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We construct an equation of state for quantum chromodynamics (QCD) at finite temperature and chemical
potentials for baryon number B, electric charge Q, and strangeness S. We use the Taylor expansion method to
the fourth power for the chemical potentials. This requires the knowledge of all diagonal and nondiagonal BQS
correlators up to fourth order: These results recently became available from lattice QCD simulations, albeit only
at a finite lattice spacing Nt = 12. We smoothly merge these results to the hadron resonance gas as model, to be
able to reach temperatures as low as 30 MeV; in the high-temperature regime, we impose a smooth approach to
the Stefan-Boltzmann limit. We provide a parametrization for each one of these BQS correlators as functions of
the temperature. We then calculate pressure, energy density, entropy density, baryonic, strangeness, and electric
charge densities and compare the two cases of strangeness neutrality and μS = μQ = 0. Finally, we calculate the
isentropic trajectories and the speed of sound and compare them in the two cases. Our equation of state can be
readily used as an input of hydrodynamical simulations of matter created at the Relativistic Heavy Ion Collider.
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I. INTRODUCTION

Relativistic heavy-ion collisions have successfully recre-
ated the quark gluon plasma (QGP) in the laboratory at
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC)
at CERN. At low baryon densities, the transition from the
hadron gas phase where quarks and gluons are confined within
hadrons into a deconfined state where quark and gluons are
the main degrees of freedom is a smooth crossover [1–3].
At larger baryon densities, the phase transition is expected
to become stronger, eventually turning into first order. If this
is the case, then there has to be a critical point on the QCD
phase diagram [4–8]. The search for the QCD critical point is
the focus of the second Beam Energy Scan (BES II) at RHIC,
running in 2019 and 2020.

The quark gluon plasma acts as a nearly perfect fluid
and as such can be well described by event-by-event rela-
tivistic viscous hydrodynamical models. The hydrodynamical
description of the fireball has proved to be very successful
in describing the experimental data [9–19]. In order to close
the hydrodynamical equations, an equation of state (EoS)
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is required, which is based on first-principles lattice QCD
calculations. Recently, a Bayesian analysis [20] has provided
an important validation of the lattice QCD equation of state.
This framework, based on a comparison of data from the LHC
to theoretical models, has applied state-of-the-art statistical
techniques to the combined analysis of a large number of
observables while varying the model parameters. The poste-
rior distribution over possible equations of states turned out
to be consistent with results from lattice QCD simulations.
Additionally, the correct description of the QCD equation of
state is needed because differences in the equation can affect
the extraction of transport coefficients [17]. Thus, a lattice-
based QCD equation of state is a fundamental ingredient in
the description of the state of matter created in a heavy-
ion collision. The precise lattice QCD results for several
thermodynamic quantities can thus be used in support of the
heavy-ion experimental program [21].

For a few years, the EoS of QCD at zero baryonic density
has been known with high precision from first principles
[22–24]. The calculation of the equation of state at finite
chemical potential is hindered by the sign problem. Never-
theless, the thermodynamic quantities can be expanded as a
Taylor series in powers of μB/T , for which the coefficients
χn can be simulated on the lattice at μB = 0. From these
Taylor coefficients a variety of lattice QCD-based equations
of state have been reconstructed [25–27] and later used within
relativistic hydrodynamics [25,28–31].

However, baryon number is not the only conserved charge
in a heavy-ion collision: Strangeness and electric charge
are also relevant quantum numbers. In fact, many questions
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FIG. 1. From left to right, top to bottom: Expansion coefficients χB
2 , χ

Q
2 , χ S

2 , χ
BQ
11 , χBS

11 , χ
QS
11 , χB

4 , χ
Q
4 , χ S

4 as functions of temperature. In
each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and the thicker blue line on the
right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

remain regarding a possible separate freeze-out temperature
for strange hadrons [32–35] and separations of electric charge
due to a possible chiral magnetic effect [36], so many in-
teresting questions need to be answered that go beyond just
baryon charge conservation. At the LHC, where the baryonic
chemical potential μB is basically vanishing, the chemical
potentials for strangeness μS and electric charge μQ are also
zero. At RHIC, however, as the baryonic density increases,
the other two chemical potentials have finite values as well.
Until now, the equation of state of QCD has only been extrap-
olated to finite μB, either by keeping μS = μQ = 0 or along
a specific trajectory in the four-dimensional (4D) parameter
space, namely imposing that the strangeness density 〈nS〉 = 0
and that the electric charge density 〈nQ〉 = 0.4〈nB〉 to match
the experimental situation.

