
27 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Improving DRS-to-Text Generation Through Delexicalization and Data Augmentation

Publisher:

Published version:

DOI:10.1007/978-3-031-70239-6_9

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/2014270 since 2024-09-20T06:56:21Z

Improving DRS-to-Text Generation through
Delexicalization and Data Augmentation

Muhammad Saad Amin1[0000−0002−7002−9373], Luca
Anselma2[0000−0003−2292−6480], and Alessandro Mazzei3[0000−0003−3072−0108]

Department of Computer Science, University of Turin, Turin, Italy
{muhammadsaad.amin, luca.anselma, alessandro.mazzei}@unito.it

Abstract. Text generation from Discourse Representation Structure
(DRS), is a complex logic-to-text generation task where lexical informa-
tion in the form of logical concepts is translated into its corresponding
textual representation. Delexicalization is the process of removing lex-
ical information from the data which helps the model be more robust
in producing textual sequences by focusing on the semantic structure of
the input rather than the exact lexical content. Implementation of delex-
icalization is even harder in the case of the DRS-to-Text generation task
where the lexical entities are anchored using WordNet synsets and the-
matic roles are sourced from VerbNet. In this paper, we have introduced
novel procedures to selectively delexicalize proper nouns and common
nouns. For data transformations, we propose to use two types of lexical
abstractions (1): WordNet supersense-based contextually categorized ab-
straction; and (2): abstraction based on the lexical category associated
with named entities and nouns. We present many experiments for eval-
uating the hypotheses of delexicalization in the DRS-to-Text generation
task by using state-of-the-art neural sequence-to-sequence models. Fur-
thermore, we also explored data augmentation through delexicalization
while evaluating test sets with different abstraction methodologies i.e.,
with and without supersenses. Our experimental results proved the ef-
fectiveness of model generalizability through delexicalization while com-
paring it with the results of fully lexicalized DRS-to-Text generation.
Delexicalization resulted in an improved translation quality with a sig-
nificant increase in evaluation scores.

Keywords: Delexicalization · Data augmentation · Discourse represen-
tation structure · Formal meaning representation · Neural DRS-to-Text
generation · Super senses.

1 Introduction

Delexicalization is the process of removing lexical knowledge from the data to
make it generalized by emphasizing more on the syntactic structure and sentence
patterns rather than the specific semantic content [1]. It is a very well-known
technique in audio and speech processing where delexicalization and relexicaliza-
tion procedures are used to improve dialogue systems through the preservation

2 M.S. Amin et al.

of prosodic features for text-to-speech applications [2]. Contributions of data
delexicalization are also becoming very popular in many applications of natural
language processing. The motivation for using delexicalization is to enhance the
model’s ability to generate more natural sentences with better grammar and
syntactic structure [3]. This also highlights the model’s ability to perform well
for unseen or out-of-vocabulary words [4]. Recent neural approaches to language
generation have achieved peak performance through end-to-end training, they
have also gained popularity in a variety of natural language generation (NLG)
applications, including concept-to-text generation, machine translation (MT),
and summarization [5].

Commonly used procedures of delexicalization in NLG include named en-
tity dependent or exact delexicalization, language agnostic delexicalization, and
delexicalization through pre-trained language models [6]. It is important to
understand that the requirement to create a pragmatically correct text while
maintaining the semantic and syntactic structure of the sentence makes data
delexicalization even harder. In fact, grammatically inaccurate or out-of-scope
delexicalized textual input might lead to poor model performance [7]. In the
delexicalization process, lexical entities are replaced with a placeholder e.g.,
“Tom knocked at the door.”, considering nouns only, the modified example is
“[placeholder] knocked at the [placeholder].”. Here, the placeholder can be any
generalized tag depending on the type of delexicalized applied to the data.

Using transformers and encoder-decoder-based neural models, researchers
working on text generation from concept or meaning representations –i.e. graph-
based abstract meaning representations (AMR) [8,9,10], RDF-triples [11], or
discourse representation structures (DRS) [12,13,14,15,16,17]– have recently fo-
cused on generating text from logical representations and vice versa. In this
paper, we emphasize the role played by data delexicalization in formal meaning
representation (DRS), in the context of neural DRS-to-Text generation tasks.
DRS originated from discourse representation theory (DRT) that lists formal
meaning representation in the form of first-order logic (FOL) [18]. Textual in-
formation is represented in DRS as events, concepts, and entities. For example,
names are discourse referents that are usually represented as variables in DRS,
along with the logical relations that exist between these entities, such as quanti-
fiers, conjunctions, negations, disjunctions, etc. Lexical information like nouns,
adjectives, and adverbs are represented as logical concepts that are associated
with English WordNet, and verbs are represented as VerbNet roles [19,20,21].
As an example, a graphical representation of the DRS for the text “Tom was
carrying a bucket of water.” is shown in Fig. 1.

In a wide spectrum of data-to-text generation tasks having different flavors
of input representations including an AMR graph [8,9,10], an RDF triple [11], or
a table [22], neural DRS-to-Text generation is an application of the same stream
having DRS as the data. The neural model takes a logical representation (DRS)
as an input and generates the corresponding text as output [15,16].

