mµν(t2 − t2; q), we can define the following objects

Y (i)(t; q2) =

∫ ∞
0

dω Y (i)(ω, q2) e−ωt , a = 1, · · · , 5 ,

Z(l)(t; q2) =

∫ ∞
0

dω Z(l)(ω, q2) e−ωt , l = 0, 1, 2 . (8.61)

In order to show the numerical precision of the lattice correlation functions obtained
for this work, we plot the correlators Y (i)(t; q) in the plot shown in figure 8.5, with
injected momentum |q| ' 0.5 GeV. Similar results are obtained for the other momenta
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Figure 8.6: Correlator Y (1)(t, q2) at various time separations t2− t1 for |q| ' 0.5 GeV.
The points in each sub-plot are obtained for different values of t2, with the x-axis
showing the distance between tsnk and the time t2 at which the current is inserted.

considered in this work.
An important study to be performed when working with four-point correlation

functions is to investigate possible contaminations coming from the excited states of
the meson states defined at tsnk and tsrc. In this section the main results we show
are obtained setting t2 = 22a and t = 18a, which correspond to a time separation of
t1 − tsrc = 4a. However, in order to check the correct limits tsrc → −∞ and tsnk →∞,
we repeated the analysis by setting t2 = {18a, 20a, 22a, 26a, 28a} and by varying the
maximum value of t used to reconstruct the smearing kernels. This allowed us to variate
the time separation between the current insertion times and the time at which the B
meson states are defined. In order to check that there are no contributions affecting
our Y (i) correlators, we show the plots in figure 8.6 where we compare the correlator
Y (1)(t, q) at |q| ' 0.5 GeV for different values of t = t2 − t1 and t2. Similar results
are obtained for the other correlators (Y (2), Y (3), Y (4) and Y (5)), and, in all cases, we
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observe that the onset of the tsnk →∞ limit is reached within the uncertainties already
for tsnk − t2 = 4a. Following this considerations, we chose the value (tsnk − t2) = 10a,
corresponding to t2 = 22a.

We now turn to the discussion of the systematics associated with the approximation
of the kernels of eq. (8.60) by using the HLT method of ref. [149]. As it was thoroughly
described in section 7.2.1, this is an important issue because, on the one hand, the
reconstruction of a given kernel can never be exact with a finite number of time-slices
and in the presence of errors. On the other hand, one can (and must) quantify the
systematic error associated with an approximate reconstruction.

In order to study the systematic errors associated to the reconstruction of the spec-
tral density, we considered the quantity Z(0)

σ (q2) (defined in equation (8.39)), for all
the three smooth kernels given in equation 8.60. Following equation 8.59, we can get
Z

(0)
σ (q2) applying the coefficients gλτ coming from the HLT algorithm (equation 7.40),

which represents the approximated kernel at a fixed value of λ, to the correlator
Z(0)(t; q2).

In figure 7.1, we showed how we can estimate the systematic errors coming from the
reconstruction with the HLT algorithm. Because of the Backus-Gilbert regularisation
on which the method is based, the results of the reconstruction will have a larger
statistical error as we get closer to a better reconstruction. Vice versa, the central
values of the reconstructions obtained with a large value of d(g∗) will have a smaller
error but with the price of deviating a lot from the other values. In fig. 8.8 we replicate
the stability analysis for the reconstructed value of Z(0)

σ (q2), which shows how the
results obtained with different choice of smeared kernel all converge to the same region
of normalised L2-norm A[gλ]/A[0], within the statistical errors. There is no significant
difference on the final results for Z(0)

σ (q) by decreasing λ with respect to λ?, which is
the value that we pick as our final result for Z(0)

σ (q), and we repeat this procedure for
all the other components Z(1)

σ (q), Z
(2)
σ (q). By implementing this strategy, proposed in

ref. [151], we have checked that the estimated errors on the different quantities that
enter our determinations of the physical observables discussed below properly take into
account the systematics associated with the kernel approximation.

In fig. 8.9 we show our results for the total decay rate, with the different points
corresponding to different input parameters used in the analysis, as described in the
figure’s caption. The plot shows clearly that all results are compatible with each other.
In order to take into account all the results showed in the figure, we use eq. (28) of
ref. [190] to get an estimate of the central value and its standard deviation, correspond-
ing to the filled red dots in the plot, and we quote that value as our final result for the
total decay rate. This procedure is repeated for all other observables considered in this
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Figure 8.7: Reconstruction of the kernels Θ
(0)
σ (ωmax−ω) defined with the three smearing

types s, s1 and e, see eq. (8.60), at λ = λ?. The data correspond to |q| ' 0.7 GeV and
σ = 0.12mBs , the smallest value of the smearing parameter that we used.
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Figure 8.8: Integral Z̄(0)
σ (q) of the hadronic correlator with three kernels, plotted as a

function of A[gλ]/A[0]. No significant difference is observed within the statistical errors
for values A[gλ]/A[0] smaller than A[gλ? ]/A[0].

work.

