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We study systems in arbitrary space-time dimensions where matter, deformed by TT-like 
irrelevant operators, is coupled to gravity in the Palatini formalism. The dynamically equivalent 
perspective is investigated, wherein the deformation transitions from the matter action to the 
gravitational one or vice versa. This alternative viewpoint leads to the emergence of Ricci-based 
gravity theories, thus providing a high-dimensional generalisation of the well-known equivalence 
between two-dimensional TT deformations and coupling to Jackiw-Teitelboim gravity. This 
dynamical equivalence is examined within the framework of the recently introduced Lagrangian 
flow equation, which notably led to the discovery of a direct link between Nambu-Goto theory 
and TT in 𝑑 = 2, as well as significant insights into nonlinear electrodynamics models in 𝑑 = 4. 
The investigation involves explicit examples in 𝑑 = 4 dimensions; it builds upon earlier research 
concerning the metric interpretation of TT-like perturbations, incorporates and extends recent 
findings in the cosmology-related literature associated to the concept of reframing. We focus on 
scenarios where the resulting modified gravity theories manifest as Born-Infeld and Starobinsky 
types.
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1. Introduction

The TT deformation of classical and quantum field theories in 𝑑 = 2 space-time dimensions [1,2] has provided remarkable insights 
into the topology and geometry of the space of field theories, as well as allowing exact calculations of physical quantities related to 
the deformed models. In two dimensions, TT flows are triggered by the operator

TT = 1
2
(
tr [𝐓]2 − tr

[
𝐓2]) = det[𝐓] , (1.1)

where 𝐓 denotes the two-dimensional stress-energy tensor of the theory. Although the TT operator is irrelevant, it was shown that 
the local operator (1.1) is well defined at a quantum level [3], and the flow it generates preserves many of the symmetries of the seed 
(i.e., undeformed) theory, including integrability. This last property is a feature of a much larger class of deformations, called double 
current deformations [4], and encompassing all the recent two-dimensional generalisations of the TT deformation, such as the JT
[5,6], TT𝑠 [7], generalised TT [8–10], and CDD [11–13] deformations. Moreover, many links have been observed with several topics 
in theoretical physics, such as string theory [14–17], holography [18–27], random geometries [28], out-of-equilibrium conformal 
field theory [29,30], the generalised hydrodynamics (GHD) approach [9,10,31], and quantum gravity [32–38]. In particular, it was 
shown that any TT-deformed two-dimensional field theory is dynamically equivalent to its associated seed theory coupled to a 
topological theory of gravity [39] which, on the plane, almost looks like Jackiw-Teitelboim gravity [40,41]. In other words, denoting 
the seed theory by 𝑆M and the corresponding TT deformed theory by 𝑆M,𝜏 , the following equivalence holds:

𝑆M,𝜏 ≃ 𝑆M + ∫ d2𝐱
√
−𝑔

(
𝜑𝑅−Λ2

)
, (1.2)

where vacuum energy Λ2 is related to the TT coupling parameter 𝜏 by 𝜏 ∝ Λ−1
2 . Notice that equation (1.2) provides a complete, 

quantum and non-perturbative definition of the TT deformed theories along the whole flow. In addition, a main motivation for the 
current work stems from the observation that in 𝑑 = 2, a TT deformation can be interpreted as a field-dependent local coordinate 
transformation that links the original model to its deformed version [39,42].

Generalisations of the TT flow to higher dimensions have been introduced and studied in various works [28,43–48], at least 
at the classical level. These investigations, alongside the introduction of the so-called Modified Maxwell (ModMax) theory [49], 
and the discovery that both Born-Infeld and ModMax arise from Maxwell theory through a Lagrangian flow involving TT-type 
composite fields [46,47,50], have sparked a revival of interest in nonlinear electrodynamics [49,51–53]. Moreover, the fact that 
the corresponding deforming operators are constructed solely in terms of invariants built from the stress-energy tensor hints at the 
natural connection with General Relativity and modified gravity models, which will be discussed shortly.

Almost in parallel, the study of modified theories of gravity has gained substantial interest in cosmology. In particular, Born-

Infeld-inspired minimal extensions of General Relativity allowed to reproduce non-trivial gravitational dynamics while generating 
non-singular cosmologies [54–66]. Such theories, along with the more general Palatini-like theories of gravity, have been shown 
to admit dynamically equivalent Einstein-frame representations [67–69], where the gravitational sector resembles the standard one 
from General Relativity and the ultraviolet corrections are transferred to the matter content of the theory.

This work investigates generalisations of (1.2) for TT-like flows in space-time dimensions 𝑑 > 2. To be more precise, denoting by 
𝑆G,𝜅 a modified theory of gravity, depending on some mass scale 𝑚G ∝ 1∕

√
𝜅, and by 𝑆M,𝜏 a matter action depending on a TT-like 

flow parameter 𝜏 , we will study explicit examples in 𝑑 = 4 within the following class of dynamical equivalences:
2

𝑆G,𝜏+Δ𝜏 +𝑆M,𝜏 ≃ 𝑆G,𝜏 +𝑆M,𝜏+Δ𝜏 . (1.3)
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In other words, we will provide non-trivial examples where modified gravity theories are coupled to TT-like deformed models, 
wherein the gravitational mass scale and the matter flow parameter are exchangeable on-shell, meaning once the equations of 
motion for the gravitational degrees of freedom have been enforced.

The remainder of this work is organised as follows. Section 2 reviews and extends recent findings regarding a class of TT-like 
deformations, quadratic in the components of the stress-energy tensor. This class of Lagrangian perturbations will play a central role 
in our analysis. A significant mathematical simplification arises in 𝑑 = 4 and in examples that have historically garnered considerable 
attention. Section 3 illustrates how these models can be dressed or, in some cases, recovered through a metric transformation. The 
specific models that arise include self-dual theories of nonlinear electrodynamics, their Proca-like generalisations with generic inter-

acting potentials, and models that coincide with or resemble those investigated in the context of inflationary cosmology. Section 4

introduces theories of gravity in the Palatini formalism, where the connection and the metric tensor are regarded as independent 
dynamical fields. Their dynamically equivalent representations are discussed, and metric deformations as well as modifications of the 
matter sectors naturally emerge within this framework. Section 5 provides a general scheme for linking Palatini theories of gravity 
with suitably crafted TT-like deformations in arbitrary dimensions. Explicit examples are worked out in four space-time dimensions, 
where algebraic simplifications allow for analytic solutions. We show the existence of dualities between Starobinsky gravity and 
trace-squared deformations, as well as between Eddington-inspired Born-Infeld gravity and TT-like deformations of Abelian gauge 
theories. Section 6 examines stress-tensor flows triggered by arbitrary operators, and their relation to on-shell gravity flows. Ap-

pendix A provides some additional comments regarding the Jordan and Einstein frame representations of 𝑓 () gravity theories. 
Finally, Appendix B analyses Modified Eddington-inspired Born-Infeld gravity, a family of Palatini theory that incorporates both 
Starobinsky and Eddington-inspired Born-Infeld gravity within a unified framework.

