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1Research motivation and outline

„The goal of real health care reform must be
high-quality, universal coverage in a
cost-effective way.

— Bernie Sanders

Global health broadly refers to “an area for study, research, and practice that places a
priority on improving health and achieving equity in health for all citizens”. The goal
of achieving equity in health, namely the absence of systematic disparities in health
or in the major social determinants of health between groups with different levels of
underlying social advantage or disadvantage, has become more and more important
in the years [17].

The rising costs of health care due to new technologies and demographic trends
(in particular, the aging population), is a vitally important issue for health care
policy makers. At the same time there is a paradigm shift in the service concept of
health care. Patients are no longer prepared to accept poor quality service, either in
terms of long waiting times or inconvenient appointment systems, and expect that
services are well organized from a “customer” perspective. The service concept has
shifted from optimizing the use of resources to finding a balance between service for
patients and efficiency for providers [18].

1.1 Health care delivery
The Health Care Delivery is the process in charge of providing a health service while
a Health Care Delivery System is the organization in charge of the management of
several delivery processes. In order to deal with the above issues (equity, rising cost,
more informed people, ...), the new way of thinking and organizing the health care
delivery is to focus on the patient instead of only on the facilities.

A patient-centered approach to health care means to deliver a service which is
“closely congruent with and responsive to patients’ wants, needs, and preferences” [38].
In May 2004, the International Alliance of Patients’ Organizations (IAPO) conducted
a consultation with its member patients’ organizations in order to investigate which
health care policy issues were of most importance to them. The final report shown
that the 74% of respondents indicated that “defining patient-centered health care was
very relevant to their organization” [43].
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Among the many fields where Operations Research and computers meet, health
care delivery is surely one of the more vital nowadays. Health care delivery is a
very relevant topic not only from the point of view of researchers, scholars and
practitioners but also for the impact on public opinion and for fueling large discus-
sions and debates [4]. The use of Operations Research in health care delivery has
developed considerably over the years as documented, for instance, by the number
of the special issues appeared in the last fifteen years (see, e.g., [4, 5, 6, 20, 21,
24, 34, 41, 47, 57]) and by the number of general or specific literature reviews
appeared in the last years (and reported in this introduction and in the remaining of
the thesis).

This increasingly interest of Operations Research in health care delivery is due to
a number of reasons: health care has become a major industry, with many people
involved either as employees in health care delivery organizations or as consumers
of health care services. The characteristics of Operations Research in health care
delivery – which make it different from Operations Research in industry or in
commercial services – stem from the way health care organizations operate and from
the type of health care system in use in a particular country [18].

The current development of the health care delivery is aimed to recognize the central
role of the patient as opposed to the one of the health care providers. In this
context, the attention from a single health benefit can be shifted to the whole health
care chain thanks to Clinical Pathways (CPs), which are defined as “health-care
structured multidisciplinary plans that describe spatial and temporal sequences of
activities to be performed, based on the scientific and technical knowledge and
the organizational, professional and technological available resources” [19]. A CP
can be conceived as an algorithm based on a flowchart that details all decisions,
treatments, and reports related to a patient with a given pathology, with a logic based
on sequential stages [23]. A CP is therefore “the path” that a patient suffering from
a disease walks in the National Health System. This path can be analyzed at a single
local level of care (e.g. a single hospital, or a geographic area) or globally, taking
into account every level of health-care from the diagnosis of diseases, treatment
and recovery. CPs are specifically tailored to stimulate continuity and coordination
among the treatments given to the patient through different disciplines and clinical
environments, focusing on the patient perspective [44]. The aim of a CP is to
enhance the quality of care by improving patient outcomes, promoting patient
safety, increasing patient satisfaction, and optimizing the use of resources as stated
by the European Pathway Association. Moreover, while many studies show that,
appropriately implemented, CPs have the potential to increase patient outcome,
reduce patient length of stay and limit variability in care, thereby yielding cost
savings [48], little attention has been dedicated to study how CP can optimize the
use of resources as reported by Addis et al. [1].
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1.2 Online optimization

Traditional optimization research assumes complete knowledge of all data of a
problem instance. However, the assumption that all information necessary to define
a problem instance is available beforehand is unlikely in reality, in fact decisions
may have to be made before complete information is available. Online optimiza-
tion is characterized by the development of algorithms whose decisions are based
only on past events without any solid information about future data. More gen-
erally, online (semi-online) optimization differs from offline optimization by the
fact that the instance is completely (partially) unknown at the beginning of the
computation [29].

Online optimization problems consist of a finite sequence of requests r1, . . . , rn to
serve that are revelead step to step. For this reason, such an approach is suitable for
real-time problems having robust factors of uncertainty. Unlike stochastic optimiza-
tion, in which decisions are taken a priori on the basis of probability distributions,
online optimization involves the use of algorithms that enrich their knowledge over
time with the arrival of new information and make decisions accordingly. Recent
developments formalize the concept of lookahead information, that is a limited
overseen amount of future input data that can be exploited during the online com-
putation [27]. Since only partial information can be exploited in its computation,
an online algorithm can not provide an optimal solution, which can be computed
only when all the necessary information are known, then it is usually based on
a simple approximation algorithm technique (e.g. greedy algorithm or dinamic
programming).

Let us consider the bin packing problem, one of the most classic in operations
research. In the traditional version, a set I of n items r1, . . . , rn with a fixed size
s1, . . . , sn ∈ (0, 1] has to be assigned to an infinite set B of bins b1, b2, . . . having
capacity 1. Each item must be assign to a bin and the sum of the item sizes assigned
to a bin must not exceed its capacity. The objective is to minimize the number of
bins used, that is how many bins have at least one item assigned. The online version
of this problem differs in the knowledge of the amount and size of the items to be
assigned [50]. At each step i, the size si of the i-th item is made available, then it
must be assigned to a bin before knowing if there will be another item at the next
step and its size. The availabily of information over time makes the problem more
challenging, because there is not an algorithm able to give the optimal soluzion
for every intance. For this reason, simple approximation algorithm are used. Let
us consider two well-known greedy approaches for the bin packing problem, the
First-Fit and the Best-Fit algorithms. The former assigns each item to the first bin
with sufficient free capacity with respect to its size, while the latter assigns each
item in such a way to minimize the free capacity of the selected bin. In Figures 1.1
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and 1.2 the two algorithms are compared for two different instances: the Best-Fist
perform better than the First-Fit for the instance I and worst for the instance I ′.

Fig. 1.1: First-Fit vs. Best-Fit: solutions for the instance I = {i1, . . . , i4}, with sizes s1 =
1
2 , s2 = 2

3 , s3 = 1
3 , s4 = 1
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Fig. 1.2: First-Fit vs. Best-Fit: solutions for the instance I ′ = {i′1, . . . , i′5}, with sizes s′1 =
1
2 , s
′
2 = 2

3 , s
′
3 = 1
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′
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In order to have a criterion for evaluating the quality of online algorithms, their
solutions should be compared with those obtained by optimal offline algorithm(s).
The standard approach for this comparison is the competitive analysis. Let z?(I)
and z′(I) be respectively the value of the optimal offline and the value of the
online solution for a given instance I of the optimization problem. In the case of
a minimization problem, the online optimization algorithm is c-competitive if exist
a real number c ≥ 1 (called competitive ratio) such that z′(I) ≤ cz?(I) for each
instance I. In other words, the competitive analysis is a sort of extension of the
classical worst case analysis [51].

However, the competitive analysis has several drawbacks typical of the worst case
analysis. Firstly, real world applications could have a high degree of complexity due
to large number of dependent stochastic processes, which makes really complex
the identification of the worst case. Then, a proper objective function in real world
systems could have with different goals that are difficult to gather in a single multi-
objective function for computing a meaningful competitive ratio, besides the fact
that sometimes it could seem meaningless comparing an online algorithm with an
omniscient offline algorithm. Furthermore, many applications need to have a greater
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effectiveness on the average case and, addressing real-time decisions, to satisfy
further requirements such as computational efficiency. Starting from this limitations,
alternative measures of efficiency for online algorithms are proposed and discussed
in literature (see, e.g., [10, 11, 14, 15, 16, 25, 36, 37]). Starting from an analysis
of such measures, Dunke and Nickel [26] propose a framework based on discrete
event simulation to address the issue of modeling a complex real world system in
which several stochastic processes are involved. In such an environment, online
optimization algorithms can be tested on a large number of different instances of the
problem in order to provide a quantitative analyisis based on the average case, which
can be used to estimate a set of performance indices for the decision support.

From the point of view of the applications, real world systems are inherently complex
and often contain optimization problems exhibiting online characteristics. The book
of Grotschel et al. [32] illustrates many applications of the online optimization in
large scale systems such as chemical engineering, robot control, and transporta-
tion. Online optimization has been applied also in health care. The majority of
the contributions are related to the appointment scheduling problem to deal with
unattended arrivals, overbooking and no-show patients [7, 12, 39, 40, 42, 49, 52,
55, 56, 58, 59]. Other specific applications are in online scheduling of chemotherapy
and nuclear medicine [33, 45], dynamic transportation [9], and scheduling pick-up
and delivery tasks in hospitals [30]. Finally, applications of online optimization in
operating room, emergency medical service and emergency department are reported
in detail in the next chapters.

1.3 Online optimization methods applied to the
management of health services
The most challenging aspect in health care delivery stems from the high complexity of
the system itself, its intrinsic uncertainty and its dynamic nature. Their management
requires not only the expertise to analyze and to understand a large amount of
information but also to organize that information on a cognitive base for adequate
decision making and to promote a collaboration with researchers in other areas,
such as doctors and economists.

Dealing at the same time with the complexity, the uncertainty and the dynamics
of health care delivery problems requires the adoption of unconventional solution
methodologies [4]. As a matter of fact, many deterministic and static optimization
problems in health care delivery are NP-hard and, by consequence, adding the
uncertainty and the dynamic aspects makes them more challenging. The health care
literature (see, e.g., [2, 3, 8, 13, 17, 22, 28, 31, 46, 53, 54]) shows off several and
different approaches to deal with the uncertainty and the dynamics, such as chance-
constrained programming, two stage stochastic programming with recourse, robust
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optimization, discrete event simulation, agent-based simulation, system dynamics,
Monte Carlo simulation.

In this thesis, we would propose a different approach based on the online optimiza-
tion methodology to manage the uncertainty and the dynamics of the health care
delivery problem under consideration. Starting from a given offline planning solu-
tion (when it exists), the basic idea is to fix such a solution in real time (dynamics)
as soon as an unattended event will occur (uncertainty) exploiting the available
knowledge of the underlying clinical pathway (which could be static or dynamic).

We identified three health care delivery problems to illustrate and develop our
approach. The three problems belong to two different clinical pathways, which are
the surgical pathway and the emergency care pathway. The first problem arises in
the context of Operating Room Planning (ORP), which is characterized by (i) a
well-structured but complex pathway, and (ii) by several sources of uncertainty such
as the arrival of unattended patients to be operated on, and the duration of a surgery
and the length of stay. The second problem arises in the context of Emergency
Medical Service (EMS) management, which is characterized by (i) a well-structured
but simple pathway, and (ii) by several sources of uncertainty such as the arrival of
unattended phone calls asking for an emergency requests to be served as soon as
possible (depending on the level or urgency) by a not always available ambulance.
Finally, the third problem arises in the context of Emergency Department (ED)
management, which is characterized by (i) a non-structured but complex pathway,
and (ii) by several sources of uncertainty such as the arrival of unattended patients
to be served as soon as possible (depending on the level or urgency) by a possible
overcrowded system, and the dynamic path evolution.

The ORP and the EMS management are lasagna processes, which is typical of well-
structured pathways: the sequence of activities to be performed is known at the
beginning of the CP and the possible path evolutions are limited. On the contrary, the
ED management is a spaghetti process, which is typical of non-structured pathways:
a large variety of path evolutions are possible and the sequence of activities to be
performed is part itself of the lack of information.

A general CP is illustrated in Figure 1.3, in which white boxes with continuous
border (e.g. Act. A) indicates medical activities and gray irregular shapes indicates
unpredictable events that occur in a certain moment. The first of such events is the
demand for a service, which is an important factor of uncertainty if that service
should be provided in a very short time, such as a non-elective surgery, the request
of an ambulance or the arrival of a patient at the ED. Then, one or a sequence of
activities are planned on the basis of the available information, whose planning
horizon changes in accordance with the knowledge of the CP and the time available
to execute the activities. For instance, the planning could be the assignment of a
time slot for a surgery or a sequence of scheduled activities at the ED. To deal with
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uncertainty, the resulting offline plan is then supervised by the real time management
during its execution: if an unexpected event prevents its exact fulfillment, then online
optimization is used to take decisions based on new information acquired and change
the offline plan. For example, a surgery (Act. C) can be re-assigned to another time
slot (becoming Act. C*). Further, the evolution of some CPs (e.g. the treatment of a
patient in the ED) is discovered over time, then new activities need to be performed
and the framework is reiterated.

Fig. 1.3: Example of CP: information available over time and online optimization.
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Since the competitive analysis cannot be easily applied to the evaluation of our
algorithms due to the complicated nature of the considered problems, an alternative
evaluation framework is required. Exploiting the discrete structure of the problems
under considerations, we evaluate the quality of our online solutions within a
Discrete Event Simulation (DES) framework in accordance with Dunke and Nickel
[26]. Basically, we adopt the DES to replicate the operative context in which the
candidate algorithms operate using real world or realistic data. Further, it allows us
to evaluate their impact over time, that is how the previous decisions can impact on
the current decisions. In our analysis, we always consider a baseline configuration
representing a basic organization equipped with some elementary decision making
tools: it should provide a simple set of rules similar to those involved in delivering
the health services in real case contexts, in such a way to have a comparison with
the proposed methods. A sufficient number of independent simulation runs are
performed to derive a conclusion about the solution quality of the proposed online
algorithms. Further, in order to analyze the impact of such algorithms when they
are used over time, a sufficiently large time horizon with respect to that of the single
decision horizon is fixed.

1.4 Thesis outline
The thesis is organized in two parts composed of five chapters each.

1.4 Thesis outline 7



Part I is concerned with the Surgical Pathway (SP) and the problem of the ORP.
After an introduction and a literature review, the Real Time Management (RTM)
is introduced in Chapter 2. Chapter 3 reports the RTM in the case of only elec-
tive patients describing also the DES framework of analysis. Such an approach is
extended in Chapter 4 to consider also a flow of non-elective patients sharing the
Operating Rooms (ORs) with the electives. A comprehensive comparison among
dedicated, shared and hybrid policies for the management of non-elective patient is
then presented in Chapter 5. Finally, the RTM is extended in Chapter 6 to consider
several specialties that have OR sessions assigned by the Master Surgical Schedule
(MSS) but shared overtime.

Part II is concerned with the Emergency Care Pathway (ECP) and the problem of
overcrowding, which is mainly manifested with an excessive number of patients in
the ED and long patient waiting times. A first attempt is to deal with overcrowding
from the EMS side. In Chapter 8 the problem of reducing overcrowding is analyzed
from a regional perspective exploiting Big Data to compare simple real time dispatch-
ing policies. Such an analysis is extended in Chapter 9 to consider a broad variety
of dispatching, routing and redeployment real time policies. Then, we shift our
attention to the analysis of an ED. In Chapter 10, we will propose a new framework
to mine an ED process model capable to predict the use of the ED resources, and
based on ad hoc process discovery tools. Such a process model is then exploited in
Chapter 11 to enhance the quality of the real time management of the ED patient
flow.

After summarizing the concluding remarks reported at end of each chapters, conclu-
sions are discussed in Chapter 12.

8 Chapter 1 Research motivation and outline



Part I

The Surgical Pathway





2Introduction and Literature
Review

In this part of the thesis, we focus our attention on the analysis of a Surgical Pathway
(SP), that is a generic Clinical Pathway (CP) comprising a surgical procedure, and we
propose online optimization approaches for the problem of the Operating Room (OR)
planning and scheduling. Such a problem is central with respect to the management
of the SP, because ORs are the most critical and expensive resources of the whole
pathway. Issues arising when dealing with this problem are usually classified into
three phases corresponding to three decision levels, namely strategic (long term),
tactical (medium term) and operational (short term) [127]. At the operational
decision level, the problem arising in the OR management is also called “surgery
process scheduling” and concern all the decisions regarding the scheduling of the
allocation of resources for elective and non-elective surgeries.

An elective surgery is a planned and non-emergency surgical procedure. It may be
either medically required (e.g., cataract surgery), or optional (e.g., breast augmen-
tation or implant) surgery. Therefore, elective patients are inserted in a (usually
long) waiting list and are scheduled through an ex-ante planning in accordance with
several priority rules.

Dealing with elective patients, the surgery process scheduling is generally divided
into two offline sub-problems referred to as “advanced scheduling” and “allocation
scheduling” [107]. The first sub-problem consists in selecting patients from the
waiting list and assigning to their surgery an OR session, that is an OR in a certain
day over a planning horizon [65, 66, 72, 74, 75, 79, 92, 97, 109], trying also to
take into account different stakeholder perspectives [76, 105, 106, 108, 112]. Given
this advanced schedule, the second sub-problem consists in determining the precise
sequence of elective surgical procedures and the allocation of resources for each OR
session and day combination in order to implement it as efficiently as possible [77,
101, 104, 112, 115, 116, 117]. Usually, the two sub-problems have different
objectives, which are the maximization of the operating room utilization, that is a
facility-centered index, and the minimization of the number of surgeries delayed or
canceled, that is a patient-centered index. Furthermore, especially when considering
the inherent stochasticity of the problem, such objectives are conflicting as discussed
in Beaulieu et al. [69]. Moreover, other aspects regarding the different stakeholder
perspectives should be taken into account, such as the patient waiting times (patient-
centered), the bed utilization and the use of overtime (facility-centered), and the
balance of the workload along the planning period (medical staff perspective) [64,
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67, 75, 76, 108]. For a complete overview of the problems arising in the OR planning
and scheduling, the reader can refer to the exhaustive reviews [78, 96, 118].

A non-elective surgery is an unpredictable surgery that should be performed within a
time limit, which is shorter than that of an elective surgery, due to the patient medical
conditions. For this reason, non-elective patients cannot be inserted in the waiting
list and scheduled through an ex-ante planning. Because of their unpredictability,
the non-elective patient arrivals are therefore a further element of uncertainty, in
addition to the stochasticity involving an elective surgery, whose most impactful
component is its duration [60, 102, 119]. Non-elective surgeries deal with different
time limits involving different goals: non-elective patients with a time limit of 30
minutes must be operated on as soon as possible while, when the time limit is equal
to several hours, one can evaluate what is more beneficial between an immediate
surgery or to postpone it waiting for the release of further ORs.

An immediate non-elective surgery can determine a negative impact on the elective
patient scheduling. To limit or to avoid such a negative impact, the surgery can be
postponed increasing the risk of exceeding the time limit for the non-elective. Such
a trade-off should be taken into account when scheduling a non-elective surgery. In
accordance with the analysis of the 31 papers considered in the literature review
of Van Riet and Demeulemeester [130], the policies for handling elective and non-
elective patients are classified into dedicated, hybrid, and shared (or flexible). The
Dedicated Operating Room (DOR) policy consists in reserving, each day, one or more
ORs to perform only non-elective surgeries. Conversely, the Shared Operating Room
(SOR) policy allows to perform elective and non-elective surgeries in the same ORs.
Furthermore, a hybrid policy is a mix of the two previous policies providing both
dedicated and shared ORs. The issue of adopting one of these policies is debated
in the literature. In Heng and Wright [99] and Wullink et al. [133], the DOR and
the SOR policies are respectively promoted and the improvement of the non-elective
waiting times is proved in both papers. Same remarks are reported by Ferrand
et al. [94] in which different hybrid policies are evaluated. Since the conflicting
conclusions reported in these papers could depend on the scenario and the operative
conditions, a detailed comparison among the different policies is required. However,
only two papers [93, 133] out of the 31 discussed in [130] provide a (partial)
comparison between different policies.

A third online decision problem, called Real Time Management (RTM) of ORs, arises
during the fulfillment of the surgery process scheduling. The contribution of the first
part of this thesis is to describe the issues of such a new problem and to analyze
online optimization for the OR planning and scheduling, which is also the aim of the
papers [62, 63, 86, 87, 88].

The RTM addresses the problem of supervising the execution of the schedule when
uncertainty factors occur, which are mainly two: (i) actual surgery duration exceeds
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the expected time, and (ii) non-elective patients need to be inserted in the OR
sessions within a short time. In the former, the more rational decision regarding the
surgery cancellation or the overtime assignment should be taken. In the latter, the
decision concerns the OR and the moment in which non-elective patient are inserted,
taking into account the impact on the elective patients previously scheduled.

The literature reports few attempts to address the problem as reported in Hans and
Vanberkel [98]. Dexter et al. [83] showed how a computer assisted system could
help mitigating the increase of over-utilization of the operating room resources
such as overtime. The problem of tardiness from scheduled start times is addressed
by Wachtel and Dexter [131] comparing the effectiveness of several procedures to
reduce tardiness. The authors showed that the generation of a modified or auxiliary
schedule that compensates for known causes of tardiness can be a good solution
to reduce tardiness even if its impact proportionally increases as the number of
cases involved. The problem of rescheduling the elective patients upon the arrival of
emergency patients is addressed in Erdem et al. [89, 90]. The authors proposed a
mixed integer linear programming model which considers the overtime cost of the
operating rooms and/or the post-anesthesia care units, the cost of postponing or
preponing elective surgeries, and the cost of turning down the emergency patients.
They proposed a genetic algorithm for its approximate and faster solution. The results
of the case study suggest that, instead of shuffling the elective surgeries, it would be
worthwhile to consider performing the elective surgeries using the overtime of the
operating rooms. Note that the problem of rescheduling patients can be addressed
as a particular job shop scheduling problem [115, 124] but these experiences can
not directly applied to the operating room context due to its peculiarity in the
evaluation of a solution, as we will show in the following chapters. Strategies to
move a patient from an operating room to another and based on statistical remarks
are also proposed [80, 82, 113, 128]. Further, the impact of an online allocation
scheduling has been analyzed in M’Hallah and Al-Roomi [113], in which ORs are
assigned to a subset of patients of the waiting list only during their execution.

As discussed in Aringhieri et al. [4], health care optimization problems are chal-
lenging, often requiring the adoption of unconventional solution methodologies.
The solution approach proposed herein belongs to this family. Our methodological
approach is a hybrid simulation and optimization model. Simulation is used in order
to generate a real situation with respect to the inherent stochasticity of the problem
while optimization is used to take the best decisions in different points of the SP.
Accordingly to Magerlein and Martin [107], we consider the operative decisions
concerning the advanced scheduling and allocation scheduling of patients. Further-
more we consider the RTM of the operating room planning. The aim is to provide
a tool for supporting decisions for the OR planning and scheduling, showing the
impact of using offline and online optimization methods for the sub-problems of the
surgery process scheduling. Different performance indices are defined and observed
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over time in order to take into account the different stakeholder perspectives. The
generality of the proposed model allows us to replicate and to compare a wide range
of possible scenarios and policies, in which most of the case studies of the literature
can be included.

This part of the thesis is organized as follows. In Chapter 3 a hybrid model for
the simulation of the elective patient flow is presented, embedding offline and
online optimization methods for the surgery process scheduling and analyzing
their impact over time. The non-elective patient flow is introduced in Chapter 4,
showing its impact on the elective patients when the ORs are shared, proposing an
online algorithm for the insertion of non-elective patients. A comparison among
dedicated, shared and hybrid policies for the management of non-elective patient
is then presented in Chapter 5, analyzing the common offline approaches by the
literature for managing the OR sharing and combining them with our proposed
online approaches. The RTM is extended in Chapter 6 for several specialties that have
OR sessions assigned by the Master Surgical Schedule (MSS) but shared overtime.

14 Chapter 2 Introduction and Literature Review



3The Real Time Management of
elective patients

3.1 The Surgical Pathway of elective patients
From a management point of view, a SP can be seen as made up of three phases.
For each phase we present the problem that have to be addressed at the operational
level by the surgery process scheduling, dealing with a single specialty and assuming
to use a block scheduling approach. This means that ORs are assigned to specialties
at the tactical level by a cyclic OR schedule, called MSS. For this reason, we can
assume to have a fixed number of ORs available over a planning horizon and that
the OR availability implies also the surgical team (e.g., surgeons and anesthetists)
availability. In order to have an approach as general as possible, we consider the
total duration of the surgical procedures as a unique service time. Along all this and
the following chapters, we always consider a single specialty and its subset of OR
sessions assigned by the MSS, except when indicated otherwise. However, such an
assumption allows us to do not lose generality, since at the operative level in the
close block scheduling the specialties work independently on the set of assigned OR
sessions.

Fig. 3.1: Pre-admission phase flowchart
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The first phase concerns the pre-admission phase and it is related to all the activities
regarding patients before their admission (see Figure 3.1). In this phase, a relevant
information is the Diagnosis Related Group (DRG), which defines a general time
limit (i.e., days to surgery) before which the patient should be operated on. In our
context, a Urgency Related Group (URG) is assigned to each patient belonging to
the same DRG: the URG states a more accurate time limit called Maximum Time
Before Treatment (MTBT). In other words, URG allows us to define a partition of
the patients in the same DRG in order to prioritize their activity through the SP. The
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optimization problem arising in this phase is the advanced scheduling. It consists
in the selection of patients from the waiting list and in their assignment to an OR
session (j, k) ∈ S, which identifies a specific OR j of the set J of all the available ORs
that have been assigned by the MSS to one specialty in the k-th day of the planning
time horizon, whose days are included into the set K. Such a selection consist in a
set of elective patients L ⊆ I that is partitioned into n subsets Ljk corresponding
to the patients that should be operated on within (j, k) ∈ S. Solving the advanced
scheduling, several operative constraints need to be satisfied (bed capacity during
the patient stay, total time available for the OR session, etc.) and one or more
objectives can be fixed (maximization of the utilization, minimization of the waiting
times, maximization of the fraction of patients scheduled on before the MTBT, etc.).
This problem is well known in the literature as Surgical Case Assignment Problem
(SCAP) [125].

Fig. 3.2: Flowcharts of the hospital phases
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The hospital phase concerns all the activities involving the admitted patient stay
except for those related to the operating theater as shown in Figure 3.2. The relevant
information in this phase is the Length Of Stay (LOS) of each patient, that is the
number of days required before the discharge. The optimization problem arising
in this phase is the allocation scheduling, which consists in finding a sequence of
patients to determine the order in which they are operated on. For each OR session
(j, k) ∈ S, all the mjk patients in the set Ljk are listed in an ordered sequence
λjk = (i1, . . . , imjk). The objective is to minimize the risk of cancellation, while
keeping an acceptable utilization rate with respect to the available operating time
taking into account also the patient safety and satisfaction considering waiting times
class of urgency and possible previous cancellations.

Figure 3.3 depicts the operating theater phase, which is a component of the hospital
phase, as highlighted in Figure 3.2. Due to its importance in a SP, it requires to
be treated separately. Patients assigned to a given OR session will be operated on
following the sequence previously defined unless delays imposes to define a new
sequence. Patients not operated on will be rescheduled. We could have a delay
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Fig. 3.3: Flowcharts of the operating theater phases
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as soon as the Estimated Operating Time (EOT) differs from the Real Operating
Time (ROT). The RTM operates when such a delay become significant, that is
exceeding the total operating time allowed. The following possible decisions should
be considered:

• to use overtime reducing the total amount available for the current planning
horizon;

• to cancel one or more surgeries and to re-schedule them;

• to change the sequence of the remaining surgeries in order to minimize the can-
cellation of patients that are close to their MTBT while keeping an acceptable
level of OR utilization.

The first two choices are generally non-trivial and alternatives requiring to consider
several aspects. For instance, the decision of postponing a patient could violate MTBT.
Further, it determines an increased patient stay lowering the patient satisfaction and,
by consequence, the quality of the service. On the other side, overtime is a scarce
resource. So, it seems crucial to establish some criteria driving the decisions of using
it to avoid cancellations.

The above definition of the SP presented here is a generalization of that describe and
analyzed by Ozcan et al. [114] for the thyroid surgical treatment of elective patient.
The reader can refer to this paper for further details.

3.2 The Hybrid Model
This section discusses the hybrid simulation optimization model proposed in this
chapter. Simulation is exploited to model the inherent stochasticity that characterizes
the problems arising in the OR management, that is the arrival of patients, the
variability of patient length of stays and the variability of patient operating times
(see, e.g., [100, 103, 126]). Furthermore, it allows us to easily replicate the three

3.2 The Hybrid Model 17



phases of the patient flow presented in Section 3.1. On this simulated SP, it is
possible to embed the optimization modules to deal with the decision problems
described in Section 3.1.

Fig. 3.4: Description of the hybrid simulation and optimization model
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Figure 3.4 summarizes how the patient passes through the SP highlighting when the
optimization operates: the advance scheduling manages its admission, the allocation
scheduling manages its position in the surgery sequence and, finally, the RTM
manages the ongoing operations before the surgery. Summing up, simulation allows
to model the operative context required by the optimization modules to operate
correctly over the time horizon needed to evaluate the impact of such optimization
modules.

In the following, we will briefly describe the hybrid model through the description
of its main components, that is the simulation framework and the three optimization
modules.

3.2.1 The Discrete Event Simulation Framework

The simulation framework is based on a Discrete Event Simulation (DES) since it
is the most suitable methodology to analyze a discrete and stochastic workflow. In
general, simulation is a suitable methodology to analyze the impact of decisions on
a set key performance indicators, which allow to take into account multiple goals,
as reported by Rais and Viana [46] about numerous experiences from literature.
Further, DES is the only approach capable to represent the single entities within
a SP, which is a necessary condition to apply the proposed optimization planning
modules in accordance with Dunke and Nickel [26] as discussed in Section 1.3. The
proposed simulation model is a straightforward implementation of the SP represent
in Figures 3.1, 3.2 and 3.3. The main parameters of the simulation model, and their
distribution, are reported in 3.5. Optimization is embedded within the simulation
model in correspondence of the decision points. Since our aim is to analyze the
impact of online optimization methods, we use some of the most common approaches
in the literature for the SCAP without the claim that it is the best solution. Then, we
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introduce new online algorithms in order to manage in real time the effects caused
by uncertainty.

The hybrid model is implemented using AnyLogic 6.9 [73]: its Enterprise Library
is exploited for the implementation of the DES simulation framework while the
optimization modules are implemented from scratch in Java, which is the native
programming language of AnyLogic.

3.2.2 Solving the Advanced Scheduling Problem
We propose a metaheuristic based on a greedy construction of an initial solution and
then a local search to improve that solution. The proposed algorithm is a simplified
version of that discussed in [65]. The operative context is represented by a long
queue of patients from which we would like to select a subset of patients to be
admitted taking into account the fact that the resources available can be reduced
since patients admitted the previous planning horizon are already in the hospital
phase, usually waiting for the discharge but also for their surgery.

Constructive greedy algorithm

The algorithm associates to each patient i ∈ I the following values

wi = ti
tmax
i

, (3.1)

w̃i = ti + φ

tmax
i

, (3.2)

where φ measures the days between the current day to the beginning of the next
planning horizon. At the moment of determining a solution for the advance schedul-
ing problem, φ is equal to the day before the beginning of the planning horizon plus
its duration. The value wi measures the ratio of the time elapsed before the surgery
and the MTBT associated to the URG of the patient i ∈ I while w̃i is a projection of
wi referred to the next planning horizon. In other words wi and w̃i is the waiting
time of the patient normalized with respect to the MTBT in correspondence of the
current day and the first day of the next planning horizon, respectively.

Starting from the schedule containing the patients planned the previous planning
horizon (i.e., patients rescheduled after their surgery cancellation), patients to be
admitted and belonging to the admission queue are ordered by decreasing value
of wi in such a way to promote the scheduling of those patients which are close to
their MTBT. Then, each patient is considered for the scheduling. A patient i will be
inserted in the current schedule if there exists an OR session (j∗, k∗) available without
exceeding its duration djk and the bed capacity bk in the days k = k∗, . . . , k∗+ `i− 1,
where `i is the LOS of the patient i.
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Among different possible OR sessions (j, k) ∈ S, the algorithm tries to schedule the
patient i first in the day k such that k + `i ≤ ζ, where ζ = max{k|k ∈ K} is the last
day of the planning horizon. If it is not possible, the algorithm tries the insertion
in the days k that minimize the bed utilization during the day with lower capacity
(e.g. weekend stay beds could be a limited resource). This rule can be overridden
when w̃i ≥ 1 assigning the patient to the first day k = 1, if possible, or to the second
day k = 2, and so on. In this case, we would like to reduce the probability of not
satisfying the URG requirements in case of cancellation. Finally, if a patient cannot
be scheduled, the algorithm will consider the next patient. The algorithm terminates
when all patients in the queue have been considered for the insertion in the current
schedule.

Improvement local search algorithm

The Local Search tries to improve the greedy solution by exchanging pairs of patients
already scheduled in such a way to cluster them in a reduced number of OR sessions
and, by consequence, to allow the insertion of new patients previously not scheduled.
Let (j∗, k∗) be the OR session having the maximum operating time yet available:

(j∗, k∗) = arg max
(j,k)∈S

djk − ∑
i∈Ljk

ei

 . (3.3)

The Local Search algorithm follows these criteria to select the new incumbent
solution:

• the new solution will be that providing the maximal increase of the time yet
available of (j∗, k∗);

• otherwise, if the two schedules are equivalent in (j∗, k∗), the algorithm will
consider the second least utilized OR session, and so on;

• otherwise, if the two schedules are equivalent in all OR sessions, the algorithm
selects those solutions having OR sessions less utilized at the end of the
planning horizon in such a way to favor the rescheduling of surgery canceled
in the previous days in that OR sessions.

3.2.3 Solving the Allocation Scheduling Problem
Dealing with only elective patients, the allocation scheduling problem consists in
establishing the sequence λjk in which patients in Lj,k will be operated on in such a
way to minimize the inefficiency due to possible cancellations. Since last positions
of λjk have the higher probability to be cancelled because of the accumulation of
delays, it is preferable to schedule at the beginning of the sequence: (i) the patients
close to their MTBT that can not be postponed to the next planning horizon avoiding
to exceed such a time limit, and (ii) the patients whose surgery has been already
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postponed. To deal with these special cases, we propose an algorithm in such a way
to give different priorities to the patients in λjk as follows:

1. patients i ∈ Ljk such that w̃i ≥ 1 are scheduled in decreasing order of w̃i at
the beginning of the OR session;

2. patients previously postponed with w̃i ≤ 1 are scheduled in decreasing order
of the days elapsed since the first cancellation;

3. finally, all the remaining patients in Ljk are scheduled using the LPT or the
SPT rule with respect to ei at the end of the OR session.

We refer to the two versions of algorithm with the terms LPT-modified (LPT+) and
SPT-modified (SPT+) depending on the rule used at the last step.

3.2.4 An online approach for the Real Time Management
The solutions discussed in the previous sections provide a schedule based on the EOT,
which is usually an estimate of the surgeons. Unfortunately, it is possible that the
ROT differs from the EOT. Given Ljk and a patient i ∈ Ljk, the whole schedule could
be delayed if ri > ei. When the overall delay could determine the exceeding of the
jth OR session duration djk, the RTM should deal with the problem of postponing
a surgery or using a part of the total overtime ν available for the whole planning
horizon. Such a decision poses the problem of evaluating the impact of consuming
overtime or to have a cancellation.

Let us consider the jth OR session on day k = having duration djk and a list Ljk
of scheduled and sequenced patients. Suppose that m < |Ljk| patients are already
operated on. Let ρτjk be the time elapsed in the OR session (j, k) from the beginning
of the session at the time τ . If the surgery of the m-th patient belonging to the
schedule of Ljk ends at time τ , the effective time elapsed to operate on the first m
patients is

ρτjk =
∑

i=i1,...,im
ri. (3.4)

Let us introduce the following parameter:

βτk = 1 +
∑
h>k nh
n

− ντk
ν

(3.5)

where ντk is the residual overtime after the surgery of patient im and nh is the number
of the OR sessions of the day h. Note that the second term of the right member in 3.5
is equal to 0 during the last day of the planning horizon (i.e., when k = ζ). The value
βτk would measure the overtime still available with respect to the number of OR
sessions to be still performed. Actually, βτk is closed to 1 when the overtime was used
proportionally; it is between 0 and 1 or it is greater than 1 when it was underused or
overused, respectively. We remark that in the last day of the planning horizon βτk
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it is always less than or equal to 1 promoting the use of the residual overtime. The
online algorithm starts every time a surgery ends and ρτjk >

∑
i=i1,...,im ei. It consists

of three procedures.