After the early results for χ2, χ4, and χ6 [37], a continuum
extrapolation for χ2 was published in Ref. [38]; in Ref. [39]
χ4 was shown but only at finite lattice spacing. The continuum
limit for χ6 was published for the first time in Ref. [40] in
the case of strangeness neutrality and later in Ref. [41] for
both cases. In Ref. [42], a first determination of χ8 at two
values of the temperature and Nt = 8 was presented. Finally,
in Ref. [43] a determination of χ8 was presented for the first

time as a function of the temperature, at Nt = 12, keeping
μS = μQ = 0. Recently, the effect of introducing a critical
point in the equation of state of QCD has also been tested [26].

However, a Taylor expansion of the equation of state,
along a direction which satisfies the strangeness-neutrality
condition, is not enough for the hydrodynamics approach,
since the fluid cells have local fluctuations in strangeness
density. Additionally, there is a complicated interplay between
transport coefficients when B, Q, S are considered [44] that
cannot be neglected at large baryon densities. For these rea-
sons, an EoS fully expanded as a Taylor series in powers of
μB/T, μS/T, μQ/T is needed as an input of hydrodynamic
simulations of the matter created at RHIC. In order to perform
such an expansion, all of the diagonal and nondiagonal sus-
ceptibilities of these three conserved charges are needed from
lattice QCD up to the chosen power. In this work, we perform
the Taylor expansion to total power four in the chemical
potentials. These results recently became available [43] on
Nt = 12 lattices.

Alternative approaches to the Taylor-series expansion have
been suggested in Refs. [45,46] and Refs. [47,48], which
have been shown to match well to lattice QCD data for
the Fourier harmonics [49] at imaginary chemical potential.
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FIG. 2. From left to right, top to bottom: Expansion coefficients χ
BQ
31 , χBS

31 , χ
QS
31 , χ

BQ
13 , χBS

13 , χ
QS
13 , χ

BQ
22 , χBS

22 , χ
QS
22 , χ

BQS
211 , χ

BQS
121 , χ

BQS
112 as

functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T � 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
μB � (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach μB � πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, μB, μS, μQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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FIG. 3. Normalized pressure, entropy density, energy density, baryonic, strangeness, and electric charge densities are shown as functions
of temperature along the μB/T = 0.5 (top), μB/T = 1.0 (middle), and μB/T = 2.0 (bottom) lines. In all plots, the solid black curves indicate
the case 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉, whereas the dashed red ones indicate the case μQ = μS = 0.
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II. METHODOLOGY AND RESULTS

The Taylor series of the pressure in terms of the three
conserved charge chemical potentials can be written as

p(T, μB, μQ, μS )

T 4
=

∑
i, j,k

1

i! j!k!
χ

BQS
i jk

(μB

T

)i(μQ

T

) j(μS

T

)k
.