2. 𝐓𝐓-like deformations in arbitrary dimensions

We denote as

𝑆M = ∫ d𝑑𝐱
√
−𝑔M , 𝑔 ∶= det

[
𝑔𝜇𝜈

]
(2.1)

a generic covariant matter action in 𝑑-dimensional space-time, where M is the associated Lagrangian density, which depends on 
the space-time coordinates 𝐱 = (𝑥𝜇)𝜇∈{0,…,𝑑−1} through a generic collection of 𝑁 matter fields 

{
Φ𝐼

}
𝐼∈{1,…,𝑁} and their higher-order 

derivatives. The field content of the theory is arbitrary unless otherwise stated. Indices of tensors are lowered and raised using the 
metric 𝑔𝜇𝜈 and its inverse 𝑔𝜇𝜈 , respectively, and repeated indices are summed according to the Einstein notation. In this paper we 
focus on the family of deformations proposed in [44], where the following flow equation for the matter sector has been considered:

𝜕𝑆M,𝜏

𝜕𝜏
= ∫ d𝑑𝐱

√
−𝑔[𝑎,𝑏]

𝑑,𝜏
, 𝑆M,𝜏0

∶= 𝑆M . (2.2)

The deforming operator in (2.2) is defined as

[𝑎,𝑏]
𝑑,𝜏

∶= 1
𝑑

(
𝑎 tr

[
𝐓𝜏

]2 − 𝑏 tr
[
𝐓2
𝜏

])
, 𝑎, 𝑏 ∈ℝ , 𝑑 ≥ 2 , (2.3)

where 𝜏 is the flow parameter, and 𝜏0 is a fixed point in correspondence to which the seed matter theory 𝑆M lives. Here 𝐓𝜏 =(
𝑔𝜇𝛼𝑇𝜏,𝛼𝜈

)
𝜇,𝜈∈{0,…,𝑑−1} is a 𝑑 × 𝑑 dimensional matrix, where 𝑇𝜏,𝜇𝜈 are the components of the symmetric Hilbert stress-energy tensor

𝑇𝜏,𝜇𝜈 =
−2√
−𝑔

𝛿𝑆M,𝜏

𝛿𝑔𝜇𝜈
. (2.4)

In two dimensions, since

[1,1]
2,𝜏 = 1

2

(
tr
[
𝐓𝜏

]2 − tr
[
𝐓2
𝜏

])
= det[𝐓𝜏 ] , (2.5)

we recover the usual definition of TT deformations when setting 𝑎 = 1, 𝑏 = 1. It is important to stress that this paper is about classical 
field theories and, apart from the special case (2.5), it is not known how to make the composite field (2.3) well-defined at the 
quantum level.

2.1. TT-like dressing and the metric approach

In the context of two-dimensional TT deformations, it is known that the undeformed action 𝑆M, with underlying metric tensor 
𝑔𝜇𝜈 , is equivalent to the deformed one 𝑆M,𝜏 over some new background metric ℎ𝜏,𝜇𝜈 , up to a term proportional to the deforming 
operator evaluated in the seed theory [70,71]:{

𝑆M[𝑔𝜇𝜈,Φ𝐼 ] −
(
𝜏 − 𝜏0

)
∫ d2𝐱

√
−𝑔 det

[
𝐓𝜏0

]}|||||𝑔=𝑔(ℎ) = 𝑆M,𝜏

[
ℎ𝜏,𝜇𝜈 ,Φ𝐼

]
. (2.6)

Equation (2.6) is colloquially known as the TT dressing mechanism: the flow in the space of field theories is balanced by an adiabatic 
3

flow of the background metric, which evolves through 𝜏 . The associated deformed metric is obtained as [42]
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ℎ𝜏,𝜇𝜈 = 𝑔𝜇𝜈 − 2(𝜏 − 𝜏0)𝜖𝜇𝛼𝜖𝜈𝛽𝑇 𝛼𝛽
𝜏 − (𝜏 − 𝜏0)2𝜖𝜇𝛼𝜖𝜈𝛽𝑇 𝛼

𝜏,𝜌𝑇
𝜌𝛽
𝜏 . (2.7)

The metric approach to two-dimensional deformations makes it possible to trade Lagrangian flows with perturbations of the under-

lying structure of space-time. Given our goal of exploring whether analogous geometric interpretations extend to higher-dimensional 
stress-tensor flows, the dressing of bare theories becomes an indispensable mathematical tool.

We should then look for families of stress-tensor deformations that naturally integrate within the framework of geometric flows, 
for which one must be able to find the deformed metric ℎ𝜏,𝜇𝜈 such that the generalised version of the TT dressing holds:{

𝑆M[𝑔𝜇𝜈,Φ𝐼 ] −
(
𝜏 − 𝜏0

)
∫ d𝑑𝐱

√
−𝑔[𝑎,𝑏]

𝑑,𝜏0

}|||||𝑔=𝑔(ℎ) = 𝑆M,𝜏

[
ℎ𝜏,𝜇𝜈 ,Φ𝐼

]
. (2.8)

Notice that, as in (2.6), the bare deforming operator appearing in (2.8) is evaluated in the seed theory, defined at 𝜏 = 𝜏0. For the 
left-hand side of (2.8) to match the right-hand side at 𝜏 = 𝜏0, one must have

ℎ𝜏0 ,𝜇𝜈 = 𝑔𝜇𝜈 . (2.9)

Moreover, expanding both sides of (2.8) at first perturbative order in 𝜏 , it is straightforward to show that the family of deformed 
metric ℎ𝜏,𝜇𝜈 must adhere to the constraint [44]

dℎ𝜏,𝜇𝜈
d𝜏

= − 4
𝑑
𝑇𝜏,𝜇𝜈 . (2.10)

Here we introduced the auxiliary tensor

𝑇𝜏,𝜇𝜈 ∶= 𝑎 tr𝜏
[
𝐓𝜏

]
𝑔𝜏,𝜇𝜈 − 𝑏𝑇𝜏,𝜇𝜈 , (2.11)

with the notation tr𝜏 referring to traces being taken with respect to the 𝜏-dependent metric ℎ𝜏,𝜇𝜈 . Equation (2.10) defines an 
adiabatic flow along the trajectory of dynamically equivalent actions associated with the TT-type perturbation. Once on-shell over 
the dynamical degrees of freedom of the theory, each “equilibrium” configuration corresponds to a field-dependent modification of 
the background metric tensor according to (2.10). Despite the somewhat restrictive choice of admissible operators made in (2.3), it 
is, in fact, possible to argue that the dressing mechanism, in the simple form described by (2.8), can be realised if and only if the 
deformation is driven by operators that are quadratic functionals of the stress-energy tensor.1 The following section aims to examine 
whether it is possible – at least in a few special cases – to obtain the exact analytic expression for the metric ℎ𝜏,𝜇𝜈 associated with 
the TT-like dressing mechanism (2.8).