Sequencing check. The sequencing of the remaining patients is checked in such
a way to ensure that (i) all the remaining patients having w̃i > 1 are sched-
uled prior to the other patients and (ii) those having w̃i > 1 are ordered by
decreasing value of w̃i; if those patients run out the available operating time
djk, the patients having w̃i ≥ 1 keep the same original order; otherwise, the
free operating time is filled selecting a subset of the patients having w̃i < 1 in
such a way to fill the available operating time following a rule similar to the
Best Fit rule for the Bin Packing problem.

Overtime allocation. Suppose that the overtime available ντk is sufficient to avoid
the cancellation of a patient i ∈ Ljk. If the patient i is close to the MTBT
(i.e., if w̃ ≥ 1), then the necessary amount of overtime is always allocated.
Otherwise, the overtime is allocated if and only if the following criterion is
satisfied:

βτk

(
ρτjk + ei

djk

)
≤ 1. (3.6)

Rescheduling. At the end of the day, all the postponed surgeries must be resched-
uled on OR sessions having enough free operating time. First the algorithm
considers all the patients having w̃i > 1 trying to insert each patient in the
first OR session available. Then, the algorithm tries to insert iteratively subsets
of patients having w̃i ≤ 1 according to the Bin Packing Best Fit rule. If an
insertion is not possible, the patient will be scheduled on the first day available
in the next planning horizon.

Finally, we remark that the algorithm for the insertion of a subset of patients, used
both in the sequencing check and in the rescheduling procedures, is and adaptation
of the dynamic programming discussed in Section 3.4.1 of [110]. For a description
of the Best Fit rule for the Bin Packing, the reader can refer to Section 8.2 of [110].

Notation introduced in the problem statement (Section 3.1) and in the proposed
solutions is reported in Table 3.1.

3.3 Quantitative analysis
This section reports the quantitative analysis performed in order to evaluate the
impact of the online approach to the RTM and the additional optimization modules
on the management of a SP. The main idea behind the proposed quantitative
analysis is to evaluate their impact over time, that is how the previous decisions
(e.g., determining less or more cancellations) can impact on the current decisions.
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Tab. 3.1: Summary of the notation of problem statement and solutions.

Sets
J : set of operating rooms K: set of the days of the planning horizon
S: set of all OR sessions I: set of patients in the waiting list
L: set of scheduled patients Ljk: set of patients scheduled into (j, k)
λjk: sequence of patients scheduled into (j, k)
Indices and cardinalities
i: elective patient j: index of the operating room
k: index of the day ζ: index of last day of the planning horizon
n: number of OR sessions nk: number of OR sessions of the day k
mjk: number of patient scheduled into (j, k) bk: stay bed units avalaible in the day k

Times and durations
ti: waiting time of patient i tmax

i : MTBT of patient i
wi: normalized waiting time of patient i w̃i: value of wi in the next planning horizon
ei: EOT of patient i ri: ROT of patient i
djk: duration of (j, k) τ : general instant during the OR session
ν: overtime available for one planning horizon ντk : overtime available at instant τ of day k
ρτjk: time elapsed since the beginning of (j, k) βτk : parameter for the overtime criterion
`i: LOS of patient i (days)

In our work, we are considering the surgery process scheduling problems arising
at the operational level, which has usually a planning horizon of a week. The
idea behind our quantitative analysis is therefore to evaluate the impact of such
plannings over time, that is how the decisions made for the previous planning
horizons (e.g., determining less or more cancellations) can impact on the current
decisions.

Section 3.3.1 describes how the computational experiments are carried out reporting
the possible configurations of the optimization modules, the performance indices
and the different evaluation scenarios. Section 3.3.2 reports about the logical
validation of the simulation model discussed in Section 3.2.1. Section 3.3.3 and
Section 3.3.4 report the results of the computational tests made on two different
evaluation scenarios. Section 3.3.5 extends the original hybrid model to deal with
different trained surgery teams in order to prove the capability and the flexibility of
our approach. Finally, Section 3.3.6 provides a brief analysis of the bed occupation
over the week in order to evaluate the impact on the ward workload.

The results reported in the following sections are the average value among those
obtained by running the hybrid model 30 times on a given configuration and, each
time, starting from a different initial conditions. On average, one single run requires
from 1.3 to 4.3 seconds when running with all the optimization approaches turned off
or turned on, respectively. This means that no more than 4.3× 30 = 129 seconds are
needed to simulate two years of operating room management. Finally, we remark
that the algorithms for the advanced scheduling are the most time consuming
components while the running time required by the other optimization algorithms
are negligible. Finally, we remark that all the simulation parameters are reported
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in 3.5. The Appendix describes and reports the parameters regarding the patient
flow characteristics, the duration of the activities and their distributions, and all the
other parameters characterizing our simulation such as the values for each class of
URG and the number of beds available.

3.3.1 Test configurations, performance indices and
scenarios

The optimization algorithms described in Section 3.2.2, 3.2.3 and 3.2.4 can be
combined in different ways In order to evaluate their actual impact, we define a
baseline configuration with respect to the three phases as follows:

Phase 1: advanced scheduling performed by a first-fit algorithm, that is (i) it
considers patients by decreasing order of wi, (ii) it scans the OR session from
Monday to Friday and assigns the selected patient to the first one having
enough operating time available (if possible);

Phase 2: the patient sequencing is that resulting from the patient assignment, that
is, the first assigned to an OR session will be the first in the sequence, and so
on;

Phase 3: overtime is assigned a priori uniformly to all OR sessions in an amount
equal to ν

n ;
Phase 3: all the surgeries are rescheduled only at the end of the day using the

first-fit algorithm, that is the first phase of the RTM rescheduling algorithm.

Besides the baseline configuration, we define further configurations to evaluate the
impact of the optimization modules. Each configuration is defined with respect to
the baseline configuration.

• Phase 1:
option 1: computing wi w.r.t Monday instead of the previous Friday (in the

simulation model, Friday is the day in which the advance scheduling is
performed);

option 2: adopting the greedy explained in Section 3.2.2 (instead of the
First-Fit algorithm);

option 3: adopting the Local Search described in Section 3.2.2;
• Phase 2:

LPT/SPT: use LPT+ or SPT+ rules in sequencing introduced in Section 3.2.3,
respectively;

• Phase 3:
option A: adopting the RTM online algorithm after each surgery;
option B: adopting the rescheduling algorithm proposed in Section 3.2.4 at

the end of the day (instead of the first-fit algorithm).
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Table 3.2 reports the two types of indices adopted to evaluate the impact of the
optimization modules. We define a set of patient-centered indices in such a way to
evaluate the performance from a patient point of view. We also define a set of facility-
centered indices in such a way to evaluate them against to the patient-centered
ones. The indices wavg and the f are a reformulation of the need adjusted waiting
days proposed by Tànfani and Testi [125] while the remaining ones are reported in
Cardoen et al. [78].

Tab. 3.2: Patient-centered and facility-centered indices

Index Definition
Patient-centered

o number of patients operated on
c fraction of cancellations
tavg average waiting time spent in the waiting list (days)
wavg average value of patient’s wi at the time of their surgery
f fraction of patients operated within the MTBT

Facility-centered

ubed OR session utilization
uOR bed utilization

It is quite evident that different indices can affect each other. For instance, the
increase of the number of cancellations can affect the bed utilization and, in its turn,
could reduce the fraction of patients operated within the MTBT.

Tab. 3.3: Scenarios: duration of the OR sessions (min)

(a) Scenario 1

OR 1 OR 2 OR 3 OR 4 OR 5
Mon 300 360 420 420 420
Tue 300 360 420 420
Wed 300 360 420
Thu 300 360 420 420 420
Fri 300 360 420 420

(b) Scenario 2

OR 1 OR 2 OR 3
Mon 540 540 540
Tue 540 540 540
Wed 540 540 540
Thu 540 540 480
Fri 540 540 480

Table 3.3 describes the two different scenarios that differs for the number and the
durations of the OR session, in which we evaluate the optimization solutions on
different operating contexts. The two scenarios are characterized by about the same
overall amount of operating time available (7 920 vs. 7 980 min) distributed in a
different way with respect to the number n of available OR sessions (21 vs. 15) and
their duration djk, (j, k) ∈ S. Furthermore, the two scenarios have the same URG
classification, MTBTs and probability distribution (i.e. fraction of patients of a URG
class over the total) are reported in Table 3.4.
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Tab. 3.4: Scenarios: URG classes, distribution and MTBT as in [114].

URG class A B C D E F G
MTBT tmax

i (days) 8 15 30 60 90 120 180
distribution 2.45% 14.01% 41.36% 17.85% 11.40% 7.49% 5.44%

3.3.2 Simulation Model Validation

The validation of a simulation model requires a quite complex analysis. In our case,
we are only interested in the logical correctness of the simulation model representing
the SP. On the other side, we are not interested in the replication of a real system.

To this end, we adapted our simulation model to represent the inspiring case, that is
the case study reported in Ozcan et al. [114]. We started from real data available in
that paper, then (i) we replicated the patient distribution among the different URGs
and the configuration of the available OR sessions, and (ii) we used statistics about
the activity durations (average, minimum, maximum and modal values) to define
distributions for modeling the service times in accordance with the suggestions in
the literature (more details are repored in the Appendix 3.5). In that paper, the
proposed model dealt with two patient flows having similar EOT but different LOS.
Note that the LOS of the second flow is roughly the double of the first one while the
number of patients in the first flow is roughly the double of the second flow. Since
our model can generate only one type of patient flow, we adapted our patient flow
generator in such a way to have, on average, the same number of patients having
the LOS of the first flow which is the most numerous. In this validation scenario,
we have n = 7 OR sessions having the same duration equal to 360 min. Two OR
sessions are scheduled on from Tuesday to Thursday and one on Friday. The other
parameters are set to the same value reported in the Appendix 3.5. Furthermore, we
turn off all the optimization during the three phases. In Table 3.5 we compare the
results of our adapted simulation model with those reported in [114].

Tab. 3.5: Model validation: comparison with real measures

ubed uOR

Real measures 51.1% 77.3%
Simulation model 49.1% 80.8%
Difference 2.0% 3.5%

The differences in the two performance indices can be accounted to the different
composition of the patient flow as discussed above. For instances, the gap of 3.5%
for uOR expressed in minutes corresponds to the execution of one surgery having
average duration. On the basis of these considerations, the comparison is satisfactory
with respect to our objective, which is the validation of the logical correctness of our
simulation model.
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3.3.3 Scenario 1: analysis

We tested all the possible configurations that can be obtained combining the options
defined in Section 3.3.1. Our aim is to identify the best configuration which increases
the patient-centered indices without deteriorating the facility-centered ones. First,
the impact of each optimization modules is evaluated through the quantitative
analysis. Based on these results, two further configurations have been studied. The
results are summarized in Table 3.6, which reports the value of the performance
indices for each test configuration denoted by the value in the first column “id”. All
the results are compared with those obtained for the baseline configuration.

Tab. 3.6: Performance indices for each test configuration

Option(s) Performance indices
id 1 2 3 seq. A B o c tavg wavg f uOR ubed

(0) baseline configuration 2 348 10.0% 55 1.17 32.6% 89.9% 63.6%
(1)

√
2 347 10.0% 56 1.11 31.9% 89.8% 60.2%

(2)
√ √

2 340 9.7% 58 1.16 26.0% 89.3% 60.6%
(3)

√
2 346 10.7% 52 1.12 36.0% 89.6% 60.4%

(4)
√ √

2 349 10.5% 53 1.06 35.3% 89.8% 60.3%
(5)

√ √ √
2 338 9.8% 58 1.17 27.2% 90.0% 60.8%

(6) LPT+ 2 367 10.0% 48 1.03 47.9% 90.8% 60.5%
(7) SPT+ 2 261 10.6% 72 1.51 12.1% 86.4% 58.6%
(8)

√
2 384 8.3% 35 0.80 74.6% 91.3% 59.3%

(9)
√

2 315 10.2% 55 1.18 30.7% 88.8% 72.6%
(10)

√ √
2 372 9.4% 37 0.83 73.0% 90.7% 64.0%

(11)
√

LPT+ √
2 389 10.0% 32 0.73 79.9% 91.8% 60.3%

(12)
√ √

LPT+ √
2 390 10.4% 34 0.71 85.5% 91.8% 60.6%

Regarding the impact of the advanced scheduling optimization module, we can ob-
serve a lower waiting time in the waiting list and an improvement of the performance
indices related to MTBT in test configurations (3) and (4). On the other side, the
minimal fraction of cancellations is obtained with configuration (2) but, at the same
time, the fraction of patients operated on before their MTBT decreases consistently.
Note that the use of Local Search allows to insert more patients determining the
improvement measured in (3) and (4).

Regarding the impact of the allocation schedule optimization module, we can observe
significantly better performances when LPT+ policy is adopted. Figure 3.5 shows
the trend of the waiting list length under the baseline, (6) and (7) configurations.

Regarding the impact of the online approach for the RTM, we observe a remarkable
improvement of all the performance indices (see configurations (8) and in particular
f). On the other side, we observe the negligible impact of the algorithm for the
rescheduling postponed patients at the end of the day (see configurations (9) and
(10)).
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Fig. 3.5: Length (number of patients) of the waiting list over the 2nd year
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Figure 3.6 and 3.7 show respectively the trend of the waiting list length and the
value of wavg under the baseline and (8) configurations. Note that it is positive when
wavg < 1 which means that all the patients are operated on before their MTBT, on
average.

Fig. 3.6: Length (number of patients) of the waiting list over the 2nd year
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Fig. 3.7: Trend of wavg over the 2nd year
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Finally, configurations (11) and (12) report about the combination of the different
best options. We note a further improvement of the performance indices except for
that related to the number of cancellations if compared with configuration (8). This
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is due to the fact that Local Search allows to insert more patients in the advanced
scheduling thus reducing the waiting time in the waiting list but increasing the
probability of incurring in a cancellation. Figure 3.8 shows the trend of wavg under
the baseline, (11) and (12) configurations. While baseline configuration shows a
value of wavg always greater than 1, we remark that both configurations (11) and
(12) tend to be less than 1. Further, configuration (12) seems more stable and
powerful in reducing this index.

Fig. 3.8: Trend of wavg over the 2nd year
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3.3.4 Scenario 2: analysis

The second scenario differs from the first one in terms of the schedule of the OR
sessions. As for scenario 1, the impact of each possible configuration is evaluated
and then, based on these results, four further configurations have been studied.
The results are summarized in Table 3.7. All the results are compared with those
obtained for the baseline configuration.

Tab. 3.7: Performance indices for each test configuration

Option(s) Performance indices
id 1 2 3 seq. A B o c tavg wavg f uOR ubed

(0) baseline configuration 2 411 8.7% 44 0.97 57.7% 92.0% 61.5%
(1)

√
2 408 8.3% 43 0.95 60.0% 92.1% 62.0%

(2)
√ √

2 403 7.5% 41 0.85 70.5% 91.8% 61.0%
(3)

√
2 404 8.3% 41 0.92 61.1% 92.0% 61.9%

(4)
√ √

2 409 8.4% 42 0.87 67.7% 92.0% 62.3%
(5)

√ √ √
2 398 8.3% 42 0.86 69.2% 91.9% 61.7%

(6) LPT+ 2 462 7.1% 25 0.62 85.1% 94.3% 61.7%
(7) SPT+ 2 346 8.6% 58 1.24 27.0% 89.5% 60.8%
(8)

√
2 422 7.3% 27 0.67 84.7% 92.6% 61.0%

(9)
√

2 405 7.9% 41 0.92 62.1% 92.0% 62.6%
(10)

√ √
2 411 7.3% 27 0.66 84.4% 92.5% 64.0%

(11)
√ √

LPT+ √
2 430 6.4% 21 0.49 96.0% 92.8% 59.8%

(12)
√ √ √

LPT+ √
2 434 8.4% 21 0.50 95.3% 93.1% 62.4%

(13)
√ √

LPT+ √ √
2 426 6.6% 21 0.49 96.5% 92.8% 60.2%

(14)
√ √ √

LPT+ √ √
2 419 8.3% 20 0.48 96.8% 92.6% 61.6%
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Comparing the results for the two scenarios, we can observe that the number of
cancellations with respect to the number of operated patients is almost the same.
Further, the utilization indices (uOR and ubed) ranges around the same values, that is
60% and 90% for beds and OR sessions, respectively. The comparison of the results
reported for configurations (6) and (7) confirms the fact that LPT+ can provide
better results than SPT+. The significant decrease of the waiting times and the value
of wavg is confirmed also in the analysis of the second scenario.

In both scenarios, the use of Local Search provides a higher number of patients
scheduled in the OR sessions, increasing the OR utilization but also the fraction
of cancellation. LPT+ give a significant improvement of all indices. Finally, the
greater contribute for the lowering of the waiting times is obtained enabling the
optimization module of the RTM, regarding the overtime allocation, which also
provides a better OR utilization.

3.3.5 Dealing with differently trained surgical teams
A surgical team is a set of experts who perform surgery activities and related tasks
together usually including surgeons, assistants, nurses, anesthetists and surgical
technologists. Such roles require a long period of training to be specialized (especially
for surgeons and anesthetists), with a significant impact on the variability of surgery
duration.

Even if our focus is at the operational level to deal with the resource management,
we would provide an evaluation of having surgical teams with different level of
training. We suppose that a surgical team having less trained components could
require additional time to accomplish their tasks.

The additional time added to the ROT is generated through an exponential distri-
bution of parameter aj > 0 set to have average delay 1

aj
(min). The exponential

distribution has been chosen because such a probability function is positive and
quickly decreasing.

We considered the new scenarios 1b and 2b obtained from the original one simply
adding the value for parameter 1

aj
, as reported in Table 3.8a and 3.8b.

Tab. 3.8: Scenarios with additional delay

(a) Scenario 1b

OR 1 OR 2 OR 3 OR 4 OR 5
1
aj

best 5 10 15 20

(b) Scenario 2b

OR 1 OR 2 OR 3
1
aj

best 10 20

Tables 3.9 and 3.10 show the results for the new scenarios corresponding to the
most representative configurations. Comparing them with those obtained for the
baseline configurations, adding further delay causes a substantial deterioration of
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the performance indices, specially in correspondence of cancellations and number of
patients operated on according to their MTBT.

Tab. 3.9: Performance indices of scenario 1b for best configurations in Table 3.6

id o c tavg wavg f uOR ubed

(0) 2 162 17.5% 93 1.9 10.9% 87.5% 62.7%
(8) 2 298 12.2% 64 1.4 18.0% 93.5% 60.5%

(11) 2 345 15.2% 52 1.1 38.1% 95.4% 63.5%
(12) 2 342 15.7% 51 1.0 43.7% 95.1% 63.7%

Tab. 3.10: Performance indices of scenario 2b for best configurations in Table 3.7

id o c tavg wavg f uOR ubed

(0) 2 248 15.3% 78 1.65 9.4% 90.6% 63.5%
(8) 2 354 11.3% 50 1.09 43.1% 95.0% 62.6%

(11) 2 400 13.8% 39 0.83 75.6% 96.5% 64.1%
(12) 2 396 14.6% 40 0.84 75.7% 96.4% 64.6%
(13) 2 375 14.4% 38 0.81 78.2% 95.6% 68.3%
(14) 2 386 14.9% 40 0.84 73.4% 96.3% 67.7%

The positive impact of the optimization persists on the observed indices. Actually,
the fraction of patients operated within the time limit presents a more significant
improvement: it ranges from 10.9% to 43.7% in the scenario 1b, and from 9.4% to
73.4% in the scenario 2b.

3.3.6 Bed Levelling
Among many different performance criteria, the evaluation of the ward stay bed
levelling seems to be one of the more challenging [71, 78]. A planning leading to a
smooth – without peaks – stay bed occupancy, will determine a smooth workload in
the ward and, at the end, an improved quality of care provided to patients. In this
section we provide a brief analysis of the bed occupation over the week in scenario
1, that is the most challenging due to the different number and duration of the OR
sessions in the day of the week.

Figure 3.9 reports the bed occupancy during the week reporting both the average
(Figure 3.10a) and 95th percentile (Figure 3.10b) values. The results for the
baseline and configuration (12) show a peak on Friday determined by an increased
bed occupancy of about the 50% with respect to Monday. This behaviour seems
not affected by the optimization of the SP since the baseline configuration and
configuration (12) are really similar. Indeed, the online optimization modules
involved in configuration (12) slighty increase the bed occupancy over all the week,
because of the higher number of patients operated on, but the difference between
the maximum and the minimum occupancy is unchanged.
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Fig. 3.9: Bed occupancy during the week (average and 95th percentile values).
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On the other side, the behaviour of the configuration (2) shows how planning
decisions can affect the bed levelling during the week. In the case of configuration
(2), the advance scheduling would compute a solution limiting the use of the
weekend stay beds since they are limited in number. This decision largely affects
the bedlevelling as shown both in Figure 3.10a and 3.10b where beds occupancy is
doubled, approximately. These results confirms those available in literature leading
to the need of ad hoc optimization methods for bed levelling as in [64, 66, 67].

3.4 Concluding remarks
In this chapter we proposed a model for the Real Time Management of operating
rooms. Given an OR schedule, it consists in a sort of centralized surveillance system
whose main task is to supervise the execution of such a schedule and, in the case of
delays, to take the more rational decision regarding the surgery cancellation or the
overtime assignment. We evaluated its impact on the performance of a generic SP
for elective patients. To this end, we developed a hybrid simulation and optimization
model.

The extensive quantitative analysis discussed in Section 3.3 showed the positive
impact of the optimization in the management of a SP through the evaluation of a
set of patient-centered and facility-centered indices.

The online algorithm developed for the RTM is capable to determine a general
improvement of all the performance indices. Comparing the baseline configuration
with the best configuration in the two scenarios considered, we observed a significant
improvement of the performance indices related to the waiting times. This allow to
almost double the fraction of the patients operated on before their MTBT time limit.
These improvements can determine a general increasing of the quality of service
from a patient-centered point of view without deteriorating the facility-centered
performance indices (i.e. the resource utilization). The quantitative analysis confirms
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the trade-off between the number of cancellations and the number of operated
patients (or, equivalently, the OR session utilization) as discussed in [69]. Further,
results obtained in the baseline configurations (e.g. OR utilization) are consistent
with those presented in [69], which has been used for the design of the CP and the
parametrization. The analysis provided in Section 3.3.5 demonstrates the capability
and the flexibility of our hybrid model to deal with different OR settings. This
analysis also showed how the overtime could be interpreted as a really flexible
resources that can be used to bring under control challenging situations.

From an OR management point of view, the quality of the provided results and
the low computation time suggest the development of a decision support system
based on the online algorithm for the RTM powered by an ICT infrastructure to
track the surgeries within the operating rooms. Such a system could support the OR
supervisor(s) in the management of the current schedule optimizing the use of the
overtime.

Further works could extend the analysis to deal with the no-show phenomena, whose
effect is a lowering of both the OR utilization and the patient satisfaction. No-show
consists in a particular type of cancellation and, in some cases, the surgery of the
involved patient can be rescheduled. Althoug we considered only cancellations
caused by management issues, our hybrid model can be used to study the impact and
the robustness of our optimization modules dealing with different rates of no-show
and rescheduling policies.

Although very promising results have been provided in the quantitative analysis,
in order to further demonstrate the effectiveness of online optimization methods,
future research avenues could provide a comparison of such approaches with the
other alternative well-known methodologies taking into account uncertainty, such as
stochastic programming and robust optimization.

3.5 Appendix: Parameters
In this appendix, we report the parameters of the simulation model and its setting
both for the model validation (Section 3.3.2) and for the quantitative analysis
(Sections 3.3.3–3.3.5).

Table 3.11 lists the parameters used by the simulation model regarding. Table 3.12
shows the distributions used to generate the required time for the execution of the
activities A–J. Table 3.13 reports the values assigned to the parameters for the model
validation and for the quantitative analysis.

Starting from the values reported in [114], that is minimum, maximum, average
and modal values, we use a Gamma distribution because, empirically, those values
suggested a distribution whose shape recalls the Gamma. The parameters k and ϑ
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Tab. 3.11: Definition of the parameters

Index Definition
Flow and patient characteristics

r0 patient interarrival rate
R0 initial length of the pre-admission waiting list
p1 patient probability to require a surgical treatment during the

ambulatory visit (see Fig. 3.1)
p2 patient probability to do not require a surgical treatment but

requiring further exams during the ambulatory visit (see Fig. 3.1)

Activity durations

Tmin, max, mod
A,...,F,I minimum, average and modal time for the execution of A–F and I

(see Figures 3.1–3.3)
`min, max, mod

A,...,G minimum, maximum and modal LOS for patients of urgency class
A–G

ε̄A,...,G average EOT for the surgery of a patient of urgency class A–G
emax maximum duration of a surgery
σA,...,G EOT standard deviation for the surgery of a patient of urgency

class A–G
∆ discretization constant for the EOT
σ ROT standard deviation for each patient
dtol tolerance time within which the surgical team operates a patient

at the end of OR session without resorting to the overtime

Tab. 3.12: Distribution of the activity durations

Activities Durations Parameters

A – F, I TA,. . .,F,I
min + T, k = TA,...,F,I

avg − TA,...,F,I
mod ,

T ∼ Gamma(k, ϑ) ϑ = T A,...,F,I
avg −T A,...,F,I

min

T A,...,F,I
avg −T A,...,F,I

mod

H (LOS) bTriangular(`min
A,...,G, `

max
A,...,G, `

mod
A,...,G) + 1

2c

J (EOT) min
{

max
{
b T∆ + 1

2c∆, 0
}
, emax

}
, µ = log εA,. . . ,G − 1

2 log
(
σ2

A,...,G
ε2A,...,G

+ 1
)

,

T ∼ Lognormal(µ, s2) s =
√

log
(
σ2

A,...,G
ε2A,...,G

+ 1
)

J (ROT) min {max {0, T} , emax},
T ∼ Gaussian(EOT, σ2)

were obtained in such a way to equal the expected and the modal values reported
in [114]. Further, we compute the value of the survival function on the maximum
time for the execution of activities, obtaining a value less than 10% that guarantee a
reasonable truncation.

The EOT of the patient i represents a prediction of the surgery duration performed
by the surgeons at the moment of the ambulatory visit who indicates the mean
duration of similar surgeries on the basis of the own personal experience (in absence
of historical data). In the literature, a priori surgery duration generally follows a Log-
normal distributions (see, e.g.,[111, 120, 123]). Then, the ROT of the patient i has
been generated in such a way to replicate the uncertainty pertaining the prediction

34 Chapter 3 The Real Time Management of elective patients



Tab. 3.13: Parameters used in the simulation framework

Parameters unit of measure Validation Quantitative analysis

r0 patients/min 5.8 · 10−3 2.0 · 10−2

R0 patients 140 420
p1, p2 0.2, 0.1 0.2, 0.1
TA,...,F,I

min min 5, 25, 25, 25, 40, 25, 35 5, 25, 25, 25, 40, 25, 35
TA,...,F,I

avg min 7.5, 31.5, 31, 28, 62.5, 32, 41 7.5, 31.5, 31, 28, 62.5, 32, 41
TA,...,F,I

mod min 6, 30, 26, 25, 50, 30, 40 6, 30, 26, 25, 50, 30, 40
`min

A,...,G days 2, 1, 1, 1, 1, 1, 1 2, 1, 1, 1, 1, 1, 1
`max

A,...,G days 29, 16, 7, 9, 5, 5, 5 29, 16, 7, 9, 5, 5, 5
`avg

A,...,G days 3, 2, 2, 2, 2, 2, 2 3, 2, 2, 2, 2, 2, 2
emax min 360 420
ε̄A,...,G min 145, 171, 149, 153, 171, 164, 166 145, 171, 149, 153, 171, 164, 166
σA,...,G min 85, 85, 66, 60, 61, 51, 60 85, 85, 66, 60, 61, 51, 60
σ min 0 30
dtol min 30 10
ν min 0 300
∆ min 30 30

b1, . . . , b7 beds 18, 18, 18, 18, 18, 18, 18 50, 50, 50, 50, 50, 35, 35

made by the surgeons: we generate a value X using a Gaussian distributions with
average 0 and standard deviation σ; then, the ROT value ri is computed as ei +X.

We observe that the simulation model generates activity durations on the basis of few
information reported in [114]. In presence of historical data about surgery durations,
it should be used for replicating and predicting surgery durations depending on
the characteristics of the patient, learning from the previous experiences. For this
purpose several Bayesian methods can be used as reported in the literature (see, e.g.,
[81, 84, 85]).
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4The Real Time Management of
non-elective patients

Non-elective patients should require to be operated on within different but usually
tight time limits depending on their urgency. Such time limits can range from “as soon
as possible” to “within 24 hours” [130]. Since the insertion of non-elective patients
could have a negative impact on the elective patient scheduling, an appropriate
handling of non-elective patients could significantly improve the performance. As
discussed in Chapter 2, two main policies can be adopted to deal with both elective
and non-elective patient flow, which can be operated on within dedicated (DOR
policy) or shared (SOR policy) ORs.

In Chapter 3 we addressed the optimization problems dealing with elective patients,
which we call Elective-Oriented Optimization (EOO) problems hereafter. The analysis
performed in Chapter 3 tested the effectiveness of the EOO modules dealing with
the uncertainty given by the surgery duration. The unpredictable arrival of non-
elective patients produce a further uncertainty factor, which introduce a set of
Non-elective-Oriented Optimization (NOO) problems.

In this chapter we deal with the real time insertion of non-elective patients, which
share the ORs used for the elective surgery (SOR policy), that is the more challenging
setting for the optimization of the RTM of ORs. Firstly we present a preliminary
analisys performed to test the effectiveness of the approach proposed in Chapter 3
when dealing with an additional non-elective patient flow and using a simple
policy consisting in the as-soon-as-possible insertion of such patients. When the
whole OR session capacity is allocated to plan elective patients, such insertions will
cause an overload that involves an higher demand of overtime, which generally
is a scarce resource. Furthermore, from the non-elective patients perspective, the
responsiveness of the SP (i.e. the speed at which an OR is available for that surgery)
is crucial to guarantee a positive final outcome. Therefore, we would provide an
online algorithm that addresses the crucial decision of the insertion of a non-elective
patient in one of the available OR sessions.

To this purpose, we extend our simulation model presented in Figure 3.4 of Chapter 3
adding a non-elective patient flow that shares ORs with elective patients, as shown
in Figure 4.1. Accordingly, we suppose that non-elective patients have dedicated
stay bed units. In other words, the SP of a non-elective patient consists of only two
phases, which are the hospital phase and the operating theater phase, but only in
the first phase resources are shared with elective patients.
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Fig. 4.1: The hybrid model extended to non-elective patients.

This chapter is organized as follows. In Section 4.1 the impact of the insertion of
a non-elective patient flow on an optimized SP through EOO modules is analyzed.
In Section 4.2 we propose an online approach for the ex-ante solution of the real
time insertion of non-elective patients within shared ORs. An offline model is then
provided in Section 4.3 for the ex-post solution of such a problem. The effectiveness
of the online approach is tested in Section 4.4 with a quantitative analysis that is
divided in two phases: in the former an extension to the one provided for the EOO
in Section 3.3 of Chapter 3 is provided, while in the latter we make a competitive
analysis comparing the ex-ante and the ex-post solutions. Section 4.5 closes the
chapter.

4.1 A preliminary analysis
In this section, we would like to evaluate the impact of introducing a patient
flow of non-elective emergency surgeries within an optimized SP. Basically, we
would evaluate the capability of the offline and online EOO approaches proposed in
Chapter 3 of dealing with also elective patients.

In our setting, a patient requiring an emergency surgery is operated as soon as an
OR becomes available. This means that no changes are considered in the algorithms
for determining a solution for the advanced and the allocation scheduling. More
sophisticated algorithm for the insertion of non-elective patients are presented in
the next sections of this chapter and in Chapter 5.

The non-elective emergency patient flow is generated in such a way to have, on
average, one emergency patient each day having the same EOT and ROT of an
elective patient with the highest level of URG (class A) but a short time limit that
varies between 30 and 240 min, with step 30 min. We test the SP in Figure 4.1
on scenario 2 (Table 3.3b) of Chapter 3 taking into account the baseline, (13) and
(14) configurations, which are those that provide the best results in the analysis
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for the elective patient flow. The choice to analyze scenario 2 instead of scenario
1 is because a lower number of parallel OR sessions makes more challenging the
problem of inserting non-elective emergency patients without worsening the solution
from the elective patients point of view. Table 4.1 reports the performance index
fNE defined as the fraction of non-elective surgeries started before a fixed time limit.
Observe that each column of Table 4.1 consists in a different scenario.

Tab. 4.1: fNE for emergency patients w.r.t. different MTBT

Non-elective time limit (min)
id 30 60 90 120 150 180 210 240
(0) 55.7% 75.4% 88.6% 95.1% 98.3% 99.7% 100.0% 100.0%
(13) 52.2% 72.9% 84.1% 88.3% 95.5% 98.1% 99.4% 100.0%
(14) 53.5% 73.1% 83.3% 89.7% 95.0% 98.1% 99.6% 99.9%

Table 4.2 reports the performance of the whole SP after introducing the non-elective
patient flow. Note that the last two columns report the value for the indices wNE and
fNE referred to the non-elective patients with time limit set to 60 min, where wNE is
defined as well as wavg.

Tab. 4.2: Evaluating performance of best configurations in Table 3.7 of Chapter 3

id o c tavg wavg f uOR ubed wNE fNE
(0) 2 302 12.8% 66 1.4 16.4% 95.1% 62.9% 0.60 75.4%

(13) 2 271 16.3% 50 1.0 48.2% 94.4% 73.9% 0.68 72.9%
(14) 2 300 16.0% 52 1.1 41.1% 95.6% 71.0% 0.68 73.1%

As one might expect, it may be noted a general worsening of the patient-centered
indices for the elective patients. On the other side, the indices referred to the non-
elective patients show quite satisfactory results considering the really tight MTBT
and the absence of any NOO approach.

Recalling the model introduced in Section 3.2.4 of Chapter 3, RTM decisions largely
depend on the ratio ντk

ν , that is from the total amount ν of overtime available for each
planning horizon. Therefore, we would evaluate the overtime available (and the
overtime really used) to guarantee the same performance before the introduction
of the non-elective patient flow as suggested by Erdem et al. [90]. The amount of
overtime available can be interpreted as the hours available of a DOR for non-elective
surgeries. Table 4.3 reports about such tests. The first column reports the extra
overtime ν+ available, that is the number of overtime hours added to the initial
overtime of 5 h (see Table 3.13 of Chapter 3), that is 1 h/day. Column headed with
the index fover reports the average fraction of overtime actually used to operate
patients in that scenario.

The first remark is concerned with the overtime percentage effectively used, which
decreases as soon as the number of hours weekly available increases. On the other
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Tab. 4.3: Overtime estimation

ν+ o c tavg wavg f uOR uover ubed wNE fNE
0 2 271 16.3% 50 1.03 48.2% 94.4% 98.5% 73.9% 0.68 72.9%
5 2 290 14.5% 41 0.90 71.9% 95.1% 90.5% 71.9% 0.69 72.1%

10 2 351 13.5% 35 0.75 84.6% 96.8% 76.5% 72.6% 0.70 71.6%
15 2 231 13.0% 35 0.80 84.8% 92.7% 66.0% 74.2% 0.67 73.2%
20 2 250 12.1% 33 0.79 86.9% 93.6% 54.8% 72.6% 0.69 72.1%
25 2 316 11.2% 29 0.65 90.6% 97.5% 44.3% 68.9% 0.71 72.4%
30 2 397 10.2% 26 0.59 93.7% 98.6% 37.4% 66.6% 0.73 70.8%
35 2 403 9.7% 28 0.61 93.6% 98.9% 33.8% 66.8% 0.72 71.7%
40 2 424 8.6% 27 0.61 92.8% 99.5% 29.3% 64.5% 0.74 70.7%
45 2 422 8.5% 23 0.54 95.2% 99.5% 26.9% 64.3% 0.73 70.9%
50 2 413 8.0% 23 0.53 96.0% 99.5% 24.8% 62.9% 0.72 71.3%
55 2 406 7.6% 21 0.50 96.8% 99.1% 22.7% 63.5% 0.74 70.1%

side, it seems that about 800 min of overtime are those really used to deal with the
emergency surgery flow under the second scenario.

The available overtime seems the more influencing factor. Actually, we can reach
about the 90% of elective patients operated within their MTBT by making available
25 h of overtime but using only the 44.3%. On a schedule of five days, the 25 h
of overtime could correspond to the availability for 5 h/day of 1 dedicated OR for
non-elective surgery. Moreover, a detailed analysis of the DOR policy is presented in
Chapter 5.

4.2 Ex-ante approach: an online algorithm

Online NOO approaches have to decide in which OR session the non-elective patient
has to be scheduled. Such a decision can determine a different need of overtime or
the cancellation of the elective patients previously scheduled. To deal with this online
problem, we introduce an algorithm called Non-Elective Worst-Fit (NEW-Fit).