Improving DRS-to-Text Generation 3

(a) DRS (original):
b1 REF x1 % Tom [0...3]
b1 Name x1 "tom” % Tom [0...3]
b1 PRESUPPOSITION b2 % Tom [0...3]
b1 male "n.02" x1 % Tom [0...3]

b2 REF t1 % was [4...7]
b2 TPR t1 "now" % was [4...7]
b2 Time e1 t1 % was [4...7]
b2 time "n.08" t1 % was [4...7]
b2 REF e1 % carrying [8...16]
b2 Agent e1 x1 % carrying [8...16]

b2 Theme e1 x2 % carrying [8...16]
b2 carry "v.01" e1 % carrying [8...16]
b2 REF x2 % a [17...18]
b2 bucket "n.01" x2 % bucket [19...25]
b2 Content x2 x3 % of [26...28]
b2 REF x3 % water [29...34]

b2 water "n.06" x3 % water [29...34]
 % . [34...35]

(b) DRS (delex without supersenses):
b1 REF x1 % Name_1 [0...3]
b1 Name x1 ”name_1” % Name_1 [0...3]
b1 PRESUPPOSITION b2 % Name_1 [0...3]
b1 male "n.02" x1 % Name_1 [0...3]
b2 REF t1 % was [4...7]
b2 TPR t1 "now" % was [4...7]

b2 Time e1 t1 % was [4...7]
b2 time "n.08" t1 % was [4...7]
b2 REF e1 % carrying [8...16]
b2 Agent e1 x1 % carrying [8...16]
b2 Theme e1 x2 % carrying [8...16]
b2 carry "v.01" e1 % carrying [8...16]

b2 REF x2 % a [17...18]
b2 noun "n.01" x2 % NOUN [19...25]
b2 Content x2 x3 % of [26...28]
b2 REF x3 % NOUN [29...34]
b2 noun "n.06" x3 % NOUN [29...34]
 % . [34...35]

(c) DRS (delex with supersenses):
b1 REF x1 % Name_1 [0...3]
b1 Name x1 ”name_1” % Name_1 [0...3]
b1 PRESUPPOSITION b2 % Name_1 [0...3]
b1 male "n.02" x1 % Name_1 [0...3]
b2 REF t1 % was [4...7]
b2 TPR t1 "now" % was [4...7]

b2 Time e1 t1 % was [4...7]
b2 time "n.08" t1 % was [4...7]
b2 REF e1 % carrying [8...16]
b2 Agent e1 x1 % carrying [8...16]
b2 Theme e1 x2 % carrying [8...16]
b2 carry "v.01" e1 % carrying [8...16]

b2 REF x2 % a [17...18]
b2 noun_artifact "n.01" x2 % noun_artifact [19...25]
b2 Content x2 x3 % of [26...28]
b2 REF x3 % noun_substance [29...34]
b2 noun_substance "n.06" x3 % noun_substance [29...34]
 % . [34...35]

Fig. 1. Graphical representation of the DRS with lexical (a) and delexical without (b)
and with (c) supersenses for the text “Tom was carrying a bucket of water.”.

Compared to different logical or conceptual representations of data i.e., AMR
and RDF, we choose DRS because it is more expressive and it can represent a
wide range of semantic phenomena that can express logical relations for long
sentences. Furthermore, using DRS can provide a very fine-grained investigation
of the logical form of individual sentences, for DRS-to-Text generation, focus-
ing more on syntactic or discourse-level structure rather than semantic contents
only. Stated otherwise, “by modifying a DRS’s meaning in a controlled man-
ner, the systems’ robustness can be closely observed and evaluated accordingly.”
[15]. However, since large language models (LLMs) have no prior knowledge
of DRS, they may introduce noise in the data if used for delexicalization or
relexicalization. This resilience property discourages the use of LLMs for data
delexicalization–see Section 4.2.

In this study, we specifically develop and evaluate data delexicalization for
the categories of (i) proper nouns (PNs) and (ii) common nouns (CNs), utilizing
the robustness aspect of neural DRS-to-text generation. Specifically, we devel-
oped and evaluated the process of substituting the actual lexical information of
the original DRS-text pairs with the placeholders by modifying the proper nouns
and common nouns in the dataset. We investigate different approaches, with and
without the use of supersenses, to generate new delexicalized training sentences.
These approaches aim to investigate the importance of lexical/semantic informa-
tion and the curial role played by the syntactic structure of logical representa-
tion in the task of neural DRS-to-text generation. Furthermore, we also applied
a novel approach of data augmentation through delexicalization by combining
lexical and delexical flavors of data. We want to understand the important role
played by semantic knowledge in the identification of the syntactic structure of
the sentence while evaluating a delexicalized test set.

This brings us to the following research questions:

1. How to delexicalize logical data representations such as DRS where lexical
entities are strongly connected with external lexical databases like WordNet
and VerbNet?

2. Can supersense contribute to enhancing the generalization power of the neu-
ral models when used for nouns?

4 M.S. Amin et al.

3. What would be the behavior of the model if we augment logically delexical-
ized data with fully lexicalized one?

4. Can delexicalization and augmentation increase the model performance?
5. What is the behavior of seq-to-seq neural models in the case of pre-training

(bi-LSTM) and fine-tuning (byT5)?
6. How do general-purpose large language models like chatGPT and Claude

incorporate DRS when given as a prompt?

To the best of our knowledge, this study is the first attempt to explore data
delexicalization in neural DRS-to-Text generation. Apart from some initial works
on data augmentation of verbs and nouns in DRS-to-Text generation [16,17], this
is the first work of data augmentation through delexicalization to evaluate the
syntactic structure of the generated text through relexicalization.