(1)

We limit our calculation to i + j + k � 4. The coefficients

χ
BQS
i jk = ∂ i+ j+k (p/T 4)

∂
(

μB

T

)i
∂
(μQ

T

) j
∂
(

μS

T

)k

∣∣∣∣∣
μB,μQ,μS=0

(2)

have recently been published from lattice QCD simulations
on 483 × 12 lattices [43] in the temperature range (135

MeV) < T < (220 MeV). Since this is not enough to cover
the hydrodynamical evolution of the system, we smoothly
merge each coefficient at low temperature with the hadron
resonance gas model result, while at high temperature we
calculate the Stefan-Boltzman limit for each one of them
and assume that their value at T = 800 MeV is ∼10%
away from the respective Stefan-Boltzmann limit. To sim-
plify the notation, whenever i, j, k are zero, we only write
the nonzero indices and only the corresponding conserved
charges: For example, χ

BQS
200 becomes χB

2 , χ
BQS
301 becomes

χBS
31 , and so on. In order to provide a smooth pressure

which can be easily derived to obtain the other thermody-
namic quantities, we parametrize each coefficient by means
of a ratio of up-to-ninth-order polynomials in the inverse
temperature:

χ
BQS
i jk (T ) = ai

0 + ai
1/t + ai

2/t2 + ai
3/t3 + ai

4/t4 + ai
5/t5 + ai

6/t6 + ai
7/t7 + ai

8/t8 + ai
9/t9

bi
0 + bi

1/t + bi
2/t2 + bi

3/t3 + bi
4/t4 + bi

5/t5 + bi
6/t6 + bi

7/t7 + bi
8/t8 + bi

9/t9
+ c0.

Only χB
2 requires a different parametrization:

χ2(T ) = e−h1/t ′−h2/t ′2
f3[1 + tanh( f4t ′ + f5)]. (3)

In both equations above, t = T/154 MeV and t ′ =
T/200 MeV [52]. The values of the parameters for each
coefficient are given in the Appendix, together with the
respective Stefan-Boltzmann limits. Figures 1 and 2 show
all of the Taylor expansion coefficients as functions of the
temperature. The black dots are the HRG model results, the
red triangles correspond to the lattice QCD results, and the
thick blue line indicates the Stefan-Boltzmann limit.

Making use of this parametrization, we construct the pres-
sure from Eq. (1). The other thermodynamic quantities are
then derived from the pressure as follows:

s

T 3
= 1

T 3

∂ p

∂T

∣∣∣∣
μi

,
ε

T 4
= s

T 3
− p

T 4
+

∑
i

μi

T

ni

T 3

ni

T 3
= 1

T 3

∂ p

∂μi

∣∣∣∣
T,μ j

, c2
s = ∂ p

∂ε

∣∣∣∣
ni

+
∑

i

ni

ε + p

∂ p

∂ni

∣∣∣∣
ε,n j

. (4)

Everywhere in the above equation, i �= j is intended.
In Fig. 3 we show the dependence of the normalized pres-

sure, entropy density, energy density, baryonic, strangeness,
and electric charge densities on the temperature, along lines
of constant μB/T = 0.5, 1, 2, with both 〈nS〉 = 0, 〈nQ〉 =
0.4〈nB〉 (solid black lines) and in the case of μS = μQ = 0
(dashed red lines). We find that the thermodynamic quantities
that are less sensitive to the chemical composition of the
system do not show large discrepancies between the two sce-
narios for all three values of μB/T . On the other hand, when
realistic conditions on the global chemical composition of the
system are imposed, the baryon density is largely affected and
substantially decreased; the opposite effect is visible for the
electric charge density, which is heavily enhanced.

Finally, we compare (i) the isentropic trajectories, (ii) the
temperature dependence of the speed of sound along lines of

constant μB/T , and (iii) the behavior of the speed of sound
along parametrized chemical freeze-out lines between these
two cases. The isentropic trajectories are shown in Fig. 4 for
selected values of s/nB, which correspond to the indicated
collision energies [40]. In the upper panel of Fig. 5 we show
the speed of sound as a function of the temperature along lines
with μB/T = 0.5, 1, 2; the different colors correspond to
different values of μB/T . In the lower panel of Fig. 5 we show
the behavior of the speed of sound along two parametrized
chemical freeze-out lines. These two freeze-out lines are
shifted from the one presented in Ref. [53], and have the form:

TFO(μB) = T0 + bμ2
B + cμ4

B, (5)

FIG. 4. Isentropic trajectories in the (T, μB ) plane, for s/nB =
420, 144, 70, 30, corresponding to collision energies