4.2.1 Parameters

We take into account the arrivals of non-elective patients which must be treated
within the end of the current day k taking into account time limits tmax

i < 24 h. Let
Sk be the set of the OR sessions planned on the day k, in which mjk = |Ljk| patients
are scheduled. At the instant ι of the day k, let h be an operating room available
after having operated on µhk patients i1, . . . , iµhk . Let iµjk be the patient that is still
within the OR, with respect to the other OR sessions (j, k), j 6= h. Let Lιhk be the set
of the waiting elective patient scheduled in (h, k) ∈ Sk, that are ordered in the last
mhk − µhk positions of the sequence λhk (i.e., iµhk+1, . . . , imhk). Let Qι be the set of
all the waiting non-elective patients at the instant ι. If at that moment the operating
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room j is available, then the next patient should be selected from Lιhk ∪Qι. Note
that the problem arises only if Qι 6= ∅. Let us introduce the parameter

εµjk =

max
(∑

i1,...,iµjk−1 ri + eiµjk − ρ
ι
jk, 0

)
if j 6= h

0 otherwise

that is the estimated time for the next release of the OR session (j, k).

Fig. 4.2: Parameters defined at the releasing of an operating room.
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In Figure 4.2 an example of OR release at the instant ι is reported. In the OR session
(h, k) the first surgery is concluded after r1 minutes, that is the ROT of the first
patient, then ριhk = r1 and εµhk = 0. The time elapsed in the OR session (h, k) is
equal to the sum of the ROTs of the operated patient plus the time elapsed from the
entry of the current patient. The time required for the end of the surgery of such
a patient is estimated by εµjk computed using its EOT. The waiting patients that
are candidates for the allocation of (h, k) are represented by boxes marked with an
asterisk.

4.2.2 The NEW-Fit algorithm

The algorithm provides an online greedy construction of an alternative schedule
of the patients in which we try to insert the non-elective patients in Qι. On the
basis of this auxiliary schedule, the NEW-Fit re-determines the sequence of surgeries
λhk establishing if to continue with the planned schedule or to insert a non-elective
patient as next surgery in (h, k) in such a way to reduce the maximum exceeding
time with respect to the duration of the sessions.

The pseudo-code reported in Algorithm 1 describes the algorithm NEW-Fit, having
the parameter δ ∈ (0, 1] which is used to define, for each non-elective patient i, an
early deadline δtmax

i until which the insertion can be planned. The early deadline is
introduced in such a way to deal with the uncertainty of the surgery duration. When
δ is close to 0, NEW-Fit reduces the risk of exceeding the non-elective time limit. On
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Algorithm 1: Non-Elective Worst Fit
Input : δ;

1 begin
2 ps ← iµhk+1; /* next elective patient pe in Lτhk */
3 pu ← arg mini∈Qι (tmax

i − ti);
4 Q′ ← Qι;
5 foreach OR session (j, k) do L′j ← Lιjk; ε′µjk ← εµjk ;
6 S = (i1, . . . , iµhk , iµhk+1, . . . , imhk);
7 flag← false;
8 stop← false;
9 while Q′ 6= ∅ and not stop do

10 pne ← arg mini∈Q′ (tmax
i − ti);

11 x? ← +∞;
12 j? ← −1;
13 foreach (j, k) ∈ Sk do
14 x = ριjk + εµjk +

∑
i∈L′

j
ei − djk;

15 if x < x? and ε′µjk ≤ δ(t
max
pne − tpne) then

16 x? ← x;
17 j? ← j

18 if j? = −1 then
19 S = (i1, . . . , iµhk , pu, iµhk+1, . . . , imhk);
20 stop← true

21 if j? = h and flag = false then
22 ps ← pne;
23 flag← true

24 L′j? ← L′j? ∪ {pne};
25 Q′ ← Q′ r {pne};
26 ε′µj?k ← ε′µj?k + epne ;

27 if flag = true then S = (i1, . . . , iµhk , ps, iµhk+1, . . . , imhk);
Output :S;

the contrary, when δ is close to 1, the number of feasible insertions increases and
better global solutions can be computed.

After the initialization of the auxiliary data structures, the algorithm starts a loop to
determine the auxiliary schedule. At each iteration, the current non-elective patient
pne is scheduled on one of the OR sessions (j, k) such that the condition of the early
deadline in correspondence of the instant of insertion

ε′µjk ≤ δ(t
max
pne − tpne) (4.1)

is satisfied, where ε′µjk is equal to εµjk plus the sum of the EOTs of the non-elective
patients planned in (j, k) in the previous iterations. The algorithm selects the OR
session that minimizes the difference between the estimated total duration of the
operated and non-operated patients in Ljk

ριjk + εµjk +
∑
i∈L′j

ei (4.2)
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and its duration djk. Such a rule corresponds to insert the patient pne in the OR
session with the maximum unused OR time in such a way to minimize the overtime
demand, when djk is greater than (4.2). The aim is to balance the workload among
the OR sessions. At a certain iteration, if the condition (4.1) is not satisfied for any
OR session of the day, it means that we are not able to plan all the non-elective
patients before their early deadlines, then the NEW-Fit terminates inserting the most
urgent non-elective patient pu as next operation within the sequence λhk, that is at
the (µhk + 1)-th position. When all the insertions are feasible within the time limits
and at least one non-elective patient has been inserted in the OR session (h, k), the
NEW-Fit returns adding at the (µhk + 1)-th position of the sequence λhk the one
with the shortest deadline. Otherwise, the sequence λhk remains unchanged and the
elective patient iµhk+1 will be the next to be operated on in (h, k).

Finally, we would like to remark that the amount of effective used overtime could
slightly exceed the maximum overtime available ν. It depends on whether the
overtime is assigned basing the decision on the EOT since ROT is not available. Under
special circumstances, extra overtime can be required for the surgery completion but
all the available overtime has been previously assigned. In this case, we assume to
allow the surgery completion setting the parameter ν equal to the effectively used
overtime.

In Table 4.4 we report a summary of the main notation introduced heretofore.

Tab. 4.4: Summary of the main notation used in this Chapter.

Sets
S: set of all OR sessions Sk: set of all OR sessions of day k
Ljk: set of patients scheduled into (j, k) λjk: sequence of patients scheduled into (j, k)
Qι: set of waiting non-elective patients

Indices and cardinalities
i: elective patient j: index of the operating room
k: index of the day h: index of the released operating room
n: number of OR sessions nk: number of OR sessions of the day k
mjk: number of patient scheduled into (j, k) mjk: number of patient operated on into (j, k)
Times and durations
ti: waiting time of patient i tmax

i : MTBT of patient i
wi: normalized waiting time of patient i w̃i: value of wi in the next planning horizon
ei: EOT of patient i ri: ROT of patient i
djk: duration of (j, k) ι: general instant during the OR session
ν: overtime available for one planning horizon ριjk: time elapsed since the beginning of (j, k)

4.3 Ex-post approach: the offline solution
The online solution is characterized by the lack of knowledge about what might
happen in the remaining of the planning horizon. This is due to the difference
between estimated and real duration of a surgery, and to the unforeseeable arrivals
of non-elective patients.
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On the contrary, at the end of the planning horizon we have a complete information
about what is happened. Thus is possible to evaluate what would be the optimal
decisions to be taken assuming to know in advance all the information that are
acquired over time by the online solution. In our case, such information includes the
ROTs of the elective patients and the surgery demand of the non-elective patients,
that is their amount, the ROTs and the day in which they must be operated on.

We denote this set of decisions as offline solution. Such a solution provides a
significant contribution to evaluate the effectiveness of the online approach. In this
section, first we provide a linear programming model to compute the optimal offline
solution in the case of only elective patients. Then, we extend this model to take
into account also the non-elective patients.

Fig. 4.3: Surgery process scheduling vs. online scheduling: elective patients.
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Figure 4.3 reports an example in which the difference between EOTs and ROTs
caused the request of an amount of overtime. In the OR session (1, k) the overtime
has been allocated in order to operate on the last patient, while in the OR session
(2, k) the surgery of the patient with index 3 has been postponed.

To determine an offline solution in the case of dealing with only the elective patients,
the only relevant decision is that of postponing the surgery interventions. Since the
ROTs are known, we remark that any sequencing of the surgery planned into an OR
session determines the same outcome. Thus the sequencing is not relevant for the
offline solution. Let us introduce the following decision variables

xi =

1 if the surgery intervention of the patient i ∈ L is postponed

0 otherwise

and the non-negative integer νjk ∈ Z+ measuring the overtime assigned to the OR
session (j, k).
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To model the offline solution we introduce the following constraints:

∑
i∈Ljk

(1− xi)ri ≤ djk + νjk ∀(j, k) ∈ S (4.3)

∑
(j,k)∈S

νjk ≤ ν (4.4)

xi = 0 ∀i ∈ Lfirst (4.5)

Constraints (4.3) ensure that the overall duration of the surgery performed during
the OR session (j, k) can not exceed the duration of the OR session plus the additional
overtime assigned. Constraint (4.4) limits the use of the overtime to the maximum
overtime available. Finally, we remark that the first patient scheduled in each OR
session (j, k) is not the subject of an online decision, that is he/she will be always
operated on. Therefore, we are required to model this fact in our offline solution
introducing the constraints (4.5) where Lfirst ⊂ L is the set of all the patients
sequenced as the first of an OR session.

We recall that our online solution would maximize the utilization of the OR sessions
and to minimize the number of postponed patients whose w̃ > 1, that is those
patients for which the MTBT will be exceeded. Thus our objective function should
take into account these requirements.

We define the overall utilization of the OR sessions as the ratio between the total
duration of the operated patients and the sum of the duration of all the OR sessions,
limited to 1 to avoid greater values, that is when using the overtime

u = min
{∑

i∈L(1− xi)ri∑
(j,k)∈S djk

, 1
}
.

To promote a solution with higher utilization, we introduce an auxiliary continuous
variable u ∈ [0, 1] and the constraint

u
∑

(j,k)∈S
djk ≤

∑
i∈L

ri(1− xi). (4.6)

Our aim is to maximize the objective function defined as follows

z ≡ (1− α)u+ α

∑
i∈L(1− xi)−

∑
i∈L

w̃>1
xiψi

|L|
, (4.7)

which is the convex combination of two terms in α ∈ [0, 1]. The former is the
utilization defined by the constraint (4.6). The latter is the number of the patients
operated on minus a sum of the penalties associated to those patient whose surgery
is postponed and their w̃ > 1. Since the utilization ranges in [0, 1], the latter term

4.3 Ex-post approach: the offline solution 45



is normalized on the overall number of scheduled patient |L|. The penalties are
defined as

ψi = w̃2
i . (4.8)

in order to limit the impact of the symmetries as reported in [95].

Finally, the offline solution in the case of only elective patients can be computed by
finding the optimal solution of the following mixed-integer linear program

M e : max z s.t. (4.3)–(4.6)

xi ∈ {0, 1} ∀i ∈ L

νjk ∈ Z+ ∀(j, k) ∈ S

u ∈ [0, 1]

Fig. 4.4: Surgery process scheduling vs. online scheduling: elective and non-elective
patients.

Re-sequencing - Fase 1: priorità ai pazienti urgenti

Durata sessione OR

urg. =1.05

urg. = 0.45

Pazienti pianificati:

Pazienti non pianificati:

Re-sequencing - Fase 2: max-fill della sessione residua

urg. =1.05 urg. = 0.22

urg. = 0.45

Pazienti pianificati:

Decisione sull’overtime: si decide se sfruttare lo straordinario

urg.= 1.05 urg. = 0.22Pazienti pianificati:

urg. = 0.45
Richiesta di overtime

Pazienti non pianificati:

Pazienti non pianificati:

BII               BII               BII               BII BII          max BII                          BII             BII

online scheduling

(1, k)

(2, k)

(3, k)

r1 r2
r3

r1 r4

r1 r2

non
elect.

non
elective

(1, k)

(2, k)

(3, k)

e1

e3

e3

e1 e2

e2

e4

e1 e2

e2

cancelled

st
ar

t

end
end

end

st
ar

t
st

ar
t

st
ar

t
st

ar
t

st
ar

t

end
end

end

overtime

overtime

surgery process scheduling

r3

Figure 4.4 reports an example of solution of the problem in which two non-elective
patients have been scheduled, determining the request of an amount of overtime for
some of the OR sessions.

Model M e can be modified to address also the management of the non-elective
patients. Let Qk be the set of the non-elective patient arrived the day k. We
introduce the following decision variable

yijk =

1 if the patient i ∈ Qk is inserted in the session (j, k)

0 otherwise
.

The constraints ∑
(j,k′)∈S:k′=k

yijk′ = 1 ∀i ∈ Qk, ∀k ∈ K (4.9)

ensure that each non-elective patients in Qk is operated on during only one OR
session (j, k). Although the NEW-Fit algorithm presented in Section 4.2 deal with
non-elective patients having different time limits tmax

i ≤ 24 h, we assume that all
non-elective patients have a time limit tmax

i = 24 h. This allows us to have a simple
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model for the offline solution. Moreover, this assumption is relaxed in Chapter 5,
where a more general analysis is provided. We remark that we have to modify the
constraints (4.3) and (4.6) to take into account the insertion of the non-elective
patients. By consequence, the new constraints are

∑
i∈Ljk

(1− xi)ri +
∑
i∈Qk

yijkri ≤ djk + νjk ∀(j, k) ∈ S (4.10)

u
∑

(j,k)∈S
djk ≤

∑
i∈L

(1− xi)ri +
∑
i∈Q

ri (4.11)

where Q =
⋃
k∈K Qk.

Finally, the offline solution in the case of elective and non-elective patients can
be computed by finding the optimal solution of the following mixed-integer linear
program

Mne : max z s.t. (4.4)–(4.5), (4.9)–(4.11)

xi ∈ {0, 1} ∀i ∈ L

νjk ∈ Z+ ∀(j, k) ∈ S

yijk ∈ {0, 1} ∀i ∈ Q, ∀(j, k) ∈ S

u ∈ [0, 1]

4.4 Quantitative analysis
This section reports the quantitative analysis performed under several scenarios to
evaluate the effectiveness of the proposed online methods providing two different
but complementary analysis. The first one is to embed our online approaches on the
simulated SP in Figure 4.1 reported at the beginning of this chapter, in such a way to
evaluate their impact on the RTM week by week, that is how the previous decisions
(e.g., determining less or more cancellations) impact on the current decisions. The
second one exploits the computation of the corresponding offline solutions in such a
way to assess the competitive of the proposed online solutions.

The optimization modules embedded in the hybrid model are the RTM algorithms
presented in Section 4.2 and the following:

Advanced scheduling: as well as in Chapter 3 when all EOO modules (options
A–C) are enabled;

Allocation scheduling: patients are sequenced in decreasing order of w̃i.

Rescheduling: canceled surgeries are rescheduled in one of the OR sessions of the
first day of the next week.
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We recall that the advanced scheduling is aimed at maximizing the OR utiliza-
tion. This fact directly influences the number of possible cancellations during the
scheduling posing a challenge for the RTM. Furthermore, we recall that it makes
really difficult to insert a patient whose surgery has been postponed by the RTM,
as reported in Section 3.3 of Chapter 3. This justify our choice to schedule on the
next week all the postponed patients. Observe that the policies provided for the
allocation scheduling and the rescheduling are simplifications of the ones proposed
in Section 3.2 of Chapter 3 that allows us to use simple models for the offline
solution.

4.4.1 Scenarios and indices

To avoid to get trapped on a single case study, which could be a limitation from
our point of view, we introduce four scenarios in such a way to provide more
accurate insights from our quantitative analysis. To this end, we will consider four
scenarios (E, NE1, NE2, NE2b) obtained by varying the non-elective arrival ratio
and available overtime while the other parameters characterizing them are fixed. All
the parameters are reported in Table 4.5.

Tab. 4.5: Parameters characterizing the four scenarios.

Varying parameters
scenario non-elective Ω scenario non-elective Ω
(E) — 10 hours (NE2) 30 per week 50 hours
(NE1) 15 per week 15 hours (NE2b) 30 per week 40 hours

Common parameters to all scenarios
parameter unit value parameter unit value

elect. arrival rate patients/day 25 initial |I| patients 500
avg. EOT minutes 140 s. dev. EOTs minutes 75
s. dev. ri − ei minutes 30 max ROT minutes 480
n sessions/week 45 djk minutes 480

The flow of elective patients is described in terms of urgency class, frequency and
MTBT in Table 4.6. Finally, all the simulation model parameters are the same of
those reported in Section 3.5 of Chapter 3.

Tab. 4.6: Urgency classes and MTBTs of the elective patients.

URG class frequency MTBT (days) URG class frequency MTBT (days)

A 3% 8 B 5% 15
C 7% 30 D 10% 60
E 15% 90 F 25% 120
G 35% 180

48 Chapter 4 The Real Time Management of non-elective patients



4.4.2 Results
In this section we report the results of our quantitative analysis obtained by running
our methods on the four different scenarios.

In order to provide a term of comparison, we introduce a baseline configuration
in which the solution for the RTM is simpler than those proposed in Section 4.2.
In the baseline configuration, the resequencing is not performed, the overtime is a
priori uniformly distributed among the OR sessions and the non-elective patients are
assigned to the first free OR session. The baseline configuration does not claim to fit
perfectly the clinical practice (since we are not dealing with a specific case study)
but it would represent a more general operative context in which some optimization
approaches are performed on the planning side but without taking into account the
inherent uncertainty arising in the management of a SP. The introduction of the
baseline configuration allows us to evaluate the actual impact of the RTM on the
management of the surgical pathway.

Two further configurations are introduced to properly evaluate the online approach
in the case of non-elective patients, that is one configuration with the NEW-Fit
algorithm (conf. 2) and one without (conf. 1). When NEW-Fit is not considered, the
non-elective patients are scheduled as soon as possible.

Tab. 4.7: Performance indices for each scenario and RTM configuration.

Scenario RTM Performance indices
id config. o c tavg wavg f uOR uover

(E)
baseline 7 532 6.7% 111 1.05 44.0% 83.4% 13.3%

1 7 991 5.0% 86 0.81 91.9% 88.5% 56.9%

(NE1)
baseline 7 050 14.2% 130 1.25 17.3% 86.5% 17.5%

1 7 657 9.1% 98 0.92 65.6% 93.1% 100.0%
2 7 796 7.6% 93 0.87 76.2% 94.6% 100.0%

(NE2)
baseline 6 866 16.3% 147 1.42 2.5% 93.9% 21.2%

1 8 131 4.5% 81 0.75 96.6% 100.0% 95.8%
2 8 147 4.4% 80 0.74 96.8% 100.0% 96.2%

(NE2b)
baseline 6 717 18.5% 154 1.50 0.2% 92.3% 20.2%

1 7 780 7.4% 99 0.92 66.7% 100.0% 98.0%
2 7 878 6.9% 96 0.89 77.4% 100.0% 98.4%

Table 4.7 reports the value of the performance indices, which are obtained by taking
the corresponding average value running the simulation model 30 times on a given
configuration and, each time, starting from a different initial condition. Each run
replicates two years of operating room management. Data are collected only on the
second year. Remarks on running time are reported in Section 4.4.3.

With respect to the baseline configuration, the reported results showed that the
adoption of the online approach for the RTM – both in the case of only elective
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or non-elective patients – can largely improves the patient-centered performance
indices while maintaining the facility-centered ones.

The most relevant improvement is that regarding the fraction f of patients operated
within the MTBT, which measure the capability of the hospital to respect their
deadlines ensuring to deliver a surgery in a proper way. The results prove the
positive impact of the NEW-Fit algorithm. For instance, an improvement of more
than the 10% can be observed for the index f on the scenarios (NE1) and (NE2b)
while this improvement is limited in the scenario (NE2).

Fig. 4.5: Trend of f (data referred to the 2nd year, days on x-axis, percentage of patients
on y-axis).
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Figure 4.5 reports the trend of the fMTBT value during the simulation in order to
compare the behavior in the scenario (NE2) (Figure 4.6a) and (NE2b) (Figure 4.6b).
As reported in Table 4.5. the difference between the two scenarios is the amount
of available overtime, that is 50 hours for (NE2) and 40 for (NE2b). While in
Figure 4.6a the f is quite stable along the time, we observe that in Figure 4.6b a
drop is reported after about 240 days. This highlights the fundamental role of the
overtime as a flexible resources, when the required amount is correctly evaluated.
We also remark that the NEW-Fit is able to limit the negative impact of an overtime
underestimation (Figure 4.6b).

Table 4.8 reports the competitive analysis, that is the comparison between online and
offline solutions. The results are obtained as follows. Among the 30 runs reported
before, we selected the run whose performance indices are closest to the average
values of the performance indices. From this run, we extracted the information
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required to generate the 52 instances corresponding to the second year of simulated
time. Finally, we computed the optimal solution for each of the 52 instances by
solving the corresponding mixed-integer linear problem.

Therefore, Table 4.8 reports the average values over 52 instances of the following
quantities: π and π′ are respectively the number of elective patients scheduled and
the number of elective patients scheduled whose w̃i > 1; γ and γ′ are respectively
the number of cancellation and the number of cancellation whose corresponding
patients have w̃i > 1; zavg is the value of the objective function (4.7). Finally, the
columns regarding the competitive ratio report both the experimental average and
worst ratio.

The competitive analysis confirms the quality of the online solutions. In particular,
the analysis of the zavg values and the average and the worst competitive ratio values
validates the remark about the positive impact of the NEW-Fit algorithm.

Tab. 4.8: Comparison between online and offline solutions.

Scenario RTM input online sol offline sol comp. ratio time
id config. π (π′) γ (γ′) zavg γ (γ′) zavg avg. worst secs.

(E)
baseline 157 (78) 12 (5) 0.8607 3 (1) 0.9347 1.09 1.15 0.12

1 161 (8) 7 (0) 0.9243 4 (0) 0.9467 1.02 1.09 0.11

(NE1)
baseline 156 (109) 20 (13) 0.8022 2 (1) 0.9830 1.23 1.45 0.96

1 161 (42) 13 (2) 0.9188 2 (0) 0.9883 1.08 1.26 35.31
2 161 (24) 12 (0) 0.9353 2 (0) 0.9894 1.06 1.13 3.98

(NE2)
baseline 154 (138) 22 (20) 0.7708 0 (0) 0.9978 1.30 1.63 0.20

1 163 (6) 8 (0) 0.9768 1 (0) 0.9971 1.02 1.06 68.75
2 163 (5) 7 (0) 0.9786 1 (0) 0.9972 1.02 1.06 0.53

(NE2b)
baseline 152 (147) 23 (22) 0.7317 1 (1) 0.9929 1.37 1.78 0.49

1 161 (37) 12 (1) 0.9616 2 (0) 0.9932 1.03 1.12 117.31
2 161 (31) 10 (0) 0.9681 2 (0) 0.9939 1.03 1.07 110.16

The analysis of the average competitive ratio proves the challenging of the problem
of dealing with the management of a flow of elective and non-elective patients.
Actually, the competitive ratio of the baseline solution largely increases as soon
as the arrival rate of the non-elective increases or the available overtime is tight.
On the contrary, the competitive ratio of the configurations 1 and 2 is quite stable.
Furthermore, the gap between the two competitive ratios (baseline vs. configuration
1 or 2) is quite acceptable for the scenario (E) while increases for the other non-
elective scenarios demonstrating the need of an online solution to cope in a effective
way the management of non-elective patients.

4.4.3 Computational remarks

The results reported in Section 4.4.2 are obtained running our computational tests
on a 64 bit Intel Core i5 CPU with 3.33GHz and 3.7GB of main memory.
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On average, one single run of the simulation model requires from 7.0 to 20.5 seconds
when running with scenario (E) and baseline configuration or with scenario (NE2b)
and configuration 2, respectively. This means that no more than 615 seconds
are needed to simulate two years of operating room management. Finally, we
remark that the algorithm for the advanced scheduling is the most time consuming
component while the running time required by the other components is negligible.

The mixed-integer linear programs are solved using IBM ILOG CPLEX Optimization
Studio 12.3. The CPLEX running time are reported in the last column of Table 4.8.
Note that usually few seconds are enough to solve an instance of the offline problem.
The high average values are determined by few instances requiring a lot of time to
close the optimality gap. For example, the number of instances requiring more than
5 seconds in the scenario (NE2b) are 10 and 4 for configuration 1 and 2, respectively.
This is probably due to the large number of symmetries determined by the decision
variables yijk for a given day k.

4.5 Concluding remarks
In this chapter, we considered a challenging extension of the RTM of ORs, considering
a joint flow of elective and non-elective patients. We evaluated the effectiveness
of the RTM on a simulated surgical clinical pathway under several scenarios and
also reporting a competitive analysis with respect to an offline solution obtained
by solving a mixed-integer programming model. The quantitative analysis showed
the capability of the online solutions to address the inherent uncertainty of the
RTM determining a general improvement of the patient-centered indices without
deteriorating the facility-centered ones. Further, the analysis of the competitive ratios
confirmed the challenging of the problem of dealing with a flow of non-elective
patients sharing the ORs with a flow of elective patients.

From a methodological point of view, our analysis suggested that online optimization
can be a suitable methodology to deal with the inherent stochastic aspects arising
in the majority of the health care problems. Although online optimization does not
exploit sophisticated mathematical approaches, the competitive analysis reported in
Table 4.8 suggested its capability to deal with the stochastic aspects of a problem
whenever such aspects are embedded into a well-structured optimization problem,
such as those arising in the health care management.
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5Dedicated vs. Shared Operating
Room Policies

The aim of this chapter is to exploit the hybrid model presented in Chapters 3 and 4
to enable the analysis and the comparison of the DOR and the SOR policies for the
management of both elective and non-elective surgery. In this way we provide a
tool capable to support exhaustively the decision problems in the surgery process
scheduling. Indeed, the generality of the proposed model allows us to replicate and
to compare a wide range of possible scenarios and policies, in which most of the
case studies of the literature can be included.

The chapter is organized as follows. Common approaches in literature for the DOR
and SOR policies are reported in Section 5.1. Online and offline algorithms for the
optimization of the DOR and SOR policies are described in Section 5.2. The compu-
tational environment is defined in Section 5.3 describing scenarios, configurations
and performance indices. Based on this environment, a comprehensive quantitative
analysis is reported in 5.4: we evaluate the DOR, the SOR and the hybrid policies
determining, for each policy, the best configuration with respect to the considered
scenario; then, we use such configurations in order to compare the three policies in
such a way to derive some insights in terms of supporting decision making; finally,
the analysis also proves the effectiveness of the proposed approaches. Section 5.5
closes the chapter.

5.1 Common problems and approaches from literature
Since the DOR policy allows us to consider separately the two flows of patients, the
elective patient flow is managed considering SE ⊂ S, that is the set of OR sessions
dedicated to the elective surgery, as we proposed in Chapter 3, while the non-elective
surgery flow is simply managed in the remaining and dedicated OR sessions. In
addition to the decisions regarding the management of the elective patients, the
DOR policy imposes a further decision, that is how many OR sessions should be
allocated for elective and non-elective surgery.

Under the SOR policy, Van Riet and Demeulemeester [130] identify two classes of
methods to deal with the non-elective insertion, that is the slack management and the
Break-In-Moment optimization.

When elective and non-elective surgeries are performed in the same ORs, the sched-
ule of the elective patients should take into account the possible insertion of non-
elective patients during the execution of the OR sessions. If the whole session
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capacity is allocated to plan elective patients, such insertions will cause an overload
that involves an higher demand of overtime, which generally is a scarce resource.
Therefore slack management policies are introduced to avoid the increase of the
cancellations [60, 132, 134, 135]. Different policies are obtained on the basis of
two decisions, that is (i) the total amount bjk of time reserved during the elective
advanced scheduling and (ii) the distribution of the slacks within the schedule. Note
that such decisions deal with the trade-off between cancellations and OR utilization,
as well as having a different impact on the two flows of patients.

Tab. 5.1: Categorization of non-elective patients with respect to their time limit (extracted
from [130]).

Category Time Limit Category Time Limit

Trauma 30 minutes Emergent from 30 minutes to 24 hours
Urgent from 4 to 24 hours Semi-urgent from 8 hours to 3 days
Add-on 24 hours Work-in from 24 hours to 3 days

Non-elective surgeries should be performed within a time limit that varies in ac-
cordance with their urgency, as reported in Table 5.1, taken from the survey by
Van Riet and Demeulemeester [130]. Such surgeries can be inserted in the schedule
of the elective patients once an going elective surgery has finished. We denote these
completion times of the elective surgeries by Break-In-Moments (BIMs). Then, the
waiting time for emergency surgeries depends on these BIMs, whose optimization
consists in sequencing the elective surgeries in their assigned OR, such that the
intervals between consecutive BIMs is minimized. To the best of our knowledge,
only Essen et al. [91] deal with the BIM optimization problem, proposing an offline
approach.

Let ι be the BIM in which the m-th patient leaves the OR session (j, k) and let Qι

be the set of the non-elective patients waiting for an insertion at that instant. If
Qι 6= ∅, then the sequence λjk could be modified inserting one of such non-elective
patients ine ∈ Qι at the position m+ 1 and shifting of one position the last mjk −m
patients. Otherwise the sequence λjk could remain unchanged and the non-elective
patients will wait the next BIMs for the insertion. The BIM optimization consists in
determining for each day k of the planning horizon the set Λk of all the sequences
of surgeries λjk that minimizes the time between two consecutive BIMs, called
Break-In-Interval (BII), in such a way to lower waiting time for the non-elective
patient. The information available for the computation of the BIMs is the EOT of the
patients i ∈ Ljk.

This problem requires to be addressed during the allocation scheduling since the only
way to change the BIMs is to determine an alternative surgery sequencing. Figure 5.1
reports an example of scheduling with three ORs planned for the day k, reserving
slacks in two of them. We supposed to have OR sessions with the same duration
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and starting at the same time. Each gray box represents the surgery of an elective
patient that has been placed according to λjk. The length of the box expresses the
EOT of the corresponding patients, causing different BIMs corresponding to all the
OR releases during the day k. Two consecutive BIMs have been indicated with a
dashed vertical line: their distance of time determines one of the BIIs. From a real
time management perspective, the uncertainty can change the BIMs determining the
need of an online re-sequencing.

Fig. 5.1: Slacks, BIMs and BIIs – example of configuration with three OR sessions.
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In addition, the non-elective insertion problem should consider also the real time
decision of the OR sessions in which the surgery of the non-elective patient should
be inserted: the decision should reach a good trade-off between the waiting time of
the non-elective patients and the cancellation of the elective surgeries. We call this
problem Non-Elective Real Time Insertion (NERTI). The literature analysis reveals
that such a decision is not considered, and for this reason we propose an online
approach in Section 5.2.3.

5.2 Optimization of the non-elective patient flow
As discussed in Section 5.1, the problem of inserting non-elective patients can be
tackled with three methods, that is the slack management, the BIM optimization,
and the NERTI.

5.2.1 Slack management
Before scheduling the elective patients, there are two different choices regarding the
slack management that should be taken. The first decision is in which OR session to
provide a slack, which means to decide the number ns < nk of ORs that will contain
a slack during the day k. The second decision is about the fraction π of time to
reserve in each of those OR sessions with respect to their total duration. The couple
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of parameters (ns, π) will indicate that a slack of duration πdjk has been reserved
in each of the OR sessions (j, k), with j = nk − ns + 1, . . . , nk and k ∈ K, while
the OR session (j, k), with j ≤ nk − ns are entirely available during the advanced
scheduling.

5.2.2 BIM optimization

With BIM (or BII) optimization we refer to the problem of sequencing the surgery of
scheduled patients within the OR sessions of the day k in such a way to minimize
the waiting time of possible non-elective patient arrivals. The problem has a strong
stochastic component because of the unpredictability of the non-elective and their
characteristics, that is the time of arrival, the surgery duration and the urgency (with
the corresponding time limit). Although in literature such a problem is addressed
before the beginning of the OR sessions, that is during the allocation scheduling,
we also take into account the possibility of optimizing the BIIs configuration during
the execution of the OR session, in such a way to exploit the updated information,
that is the ROT ri of the patient i operated on (instead of the estimation ei) and the
insertion of non-elective surgery already performed.

We propose the Break-In Layout Local Search (BILLS), an algorithm inspired to that
proposed in [91], but capable to deal with the elective patients close to their MTBT.
The algorithm tries with a local search to improve an initial solution Λk = {λjk}j
exchanging pairs of patients in the same sequence λjk in such a way to minimize
an objective function accounting for the waiting time of the elective patients. The
algorithm ends when there is no improvement of this function in the neighborhood.
We propose two alternative objective functions to

z1 = max
m≥1

(ιm − ιm−1) (5.1)

z2 = 1
d

∫ d

0
β(t)dt (5.2)

where ι0 is the instant in which the OR sessions begin, ιm are all the instants
corresponding to all the other ordered BIMs (m = 1, 2, . . .), d is the duration of the
OR sessions of the day and β : [0, d] → [0, d] is the function which associates to
each instant the time remaining to the release of the next OR. The former objective
function represents the longest time interval between two consecutive BIMs. The
latter is the average value of the estimated waiting time with respect to the overall
duration of the OR sessions. Note that using deterministic surgery durations (EOTs),
equation (5.2) is equal to

1
d

∑
m≥1

(ιm − ιm−1)2

2
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therefore we can define the equivalent, but simpler, objective function

z′2 =
∑
m≥1

(ιm − ιm−1)2 .

Fig. 5.2: BIM optimization: computation of the objective functions z1 and z2 (we supposed
that all the OR sessions begin at the same instant and that djk = d for all (j, k)). In
the figure, the decreasing function b(t) from ιi to ιi+1 (i = 0, . . . , 4) measures the
remaining time to ιi+1, that is the waiting time of a non-elective patients arriving
at t ∈ (ιi, ιi+1).
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Figure 5.2 shows an example for the elective surgeries schedule and the correspond-
ing values of the objective functions z1 and z2. In the lower part of the figure, the
piece-wise linear function b(t) has been obtained starting from the BIMs ι0, . . . , ι5.
Note that b(t) is equivalent to β(t) when deterministic times are considered.

Since patients close to their MTBT are scheduled by the LPT+ algorithm (reported
in Section 3.2 of Chapter 3) to avoid a cancellation, we impose that such patients
can not be swapped during the local search.

We use two versions of this algorithm: an offline version will be used for the
allocation scheduling at the beginning of each day while an online version will be
used every time an operating room is released.

5.2.3 NERTI
The insertion of a non-elective patient within a certain OR session determines (i) the
shift of the remaining elective surgeries and (ii) the variation of the BIIs configuration
determining an effect to the other non-elective patients. Such modification can have
an impact that should be considered. With NERTI we refer to the problem of
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deciding when and in which OR session a non-elective patient could be inserted,
which requires an online approach because such a patient could arrive in any instant
during the day asking for a surgery within a short time limit. Such a decision could
determine (i) a different need of overtime or the cancellation of the elective patients
previously scheduled and (ii) longer waiting times of further more urgent non-
elective patients (still not arrived). To deal with the two different impacts discussed
above, we propose two algorithms: the NEW-Fit algorithm and the Non-Elective
Insertion Criterion (NEIC). The latter is presented in Section 4.2 of Chapter 4, the
former is explained below.

The NEIC algorithm establishes the best BIM for inserting a non-elective patient
on the basis of the number of BIMs available up to the end of the OR session. The
idea is to schedule a non-elective patient only when a sufficient number of BIMs is
available in the next minutes, in such a way to guarantee the insertion of further
and more urgent arriving non-elective patients.

Let δ ∈ (0, 1] be the parameter for defining the early deadline of the non-elective
patients’ time limit, that is δtmax

i . Let i be the non-elective patient with the minimum
value of tmax

i − ti. On the basis of the EOTs of the elective schedule, let ῑ be the time
estimated for the next OR release, which is the first BIM after the time t. Finally,
let η(t0, T ) be the number of BIMs within a certain interval of time (t0, T ). Then
the patient i is inserted in the released OR (h, k) if and only if at least one of the
following conditions is satisfied

tmax
i − ti ≤ T (5.3)

δ(tmax
i − ti) < ῑ (5.4)

η(t, t+ δ(tmax
i − ti))

δ(tmax
i − ti)

≤ η(t, t+ δT )
δT

(5.5)

otherwise the schedule remains unchanged.

Let i+ be a possible further patient that arrives right after the entry of a patient in
the OR session (h, k), which we have to allocate within the shortest time limit T ,
that is the worst case for our online problem. The condition (5.3) is satisfied if the
patient i is closer to the time limit than i+, while the condition (5.4) is satisfied
if patient i can not wait until the next OR release without exceeding the early
deadline. In both cases, it is not convenient to optimize the waiting time of further
non-elective patients, because of the short time limit of an already waiting patient.
The condition (5.5) is satisfied when the frequency of BIMs in the next δ(tmaxi − ti)
minutes, that is the early deadline of i, is lower than the frequency of BIMs in the
next δT minutes, that is the early deadline of i+. In this case it is better to insert i
even if δ(tmax

i − ti) > δT because there are more frequent BIMs in the next minutes
than hereafter.
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5.3 Setting up the computational environment
We performed a quantitative analysis in order to assess the impact of the different
policies (the DOR, the SOR and hybrid policies) and the optimization approaches
when they are used separately or jointly.