The statistical structure of the neural network makes it difficult to analyze
the type of information that the system has actually learned. Generally, the
network learns that the verb follows the subject (e.g. grammatical competence)
when we give a concrete example, such as “Brad Pitt is an actor”, and/or that
men can be actors (semantic and pragmatic knowledge) or that a particular
man is an actor (world knowledge). How can we take advantage of the multi-
level structure of neural learning? Our study has the side effect of raising these
theoretical questions for further investigation.

The remaining paper is structured as follows: in Section 2, we describe
the procedure used for noun delexicalization with and without supersenses. In
Section 3, we give an insight into the architecture of the neural DRS-to-text
pipelines. In Section 4, we describe the experimental results of DRS-to-text gen-
eration through (1) automatic metric-based and pre-trained model-based evalua-
tions on a standard test set, (2) a reduced test set comparing our neural systems
with two general LLMs, and (3) an error analysis of the model-generated text;
Finally, the paper is concluded in Section 5 with a leading section of limitations.

2 Logical Delexicalization with Nouns

When it comes to the application of neural DRS-to-Text generation, logical data
delexicalization seems to be a complex task. Each example in the training set
consists of a logical input (DRS) and the corresponding text that goes with it.
Both types of data representations need to be monitored when making method-
ological changes to the training data, as the neural network treats them as pairs
of input values. The data transformations should therefore take into account
the order of the meaning representations and the text translations and should
be equal and balanced for both elements. We used different delexicalization ap-
proaches to generalize PNs and CNs in the DRS-to-Text generation task. We
used the Parallel Meaning Bank1 (PMB) dataset, which is created in the stan-
dard train-dev-test split, in its gold version.
1 The PMB is developed at the University of Groningen as part of the NWO-VICI

project “Lost in Translation – Found in Meaning” (Project number 277-89-003), led
by Johan Bos.

Improving DRS-to-Text Generation 5

Table 1. Different flavors of delexicalization applied to the dataset referring to data
transformations without and with supersense. (Transf. = Transformation; PN place-
holders in blue; CN placeholders in green).

Transf. Type Lexicalized Text Delexicalized Text

Delex w/o SS

Brad Pitt is an actor. Name_1 is a NOUN.
The Mona Lisa hung above the antique table. The Name_1 hung above the antique NOUN.
Paris is a beautiful city. City_1 is a beautiful NOUN.
Noah and Sophia watched a movie at the local
theater.

Name_1 and Name_2 watched a NOUN at the
local NOUN.

Delex with SS

Brad Pitt is an actor. Name_1 is a noun_person.
The Mona Lisa hung above the antique table. The Name_1 hung above the antique

noun_artifact.
Paris is a beautiful city. City_1 is a beautiful noun_location.
Noah and Sophia watched a movie at the local
theater.

Name_1 and Name_2 watched a
noun_communication at the local
noun_artifact.

Fig. 1 displays the graphical representations of the DRS transformations from
fully lexical representation (a), to delexical without supersense (b), and delex-
ical with supersenses (c) highlighting PN transformation (in blue) and CN (in
green). The DRS (a) generates the sentence “Tom was carrying a bucket of wa-
ter.” reflecting a fully lexical translation of the DRS, while the DRS (b) generates
“Name_1 was carrying a NOUN of NOUN.” representing a more generalized
delexicalization approach, and the DRS (c) generates “Name_1 was carrying
a noun_artifact of noun_substance.” producing text with the contextual con-
trol over delexicalized placeholder through the use of supersenses. Other textual
examples are listed in Table 1 to have a clear understanding of the proposed
delexicalized approaches.

2.1 Proper Noun Delexicalization

The proper names of a person (PER), which includes both male and female
names, and of a place (GPE), which includes city, state, country, and island
names, are the two specific Named Entity (NE) categories that we examined for
PNs. To extract proper names from the text, we used the spaCy NE Recognizer
https://spacy.io. For PER and GPE, there is a total of 3773 instances of PNs.
The proper nouns are further divided into the following categories: person names
account for 57%, city names 30%, state names 6%, country names 6%, and other
types, such as island names, 1%.

While dexicalizing PNs, we have adopted two approaches to replace named
entities with placeholders to analyze the impact of model generalizability by
removing lexical information from the dataset. (1) Replacing named entities
with custom placeholders i.e., person_name, city_name, state_name, coun-
try_name, etc. This substitution resulted in 6 different custom placeholders
for all the named entities under observation in the dataset. (2) Replacing named
entities with spaCy-defined placeholders i.e., PER and GPE. This substitution
resulted in only 2 placeholders for all named entities in the dataset. For example,
in “Tom is living in Boston now.”, through the first approach we get “Name_1
is living in city_1 now.” while with the second approach, we get “PER is living
in GPE now.”.

https://spacy.io

6 M.S. Amin et al.

While experimenting with delexicalized PNs, we found custom delexicaliza-
tion more useful as compared to spaCy-oriented delexicalization. This is because,
for model evaluation through relexicalization, custom delexicalization helps to
sustain true pragmatics of the logical input while preserving true semantic corre-
lation between delexicalized named entities. While in the case of spaCy-defined
placeholders, the model often confuses the exact location of the named entity
placeholder in the delexicalized translation of the meaning representation. For
example, in “Tom went to London and called Mary.”, through custom delexi-
calization, we get “Name_1 went to City_1 and called Name_2.” which is se-
mantically more understandable to the neural model. While in the case of the
spaCy-oriented placeholder, the model confused the order of semantic entities
and generated “PER went to PER and called GPE.” or “GPE went to PER and
called PER.”. Therefore, for all of our further experiments, we have used cus-
tom delexicalization for named entities. Some extra examples demonstrating the
delexicalization procedures are listed in Table 1.