8.5.2 Extrapolation to σ = 0

All our results for the several observables considered in this section were obtained
applying the HLT method with several values of the smearing parameter σ, for each of
the smeared kernels Θ(l)(x) with three different smeared versions of the θ-function in
equation. 8.60. Following the HLT procedure, we use all these results in a combined
σ → 0 extrapolation for each contribution to the differential decay rate and to the
leptonic and hadronic moments.

Now, as was already mentioned in this document, the limits of zero smearing radius
and of infinite volume do not commute. Due to the quantisation of the energy spectrum
in a finite volume, the σ → 0 extrapolation must be performed only after the infinite-
volume limit. However, considering the fact that all our results are obtained with a
single physical volume, as shown in table 8.2, under the reasonable assumption that
smeared QCD spectral densities are affected by exponentially suppressed finite-volume
effects, we can safely assume that finite-volume effects are negligible with respect to our
statistical uncertainties. Naturally, this assumption can only be verified performing the
same simulation described in this section on larger volumes. This is something that the
we are currently investigating and that unfortunately, due to the long time required
by lattice QCD simulations could not have been finished before the compilation of this
document. Examples of the correct ordered double limit can be found in refs. [153, 151].

In fig. 8.10 we show the σ → 0 extrapolations of the three contributions Z(l)
σ (q2) to

the differential decay rate for |q| ' 0.5 GeV (plots on the left) and |q| ' 0.7 GeV (plots
on the right). The reconstruction of the kernels Θ

(0)
σ (ωmax−ω) is more challenging from

the numerical point of view with respect to the case of the kernels Θ
(l)
σ (ωmax−ω) with
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Figure 8.9: Results for 24π3

G2
F |Vcb|2

dΓ
dq2 , obtained changing the parameters given as input to

our analysis. The default values are: Atr = 1×10−3, τmax = 18, extrapolations to σ = 0
using 5 values of σ. Atr is defined in appendix B. The letters in the legend stand for:
A) All parameter equal to default, the final result is given by extrapolating to σ = 0
the single components X(i) and then summing the extrapolations together. B) The
same as case (A) but with extrapolations done employing all 10 values of σ, as quoted
in the caption of fig. 8.10. C) A threshold changed to Atr = 1× 10−2. D) A threshold
changed to Atr = 5 × 10−3. E) All parameters equal to default, final result given by
summing all the single contributions X(i) together and then extrapolation the sum to
σ = 0. F) τmax changed to τmax = 15. G) τmax changed to τmax = 16. H) τmax changed
to τmax = 17. I) Same as default, analysis performed using the bootstrap method. J)
Final results obtained considering all previous results listed here. Central value and
standard deviation are calculated using the average procedure given by eq. (28) of
ref. [190]. It is important to note that the analysis of all the cases listed above is
performed taking the result corresponding to λ = λ?, the only exception being when
we change the Atr parameter. In these two cases we take the results corresponding to
values of A[gλ]/A[0] smaller than Atr.
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Figure 8.10: Combined σ → 0 extrapolations of three contributions Z(l)(q2) to the
differential decay rate, see eq. (8.39). The plots on the left correspond to |q| ' 0.5 GeV
while those on the right to |q| ' 0.7 GeV. The reconstruction of the kernels Θ

(0)
σ (ωmax−

ω) is more difficult from the numerical point of view w.r.t. the case of the kernels
Θ

(l)
σ (ωmax−ω) with l = 1, 2. In all cases we have obtained results at 10 different values

of σ that, in the case of Θ
(0)
σ (ωmax− ω) span the region σ ∈ [0.12mBs , 0.3mBs ] while in

the other case we have σ ∈ [0.03mBs , 0.16mBs ]. In all cases we include the five smallest
values of σ into a combined linear extrapolation to quote our results at σ = 0.
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l = 1, 2. In all cases studied in this work we have obtained results at ten different values
of σ that, for the kernel Θ