5.3.1 Scenarios

We introduce four scenarios S1–S4 in such a way to provide more accurate insights
from our quantitative analysis. Such scenarios are obtained by varying the number
of OR sessions per day and the distribution of the surgery durations to represent
different settings of the operating theater and different characteristics of the patient
population, respectively. We fixed the arrival rate of the patients in such a way to
match the the surgery time per week with the total number of arriving patients
per week multiplied for the average surgery duration. Note that the total duration
of the OR sessions is just sufficient to operate all the patients if their durations
were deterministic and if it were possible to predict the non-elective arrivals and to
perform the advanced scheduling with the 100% of the OR utilization. This choice
allows us to have four scenarios in which the capacity is adequate to the need of
interventions, but extra time is necessary to deal with uncertainty: we provided 30
minutes of overtime per OR session.

Tab. 5.2: Parameters characterizing the four scenarios.

Varying parameters

scenario capacity EOT distribution patients
id OR sessions ν e0 µEOT σEOT arrival rate initial

S1 10 per day 25 hours 60 min 150 min 60 min 160 per week 400
S2 5 per day 12.5 hours 60 min 150 min 60 min 80 per week 200
S3 10 per day 25 hours 30 min 90 min 15 min 266 per week 400
S4 5 per day 12.5 hours 30 min 90 min 15 min 133 per week 200

Common parameters to all scenarios S1 − S4

patient distribution
elective (85% of the total) non-elective (15% of the total)

parameter value urgency (freq.) MTBT type (freq.) time limit

djk 480 min A (3%) 8 days trauma (20%) 30 min
emax 480 min B (5%) 15 days emergent (40%) 90 min
q 15 min C (7%) 30 days urgent (30%) 3 hours

σROT 30 min D (10%) 60 days add-on (10%) 24 hours
rmin 15 min E (15%) 90 days
rmax 480 min F (25%) 120 days

G (35%) 180 days

The main parameters used in the four scenarios S1−S4 are summarized in Table 5.2,
in which we adopted the same terminology introduced in Table 5.1 for the definition
of the time limit for non-elective patients, that is trauma, emergent, urgent, add-on.
According to [121, 122], the EOT of each patient is obtained generating a value
with a 3-parameters Lognormal distribution of minimum value e0, average µEOT
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and standard deviation σEOT, truncated to the maximum value emax. Such values
are then approximated to the nearest multiple of a discretization constant q, which
models the estimate made by the physician during the pre-operative visit. Once the
EOT ei has been determined, the ROT is generated with a Gaussian distribution with
average ei and standard deviation σROT, truncated to the minimum and maximum
values rmin and rmax. We observe that if mjk patients are scheduled in the OR session
(j, k), then the total duration of their surgeries is a random variable with average
equal to the sum of the EOTs and standard deviation √mjkσROT. For instance, if 4
patients with EOT of 75, 105, 120 and 180 min are scheduled in an OR session of
duration 480 min and we fix σROT = 30 min, then the total surgery duration will have
average 480 min and standard deviation 60 min, which means that the probability of
exceeding more than 30 and 60 min the closing time is 31% and 16%, respectively.

Finally, we remark that our model allows to modify the settings of all the parameters
reported in Table 5.2 in order to represent a large variety of operative conditions.

5.3.2 Configurations
In order to provide a term of comparison in our quantitative analysis, we introduce
a baseline configuration valid for the DOR, the SOR and the hybrid policies, in
which:

• advanced scheduling is performed using the same greedy algorithm, that is
executing only the first step of the metaheuristic introduced in Section 3.2 of
Chapter 3;

• allocation scheduling is performed by ordering the elective patients in decreas-
ing order of wi;

• resequencing is never performed;

• the overtime is subdivided a priori among assigning the amount ν
n to each OR

session, which is always allocated to patients in need until exhaustion;

• all non-elective patients are inserted as soon as possible in the first dedicated
or shared (in accordance with the policy used) OR session, giving the priority
to the patient closest to the time limit.

We remark that the baseline configuration for the DOR policy has an additional
parameter representing the number of daily ORs dedicated to non-elective patients.

Starting from the baseline configuration, further configurations can be obtained
enabling several optimization modules. Table 5.3 reports all the EOO and the
NOO modules we will consider in the quantitative analysis reported in Section 5.4,
specifying the problem in which they are included and the parameters required
(z = z1 or z2 is the objective function used in the BILLS algorithm). Observe that
module A is introduced in Section 3.2 of Chapter 3, while module E is presented in
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Tab. 5.3: Optimization modules available for the three different phases of the surgery
process scheduling: the first column denotes the optimization module and its
parameter(s).

mod.(par.) description type advanced allocation
EOO NOO sched. sched. RTM

A

Greedy + Local Search
√ √

LPT modified
√ √

Best Fit resequencing
√ √

Overtime criterion
√ √

B(ns, π) Slack
√ √

C(z) offline BILLS
√ √

D(z) online BILLS
√ √ √

E(δ) NEW-Fit
√ √

F(δ) NEIC
√ √

Section 4.2 of Chapter 4, and all the other modules are proposed inSection 5.2 of
this chapter. Since the aim of this study focuses on the impact of the DOR, the SOR
and the NOO optimization approaches, we will study only the overall impact of the
EOO approaches (module A). We refer to Chapter 3 for a complete analysis, on the
basis of which we define an unique best EOO module (the configuration giving the
best overall performance) that will be used in our quantitative analysis.

Finally, we remark that in Section 5.4, we report only the results of several represen-
tative configurations with the aim of giving a general idea of the analysis that our
model allows us to do. This choice is determined by the high numbers of possible
configurations: as a matter of fact, limiting both the parameters π and δ to 4 different
values, there are 104 possible configurations for the DOR, 11 160 for the SOR and
145 080 for the hybrid policies.

We use the set indices in such a way to evaluate the performance of each represen-
tative configurations from both the patient and the facility point of view. Table 5.4
reports the indices used for the quantitative analysis. Observe that to the most
representative indices already defined in Table 3.2 of Chapter 3 and the overtime
utilization fover, new indices are introduced to represent the non-elective patients
perspective.

The strong trade-off among the facility- and the patient-centered indices does not
allow us to state what configurations are better than the others, because it depends
on the particular scenario and the individual objectives of hospital managers. In
order to provide a concise analysis, we define an objective function Z that allow us
to determine uniquely what is the more rational configuration, that is

max Z = 3fE + (1− c) + 4fNE + 2uOR. (5.6)

We derived the equation (5.6) in such a way to balance the contribution of the
performance indices related to different stakeholders. We included four performance
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Tab. 5.4: Patient-centered and facility-centered indices.

Index Definition

Facility-centered

uOR OR utilization
uover overtime utilization

Elective patient-centered

o number of elective surgeries performed
c fraction of cancellations
tavg average waiting time spent by elective patients in the waiting list
f fraction of elective patients operated within the MTBT
wavg average value of elective patient’s wi = ti/t

max
i at the time of their surgery

Non-elective patient-centered

wNE average value of all non-elective patient’s wi at the time of their surgery
wtr,em,ur,ad average value of patient’s wi at the time of their surgery in the classes

“trauma”, “emergent”, “urgent” and “add-on”
fNE fraction of all non-elective patients operated within the time limit
ftr,em,ur,ad fraction of patients operated within the time limit in the classes “trauma”

“emergent”, “urgent” and “add-on”

indices from Table 5.4: f and c to consider the the elective patients point of view,
fNE to take into account the non-elective patients point of view and uOR for the
facility-centered aspect. The coefficients have been fixed in order to assign the 40%
of the weight to both elective and non-elective patients and the remaining 20%
for the efficiency point of view. We observe that Z ∈ [0, 10] is equal to 10 when
the OR sessions are fully utilized, there are not cancellations and all (elective and
non-elective) patients are operated within their time limits. The objective function
Z can be redefined changing the weights and/or involving other indices in such a
way to account for the different perspectives of the stakeholders.

5.4 Quantitative analysis
In this section we report the results obtained by the quantitative analysis described
in Section 5.3. In Section 5.4.1 we discuss the analysis for the DOR policies, which
are more straightforward than the SOR ones because of the reduced number of
possible configurations. Then, the analysis of the SOR policies is reported and
discussed in Section 5.4.2 with a particular attention to the evaluation of the several
NOO algorithms introduced in Section 5.2. Starting from the best configuration for
the DOR policies, we provided the analysis for the hybrid policies in Section 5.4.3.
Finally, we compare the performance of all the best configurations of the different
policies in Section 5.4.4.
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All the results reported in this section are the average value of the performance
indices over 30 different simulation runs for each scenario and configuration. Each
run starts from a different seed in such a way to obtain an independent and identical
distributed replication. A time horizon of two years has been fixed: after a warm up
period of one year, the steady state results are collected over the second year. This
allows us also to appreciate the impact of decisions over time and not only over the
single planning horizon of one week. Such parameters are those already used in
Chapter 3 in which the patient pathway has been validated.

For each policy, we focus on the results of the scenario S1 showing the impact of the
EOO and, after, the effect of each single NOO module on the performance. On the
basis of the best values of Z, we also evaluate the impact of enabling all the best
NOO modules at the same time. Because of the huge number of configurations, we
will show only the best configuration for the scenarios S2–S4 to remark that different
scenarios could require a different approach.

The average execution time for a single simulation running over the whole time
horizon ranged between 7 and 348 seconds, depending on the fixed scenario and
configuration. The scenario S3 required the longest computational times, because of
the higher amount of patients. For the same reason, S2 had the best performance in
terms of execution time: all configurations required on average less than 23 seconds
for each complete run. In general, the greater impact is given by the optimization
modules A and D, because of the use of a local search algorithm in both of them.
However, the times required are satisfactory for our aims.

5.4.1 Dedicated Operating Room

We simulate different configurations of the DOR, which are obtained varying the
number of dedicated OR sessions over the total number of 10, using or not the
EOO modules and adopting or not a policy G for the immediate insertion of trauma
patients: while as default they can access only to the dedicated ORs, adopting this
policy they are allowed in any OR that is released first. The reason of such a policy
is the need of an immediate intervention for the patients of this type. The main
results about the scenario S1 are reported in Table 5.5, in which several baseline
configurations are obtained varying the number of dedicated ORs.

As expected, increasing the number of ORs dedicated to non-elective patients, their
waiting times decrease allowing the respect of the time limits. However this causes
a worsening of the elective patient performance, which have less available resources,
but also a lower OR utilization.

Figure 5.3(a) remarks the strong trade-off between the percentage of elective and
non-elective patients operated on time, while Figure 5.3(b) focuses on the different
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Tab. 5.5: DOR – Scenario S1 with 10 ORs – main performance indices.

conf. # ded. enabled Performance indices
id ORs modules uOR uover o c tavg f wavg fNE wNE Z

A1 1 78.0% 9.3% 6.5k 6.9% 58 99.0% 0.52 47.1% 2.01 7.344
B1 1 G 78.6% 9.3% 6.5k 6.9% 56 99.0% 0.50 49.3% 1.89 7.446
C1 1 A,G 86.6% 57.8% 7.2k 0.0% 11 99.3% 0.13 49.2% 1.88 7.681
A2 2 76.4% 9.0% 6.0k 7.1% 92 80.1% 0.82 72.2% 1.01 7.747
B2 2 G 76.8% 9.0% 6.0k 7.1% 91 81.2% 0.81 73.7% 0.92 7.849
C2 2 A,G 85.6% 57.0% 6.8k 0.0% 39 99.3% 0.36 74.1% 0.90 8.656
A3 3 71.6% 8.7% 5.4k 7.3% 132 22.5% 1.22 87.1% 0.43 6.520
B3 3 G 71.8% 8.6% 5.4k 7.2% 131 23.7% 1.21 87.8% 0.42 6.586
C3 3 A,G 80.5% 53.2% 6.1k 0.0% 85 89.9% 0.76 92.6% 0.35 8.984
A4 4 64.3% 7.8% 4.6k 7.4% 171 1.6% 1.68 93.4% 0.22 5.993
B4 4 G 64.4% 7.8% 4.7k 7.2% 170 1.6% 1.67 93.5% 0.21 6.007
C4 4 A,G 71.1% 38.8% 5.1k 0.0% 136 19.1% 1.27 96.4% 0.12 6.852
A5 5 56.0% 6.7% 3.9k 7.3% 201 0.1% 2.16 95.5% 0.15 5.873
B5 5 G 56.0% 6.8% 3.9k 7.2% 204 0.1% 2.18 95.6% 0.14 5.875
C5 5 A,G 61.7% 31.8% 4.3k 0.0% 183 0.8% 1.86 98.8% 0.04 6.211

type of non-elective patients and shows that the most urgents have a higher risk of
exceeding the time limits when the number of dedicated ORs is not sufficient.

Regardless of the number of dedicated ORs, the EOO is able to better exploit the
overtime than the baseline configurations. Then the OR utilization is significantly
improved and cancellations are almost totally annulled. This fact is also due to the
lower uncertainty that the DOR policy has because of the insertion of non-elective
patients does not affect on the risk of elective patients cancellation, as in the SOR.

When the module G is enabled, a slight improvement of the non-elective waiting
times has been observed, but an even greater contribution is given by the EOO. In
Table 5.6 can be seen that this fact is more evident for trauma and emergent patients.
In particular, wtr = 1.24 in the baseline configuration, that means that the average
waiting time is 7 minutes over the time limit, but enabling the modules A and G such
exceeding is less than one minute and there is 3.6% more trauma patients operated

Fig. 5.3: DOR – Scenario 1 – Percentage of patients treated in time for various numbers of
dedicated ORs, with A and G enabled.
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on time. Therefore, the proposed EOO approaches have also a positive impact on
the non-elective patients, although they are designed for an elective patient flow.

Tab. 5.6: DOR – Scenario S1 – Focus on non-elective patient-centered indices, 3 dedicated
ORs

config. # ded. enabled Performance indices
id ORs modules fNE ftr fem fur fad wNE wtr wem wur wad

A3 3 87.1% 77.7% 82.4% 95.4% 100% 0.43 1.24 0.34 0.17 0.03
B3 3 G 87.8% 78.5% 83.4% 95.7% 100% 0.42 1.20 0.31 0.16 0.03
C3 3 A, G 89.9% 81.3% 86.4% 97.2% 100% 0.35 1.01 0.27 0.13 0.02

Although the baseline configuration A2 is better than the baseline configuration A3,
when the optimization modules are enabled configuration B3 has a greater value
of Z than B2. Then the number of dedicated ORs that maximizes the performance
strictly depends on the optimization approaches that are used.

Tab. 5.7: DOR – Scenarios S1 − S4 – Best configurations.

scen. config. # ded. enabled Performance indices
id id ORs modules uOR uover p c t fE wE fNE wNE Z

S1 C3 3 A, G 80.5% 53.2% 6.1k 0.0% 85 92.6% 0.76 89.9% 0.35 8.984
S2 C1 1 A, G 81.9% 52.7% 3.3k 0.0% 46 99.3% 0.42 64.6% 1.30 8.202
S3 C2 2 A, G 83.6% 60.6% 10.8k 0.1% 55 99.3% 0.48 71.4% 1.01 8.505
S4 C1 1 A, G 81.3% 69.1% 5.4k 0.3% 57 99.2% 0.50 60.5% 1.43 8.018

All the previous remarks for the scenario S1 are confirmed also for the other scenarios,
whose best configurations are listed in Table 5.7. We observe that, in scenario S1,
the best configuration C3 provides the 30% of the ORs to the non-elective patients,
that are the 15% of the total, because the unpredictability of such patients requires
a higher amount of resource to deal with the time limits. Differently, the scenario
S3 maximizes the objective function with the configuration C2, which provides the
20% of the ORs to the non-elective. This result indicates that the need of dedicated
ORs depends also on the surgery duration distribution, that is the only difference
between the two scenarios.

5.4.2 Shared Operating Room
Starting from the unique baseline configuration D1 defined for the SOR, Table 5.8
reports the results of different configurations obtained enabling and combining the
optimization modules to maximize the objective function Z for the scenario S1.

The configuration E1 corresponds to the configurations C1–C5 of the DOR, because
of the use of the EOO and the implication of the module G in any SOR policy. All
the performance indices are improved by the module A: OR utilization and waiting
times of both elective and non-elective patients are better than those of the DOR.
The higher OR utilization is due to the advanced scheduling that plans elective
patients in all the OR session and, as opposed to the DOR, never an OR slot is
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Tab. 5.8: SOR – Scenario S1 – Performance indices.

conf. enabled Performance indices
id modules uOR uover o c tavg f wavg fNE wNE Z

D1 89.0% 12.2% 6.8k 21.4% 40 98.8% 0.37 91.0% 0.35 9.167
E1 A 93.1% 99.9% 7.1k 11.5% 8 99.3% 0.11 92.4% 0.32 9.423
F1 A,B(5, 0.3) 89.6% 99.7% 6.8k 25.2% 48 99.1% 0.43 92.9% 0.35 9.208
F2 A,B(5, 0.4) 88.6% 93.1% 6.7k 21.0% 54 99.1% 0.48 92.8% 0.33 9.247
F3 A,B(5, 0.5) 85.6% 80.1% 6.4k 13.7% 73 99.2% 0.64 93.8% 0.29 9.300
F4 A,B(5, 0.6) 79.6% 63.6% 5.9k 10.2% 103 61.2% 0.92 94.9% 0.23 8.120
F5 A,B(10, 0.15) 93.3% 90.0% 7.1k 4.5% 8 99.3% 0.11 93.0% 0.31 9.520
F6 A,B(10, 0.2) 93.1% 84.5% 7.1k 2.7% 17 99.3% 0.17 92.8% 0.32 9.528
F7 A,B(10, 0.25) 87.9% 63.7% 6.7k 0.6% 52 99.3% 0.46 93.2% 0.30 9.459
F8 A,B(10, 0.3) 84.6% 51.6% 6.4k 0.2% 69 99.2% 0.61 93.6% 0.28 9.410
G1 A, C(z1) 92.9% 99.6% 7.1k 11.0% 8 99.3% 0.11 93.2% 0.29 9.454
G2 A, C(z2) 93.0% 99.2% 7.1k 10.5% 8 99.3% 0.11 94.2% 0.25 9.503
G3 A,D(z1) 92.6% 99.6% 7.1k 10.7% 8 99.3% 0.11 93.6% 0.28 9.469
G4 A,D(z2) 92.7% 99.3% 7.0k 10.3% 8 99.3% 0.11 94.2% 0.25 9.499
H1 A, E(0.25) 92.6% 99.9% 7.1k 10.1% 8 99.3% 0.11 87.7% 0.46 9.240
H2 A, E(0.5) 92.9% 100% 7.1k 10.0% 8 99.3% 0.11 86.2% 0.51 9.183
H3 A, E(0.75) 92.5% 99.9% 7.1k 9.5% 7 99.3% 0.11 85.6% 0.53 9.158
H4 A, E(1) 92.6% 99.8% 7.1k 9.6% 8 99.3% 0.11 84.4% 0.55 9.112
I1 A,F(0.25) 93.1% 100% 7.1k 11.8% 8 99.3% 0.11 92.5% 0.33 9.424
I2 A,F(0.5) 92.9% 99.9% 7.1k 11.6% 8 99.3% 0.11 91.8% 0.35 9.393
I3 A,F(0.75) 92.5% 99.8% 7.1k 11.4% 8 99.3% 0.11 91.6% 0.37 9.380
I4 A,F(1) 93.1% 100% 7.1k 11.3% 8 99.3% 0.11 90.9% 0.40 9.365
J1 A,B(10, 0.2), E(1) 92.9% 82.8% 7.1k 2.5% 17 99.3% 0.18 92.9% 0.32 9.528
J2 A, C(z2),F(0.25) 92.7% 99.2% 7.1k 10.4% 8 99.3% 0.11 94.3% 0.25 9.501
K1 A,B(10, 0.2), C(z2), 92.8% 83.4% 7.1k 2.3% 18 99.3% 0.19 94.8% 0.24 9.605

F(0.25)

unused because of the lack of non-elective patients to operate on, this allows us to
operate on more elective patients per week and to have shorter waiting times. On
the other hand, non-elective patients do not need the release of a specific dedicated
OR to be inserted, then their waiting times are lower than those of the DOR up
to 3 dedicated ORs. The high utilization of the overtime suggests that the online
approach included in the EOO avoids a high number of cancellations, nevertheless
the value of c is high because of the uncertainty determined by the insertion of
non-elective surgery in almost filled OR sessions. Figure 5.4 shows that the used
EOO approaches avoid the lengthening of the waiting list. Because of the general
improvement given by the EOO optimization, the module A has been always enabled
in the further configurations involving NOO approaches.

Configurations F1–F8 concern the slack management and have been obtained fixing
the number ns equal to 5 (half of daily ORs) and 10 (all daily ORs), and ranging
the parameter π in such a way to reserve a percentage between 15% and 30% of
the total time with a 5% step, that is π ranges between 0.3 and 0.6 when ns = 5 and
between 0.15 and 0.3 when ns = 10.

As shown in Figure 5.5, at the increasing of π both the OR utilization and the
number of cancellations decreases, because there is less probability to exceed the
total duration of the OR sessions that involves a lower request of overtime, which is
proved by a lower value of uover. Conversely, the waiting times of the elective patients
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Fig. 5.4: SOR – Scenario S1 – Length of the elective waiting list with and without EOO.
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raise when π increases, causing a significantly lowering of fE for the configuration
F4. In all the other configurations involving slacks, more than 99% of elective
patients are operated within the MTBT, but the growth of the waiting list can be
unmanageable on a longer period. Furthermore, slacks lead to a slight improvement
of non-elective patients performance.

The effectiveness of BIM optimization has been tested in configurations G1–G4,
using the two different objective functions z1 and z2 in the BILLS algorithm, for both
the offline and the online version. A first difference with the configuration E1 is the
higher percentage of non-elective patients operated on within the time limits, that is
more remarkable for the trauma patients using the objective function z2, as can be
seen in Table 5.9. However, it seems that the online version of the algorithm does
not provide a further improvement respect to the offline version. Furthermore, the
NOO modules C and D slightly impact also on the trade-off between OR utilization
and cancellations, fostering the improvement of the latter at the expense of the
former.

Fig. 5.5: SOR – Scenario S1 – OR utilization and fraction of cancellation, varying the fraction
of slack on the total surgery time.
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Tab. 5.9: SOR – Scenario S1 – Impact of BIM optimization on the non-elective patients.

config. enabled Performance indices
id modules fNE ftr fem fur fad wNE wtr wem wur wad

E1 A 92.4% 68.9% 96.8% 99.8% 100% 0.32 0.95 0.24 0.12 0.02
G1 A, C(z1) 93.2% 71.2% 97.7% 99.7% 100% 0.29 0.84 0.21 0.10 0.02
G2 A, C(z2) 94.2% 74.9% 98.3% 99.8% 100% 0.25 0.72 0.18 0.09 0.02
G3 A,D(z1) 93.6% 72.9% 97.8% 99.8% 100% 0.28 0.81 0.21 0.10 0.02
G4 A,D(z2) 94.2% 74.9% 98.3% 99.8% 100% 0.25 0.74 0.18 0.09 0.02

The NEW-Fit algorithm has been used in configurations H1–H4 varying the value
of the parameter δ between 0.25 and 1.00 with step 0.25. We observe that when
δ = 1 the early deadline for the non-elective patients is fixed equal to the time
limit, while decreasing δ to 0 the algorithm uses an even more restrictive early
deadline. As expected, enabling E the number of cancellations decreases because
the non-elective patients are inserted in such a way to balance the workload among
the OR sessions. In proportion to the value of δ, this causes higher non-elective
patients waiting times that induce to a higher number of patients exceeding the
time limit due to the uncertainty of the surgery durations of the previous patients.
The reason of the limited impact of the NEW-Fit algorithm is probably due to the
workload of the chosen scenario, whose baseline configuration D1 shows high
performance from the elective patients point of view (f = 98.8%). As a matter of
fact, the effectiveness of the the NEW-Fit algorithm has been proved in other more
overloaded scenarios, as reported in Section 4.4 of Chapter 4. Furthermore we
analyzed the impact of the NEW-Fit algorithm jointly to the insertion of slacks in the
schedule. Configuration J1 gives the best value of Z varying δ in (0, 1], that is the
combination of the configurations F6 and H4. The results are very similar to that
computed for the configuration F6, but it is interesting that the negative impact of
the NEW-Fit algorithm on the non-elective patients can be canceled using slacks.

An analogous analysis has been provided for the NEIC algorithm in the configurations
I1–I4. All the performance indices are very close to those of the configuration E1,
except the waiting times of the non-elective patients that increases slightly. However
the NEIC algorithm is implemented to preserve the BIM optimization when the
non-elective patients are inserted, therefore in configuration J2 we tested the impact
when the BIM are optimized, but without better results.

Finally, the configuration K1 is the configuration that maximizes Z and, compared
to E1, improves all the performance indices except a very slight loss of the OR
utilization, with the advantage of using 16.5% less overtime. Table 5.10 lists the
best configurations of all scenarios S1 − S4. We observe that the EOO and the same
configuration of slacks are always enabled, while the BILLS algorithm is used in the
offline or online version using the objective function z2. Both NEW-Fit and NEIC
contribute in the best configuration with a slight improvement in only one of the
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four scenarios. The most interesting thing is that the four not very different scenarios
provide four different best configurations, which remarks the usefulness of a decision
support system that is specifically adapted to the operative environment.

Tab. 5.10: SOR – Scenario S1 − S4 – Best configurations.

scen. conf. enabled Performance indices
id id modules uOR uover o c tavg f wavg fNE wNE Z

S1 K1 A,B(10, 0.2), C(z2), E(1) 92.8% 83.0% 7.0k 2.3% 10 99.3% 0.13 94.6% 0.24 9.595
S2 K2 A,B(5, 0.2), C(z2) 91.8% 81.2% 3.5k 2.8% 14 99.3% 0.16 90.1% 0.39 9.391
S3 K3 A,B(10, 0.2),D(z2),F(1) 94.7% 79.6% 11.8k 1.1% 14 99.3% 0.15 98.4% 0.13 9.793
S4 K4 A,B(5, 0.2),D(z2) 94.3% 79.6% 5.9k 2.0% 17 99.2% 0.18 95.6% 0.21 9.668

5.4.3 Hybrid policies

A hybrid policy is a mix of dedicated and shared policies. In our settings, a number
of ORs are reserved for the non-elective patients (as in the DOR) while the remaining
ORs are used to operate on both elective and non-elective patients (as in SOR). The
elective patients are scheduled into the shared ORs. When a non-elective patient
arrives, his/her surgery is scheduled into a dedicated OR, if available at that time;
on the contrary, the surgery is scheduled into the first released (dedicated or shared)
OR. If two or more non-elective patients are waiting for the insertion, the priority is
given to the patient that is closer to his/her time limit. We observe that the module
G for the immediate insertion of trauma patients is already included in this hybrid
policy.

Tab. 5.11: Hybrid policy – Scenario S1 – Performance indices.

conf. # ded. enabled Performance indices
id ORs modules uOR uover o c tavg f wavg fNE wNE Z

L3 3 72.6% 8.9% 5.4k 9.3% 131 23.5% 1.22 95.7% 0.15 6.893
L2 2 79.7% 10.1% 6.0k 11.6% 90 82.6% 0.81 95.4% 0.17 8.769
L1 1 85.2% 11.0% 6.5k 15.8% 58 98.8% 0.52 94.0% 0.24 9.270
M1 1 A 94.4% 97.8% 7.2k 8.1% 8 99.2% 0.12 96.2% 0.17 9.633
N1 1 A,B(10, 0.2), C(2) 91.5% 78.1% 6.9k 1.7% 26 99.3% 0.25 96.3% 0.16 9.659

Table 5.11 reports the results for the scenario S1. We started considering 3 dedicated
ORs (configuration L3), which corresponds to the best configuration of the DOR,
and we decreased this number (configuration L2 and L1) in order to improve the
elective patients performance. In addition the OR utilization has been improved
using less dedicated ORs. As expected, allowing the access of non-elective patients
to resources that the DOR dedicated to elective patients, the distribution assignment
of the operating rooms to the two patient flows needs to be changed to have a fair
balance. Configuration M1 is obtained from configuration L1 enabling the EOO
modules that, also in this case, provide a very significant and general improvement.
Finally, configuration N1 is the best one using also the NOO approaches. Similar
results are obtained for the other scenarios S2 − S4.
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5.4.4 Comparing policies
We evaluate the impact of the best configurations for the DOR, the SOR and the
hybrid policy comparing their results on the four indices involved in the objective
function Z. Such a comparison is summarized in Figure 5.6: a facility-centered index
is compared with an elective one in 5.6(a) while an elective patient-centered index
is compared with a non-elective one in 5.6(b). We plotted the configurations using
only the EOO approaches for the SOR and the hybrid policy, in order to appreciate
the impact of the NOO. Finally, note that the results for the configurations M1 and
N1 are overlapping in Figure 5.6(b).

Fig. 5.6: Scenario S1 – Comparing DOR, SOR and hybrid on the main performance indices.
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In Figure 5.6(a) the trade-off between OR utilization and cancellations is evident.
We remark that all the configurations represent a different compromise between
the two indices, except the configuration E1 that is dominated by K1 and M1.
Further, the best compromise seems to be provided by K1 and N1 configurations.
On the other side, considering the trade-off between the percentage of elective and
non-elective patients operated within their MTBT, Figure 5.6(b) shows that hybrid
configurations (M1 and N1) dominate the DOR and the SOR configurations. Globally,
the configuration N1 seems the more rational one in accordance with the coefficients
adopted in (5.6).

5.5 Concluding remarks
In the literature, the problem of sharing operating rooms between elective and non-
elective patients counts a number of different approaches whose results are usually
conflicting. Such approaches are applied and tested to different operative conditions
making their comparison very difficult. In order to determine the best approach
under certain operative conditions an ad hoc study is therefore necessary. In this
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chapter, we fill this research gap providing a hybrid model capable to represent a
large range of operative and decision-making conditions to study and evaluate the
impact of such approaches.

Our hybrid model uses discrete event simulation to represent the general surgical
pathways of the two patient flows (elective and non-elective) under the dedicated
and shared policies, and their hybrid versions. A set of optimization approaches are
embedded within the model. We consider the approaches proposed in the literature
to deal with the sharing of the operating rooms (the reservation of slacks and the
break-in-moment optimization). Further, we introduce three new online algorithms
for the real time management of the non-elective patients, that is the Break-In Layout
Local Search, the Non-Elective Worst Fit and the Non-Elective Insertion Criterion. In
particular, the last two algorithms deal with the Non-Elective Real Time Insertion
problem, which suffers from a lack of studies in the literature.

Because of the capability of the model to represent a high number of scenarios and
configurations, we have to restrict the quantitative analysis to four representative
scenarios, choosing conditions such that the workload caused by the elective patients
is proportional to the available resources. For each of the four scenarios, we show
the performance of both the dedicated and shared operating room policies. Further,
for the latter we observe the impact of the optimization modules when they are
enabled separately and, on the basis of their results, we combine them to find the
best configuration with respect to both the (elective and non-elective) patient and
facility points of view. Furthermore, the impact of a hybrid policy is evaluated.

From the management policy point of view, the results confirm the strong trade-off
between the OR utilization and number of cancellations, which is widely discussed
in literature. While the dedicated operating room policy allows us to have a very
low probability of elective-patients cancellations, the shared operating room policy
is able to increase the use of the resources and, consequently, to reduce the length of
the waiting list. However, a better trade-off between the performance of the elective
and non-elective patients is given by the shared operating room policy. We also show
that hybrid policies could provide a further performance improvement.

In summary, our analysis suggests the use of a hybrid policy to manage elective and
non-elective patients even if shared and dedicated policies can be a good compromise
in certain operative conditions. However, to account for the different perspectives of
the stakeholders, it is recommended to provide an ad hoc analysis.

From an algorithmic point of view, we prove the effectiveness of the elective-oriented
optimization approaches: they are able to manage the elective patient flow and,
counter-intuitively, also some non-elective performance indices take advantage from
them. This result suggests that an appropriate management of the elective patient
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flow is a necessary condition to have a positive impact when dealing also with the
non-elective patient flow.

Regarding the non-elective-oriented optimization algorithms, our analysis suggests
that an appropriate slack management can overcome the limitation of a dedicated
policy, at parity of overall operating time, causing less cancellations but lowering the
OR utilization, with a slight improvement of the non-elective patients performance.
The Break-In Layout Local Search algorithm has a positive impact on non-elective
patients without deteriorating the performance of the elective patients. Finally, the
impact of the the Non-Elective Worst Fit and the Non-Elective Insertion Criterion
seems limited in the operative conditions represented by the four scenarios. However,
the effectiveness of the Non-Elective Worst-Fit is proved in Section 4.4 of Chapter 4
in more crowded scenarios.
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6Sharing operating rooms among
surgical pathways

In the previous chapters we dealt with the surgery process scheduling over a fixed
set of assigned ORs for each day of the planning horizon. Such a specific assignment
of OR sessions is defined at the tactical level by the MSS, which provides to allocate
ORs and, more generally, resources among different SPs in a cyclic manner [70,
129].

The MSS must be updated whenever the total amount of OR time or the requirements
of some surgical CPs change. This can occur not only as a response to long term
changes in the overall OR capacity or staffing fluctuations, but also in response to
seasonal fluctuations in demand. Therefore, the MSS should dynamically adapts to
the current state of the different waiting lists of the specialties that share the same
ORs [61, 68].

In this chapter, we propose several simple approach to the MSS problem in such a
way to study in different contexts the impact of sharing or not the overtime among
SPs in the RTM of the ORs. As already discussed in the previous sections, the RTM
deals with the overtime management in the case of a single surgical SP. However,
when the overtime is a shared resources, the online decision of using the overtime,
or to cancel a surgery, should take into account a fairness criterion. The objective of
the management of the shared resources is therefore to have a fair assignment of
the overtime and the OR sessions to surgical SPs.

To this purpose, we consider two or more SPs corresponding to different specialties.
Each SP is essentially the same surgical pathway described in Figure 3.4 of Chapter 3
for the elective patient flow. We will consider only elective patients since we would
like to have a more clear idea of the impact of the proposed sharing policies: actually,
in the current context, a flow of non-elective patients would correspond to a higher
workload, that we are able to manage as shown in Chapters 4 and 5. For the sake of
simplicity, we refer hereafter to those surgical SPs as specialties.

After defining policies for the resource sharing among different specialties in Sec-
tion 6.1, a quantitative analysis is reported in Section 6.2. Conclusions closes the
chapter.
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6.1 Policies for sharing resources
We propose several optimization approach for the MSS in Section 6.1.1, taking into
account the assignment of the ORs to the specialties. In Section 6.1.2 two online
approaches for the overtime allocation during the RTM are defined.

6.1.1 Policies for sharing ORs

We would define how to assign the available OR sessions among different specialties
in such a way to ensure enough and balanced OR sessions to each specialty. In our
operative context, the MSS is updated every time period (usually one month or one
week). To this end, we define three alternative policies.

The first policy is Based on Lengths (BL), that is, every four weeks, the OR sessions
are reassigned so that they are proportional to the number of patients in the waiting
list of each specialty. On the contrary, the second policy is Based on EOTs (BE) in
which every four weeks, the OR sessions are reassigned so that they are proportional
to the sum of the EOTs of the patients in the waiting list of each specialty.

The last policy consists in a Flexible Scheduling (FS) in which MSS and Advanced
Scheduling are solved at the same time every week. The algorithm implementing
the FS policy is an adaptation of that proposed in [65]. It consists of a greedy
construction of the initial solution and an improvement phase performed by a local
search engine: (i) at the beginning of the greedy construction, the patients are
ordered by decreasing value of the ratio between the waiting time and the MTBT
w̃i, and each OR session is not assigned to any specialty, except for the OR sessions
used to reschedule the patients postponed during the last week; (ii) during the
greedy construction, patients can be inserted only into OR sessions assigned to their
specialty, or into OR sessions not already assigned (that is empty OR sessions); in
the latter case, such an OR session is assigned to the specialty of the patient; (iii)
during the local search, only swaps between patients belonging to the same specialty
are allowed.