2.2. Exact solutions to the metric flow

Exact solutions for the metric flow (2.10) can be derived algorithmically, as detailed in [44]. The idea is to Taylor expand the 
deformed metric ℎ𝜏,𝜇𝜈 around 𝜏 = 𝜏0 as

ℎ𝜏,𝜇𝜈 =
∞∑
𝑛=0

ℎ(𝑛)𝜏0 ,𝜇𝜈

𝑛!
(
𝜏 − 𝜏0

)𝑛
, ℎ(0)𝜏0 ,𝜇𝜈

= 𝑔𝜇𝜈. (2.12)

The first coefficient ℎ(1)𝜏0 ,𝜇𝜈
descends trivially from (2.10), yielding

ℎ(1)𝜏0 ,𝜇𝜈
= − 4

𝑑
𝑇𝜏0 ,𝜇𝜈 . (2.13)

On the other hand, relying on the definition of 𝑇𝜏,𝜇𝜈 , the partial derivative of the stress-energy tensor with respect to the flow 
parameter can be computed as

𝜕𝑇𝜏,𝜇𝜈

𝜕𝜏
= − 2√

−ℎ
𝜕
𝜕𝜏

(
𝛿𝑆M,𝜏

𝛿ℎ𝜇𝜈𝜏

)
= − 2

𝑑
√
−ℎ

𝛿

𝛿(ℎ−1𝜏 )𝜇𝜈
(√

−ℎ𝑇𝜏,𝛼𝛽𝑇 𝛼𝛽
𝜏

)
, (2.14)

where ℎ ∶= det[ℎ𝜇𝜈]. Equation (2.14), together with (2.11), allows us to compute the full variation

d𝑇𝜏,𝜇𝜈
d𝜏

= − 4
𝑑
𝑇 𝛼
𝜏,𝜇𝑇𝜏,𝛼𝜈 − 𝜉𝜏𝑇𝜏,𝜇𝜈 − 𝜒𝜏ℎ𝜏,𝜇𝜈 , (2.15)

where 𝜉𝜏 and 𝜒𝜏 are scalar functionals of the stress-energy tensor, respectively defined as

𝜉𝜏 =
2
𝑑
(𝑏− 𝑑𝑎) tr𝜏

[
𝐓𝜏

]
, 𝜒𝜏 =

𝑑𝑎− 𝑏
𝑑

(
𝑎 tr𝜏

[
𝐓𝜏

]2 − 𝑏 tr𝜏
[
𝐓2
𝜏

])
. (2.16)

1 This can be also understood perturbatively from the geometric perspective introduced by J. Cardy in [28], which relies on the Hubbard-Stratonovich transfor-

mation to account for the metric deformation in the TT-deformed partition function. If the deforming operators were not quadratic functionals of the stress-energy 
4

tensor, the fluctuations about the saddle point would not be independent of the stress-energy tensor.
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From equation (2.15), the second coefficient of the Taylor expansion (2.12) is obtained as

ℎ(2)𝜏0 ,𝜇𝜈
=
( 4
𝑑

)2
𝑇 𝛼
𝜏0 ,𝜇

𝑇𝜏0 ,𝛼𝜈 +
4
𝑑
𝜉𝜏0𝑇𝜏0 ,𝜇𝜈 +

4
𝑑
𝜒𝜏0𝑔𝜇𝜈 . (2.17)

The higher order coefficients have been computed recursively in [44], by considering the general expression

ℎ(𝑛)𝜏,𝜇𝜈 = 𝑐(𝑛)0 ℎ𝜏,𝜇𝜈 +
𝑛∑

𝑘=1
𝑐(𝑛)
𝑘
𝑇 𝑘
𝜏,𝜇𝜈 , ∀𝑛 ≥ 1 . (2.18)

Here {𝑐(𝑛)
𝑘
}𝑘∈{1,…,𝑛} are polynomials in the variables 𝜉𝜏 and 𝜒𝜏 with real coefficients. In this fashion, the computation of each ℎ(𝑛)𝜏,𝜇𝜈

can be reduced to the computation of the coefficients {𝑐(𝑛)
𝑘
}𝑘∈{1,…,𝑛}, bound by the recurrence relations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑐(𝑛+1)0 = −
d𝑐(𝑛)0
d𝜏

− 𝜒𝜏𝑐
(𝑛)
1

𝑐(𝑛+1)
𝑘

= − 4
𝑑
𝑐(𝑛)
𝑘−1 −

d𝑐(𝑛)
𝑘

d𝜏
− 𝑘𝜉𝜏𝑐

(𝑛)
𝑘

− (𝑘+ 1)𝜒𝜏𝑐
(𝑛)
𝑘+1 , 1 ≤ 𝑘 ≤ 𝑛− 1

𝑐(𝑛+1)𝑛 = − 4
𝑑
𝑐(𝑛)
𝑛−1 −

d𝑐(𝑛)𝑛

d𝜏
− 𝑛𝜉𝜏𝑐

(𝑛)
𝑛

𝑐(𝑛+1)
𝑛+1 = − 4

𝑑
𝑐(𝑛)𝑛

(2.19)

The recurrence relations (2.19) can be implemented in a Mathematica notebook, with the first 𝑛 = 100 coefficients of the series 
{𝑐(𝑛)

𝑘
}𝑘∈{1,…,𝑛} obtained in less than a minute on a standard machine.

3. Deformed actions from the change of metric

In this section, we will focus our attention on a few notable examples where the metric series expansion exhibits low-order 
truncations.