(0)
σ (ωmax − ω) span the region σ ∈ [0.12mBs , 0.3mBs ] while

for the other kernels we have σ ∈ [0.03mBs , 0.16mBs ]. At all of the values of q2 we
have included the five smallest σ values into a combined linear extrapolation to quote
our results at σ = 0. As it is evident from the plots in fig. 8.10 there is a reassuring
convergence of the results corresponding to the different kernels for small values of σ
and the points included in the fit are always in the linear regime. This is the case
also for the other values of momenta analyzed in this work. The χ2/d.o.f. for all the
σ → 0 extrapolations performed in this work never exceed 1. In order to quantify the
systematic error associated to the σ → 0 extrapolation, we performed unconstrained
linear extrapolations for the smallest five values of σ followed by an unconstrained
quadratic extrapolation of all 10 points shown in the plots. This procedure is shown in
figure 8.11, where one can see the unconstrained extrapolations for the results appearing
also in the top-left panel of figure 8.10. In the plot of figure 8.11, we indicate the result
of the combined linear extrapolation that we quote as our final value as the black
point. From the plot one can can see how the results of the unconstrained linear
extrapolations as well as the combined quadratic extrapolation are all compatible with
each other within the uncertainties.

The final systematic error associated with the extrapolation σ → 0 can be estimated
following the method described in the caption of figure 8.9, where we combine in
quadrature the statistical error of the combined linear extrapolation (black point) and
the difference between the central values of the black and violet point representing the
combined quadratic extrapolation. Looking at the plot in figure 8.11, one can see how
this procedure largely takes into account the spread of the results coming from the
different extrapolations, including the unconstrained ones. The same procedure has
been repeated for all the sets of data analyzed in this work and similar plots can be
shown in all cases.

In fig. 8.12 we show the σ → 0 extrapolations of the four different terms that enter
the calculation of the leptonic moment L1(q2).

8.6 Comparison between lattice QCD and OPE

In this section all the original work concerns the lattice calculations of the inclusive
quantities defined in section 8.4 obtained from four-point correlation functions. Here
we briefly summarise the OPE approach but we also highlight that all the OPE cal-
culations were performed by Sandro Mächler and Paolo Gambino. The reason behind
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Figure 8.11: Systematics associated with the σ → 0 extrapolation of Z(0)(q2) at
|q| ' 0.5 GeV, the same set of data shown in the top–left panel of fig. 8.10. The
unconstrained linear extrapolations of the different sets of data, corresponding to the
three different smearing kernels, are shown together with the results of the combined
linear extrapolation of the five points at the smaller values of σ (black point) and of
the combined quadratic extrapolation including all ten values of σ (violet point). The
black and violet points have been slightly displaced on the horizontal axis to help the
eye.

the inclusion of their results in this thesis is so that one can appreciate the comparison
between the lattice QCD results and those obtained with the OPE.

The operator product expansion is a particularly useful method for computing
observables which are sufficiently inclusive to admit a double expansion in αs and in
inverse powers of mb [194, 184, 185, 186, 195], or more precisely of the energy release,
which is of the order of mb−mc. For a generic observableM , one can get the expansion

M =M (0) +M (1)as +M (2)a2
s +

(
M (0)

π +M (1)
π as

) µ2
π

m2
b

+
(
M

(0)
G +M

(1)
G as

)µ2
G

m2
b

+M
(0)
D

ρ3
D

m3
b

+M
(0)
LS

ρ3
LS

m3
b

+ . . . (8.62)

where as = αs(µ)/π is the QCD coupling evaluated at a scale µ ∼ mb and the ellipsis
represents higher-order terms in as and in 1/mb. The parameters µ2

π, µ2
G, ρ3

D, ρ3
LS are

expectation values of dimension-5 and dimension-6 local operators in the physical B
meson. For instance,

µ2
π(µk) =

1

2MB

〈B|b̄v ~π2 bv|B〉µk , µ2
G(µk) =

1

2MB

〈B|b̄v
i

2
σµνG

µνbv|B〉µk (8.63)
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Figure 8.12: Combined σ → 0 extrapolations of the four contributions Z(l)
n`=1(q2) to the

first leptonic moment, see eq. (8.47). The plots on the left correspond to |q| ' 0.26 GeV
while those on the right to |q| ' 0.78 GeV.
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Figure 8.13: Differential q2 spectrum, divided by |q|, in the SM. The plot shows the
comparison of OPE (blue curve) with lattice data (red points).

where ~π = −i ~D, while Dµ is the covariant derivative, bv(x) = e−imbv·xb(x) is the b field
stripped of its high-frequency modes, and Gµν is the gluon-field tensor.

In what is known as the kinetic scheme [196, 197, 198], one introduces the Wilsonian
cutoff µk ∼ 1 GeV, in order to factorise long- and short-distance contributions. This
allows to disentangle the physics coming from the hard scale ∼ mb from that of the
soft scale of order ΛQCD. The physics associated to the hard scale is contained in the
Wilson coefficientsMi which admit the αs expansion. An important feature is that the
power corrections only appear at order O(Λ2

QCD/m
2
b), such that they can be considered

to be comparatively suppressed.
The smearing provided by the phase-space integration, discussed in section 8.4, is

also necessary for the convergence of the OPE for the quantities appearing in equa-
tion 8.36, as well as those defined in equations 8.40 and 8.43, which can all be expressed
in the form of equation 8.62. The details of the OPE calculations are presented in
ref. [2].