6.1.2 Policies for sharing overtime

When sharing overtime, we are interested in guaranteeing a fair access to the
available overtime from the different specialties. We propose two alternative policies.
The first policy is called Dedicated Overtime Allocation (DOA). in which a dedicated
amount νΣ of weekly overtime is allocated to the specialty Σ, so that it is proportional
to the number of OR sessions assigned by the MSS. By consequence, the RTM will
take into account νΣ as the overtime available when applying the criterion for the
overtime allocation to elective surgery of a single SP, as defined by equation (3.6) in
Section 3.2 of Chapter 3.
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The second policy is called Flexible Overtime Allocation (FOA), in which all the
specialties share the total available overtime ν; in order to foster a balanced use of
the overtime, we adapt the criterion (3.6) as follow:

βτk

(
ei + ρτjk
djk

)(
1 + νΣ

ν
− nΣ

k

n

)
≤ 1 (6.1)

where νΣ is the amount of weekly overtime used by the specialty Σ until that time
and nΣ

k is the number of OR sessions of that specialty from the day after k.

The policy FOA introduces a new factor which measure the overtime still available
with respect to the number of OR sessions to be still performed by the specialty. This
value is closed to 1 when the overtime has been used proportionally with respect to
the assigned and completed sessions. On the contrary, it is between 0 and 1 or it is
greater than 1 when it is underused or overused, respectively.

6.2 Quantitative analysis
In the current analysis, we consider as “baseline” the configuration (1) introduced
in Section 4.4.2, that is the best one when dealing with only elective patients.
Such a configuration includes a greedy construction for the advanced scheduling, a
sequencing in decreasing order of w̃i for the allocation scheduling, while overtime is
always assigned until the amount dedicated that OR session does not exhaust. In
the baseline configuration, the overtime is allocated using the DOA rule while the
number of OR sessions are proportional to the arrival rate and it does not change
over time.

Tab. 6.1: Parameters of the two scenarios.

Parameters unit of measure Scenario S1 Scenario S2

arrival rate

pathways 1, 2, 3 patients/day 12.5, 12.5,− 24.0, 12.0, 4.0
initial waiting list patients 1000 1500

MTBT URG A, · · · , G days 8, 15, 30, 60, 90, 120, 180 8, 15, 30, 60, 90, 120, 180
frequency URG A, · · · , G

pathway 1 5%, 15%, 40%, 15%, 10%, 10%, 5% 5%, 15%, 40%, 15%, 10%, 10%, 5%
pathway 2 14%, 14%, 14%, 14%, 15%, 15%, 15% 14%, 14%, 14%, 14%, 15%, 15%, 15%
pathway 3 8%, 9%, 11%, 12%, 15%, 15%, 30%

EOT average

pathways 1,2,3 min 120, 180,− 150, 120, 180
EOT deviation

pathways 1,2,3 min 75, 75,− 75, 75, 75
n ORs 50 (10 a day) 75 (15 a day)

djk min 480 480
ν min 600 900

Table 6.1 describes the two scenarios in which we evaluate our sharing policies.
The two scenarios differ from (i) the number of specialties, (ii) the amount of
available resources (number of operating rooms and weekly overtime), and (iii) the
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patient features, namely the arrival rates, the EOT distributions and the urgency
distributions.

Tab. 6.2: Scenario S1: performance indices (B is the baseline configuration).

Policies Performance indices
id MSS FOA o c tavg wavg f uOR uover

(0) 8 380 4.2% 56 0.99 56% 88% 44%
(1) BL 9 058 4.3% 43 0.75 91% 97% 77%
(2) BE 9 040 4.2% 44 0.79 87% 97% 74%
(3) FS 9 050 4.2% 42 0.74 93% 97% 79%
(4) BL

√
8 903 6.1% 50 0.87 81% 95% 77%

(5) BE
√

8 895 5.5% 53 0.94 61% 95% 59%
(6) FS

√
8 850 7.1% 53 0.94 67% 95% 69%

Tables 6.2 and 6.3 report the analysis of the proposed policies for the resource
sharing. We denote with the id (0) the baseline configuration while those obtained
by combining the different policies are denoted with an integer from (1) to (6).
The combination of the different policies is described in the second and the third
columns: column “MSS” denotes the policy used for OR sharing while column “FOA”
indicates when the FOA policy has been adopted in alternative to the DOA one.
Finally, for each configuration, the performance indices are reported in accordance
with the definitions in Table 5.4.

Tab. 6.3: Scenario S2: performance indices (B is the baseline configuration).

Policies Performance indices
id MSS FOA o c tavg wavg f uOR uover

(0) 13 547 4.5% 56 1.09 33% 92% 26%
(1) BL 14 189 4.4% 51 0.91 58% 97% 52%
(2) BE 14 198 4.3% 51 0.92 60% 97% 54%
(3) FS 14 238 4.0% 51 0.88 83% 97% 74%
(4) BL

√
14 031 5.1% 57 1.03 40% 96% 46%

(5) BE
√

14 009 5.1% 58 1.04 38% 96% 45%
(6) FS

√
13 858 6.3% 60 1.05 39% 95% 46%

Considering the scenario S1 in Table 6.2, we remark that all the configurations
(1)–(6) indicates a general improvement of the performance indices with respect to
the baseline configuration, except for the number of cancellations. This justify the
need of ad hoc solutions to deal with the resource sharing. In particular, we observe
a higher overtime utilization that, in accordance with the analysis in the previous
chapters, is due to the online optimization modules for the RTM. Furthermore, the
DOA rule seems to be more effective than the FOA, especially when considering the
patient-centered indices. These considerations are confirmed also by the analysis
reported in Table 6.3 for the Scenario S2, in which the effectiveness of the DOA with
respect to the FOA is more evident.

Considering both scenarios S1 and S2, the configuration 3 – that is, that adopting a
flexible scheduling policy for the MSS and a dedicated allocation for the overtime
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– leads to a general and robust improvement of all the indices resulting as the
best configuration. Table 6.4 reports in more detailed way the results for that
configuration reporting also the performance indices for the two pathways analyzed
in the scenario S1.

Tab. 6.4: Scenario S1 – configuration (3) vs. baseline: detailed analysis.

id pathways Performance indices
o c tavg wavg f uOR uover

(0)
both 8 380 4.2% 56 0.99 56% 88% 44%

1 4 587 5.5% 8 0.25 99% 80% 77%
2 3 793 2.7% 114 1.89 5% 96% 11%

(3)
both 9 050 4.2% 42 0.74 93% 97% 79%

1 4 544 6.4% 36 0.75 94% 98% 92%
2 4 507 2.0% 47 0.73 91% 97% 70%

From the results for each pathway reported in Table 6.4, it is evident the effectiveness
of the flexible scheduling policy: actually, the results for configuration 3 demonstrate
a good balance of the performance indices relative to the two pathways, especially
that regarding the percentage of surgeries performed within their MTBT threshold.

6.3 Concluding remarks
In this chapter, we extended the model presented in Chapter 3 in order to deal with
several SPs that share ORs and overtime.

Our analysis demonstrated that different pathways can benefit from sharing the
resources when adequate policies are adopted. In particular, a flexible approach for
the MSS to share ORs among specialties could provide significant improvement of
the patient-centered indices.

The simple extension of the RTM implemented to share overtime among specialties
demonstrated to do not be more effective than that proposed for a single specialty.
However, the online approach showed also in this more general context to be useful
to optimize the available resources.
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Part II

The Emergency Care Pathway





7Introduction and Literature
Review

The Emergency Care Delivery System (ECDS) is usually composed of an Emergency
Medical Service (EMS) serving a network of Emergency Departments (EDs). ECDS
plays a significant role as it constitutes an important access point to the national
health system, saving people’s lives and reducing the rate of mortality and morbid-
ity [150].

The EMS receives a phone call from a citizen asking for an emergency care for
himself or for a third person. The operators at the EMS’s operation center are
in charge of answering the calls and assigning a color code to each emergency
request, based on the severity of injury, through a phase called triage. After the triage
phase the operator dispatches an ambulance following a predefined dispatching
policy. Ambulance crew rescues the patient and, if necessary, transports him/her to
a hospital. Note that usually the ambulance crew is in charge of the patient until
he/she is handed to the hospital staff.

An ED is a medical treatment facility inside of a hospital or in other primary care
center and is specialized in emergency medicine providing a treatment to unplanned
patients, that is patients who present without scheduling. The ED operates 24 hours
a day, providing initial treatment for a broad spectrum of illnesses and injuries with
different urgency. Such treatments require the execution of different activities, such
as visits, exams, therapies and intensive observations. Therefore human and medical
resources need to be coordinated in order to efficiently manage the patient flow,
which varies over time for volume and characteristics. The patient flow of an ED is
composed of two distinct flows: the former is made of the patients transported by
the EMS while the latter is that of the patients arrived at the ED by their own.

A phenomenon that affects EDs all over the world reaching crisis proportions is the
overcrowding [187]. It is manifested through an excessive number of patients in the
ED, long patient waiting times and patients Leaving Without Being Seen (LWBS);
sometimes patients being treated in hallways and ambulances are diverted [166].
Consequently, the ED overcrowding has a harmful impact on the health care: when
the crowding level raises, the rate of medical errors increases and there are delays
in treatments, that is a risk to patient safety. Not only overcrowding represents a
lowering of the patient outcomes, but it also entails an increase in costs because
of the decreased productivity [161]. Moreover, the ED overcrowding causes stress
among the ED staff, patient dissatisfaction and episodes of violence [153, 156].
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Since the perception of the crowding level from the staff is subjective [191] and
because of the need to adequately prevent the phenomenon, several indices for
the real time measurement of overcrowding have been introduced and studied.
The most popular overcrowding measures are the National Emergency Department
Overcrowding Scale (NEDOCS) [200], the Emergency Department Work Index
(EDWIN) [146] and the Demand Value of the Real-time Emergency Analysis of
Demand Indicators (READI) [190]. They are based on different indices about the
current operating status: the amount of available resources, the number of patients
in the ED involved in some activities or waiting for a resource, their waiting times,
the patient outcome and the predicted arrivals. However, the analysis by Hoot
et al. [165] shown that none of most popular overcrowding measures is capable of
providing an adequate forewarning.

The Emergency Care Pathway (ECP) was introduced by Aringhieri et al. [141]
formalizing, from an Operations Research perspective, the idea of the ECDS. The ED
overcrowding can be addressed in different points of the ECP and, in particular, into
the following two phases: (i) the ambulance rescue performed by the EMS and (ii)
the management of the ED patient flow. The focus of the second part of this thesis
is therefore on the management of the ECDS in order to reduce the overcrowding
adopting an online optimization approach to deal with the inherent uncertainty
of the ECDS system. While the Clinical Pathway (CP) of an EMS is structured
and quite simple, the CP of the ED is (at high level) structured and complex. The
high level structure means that the pathway should describe the broad variety of
patients entering in the ED. This means that the ED pathway is less descriptive for
our purpose. The relation between ECDS, EMS, and EDs with respect to the ECP is
represented by the framework in Figure 7.1.

Fig. 7.1: General framework of ECDS.
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At the regional level, the ECDS can be seen as a network of EDs cooperating to
maximize the outputs (number of patients served, average waiting time, ...) and
outcomes in terms of the provided care quality. Many EDs, especially those serving a
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large amount of people, complain about the large number of non-urgent patients
usually transported by the EMS ambulances. Further, EMSs usually do (or can) not
take into account the ED workload level when assigning and transporting a patient
to an ED. In Chapter 8, we discuss how quantitative analysis can provide a tool to
evaluate the impact of a simple dispatching policy for an ECDS at the regional level.
More generally, the real-time management of the ambulances of an EMS is an online
optimization problem in which three main decisions should be addressed to serve an
emergency request, that is i) the dispatching of the ambulance, ii) the selection of
the ED facility to which the patient will be transported, and iii) the redeployment
of the ambulance. In Chapter 9, we provide a comprehensive analysis of such an
online optimization problem.

Because of the wide variety of different patient paths within the ED process and the
missing of data or tools to mine them, strong assumptions and simplifications are
usually made, neglecting fundamental aspects, such as the interdependence between
activities and accordingly the access to resources, which are fundamental in online
optimization. Actually, the challenge in modeling the ED behavior is to replicate
such different paths. In Chapter 10, we propose a new framework to mine an ED
process model based on ad hoc process discovery tools. Our purpose is to obtain
simple and precise process model capable to replicate the large variety of the paths
and to predict the use of the ED resources by each patient on the basis of the only
information known at the access of the patient. In Chapter 11, we propose a new ED
simulation model for the evaluation of several online resource allocation methods,
which are based on the current state of the ED and on the prediction of the next
activities provided by the above process model.

The remaining of the chapter is devoted to a literature review of the above problems
restricted to online optimization approaches.

Emergency Medical Services and overcrowding

The importance and sensitivity of decision making in the EMS field have been
recognized by researchers who studied many problems arising in the management
of EMS systems since the 1960s, as recently reported by Aringhieri et al. [141],
Reuter-Oppermann et al. [192] and Bélanger et al. [145]. Further, Aboueljinane et al.
[137] present a review of the many simulation models that have been developed
over the years to deal with the EMS analysis.

In the real practice, many EMSs apply simple dispatching policies, such as the closest-
idle policy, which always sends the closest available ambulance to a call, which is
selected based on the priority of incoming emergency calls. The closest-idle policy
has gained much attention in EMS planning due to its simplicity although it results
in sub-optimal solutions [139, 143, 151, 173, 182, 194], as well as increasing the
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waiting time for subsequent calls. Recently, Jagtenberg et al. [168] provide a bound
existing online solutions in comparison with three different methods to compute the
optimal offline dispatch policy for problems with a finite number of incidents. The
performance of the offline optimal solution serves as a bound for the performance of
an unknown optimal online dispatching policy. Then, they compare such an offline
solution to the closest idle vehicle dispatching policy obtaining a bound of 2.7 times
on the fraction of late arrivals.

To overcome the drawbacks of the closest-idle policy, many researchers suggested to
take the priority of calls into consideration. McLay and Mayorga [182] present a
Markov decision process to dispatch distinguishable ambulances to prioritized calls
while considering the fact that errors in the classification of patient priorities might
occur. The model determines the dispatching policy that maximizes the expected
coverage of true high-risk calls. The results of their study show that over-responding
(under-responding) is preferable only when there is a high (low) rate of classification
errors. Then, McLay and Mayorga [183] extended their work to obtain an equity-
and efficiency- based dispatching model in which distinguishable ambulances as well
as emergency call priorities are addressed. The efficiency-based objective function
of the model focuses on the fraction of covered calls. In addition, four equity
constraints are considered to reflect the fairness from both the patient’s and vehicle’s
points of view. The study also investigates how the incorporation of different equity
measures can affect the dispatching policy. However, the authors also mention that
incorporating equity might lead to a lower service or negative outcomes.

Bandara et al. [143] present a priority-based heuristic dispatching rule based on
static dispatching rules and fixed deployment. It always sends the closest available
ambulance to priority urgent calls and sends a less busy ambulance to non-urgent
calls. The results of applying this dispatching policy indicate better performance for
urgent calls in comparison with the closest-idle policy. On the contrary, a slightly
worsening of the performance for non-urgent calls is reported.

In contrast to the papers highlighting the role of call priority, there are other dis-
patching policies that follow a different stream. These works mostly integrate the
closest assignment policy with some notions borrowed from other fields.

Lee [174, 175] introduced the centrality-based dispatching policy for the EMS serving
at the same time rural and urban area: it combines the centrality notion, used in
complex networks, and the closeness notion. The main idea behind incorporating
centrality into dispatching decisions is that by responding to the most central calls,
especially when the probability of transferring patients to a hospital is low, the
chance of in-time response to the next calls will increase. As the author mentions,
the applicability of the centrality-based policy highly depends on the probability of
transferring the patients to the hospital (hospital probability) which in turn depends
on many factors such as crew expertise, the nature and severity of accidents, and
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resource scarcity. To overcome the shortcoming of a pure centrality dispatching policy,
Lee [176] adopted the notion of parallelism to develop a centrality-based dispatching
policy in which both idle and busy ambulances are considered simultaneously. The
idea originates from the fact that a currently busy server might respond sooner to a
call after completing the service, than idle vehicles located farther from the call.

Simulation is often exploited for the analysis of the overcrowding at the ED and
its impact on ambulance diversion. Nafarrate et al. [184] found that the number
of patients in the waiting room is a better trigger for ambulance diversion than
inpatient bed availability, as it provides the best balance between accessibility and
waiting times. Ramirez-Nafarrate et al. [189] use a simulation model to determine
the effect of several ambulance diversion policies on the patient’s waiting time.
More generally, Buuren et al. [149] uses simulation to evaluate several dynamic
dispatching strategies while Maxwell et al. [180] evaluates redeployment policies
computed by approximate dynamic programming using simulation. Other analysis
of dispatching policies are those reported in [164, 169].

Usually, the approaches reported in the literature for the redeployment of the idle
ambulances do not explicitly consider real-time system changes due to ambulances
becoming idle or new calls arriving [160, 195]. Jagtenberg et al. [167] develop a
heuristic algorithm for real-time ambulances redeployment. The dispatching policy
for idle ambulances is based on maximizing the marginal expected coverage of
the corresponding ambulances. In [181], Maxwell et al. present an approximate
dynamic programming model that redeploys idle ambulances such that the cover-
age is maximized. The dynamic programming formulation captures the real-time
evolution of the system while solutions can be computed quickly. This also holds
for realistically sized instances, since only a simple optimization problem has to be
solved.

A first attempt to consider real-time redeployment policies is due to Ni et al. [186].
In their analysis, the authors uses simulation to devise and to evaluate redeployment
policies. Recently, Barneveld et al. [144] evaluate the impact of typical factors
influencing the performance of an EMS such as (i) the frequency of redeployment
actions, (ii) time bounds on the ambulance relocation, and (iii) the inclusion of busy
ambulances in the decision process. The main insights derived by their research are
that adding more relocation action is highly beneficial for rural areas and considering
ambulances involved in dropping off patients available for newly coming incidents
reduces relocation times only slightly.

Finally, Nasrollahzadeh et al. [185] develop a flexible optimization framework for
real-time ambulance dispatching and relocation. They formulate the problem as a
stochastic dynamic program. Because of the unbounded state space, the authors
propose an approximate dynamic programming framework to generate high-quality
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solutions. Their analysis is performed on an available benchmarks on an EMS system
in Mecklenburg County, North Carolina.

Emergency Department and overcrowding

Simulation is widely used to test what-if scenarios to deal with overcrowding [187],
analyzing the use of different resources, setting or policy within the care planning
process. Although most of the solutions proposed in literature foresee the use of new
additional resources, often the resources available to departments are scarce and
there is no economic possibility of new investments [155, 156]. Then human and
equipment resources available should be used as efficiently as possible optimizing
existing resources and processes. For this reason, research addressing short-term
decision problems are increasing in the recent years [138]. Placing in the perspective
to alleviate the ED overcrowding without changing the ED resources and settings,
there are two way to act: (i) changing the human resources planning [159, 197,
203] or (ii) adopting different policies in the allocation of the human and equipment
resources [158, 170, 171, 178].

Nowadays huge amounts of data are collected by EDs, recording diagnosis and
treatments of patients. Process mining can exploit such data and provide an ac-
curate view on health care processes [136, 179], ensuring their understanding in
order to generate benefits associated with efficiency [193]. In literature there are
several process mining approaches that use specialized data-mining algorithms to
extract knowledge from data-set, creating a process model that takes into account
dependency, order and frequency of events, but also decision criteria and durations.
In [157] we applied several process discovery techniques from the literature for a
real case study. We tried to model the ED from a control flow perspective and to
identify the path of each patient on the basis of the only information known at the
access of the patient. We shown that standard process discovery approaches could be
not able to provide models adequate to our aims in terms of simplicity and precision.
This because the ED process we would to mine has the characteristics of a spaghetti
process, that is an unstructured process in which the huge variety of sequences of
events affects the trade-off between simplicity and precision discovering the process,
as discussed in Duma and Aringhieri [157].
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8The impact of dispatching policies
at the regional level

At the regional level, the ECDS can be seen as a network of EDs cooperating to
maximize the outputs (number of patients served, average waiting time, ...) and
outcomes in terms of the provided care quality. The development of models for the
analysis of a health system as a whole is one of the main challenges in the health care
management field. The basic idea is to have a tool capable to validate management
policies at health system level modeling the patient flow through the care pathway.
As a matter of fact, the current trend in the analysis of health care systems is to
shift the attention from single departments to the entire health care chain in such
a way to increase patient’s safety and satisfaction, and to optimize the use of the
resources.

In order to apply such an approach to the analysis of a regional ED network, one
of the main difficulties is the collection of all the information regarding the trans-
portation of the patients from the emergency scene to the ED. Nevertheless this
problem can be now overcome exploiting the immense amounts of data generated
by health care systems. Health Care Big Data (HCBD) are a key enabling technology
to support detailed health system analysis: exploiting the HCBD, one can replicate
the behavior of the health system modeling how each single patient flows within
her/his care pathway.

In this chapter we discuss how quantitative analysis based on the HCBD can provide
a tool to evaluate dispatching policies for a regional network of emergency depart-
ments: the basic idea is to exploit clusters of EDs in such a way to fairly distribute the
workload. We present a simulation model based on the case study of the Piedmont in
Italy, and powered by the knowledge provided by the analysis of regional HCBD.

The chapter is organized as follows. In Section 8.1, we discuss how big data can
enable a novel methodological approach to the health system analysis. In Section 8.2,
we describe the case study under consideration. In Section 8.3, we report how we
implemented the simulation model. In Section 8.4, we report a quantitative analysis
of the results obtained running the simulation model. Conclusions and future works
are discussed in Section 8.5.
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8.1 Methodological Motivations

The development of models for the analysis of a health system as a whole is one
of the main challenges in the health care management field [188]. The basic idea
is to have a tool capable to validate management policies at health system level
modeling the patient flow through the corresponding CP. Literature indicates that
System Dynamics (SD) seems to be the most appropriate methodology. A first
attempt has been made by Wolstenholme during his collaboration with the NHS.
In [201], he applies SD to the development of national policy guidelines for the U.K.
health service. The tested policies include the use of “intermediate care” facilities
aimed at preventing patients needing hospital treatment. Intermediate care, and
the consequent reductions in the overall length of stay of all patients in community
care, is demonstrated here to have a much deeper effect on total patient wait times
than more obvious solutions, such as increasing acute hospital bed capacity. More
generally, as discussed in [202], the key message is that affordable and sustainable
downstream capacity additions in patient pathways can be identified, which both
alleviate upstream problems and reduce the effort for their management.

A SD model has been used as a central part of a whole-system review of emergency
and on-demand health care in Nottingham, as reported in [147]: due to a growing
emergency care demands, the hospital systems were unlikely to achieve some
government performance and quality targets. Such a model discovered a range of
undesirable outcomes associated with the growing demand and, at the same time,
suggested policies capable to mitigate such impacts. Vanderby and Carter [198] were
interested in determining whether SD can be an appropriate methodology to model
the patient flow in a hospital, and to analyze it from a strategic planning perspective.
The SD model were developed in collaboration with the General Campus at The
Ottawa Hospital with particular attention to the delays experienced by patients in the
ED. The authors reported about the modeling techniques, validation and scenarios
tested, accompanied by their comments regarding the appropriateness of SD for
such a strategic analysis.

From a modeling point of view, SD is a simulation methodology whose main elements
are stocks and flows: a stock is any entity that accumulates or depletes over time; a
flow is the rate of change of a stock. For instance, in health care a stock can represent
the waiting list for a surgery, that is a number of people requiring a surgery, while
a flow can be the rate of a new insertion in the list. One of the main limitation of
using SD for health system analysis is that patients are indistinguishable from each
other within stocks and flows. On the contrary, health care services are generally
characterized by a large variety of different patients suffering from the same diseases
and flowing in the same care pathway.
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From the above remarks, Discrete Event Simulation (DES) seems the more ap-
propriate methodology to model such a large variety of patients flowing in their
corresponding pathway because of DES has the capability of representing each single
patient (or entity) within one of more pathways. Further, DES can easily enable
the application of optimization algorithms to take the best (or the most rational)
decision regarding a single or a group of entities modeling a single or a group of
patients.

It is worth noting that such a modeling approach requires a lot of detailed data, that
is all the data needed to replicate the behavior of each single patient flowing in its
corresponding pathway. Moreover, in terms of health system analysis, such a model
requires the availability of all the data for all patients flowing in all pathways of
the same type in the health system under consideration. A defining characteristic
of today’s data-rich society is the collection, storage, processing and analysis of
immense amounts of data. This characteristic is cross-sectoral and applies also to
health care.

We argue that the HCBD can power a detailed health system analysis using DES
methodology: exploiting the HCBD, one can replicate the behavior of the health
system modeling how each single patient flows within her/his care pathway. The
novelty of the proposed approach is therefore the use of the DES methodology for
the health system analysis exploiting the Big Data in order to better represent the
variety of the patients accessing the health system.

8.2 The Emergency Department network in Piedmont
Region
Piedmont (Italian: Piemonte) is one of the 20 regions of Italy. It has an area of
25,402 square kilometers and a population of about 4.6 million. The capital of
Piedmont is Turin. Piedmont is organized in 7 provinces. The province of Cuneo
is the largest one while the province of Turin is the most populated one: actually,
about 2.3 million of inhabitants are living in, and 1.4 million are living in the area
of Turin. Figure 8.1 reports the number of inhabitants living in Piedmont and in the
province of Turin, divided in different age classes.

According to the 2015’s report of the “Programma Nazionale Esiti” by the Ministry of
Health, the waiting time for a urgent and a non-urgent code could exceed respectively
60 minutes and 450 minutes, in the worst case. In other similar Italian regions, such
waiting times are about 20% lower. We remark that in Italy, the Regions are in charge
of providing the health services in accordance with the minimal level decided at the
national level by the Ministry of Health. This comparative analysis demonstrates the
need of investigating the reasons of such differences and, eventually, to individuate
some possible improvements.
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Fig. 8.1: Population of Piedmont and province of Turin: age distribution (ISTAT 2011).
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From more than 10 years, the Piedmont region is collecting data about the regional
health system, and released a regional law to unify the flows of data gathered from
all the health care providers operating in Piedmont, that is, local health agencies,
hospitals, and all the private structures in agreement. Such a regional law guarantees
the quality of the data collected in accordance with the national standards: all the
information must respect a standard format and their consistency is checked for
financial reasons since health providers are reimbursed w.r.t. the number and the
type of treatments.

Concerning the access to the network of EDs, the HCBD contains all the information
regarding the access: encrypted patient ID, patient registered residence, times
(arrival, discharge, ...), urgency code, ED, treatment(s), etc.. Each year they collect
all the information regarding about 1, 800, 000 accesses to the regional network of
EDs: for instance, in 2013, there were 1, 768, 800 accesses; among them, the 90.53%
were non-urgent. The network is composed of 49 EDs, mostly – about 20 – located in
the province of Turin as reported in Figure 8.2. The EMS usually transports patients
to the closest ED, apart some particular – limited in number – cases.

8.3 A two-phase Discrete Event Simulation model

We propose a quantitative model for the analysis of the network of EDs operating
in Piedmont. The proposed model is organized in two phases, and it operates on a
time horizon of one month. The first phase is devoted to data analysis concerning
the time horizon taken into account in order to determine the appropriate value of
the parameters of the DES model, which is the main part of the second phase. As a
matter of fact, the emergency demand depends on the day of the week and the time
of day [196]. Further, a not accurate forecasting can lead to managerial solutions
that worsen the EMS performance, and by consequence the quality of the access to
the ED, even if more resources are used, as discussed in [140].
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Fig. 8.2: The ED network in Piedmont.

8.3.1 Dynamic estimation of the parameters.

In order to have a proper representation of the main parameters of the network
of EDs, the first phase of our quantitative model concerns the analysis of the big
data relative to the time horizon considered in the running experiments. Parameters
and their corresponding distributions are empirically computed over adequate time
intervals in such a way to fit the model on a given and fixed time horizon, and to
replicate both the patients flow and their management by the EDs.

The main parameters dynamically evaluated are the emergency demands and their
urgency code, the capacity and the service time of each ED, and how the patients are
distributed to EDs with respect to their geographic origin. The general evaluation

8.3 A two-phase Discrete Event Simulation model 91



procedure consists in scrolling the data concerning each access in chronological
order to keep track of the information needed to estimate the considered parameters
and their corresponding empirical distribution, as we describe in the following.

Emergency demands. The emergency demand consists in the number of accesses
to the whole regional ED network. Such a distribution is computed counting
the average number of accesses in each time interval of 30 minutes over each
day of the time horizon considered.

Urgency distribution. The urgency distribution measures the percentage of pa-
tients having a urgent or a non urgent code with respect to the origin of the
patients.

Service time of each ED. The service time of each ED is estimated using the infor-
mation regarding the time on which the patient has been take over by the ED,
and the time on which the patient has been discharged. The service time has
been estimated by the code of urgency.

Capacity of each ED. An ED usually has a formal capacity defined a priori. On
the contrary, the real practice showed that the real capacity could be different.
Further, we should take into account variations in the staffing. From these
considerations, we estimate the capacity of the ED by counting the maximum
number of patients that are in the ED at the same time. We compute such
a value for each interval of three hours in a day, for each day in the time
horizon. The capacity of each interval of three hours is finally set to the value
corresponding to the 90-percentile of all the values measured in the same
interval and in the same day of the week.

Patient geographical distribution. From the data of the patients, we estimate the
number of the patients coming from a city identified by its postal code. We
also estimate the number of patients that accessed an ED from a given city.

Although the percentage of patients transported by the EMS could be evaluated
dynamically, our preliminary analysis showed that such a parameter currently ranges
in [13.3%, 14.2%]. Therefore, we decided to set this parameter in such a way to study
the interplay between the EMS and the ED network varying such a percentage in
Section 8.4.

Figure 8.3 reports an example of the distribution of the daily arrival of the patients
derived from the about 150, 000 accesses to the ED network in July 2001. Note
that the figure reports ticks of 1 hour (instead of 30 minutes) only to improve its
readability.
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Fig. 8.3: Distribution of the patient arrivals during the day (July 2011).
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The DES model.
We propose a DES model to represent the pathway of the patient entering in the
ED network. Our DES model is based on a straightforward representation of the
flowchart depicted in Figure 8.4.

An emergency request of a patient is generated in accordance with the geographical
distribution of the patients and the arrival distribution. At the moment of its
generation, an ED is associated to the patient pursuant to the distribution of the
patients accessing each ED, which usually corresponds to the closest one. Such an
emergency request can be served or not by an EMS ambulance. When the request is
not served by the EMS, we assume that the patient reaches – in some way – the ED
previously associated. On the contrary, the transportation of the patient is in charge
of the EMS. In our model, the ambulance transports the patient to the associated
ED only if the urgency code is high (red or yellow in the Italian system), otherwise
the EMS can decide where to transport the patient in accordance with some policies
(dispatching decision for non urgent patients). After arriving at the ED, the patient
will wait for the treatment, which usually lasts for a ED distributed following the
service time distribution dynamically estimated. When the patient will be discharged,
he/she will exit from the model.

Fig. 8.4: The flowchart representing the emergency pathway.
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The considered dispatching policies are two. The first one, say P0, dispatches a non
urgent patient to the ED associated to the patient at the moment of its generation,
without any change. The second one, say P1, dispatches a non urgent patient
following a service state policy, that is, at the moment t, the patient is dispatched to
the ED h having minimal ratio rth

rth = wth + sth
ch

, (8.1)

in which the values wth and sth are respectively the number of patients waiting and
receiving health care, and ch is the estimated capacity of the ED. This policy is
suggested by the fact that Piedmont region is building an ICT infrastructure to share
the real-time information regarding the workload of the EDs. We would remark that
the use of the number of patients in the waiting room is suggested in [184] because
of it is a good trigger for ambulance diversion caused by the overcrowding.

Fig. 8.5: The clusters C2 (province of Alessandria).

The policy P1 does not consider all the ED network but only those belonging to a
cluster of EDs. A cluster of EDs is a subset of all the EDs operating in Piedmont that
can be reached in no more than 30 minutes from a given origin, as highlighted with
the colored placeholders in Figure 8.2. We identified 5 different clusters in Piedmont,
denoted by Ci, i = 1, . . . 5. The largest one C1, composed of 20 EDs, is located in the
Turin area. The clusters C2 (province of Alessandria) and C3 (province of Cuneo)
are composed of 7 and 6 EDs, respectively. Finally, two smaller clusters, composed
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of 2 EDs each, are located in the area of “Valli di Lanzo” (C4) and in the area of Alba
and Bra (C5). Please note that a cluster is not a complete graph as highlighted in
Figure 8.5: for instance, this means that a patient transported to the ED of Casale
Monferrato can be re-routed only to one of the two EDs in Alessandria and not to
the other EDs in Tortona, Novi Ligure, Ovada, and Acqui Terme.

The proposed DES model is quite flexible: as a matter of fact, the ED network
operating during the time horizon considered can be obtained by simply activating
the dispatching policy P0. Note that this also provide a tool to evaluate the ED
network as a whole system, instead of having simpler measures as those reported in
the “Programma Nazionale Esiti”.

Implementation details.

The dynamic estimation of the parameters has been implemented in Python 2.7. A
script evaluates data concerning the time horizon of interest from the input data-set
and generates an Excel file with the the parameters of the distributions described
above.

Apart from the emergency demand, that has been evaluated at the regional level
calculating, as mentioned before, the average number of accesses in each time
interval of 30 minutes over each day of the time horizon considered, the rest of
parameters takes also into account the origin of the patients and/or the related
EDs. Urgency code distribution has been estimated by distinguishing for each ED
four different codes (from 1 to 4). The accessing distribution has been estimated
considering both the distribution of provenance of patients and the distribution of
accesses of the EDs, mitigating in this way the possibility of not considering patients
collected from an ED in a different location from their city of provenance. Finally
the service time distribution has been estimated considering both the ED and the
gravity of patients.

The DES model has been implemented using AnyLogic 7.2 [73]. At simulation start-
up it takes in input the file before generated and uses it to initialize the parameters.
Custom distributions have been used for the parameters above described, while
specific objects (Service and ResourcePool, Schedule and Agent) have been used
for the definition of the EDs, their capacities (varying pursuant to the hour of the
day) and for the patients. When a patient is generated it is assigned to him a
provenance, the destination hospital (pursuant to the selected policy), an urgency
code and the expected service time. The routing of patients has been implemented
using two matrices, associating each patient provenance to one (in case of policy P0)
or more (policy P1) possible EDs of destination.
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8.4 Quantitative Analysis
In our analysis, we considered four different months in 2011. Tables 8.1 and 8.2
provide more details about the input of our model. For each month considered,
Table 8.1 reports the total number of accesses considered and their classification with
respect to the urgency code (1 represents the more urgent code while 4 the less one).
We would remark that the total number of accesses considers only those accesses
for which at least one between the origin of the patient or the ED of destination is
correctly reported in the data.

Tab. 8.1: Description of the data considered in our quantitative analysis.

total requests by urgency
accesses 3–4 2 1

Jan 126,698 107,773 17,688 1,237
Feb 116,961 99,806 16,074 1,081
Jun 132,654 113,734 17,562 1,358
Jul 123,758 106,404 15,970 1,384

For each month considered, Table 8.2 reports the total number of accesses with
respect to their cluster of origin. Finally, the last column of the table reports the
percentage of the accesses to an ED belonging to one of the five clusters. This means
that the majority of the patients can be served by an ED belonging to a cluster.
Further, the cluster C1, composed of 20 EDs over 49, treats more than the 50% of the
accesses.

Tab. 8.2: Description of the data considered in our quantitative analysis.

requests by clusters
C1 C2 C3 C4 C5

Jan 69,773 11,480 12,467 3,701 4,201 80.21%
Feb 64,876 9,819 11,548 3,379 4,008 80.05%
Jun 70,292 11,672 12,632 3,568 4,451 77.36%
Jul 62,505 11,027 12,836 3,507 4,196 76.01%

Our quantitative analysis consists in using the two-phase DES model to solve the four
instances arising from the four months in Tables 8.1 and 8.2. For each instance, a test
consists in solving the instance by varying the percentage of patients transported by
the EMS, denoted by pE , in the interval [7%, 27%] with a step of 5%. The rationale
is to study the interplay between the EMS and the ED network, as discussed in
Section 8.3 and suggested in [141]. Finally, the results for each solution are the
average values among those obtained by running the two-phase DES model 100
times, each time starting from a different initial conditions in such a way to have
independent and identically distributed repetitions.
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Tab. 8.3: P1 vs. P0: waiting time reduction ∆w in minutes.

pE 7% 12% 17% 22% 27% avg. ∆w

all 15.51 25.91 34.70 42.16 50.79 33.82
Jan EMS 17.75 21.63 24.73 27.74 34.37 25.24

no EMS 15.43 26.67 37.01 46.62 57.39 36.62
all 6.81 13.10 19.75 26.29 31.87 19.56

Feb EMS -4.31 1.62 6.68 11.33 15.70 6.21
no EMS 7.67 14.70 22.48 30.60 37.99 22.69

all 19.70 39.12 64.51 75.73 80.82 55.98
Jun EMS 5.78 19.88 45.51 58.88 66.45 39.30

no EMS 20.81 41.85 68.54 80.63 86.28 59.62
all 8.27 13.19 17.64 21.15 24.23 16.90

Jul EMS -3.86 -2.62 0.22 3.89 7.55 1.04
no EMS 9.20 15.35 21.20 26.03 30.43 20.44

all 12.57 22.83 34.15 41.33 46.93
avg. ∆w EMS 3.84 10.13 19.28 25.46 31.02

no EMS 13.28 24.64 37.31 45.97 53.02

Table 8.3 shows the results of our quantitative analysis reporting the waiting time
reduction ∆w considering the whole network of EDs. Such values are computed as
follows: for a given dispatching policy i = 0, 1, we compute the average waiting time
wij for each ED j = 1, . . . , 49, and then we set WPi equals to the average of all the
values wij; finally, ∆w = WP1 −WP0 . Note that P1 is better than P0 when ∆w > 0.