3.1. Trace-squared deformations

Setting 𝑏 = 0 in (2.3) we obtain trace-squared deformations in arbitrary dimensions, with characteristic flow equation

𝜕𝑆M,𝜏

𝜕𝜏
= 𝑎
𝑑 ∫ d4𝐱

√
−𝑔 tr

[
𝐓𝜏

]2
. (3.1)

It is important to note that 𝑎 is not an independent parameter, as it can be set to 1 by rescaling the flow parameter as 𝜏 → 𝜏∕𝑎. From 
(2.10), the associated flow in the space of metrics is given by

dℎ𝜏,𝜇𝜈
d𝜏

= −4𝑎
𝑑
tr𝜏 [𝐓𝜏 ]ℎ𝜏,𝜇𝜈 . (3.2)

It is possible to integrate equation (3.2) via the recurrence relations (2.19), which yield2

ℎ𝜏,𝜇𝜈 =
(
1 − 𝑎(𝜏 − 𝜏0)tr[𝐓𝜏0

]
) 4

𝑑
𝑔𝜇𝜈 . (3.3)

In other words, trace-squared deformations amount to a field-dependent Weyl rescaling of the background metric. Note that the 4∕𝑑
exponent appearing in (3.3) does not stand as an exclusive hallmark of trace-squared deformations, as we will show in the following 
section. Ultimately, its presence is due to the 4∕𝑑 factor in (2.10), and it anticipates the special role played by TT-like deformations 
in four space-time dimensions. Once the full form of the deformed metric is known, the TT-like dressing machinery can be put to 
work over physically relevant theories: specifically, for a given matter seed theory 𝑆M, its associated deformed theory 𝑆M,𝜏 can be 
computed as{

𝑆M[𝑔𝜇𝜈,Φ𝐼 ] −
𝑎
(
𝜏 − 𝜏0

)
𝑑 ∫ d𝑑𝐱

√
−𝑔 tr[𝐓𝜏0

]2
}||||||𝑔=𝑔(ℎ) = 𝑆M,𝜏

[
ℎ𝜏,𝜇𝜈 ,Φ𝐼

]
, (3.4)

2 It must be noted that equation (3.3) does not stem from analytic computations; nevertheless, its validity has been substantiated through explicit verification across 
5

arbitrary space-time dimensions, extending up to the 100th order in the Taylor expansion.
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with ℎ𝜏,𝜇𝜈 given by (3.3). There are two interesting scenarios3 in which the expression (3.3) assumes a particularly simple structure: 
namely, 𝑑 = 4, where the deformation of the metric is linear in 𝜏 , and 𝑑 = 2, where the deformation is quadratic in the flow 
parameter.

Trace-squared deformations in 𝑑 = 4 space-time

As an instructive example, we start by examining the effects of trace-squared deformations on the action that describes a single 
interacting boson in 𝑑 = 4. To this end, we introduce the following action at 𝜏0 = 0:

𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
= ∫ d4𝐱

√
−𝑔

[1
2
𝜕𝜇𝜙𝜕

𝜇𝜙− 𝑉 (𝜙)
]
. (3.5)

Here 𝑉 denotes an arbitrary Lorentz-invariant potential, and for notational convenience, we introduce the symmetric, metric-

independent quantity

𝑋𝜇𝜈 = 𝜕𝜇𝜙𝜕𝜈𝜙 , (3.6)

whose trace we denote by 𝑋 = 𝑔𝜇𝜈𝑋𝜇𝜈 . The trace of the stress-energy tensor associated with the seed theory is given by

tr[𝐓0] =𝑋 − 4𝑉 , (3.7)

so that, by equation (3.3), the deformed metric is

ℎ𝜏,𝜇𝜈 =
(
1 − 𝑎𝜏tr[𝐓0]

)
𝑔𝜇𝜈 = (1 − 𝑎𝜏 (𝑋 − 4𝑉 ))𝑔𝜇𝜈 . (3.8)

The next step of the TT-like dressing requires inverting equation (3.8), expressing the metric 𝑔𝜇𝜈 as a function of ℎ𝜏,𝜇𝜈 . Before we do 
that, notice that the kinetic term 𝑋 appearing in (3.8) implicitly contains the background metric 𝑔𝜇𝜈 , hidden inside the trace over 
space-time derivatives. For this reason, we introduce the term

𝑋𝜏 ∶= (ℎ−1𝜏 )𝜇𝜈𝑋𝜇𝜈 = (ℎ−1𝜏 )𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 , (3.9)

which is related to the original kinetic term of the undeformed theory via

𝑋𝜏 =
𝑋

1 − 𝑎𝜏 (𝑋 − 4𝑉 )
, (3.10)

or, explicitly solving (3.10) for 𝑋,

𝑋 =
𝑋𝜏 (1 + 4𝑎𝜏𝑉 )

1 + 𝑎𝜏𝑋𝜏
. (3.11)

At this point, we have all the necessary ingredients to dress up the action (3.5) with the trace-squared deformation. First, we subtract 
the deforming operator computed at 𝜏 = 𝜏0 (in this case, we have fixed 𝜏0 = 0):

𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
− 𝑎𝜏

4 ∫ d4𝐱
√
−𝑔 tr

[
𝐓0

]2 = 𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
− 𝑎𝜏

4 ∫ d4𝐱
√
−𝑔 (𝑋 − 4𝑉 )2 . (3.12)

Next, we substitute 𝑔 = 𝑔(ℎ𝜏 ) in (3.12) as determined by (3.8). Taking into account the transformation rule (3.11), and keeping in 
mind that in four space-time dimensions the metric determinant in (3.5) transforms as

√
−𝑔 =

√
−ℎ

(1 − 𝑎𝜏tr[𝐓0])2
=

√
−ℎ

(1 − 𝑎𝜏 (𝑋 − 4𝑉 ))2
, (3.13)

we obtain the deformed action

𝑆𝑉 ,𝜏 [ℎ𝜏,𝜇𝜈 ,𝜙] =
{
𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
− 𝑎𝜏

4 ∫ d4𝐱
√
−𝑔 tr

[
𝐓0

]2}|||||𝑔=𝑔(ℎ)
= ∫ d4𝐱

√
−ℎ𝜏

(
2𝑋𝜏 + 𝑎𝜏𝑋2

𝜏

4 (1 + 4𝑎𝜏𝑉 )
− 𝑉

1 + 4𝑎𝜏𝑉

)
.

(3.14)

As a final check, notice that the trace of the deformed stress-energy tensor – here computed over the metric structure induced by 
ℎ𝜏,𝜇𝜈 – is given by

tr𝜏
[
𝐓𝜏

]
=

𝑋𝜏 − 4𝑉
1 + 4𝑎𝜏𝑉

. (3.15)

If we now regard the metric ℎ𝜏,𝜇𝜈 as fixed, and compute the derivative of (3.14) with respect to 𝜏 , we obtain

3 There is, actually, a third possibility: a trace-squared deformed one-dimensional field theory (i.e., a mechanical system evolving in time) is equivalent to a metric 
6

deformation (i.e., a change in the clock of the system) through a Weyl rescaling characterised by a quartic dependency on the energy of the underlying seed theory.
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𝜕
𝜕𝜏

𝑆𝑉 ,𝜏 [ℎ𝜏,𝜇𝜈 ,𝜙] =
𝑎
4 ∫ d4𝐱

√
−ℎ𝜏

(
𝑋𝜏 − 4𝑉
1 + 4𝑎𝜏𝑉

)2
= 𝑎

4 ∫ d4𝐱
√
−ℎ𝜏 tr𝜏

[
𝐓𝜏

]2
. (3.16)

Since there is no harm in simply relabelling ℎ𝜏,𝜇𝜈 as 𝑔𝜇𝜈 , we have shown that the action