√
sNN =

200, 62.4, 27, 14.5 GeV, respectively. The solid black lines cor-
respond to 〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed red lines to
μS = μQ = 0.
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FIG. 5. Upper panel: Temperature dependence of the speed of
sound along lines of constant μB/T . The solid lines correspond to
〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed ones to μS = μQ = 0.
The curves for values of μB/T = 0.5, 1, 2 are shown in black, blue
(darker gray) (this line stops at T = 450 MeV) and pink (lighter
gray) (this line stops at T = 225 MeV), respectively. Lower panel:
Behavior of the speed of sound along parametrized chemical freeze-
out lines as in Eq. (5), with TFO(μB = 0) = 160 MeV [pink (lighter
gray lines)] and TFO(μB = 0) = 150 MeV [dark blue (darker gray
lines)]. As in the upper panel, solid and dashed lines correspond to
the cases with and without strangeness neutrality, respectively.

with b = −1.39 × 10−4 MeV−2 and c = −5.3 ×
10−11 MeV−3; the two lines we show have TFO(μB =
0) = 160 MeV and TFO(μB = 0) = 150 MeV. Both
in Fig. 4 and in Fig. 5, the solid lines correspond
to 〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed lines to
μS = μQ = 0.

Since the EoS constructed in this work is a Taylor ex-
pansion carried out from lattice-QCD-calculated expansion
coefficients, it is important to have an idea of the range of
the validity of such expansion. It has been shown from lattice
QCD simulations that the Taylor expansion of the equation
of state up to O(μ4

B) converges for μB/T � 2–2.5 [41] and
the same can be said for our EoS. This roughly corresponds
to a collision energy of

√
s � 10 GeV [53]. In order to have

B /T = 0.5

B /T = 1.0

B /T = 1.5

B /T = 2.0

B /T = 2.5

B /T = 3.0

60 80 100 120 140 160 180 200
0

2

4

6

8

T [MeV]

Q
,S

N
[M

eV
]

FIG. 6. Temperature dependence of the electric chemical poten-
tial along lines of constant μB/T = 0.5–3 in the case of strangeness
neutrality.

a better idea of where a possible breakdown of its validity
occurs, we show in Fig. 6 the behavior of the electric chemical
potential in the case with strangeness neutrality, along lines of
constant μB/T = 0.5–3. We see that a nonmonotonic behav-
ior appears around and above μB/T ∼ 2.5. This is in line with
the expectation that the convergence of the Taylor series is
guaranteed in the regime μB/T � 2.5. We note again that with
the Taylor expansion approach used here, we do not expect
to fully incorporate the constraints from imaginary μB—and
thus reproduce the Fourier harmonics from Ref. [49]—since
for them the coverage of the region μB/T � π would be
required. Applying the constraints from imaginary μB can be
done in the near future to further improve our modeling of the
QCD EoS, possibly concurrently with the inclusion of new
continuum extrapolated lattice results.

III. CONCLUSIONS

In this paper, we constructed an equation of state for
QCD at finite temperature and B, Q, S chemical potentials,
based on a Taylor series up to fourth power in the chemical
potentials. Our methodology is based on a smooth merging
between the HRG model and lattice QCD results for each one
of the Taylor expansion coefficients; for all coefficients except
χB

2 , the parametrization function is a ratio of up-to-ninth-order
polynomials. We provide all parameters in Tables I, II, and
III, so that our EoS can be readily used in the community.
Furthermore, the code to generate the EoS and the tables for
the thermodynamic quantities as functions of T, μB, μS, μQ

is available at the link provided in Ref. [54].
The equation of state presented in this paper is impor-

tant for the hydrodynamic description of the system cre-
ated in heavy-ion collisions at RHIC. There are numerous
outstanding questions that remain to be understood at finite
baryon densities that are influenced both by electric charge
and strangeness. One recent surprise that arose from the
first Beam Energy Scan was � polarization, which indicates
that the quark gluon plasma may be the most vortical fluid
known to humanity [55]. However, considering that �’s are
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TABLE III. Parameters for the parametrization of the tempera-
ture dependence of all coefficients χ