The results prove a general improvements of the waiting times, which improves
further as soon as the percentage of the patients transported by the EMS increases.
It is worth noting that the different results for each different instances depend on
the different composition of the emergency demand reported in Tables 8.1 and 8.2
(see, e.g., the last column of Table 8.2 reporting the percentage of the accesses to an
ED belonging to a cluster).

Table 8.4 shows the results of our quantitative analysis reporting the waiting time
reduction considering the cluster C1, that is the bigger one in terms of both the
number of EDs and the number of accesses. Although the general improvement is
inferior than those for the whole network, such results confirm the comments done
for the whole network.

8.5 Concluding Remarks
We presented a two-phase DES model to evaluate the dispatching policies for the
regional network of emergency departments powered by the knowledge provided
by the analysis of regional health care big data. The model has been tested on
the case study of the Piedmont in Italy showing that there is room to improve its
efficiency. Further, we observed that such an improvement is more significant as
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Tab. 8.4: P1 vs. P0, cluster C1: waiting time reduction ∆w in minutes.

pE 7% 12% 17% 22% 27% avg. ∆w

all 11.88 19.75 22.96 24.24 27.55 21.28
Jan EMS 30.81 29.65 24.95 22.54 24.52 26.49

no EMS 2.63 7.74 9.03 9.02 12.11 8.10
all -3.15 -1.11 1.66 4.57 6.64 1.72

Feb EMS 6.41 5.40 5.06 5.86 7.27 6.00
no EMS -9.57 -9.80 -8.32 -6.37 -4.85 -7.78

all 2.19 14.53 36.13 46.32 51.54 30.14
Jun EMS 9.89 15.69 29.30 36.75 42.02 26.73

no EMS -2.19 9.17 31.60 42.18 47.85 25.72
all 8.43 11.60 11.96 10.58 8.86 10.29

Jul EMS -0.76 6.17 9.52 9.87 9.47 6.85
no EMS 12.59 16.96 18.11 17.17 15.89 16.14

all 4.84 11.19 18.18 21.43 23.65
avg. ∆w EMS 11.59 14.23 17.21 18.75 20.82

no EMS 0.87 6.02 12.60 15.50 17.75

soon as the percentage of the patients transported by the EMS increases. This remark
has an evident managerial implication that would not have been possible without an
analysis of the entire ED network.

More generally, the results showed the effectiveness of the proposed approach in
terms of the capability of modeling a whole health care system through a discrete
event simulation approach, which exploits the availability of the health care big
data. As discussed in [201, 202], there could be a significant difference between the
formal description of the health system and the its real functioning. To overcome
this modeling problem, our idea is to retrieve a picture of the system from the big
data through the dynamic estimation of the parameters, which allow to fit the model
on a given time horizon replicating both the patients flow and their management.
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9The Real Time Management of
Ambulances

The analysis of the literature – reported in Chapter 7 – reveals an attention to
real-time dispatching policies in contrast to a limited attention to the redeployment
of the ambulances in real-time. From such an analysis, a list of insights can be
derived, that is (i) the number of patients in the waiting room is a better trigger for
ambulance diversion [184], (ii) the use of the fraction of covered calls as efficiency
measures [183], (iii) incorporating equity might lead to a lower service or negative
outcomes [183], (iv) priority dispatching policies can improve the performance
for urgent calls at the price of a worsening of the performance for non-urgent
calls [143].

The real-time management of the ambulances of an EMS is an online optimization
problem in which three main decisions should be addressed to serve an emergency
request, that is (1) which ambulance should be dispatched to serve an emergency
request, (2) the selection of the ED facility to which the patient will be transported,
and (3) where to redeploy the ambulance at the end of its service. The challenge
is the definition of a proper set of Dispatching Routing and Redeployment Policies
(DRRP) for the ambulance real-time management in order to guarantee a good
ambulance utilization reducing their diversion, and to maximize the number of
emergency requests served within the corresponding time threshold.

To the best of our knowledge, a comprehensive analysis of the DRRP has not yet been
provided. The contribution of this chapter is twofold. The former is an ambulance
simulation model capable to deal with real time management and to generate new
ad hoc instances. The latter is a set of simple online algorithms to implement several
DRRP. An extensive comparison among different DRRP is also provided.

The chapter is organized as follows. The instance generator is described in Sec-
tion 9.1. The simulation model is presented in Section 9.2. Then a set of DRRP is
proposed in Section 9.3 for the real-time management of ambulances. Then, such
policies are analyzed in Section 9.4. Section 9.5 closes the chapter.

9.1 Instance Generator
An instance is a planar graph G = (N,A) with n nodes and m arcs. Each node is a
centroid representing a small part of the whole area served by the EMS. Each arc
models the connection between two nodes. Two labels are associated to each arc:
the former represents the length of the arc while the latter is the average speed of a
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vehicle traveling on it. The number of arcs starting from a node u ∈ N is equal to
au. An example is reported in Figure 9.1.

Fig. 9.1: An example of an initial random generated instance with 55 nodes and 133 arcs.

The length of an arc and, more generally, distances in the graph are euclidean.
Further, a scale factor fs determines the value of each pixels. The scale factor is
useful to generate graph representing different type of areas such as urban or rural:
for instance, in our settings for a urban area 1 pixel corresponds to 20 meters.

As highlighted in Figure 9.1, there are three type of nodes, that is the emergency
demand generator (the colored circle), the ambulance base (the colored square),
and the ED facility (the white circle). Note that an emergency request can be
generated from an ambulance base node. Globally, we have nG, nB and nED nodes
(respectively generators, bases, and ED facilities) such that nG + nB + nED = n. Let
NG, NB, NED ⊂ N be respectively the subsets of the nG + nB generator nodes, the
nB bases, and the the nED ED facilities.

A generated graph can be manually adjusted adding or deleting nodes and arcs,
and also moving nodes and, by consequence, all connected arcs. For urban area, it
is also possible to characterize each node as residential, commercial, public utility,
and offices. This classification is useful at running time to model in a proper way
the generation of the emergency demand: for instance, a residential node usually
generates more demand during the evening or night while a public utility node is
likely to generate more demand in the morning. Further, we can change the average
speed of each arc by default set to medium (30 km/h) to low (20 km/h) or high (40
km/h).

Figure 9.2 depicts the final version of an instance in which the yellows are the
residential nodes, the greens are the commercial nodes, the light blues are the public
utilities, and the purple ones are the areas with offices. Regarding the arcs, the light
blue are those with medium speed while the blue and the gray arcs are the faster
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Fig. 9.2: The graph in Figure 9.1 completed.

and the slower ones, respectively. At the end of the process, the graph can be saved
on a file.

9.2 Simulation Model
The simulation model replicates how an EMS serves an emergency request. The EMS
receives a phone call from a citizen asking for an emergency care for himself or for a
third person. The operators at the EMS’s operation center are in charge of answering
the calls and assigning a color code to each emergency request, based on the severity
of injury, through a phase called triage. After the triage phase the operator dispatches
an ambulance following a predefined dispatching policy. Ambulance crew rescues
the patient and, if necessary, transports him/her to a hospital. Note that usually the
ambulance crew is in charge of the patient until he/she is handed to the hospital
staff.

The model takes in input seven parameters, that is (i) the duration I of the simulation
(expressed in days), (ii) the graph G = (N,A), (iii) the number Ab of ambulances
for each base b ∈ NB, (iv) the maximum number Amaxb of ambulances that can be
positioned on each base b ∈ NB, (v) the emergency demand variation table, (vi)
the workload of the ambulances, and (vii) the capacity of the ED facilities. While
the first four parameters have a straightforward definition, the last three requires a
detailed description, which is reported in the following. Let us denote with A the
total number of ambulances, given by A =

∑
b∈NB Ab.

9.2.1 Distances and Travel Times

The graph G = (N,A) is an undirected and labeled graph. The labels on the arcs
[u, v] are the distance `d among u and v, and the average speed `s on that arc. We
use such labels to compute both distances and/or travel times among two nodes in
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G. To this end, we use an ad hoc version of the classic label-setting shortest-path
algorithm (e.g., Dijkstra).

9.2.2 The Emergency Demand Variation Table

As reported by many authors (see, e.g., [152, 196]), emergency demand is not
static, but, rather, fluctuates during the week, according to the day of the week, and
hour by hour within a given day. The emergency demand table (Table 9.1) would
model the relative demand fluctuation over the day with respect to different urban
areas over the total demand (e.g. office nodes should have a higher relative demand
during the business hours of the day). In accordance with the characteristics of
the generator node, a negative (low) or positive (high) variation of the predefined
(normal) generation rate is possible. We denote as wiu the generic entry of the table
with respect to the time interval i = 1, 2, 3, 4 (morning, afternoon, evening, night)
and the node u.

Tab. 9.1: The Emergency Demand Variation Table

1: [7− 13] 2: [13− 19] 3: [19− 1] 4: [1− 7]
residential normal normal high low
commercial normal high low low
public utility high high normal low

offices normal normal low low

low = 0.7 normal = 1.0 high = 1.3

9.2.3 The Workload of the Ambulances

The workload of the ambulances WA is clearly determined by the generation rate
of each node in accordance with their characteristics and the fluctuations over the
day reported in Table 9.1. Our model allows to input the number of total emergency
requests that should be generated for each time interval along the day: the total
number of emergency requests is denoted by D which is equal to D1 +D2 +D3 +D4

corresponding to the number of requests to be generated during the morning,
afternoon, evening, and night time intervals, respectively.

During each time interval, the Di requests are spread to all the nodes belonging in
NG as follows: for each node u ∈ NG, let diu be the number of nodes that should be
generated by u during the time interval i, and defined as

diu = wiu Di∑
v∈NG w

i
v

.
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Then, the generation rate of the node u is equal to diu divided by the duration of the
time interval i.

Alternatively, the workload WA can be fixed as a target percentage of utilization and
determining – by consequence – the corresponding values of Di, i = 1, 2, 3, 4. First,
for each node we compute the minimal mission time as the minimum time required
to serve an emergency request on a given node. Let tmin

u be such a time computed
by considering the shortest time needed to follow the path starting at the closest
(to node u) ambulance base, passing from u, and ending at closest ED facility, plus
the average service time required at the emergency scene and at the ED. We note
that the assumption under the computation of tmin

u is to have an ambulance always
available. After that, we compute the (arithmetic) average Tmin

u over all u ∈ NG.
The total number of emergency requests D is then computed as

D = A
T (i)
Tmin
u

,

where T (i) is the duration of the interval i = 1, 2, 3, 4. Finally, the value Di are
obtained from D as Di = D ri∑

i
ri

where ri = 1, 0.8, 0.5, 0.2. The basic idea is to

spread the daily demand over the time interval in such a way to have a peak in the
morning.

Independently of its generation, the urgency code of each request is distributed in
accordance with the proportion observed in [140], that is about the 10% of red
codes, 50% of yellow codes, and 40% of green codes. Note that these percentages are
due to the so called over triage, which is an over estimation of the request urgency,
made by the operators answering at the emergency request phone call.

9.2.4 The capacity of the ED facilities
The capacity of each ED facility located in u ∈ NED is derived from the total demand
D plus the number of patients D′ that will arrive at the ED by their own. First we
compute the average service time TEDS from an estimate of the service time of each
urgency codes. The minimum necessary hourly capacity of the ED located at the
node u ∈ NED is given by

Cu = (D +D′)TEDS
24nED

.

The main assumption underlying this computation is to have patients evenly dis-
tributed among the ED facilities in such a way to have always one patient to exploit
a unit of ED capacity as soon as it is released by another patient. Finally, the capacity
of the ED facilities is a parameter ranging in [1, 2] in such a way that the final capacity
varies in [Cu, 2Cu].

In our model we have therefore two sources of patients, that is those transported
by the EMS and those arrived by their own. In our setting, D′ = 4D, that is the
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number of patients transported by the EMS is about the 20% of the whole emergency
demand at the ED facilities. This setting is consistent with the analysis in [142] and
discussed in Chapter 8.

The patients arriving by their own follow the same distribution observed in our
previous work [157], that is 2% of red codes, 15% of yellow codes, and 87% of
green codes. To be consistent with such a distribution, the urgency code of the
patients transported by the EMS are changed in such a way to obtain the same above
distribution decreasing a fraction of the red code to yellow, and the yellow to green.
Note that this is consistent with the common practice of an EMS in which over triage
determines an overestimates of the emergency demand.

Probability distribution used to generate the total patient demand, the service times
for the ambulance rescue and the weathering times are reported in Table 9.2.

Tab. 9.2: Distributions used in the simulation model (Exp=exponential, Tr=triangular).

Distribution Parameters Unit of measure

Ambulance request Exp
( 1
λ

)
λ = 1

6Di
patients/h

Autonomous arrivals to ED Exp
( 1
λ′

)
λ′ = 1

6D′i
patients/h

Ambulance rescue duration Tr(τmin, τmax, τmod) τmin,max,mod = 10, 20, 15 min
Urg. patient release at ED Tr

(
τ rymin, τ

ry
max, τ

ry
mod

)
τmin,max,mod = 6, 10, 8 min

Non-urg. patient release at ED Tr
(
τ gmin, τ

g
max, τ

g
mod

)
τmin,max,mod = 6, 20, 13 min

In Figure 9.3 we report the Emergency Department Length-Of-Stay (EDLOS) a
discrete distribution used to generate the treatment duration of patients within the
ED. Such a distribution is obtained empirically from the real case data-set of an
ED, whose details will be detailed in Chapter 10, truncating times exceeding 25
h. An interval time of 1 h is obtained through such a distribution, then a Uniform
distribution with support in that interval is used to generate the precise duration in
minutes. The resulting average EDLOS is 4.5 h.

Fig. 9.3: Empirical EDLOS distribution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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0.2
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9.3 Real-time policies
Our main aim is to evaluate real-time policies for the management of the ambu-
lances evaluating their impact in terms of performance of the ambulances and on
overcrowding of the ED facilities. In this perspective, we recall that the ambulance
real-time management is an online optimization problem in which the following
three main decisions should be addressed: (1) which ambulance should be dis-
patched to serve an emergency request, (2) the selection of the ED facility to which
the patient will be transported, and (3) where to redeploy the ambulance at the end
of its service.

Before introducing the DRRP, we define an estimate of the number of ambulances
needed at each base b ∈ NB. Let N c

1 , . . . , N
c
nB

a partition of N in such a way that
each node u belongs to N c

b (with b = 1, . . . , nB) if and only if the j-th base is the
closest one to the node u. Let Wb the sum of the morning weights in Table 9.1 of the
nodes in Nb, that is Wb =

∑
u∈Nb w

1
u. We use morning weights since we supposed to

have a peak of demand in the morning. The number Aeb of estimated ambulance of
base b ∈ NB is finally given by

Aeb = A
Wb∑

u∈NG∪NB Wu
.

9.3.1 Ambulance Dispatching
The most common dispatching policy is that of assigning an ambulance available at
the closest base [154], which has been proven to perform, on average, uniformly
better than the other dispatching rules in accordance with Larsen et al. [172]. In the
following, we refer to this policy as D-Closest.

Alternatively, the dispatched ambulance can be selected from a list of enough close
bases, that is those capable to reach the request within the time threshold for the
urgency of that request. Let LB be such a list of enough close bases. The D-LLCB
policy selects the ambulance to be dispatched from the less loaded close base b in
such a way that

argmaxb∈LB :Aa
b
>0{Aab −Aeb}

where Aab is the number of ambulances available in B at the moment of the decision.
The D-LLCB policy is similar to those reported in [143, 164].

The cutoff priority queue (D-CPQ) and the smart assignment (D-SA) are two possible
extensions of the two policies above reported. The D-CPQ consists in temporarily
stopping to serve all the emergency requests having green urgency code when the
overall number of available ambulance is less than a given threshold. The rationale
here is to free up potential resources to deal with the ongoing peak of emergency
demand. The D-SA consists in considering for dispatching not only the ambulances
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available in a base but even those who are in the redeployment phase, that is moving
from an ED to an ambulance base. In a real setting, this means to have a sort of
tracking system that allows to follow the ambulance in real time.

When D-SA is active, the D-LLCB should be slightly modified accordingly. First, we
consider the list LR of the destination basis of the redeploying ambulances that are
capable to reach the request within the time threshold. This means to assign the
value Aab −Aeb to each redeploying ambulance corresponding to the destination base.
Then we select a base according to

argmaxb∈LB∪LR:Aa
b
>0{Aab −Aeb} :

if the selected base b ∈ LB, we dispatch an ambulance from the base B; on the
contrary, we dispatch the redeploying ambulance if b ∈ LR. Finally, if the base b ∈ LR
belongs also to LB, we dispatch the closest ambulance between the redeploying
ambulance and one of the those available in the base.

Both D-CPQ and D-SA are introduced and discussed by Aringhieri et al. [140] while
D-CPQ is also analyzed by Yoon and Albert [204]. To the best of our knowledge,
D-SA is surprisingly never cited in the literature: the closest approach we retrieved
is that reported in [176] in which the centrality-based dispatching policy is improved
by taking into account both idle and busy ambulances.

9.3.2 Emergency Department Facility Selection

The H-Closest policy selects the closest ED facility. Again, this is a common choice in
the real settings. The rationale here is to provide as soon as possible a more accurate
medical treatment to the patient. Anyway, the ED managers usually complain about
the fact that the workload is not evenly distributed among the ED facilities of a given
area. Their claim is that a more fair distribution of the workload could improve
the overall efficiency of the ED facility network. Such a claim seems proved by the
analysis proposed in Chapter 9.

Here, we tested two simple policies addressing the problem of reducing overcrowding
at the ED facility in accordance with the remark discussed in [184], and reported
at the beginning of the chapter. The first policy, say H-SAQ selects the ED facility
having the shortest admission queue counting only those patients have same or
higher urgency code. The second policy, say H-WLB tries to balance the workload
of the ED facility taking into account the time needed to treat all patients in the
admission queue. Note that H-WLB implements a policy from the ED point of view
while H-SAQ implements a policy from the patient point of view. Finally, note that
the two policies are applied only to those patients having yellow or green urgency
code, while the H-Closest is applied to the red ones.
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An estimate of the workload Fu of the ED facility u ∈ NED is given by

Fu = trwp
r
u + tywp

y
u + tgwp

g
u

where trw, tyw and tgw are respectively the average ED length of stay for a red, yellow
and green code, while pru, pyu and pgu are respectively the number of patients inside
the ED facility (both waiting for admission and under treatment) for a red, yellow
and green code.

To counterbalance the effect of the longer travel times in the case of ED facilities less
overcrowded but far from the emergency request, the policies H-SAQ and H-WLB
are applied only taking into account the ED facilities no farther than the radius of
G, that is half of the longest travel time between a node u ∈ N and the current ED
facility.

9.3.3 Ambulance Redeployment
In the real practice, a simple policy is that of redeploy the ambulance to its original
base. In the following we refer to this policy as R-Base. Alternatively, the aim of the
EMS management should be to make an ambulance available as soon as possible
redeploying it to the closest base. Therefore, the R-Closest policy redeploy the
ambulance to the closest base at the end of the mission. This is one of the most used
policy in the real settings.

A third version of the above two policies is the R-LCBT policy: it redeploys the
ambulance to the less covered base b within a given time threshold TR as follows

argminb∈LR{A
a
b −Aeb}

where LR is the list of the bases that can be reached from the current ED facility
within TR. Note that TR is a parameter introduced to counterbalance the effect of
the longer travel times ad remarked in [144].

9.4 Quantitative Analysis
In this section we provide an analysis of the proposed policies in order to evaluate
their impact when are used separately or together.

In order to evaluate the proposed DRRP policies, we define in Table 9.3 several
performance indices taking into account the ambulance utilization and the most
important aspects for the patient safety and satisfaction, which regard the waiting
time from the moment of the phone call to the arrival of the ambulance and the
waiting time at the ED. Observe that red code patients do not queue at the ED, then
their waiting times are omitted.
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Tab. 9.3: Performance indices.

Index Definition

r Average time to reach a request (min)
fg Fraction of green code patients reached within 20 min (%)
fry Fraction of red and yellow code patients reached within 8 min (%)
u Ambulance utilization considering only the mission time (%)
u+ Ambulance utilization considering also the redeployment (%)
wg Average waiting time of green code patients at the ED (min)
wy Average waiting time of yellow code patients at the ED (min)
uED ED utilization (%)

The set of configurations taken into account in our analysis is reported in Table
9.4 and defined as different combination of the DRRP policies. All the possible
policy combination have been tested for each scenario, but we report the most
significant for reasons of synthesis. Given a certain scenario, we start from the
baseline configuration (0), in which the basic policies are used, and we change one
at a time the policy for ambulance dispatching (1), for ED facility selection (2–3)
and ambulance redeployment (4–5). The same policies are defined enabling the
D-SA option (0s–5s). Other configurations changing more than one policy w.r.t. the
baseline (6 and 7s–9s) have been chosen because they highlight interesting aspects
for the analysis. For the same reason, two configuration (6t and 0st) have been
selected to study the impact of the option D-CPQ.

Tab. 9.4: Configurations of DRRP set for the analysis.

id Ambulance Dispatching ED Facility Selection Ambulance Redeployment

0 D-Closest H-Closest R-Base
1 D-LLCB H-Closest R-Base
2 D-Closest H-SAQ R-Base
3 D-Closest H-WLP R-Base
4 D-Closest H-Closest R-Closest
5 D-Closest H-Closest R-LCBT (TR = 20 min)
6 D-Closest H-SAQ R-Closest
0s D-Closest, D-SA H-Closest R-Base
1s D-LLCB, D-SA H-Closest R-Base
2s D-Closest, D-SA H-SAQ R-Base
3s D-Closest, D-SA H-WLP R-Base
4s D-Closest, D-SA H-Closest R-Closest
5s D-Closest, D-SA H-Closest R-LCBT (TR = 20 min)
7s D-Closest, D-SA H-SAQ R-LCBT (TR = 20 min)
8s D-LLCB, D-SA H-WLP R-Base
9s D-LLCB, D-SA H-WLP R-LCBT (TR = 20 min)
6t D-Closest, D-CPQ H-SAQ R-Closest
0st D-Closest, D-SA, D-CPQ H-Closest R-Base

After fixing a policy configuration and a scenario through the model parameters, we
execute 30 simulation runs over a time horizon of I = 6 days: the first day is used
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for the warm-up, while the values of the performance indices are collected over the
other five days. The simulation model is implemented using AnyLogic 7.3.7 [73].

For the type of abstraction on which our model is based, it can not be validated
through a comparison with real data. For this reason, we would check if the model
is sensitive to the increase of the demand and if the ambulance and ED utilizations
are consistent with the fixed ambulance and ED workloads, respectively. Observe

that a total ED capacity of αCu should cause an utilization equal to
1
α

. To this aim,
configuration 4 is used as comparison terms, because it includes the set of policies
that minimize the traveling time of a single mission, supposing that an ambulance is
always available on the closest base, and allows us to have reliable checking over
non-crowded scenarios. Results confirm the validity of the model, as well as values
of u and uED in the analysis in 9.4.1 are consistent with workloads.

9.4.1 Policy comparison
All tests are made on the graph illustrated in Figure 9.4, composed by n = 248 nodes
andm = 512 arcs on a metropolitan area of 880 km2, among which nED = 7 hospital
and nB = 14 bases are distributed approximately in a balanced way. High-speed
roads have been drawn through maximum speed arc paths, while traffic areas are
located in different points using minimum speed arcs.

Fig. 9.4: Graph used for the quantitative analysis.

Six different scenarios are analyzed in our analysis. Scenarios 1–3 are obtained
ranging the ambulance workload WA in {30%, 40%, 50%} and setting the total ED
capacity equal to 1.5 times the minimum capacity needed to deal with the demand.
Then, scenarios 4–6 are defined for the same values of WA but keeping the same
total ED capacity, which is 1.7Cu, 1.275Cu and 1.02Cu when WA = 30%, 40% and
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50%, respectively. The initial number of ambulances Ab per base is fixed equal to 2
in all scenarios, while the constraint about the maximum number Amaxb is relaxed in
such a way to allow a higher flexibility to the redeployment policies, and to analyze
their impact in the most favorable situation.

Tab. 9.5: Results: ED capacity is 1.5Cu, that is proportional to demand.

Scen.1 - WA = 30% Scen.2 - WA = 40% Scen.3 - WA = 50%
id r fg fry u u+ r fg fry u u+ r fg fry u u+

0 6.1 98.2 78.3 27.0 32.4 24.8 59.1 42.8 41.8 52.7 110.0 14.1 14.0 57.9 75.5
1 6.9 98.0 75.8 27.6 33.4 24.3 58.6 41.1 42.1 53.2 111.8 13.7 13.3 58.1 75.7
2 6.0 98.4 78.9 27.0 32.5 22.1 60.8 43.5 41.7 52.6 111.0 14.3 13.9 57.9 75.5
3 6.8 96.1 74.2 28.9 35.6 28.7 51.1 37.0 43.8 56.0 108.0 13.9 14.1 57.6 75.2
4 8.5 96.0 57.9 28.8 31.8 11.2 85.5 46.8 40.2 44.3 32.5 41.0 25.4 54.0 59.1
5 7.0 96.6 70.7 27.8 32.0 11.4 81.4 54.9 39.6 45.3 45.6 31.8 26.3 55.0 62.3
6 8.6 95.2 57.3 29.1 32.2 10.8 87.0 47.5 40.0 44.1 34.9 38.7 24.8 54.6 59.8
0s 5.8 99.0 79.4 25.9 31.6 7.8 94.5 65.4 37.0 42.9 20.7 58.4 37.2 52.3 56.8
1s 6.9 98.6 75.9 27.6 32.4 8.9 93.0 61.3 38.1 44.0 20.3 58.8 36.2 52.8 57.3
2s 5.8 99.1 79.0 27.0 31.8 7.9 94.4 64.6 37.4 43.4 18.7 61.7 38.3 52.0 56.7
3s 6.1 98.8 76.1 28.5 34.1 8.9 91.0 58.9 39.8 46.4 19.4 59.0 35.5 53.6 58.6
4s 8.4 96.4 58.6 28.6 31.5 9.7 91.3 51.1 39.4 42.9 19.8 59.5 32.3 52.9 55.6
5s 6.7 97.2 72.0 27.5 31.4 8.4 92.4 62.7 37.8 42.6 18.6 62.5 40.1 51.7 55.4
7s 6.7 97.1 72.6 27.6 31.5 8.2 92.8 63.8 37.6 42.5 19.1 60.7 39.8 51.9 55.5
8s 7.3 97.6 71.5 29.2 34.7 9.9 89.6 55.8 40.7 47.1 21.2 55.2 33.5 54.4 59.1
9s 7.9 95.7 67.9 29.7 33.7 9.7 92.0 51.0 39.3 42.8 21.2 56.0 35.2 54.0 57.5

average uED = 64.9% average uED = 65.1% average uED = 65.2%

Results of Scenarios 1–3 are reported in Table 9.5 focusing on indices regarding
only performance of the ambulances. As expected, the increasing of the ambulance
workload WA causes a robust lengthening of waiting times, which pass from 6 to 110
min on average for the baseline configuration, and a general worsening of the indices.
Such an increasing allows us to appreciate the impact of different configurations, that
is for scenarios 2 and 3. Enabling only the policy D-LLCB with respect to the baseline
configuration, a slight general worsening can be observed, while H-SAQ and H-WLP
provide small variations depending on the considered scenario. More significant is
the impact of the redeployment policies and in particular R-Closest, which worsens
the fraction fry of the urgent patients reached within 8 min by an ambulance of
about 20%, but it halves the waiting times in scenario 2 and reduce them of more
than 70% in scenario 3. However, a more relevant impact is observed enabling the
D-SA: regardless of which policies are enabled, it always allows better performance
than when it is not activated. In particular, considering the best configuration with
and without enabling the D-SA, fry raises from 54.9% to 65.4% in scenario 2 and
from 26.3% to 40.1% in scenario 3 confirming the results on the real case study
reported in [140].

As a counter intuitive result, we observe that the configuration with the highest
average waiting time r in scenario 2 (0) becomes the better just enabling the D-SA
(0s). Similarly, in scenario 3 the value of r passes from 110 to 21 min (−81%) with
only the contribution of the D-SA. Finally, we observe that ambulance utilizations u
and u+ are consistent with the value of the parameter WA and little variations cause
significant differences in performance. The same observation worths for the ED
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utilization, which have not significant variations among configurations and whose
average value is reported in the last row of Table 9.5.

Tab. 9.6: Results: ED capacity is fixed, that is 1.7Cu, 1.275Cu and 1.02Cu in scenarios 1, 2
and 3, respectively.

Scen.4 - WA = 30% Scen.5 - WA = 40% Scen.6 - WA = 50%
id r fg fry wg wy r fg fry wg wy r fg fry wg wy

0 6.2 97.5 77.6 1.8 0.6 21.5 61.5 44.9 41.7 4.6 110.0 13.7 13.8 230.0 5.5
2 6.0 98.2 78.7 1.4 0.7 23.2 58.5 41.1 35.0 4.8 114.4 12.8 12.9 204.2 5.6
4 6.7 96.5 74.1 0.3 0.1 26.7 50.8 37.1 36.4 5.1 69.6 27.1 18.5 199.3 5.6
6 8.5 95.8 57.4 1.9 0.8 11.9 83.2 43.3 28.6 4.8 37.1 34.5 20.5 203.7 5.6
0s 5.8 98.9 79.6 2.3 0.7 7.9 94.6 64.9 40.6 4.7 26.1 52.5 33.6 245.9 5.6
2s 5.9 99.0 79.0 1.4 0.6 8.4 93.0 61.3 26.7 4.9 21.6 52.5 33.6 188.9 5.6
4s 6.2 98.6 75.7 0.3 0.1 9.4 89.6 56.6 28.4 4.9 20.3 56.9 35.1 177.2 5.8
9s 9.4 92.6 52.1 0.2 0.1 11.3 85.4 43.3 29.5 4.9 22.7 51.9 31.9 178.4 5.8

average uED = 57.1% average uED = 76.2% average uED = 93.2%

In Table 9.6 we summarize the most significant configuration to analyze the impact of
ED facility selection on the waiting time for the ambulance arrival and the admission
at the ED. Scenarios 4–6 are obtained ranging the value of WA as well as for
scenarios 1–3 but fixing the total ED capacity, which is equal to 1.7Cu, 1.275Cu and
1.02Cu, respectively. Such scenarios allow us to analyze the trade-off between the
indices regarding the ambulance performance and those about the ED performance.
The impact on the ED waiting times is evident: policy H-SAQ give a significant
decreasing, but H-WLP is the best policy, up to −13% in scenarios 2 and 3. Both
policies perform better when used enabling the D-SA, although this is not its goal.
However, these improvement are not always concurrently with the best solution
for the fast arrival of ambulance. For instance, in scenario 2 configuration 0s have
better values of r, fg and fry than configuration 2s, but green code patients have
a waiting time 52% higher at the ED. In some cases, a good compromise can be
found combining policies, as happens in scenario 2 for configuration 6 with respect
to other configuration without H-DA. In the last row of Table 9.6, we can observe the
model consistency about the fixed ED workload parameters. The trade-off between
the average time to reach an emergency request and the average waiting time at
the ED confirms the fact that incorporating equity might lead to a lower service or
negative outcomes as reported in [183].

The impact of the cut-off on the ambulance dispatching is studied in Table 9.7, where
results of 2 configurations (with and without D-SA) with a good trade-off between
ambulance and ED indices are reported. The threshold parameter of the policy
D-CPQ ranges between 5% and 50% of the total number of ambulances. We observe
that waiting times of urgent and non-urgent patients are sensitive to the D-CPQ: at
the increasing of the threshold, the formers have an improving at the expense of
the latters. However, in this scenario the use of the D-CPQ seems to be inadvisable,
because of the possible high negative impact on green code patients to obtain a slight
time saving for the other patients. This confirms the fact that priority dispatching

9.4 Quantitative Analysis 111



policies can improve the performance for urgents at the price of a worsening those
of non-urgents, as reported in [143].

Tab. 9.7: Results: impact of the D-CPQ policy varying the threshold (Scenario 2).

id threshold r fg fry u u+ wg wy

6t 5% 11.0 86.3 47.1 40.2 44.4 7.6 2.4
6t 15% 11.2 85.3 46.6 40.4 44.5 6.6 2.0
6t 25% 11.3 84.7 48.2 40.2 44.3 6.8 2.3
6t 30% 11.7 81.8 47.5 40.4 44.5 6.7 2.1
6t 35% 13.6 75.2 49.3 40.1 44.2 7.1 2.3
6t 40% 14.3 70.6 50.3 39.9 44.1 6.9 2.2
6t 45% 23.4 54.0 50.2 40.8 44.9 6.0 2.1
6t 50% 40.2 40.5 52.0 40.6 44.7 6.3 2.0
0st 5% 8.1 93.3 64.4 37.7 43.7 10.6 2.3
0st 15% 8.1 93.8 63.7 37.8 43.8 10.7 2.4
0st 25% 8.1 92.0 64.7 37.4 43.3 10.5 2.3
0st 30% 8.4 89.9 64.8 37.6 43.6 9.5 2.2
0st 35% 9.5 82.2 65.4 37.9 43.8 9.1 2.3
0st 40% 11.4 73.7 64.9 38.3 44.2 9.4 2.2
0st 45% 16.3 57.5 65.9 38.8 44.5 8.3 2.1
0st 50% 30.7 34.3 67.0 39.8 45.5 8.8 2.1

9.5 Concluding Remarks
In this Chapters, several DRRP have been presented and analyzed for the ambulance
real-time management. We provided a comprehensive analysis of the EMS system
that allows us to make an extensive comparison among different policies.

In particular, we provided a general analysis of the smart assignment policy, which
confirms the significant results reported by Aringhieri et al. [140] for the EMS of
Milano, Italy. The impact of such a policy on sufficiently crowded scenario is huge
and allows us to have performance better than using any other combination of
policies.

Regarding the other policies, results shown a trade-off among their impact on a fast
arrival of the ambulance and the waiting times for the admission in the ED confirming
the insight reported by McLay and Mayorga [183] for which incorporating equity
might lead to a lower service or negative outcomes.

More generally, the trade-off among the outcomes of the different policy combina-
tions justify the need of a modeling approach to support decision making in the EMS
management.

Further works could investigate the impact of the policies in graphs with different
characteristics, such as representing a rural area, positioning the ambulance bases in
an unbalanced way with respect to demand and distances, or limiting the capacity
of the ambulance bases.
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10An ad hoc process mining
approach to discover patient
paths of an ED

Because of the wide variety of different patient paths within the ED process and
the missing of data or tools to mine them, strong assumptions and simplifications
are usually made, neglecting fundamental aspects, such as the interdependence
between activities and accordingly the access to resources. Actually, the greatest
effort in modeling the ED behavior is to replicate such different paths. Moreover,
in order to implement online optimization algorithms to deal with overcrowding
to intervening on bottlenecks, models capable of making predictions on the patient
paths evolution would be useful. Nowadays huge amounts of data are collected by
EDs, recording diagnosis and treatments of patients. Process mining can exploit
such data and provide an accurate view on health care processes, as reported in the
literature review in Chapter 7.

In this chapter we propose a new framework to mine an ED process model based on
ad hoc process discovery tools. Our purpose is to obtain simple and precise process
model capable to replicate the large variety of the paths and to predict the use of
the ED resources by each patient on the basis of the only information known at
the access of the patient. Such a process model and its ability to make prediction
is used in Chapter 11 to optimize the resource allocation in the ED. We apply our
new framework to a real case study arising at Ospedale Sant’Antonio Abate di Cantù,
Italy.

The chapter is structured as follows. The case study is reported in Section 10.1
describing the population of the patients and the ED organization, also providing
a simple retrospective analysis. After describing how to pre-process our data-sets,
in Section 10.2 we report the results of a mining based on standard approaches in
order to justify the need of an ad hoc mining solution to develop a proper model
for the ED under consideration. The conformance of the discovered model is then
discussed in Section 10.3 testing its replicability and its robustness over a new
data-set. Concluding remarks are discussed in Section 10.4.
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10.1 The case study
We present a real case study concerning the ED sited at Ospedale Sant’Antonio Abate
di Cantù, which is a medium size hospital in the region of Lombardy, Italy. The ED
serves about 30 000 patients per year.