2.2 Common Noun Delexicalization

CNs sustaining the true contextual sense of the sentence are very important
lexical entities, especially in the logical input representations like DRS. To ex-
tract CNs from the text, we used spaCy again which resulted in the extrac-
tion of 6193 lexical entities from the dataset. For delexicalization, we have
adopted two different procedures for replacement. First, replacing all lexical en-
tities of CNs with one spaCy-based placeholder i.e., NOUN. This type of delex-
ical substitution makes the data fully generalized with only one placeholder for
all lexical entities of CNs. Second, a novel WordNet-based supersense tagging
(SST) approach that proved helpful in sustaining the categorical and contextual
sense of the sentence. With supersenses, we identified CNs from the 26 lexico-
graphic categories of WordNet based on data instances. These categories included
noun_act, noun_artifact, noun_body, noun_cognition, noun_communication,
noun_event, noun_feeling, noun_food, noun_group, and noun_motion, etc. A
graphical representation of the categorical distribution of the CN through su-
persenses is shown in Fig. 2.

Fig. 2. Supersense-based categorical division of common nouns in Gold-PMB dataset.

Improving DRS-to-Text Generation 7

For example, in “A cat is sitting on the chair.”, if we delexicalize with a 1
spaCy placeholder, we have “A NOUN is sitting on the NOUN.”. But if we per-
form delexicalization through supersenses, we have “A noun_animal is sitting
on the noun_artifact.”. The motivation for using delexicalization is to only ex-
tract lexical knowledge from the data without breaking semantic correlation and
sentence structure. Through supersense delexicalization, we are facilitating the
model to understand the delexicalized input structure more precisely as com-
pared to spaCy-based delexicalized data having one placeholder for all CNs. For
noun delexicalization, we have experimented with both types of delexicalization
procedures i.e., with and without supersenses. Some examples demonstrating the
delexicalization procedures with and without supersenses are listed in Table 1.

3 Three Neural DRS-to-Text Pipelines

DRS-to-text generation is a complex task that requires computationally effi-
cient neural models. In this scope, we have used three different neural architec-
tures in our implementation pipelines. The encoder-decoder-oriented recurrent
sequence-to-sequence neural network with (1): character-based lexical encoding
(CB-bi-LSTM henceforth); and (2): word-based lexical encoding (WB-bi-LSTM
henceforth), both having bidirectional Long short-term memory (LSTM) layers
[16]. In addition, we have also fine-tuned byT5: a state-of-the-art version of the
Transformer family to improve DRS-to-text generation (FT-byT5 henceforth)
[17]. Our first two models point towards the procedure of training a neural model
from scratch and our third model focuses on fine-tuning a pre-trained LLM for
task-specific applications.

We decided to adopt also the Transformer-based model for our experimental
implementation because we are aware that the most advanced neural models for
generating text from structured input representations use complex transformer-
oriented architectures. However, the purpose of this paper is not to present the
best-performing system but to analyze the consequences of data delexicalization
in the context of neural DRS-to-text generation.

It should be noted that the main differences between CB-bi-LSTM and WB-
bi-LSTM are based on the representations of the input and output data, i.e.
characters or words, and how well they can handle words that are not in the
dictionary (OOV). Since CB-bi-LSTM analyses character sequences, it can eas-
ily handle OOV words, while WB-bi-LSTM may have difficulty handling OOV
words, as this depends more on the included vocabulary. We believe that the
impact of certain data delexicalization strategies may be influenced by these two
different approaches.

The model architecture and hyperparameters used in our experiments for
sequence-to-sequence implementation are likewise [16], that focus on LSTM-
based encoder-decoder cells with an epoch-based learning decay method that
uses Adam as an optimizer. The validation metric we use is cross entropy, while
the cost function is ce-mean. Table 2 contains other important hyperparame-
ters that we have used for bi-LSTM experiments. When using AdamW as the

8 M.S. Amin et al.

optimizer and fine-tuning the model over 15 epochs, we used the default hyper-
parameter settings of byT5 in our transformer-based version and made minor
adjustments to the batch size, update steps, and learning rates. Table 2 contains
a list of all hyperparameter settings of the FT-byT5 model just like used in [17].

Table 2. Hyperparameter settings for CB-bi-LSTM, WB-bi-LSTM, and FT-byT5.

bi-LSTM (CB|WB) FT-byT5
HyperParameters Values HyperParameters Values
Embedding Dimensions 300 Batch size 15
Enc/Dec Cell LSTM Update steps 8
Enc/Dec Depth 2 Max learning Rate 1e-4
Mini-batch 48 Min learning Rate 1e-5
Normalization Rate 0.9 Warmup updates 3000
lr-decay 0.5 Max decay steps 30000
lr-decay-strategy Epoch No. of epochs 15
Optimizer Adam Optimizer AdamW
Validation Metric Cross-Entropy
Cost-Type ce-mean
Beam Size 10
Learning Rate 0.002

We have used the Parallel Meaning Bank (PMB) dataset in its English edi-
tion. Among the different dataset flavors–Gold, Silver, and Bronze–we focused on
the Gold dataset, which has a fully manual annotation and correction process.
Gold-PMB uses training, development, and test files with 6620, 885, and 898
data instances, respectively, according to the standard split of the dataset. Two
sample transformation methods were used to delexicalize the dataset. (1) Delex-
icalization of PNs through custom placeholder (see section 2.1) and CNs with
a spaCy-oriented placeholder (see Section 2.2) (delex1 henceforth). (2) Delexi-
calization of PNs through custom placeholders and CNs with supersense-based
placeholders (delex26 henceforth). For experimentation, we have delexicalized
DRS-text pairs of train and development sets and only DRS for the test set. We
kept the text of the test set the same, i.e., fully lexical, so that after performing
relexicalization to the model-generated text, we can evaluate the model perfor-
mance through comparison with the gold test set. A graphical representation of
the pipeline is shown in Fig. 3.