We start our comparison of lattice and OPE results with the q2 spectrum and the
differential moments introduced in eq. (8.42) and in eq. (8.43). Figure 8.13 shows
the q2 spectrum in the SM, that is, with the weak current containing both vector and
axial-vector currents V −A. The agreement between the lattice results and the analytic
curve obtained from the OPE is remarkably good, despite the latter has an uncertainty
of about 50%. The large uncertainty of the OPE calculation is due to the large power
correction arising from the fact that the value of the mb considered is smaller than its
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Figure 8.14: Differential lepton energy mean value, L1(q2), in the SM. The comparison
of OPE with the lattice QCD results is shown.

physical value. This is done because the lattice calculation could not accommodate
the simulation of physical b-quarks as already discussed in sections 8.5.1 and 4.3. It is
important to notice that close to the partonic endpoint, corresponding to 0.82 GeV2,
we do not expect the OPE calculation to be reliable, as discussed extensively in ref. [2].
The corresponding hadronic endpoint is 0.75 GeV2.

The uncertainties affecting both calculations can be greatly reduced by considering
the differential moments. In particular, the OPE uncertainty becomes smaller because
of the cancellations between power corrections to the numerator and to the denomina-
tor. This can be seen for instance in figure 8.14, where we show the first differential
lepton energy moment, L1(q2), in the SM, where the agreement between the OPE
curve and the lattice data is improved compared to figure 8.13 especially at low and
moderate q2.

Considering that one can decompose the contributions to the total rate and to the
moments according to the perpendicular and parallel components as well as individual
currents, as discussed in section 8.4, in figure 8.15 we show the q2 spectrum in the
individual channels. The first thing that one notice when comparing figure 8.15 with
the plot in figure 8.13 is that in the individual channels the agreement between the
OPE curves and the lattice data is poorer than in their sum, especially at large q.
This is something which can be expected as it could be a manifestation of quark-
hadron duality violation. Of course, this needs to be checked comparing the results
obtained at different volumes and, most importantly, extrapolated to the continuum
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Figure 8.15: Differential q2 spectrum, divided by |q|, in the various channels. The
plots show the comparison between OPE and the lattice QCD results.

limit a→ 0. Furthermore, if one considers the figures for the AA⊥ and V V⊥ channels,
it can be seen that the OPE central predictions turn negative at large and moderate
q2, and that for q2 > 0.6 GeV2 the spectrum is always negative within the errors. This
unphysical behaviour would suggest that the error estimates are not reliable for large
q2. Furthermore, the contribution coming from the V V⊥ channel is particularly small
which makes it very sensitive to large power corrections.

In figure 8.16, we also show plots for the differential lepton energy moment divided
in the individual channels. Once again, compared to the differential decay rate we
observe a better agreement between the OPE curves and the lattice data, especially
at low q. Once, again, the V V⊥ channel seems to be the most problematic one which
however is to be expected due to the fact that since its contribution is particularly
close to zero, the expansion in powers of αs and 1/mb loses its justification. In these
cases we also show the unexpanded version of the ratio, whose uncertainty is much
larger, but we stress that away from the singularities the expanded form is preferable,
and this appears to be confirmed by better agreement with the lattice data.

Figure 8.17 shows the second central moments computed at different values of q2 in
the ETMC case. We do not display the V V‖ channel, for which the OPE result would
have a very large uncertainty. Unlike the first lepton energy moment, in the case of
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Figure 8.16: Differential moment L1(q2) in the various channels. The plots show the
comparison between OPE and the lattice QCD results.

L2c(q
2) the OPE fails to reproduce the lattice results within uncertainties, except for

very small q2. This is something one should pay particular attention to in future works,
because, even though it is true that the method for estimating the OPE uncertainty
can fail due to multiple cancellations between large contributions to L1 and L2, it is
also true that we were not able to estimate quantitatively the discretisation and finite-
volume effects on the lattice results, which could affect the systematics entering this
calculation in a non-trivial way.