The resources available within the ED are: 4 beds for the medical visits placed in
3 different visit rooms, in addition to one bed within the shock-room and another
one in the Minor Codes Ambulatory (MCA), one X-ray machine, 5 Short-Stay Obser-
vation (SSO) units (beds), 10 stretchers and 10 wheelchairs to transport patients
with walking difficulties. The medical staff is composed of 4–6 nurses and 1–3
physician(s), depending on the time of day and the day of week, in addition to the
X-ray technician.

10.1.1 Patient population

Thanks to the collaboration with the ED, we have available all the data concerning
all the 88 272 accesses made in the years 2013–2015. Such data contains sex (male
52.7% or female 47.3%) and age of the patient, type of access (autonomously 79.9%
or with a rescue vehicle 20.1%), the urgency code (1–5, in descending order of
urgency), the main symptom (undefined 35.2%, trauma 30.7%, abdominal pain
6.9%, temperature 4.5%, chest pain 3.8%, dyspnea 3.4%, and other 25 options),
timestamps and resources used during the activities, and type of discharge (ordinary
82.0%, hospitalization 10.6% and abandonment 7.4%).

Fig. 10.1: Comparison between territorial and patient age distributions.
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The patient population is quite uniformly distributed across the different ages, with
slight peaks for the age groups 5–9 and 35–54. To motivate this fact we compared
the access frequencies of the five-year age classes with the demographic distribution.
As shown in Figure 10.1, the almost uniform distribution of accesses among the age
classes is due to the balance between the lower percentage of children and older
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people in the territorial area and the higher percentage of adults, which have a
lower number of accesses per person. For the comparison, we used ISTAT data about
2014 in the province of Como, in which Cantù is located, observing that Lombardy
Region and Italian territory have very similar distributions, but there are areas with
a different age distribution, such as the Province of Trieste, for which we expect
a different ED demand. This because in addition to a greater number of accesses,
older patients have urgency codes 1–2 more frequently (30.0% of cases for patients
over 65 years old against 12.1% for under 64) and consequently they have higher
EDLOS, as we will see below.

10.1.2 Organization of the Emergency Department

A patient is interviewed and registered as soon as possible by a triage-nurse on
his/her arrival in the ED, recording personal data, the main symptom and the
urgency code from 1 (most urgent) to 5 (less urgent), in accordance with Table 10.1.

Tab. 10.1: Urgency codes: description and frequency over 2013–2015

number color description frequency

1 red immediate danger of death 1.5%
2 yellow need of a timely medical visit 15.8%
3 green need of treatments or investigations 61.6%
4 blue

symptoms that could be treated as primary care
13.8%

5 white 7.3%

After the triage, the patient is visited in one of the visit rooms by a physician. Certain
patients are visited in other special rooms such as the shock-room, which is properly
equipped for severely urgent interventions, and the MCA, provided by the ED from
Monday to Friday in the time slot 8:00–16:00 for adult patients with low urgency
codes and good ambulation ability.

After a medical visit, the physician can prescribe therapies, tests or observations.
Therapies are various but always performed by a nurse and identified in the same
way within the data-set. Tests could be laboratory tests, which are performed by
a nurse, X-ray examinations, performed by a X-ray technician with the assistance
of a nurse for urgent or motor-impaired patients, or other investigations that are
not competence of the ED, that could be a computerized tomography, an ecography
or a specialist visit. Then, there are two different SSO, both requiring a glssso bed
unit and the supervision of nurses and physicians: the first is the ordinary glssso for
medical reason, while the second is the pre-hospitalization SSO, that is when patient
need to be hospitalized but a bed is not yet available within the assigned hospital
ward.
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After examinations, treatments and specialist visits, the patient is revalued again by
a physician of the ED, which establish how to continue the treatments, the need of
hospitalization or the discharge for patients needing non-urgent investigations.

There are different ways in which a patient can leave the ED and/or be discharged.
The first one is before the triage, when the patient can leave without a visit (or
LWBS). Another possibility is after the triage in the case of a non-urgent patients
under 18 years old, which are under competence of the pediatric department and,
from the ED point of view, is a discharge. Further, during tests and treatments the
patient has the right to interrupt the care. Finally, after all the necessary visits and
investigation patients can be discharged or hospitalized.

Table 10.2 resumes all the activities that could be performed by a patient within
the ED. The first and the second columns indicate respectively an identifier for each
activity and its description. Then, we classify the activities into 5 classes called Triage,
Visit, Tests & Care, Revaluation and Discharge. In the fourth column the activities
that are competence of the ED are indicated with a mark. Finally, in the last column
the timestamps available in the records are indicated, that is the start time tS , the
prescription or request time tP , the report time tR and the end time tE .

Tab. 10.2: Activities in a patient path

id description class ED comp. timestamps

A Triage Triage 3 tE
B Medical Visit Visit 3 tE
C Shock-Room Visit 3 tE
D MCA Visit Visit 3 tE
E Paediatric Fast-Track Discharge tP
F Therapy Tests & Care 3 tP , tE
G Laboratory Exams Tests & Care 3 tP , tR
H X-Ray Exams Tests & Care 3 tP , tR
I Computerized tomography Tests & Care tP , tR
J Ecography Tests & Care tP , tR
K Specialist Visit Tests & Care tP , tR
L Short-Stay Observation (SSO) Tests & Care 3 tS , tE
M Pre-hospitalisation SSO Tests & Care 3 tS , tE
N Revaluation Visit Revaluation 3 tE
O Hospitalisation Discharge 3 tE
P Discharge (Ordinary) Discharge 3 tE
Q Interruption Discharge tE

Figure 10.2 depicts a general patient path: after the triage, a Visit class activity is
always provided except for a LWBS patient. Then the patient can be discharged or
continue with a sequence of Tests & Care class activities, that is always followed by
a revaluation visit, after which the patient can be discharged or go on with other
Tests & Care class activities.
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Fig. 10.2: A general path for a patient within the ED.
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10.1.3 Retrospective analysis

The ED of Cantù performed a retrospective analysis using the NEDOCS in the
aftermath of several management changes, such as the introduction of the MCA or a
new staff rostering. In addition to inadequacy of this and other similar measures,
proved by Hoot et al. [165], the NEDOCS is a one-dimensional index that expresses
the request of several resources and therefore is not useful to identify bottlenecks.
Furthermore, the analysis performed by the ED of Cantù has been affected by the
lack of several information that has been dealt with approximations. For all these
reasons, we omit the NEDOCS results, focusing on a brief retrospective analysis that
describes the variability of demand over time.

Fig. 10.3: Patient accesses divided for urgency code
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The accesses have different fluctuations over the day, among the days of the week
and among the seasons, but also among the urgency classes. The higher arrival rate
fluctuations occur during the business hours of the day, as shown Figure 10.3(a),
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especially for the minor codes, which usually go to the ED instead of relying on
primary care. For the same reason, a higher number of non-urgent arrivals has
been registered on Monday, as shown in 10.3(b). Conversely, the urgency class 1
has the highest coefficient of variation among the different months of the week,
because of medical and epidemiological reasons that causes more arrivals in winter.
Nevertheless, from Figure 10.3(c) a uniform workload over the year (except for
August) could be deducted, in fact, the workload do not depend directly of the
number of accesses. Then, we report in Figure 10.3(d) the average number of
patients concurrently treated (including all the activities between the first visit
and the discharge), that is a more consistent indicator with respect to the ED staff
perception.

Tab. 10.3: Waiting times, LWBS and statistics on the treatment of patients

urgency average percentage average perc. average perc. of
code wait time of LWBS EDLOS of SSO SSO duration hosp.

1 15 min 0.2% 9 hours 28.4% 19 hours 60.3%
2 34 min 0.5% 7 hours 19.5% 20 hours 28.9%
3 65 min 3.3% 2.5 hours 5.4% 19 hours 7.8%

4–5 68 min 11.1% 1 hour 0.5% 17 hours 1.1%

The statistics in Table 10.3 justify this fact, indeed more urgent patients have a longer
average EDLOS. Such a difference is due to the higher frequency of SSO for patients
with urgency codes 1 and 2, caused by a higher percentage of hospitalizations. The
average waiting times confirm us that the priority among urgency codes is respected.
Finally, lower urgency codes also have an higher rate of LWBS patients, while the
percentage of patients leaving after being seen, that is patients leaving after the
medical visit but without finishing the treatment, is similar for all the urgency
classes.

10.2 Process Discovery
After reporting how to pre-process the huge amount of available data, in this section
we report the results of a process mining based on standard approaches in order
to justify the need of an ad hoc process mining solution to develop a proper model
for the ED under consideration. Our aim is to have a model capable (i) to replicate
properly the possible patient paths, and (ii) to predict the next activities and the
required resources of patients on the basis of their characteristics and their activities
performed until that moment.

10.2.1 Pre-processing
In order to use discovery mining techniques, we need to pre-process the ED database
to create an event log, which consists of a set of traces (i.e. temporally ordered
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sequences of events of a single case), their multiplicity and other information about
the single events, such as timestamps and/or durations, resources, case attributes
and event attributes. In our case, the events correspond to the activities concerning
the patient treatments recorded for each access within the ED of Cantù’s database,
while each trace identifies a patient path.

The event log has been generated taking into account the accesses of the 3-years
period from 2013 to 2015. Each case of the event log consists in an access and events
consist in activities, which has been classified into 17 event classes corresponding to
the same number of activities reported in Table 10.2.

Because of the control flow perspective that we are taking into account, we need
to estimate the start time and the end time of each activity involving a patient.
For instance, tests after blood collection are not part of the activity in this sense,
because the patient can continue with the execution of other activities while the
blood sample is analyzed and reported. However, we have to take into account
several noise factors that may be present in the data-set provided by the emergency
room. A list of the noise factors that we are dealing with is the following:

N0 – missing timestamps: for activities of the classes A–K and N–P one or both
start and end timestamps are not available;

N1 – timely execution: urgent patients’ activities are performed without worrying
about the registration of the information at the exact moment, consequently
triage or shock-room activities could refer to a later time;

N2 – forgetfulness in recording therapies: therapies are sometimes recorded
during the discharge instead of the actual execution time, because they are
activities that could be performed on the fly;

N3 – multiple recording: for technical reasons, two ore more records can refer to
the same event for the event classes G–J, that is when more examinations are
performed through a unique collection, scan or specialist visit;

N4 – fake or missing revaluation visit: sometimes the revaluation record can re-
fer to the passage of the medical record between two physicians for the change
of work shift, while other times a revaluation visit could be performed without
to be recorded if the patient is discharged at once (but from ED suggestions
we know that always a revaluation is performed between tests and discharge);

N5 – fake medical visit: pediatric visits are performed in the Pediatric Department
but that are activities also recorded in the data-set of the ED.

N6 – tests reported after discharge: activities (such as non-urgent investigation)
are included within the patient path but could be analyzed and reported after
the patient discharge.
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In Figure 10.4 two examples of traces with noise are reported, with the corresponding
timestamps available (black dots) and several missing useful timestamps (white
dots): we can estimate the missing start time subtracting the average service time
and/or reporting time in accordance with the directions of the ED staff, as reported
in Table 10.4. A noise of type N6 can be observed in trace 1: actually all activities
finish before the discharge, but if we take into account the end times, we have the
wrong trace ABGNPH. Trace 2 contains both noise phenomena N1 and N2. The
former occurs when the shock-room visit is registered after the actual end because
the urgency of treating the patient has the priority on the recording. The latter is due
to the incorrect time of insertion of the therapy execution, whose recording is made
during the final check at the discharge. In this case is not possible to know exactly
the moment in which the activities C and F have been performed, so we approximate
the end time of the shock-room visit with the timestamps of the data-set, while
for the therapy execution we suppose that the start time is immediately after the
prescription by the physician.

Fig. 10.4: Example of the activities for two different paths with the corresponding times-
tamps (black dots) and other significant times (white dots).
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The pre-processing algorithm has been implemented as follows:

1. Start time and end time of each activity are estimated in accordance with
Table 10.4 (noise N0).
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Tab. 10.4: Average duration of the activities according to the ED staff and estimation of the
missing timestamps.

event activity reporting start time end time sorting time
class duration d duration r tS tE t̄

A 5 min n.a. tE − d available tE
B 15 min n.a. tE − d available tE
C 15 min n.a. tE − ttriage

E available tE
D 15 min n.a. tE − d available tE
E 0 min n.a. tE available tE
F 2 min n.a. tE − d available tS
G 3 min 15 min tR − r − d tR − r tE
H 3 min 30 min tR − r − d tR − r tE
I 10 min 45 min tR − r − d tR − r tE
J 15 min 45 min tR − r − d tR − r tE
K 15 min n.a. tlast before K

E tR tE
L available n.a. available available tS
M available n.a. available available tS
N 10 min n.a. tE − d available tE
O 1 min n.a. tE − d available tE
P 1 min n.a. tE − d available tE
Q 0 min n.a. tE available tE

2. A sorting time t̄ is fixed for each activity in order to avoid overlapping of
activities (because of N0); we chose the more reliable time, that is t̄ = tS for
activities F , L and M , t̄ = tE for the other ones.

3. If activity E occurs, all the other activity are removed, except the triage (noise
N5).

4. The activities of the same path are sorted in chronological order of t̄ composing
the trace.

5. For each trace, let t̄exit be the sorting time of the discharge (one among
activities O, P and Q) and let τ > 0 be a parameter denoting the amount
of time before the discharge in which the forget recording of therapies is
remedied. If t̄exit − t̄F < τ , then t̄F = max{t̄F , tFR + 1 min}, where tFR is the
prescription time of that therapy (noise N2).

6. For each trace, let t̄Y be the sorting time of a certain Tests & Care class activity.
If t̄Y > t̄exit, then t̄Y is fixed one minute before the first revaluation visit after
the prescription time of that activity (noise N6).

7. For each activity of each trace:

• if it precedes the triage time, then it is moved one minute after the triage
time (noise N1);

10.2 Process Discovery 121



• if it is not a triage and it precedes the visit time, then it is moved one
minute after the visit time (noise N1).

8. For each trace, if there is no revaluation visit between a Tests & Care activity
and the discharge, then a fake revaluation visit is inserted a minute before the
discharge (noise N4).

9. For each trace, consecutive Tests & Care activities of the same type such that
the time between them is less than δ are merged keeping the start time of the
first one and the end time of the last one (noise N3).

In our pre-processing, parameters τ and δ have been fixed equal to 10 and 30 minutes,
respectively. The derived event log is composed of 475 870 events concerning 88 272
cases. The execution time required by the pre-processing procedure implemented
in C++ is 26.4 seconds for the whole data-set. Excluding LWBS and the pediatric
fast-tracks, corresponding to the trivial traces AQ and AE, the remaining 66 551 cases
generated 7 868 different traces of length ranging in [3, 31], with an average value
of 5.5. The high number of different traces with a low frequency is partially caused
by medical reasons (i.e. patients need very different treatments), but also by noise
phenomena N0–N6 that have not been relieved completely.

10.2.2 Standard process discovery
We report a summary of the analysis of process discovery techniques from the
literature conducted in Duma and Aringhieri [157]. Models and results have been
updated after a more accurate pre-processing in accordance with the suggestions by
the ED staff.

In addition to the requirement of computational efficiency, not always found testing
standard approaches, four main quality criteria of the process discovery algorithms
have be assessed [148]: fitness, precision, generality and simplicity. Fitness indicates
how much of the observed behavior is captured by the process model, that is how
many traces of the mined event log can be replied on it. The precision points out if
behavior completely unrelated to what was seen in the event log are allowed by the
model. The generality is the capacity of the model to generate different sequences
of activities with respect to the observations in the log. Finally, the simplicity is the
easiness in understanding the process using the mined model.

The huge number of traces suggests the use of discovery techniques that deal with
low frequent behavior and noise. We focus on two different process miners, the
HeuristicMiner (HM) [199] and the Inductive Miner – infrequent (IMi) [177], both
based on the control-flow perspective.

The HM takes into account the order and the causal dependencies among the events
within a trace, generating a model that uses the Heuristic Net notation, which is
flexible because it can be easily converted in other notations, for instance a Petri Net.
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The IMi is an extension of the Inductive Miner (IM), that is a divide-and-conquer
approach based on dividing the events into disjoint sets taking into account their
consecutiveness within traces, then the event log is splitted into sub-logs using
these sets. The IMi uses the same approach but filters a fixed percentage of traces
representing infrequent behavior to create a PN. Both the techniques require low
computational time, that is an important requirement due to the dimension of our
event log. On the contrary, the two approaches perform differently with respect to
the quality criteria.

The process models H and I mined by the event log using the HM and the IMi
provided by ProM 6.6 are shown in Figures 10.5 and 10.6.

Fig. 10.5: Process model mined with the HM: model H (heuristic net).

The model H has been generated varying the parameters dependency and relative-to-
best of the HM in such a way to reach the best fitness, that is an index of the capacity
to reproduce the behavior recorded in the event log, equal to 64%. The obtained
model H, as well all the other generated varying the parameters, is a so-called
Spaghetti process that is not sufficient simple to understand the whole process. In
addition to the problem of non-simplicity, the model is not adequate to predict the
evolution of the route because it has no memory regarding the activities already
performed.

The model I has been obtained varying the noise parameter of the IMi in order
to have a good precision, avoiding or limiting infrequent behavior. However, we
observed very slight deviations among the models ranging the noise percentage, that
has been fixed to 20%. Contrariwise to H, this model is very simple but not precise:
the parallelisms among activities allowed by I(represented by the grey boxes in
the Figure 10.6) imply additional behavior that is not present in the event log, for
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instance traces with two Visit class activities are allowed by the model but not in
reality. At the same time, there is an insufficient fitness, because the model I do
not allow to replicate behavior present in the event log, such as the execution of
two or more event of the same event class (e.g. multiply therapies or multiply X-ray
exams).

Other standard approaches have been tested in a preliminary analysis without
satisfying our requirements. For instance, we tried to use the Fuzzy Miner, which is
a discovery algorithm based on significance and correlation. This approach has been
applied in Abo-Hamad [136] for an ED case study to show the main highway paths
for patients to gain insights into bottlenecks and resource utilization. However the
Fuzzy Miner is not suitable to our purpose, because the level of granularity necessary
to implement a process model to analyze resource allocation policies is very high,
then varying the parameters of such an algorithm we deal with the same trade-off
between precision and simplicity founded for the models H and I.

10.2.3 Ad hoc process discovery model

Starting from the remarks in Section 10.2.2, we would like to design a model with a
better compromise between fitness, precision, generalization and simplicity. A way
to obtain a simple but precise process model is to use a tree-structure that allows us
to follow the possible different evolutions of the paths. However the huge variability
of the traces would generate a model of huge dimensions, that is not good from the
simplicity point of view. This issue could be addressed through a clustering of the
patients with respect to their characteristics, such as symptoms and urgency. Indeed
the treatment of patients with illness or injuries belonging to different medical
specialty and very various even within the same specialty. Such a classification
should identify classes of patients in such a way to reduce as much as possible the

Fig. 10.6: Process model mined with the IMi: model I (Petri net).
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dimension of the trees, and to group patients with different characteristics in order
to guarantee their statistical relevance.

An example of the process model that we would propose is shown in Figure 10.7.
Each node represents an activity executed after all the activities indicated by the
ancestor nodes, while the arrows indicate that a certain activity can be performed
after another one. The presence of one or more edges from a node indicates that
one and only one of them have to be crossed, representing a sort of XOR condition.
Therefore, branches represent the different path evolutions after the execution of
the node from which they start.

Fig. 10.7: Example of process model with a tree-structure. Dashed edges highlight the
possible path SGFLNF.
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The tree-structure allows us to keep track of the path previously done, which is a
way to have memory of the past activities (unlike model H) and to predict what
could happen in the future. The labeling of edges with frequencies allows us to
estimate, in a computationally efficient way, the probability that a certain event will
occur from a certain point on wards. However a model mined from the event log
with these rules would replicate all but only the paths in the data, leading to an
over-fitting – that does not satisfy the generalization requirement – and generating
a high number of nodes. To overcome these limitations, we summarize infrequent
branches with graphs, in which we do not keep track of the past activities.

A possible path is highlighted with dashed edges in Figure 10.7, whose trace starts
with a node labeled with G and followed by other tree nodes labeled with F, L, N
and F respectively. In this case, the branch ends with a pentagonal box indicating
that the model continues with a graph similar to that depicted in Figure 10.8.

Before introducing an ad hoc algorithm for the process discovery of the real case
study, we imposed a process structure based on the framework in Figure 10.2 drawn
together with the staff and consistent with the previously obtained models.

Excluding the cases of the LWBS and the pediatric fast-track, which are trivial and
not interesting for the process discovery, each path begins with the activity A (triage)
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followed by an activity of the Visit class, that is B, C or D. Then, the patient performs
a sub-process that we call Investigations Process (IP), consisting of a number n ≥ 0
of activity sequences of the Tests & Care class, that is F–M activities, at the end of
each there is always an activity N (revaluation visit). Finally, at the end of the IP,
the path ends with a Discharge class activity, that is E, O, P or Q.

We are interested in studying the evolution of the path inside the IP, that is the
sub-process that differentiates the paths and should be predicted in order to optimize
the resource allocation. Indeed, there are two moments of the path in which the
prediction make sense, that is before a Visit class activity or before the revaluation
visit. After these activities, the physician decides if the patient can be discharged
or if a set of Tests & Care class activities is necessary. Such set is partially ordered,
because some activities must be performed in a certain sequence (e.g. X-rays could
be necessary before the specialist visit at the orthopedist ward), while other activities
that do not impact on others can be performed in different orders. Of course the
latters include all the exams, that is activities G–J, while we assume in general that
the formers need to be executed in the order registered in the event log because
of the impossibility to go specifically from the data. From our perspective, traces
with the same activities and two or more consecutive activities G–J with different
order identify the same path, even if in the records they are executed in different
way because of management decisions. For this reason, we define a unique order of
those activities that can be performed in any order, that is G ≺ H ≺ I ≺ J , where ≺
indicates that the former activity precedes the latter.

Phase 1: Patient clustering with Decision Tree

We use the Decision Tree (DT) learning approach of the data mining to predict the
first sequence of Tests & Care class activities before the revaluation visit, possibly null
in case of discharge immediately after the visit. To this aim, the label is expressed as
a string in which characters identify the activities of the sub-trace between the first
visit (excluded) and the first revaluation visit (included), using the only character X
if no activities are performed in the IP. The attribute are all the information known
at the triage: sex, age, arrival mode (with an ambulance or autonomously), main
symptom, urgency code, time-dependence (yes/no referred to urgent patient with

Fig. 10.8: Example of a sub-process model with a graph-structure
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Fig. 10.9: Decision tree with gain parameter set to 0.25 and obtained clusters C1 − C9
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specific symptoms), arrival day (Monday–Sunday), type of arrival day (weekday
or weekend), month of arrival (January–December), arrival time slot (60 minutes
period) and type of first medical visit (ordinary, shock-room or MCA).

The DT approach requires the following parameters. We use the criterion called
“gain ratio”, that is used to reduce a bias towards multi-valued attributes by taking
the number and size of branches into account when choosing an attribute. We fixed
a confidence equal to 0.25 and imposed a minimum leaf size equal to the 1% of the
whole patient population of the event log. Finally, we set the minimal gain parameter
to 0.25 and to 0.2 in such a way to obtain two different DTs of different size, with
number of leaves equal to 9 (Figure 10.9) and 18 (Figure 10.10), respectively.

We denote with {Ci}i=1,...,9 and {C ′i}i=1,...,18 the clusters obtained in correspondence
of the leaves of the two DTs, which are two different partitions of the set of all patients
that all the visited patients. Observe that Ci = C ′i, for i = 1, . . . , 7, C8 = C ′8 ∪ C ′9,
and C9 = C ′10 ∪ . . .∪C ′18. The clusters obtained through the data mining allow us to
reduce the number of such paths for each subset of patients and to group patients
that have similar frequencies to follow a certain path. The DT has been applied using
RapidMiner Studio 7.1.

Phase 2: Process Modelling

For each cluster defined in the first phase of our ad hoc approach, we model the
behavior of its patients, that is the possible patient paths. To this end, we use a
notation that we call Hybrid Activity Tree (HAT), that is a graph G = (A, T), where
A is a set of nodes labeled with the ED activities (those in Table 10.2) and T is a set
of oriented edges indicating possible transitions between nodes and labeled with a
weight f ∈ (0, 1] equal to the relative frequency of that transition. We remark that
different nodes can be labeled with the same activity: each of them represents the
execution of such an activity after the execution of different activity sequences.

10.2 Process Discovery 127



Fig. 10.10: Decision tree with gain parameter set to 0.2 and obtained clusters C ′1 − C ′18
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Globally, the HAT represents all the possible paths in the IP phase as a tree, in which
the root node S has m > 0 child nodes representing the m first possible activities that
can be performed after the medical visit (activities B–D), each of them has a number
mi ≥ 0 of child nodes representing the second activity, and so on, until reaching a
leaf node. This node always represents a general Discharge class activity, labeled
with X, or the starting node of a graph, called Sub-Tree Activity Graph (STAG), which
is used to model infrequent behavior (indicated with a pentagon in Figure 10.7).
A STAG is a graph to model infrequent paths having the first part of the sequence
in common, which consist in the sequence of nodes from the root to the node that
connects the tree to the STAG. Also within the STAG, an edge indicates that a certain
activity can be performed after another one, but unlike what happen for the tree
nodes, at most a node within a STAG can labeled with a certain activity. Therefore, a
node can have more incoming edges representing after which activities that one can
be performed.

The proposed process discovery approach takes into account a certain cluster C,
focusing on the IP of the path and using a parameter ` that indicate the minimum
absolute frequency required for considering a certain transition sufficiently signifi-
cant. Starting from the data-set of all patients of the cluster C, the Hybrid Activity
Tree Miner (HATM) is built as follows:

1. Let GC be the HAT of the cluster C, initially equal to ({S}, ∅), where S is a
node denoting the start of the IP. Let ℘ indicate the node on which we are
positioned.
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2. For each trace Ψ of cluster C with the uniformed notation introduced in the
pre-processing phase, let Σ = (σ1, . . . , σm) be its sub-trace corresponding to
the IP and let ℘ be positioned on the root node S.

3. For each activity σi, for i from 1 to m, we check if exists a transition from ℘

labeled with σi. If it exists we increase of one the weight of the edge connecting
the two nodes, otherwise we add a node with label σi and a transition from ℘

to the new node.

4. If i < m, we set ℘ on the existing or new node with label σi and we go to step
3. Otherwise, if exists other traces in C, we go to step 2.

5. We set ℘ on S and, for each outgoing edge e ∈ T, we check if its frequency
fe ≥ `. In positive case, we iterate the check for each son node, otherwise we
mark that node.

6. For each marked node of GC we prune the sub-tree τ in its correspondence
and we connect the tree in that point with a STAG γ built in such a way that:

• if exists at least one node labeled with a certain activity in τ , then a
unique node is inserted in γ with that label;

• if exists at least one edge between from one of the nodes with label L to
one of the nodes with label L′ in τ , then a unique edge with the same
direction is inserted in γ between the node with the label L and the one
with label L′;

• weights of edges in γ are computed as sum of all the weights on edge in
τ having same labels to the connected nodes;

7. for each node of GC that is not part of a STAG, if two ore more STAGs are
connected to that node, then they are merged and weights on edges are
summed.

We call Hybrid Activity Forest (HAF) a set of HATs that model the behavior of different
clusters C1, . . . , Cl of patients. Let Γ = {C1, . . . , C9} and Γ′ = {C ′1, . . . , C18} be the
sets of the partitions obtained through the two clusterings performed in the phase
1 of our approach. We generate 6 different HAFs taking into account Γ or Γ′ and
fixing ` ∈ {1, 30, 100}.

Table 10.5 reports the main characteristics of the mined process models using the
HATM implemented in C++. Fixing ` = 1, pure tree models are obtained, which are
over-fitted models able to replicate all but only the traces of the event log. These
models allow us to have always memory of the activities previously performed. The
pure tree models provide a high number of nodes, that is not good to understand
the behavior of the process, but could be used without problems of computational
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Tab. 10.5: Characteristics of the HAFs using different clusters and values of `.

average number mined traces totally comp.
of pure tree nodes replicated on tree nodes time

name clustering ` in a single HAT (number) (percentage) (secs)

F1 Γ 1 5 311 66 551 100.0% 3.8
F ′1 Γ′ 1 2 884 66 551 100.0% 3.6
F30 Γ 30 55 55 956 84.1% 3.7
F ′30 Γ′ 30 35 52 982 79.5% 3.3
F100 Γ 100 24 51 186 76.9% 3.7
F ′100 Γ′ 100 14 46 804 70.3% 3.3

Fig. 10.11: HAT of cluster C2 = C ′2 fixing ` = 30
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efficiency because of the tree structure, which avoid cycles and allows a simple
calculation of frequency of a certain event.

More generally, models generated with higher values of ` have a higher percentage
of traces of the mined event log that are replicable in the STAGs and a lower
number of nodes on the tree, which allows us to better understand the main path
executed by the patients of the clusters. A slightly improvement is given using the
clustering Γ instead of Γ′. However, lower dimensions of the tree mean also less
precision and more generalization. The HATM required always less than 4 seconds
of computational time for each parameters combination. Figures 10.11–10.14 show
the differences of using different values of the parameter `, for two clusters that are
equals for both clustering Γ and Γ′.

In Figures 10.11 and 10.12 two different models are discovered for the paths of
patients with dyspnea arrived at the ED in a weekday with their own means, in which
thicker arrows indicates transitions with higher absolute frequencies. In this case the
value ` = 100 (Figure 10.12) is too high to have a significant process model, because
of the low number of patients in this cluster (1 041 patients). The result is similar to
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that obtained for the Heuristic Net H, but in this case we have two different simpler
graphs denoted with a pentagon: one for patient that execute the activity G and one
for all the others (depicted in the figure). On the contrary, for ` = 30 (Figure 10.11)
the most common paths or the initial parts of them are easy deductible and different
frequencies can be observed in different path evolutions. In this case, we have a
high number of STAGs, but they are simpler. The same observations can be made
for the cluster C4, that is time-dependent trauma patients arrived by an ambulance
(Figures 10.13 for ` = 30 and Figure 10.14 for ` = 100).

Models mined fixing ` = 30 give us also information useful to make prediction
of the next activities of a patient when he / her is waiting for a visit. We report
an example of the type of prediction that can be made. Let us suppose to have 3
patients with the same urgency, π1 of the cluster C2 and π3 and π4 of the cluster
C4, which are waiting for a revaluation visit, occupying a scarce resource (e.g. a
stretcher). Let us suppose they performed the activity sequences ABGGH, ABH and
ABFH, respectively. This means that the π1 is positioned before the unique node
labeled with N in Figure 10.11, π2 is before the node labeled with N at the top of
Figure 10.13, and π3 is on the other node with the same label on the bottom of the
same model. In order to release stretchers as soon as possible, the model suggests
to visit π2 because the frequency of the discharge after the activity N is equal to
0.938, which estimates a higher probability of discharge compared to π1 (0.784) or
π3 (0.900).

The discovered models could be used as follows. A HAT with l = 30 or l = 100 can
be used by a simulation model to keep track of a patient path during the execution
of its activities. Until that path is on the tree part of the HAT, it means that the
historical data guarantees statistical relevance, then predictions about the further
activities can be made starting from the same node of the correspondent HAT with
l = 1 because of the greater precision of such a model.

Fig. 10.12: HAT of cluster C2 = C ′2 fixing ` = 100
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Fig. 10.13: HAT of cluster C4 = C ′4 fixing ` = 30
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10.3 Conformance checking
In this Section, we analyze the quality of the process models discovered in Sec-
tion 10.2.3 in the perspective of replicating the paths of patients that are not in
the mined data set using the HAFs, which is the standard conformance checking
(Section 10.3.1), and predicting the occurrence of an event, for example the exe-
cution of a particular ED activity in a certain phase of the path, that is the analysis
of the robustness of our models with respect to the frequencies of the HAFs (Sec-
tion 10.3.2).

10.3.1 Replicability
In order to perform a conformance checking of the HAFs discovered using the two
clustering Γ and Γ′ and the value 1, 30 and 100 for the parameter ` of the HATM
algorithm using the event log of the period 2013–15, we implemented a conformance
checking algorithm that, given as input a new event log E and a HAF model F
returns the conformance index c, defined as follows:

Fig. 10.14: HAT of cluster C4 = C ′4 fixing ` = 100
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c = number of traces in E totally replicable in F
total number of traces in E

.

We used the event log obtained applying the pre-processing algorithm (discussed in
Section 10.2.1) to the ED data-set of the 29 155 patients arrived at the ED during the
year 2016. Table 10.6 reports the conformance index c for the 6 discovered process
models.

Tab. 10.6: Percentage of traces of the year 2016 replicable on the models discovered from
the data of the period 2013–15.

model clustering ` traces fully replicated c

F1 Γ 1 26 289 90.17%
F ′1 Γ′ 1 25 895 88.82%
F30 Γ 30 28 517 97.81%
F ′30 Γ′ 30 28 353 97.25%
F100 Γ 100 28 913 99.17%
F ′100 Γ′ 100 28 828 98.88%

As expected, models F1 and F ′1 have the worst conformance because of the over-
fitting of the event log used for the process discovery without adding any general-
ization for other behavior. Increasing the value of `, we obtain better conformance
indices, close to the 100% when ` = 100, while using the two clustering Γ and Γ′

there is not a significant difference.

10.3.2 Robustness
In Table 10.7 we report frequencies of different events related to the patient paths
computed with the HATs of F1 and F ′1 obtained from the event log of the period
2013–15 and we compare such values with the same frequencies of 2016. We remark
that results are the same for the HATs of the two models when the clusters are equal,
as reported in the first 7 rows of the table.

Columns denoted with a13−15 and a16 report the percentage of patients belonging
to the clusters over the total. These results do not indicate significant variation of
the cluster dimensions over time. The frequencies of executing at least one time the
X-ray exams within the path are indicated with f13−15

H and f16
H , showing important

differences in different clusters: for instance, a patient in C ′2 has a probability greater
of 90% to make such an activity, while a patient in C ′11 has a probability close to
0%. The difference of such frequencies between the period 2013–15 and 2016 are
very low, always under the 5%, except for the cluster C7 = C ′7, which is one of the
smaller clusters, with a difference of 13.3%. Columns indicated with f13−15

H<N and
f16
H<N report the frequencies of executing the X-ray exams before the first revaluation

visit, that are slightly lower than f13−15
H and f16

H , as expected. Also in this case the
frequencies of 2013–15 and 2016 are very similar, with an average difference of
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Tab. 10.7: Comparison between the frequencies of several events in 2013–15 using the
HATs of F1 – F ′1 and real data of 2016.

cluster a13−15 a16 f13−15
H f16

H f13−15
H<N f16

H<N f13−15
X f16

X

C1 = C ′1 1.01% 1.12% 0.893 0.871 0.566 0.675 0.023 0.036
C2 = C ′2 1.52% 1.69% 0.928 0.931 0.764 0.723 0.011 0.005
C3 = C ′3 1.26% 1.19% 0.830 0.852 0.732 0.734 0.013 0.011
C4 = C ′4 2.21% 2.89% 0.900 0.913 0.793 0.816 0.018 0.033
C5 = C ′5 1.70% 1.94% 0.781 0.783 0.717 0.713 0.062 0.089
C6 = C ′6 27.81% 27.50% 0.680 0.691 0.666 0.676 0.178 0.172
C7 = C ′7 1.11% 1.22% 0.482 0.615 0.352 0.511 0.091 0.104

C8 2.56% 3.04% 0.713 0.745 0.555 0.631 0.012 0.016
C9 60.80% 59.41% 0.353 0.386 0.308 0.345 0.139 0.127

C ′8 1.48% 1.68% 0.742 0.791 0.580 0.662 0.013 0.013
C ′9 1.08% 1.36% 0.673 0.689 0.520 0.593 0.011 0.020
C ′10 2.81% 2.32% 0.045 0.037 0.039 0.035 0.164 0.135
C ′11 1.97% 1.34% 0.007 0.000 0.006 0.000 0.381 0.535
C ′12 1.47% 1.48% 0.063 0.061 0.048 0.049 0.098 0.141
C ′13 7.31% 7.55% 0.572 0.585 0.490 0.515 0.037 0.023
C ′14 1.33% 1.46% 0.712 0.743 0.609 0.635 0.059 0.050
C ′15 10.46% 9.17% 0.323 0.329 0.316 0.324 0.276 0.269
C ′16 1.02% 0.84% 0.050 0.048 0.040 0.037 0.075 0.080
C ′17 2.13% 1.71% 0.126 0.180 0.105 0.151 0.166 0.138
C ′18 32.30% 33.55% 0.384 0.413 0.326 0.366 0.107 0.098

3.8% and maximum 15.9% for the cluster C7 = C ′7. The last two columns f13−15
X and

f16
X indicate the frequencies of a Discharge class activity immediately after the first

visit. Also in this case, values vary for the different clusters, from value next to 0 up
to the 53.8%. The average difference between 2013–15 and 2016 is around 2%.