Fig. 3. Implementation pipeline of DRS-to-Text generation through the pre-processing
(delexicalization) and post-processing (relexicalization) of the text “The door is opening
now.”.

A further original contribution of this paper is the analysis of data augmen-
tation through logical data delexicalization. We want to understand the impor-

Improving DRS-to-Text Generation 9

tant role played by data augmentation thus focusing on the data-hungry nature
of the neural models. For this implementation, we have conducted four differ-
ent experiments. (1) Concatenating fully lexical and fully delexicalized (delex1)
data examples and evaluating model performance for the delex1 test set. (2)
Concatenating fully lexical and fully delexicalized (delex26) data examples and
evaluating model performance for the delex26 test set. (3) Concatenating fully
lexical, fully delexicalized (delex1), and fully delexicalized (delex26) data exam-
ples and evaluating model performance for the delex1 test set. (4) Concatenating
fully lexical, fully delexicalized (delex1), and fully delexicalized (delex26) data
examples and evaluating model performance for the delex26 test set.

4 Experimental Results

For experimental implementation, we have used 3 different neural models with
the motivation of pre-training and fine-tuning a sequence-to-sequence model. Ta-
ble 3, Table 4, and Table 5 list the experimental findings of all the experiments
for pre-training characters and words tokenization oriented bi-LSTM models
and fine-tuning transformer-based byT5 model respectively. Based on the mod-
els used for experiments, we categorize the results in the sense that we list all
CB-biLSTM results in Table 3, all WB-biLSTM results are mentioned in Ta-
ble 4, and Table 5 displays all FT-byT5 results having delexicalized flavors of
logic-text pairs with and without supersenses. Furthermore, we have applied
data augmentation through delexicalization by concatenating fully-lexical and
respective flavors of delexicalized datasets to analyze the model performance. For
experimental evaluations, we perform automatic metric-based evaluation (see
Section 4.1) and comparison of large language models (LLMs) like chatGPT-3.5
and Claude-2.0 (see Section 4.2) with our best-delexicalized model to compare
powerful general-purpose LLMs with our delexicalized model.

4.1 Evaluation with automatic metrics

For a clear understanding of the results in Table 3, Table 4, and Table 5, we
have split the evaluation scores into 4 different blocks. The first block (exp. 01)
is our baseline with the DRS-to-text generation results on the model trained or
fine-tuned on a fully lexical dataset i.e., without delexicalization. Our second
block (exp. 02-03) represents results for 2 different delexicalization approaches
with supersenses (exp. 02) and without supersenses (exp. 03). Here the model is
pre-trained or fine-tuned on only delexicalized data samples. In the third block,
we have results for data augmentation through delexicalization by concatenating
fully lexical data examples with one flavor of delexicalization i.e., with super-
senses (exp. 04) and without supersenses (exp. 05) respectively. Finally, in the
fourth block, we have compound augmentation results with the concatenation of
fully lexical and delexicalized data examples with and without supersenses. With
the same training examples, we evaluate two different test sets: (1) a delexical-
ized test set with supersenses (exp. 06), and (2) a delexicalized test set without
supersenses (exp. 07).

10 M.S. Amin et al.

Table 3. CB-biLSTM results for delexicalization with supersenses (delex26) and with-
out supersenses (delex1) on Gold-PMB dataset. (Note: MET. = METEOR; RUG. =
ROUGE; CMT. = COMET; B.Scr = BERT-Score; CB = character-based; tst = test-
ing)

Exp. Implementation Type BLEU chrF MET. RUG. CMT. B.Scr
CB-01 Fully Lexical 46.80 66.22 39.12 72.54 79.33 95.31
CB-02 Delex26 48.51 63.58 40.34 74.24 75.37 94.67
CB-03 Delex1 51.10 61.24 40.80 74.43 74.11 94.26
CB-04 Lex+delex26 60.45 71.12 46.46 80.78 82.48 96.19
CB-05 Lex+delex1 57.68 69.85 44.33 78.62 81.63 95.94
CB-06 Lex+delex26+delex1(tst delex26) 60.95 70.52 46.25 80.70 81.94 96.10
CB-07 Lex+delex26+delex1(tst delex1) 61.38 70.66 46.53 81.41 82.60 96.20

Table 3 lists our results for the pre-training of the bi-LSTM model for the
char-based tokenization approach (CB-biLSTM). Compared to the baseline (CB-
01), CB-biLSTM wins in all aspects of experiments run through delexicalization
with and without supersenses and augmentation. In fact, data augmentation al-
ways helps in improving model performance by increasing model generalization
ability. In the case of individual data delexicalization (CB-02, CB-03), delexical-
ization without supersenses wins (CB-03, in italics). With data augmentation,
delexicalization with supersenses shows a good improvement and gains signif-
icantly (CB-04 in italics) as compared to delexicalization without supersenses
(CB-05). Finally, with compound augmentation, the CB-biLSTM model gen-
eralizes more for a test set that does not contain any supersenses (CB-07, in
bold and italics). CB-07 also indicates the highest score in all the experimental
formats of the CB-biLSTM model.