8.6.1 Computations with a smooth kernel

In sections 8.4 and 7.2.1 we discussed how the central point for the extraction of
inclusive quantities from lattice correlators is the numerical reconstruction of smeared
kernels. While for the lattice calculations the integration kernels must be smooth
functions, in the case the OPE one has the freedom to choose whether to use a sharp
or smooth kernel knowing that for the latter the results would be unphysical. Hence, it
is possible to perform the comparison between lattice QCD and OPE results for fixed
values of the smearing radius σ. In this way it is possible to check that the level of
agreement between the two calculations is not affected by the σ → 0 limit, and to
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Figure 8.17: Differential moment L2c = L2 − L2
1 in the various channels. The plots

show the comparison between OPE and lattice QCD data.

extract information on the non-perturbative parameters of the OPE, as well as on the
heavy quark masses, from slightly more precise lattice data.

In figure 8.18 we show the q2 spectrum in the different channels computed on the lat-
tice using the sigmoid approximation θsσ of eq. (8.60) for θ(ωmax−ω) with σ = 0.12mB.
The comparison at fixed σ indicates a similar agreement between OPE and lattice QCD
results, with a marginal improvements in the large q region. The comparison is shown
also for the first differential lepton energy moment where figure 8.19 shows the results
in the different channels with the exception of V V⊥, due to the fact that the latter is
dominated by large uncertainties in the OPE calculation.

Now, at fixed σ we notice a marked improvement of the agreement between the
OPE and lattice QCD results at large q in the AA‖ and V V‖ channels, compared to
the results shown in figure 8.16. On the other hand, the channel AA⊥ seems to be
slightly worse than in the σ → 0 case.

8.6.2 Total width and moments

After we performing the integral over q2 defined in equations 8.36, 8.40 and 8.41, we
can compare the numerical results obtained from the lattice QCD calculations with the
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Figure 8.18: Differential q2 spectrum computed with a sigmoid approximation to the
kernel with σ = 0.12mB. The plots show the comparison between OPE and lattice
QCD results.
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Figure 8.19: Differential first lepton moments computed with a sigmoid approximation
to the kernel with σ = 0.12mB . The plots show the comparison between OPE and
lattice QCD results.
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ETMC OPE
Γ/|V 2

cb| × 1013 (GeV) 0.987(60) 1.20(46)
〈E`〉 (GeV) 0.491(15) 0.441(43)
〈E2

` 〉 (GeV2) 0.263(16) 0.207(49)
〈E2

` 〉 − 〈E`〉2(GeV2) 0.022(16) 0.020(8)
〈M2

X〉 (GeV2) 3.62(14) 4.32(56)

Table 8.3: Total width and moments results from lattice QCD and OPE calculations.

analytic results coming from the OPE. In this case, as can be noticed from a first glance
of the results presented in table 8.3, the OPE results will be slightly more precise as
one can take advantage of two- and three-loop calculations presented in ref. [199]. For
what concerns the lattice data, they can be interpolated by polynomials or piecewise
polynomials such that one can perform the integration over q2 numerically. We can
also test the relevance of the singularity at q2

max.
The OPE result for the total width receives large and concurring power and per-

turbative corrections, which leads to a ∼ 20–40% uncertainty. This is certainly an
effect due to the fact that in our analysis we work with an unphysically light b quark,
since for physical b-quark masses one gets an uncertainty close to 2% [200]. Indeed, the
convergence of the OPE expansion deteriorates rapidly as mb decreases approaching
mc, even from 2.7 to 2.4 GeV. This matter is further discussed in ref. [2].

An important point which is discussed in ref. [2] is that due to the Bs being unphys-
ically light and the values for the c- and b-quark masses being closer than in the SM,
the phase space available for the inclusive decay is limited compared to the physical
case. As a consequence, the inclusive decay rate is nearly saturated by the ground
state contribution of the charmed state Ds.

Despite this consideration, the comparison between the lattice QCD and OPE cal-
culations is particularly interesting especially in the case of the variance of the lep-
ton energy distribution which shows a clear and unexpected deviation. As already
mentioned above, the reason behind this discrepancy could be due to underestimated
uncertainties in our OPE calculation or to non-negligible lattice systematics.

Furthermore, by making a direct confrontation between the first principle lattice
QCD calculation and results obtained using the OPE, we test for the first time the
onset of quark-hadron duality, which is at the base of the OPE formulation.

The results presented in this chapter are unfortunately not yet ready to make
strong phenomenological considerations. The limitations due to our simulations coming
from a single ensemble forbids fundamental analysis like the infinite volume limit and
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the continuum extrapolation which are now standard in the lattice QCD community.
However, this study serves as a fundamental check on the feasibility of lattice QCD
calculation of inclusive decays, where we discuss in great details some of the most
delicate steps like the extraction of spectral densities and the extrapolation σ → 0.