Observe that the clustering Γ′ provides more detailed information with respect to Γ
that could be useful making predictions. For instance, C ′11 and C ′14 are both subsets
of C9, but they have very different frequencies for the events reported in Table 10.7.
Finally, no relevant differences in robustness for the clustering Γ and Γ′ have been
emerged from this analysis.

10.4 Concluding Remarks
Although a flowchart of the ED process can be easily designed interviewing the
ED staff, the high complexity and variability of the patient paths do not allow us a
modeling without making significant assumptions. Such simplifications significantly
impact on the replicability of the simulation model used to identify bottlenecks and
to analyze policies to alleviate the overcrowding.

We propose an ad hoc process mining approach to discover a model capable to
replicate the patient paths and to predict their possible evolutions over time. This
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requirement is due to the need of implementing a simulation model for the evaluation
of the real time allocation of the resources. Then, we would discover the patient flow
to a high level of granularity, which make challenging the discovering of a model
satisfying the four main quality criteria, that is fitness, precision, generalization and
simplicity.

The model mined with the application of standard process discovery approach to
the data-set of our case study does differ a lot from the requirements. Therefore
we present an ad hoc approach divided into two phase. The first consists in the
application of the Decision Tree to identify a clustering of patients with respect to
their sequence of test and treatment activities after the first medical visit. Such
clusters are then used in the second phase to build process models called Hybrid
Activity Trees, which use a tree-structure to describe main paths and graphs to
represent infrequent behavior. The minimum frequency to consider sufficiently
frequent a certain path evolution is defined by the parameter ` of the proposed
algorithm.

Results prove the adequacy of the proposed approach in accordance with our re-
quirements and the process discovery criteria. Clustering gives important insights
to identify different behavior depending on the patient characteristics. Then the
conformance of the model is guarantee under two perspectives. Firstly, setting `
equal to 30 or 100 and taking into account a different data-set, almost the 100%
of its traces are replicable. Furthermore, fixing ` = 1, the frequency of several
analyzed events in our models is consistent in accordance with the paths of the such
a data-set.

From the conformance analysis, we are able to implement a simulation model based
on the discovered process models. Fixing ` equal to a value sufficient to guarantee
statistical relevance, the Hybrid Activity Trees allow us to know the possible main
behavior depending of the already performed activities. As long as the patient
remains within the main paths, we can use the corresponding Hybrid Activity Trees
with ` = 1 in order to estimate probability of some events in real time during the
treatment of the patients in accordance with their paths.

10.4 Concluding Remarks 135





11A model for the online resource
allocation of an Emergency
Department

In Chapter 10, we studied how to process the data-set of an ED in such a way
to replicate the behavior of the patient flow and to predict the evolution of the
emergency pathways. In this chapter, we propose a simulation modeling approach for
the evaluation of several online resource allocation methods for the ED management,
which are based on the prediction of the next activities provided by the HAF and
on the current state of the ED, which is given by the available and/or critical
resources and demand characteristics (i.e. volume, type of patients and activities to
be performed) in that moment.

To the best of our knowledge, an analysis of online approaches based on prediction
have never been studied in literature. Further, the detail level of the simulation
methodology required for this purpose should be remarkably high, because it is
based on the replication of single activities in accordance with the patient pathways
and the interdependence between their activities and the resulting occupation of
resources.

To model the patient flow through the ED, we use a DES methodology, in which
events occur at a particular instant in time and marks a change of state in the
system. However, we use the Agent-Based Simulation (ABS) semantics to model
straightforwardly the pathways of patients and the tasks of the human resources
having a behavior that is not representable by a simple resource pool, such as the
time for handover, the assignment of the same resource to a patient to ensure
continuity in the treatment, or a limited availability in certain phases of the work
shift.

This chapter is organized as follows. The simulation model is presented in Sec-
tion 11.1, defining the agent types that interact in the ED. The implementation of the
real case resource allocation and the proposal of an online optimization approach
are provided in Section 11.2. The model validation and a quantitative analysis for
comparing different allocation policies is reported in Section 11.3. Section 11.4
closes the chapter.
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11.1 The simulation model
The ABS semantics allows to track the behavior of each agent acting in the simulated
environment [162], and a set of rules (usually a statechart) describes the agent
behavior and its interaction [163]. Therefore, we illustrate the proposed model
through the description of the agents composing the model.

The first type of agent is the patient, whose statechart reproduces the general path-
way structure, in accordance with the diagram in Figure 10.2 of Chapter 10. Then,
three types of agent describes the human resources of the ED, whose statecharts
represent the work shift and the execution of their tasks. Finally, a fifth agent
called decision-maker is implemented to synchronize the other agents, managing the
resource allocation and assigning tasks to the medical staff under policies that are
explained in Section 11.2.

The behavior of the agents is implemented as follows.

Decision-maker. When a patient need the execution of an activity, the agent is
informed by a message and such a request is inserted in a prioritized queue
recording the patient ID, the request timestamp, the set of resources needed,
the urgency code c and a priority class or index defined by a certain rule. The
agent scans the queue in real time and choose the patients to whom to assign
the resources available at that moment. Then, the agent update the set of
the free resources and send a message to the agents representing the patient
and the human resources involved in the activity. The statechart of the agent
composed of a single state, and a transition that at each unit of time allows the
agent to update information and to take decisions, as shown in Figure 11.1.

Fig. 11.1: Statechart of the agent Decision-maker

manage

entry point

Patient. The patient population is reproduced from the event log: an agent is
created for each access to the ED from the data-set and relevant information
for the replication of its path (i.e. urgency code c, trace, arrival time and
several activity durations) are assimilated as agent attributes. Each agent
progresses in their path within the ED in accordance with its trace, following
the statechart shown in Figure 11.2. The agent is on the healthy state until
the arrival time. Then it moves on the wait-for-activity state, which is the
first of the 3 states representing the general life-cycle of each activity and
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consists in sending a message to the decision-maker and waiting for the reply
indicating the allocation of the needed resources. The second state is the
activity-execution, which has duration defined by estimations provided by the
ED staff or mined by the ED data-set, and depending on the activity type
as reported in Table 10.4 of Chapter 10. A timeout passes the agent on the
third state, which is the activity-follow-up and represents a period of inactivity
after the visit or a therapy of urgent patients (duration is set to 0 in the other
cases). The follow-up duration depends on the activity X and on the urgency
code, then it is implemented through a triangular distribution of minimum
0, modal value ζXc and maximum 2ζXc . The value of ζXc is mined from the
data-set, taking into account particular cases in which it is estimable with
a good approximation (e.g. patients that leave the ED after that activity)
and computing the average value for each urgency code c. At the end of an
activity life-cycle, the agent can be in three different situations. The first is the
depletion of activities of the trace, then it passes on the discharged state. The
second situation happens when the patient needs a revaluation visit but the
duration of one or more report times of previous activities is not finished: in
such a case the patient lies in the wait-for-report state until the expiration of a
timeout.The last situation includes all the other cases, for which the patient
passes on the wait-for-activity state and is ready to execute the next activity of
the trace.

Fig. 11.2: Statechart of the agent Patient
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Physician. Each physician shift is represented by an agent with an attribute that
indicates its competence (visit rooms, MCA, or SSO). First and revaluation visits
are performed by the agents with competence visit rooms or MCA, depending
on the type of visits that it executes, while SSO competence indicates the
supervision of the patients that occupies the SSO units. The agent passes
between the rest and available states in accordance with a schedule which
define the start and the end of the physician shift. When the agent is available
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and receives a message by the decision-maker indicating a task and its duration,
it goes on the work state, on which he stay until the expiration of a timeout.
Furthermore, at the beginning of the shift, the handover state models a certain
time λbeg of inactivity due to the receipt of medical records. Conversely, λend
min before the shift end, the agent can be assigned only to urgent patients
with c ≤ 2, or taken over previously, as commonly happens in reality. The
statechart is reported in Figure 11.3.

Fig. 11.3: Statechart of the agent Physician

rest

entry point work

availablehandover

Nurse. The agent is implemented as well as the physician. An attributed indicates
the competence (triage, SSO, MCA or general). Triage and SSO competence
indicate that such agents could execute only the tasks of triage and supervision
of the SSO units, respectively. The MCA and general competence for includes
several tasks, such as first and revaluation visits, therapies, test collection
for examination and assistance in other exams or specialist visits for patients
with ambulation difficulties. The difference between the MCA and general
competence consists in the patients assigned, which are those that are visited in
the MCA or the visit rooms, respectively. The moving time of the nurse to move
from the execution place of an activity to another one is considered adding a
time dmove to each nurse task. Furthermore, agents have an additional task
on the supervision of patients waiting in the triage waiting room and corridor,
which is executed each τ min and have duration equals to

nApatdsup
nAnur

, where
dsur is the average duration for assisting a patient during the supervision task,
while nApat and nAnur are the number of patients and nurses in the considered
area of competence A, that is waiting room, ED corridors or SSO units. The
statechart is shown in Figure 11.4.

Fig. 11.4: Statechart of the agent Nurse

rest

work

available

entry point

supervision
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X-ray technician. The agent is implemented similarly to the other medical agents,
but having only competence on the X-ray scan. Since at nighttime no technician
is working in the ED, we model the on demand technician availability for
patients with code c = 1 by adding a travel-to-ED state representing the travel
of 20 min reaching the ED. The statechart is illustrated in Figure 11.5.

Fig. 11.5: Statechart of the agent X-ray technician

rest

entry point work

availabletravel-to-ED

The ABS semantic allows us to model the continuity of the care process, which is
allowed by the ability to identify individual resources (i.e., single physician and
nurses) and to simulate their interactions: the same physician is always assigned
to a patient for the activities that follow its first medical visit, that is revaluation
visits and discharge; furthermore, if the assigned physician ends its shift before the
completion of the care process, the activities are performed by another physician.
Another important aspect represented by the model is the simulation of the behavior
of the human resources during the beginning and the ending of their shift, which
are the critical moments that cause a slowdown in the flow of patients.

The simulation model is implemented in such a way to be sensitive to overcrowding.
At the increasing of the number of patients waiting in some areas, the nurses with
competence on such areas are busier in the supervision task, then less time is
dedicated to the other activities and this feeds even more the level of crowding.
Furthermore, the occupation of a certain resources restricts the use of other related
to them (e.g. physicians need nurses to perform visits) and increases the occupation
of other ones (e.g. stretchers or SSO units are not released until a physician is not
assigned for the last revaluation visit before the discharge).

11.2 Online resource allocation
In this section we present several policies for the problem of the resource allocation
of the ED. In Section 11.2.1 we implement the policy used in the real case, expressing
with quantitative criteria the practical sense of the ED staff in taking decisions. Then,
in Section 11.2.2 we propose an online method for the online optimization of the
resource allocation, which exploits the knowledge acquired by the Process Mining
approach presented in Chapter 10.
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In order to avoid patient paths that are not conformed to the medical guidelines and
representative of the reality, all the policies presented in this section always take into
account the order of activities within the patient trace without attempt to modify
those sequences.

11.2.1 The real case approach
After an interview with the medical staff, we have compiled a list of criteria for the
resource allocation. The main criterion is the urgency code c. Patients with c = 1
have always the priority on patients with c > 1. Then, patients with c = 2 and c = 3
have usually, but not always, priority on patients with c > 2 and c > 3, respectively,
because a strong priority of these patients would result in a starvation situation for
less urgent codes in the more crowded hours of the day. Finally, patients with code
c = 4 and c = 5 (minor codes) have the less priority, but it is actually the same for
the two urgency codes.

In order to replicate the real case approach, in which the common sense of the ED
staff allows patients with less urgency codes to be moved forward patients with
higher urgency codes, we give to each patients a priority index Φ that is equal to
min{c, 4} at the moment of its insertion in the list of patients waiting for activities
managed by the decision-maker. The decision-maker checks and update the priority
of patients in real time as follows:

• if c ≥ 4 and the next activity belong to the visit class, then Φ is set to 3 after tΦ
minutes elapsed from the insertion in the list;

• if c ≥ 3 and the next activity belong to the visit class, then Φ is set to 2 after
2tΦ minutes elapsed from the insertion in the list.

The decision-maker allocates the available resources to the patients waiting for an
activity in increasing order of Φ. At each step, the subset of patients SΦ with priority
Φ are selected. If two or more patients with urgency code c ≤ 2 are in SΦ, resources
are assigned in such a way to perform before the execution of (i) shock-room visits,
(ii) first visits, (iii) revaluation visits, and (iv) other activities. Otherwise, the most
promoted activities are (i) revaluation visits, (ii) first or MCA visits, and (iii) other
activities. If two patients in SΦ need to perform the same activity, the patients with
the higher waiting time is served before.

11.2.2 An online optimization approach
We propose a greedy algorithm that is simply based on a ranking of the patients that
are waiting for resources. As well as the real case approach reported in Section 11.2.1,
in which priority is given by the urgency codes and by the waiting times, we define a
priority among patients but we also take into account which are the critical resources
at that moment and we try to optimize their utilization and to lower the level of

142 Chapter 11 A model for the online resource allocation of an Emergency Department



crowding. The idea is to promote the execution of those activities involving patients
that occupy a certain critical resource (e.g. a stretcher) with high probability to
release that resource after the activity execution.

As explained in Chapter 10, the whole trace of a patients it is not known at the
beginning of the process of care but its evolution is revealed over time: at the end of
the first or the revaluation visit we are aware of what will be the next activities of the
patient until the next visit (see Figure 10.2). Therefore, when patients are waiting
for an activity of the visit class, we could estimate the probability of performing a
certain activity after the next visit using computing its frequency on the HAT of its
cluster. To this end we use:

• a HAT Hcheck with minimum absolute frequency ` on the tree edges sufficiently
high to have statistical relevance is used to check if probability of the evolutions
of a certain path can be estimated: let PS and PF the set of patients for which
can be such checking is successful and has failed in the correspondence of the
next visit class activity, respectively;

• a HAT Hcomp with ` = 1 is used to compute frequencies of next activity for
patients in PS;

• a function P : A→ [0, 1] that given a certain activity Y ∈ A of a patient p gives
the relative frequency P(Y ) of the occurrence of Y , that is computed using
Hcomp if p ∈ PS , or it is set equal to the the frequency of the past cases of
patients in PF during the simulation, otherwise.

The online optimization approach that we propose is divided into two phases. In
the first phase, we take into account the urgency code c and the waiting time w of
patients since the insertion in the decision-maker list. For each patient with urgency
c, the following waiting index Ψ ∈ N0 is computed to have a fair allocation among
patient with different urgency codes:

Ψ =
⌊
w

mc

⌋
, (11.1)

where mc is a constant time fixed to normalize the waiting times with respect to c,
with m1 < m2 < m3 < m4 = m5.

In the second phase the decision-maker take into account the subsets of patients
Sψ, in increasing order of Ψ. Patients in Sψ are then ordered in decreasing order
of a score Σ ∈ [0, 1] that is computed on the basis of the kind of patients or the
critical resource on which has been decided to act. We propose 5 different scoring
based on the probability of the occurrence of a certain activity, which is estimated
using the function P, if the next activity A is the first or a revaluation visit (A ∈
{B,C,D,N}).
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Let X,Y ∈ A activities using the notation reported in Table 10.2 of Chapter 10. We
extend the function P as follows:

• P(X ∨ Y ) indicates the probability to perform ad least an activity between X
and Y ;

• P(X < Y ) indicates the probability to perform both activities X and Y , with
X appearing at least one time before the first occurrence of Y .

The scores for the prioritization are defined as follows.

ΣEΣEΣE – Exit score. Patients have a priority that is equal to the probability to exit
after the next activity, in order to lower the ED EDLOS and the number of
patients in the corridors and in the SSO area of the ED. Observe that such
patients slow the work of the nurses because they raise the time dedicated to
the supervision task. Furthermore, the exit of patients that occupy a stretcher
or a SSO unit allows the allocation of that resource to another patient. Let X
be the next activity of the patient p, then its score is defined as follows:

ΣE = P(O ∨ P ∨Q). (11.2)

ΣXΣXΣX – Extra score. X-ray exams and extra-ED activities, that is activities that are
not competence of the ED staff, such as X-ray exams, computerized tomography,
echographies and specialist visits, can be executed by non-urgent patients only
during a time frame during the day, that is from the early morning to the late
evening. The idea is to promote the activities of these patients when the time
frame is ending, in such a way that they can complete their path before the
closing time of the hospital areas dedicated to such exams and specialist visits,
which means to reduce significantly the EDLOSs. Conversely, if a patients
needs one of these activity is in the ED during the night, then also the other
activities can be made leisurely, without to lengthen its EDLOS. The score of
the patient p is defined as follows:

ΣX =


max{P(H ∨ I ∨ J ∨K), 0.5} if 0 ≤ fend − t ≤ δ,

min{1− P(H ∨ I ∨ J ∨K), 0.5} if fstart − t > 0,

0.5 otherwise,

(11.3)

where t is the instant in which the decision-maker is allocating the resources,
fstart and fend are the open and closing time of the extra-ED activities, and δ
is a parameter set to indicate how much time before the closing time we want
to promote the activities of patients needing activities H, I, J and K.

ΣOΣOΣO – Observation score. SSO units are a critical resource due to the limited
amount of units; further, when they are all busy, patients have to be observed
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on stretchers in the corridors or visit rooms, slowing down the other activity of
the ED. Furthermore, activities L (ordinary SSO) and M (pre-hospitalization
SSO) are different: the former is a period of time on which the patients need to
be observed by the medical staff, the latter is just a temporary accommodation
waiting for a bed in a ward of the hospital. For this reason, the ending of
the activity L depends on the start time, while the ending of the activity M
depends on exogenous factors. Then, we can act on patients that have to
execute the activity L, trying to start as soon as possible such an execution
when the number u of free SSO units is over a certain threshold u+ and to
promote the activities of other patients when u is under a critical threshold u−.
In other words, the score is defined as follows:

ΣO =


P(L) if u ≥ u+,

1− P(L) if u ≤ u−,

0 otherwise.

(11.4)

ΣSΣSΣS – Stretcher score. We would to promote the release of stretchers by patients
that need to execute an activity X belonging to the visit class and have an
higher probability to be discharged or to occupy a SSO unit after that. Then,
the score is defined as follows:

ΣS =

P(L ∨M ∨O ∨ P ∨Q) if p ∈ Pstr,

0 otherwise,
(11.5)

where Pstr is the set of patients that occupy a stretcher.

ΣHΣHΣH – Hospitalization score. We deal with patients that do not occupy a stretcher
and need a SSO unit before the release of a bed in a hospital ward to be
hospitalized. Such patients could be treated leisurely, because they have a
usually long EDLOS that does not depends on the rapidity of the ED activities,
rather a fast pre-hospitalization in the SSO units could worsen the treatment
of other patients. The score is defined as follows:

ΣH =

1− P(M < N) if p /∈ Pstr,

1 otherwise.
(11.6)

When a patient does not need to execute a visit as next activity (A /∈ {B,C,D,N}),
the sequence of activities to be performed before the next visit is known and it
is reasonable to base decisions on such a sequence. Let Λ be the set of the next
activities, then the scores are trivially assigned as follows:
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ΣE = 0, (11.7)

ΣX =


1 if 0 ≤ fend − t ≤ δ and Λ ∩ {H, I, J,K} 6= ∅,

0 if fstart − t > 0 and Λ ∩ {H, I, J,K} 6= ∅,

0.5 otherwise,

(11.8)

ΣO =

1 if u ≥ u+ and L ∈ Λ

0 otherwise,
(11.9)

ΣS =

1 if p ∈ Pstr and Λ ∩ {L,M,O, P,Q} 6= ∅,

0 otherwise,
(11.10)

ΣH =

0 if p /∈ Pstr and M /∈ Λ,

1 otherwise.
(11.11)

11.3 Quantitative Analysis
In this section we perform a quantitative analysis to study the impact of the online
allocation approaches presented in Section 11.2.1 on several indices taking into
account the perspectives of patients with different urgency. To this purpose we
replicate exactly the patient accesses of the whole year 2016 recorded by the ED
Sant’Antonio Abate of Cantù described in Chapter 10. Instead, the data-set of the
period 2013–2015 is used for making predictions using the HAT, as shown in the
same chapter. Therefore, the time horizon of the simulation is one year, of which
the first 7 days are used as transitional period, while statistics are collected on the
remaining 359 days.

The simulation model presented in this chapter has been implemented using Any-
Logic 7.2 [73]. All the results reported in this section are the average values over 30
simulation runs starting from different initial conditions. The average time required
for a single simulation run over the whole time horizon is 17.4 sec.

11.3.1 Validation
The activity durations are replicated from data when they are available (i.e. for first
visits of urgent patients, specialist visits and SSOs), otherwise we use the average
durations suggested by the ED staff. Furthermore, in modeling we introduced
other time parameters that are not deductible from the data-set, as summarized in
Table 11.1. For this reason we validate the model tuning such parameters in such
a way to obtain the maximum fitness of the waiting times and the EDLOSs with
respect to the real data, that is for the values reported in the second column of the
table.
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Tab. 11.1: Parameters ranged during the model validation.

Param. Value (min) Definition

λbeg 15 physician handover duration
λend 30 time at the end of physician shift with no new patients assigned
dmove 1 nurse moving time
dsup 1 duration of the nurse supervision task per patient
τ 30 time period of the supervision task
tΦ 35 time for the re-prioritization (see Section 11.2.1)

The real case statistics and the results of the validation test are compared in Ta-
ble 11.2. While waiting times of the simulation model are very close to the real
case, EDLOSs present more significant deviations for non-urgent patients. Such
differences are due to the huge complexity of the ED system and the very high level
of detail in modeling the patient behavior. Furthermore, they are justified by a large
lack of information and noises in the ED data-set, as discussed in Chapter 10. For
these reasons, the purpose of our analysis is not to have a detailed estimation of
the performance but to prove the sensitiveness of the model to online allocation
approaches. Therefore, we can be satisfied by this level of fitness.

Tab. 11.2: Model validation.

waiting times (min) EDLOSs (h)
urgency code 1 2 3 4 − 5 overall 1 2 3 4 − 5 overall

real case - 21.6 86.7 81.5 70.1 14.9 7.7 5.0 2.8 5.2
model - 18.6 82.1 79.9 66.7 14.5 8.0 6.3 3.7 6.2

11.3.2 Results

In this section, we test the online optimization approaches for the resource allocation
proposed in Section 11.2 on the model validated with the parameter values reported
in Table 11.1. The value of the normalization constants for the waiting times is fixed
as follows:

m1 = 1 min, m2 = 10 min, m3 = 120 min, m4 = m5 = 180 min. (11.12)

For instance, it means that 1 min of waiting time for a patient with c = 2 are
equivalent to 12 min and 18 min of waiting time for patients with c = 3 and c = 4,
respectively.

In order to make prediction in the online optimization, we use a data-set regarding
the accesses in the period 2013–2015. A HAF over the patient clustering Γ′ with
` = 30 is generated a priori as explained in Chapter 10. During the simulation, such
a HAF is used to estimate the probabilities defined in Section 11.2.2, in accordance
with the patient cluster that is identified at the triage.
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Waiting time and EDLOS are used as indices to analyze the performance using
different scores of the proposed online approaches. We compare these approaches
with a baseline configuration, that is the one used in the validation to replicate the
resource allocation in the real case. We choose to analyze the waiting times also
in 6 different 4-hours frames of the day because of the high variability of demand:
frame F = 1 is 0:00–4:00, frame F = 2 is 4:00–8:00, etc. Furthermore, we observe
what happen on a set of 46 days, that we call overcrowding days, which are the days
that in the baseline configuration have a maximum length of the admission queue
(i.e. patients waiting for the first visit) longer than 10 patients.

Results in Table 11.3 prove the effectiveness of the proposed optimization method
using any score. Waiting times are significantly reduced for each urgency class,
especially for the most numerous class c = 3 for which the 51% of the time is saved.
The impact on the EDLOSs provide a trade-off: urgent patients (c = 1, 2) stay in
the ED from 60 to 90 min more compared to the baseline configuration, while the
stay of the other patients decreases from 55 to 145 min. On average, both waiting
times and EDLOSs have a significant improvement, that is maximized using the
hospitalization score ΣH .

Tab. 11.3: Comparing online policies: waiting times and EDLOSs.

waiting times (min) EDLOSs (h)
urgency code 1 2 3 4− 5 overall 1 2 3 4− 5 overall

baseline - 18.6 82.1 79.9 66.7 14.5 8.0 6.3 3.7 6.2

ΣE - 11.2 41.4 54.8 37.5 15.6 9.3 4.7 2.8 5.4
ΣX (δ = 120 min) - 11.2 43.2 59.7 39.6 15.8 9.5 3.9 2.0 4.9
ΣO (u− = 3, u+ = 7) - 12.1 54.0 70.7 48.1 15.6 9.3 4.1 2.1 4.9
ΣS - 11.9 51.3 69.1 46.3 15.7 9.3 4.0 2.2 4.9
ΣH - 10.9 40.0 58.1 37.4 15.8 9.6 4.0 2.0 4.9

In Table 11.4 we compare our optimization method with the baseline configuration
focusing on waiting times of patients arriving in the frame F = 3 (8:00-12:00),
which is that with the high number of accesses. In the first part of Table 11.4, average
waiting times over all days are reported. An even stronger impact of optimization
in peak hours is shown: waiting times of patients with c ≤ 3 are reduced up to
the 71% using the exit score ΣE . In the second part of Table 11.4 we focus only
on the overcrowding days identified by the baseline configuration. The proposed
solutions seem to be very effective to alleviate the overcrowding, preserving its effect
compared to other days. The extra score ΣX has the best performance on average in
the most crowded days.

The variation of the average waiting time during the six frames of the day is illus-
trated in Figure 11.6. The impact of the online optimization is evident in almost
all the frames, especially in the peak hours and in the overcrowding days. Scores
ΣX and ΣH give similar waiting times. The former is slightly better in the central
hours of the day, that is when the patients needing an extra-ED activity and have a
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Tab. 11.4: Waiting times (min) in the frame from 8:00 to 12:00.

All days Overcrowding days
urgency code 2 3 4− 5 overall 2 3 4− 5 overall

baseline 25.2 95.9 101.4 83.7 41.8 205.2 158.5 156.0

ΣE 8.8 26.9 61.6 34.6 14.7 69.3 144.7 83.3
ΣX (δ = 120 min) 9.3 28.3 64.5 36.3 12.0 57.6 135.9 74.4
ΣO (u− = 3, u+ = 7) 10.3 38.0 72.2 43.7 13.4 72.2 140.1 82.8
ΣS 10.2 35.0 70.2 41.5 13.3 70.5 140.6 82.2
ΣH 9.4 28.4 64.5 36.4 11.9 57.9 136.9 74.8

higher priority. A side-effect can be observed after the closing time of those activity,
when the accumulated work to promote those patients causes an increasing of the
waiting times and better performance can be obtained using ΣH . In general, the
online approach seems to deal with success peaks on demand, flattening the average
waiting times over the day.

Fig. 11.6: Average waiting times of patients in the frames F = 1, . . . , 6 of the day.
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In order to detect the type of impact of the proposed online approaches on the queues
and on the resources, we introduce in Table 11.5 an additional set of performance
indices. The impact of the different scores on such indices can demonstrate if the
prediction performed using the HAF is effective. Furthermore, the indices q and r
provide information that could represent the perception of crowding by the ED staff,
indicating how many patients on average are in the pre-admission waiting room (q)
and in the rooms and the corridors dedicated to treatment (r).

Tab. 11.5: Performance indices.

Param. Definition

q average number of patients in the pre-admission queue
r average number of patients on treatment
ustr stretcher utilization
γ number of overcrowding days

11.3 Quantitative Analysis 149



In Table 11.6 we compare the different configuration on the indices introduced in
Table 11.5, reporting the average values over all the year in the first part and a focus
on the frame F = 3 in the more crowded day in the second part. As expected, the
exit score ΣE is able to reduce significantly the queue in the pre-admission waiting
room, but a counter intuitive aspect can be observed in correspondence of the hours
of overcrowding, where the exit score ΣX and the exit score ΣH have lower values
of q. Such indices minimize also the average number of patients in the rest of the
ED, reducing the sense of crowding. Finally, the stretcher utilization is minimized by
the stretcher score ΣS , whose impact is equivalent to have an extra stretcher when
the ED is overcrowded. Finally, in the last column (γ) it is shown that the use of the
online optimization can reduce the days of overcrowding.

Tab. 11.6: Impact on queues and resource utilization.

All days Overcr. days, F=3
q r ustr q r ustr γ

baseline 2.8 15.9 53.2% 5.9 21.0 63.8% 46

ΣE 1.6 13.8 54.0% 3.4 18.1 59.6% 27
ΣX (δ = 120 min) 1.7 12.4 51.6% 3.1 15.8 56.2% 28
ΣO (u− = 3, u+ = 7) 2.0 12.6 51.0% 3.8 16.3 55.8% 30
ΣS 1.9 12.5 50.3% 3.8 16.0 54.0% 31
ΣH 1.6 12.5 52.2% 3.1 15.9 56.4% 28

In Figures 11.7 and 11.8 we report the trend of the number of patients in the
waiting list queue and on treatment in the ED during a week, in which we have one
overcrowding day (Thursday) for the baseline configuration. In this example, the
exit score ΣE is able to reduce the level of crowding in the ED.

Fig. 11.7: Length of the pre-admission waiting list in the ED during the week 1-7 April.
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Fig. 11.8: Number of patients on treatment in the ED during the week 1-7 April.
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11.4 Concluding remarks
In this chapter we provided a simulation model for the analysis of online approaches
for the resource allocation of an ED. We proposed alternative solutions based on the
state of the ED and the characteristics of patients, exploiting the prediction of the
next activity given by the HAF.

Results prove the adequacy of online optimization for the resource allocation of the
ED. Using simple policies that exploit prediction provided by the HAF, we are able
to reduce significantly the duration of the process of care and to have a less crowded
environment in which the medical staff can work better also from a qualitative point
of view.

Since scores have the impact on the queues or resources that we wanted to optimized,
the effectiveness of predicting paths using the HAF is demonstrated. A further
analysis could be performed with the aim to combine the scores in such a way to
obtain additional improvements.

One of the main features of our approach is the ability of representing the path of a
certain group of patients. Exploiting such a feature, the proposed model is suitable
to perform several other scenario analysis, such as those regarding the impact of
self-referred patients that does not need emergency care but they access the ED
as a faster alternative to primary care. Such analysis would allow us to have a
quantitative estimate of how much the malfunction of the primary care system can
penalize the ECDS.
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12Conclusions

The use of Operations Research in health care delivery has developed considerably
over the years. The current development of the health care delivery is aimed
to recognize the central role of the patient as opposed to the one of the health
care providers. In this context, the attention from a single health benefit can be
shifted to the whole health care chain thanks to Clinical Pathways (CPs), which are
specifically tailored to stimulate continuity and coordination among the treatments.
Therefore, CPs are suitable for implementing simulation frameworks based on a
patient-centered approach. The definition of CP allow us to lends it to the translation
of the care process into a Discrete Event Simulation (DES), which is a flexible tool
for quantitative analysis.

Many decision problems regarding the management of health services deal with un-
predictable demand, events or variables, which make them more challenging. In this
thesis, we addressed such an issue with online optimization, which is characterized
by the development of algorithms whose decisions are based only on partial informa-
tion that becomes available over time. Online optimization methodology takes into
account the partial information obtained from the past and exploits the concept of
lookahead, that is a limited overseen amount of future input data: such information
can be derived by the knowledge of the CP or through predictive approaches.

The general framework proposed in this thesis for the analysis on online optimization
approach is based on: (i) a DES model that replicates the considered CP including
stochastic aspects, and (ii) a set of online optimization methods embedded in the
DES to deal with unpredictability as information is made available over time.

The two parts of the thesis have been dedicated to different type of CPs, that is the
Surgical Pathway (SP) and the Emergency Care Pathway (ECP). In Part I we dealt
with problems arises in the context of Operating Room Planning (ORP), which are
characterized by a well-structured but complex pathway, and by several sources of
uncertainty such as the arrival of unattended patients to be operated on, and the
activity durations. In Part II two different problems regarding the ECP has been
addressed. The first is the Emergency Medical Service (EMS) management, which
is characterized by a well-structured but simple pathway, and by several sources
of uncertainty such as the arrival of unattended requests to be served as soon as
possible by an ambulance. The second problem is Emergency Department (ED)
management, which is characterized by a not-structured but complex pathway, and
several sources of uncertainty such as the arrival of unattended patients to be served
as soon as possible, and the path evolution.

153



The ORP and the EMS management are lasagna processes: the sequence of activities
to be performed is known at the beginning of the CP and the possible path evolutions
are limited. For this reason, online optimization approaches have been used exploit
the solid knowledge of the CPs. On the contrary, the ED management is a spaghetti
process: a large variety of path evolutions are possible and the sequence of activities
to be performed is part itself of the lack of information taken into account by online
optimization. To deal with this challenging aspect, in Chapter 10 we used an ad hoc
process mining approach to extract information from historical data for predicting
the possible path evolutions on the basis of the few information available, such as
the past activities and the characteristics of the patient.

In Part I, we proposed an online optimization methodology for the Real Time
Management (RTM) of operating rooms. Given an OR schedule, the RTM consists
in a sort of centralized surveillance system whose main task is to supervise the
execution of such a schedule and to take the more rational decision regarding elective
and/or non-elective patients when unpredictable events occur. Quantitative analysis
provided in Chapters 3–6 demonstrates the capability and the flexibility of the
proposed framework to deal with different OR settings. Although online optimization
does not exploit sophisticated mathematical approaches, the competitive analysis
reported in Chapter 4 suggested its capability to deal with the stochastic aspects of a
problem whenever such aspects are embedded into a well-structured optimization
problem. Results indicated that the dynamic sharing of resources is the direction to
follow for improving their utilization and the patient optimization. For instance, the
computational experience suggested that significant improvement can be achieved
making possible (i) to all the operating room sessions to draw from a shared overtime,
and (ii) to non-elective patients to be inserted in operating rooms shared with elective
patients.

In Part II, the effectiveness of the online optimization methodology has been proved
for the ECP in both the EMS and the ED management. For the former, in Chapters 8
and 9 we shown its capability in other types of well-structured processes. Our
simulation and optimization framework allows us to evaluate online policies for
the real-time management of ambulances, of which few attempts can be found
in literature because of the difficulties in developing a simulation model for this
problem with such a general purpose. In particular, it is possible to have a significant
lowering of the waiting times adopting the dynamic re-allocation of ambulances
during the repositioning phase (Smart Assignment policy), which provided an overall
improvement that is significantly greater than using and combining the standard
dispatching and repositioning policies. For the latter, the support of prediction given
by a process mining approach provided in Chapter 10 allowed us to relieve the
lack of information in taking decisions in planning, as shown by the analysis in
Chapter 11.
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There are several common lessons learned through the computational experience
performed to compare the several policies proposed for the different addressed
problems. The same problems in different operative contexts usually obtain the best
performance improvement using different method configurations, which is a further
proof of the necessity of a decision support tool for the management problems
in healthcare. Optimization approaches seem to be effective in well-structured
processes or, alternatively, with the support of a predictive methods. Finally, the
more flexible the operating context in which online optimization is applied (e.g.
sharing resources among different patient classes) the greater the contribution of
optimization in improving performance. Sometimes a large flexibility is not possible
because of the lack of an adequate decision support tool, such as those proposed in
this thesis, that manages the greater complexity that derives from a flexible context.
Therefore, the proposed methodology could also provide insights to the health
services managers for changing in their organization settings.

In conclusion, our framework in which DES is combined with online optimization
represented a powerful tool for decision support as it allows to evaluate algorithm
performance in very different contexts. All the analysis along the thesis suggested
that online optimization can be a suitable methodology, highlighting the usefulness in
using online optimization in the management of the majority health care services.

Further works could be developed on the direction of the lookahead concept. As
seen in [35] predicting no-show behavior for the appointment scheduling, and in
Chapters 10 and 11 predicting ED patient paths, predictive tools can be useful to
compensate for the lack of information about future events empowering also the care
pathway knowledge. For this reason, methodological approaches – as process mining
– deserve to be further studied to reinforce the capability of online optimization to
deal with health care delivery problems in the lookahead perspective. Furthermore,
future research avenues could provide a comparison of the online optimization
approach with the other alternative well-known methodologies taking into account
uncertainty, such as stochastic programming and robust optimization.
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