Table 4. WB-biLSTM results for delexicalization with supersenses (delex26) and with-
out supersenses (delex1) on Gold-PMB dataset. (Note: MET. = METEOR; RUG. =
ROUGE; CMT. = COMET; B.Scr = BERT-Score; WB = word-based; tst = testing)

Exp. Implementation Type BLEU chrF MET. RUG. CMT. B.Scr
WB-01 Fully Lexical 40.36 56.06 33.42 65.26 73.66 94.44
WB-02 Delex26 52.32 62.77 41.67 75.37 76.94 94.95
WB-03 Delex1 49.80 58.47 40.33 73.32 73.94 94.45
WB-04 Lex+delex26 56.49 67.90 44.24 78.73 80.93 95.74
WB-05 Lex+delex1 53.98 65.98 41.99 75.85 80.17 95.75
WB-06 Lex+delex26+delex1(tst delex26) 57.05 67.11 44.00 78.16 80.94 95.87
WB-07 Lex+delex26+delex1(tst delex1) 57.07 67.38 44.11 78.42 80.59 95.76

Table 4 shows the results for the WB-biLSTM model pre-trained with the
delexicalized and augmented training examples with and without supersenses.
Just like the CB-bi-LSTM model, the WB-bi-LSTM model also wins in all the

Improving DRS-to-Text Generation 11

aspects of experimental implementation when compared with the baseline (WB-
01). Unlike the CB-biLSTM model, the WB-biLSTM model shows significantly
different results. For individual delexicalization results (WB-02, WB-03), the
model trained on supersense-based delexicalized data wins (WB-02, in italics).
Surprisingly, compound data augmentation does not seem effective for the WB-
biLSTM model, as the model gets the highest scores, apart from the BLEU score,
for data augmentation with supersense-based delexicalized data (WB-04 in bold
and italics). While the highest BLEU score is for the compound augmentation
testing the sub-set having delexicalized data without supersenses (WB-07).

Table 5. FT-byT5 results for delexicalization with supersenses (delex26) and with-
out supersenses (delex1) on Gold-PMB dataset. (Note: MET. = METEOR; RUG. =
ROUGE; CMT. = COMET; B.Scr = BERT-Score; T5 = fine-tuned byT5; tst = test-
ing)

Exp. Implementation Type BLEU chrF MET. RUG. CMT. B.Scr
T5-01 Fully Lexical 51.88 73.16 43.55 76.04 86.89 96.74
T5-02 Delex26 62.44 77.93 47.50 82.18 89.47 97.47
T5-03 Delex1 62.73 77.85 47.41 81.76 88.96 97.37
T5-04 Lex+delex26 62.94 78.48 47.67 82.20 89.72 97.40
T5-05 Lex+delex1 62.72 78.09 47.30 82.06 88.95 97.43
T5-06 Lex+delex26+delex1(tst delex26) 63.54 78.85 47.91 82.47 89.72 97.60
T5-07 Lex+delex26+delex1(tst delex1) 64.22 78.87 48.07 82.90 90.16 97.63

Finally, in Table 5, we show our results for the byT5 model fine-tuned on
delexicalized data with and without supersenses. Overall model generalization
ability is enhanced with the adaptation of data delexicalization. Furthermore,
augmentation helped the model to achieve the best results in the case of com-
pound augmentation while testing the delexicalized subset without supersenses
(T5-07 in bold and italics). The influence of individual delexicalization proce-
dures i.e., with and without supersenses (T5-02, T5-03) does not significantly
affect the model’s generalization power as the results are very close. Similarly,
in the case of data augmentation (T5-04, T5-05), the model is not significantly
improved with different flavors of delexicalization along with lexical augmenta-
tion.

Comparing the overall performance of all models, byT5 shows the best results
with a fine-tuning perspective (see Table 5, T5-07) when compared with the pre-
training based biLSTM models (see Table 3 and Table 4). This highlights the
need for state-of-the-art sequence-to-sequence models for complex task-specific
applications, e.g., DRS-to-text. In the next sections about the comparison of
neural DRS-to-Text generation model with LLMs (Section 4.2) and for error
analysis (Section 4.3), we will use the text generated by our best model, i.e.,
FT-byT5, evaluated for test set without supersenses (see Table 5, T5-07).

12 M.S. Amin et al.

4.2 Comparing Neural DRS-to-Text Generation and LLMs

To get a better understanding of how well our delexicalized neural approach
performs, compared to a general-purpose LLM that has not been fine-tuned
for a specific task, we compare the quality of the generated text of our neural
DRS-to-text systems with two LLMs, ChatGPT 3.5 [23] and Claude 2.0 [24].
We examined the performance of the LLM using both few-shot and zero-shot
learning techniques. The behavior of ChatGPT did not improve even in the
case of few-shot learning, while Claude gained a lot in few-shot as compared to
zero-shot approaches (see Table 6).