𝑆𝑉 ,𝜏 [𝑔𝜇𝜈,𝜙] = ∫ d4𝐱
√
−𝑔

(
2𝑋 + 𝑎𝜏𝑋2

4 (1 + 4𝑎𝜏𝑉 )
− 𝑉

1 + 4𝑎𝜏𝑉

)
(3.17)

satisfies the flow (3.1) in 𝑑 = 4, with (3.5) as the associated seed theory in 𝜏 = 0. Further generalisations in four dimensions can 
account for the introduction of multiple scalar fields 

{
𝜙𝐼

}
𝐼∈{1,…,𝑁}. In this case, the seed theory

𝑆(𝑁)
𝑉

[
𝑔𝜇𝜈,𝜙𝐼

]
= ∫ d4𝐱

√
−𝑔

(1
2
𝜕𝜇𝜙𝐼𝜕

𝜇𝜙𝐼 − 𝑉
)
, (3.18)

where implicit summation over the field index 𝐼 = 1, … , 𝑁 is understood, is deformed by the trace-squared deformation into

𝑆(𝑁)
𝑉 ,𝜏

[
𝑔𝜇𝜈,𝜙𝐼

]
= ∫ d4𝐱

√
−𝑔

⎛⎜⎜⎝
2𝜕𝜇𝜙𝐼𝜕

𝜇𝜙𝐼 + 𝑎𝜏
(
𝜕𝜇𝜙𝐼𝜕

𝜇𝜙𝐼
)2

4(1 + 4𝑎𝜏𝑉 )
− 𝑉

1 + 4𝑎𝜏𝑉

⎞⎟⎟⎠ . (3.19)

Analogue procedures can be implemented when the matter Lagrangian exhibits even more intricate structures. For example, consider 
the action describing self-interacting scalar fields minimally coupled to Maxwell’s electrodynamics:

𝑆[𝑔𝜇𝜈,Φ,𝐴𝜇] = ∫ d4𝐱
√
−𝑔

[𝜇Φ(𝜇Φ)⋆ − 𝑉
(
ΦΦ⋆

)
− 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈
]
. (3.20)

Here, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the field strength for the Abelian gauge field 𝐴𝜇 , Φ is a complex scalar field, 𝑉 is an arbitrary potential, 
and the matter-radiation coupling is realised through the introduction of the covariant derivative 𝜇 ∶= 𝜕𝜇 − 𝑖𝐴𝜇 . One can explicitly 
check that (3.20) is deformed by the trace-squared perturbation into

𝑆𝜏 [𝑔𝜇𝜈,Φ,𝐴𝜇] = ∫ d4𝐱
√
−𝑔

⎛⎜⎜⎝
𝜇Φ(𝜇Φ)⋆ + 𝑎𝜏

[𝜇Φ(𝜇Φ)⋆
]2 − 𝑉

1 + 4𝑎𝜏𝑉
− 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈
⎞⎟⎟⎠ . (3.21)

There is an intuitive reason for this. First, we notice that the stress tensor associated with the kinetic sector of the electromagnetic 
theory in (3.20) is traceless in 𝑑 = 4. Since the deformed theory is constructed from the seed action by recursively incorporating 
functionals of the trace, the 𝐹𝜇𝜈𝐹 𝜇𝜈 term remains untouched, as it receives no contributions. On the other hand, the kinetic sector of 
the scalar field theory matches the one obtained in (3.17), providing that we appropriately rescale Φ →Φ∕

√
2 to replicate the initial 

normalisation, and substitute 𝜕𝜇 →𝜇 as required by the minimal coupling prescription.

Trace-squared deformations in 𝑑 = 2 space-time

In two space-time dimensions, the metric deformation associated with trace-square deformations is quadratic in 𝜏 . Again, we start 
by considering a single interacting scalar field as our seed theory at 𝜏0 = 0, whose action is given by:

𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
= ∫ d2𝐱

√
−𝑔

[1
2
𝜕𝜇𝜙𝜕

𝜇𝜙− 𝑉 (𝜙)
]
. (3.22)

The trace of the stress-energy tensor associated with (3.22) is easily computed as

tr[𝐓0] = −2𝑉 . (3.23)

The deformed background metric is then related to the original one by

ℎ𝜏,𝜇𝜈 =
(
1 − 𝑎𝜏tr[𝐓0]

)2
𝑔𝜇𝜈 = (1 + 2𝑎𝜏𝑉 )2 𝑔𝜇𝜈 . (3.24)

Recalling that in 𝑑 = 2 the metric determinants transform under (3.24) as

√
−𝑔 =

√
−ℎ

1 − 𝑎𝜏tr[𝐓0]
=

√
−ℎ

1 + 2𝑎𝜏𝑉
, (3.25)

the action (3.22) is dressed by the trace-squared deformation into

𝑆𝑉 ,𝜏 [ℎ𝜏,𝜇𝜈 ,𝜙] =
{
𝑆𝑉

[
𝑔𝜇𝜈,𝜙

]
− 𝑎𝜏

2 ∫ d2𝐱
√
−𝑔 tr

[
𝐓0

]2}|||||𝑔=𝑔(ℎ)
= ∫ d2𝐱

√
−ℎ𝜏

(1
2
𝑋𝜏 −

𝑉
1 + 2𝑎𝜏𝑉

)
,

(3.26)

where again 𝑋𝜏 = ℎ𝜇𝜈𝜏 𝜕𝜇𝜙𝜕𝜈𝜙. Relabelling ℎ𝜏,𝜇𝜈 as 𝑔𝜇𝜈 in (3.26), and regarding 𝑔𝜇𝜈 as fixed, one can verify that the trace-squared 
flow (3.1) is satisfied. Note that the kinetic term is unaffected by the deformation: this is analogous to the behaviour of pure Maxwell 
7

theory in 𝑑 = 4 space-time. In 𝑑 = 2, this phenomenon finds its ultimate origin in the intrinsic property of conformal field theories, 
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wherein stress-energy tensors are inherently traceless, without the necessity for improvement procedures. It is also interesting to 
observe that, as 𝜏 →∞, the deformed theory (3.26) becomes free.

3.2. Deformations of Abelian gauge theories

Assume that the matrix 𝐓𝜏0
is diagonalisable, i.e., there exists an invertible matrix 𝐏 and a diagonal matrix 𝐃 such that 𝐓𝜏0

=
𝐏𝐃𝐏−1. Moreover, assume that 𝐓𝜏0

has 2 (respectively, 1) independent eigenvalues of multiplicity 𝑑∕2 (respectively, 𝑑) if 𝑑 is even 
(respectively, odd), namely

𝐃 =

⎧⎪⎪⎨⎪⎪⎩

diag
(
𝜆1,… , 𝜆1
⏟⏞⏞⏟⏞⏞⏟

𝑑
2 -times

, 𝜆2,… , 𝜆2
⏟⏞⏞⏟⏞⏞⏟

𝑑
2 -times

)
, 𝑑 ∈ 2ℕ+ 2

diag
(
𝜆,… , 𝜆
⏟⏟⏟
𝑑-times

)
, 𝑑 ∈ 2ℕ+ 3 .