In order to go towards more phenomenologically relevant calculations, if one wants
to study the inclusive semileptonic decay rate of B-meson it is necessary to find a way
to circumvent the problem of the relativistic simulation of the b-quark mass. One of
the possible methods which can be employed is the ETMC ratio method, proposed
in ref. [201], where the observable of interest is computed for several values of heavy-
quark mass and then extrapolated to the physical value. This method has already been
applied to get lattice QCD calculations of quantities like the b-quark mass, the leptonic
decay constant fB, the bag parameters of B(s) mesons and the matrix elements of
dimension-four and dimension-five operators appearing in the Heavy Quark Expansion
of pseudo-scalar and vector meson masses [202, 203, 204, 205, 206].

Alternatively, a route which is currently being pursued is the inclusive calculation
of D(s) meson decay rates. This research direction is particularly promising because
of the readily available experimental results such as those for the branching ratio and
for the electron energy spectrum [207, 208]. Furthermore, a first principle lattice QCD
calculations of these quantities could help to understand the extent of the quark-hadron
duality and thus to what extent the OPE can be applied to charmed inclusive decays,

One might raise the question of whether the foreseeable level of precision will be
enough for accurately determining |Vcb| and possibly resolve the |Vcb| puzzle. At present,
experimental uncertainties for B → Xc`ν decays stand at 1.4% for the branching
ratio and a few per mil for the first few moments of the lepton energy distribution.
Achieving comparable precision through lattice calculations seems unlikely, at least
in the beginning. Nevertheless, over a relatively short period, lattice calculations of
inclusive semileptonic decays could potentially enhance the predictive capabilities of
the Operator Product Expansion (OPE). This could be achieved by accessing other
quantities that are either imprecise or beyond the reach of current experiments but
have a strong dependence on non-perturbative parameters. Such calculations would
enable the validation and improvement of the results obtained from the semileptonic
fits, which form the basis of OPE predictions.
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Conclusions

In this doctoral thesis we discussed the non-perturbative regularisation of quantum
field theory on a spacetime lattice, and used this theoretical framework to address
numerically, through Monte Carlo simulations that were run on supercomputers, some
non-trivial problems in strongly coupled physical systems.

The first problem that we addressed, whose results were reported in ref. [4], con-
sisted in the study of topological excitations that can be induced in the classical Heisen-
berg spin model through suitable boundary conditions. As was argued in ref. [74], the
energy density profile and the magnetisation that appear in the presence of such ex-
citations can be studied using quantum field theory methods, by making an Ansatz
for the form factor associated with these excitations. Our numerical results confirmed
the overall picture predicted in ref. [74], albeit they also revealed that the scaling
of the “low-energy constants” involved in the quantum-field-theoretical description of
the spin model close to its critical point is not fully consistent with a straightforward
interpretation of these topological configurations in terms of particle excitations.

In ref. [3], instead, we addressed a study of the properties of confining flux tube in a
particularly simple gauge theory (gluodynamics with N = 2 colour charges in D = 2+1

spacetime dimensions) in a temperature regime close to the thermal deconfinement
transition. We found that that the corrections beyond the universal terms in the
effective string action turn out to be compatible with the predictions that were obtained
in the literature using the bootstrap approach.

Finally, the problem that was the main focus of this doctoral thesis was the study
of inclusive semileptonic decays of heavy-meson using lattice QCD. Following an ap-
proach that was recently put forward in ref. [181], we carried out such a study using
a mathematically well-defined procedure to tackle the ill-posed inverse problem of ex-
tracting the hadronic tensor from lattice correlation functions, by means of the HLT
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method [149] (which, as any linear method for the extraction of spectral densities, is
general and can be applied to many problems, not only in lattice QCD but also in
other problems in physics and even in other areas of science). The original results of
our study, in which we combined the analysis of lattice configurations generated by the
ETM collaboration with Nf = 2 + 1 + 1 dynamical quarks with those from configura-
tions by the JLQCD collaboration, were reported in ref. [2]. In this work, only a single
ensemble of ETM configurations has been used, hence, all the results presented in this
thesis were obtained at a single lattice volume and a single value of the lattice spacing.
Consequently, we could not perform any extrapolation to the infinite-volume limit nor
to the continuum limit, which are left for future work. Nevertheless, the comparison
that we carried out in ref. [2] between the lattice data and analytical results obtained
from an operator-product-expansion approach already show a good agreement for the
differential decay rate as well as other quantities like the hadron and lepton energy
moments.

As we conclude this thesis, it is important to acknowledge the inherent challenges
and limitations of lattice QCD. The numerical simulations demand significant com-
putational resources, and systematic uncertainties related to discretisation and finite
volume have to be properly taken into account.1 Nonetheless, the insights gained
through this research have reaffirmed the importance of lattice QCD as a fundamen-
tal approach for studying flavour physics, and other challenging physical problems in
strongly coupled theories.