Table 6. Evaluation of DRS-to-Text generation text for LLMs reporting scores for
ChatGPT 3.5, Claude 2.0, the baseline (without delexicalization), and our best (FT-
byT5) model. (Note: LLM = Large Language Model; MET. = METEOR; RUG. =
ROUGE; CMT. = COMET; B.Scr = BERT Score)

LLM Type Implementation Type BLEU chrF MET. RUG. CMT. B.Scr

Claude-2.0 Zero-shot learning 11.33 44.15 29.39 42.43 69.83 92.31
Few-shot learning 27.25 58.72 38.58 64.25 87.17 95.37

ChatGPT-3.5 Zero-shot learning 9.82 43.69 27.91 39.80 68.80 91.98
Few-shot learning 9.58 40.46 26.01 37.40 66.17 91.54

byT5 Fully lexical model 47.55 71.47 42.90 74.56 86.49 96.52
FT-byT5 (our best model) 61.00 75.96 45.70 80.02 88.52 97.29

We considered a sample of 215 examples from the test set that were (1)
evaluated using the best DRS-to-text neural models, i.e., FT-byT5 (see Table 5),
and (2) in response to prompts from Claude 2.0 and ChatGPT 3.5 to obtain
text produced by the models. We evaluated the generated text using automatic
evaluation metrics (see Table 6). The italic score represents the best results for
each model type while the bold and italics results show the best results when
compared to overall model types which in this case is our best model, i.e., FT-
byT5. The experimental evaluation clearly shows that task-specific neural models
are required for DRS-to-text generation, as LLMs, which are generative general-
purpose models, do not perform well on complex domain-specific applications.

4.3 Error Analysis

We further examine the model-generated text by manual inspection to gain a
deep understanding of the experimental evaluations. To do so, we compare the
same instances generated by different models, e.g., fully lexical, LLMs (ChatGPT
and Claude), and FT-byT5. Examples of different features of semantics, syntax,
missing information, the hallucinatory behavior of LLMs, additional information,
and perfectly generated examples are shown in Table 7. The text generated by
the model was evaluated based on the following criteria: (1) incorrect information
(highlighted in red), (2) additional irrelevant information (underlined), and (3)
semantically correct but with different textual representations (blue).

Improving DRS-to-Text Generation 13

Table 7. Error analysis of different model-generated examples with reference text.

Reference Text Model Type Model Generated Text

You can’t live on that island.

Fully Lexical Everybody can’t live in the island.
ChatGPT-3.5 If a person does not live on an island, it is possible.
Claude-2.0 If x1 is a person, then x1 does not live on an island,

which is presumed.
FT-byT5 You cannot live on that island.

It will cost around 10000 yen.

Fully Lexical It will cost about 1000 yen.
ChatGPT-3.5 The cost of the entity referred to by x1 is presupposed to be now

and is equal to 10, 000 yen per unit.
Claude-2.0 An entity costs 10000 yen now.
FT-byT5 It will cost around 10000 yen.

Have you googled her?

Fully Lexical You googled her.
ChatGPT-3.5 The hearer (you), who is a female, is currently googling something

at the present time.
Claude-2.0 The hearer is currently googling a presumed female.
FT-byT5 Have you googled her?

Three key elements of text generation in natural language – negation, ques-
tion, and quantity – are shown in Table 7. The fully lexical model had difficulty
capturing the actual semantics of the phrases in the context of the examples
listed in the table (completely incorrect semantics are marked in red). The ex-
act quantity and grammatical structure of the phrases were also difficult for the
model to determine (see examples in Table 7 for the full lexical model).

Both ChatGPT and Claude underperformed because they were unable to
produce accurate translations for the DRS examples. Analysis of the samples
shows that, rather than producing a literal translation, the models began by
explaining the logical representation of the DRS (text that is deemed extraneous
is underlined). This, we assume, is because these LLMs were trained without the
use of any semantic or formal meaning representation. Furthermore, the few-shot
learning approach is also not helping these models to generalize in a better way.
We have selected samples from the best models, such as few-shot text for Claude
and zero-shot text for chatGPT, to use during the manual inspection of LLM-
generated text (see LLM results in Table 6 for few-shot and zero-shot).

Although it struggled a little to replicate the exact information presented in
the test set, our best model was able to capture the semantic and grammatical
representation in the best feasible way. Due to exact word overlaps between text
pairs, these small changes (highlighted in blue) in the model-generated text will
not affect the human evaluation; however, because the generated text maintains
the exact meaning, semantics, and grammatical structure of the sentences, they
will result in low scores for automatic evaluations.

5 Conclusion

We performed data delexicalization of the DRS for common and proper nouns
through WordNet supersenses and Named Entities-based lexical abstractions.
Individually both delexicalization procedures, compared to fully lexical ones,
resulted in enhancing the generalization ability of the neural model. The use
of lexical data augmentation along with data delexicalization further improves
the robustness capabilities and adds to the performance gain. Our experiments
with biLSTM and byT5 neural sequence-to-sequence models showed promising

14 M.S. Amin et al.

results with the best scores for the fine-tuned byT5 model. We found that data
delexicalization helps the model to focus more on the syntactic structure of com-
plex meaning representation thus generating correct textual sequences. General-
purpose LLMs (ChatGPT and Claude) hallucinate and explain the DRS rather
than generating the correct textual sequences. This highlights the true need for
task-specific models for complex domain-specific applications.

Limitations. We are also working on performing lexical abstraction on all lexi-
cal entities in the meaning representation. We have not expanded our implemen-
tation to include other low-resource languages like Italian, Dutch, and German.

Acknowledgments. We thank “High-Performance Computing for Artificial Intelli-
gence (HPC4AI) at the University of Turin” for providing GPU support.

Disclosure of Interests. The authors declare no conflict of interest.