(3.27)

Under the assumption (3.27), fixing 𝑎 = 2∕𝑑 and 𝑏 = 1 in (2.3), the coefficients of the Taylor expansion (2.12) can be computed as

ℎ(𝑛)𝜏0 ,𝜇𝜈
= (−1)𝑛

(
− 4
𝑑

)
𝑛
𝑇 𝑛
𝜏0 ,𝜇𝜈

, (3.28)

where we introduced the Pochhammer symbol defined as

(𝑥)𝑛 =
Γ(𝑥+ 𝑛)
Γ(𝑥)

. (3.29)

At least formally, the deformed metric can be then written as

ℎ𝜏,𝜇𝜈 =

[(
𝑔 −

(
𝜏 − 𝜏0

)
𝑇𝜏0

) 4
𝑑

]
𝜇𝜈

. (3.30)

As anticipated when discussing trace-squared deformations, the four-dimensional scenario assumes yet again a distinctive signif-

icance, as it makes (3.30) linear in 𝜏 . In arbitrary space-time dimensions, provided that the theory satisfies (3.27), the dressing 
equation (2.8) takes the explicit form{

𝑆M[𝑔𝜇𝜈,Φ𝐼 ] −
(
𝜏 − 𝜏0

)
𝑑 ∫ d𝑑𝐱

√
−𝑔

(
2
𝑑
tr
[
𝐓𝜏0

]2
− tr

[
𝐓2
𝜏0

])}||||||𝑔=𝑔(ℎ) = 𝑆M,𝜏

[
ℎ𝜏,𝜇𝜈 ,Φ𝐼

]
, (3.31)

with ℎ𝜏,𝜇𝜈 provided by (3.30). It is interesting to notice that, due to the degeneracy properties of the stress-energy tensor (3.27), in 
even space-time dimensions one has

1
𝑑

(
2
𝑑
tr
[
𝐓𝜏0

]2
− tr

[
𝐓2
𝜏0

])
= 𝜆1𝜆2 =

(
det[𝐓𝜏0

]
) 2

𝑑
. (3.32)

Of course, the same statement holds in odd dimensions, under the identification 𝜆1 = 𝜆2 = 𝜆. One naturally ponders which physically 
relevant theories adhere to the constraints delineated by (3.27). As it turns out, such theories are more common than one may expect:

• in 𝑑 = 2, the condition (3.27) does not constrain the stress-energy tensor which has, in general, 2 distinct eigenvalues. The family 
of stress-tensor flows reduces to

𝜕𝑆M,𝜏

𝜕𝜏
= 1

2 ∫ d2𝐱
√
−𝑔

(
tr
[
𝐓𝜏

]2 − tr
[
𝐓2
𝜏

])
= ∫ d𝑑𝐱

√
−𝑔 det[𝐓𝜏 ] , (3.33)

which reproduce the usual TT deformations in two-dimensional spacetime;

• in 𝑑 = 4, as we shall soon discuss, Abelian gauge theories are characterised by the stress tensor degeneracy required by (3.27)

[72], and the TT-like flow reads

𝜕𝑆M,𝜏

𝜕𝜏
= 1

4 ∫ d4𝐱
√
−𝑔

(1
2
tr
[
𝐓𝜏

]2 − tr
[
𝐓2
𝜏

])
; (3.34)

In addition, it was recently discovered that in the chiral two-form theories in 𝑑 = 6, the stress-energy tensor also displays eigenvalue 
degeneracy (see comments at the end of section 7 of [73]).

A warm-up: from Maxwell to Maxwell-Born-Infeld

Before we dive into the more general framework of 𝑑 = 4 Abelian gauge theories, it is instructive to analyse what happens when 
we take into account the simplest 𝑈 (1) gauge theory in four space-time dimensions. Namely, we focus on Maxwell’s theory, which 
8

we take as our seed theory in 𝜏0 = 0, and whose action is given by
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𝑆Max[𝑔𝜇𝜈,𝐴𝜇] = −1
4 ∫ d4𝐱

√
−𝑔𝐹𝜇𝜈𝐹 𝜇𝜈 . (3.35)

We compute the stress-energy tensor associated with (3.35) in its matrix form, which reads

𝐓0 = 𝐅2 − 1
4
tr
[
𝐅2]𝟏 , (3.36)

where 𝟏 denotes the 4 ×4 identity matrix, and we introduced 𝐅 =
(
𝑔𝜇𝛼𝐹𝛼𝜈

)
𝜇,𝜈∈{0,…,3}. Notice that 𝐅 is, by construction, antisymmet-

ric. If we label as {𝓁𝑛}𝑛∈{0,…,3} the eigenvalues of 𝐅, since the matrix (3.36) is symmetric, it is always possible to find a matrix 𝐏
such that 𝐓0 = 𝐏𝐃𝐏−1, with 𝐃 given by

𝐃 = diag
(1
4
tr
[
𝐅2]− 𝓁2

0 ,… ,
1
4
tr
[
𝐅2]− 𝓁2

3

)
∶= diag

(
𝜆0,… , 𝜆3

)
. (3.37)

Moreover, since the eigenvalues of any antisymmetric matrix are purely imaginary and come in complex conjugate pairs, we can 
take {

𝓁0,𝓁1,𝓁2,𝓁3
}
=
{
−𝓁1,𝓁1,𝓁2,−𝓁2

}
. (3.38)

Given that only the square of each 𝓁𝑛 contributes to the matrix 𝐃, we obtain

𝐃 = diag
(
𝜆1, 𝜆1, 𝜆2, 𝜆2

)
. (3.39)

This is enough to ensure that, under the TT-like flow (3.34), Maxwell’s action (3.35) is dressed as{
𝑆Max[𝑔𝜇𝜈,𝐴𝜇] +

𝜏
4 ∫ d4𝐱

√
−𝑔 tr

[
𝐓2
0
]}|||||𝑔=𝑔(ℎ) = 𝑆Max,𝜏

[
ℎ𝜏,𝜇𝜈 ,𝐴𝜇

]
, (3.40)

where, according to (3.30), we take the deformed metric ℎ𝜏,𝜇𝜈 to be

ℎ𝜏,𝜇𝜈 = 𝑔𝜇𝜈 + 𝜏𝑇0,𝜇𝜈 . (3.41)

Notice that the tr
[
𝐓0

]2
term in (3.31) has disappeared from (3.40), since the stress-energy tensor of the seed theory is traceless in 