BQS
i jk (T ), with the functional form

shown in Eq. (3). The “–” symbols in the table indicate that, for most
of the coefficients, it is enough to consider a ratio of polynomials of
order lower than seven.

h1 h2 f3 f4 f5

χB
2 (T ) −0.325372 0.497729 0.148987 6.66388 −5.07725

simultaneously both strange particles and baryons, polariza-
tion studies should be done in hydrodynamic simulations that
also consider all three conserved charges because of this inter-
play between strangeness and baryon number. As previously
mentioned, this BQS equation of state can help shed light
on the possible flavor hierarchy of freeze-out temperatures
as well as the chiral magnetic effect. A variety of dynamical
observables of conserved charges (e.g., kaon flow harmonics)
have already been measured at the Beam Energy Scan I and
many others are planned for the Beam Energy Scan II, which
may help to further constrain the location of a possible critical
point.

Finally, we point out that strange hadrons make up roughly
10% of all measured hadrons (assuming the kaon to pion ratio
is a reasonable estimate for the ratio of all final state hadrons)
and we can primarily only measure charged particles.1 Thus,
a BQS equation of state is required for a fully consistent
description of the quark gluon plasma at finite densities.
Relativistic hydrodynamics in the presence of multiple con-
served charges obtains cross terms that affect the transport
coefficients [44,56,57]. Thus, it is misleading to extract trans-
port coefficients at finite baryon densities only considering
finite baryon number and not also finite strangeness and elec-
tric charge. Furthermore, transport coefficients of different
conserved charges have different characteristic temperatures,
which further complicates the picture at large densities [58].
The consequences are still under development, but it is certain
that a BQS equation of state is a vital first step to take into
account any of these effects.

At this point, our reconstructed BQS equation of state only
consists of a crossover transition. Unlike a previous work
where an equation of state at finite μB was coupled to the 3D
Ising model in order to study criticality [26], such an endeavor
with three conserved charges would be significantly more
complicated. While the term “critical point” is used, there
might actually be a critical line or even critical plane once

1Some neutral particles can be reconstructed from their daughter
particles, e.g., π 0 → γ γ .

one considers the full three-dimensional space of μB, μS , and
μQ. Since there are large fluctuations in T, μB, μS , and μQ

throughout the evolution of a single event [59–61], certain
elements of the fluid might pass through a critical region at
an entirely different combination of T, μB, μS , and μQ.

Note added in proof. We recently became aware of
Ref. [62], which constructs a similar equation of state as the
one presented here. One major difference is that we match
lattice QCD susceptibilities with the hadron resonance gas
model before reconstructing the equation of state, whereas in
Ref. [62] the matching with the HRG model is performed for
the Taylor-reconstructed pressure.
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APPENDIX

We list the values of the parameters in Eq. (3) for each
Taylor expansion coefficient in Table I. The Stefan-Boltzmann
limit for the coefficients have the following values:

p(T, 0, 0, 0)

T 4
= 19π2

36
,

χB
2 = 1

3
, χ

Q
2 = 2

3
, χS

2 = 1,

χ
BQ
11 = 0, χBS

11 = −1

3
, χ

QS
11 = 1

3
,

χB
4 = 2

9π2
, χ

Q
4 = 4

3π2
, χS

4 = 6

π2
,

(A1)

χ
BQ
31 = 0, χBS

31 = − 2

9π2
, χ

QS
31 = 2

9π2
,

χ
BQ
13 = 4

9π2
, χBS

13 = − 2

π2
, χ

QS
13 = 2

π2

χ
BQ
22 = 4

9π2
, χBS

22 = 2

3π2
, χ

QS
22 = 2

3π2

χ
BQS
211 = 2

9π2
, χ

BQS
121 = − 2

9π2
, χ

BQS
112 = − 2

3π2
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