References

1. Nai-xing, W. (2007). Shared Meaning and Delexicalization. Journal of PLA Uni-
versity of Foreign Languages.

2. Vainio, M., Suni, A., Raitio, T., Nurminen, J., Järvikivi, J., and Alku, P. (2009).
New method for delexicalization and its application to prosodic tagging for text-
to-speech synthesis. , 1703-1706. https://doi.org/https://doi.org/10.21437/
Interspeech.2009-514.

3. Sharma, S., He, J., Suleman, K., Schulz, H., and Bachman, P. (2016). Natural
Language Generation in Dialogue using Lexicalized and Delexicalized Data. ArXiv,
abs/1606.03632.

4. Shimorina, A., and Gardent, C. (2018). Handling Rare Items in Data-to-Text Gen-
eration. , 360-370. https://doi.org/https://doi.org/10.18653/v1/W18-6543.

5. Dušek, O., Novikova, J., and Rieser, V. (2018). Findings of the E2E NLG challenge.
arXiv preprint arXiv:1810.01170.

6. Zhou, G., and Lampouras, G. (2020). WebNLG challenge 2020: Language agnostic
delexicalisation for multilingual RDF-to-text generation. In Proceedings of the 3rd
International Workshop on Natural Language Generation from the Semantic Web
(WebNLG+) (pp. 186-191).

7. Hao Dong, Jingqing Zhang, Douglas McIlwraith, and Yike Guo. 2017. I2t2i: Learn-
ing text to image synthesis with textual data augmentation. In IEEE international
conference on image processing (ICIP), pages 2015–2019. vol. 2017. IEEE.

8. Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sembanking. in Proc., 7:178–186.

9. Angela Fan and Claire Gardent. 2020. Multilingual AMR-to-text generation. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2889–2901, Online. Association for Computational
Linguistics.

10. Jeffrey Flanigan, Chris Dyer, Noah A Smith, and Jaime G Carbonell. 2016. Gen-
eration from abstract meaning representation using tree transducers. in Proc.,
2016:731–739.

https://doi.org/https://doi.org/10.21437/Interspeech.2009-514.
https://doi.org/https://doi.org/10.21437/Interspeech.2009-514.
https://doi.org/https://doi.org/10.21437/Interspeech.2009-514.
https://doi.org/https://doi.org/10.21437/Interspeech.2009-514.
https://doi.org/https://doi.org/10.18653/v1/W18-6543.
https://doi.org/https://doi.org/10.18653/v1/W18-6543.

Improving DRS-to-Text Generation 15

11. Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon
Mille, Diego Moussallem, and Anastasia Shimorina. 2020. The 2020 bilingual, bi-
directional WebNLG+ shared task: Overview and evaluation results (WebNLG+
2020). In Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), pages 55–76, Dublin, Ireland
(Virtual). Association for Computational Linguistics

12. Valerio Basile and Johan Bos. 2011. Towards generating text from discourse rep-
resentation structures. in ENLG’, 11:145–150.

13. Rik van Noord, Lasha Abzianidze, Hessel Haagsma, and Johan Bos. 2018. Evaluat-
ing scoped meaning representations. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan.
European Language Resources Association (ELRA).

14. Rik van Noord. 2019. Neural boxer at the IWCS shared task on DRS parsing. in
Proc. IWCS Shared Task on Semantic Parsing, Gothenburg, Sweden. Association
for Computational Linguistics.

15. Chunliu Wang, Rik van Noord, Arianna Bisazza, and Johan Bos. 2021. Evaluating
text generation from discourse representation structures. In Proceedings of the
1stWorkshop on Natural Language Generation, Evaluation, and Metrics (GEM
2021), pages 73–83, Online. Association for Computational Linguistics.

16. Muhammad Saad Amin, Alessandro Mazzei, and Luca Anselma. 2022. Towards
data augmentation for drsto- text generation. In Proceedings of the Sixth Workshop
on Natural Language for Artificial Intelligence (NL4AI 2022) co-located with 21th
International Conference of the Italian Association for Artificial Intelligence (AI*IA
2022), Udine, November 30th, 2022, volume 3287 of CEUR Workshop Proceedings,
pages 141–152. CEUR-WS.org.

17. Muhammad Saad Amin, Luca Anselma, and Alessandro Mazzei. 2024. Exploring
Data Augmentation in Neural DRS-to-Text Generation. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 2164–2178, St. Julian’s, Malta. Association
for Computational Linguistics.

18. Kamp, Hans, and Uwe Reyle. From discourse to logic: Introduction to model-
theoretic semantics of natural language, formal logic, and discourse representation
theory. Vol. 42. Springer Science and Business Media, 2013.

19. Johan Bos. 2021. Quantification annotation in discourse representation theory.
in ISA 2021-17th Workshop on Interoperable Semantic Annotation, Gronin-
gen/Virtual, Netherlands.

20. Hans Kamp and Uwe Reyle. 1993. From Discourse to Logic: Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and Discourse Represen-
tation Theory. Kluwer Academic Publishers, Dordrecht.

21. Katarzyna Jaszczolt. 2023. Semantics, Pragmatics, Philosophy: A Journey
Through Meaning. New York, NY: Cambridge University Press.

22. Ankur Parikh, XuezhiWang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhin-
gra, Diyi Yang, and Dipanjan Das. 2020. Totto: A controlled table-to-text gener-
ation dataset. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1173–1186.

23. OpenAI. 2023. Gpt-4 technical report.
24. Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. 2023. Lan-

guage models don’t always say what they think: Unfaithful explanations in chain-
of-thought prompting.

	Improving DRS-to-Text Generation through Delexicalization and Data Augmentation