𝑑 = 4. In addition, it is worth pointing out that we can express equation (3.41) in a more explicit way as follows:

𝐡𝜏 = 𝐉†𝐠𝐉, 𝐉 ∶=
√

1 − 𝜏
4
tr
[
𝐅2

]
𝟏− 𝑖

√
𝜏 𝐅 , (3.42)

where 𝐉 is a 4 ×4 square matrix with complex entries. The transformation of the metric as written in (3.42) can be easily understood 
as a field-dependent local change of coordinates, characterised by the Jacobian matrix 𝐉. Consistently with (3.41), we also have,

𝐉𝐉† = 𝐉†𝐉 = 𝟏+ 𝜏𝐅2 − 1
4
𝜏tr

[
𝐅2]𝟏 = 𝟏+ 𝜏𝐓0 . (3.43)

In line with our previous approach to scalar fields in the context of trace-squared deformations, we need to define new quantities in 
the ℎ𝜏,𝜇𝜈 frame. In this case, it suffices to introduce the matrix 𝐅𝜏 =

(
ℎ𝜇𝛼𝐹𝛼𝜈

)
𝜇,𝜈∈{0,…,3}, related to the original 𝐅 via

𝐅𝜏 =
(
𝐉−1

)† 𝐅(
𝐉−1

)
. (3.44)

Finally, given that√
−ℎ𝜏 = det [𝐉]

√
−𝑔 , (3.45)

one can algebraically manipulate equation (3.40) to obtain an explicit expression for the deformed action:

𝑆Max,𝜏
[
ℎ𝜏,𝜇𝜈 ,𝐴𝜇

]
= 1

2𝜏 ∫ d4𝐱
√
−ℎ𝜏

(√
det

[
𝟏+

√
2𝜏𝐅𝜏

]
− 1

)
. (3.46)

As is customary, one may relabel redundant quantities to yield a more succinct form for the action (3.46): we restore the notation 
for a generic background metric 𝑔𝜇𝜈 , and set 2𝜏 = 1∕𝛽2, yielding

𝑆Max,𝜏
[
𝑔𝜇𝜈,𝐴𝜇

]
= 𝛽2 ∫ d4𝐱

√
−𝑔

⎛⎜⎜⎝
√

det
[
𝟏+ 1

𝛽
𝐅
]
− 1

⎞⎟⎟⎠ . (3.47)

Here 𝛽 is simply regarded as a scale parameter. The action (3.47) is the renowned Maxwell-Born-Infeld action, historically introduced 
in the 1930s to remove the divergences emerging due to the electron’s self-energy in classical electrodynamics. In this theory, the 
maximum attainable value of the electric field is 𝛽, ensuring finite self-energy for point charges. Initially shadowed by the advent of 
renormalisation, the Born-Infeld theory regained popularity in the mid-80s as the leading term in the low-energy effective action of 
9

the open string theory expanded in powers of derivatives of gauge field strength [74]. It comes without surprise that the dressing 
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mechanism (3.40) applied to Maxwell’s theory reproduces the Maxwell-Born-Infeld theory, as it was shown in [46] that (3.47) is 
indeed a solution to the four-dimensional TT-like flow (3.34) with Maxwell’s electromagnetism as its seed theory. Nevertheless, the 
discovery of the extent to which the dressing mechanism can reach was, from our perspective, quite surprising.

Massive electrodynamics and higher-order self-interactions

Maxwell’s theory (3.35) is the simplest theory of massless vector boson in four dimensions. At the price of breaking gauge 
invariance, one can add extra terms to the action, including a Lorentz-invariant potential 𝑉 :

𝑆[𝑔𝜇𝜈,𝐴𝜇] = ∫ d4𝐱
√
−𝑔

[
−1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝑉 (𝐴𝜇𝐴
𝜇)
]
. (3.48)

As an example, the choice 𝑉 = 1
2𝑚

2𝐴𝜇𝐴
𝜇 reproduces the Proca action, describing a massive spin-1 vector field in 𝑑 = 4 space-

time. The addition of an extra potential term to the Maxwell action has the simple effect of shifting the stress-energy tensor by a 
field-dependent quantity:

𝐓0 → 𝐓0 − 𝑉 𝟏 . (3.49)

In turn, equation (3.49) produces a homogeneous shift in the eigenvalues of 𝐓0, which does not however spoil the degeneracy 
discussed in (3.39). This implies that the dressing procedure remains a feasible approach when performing TT-like deformations of 
self-interacting theories of electrodynamics. In particular, one can check that the interacting theory (3.48) is deformed into [46]

𝑆𝜏 [𝑔𝜇𝜈,𝐴𝜇] =
1

2𝜏 (1 − 𝜏𝑉 ) ∫ d4𝐱
√
−𝑔

(√
det

[
𝟏+

√
2𝜏 (1 − 𝜏𝑉 )𝐅

]
− 1

)
+ 𝑉

1 − 𝜏𝑉
. (3.50)

It is interesting to observe that the effect of adding interaction terms to (3.35) amounts to a shift in the flow parameter in the kinetic 
term of the form

𝜏 → 𝜏 (1 − 𝜏𝑉 ) . (3.51)

This property is not confined to Maxwell’s theory. Rather, it extends its reach to generic Abelian gauge theories.

Beyond breaking gauge invariance, additional problems arise when introducing actions such as (3.48). These complications are 
ultimately related to discontinuous changes in the number of degrees of freedom in the theory when the potential vanishes. The 
Stueckelberg mechanism [75] could offer an efficient way to overcome these issues.

Deforming arbitrary Abelian gauge theories

So far, we only focused on Maxwell’s theory. It turns out that the class of physical theories which satisfy the bound provided 
by equation (3.27) is much broader, encompassing all four-dimensional Abelian gauge theories. To show this, we turn our attention 
towards gauge theories built from the electromagnetic stress-tensor 𝐹𝜇𝜈 , relying on the results from [72]. According to the Cayley-

Hamilton theorem, every matrix 𝐅 satisfies its characteristic equation:

det [𝐅]𝟏 =
3∑

𝑛=0
𝛾𝑛𝐅𝑛. (3.52)

The coefficients 𝛾𝑛 are given by

𝛾𝑛 =
∑
{
𝑘𝑖
}

4∏
𝑖=1

(−1)𝑘𝑖+1

𝑖𝑘𝑖𝑘𝑖!
tr
[
𝐅𝑖

]𝑘𝑖 , (3.53)

where the sum runs over all sets of non-negative integers 𝑘𝑖 which satisfy

4∑
𝑖=1

𝑖𝑘𝑖 = 3 − 𝑛 . (3.54)