Looking to the future, the advancements made in this thesis provide a solid foun-
dation for further investigations of inclusive semileptonic decays using lattice QCD, as
well as for other non-trivial problems in QCD and in other strongly coupled theories.
Indeed, we are currently trying to repeat the calculations that were carried out in this
thesis for the inclusive decay rates of D-mesons, too. The hope is that the simulation of
charm quarks at their physical mass will allow one to access the full phase space region
and therefore to access all of the physical states relevant for these inclusive decays.

Considering the constant improvement of techniques and theoretical understanding
of lattice QCD over the years, it can be speculated that the calculation of inclusive
semileptonic decays will soon reach a high level of precision, which would have a big
impact in the long standing effort of the determination of CKM matrix elements and

1The numerical calculations necessary to carry out a systematic study of the extrapolations to
the infinite-volume limit, and then to the continuum limit, would require an amount of time and of
computing resources that is far beyond those typical of a doctoral thesis project. Indeed, it is worth
remarking that state-of-the-art, large-scale lattice QCD calculations like those involved in this study
are nowadays among the scientific projects that take a significant fraction of tier-0 supercomputing
facilities.
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(possibly) the resolution of the |Vcb| puzzle.
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Appendix A

Euclidean gamma matrices

In Minkowski space-time gamma matrices obey the anti-commutation relation

{γMµ , γMν } = 2gµν1, (A.1)

with µ = 0, 1, 2, 3 and gµν = diag(1,−1,−1,−1).
Upon Wick rotation, the Euclidean gamma matrices γµ, µ = 1, 2, 3, 4 can be ob-

tained by the following relations

γ1 = −iγM1 , γ2 = −iγM2 , γ3 = −iγM3 , γ4 = γM0 , (A.2)

and fulfill the anti-commutation relations

{γµ, γν} = 2δµν1. (A.3)

Then, one can define the matrix γ5, which anti-commutes with all the other γµ
matrices

γ5 = γ1γ2γ3γ4, (A.4)

with γ2
5 = 1. Furthermore, it is easy to show that γ5 = γM5

γM5 = i(γ0γ1γ2γ3)M =
1

i2
(γ4γ1γ2γ3)E = (γ1γ2γ3γ4)E = γ5. (A.5)

Using the anti-commutation relation and the fact that in Euclidean space-time (γµ)† =

γµ = γ−1
µ , one can show that (γ5)† = γ5. This is true in the so-called chiral representa-

tion where γ5 is diagonal. Within this representation we can write the gamma matrices
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explicitly

γ1,2,3 =

[
0 −iσ1,2,3

−iσ1,2,3 0

]
, γ4 =

[
0 12

12 0

]
, γ5 =

[
12 0

0 12

]
, (A.6)

where σi are the Pauli matrices:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
, (A.7)

and 12 is the 2× 2 unitary matrix.
To write everything explicitly, we have

γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 ,

γ4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (A.8)
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Appendix B

Numerical details of the HLT method

In this appendix we report the explicit expressions for the numerical procedures em-
ploye in the HLT method discussed in section 7.2.1.

The Gaußian smeared kernels can be defined as

∆σ(ω, ωn) =
1√

2πσZ
exp

(
−(ω − ωn)2

2σ2

)
, (B.1)

with

Z =
1

2

(
1 + erf

( ωn√
2σ

))
. (B.2)

The functional A[g] is defined as

A[g] =

∫ ∞
ωmin

dω eαω{K(ω; g)−∆σ(ω, ωn(L))}. (B.3)

With this definition, the matrix Atr is defined as

Atr =
e−(r+t+2−α)ωmin

r + t+ 2− α
+
e−(T−r+t−α)ωmin

T − r + t− α

+
e−(T−r−t−α)ωmin

T − r − t− α
+

e2T−r−t−2−αωmin

2T − r − t− 2− α
. (B.4)

As discussed in section 7.2.1, the parameter α allow to change the Jacobi polynomial
to be used in the reconstruction, and must satisfy the condition α < 2.

The vector ft is similarly defined as

ft = (1− λ)

∫ ∞
ωmin

dωeαω∆σ(ω, ωn)bT (t+ 1, ω), (B.5)
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whose components can be calculated as

ft = N(t+ 1)F (t+ 1) +N(T − t− 1)F (T − t− 1), (B.6)

using

N(k) =
1− λ
2Z

exp

(
(α− k)((α− k)σ2 + 2ωn)

2

)
, (B.7)

F (k) = 1 + erf

(
(α− k)σ2 + ωn − ωmin√

2σ
(B.8)

In the limit T → ∞, only the first term contribute to the vector ft. Finally, the
vector Rt is defined as

Rt =

∫ ∞
0

dω bT (t+ 1, ω) =
1

t+ 1
+

1

T − t− 1
, (B.9)

, where, once again we stress that only the first term survives for T →∞.
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Decomposition of the inclusive decay
rate

We begin by writing the hadronic tensor in its spectral representation

W µν(p, q) =
1

2mB

〈B|Jµ(0)(2π)4δ4(P− (p− q))[Jν ]†|B〉. (C.1)

Then it follows that the generic decomposition of the hadronic tensor in six independent
form factors is

W µν(p, q) =− gµνW1(ω, q2) +
pµpν

m2
B

W2(ω, q2) +
qµqν

m2
B

W3(ω, q2)

+
pµqν + pνqµ

m2
B

W4(ω, q2)− iεµναβ pαqβ
m2
B

W5(ω, q2) .

− ip
µqν − qµpν

m2
B

W6(ω, q2) . (C.2)

All the form factors appearing above are real due to the fact that the hadronic
tensor satisfies the relation

[W µν(ω,p2)]† = W µν(ω,p2), (C.3)

such that the symmetric part is real while the antisymmetric part is purely imaginary.
The form factor W6(ω, q2) vanishes as a consequence of T -symmetry. This can be

shown by first dividing the hadronic tensor in parity-even and parity-odd contributions

W µν
+ (p, q) = W µν

V V (p, q) +W µν
AA(p, q),

W µν
− (p, q) = W µν

V A(p, q)−W µν
AV (p, q). (C.4)
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The only parity-odd term in equation C.2 is the anti-symmetric term proportional
to W5(ω, q2) which is therefore purely imaginary

[W µν
V A(p, q)]† = −W µν

AV (p, q). (C.5)

Under T -symmetry we have

T V µ(0)T † = −Vµ(0), T Aµ(0)T † = −Aµ(0), T PT † = Pµ, (C.6)

where Pµ is the QCD four-momentum operator.
Then for the B-meson state, we can define p̃ = (ω,−q) and write

T |B(p)〉 = |B(p̃)〉. (C.7)

The vector component of the hadronic tensor can be written in the spectral repre-
sentation as

2mBW
µν
V V (p, q) = 〈B(p)|V µ(0) (2π)4δ4(P− (p− q)) [V ν ]† (0)|B(p)〉

=
(
〈B(p̃)|T V µ(0) (2π)4δ4(P− (p− q)) [V ν ]† (0)T †|B(p̃)〉

)†

=
(
〈B(p̃)|Vµ(0) (2π)4δ4(P− (p̃− q̃)) [Vν ]

† (0)|B(p̃)〉
)†

= 〈B(p̃)|Vν(0) (2π)4δ4(P− (p̃− q̃)) [Vµ]† (0)|B(p̃)〉

= 2mB [WV V ]νµ (p̃, q̃) . (C.8)

The same can be done for the axial contribution W µν
AA.

Then, considering that the scalar product is parity invariant (p̃ · q̃ = p · q) and
noticing that p̃µ = pµ, we can prove the following

[W µν
V V (p, q)]† = W νµ

V V (p, q) = W µν
V V (p, q), [W µν

AA(p, q)]† = W νµ
AA(p, q) = W µν

AA(p, q), (C.9)

which shows that there cannot be any anti-symmetric part contributing to the parity-
even hadronic tensor W µν

+ , and as a consequence that we must have W6(ω, q2) = 0.
Then we can contract the hadronic tensor as shown in equation 8.26 with the
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leptonic tensor of equation 8.20 using the following formulae

Lµν(p`, pν)g
µν = −

{
(mB − ω)2 − q2

}
,

Lµν(p`, pν)
pµpν

m2
B

=
1

2

{
q2 − (mB − ω − 2E`)

2
}
,

Lµν(p`, pν)
qµqν

m2
B

= 0 ,

Lµν(p`, pν)
pµqν + qµpν

m2
B

= 0 ,

Lµν(p`, pν)

{
−iεµναβpαqβ

}
m2
B

=
[
(mB − ω)2 − q2

]
[2E` − (mB − ω)] . (C.10)

Then the total contraction of the hadronic and leptonic tensor gives

LµνW
µν = −{(mB − ω)2 − q2}W1 +

1

2
{q2 − (mB − ω − 2E`)}W2

+ [(mB − ω)2 − q2][2E` − (mB − ω)]W5. (C.11)

And the differential decay rate of equation 8.25 can thus be written as

dΓ

dq2dωdE`

8π3

G2
F |Vcb|2

= LµνW
µν

= −{(mB − ω)2 − q2}W1 +
1

2
{q2 − (mB − ω − 2E`)}W2

+ 2[(mB − ω)2 − q2][2E` − (mB − ω)]W5. (C.12)
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