Notice that, as the coefficients 𝛾𝑛 depend only on the traces tr
[
𝐅𝑖

]
for 𝑖 = 1, … , 4, equation (3.52) imposes constraints on the number 

of independent trace structures that a 4 × 4 matrix may possess. Specifically, for 𝑙 > 4, any term proportional to tr
[
𝐅𝑙

]
can be 

expressed in terms of lower traces. Furthermore, owing to the antisymmetry of the Abelian field strength 𝐹𝜇𝜈 , the trace of any odd 
power of its associated matrix 𝐅 is zero. Consequently, any scalar, gauge-invariant quantity constructed from 𝐹𝜇𝜈 can be represented 
as a linear combination of the two remaining independent traces, namely tr

[
𝐅2] and tr

[
𝐅4]. In particular, given that the Lagrangian 

densities 𝑈 (1) of four-dimensional Abelian gauge theories are by definition gauge-invariant scalars, one has, in full generality:

𝑈 (1)
(
𝑔𝜇𝜈,𝐴𝜇

)
=𝑈 (1)

(
tr
[
𝐅2] , tr [𝐅4]) . (3.55)
10

The Hilbert stress-energy tensor associated with the family of Lagrangians (3.55) is
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𝑇𝜏0 ,𝜇𝜈 = 𝑔𝜇𝜈𝑈 (1) − 2
∑
𝑛=1,2

𝜕𝑈 (1)

𝜕tr
[
𝐅2𝑛

] ⋅ 𝛿tr [𝐅2𝑛]
𝛿𝑔𝜇𝜈

= 𝑔𝜇𝜈𝑈 (1) − 2
𝜕𝑈 (1)

𝜕tr
[
𝐅2

] ⋅ 𝛿tr [𝐅2]
𝛿𝑔𝜇𝜈

− 4
𝜕𝑈 (1)

𝜕tr
[
𝐅4

] ⋅ 𝛿tr [𝐅4]
𝛿𝑔𝜇𝜈

.

(3.56)

Equation (3.56) can be written in terms of the associated matrices as

𝐓𝜏0
= 𝑎0𝟏+ 𝑎1𝐅2 + 𝑎2𝐅4, (3.57)

where 𝑎𝑖, 𝑖 = 0, … , 2, are some functions of tr
[
𝐅2] and tr

[
𝐅4]. If we label as {𝓁𝑛}𝑛∈{0,…,3} the eigenvalues of 𝐅, the eigenvalues of 

𝐓𝜏0
will result into

{𝜆𝑛}𝑛∈{0,…,3} = {𝑎0 + 𝑎1𝓁
2
𝑛 + 𝑎2𝓁

4
𝑛}𝑛∈{0,…,3} . (3.58)

Similarly as with Maxwell’s theory, since the eigenvalues of any antisymmetric matrix are purely imaginary and come in complex 
conjugate pairs, we take{

𝓁0,𝓁1,𝓁2,𝓁3
}
=
{
−𝓁1,𝓁1,𝓁2,−𝓁2

}
. (3.59)

Given that only even powers of each 𝓁𝑛 contribute to the set of eigenvalues of 𝐓𝜏0
, the latter can be put in a diagonal form 𝐃 by 

some similarity transformation, with

𝐃 = diag
(
𝜆1, 𝜆1, 𝜆2, 𝜆2

)
. (3.60)

This tells us that, given any Abelian gauge theory in 𝑑 = 4 space-time, performing a TT-like deformation driven by the operator

[1∕2,1]
4,𝜏 = 1

4

(1
2
tr
[
𝐓𝜏

]2 − tr
[
𝐓2
𝜏

])
(3.61)

is equivalent to implementing the dressing mechanism{
𝑆𝑈 (1)[𝑔𝜇𝜈,𝐴𝜇] −

(
𝜏 − 𝜏0

)
4 ∫ d4𝐱

√
−𝑔

(
1
2
tr
[
𝐓𝜏0

]2
− tr

[
𝐓2
𝜏0

])}||||||𝑔=𝑔(ℎ) = 𝑆𝑈 (1),𝜏
[
ℎ𝜏,𝜇𝜈 ,𝐴𝜇

]
, (3.62)

with deformed metric

ℎ𝜏,𝜇𝜈 = 𝑔𝜇𝜈 +
(
𝜏 − 𝜏0

) [
𝑇𝜏0 ,𝜇𝜈 −

1
2
tr
[
𝐓𝜏0

]
𝑔𝜇𝜈

]
. (3.63)

Given that gauge symmetry remains unbroken along TT-like flows [76], the characteristic degeneracy of the stress-energy tensor 
is preserved as we deform the theory. Then we see from (3.32) that if the matter content of a four-dimensional 𝑈 (1) gauge theory 
𝑆𝑈 (1),𝜏 complies with equation (3.62), it must also satisfy{

𝑆𝑈 (1)[𝑔𝜇𝜈,𝐴𝜇] −
(
𝜏 − 𝜏0

)
∫ d4𝐱

√
−𝑔

√
det

[
𝐓2
𝜏0

]}||||||𝑔=𝑔(ℎ) = 𝑆𝑈 (1),𝜏
[
ℎ𝜏,𝜇𝜈 ,𝐴𝜇

]
. (3.64)

As an example of non-standard electrodynamics subject to TT-like flows in four dimensions, consider the ModMax Lagrangian 
[49], introduced as the unique one-parameter family of Lorentz invariant modifications of Maxwell’s theory preserving both duality 
invariance and conformal symmetry:

ModMax(𝑔𝜇𝜈,𝐴𝜇) = −1
4
cosh 𝛾𝐹𝜇𝜈𝐹 𝜇𝜈 + 1

4
sinh 𝛾

√(
𝐹𝜇𝜈𝐹

𝜇𝜈
)2 + (𝜖𝜇𝜈𝛼𝛽𝐹𝜇𝜈𝐹𝛼𝛽 )2. (3.65)

Here 𝛾 is a dimensionless real parameter that controls the deformation: when 𝛾 is set to zero, the Lagrangian (3.65) reduces to the 
usual Maxwell theory. When dressed by the TT-like deformation, it is deformed into the Born-Infeld-ModMax theory [50,77].

ModMax,𝜏 (𝑔𝜇𝜈,𝐴𝜇) =
1
2𝜏

[√
1 + 𝜏ModMax(𝑔𝜇𝜈,𝐴𝜇) −

𝜏2

4
(𝜖𝜇𝜈𝛼𝛽𝐹𝜇𝜈𝐹𝛼𝛽 )2 − 1

]
. (3.66)

As discussed before, gauge-breaking self-interactions will simply shift the eigenvalues of 𝐓𝜏0
, preserving their degeneracy, and the 

dressing procedure can be implemented also in the presence of non-vanishing potentials. As anticipated, the effects of the additional 
potential on the theory’s kinetic term can be seen as a shift of the flow parameter 𝜏 → 𝜏 (1 − 𝜏𝑉 ). The interacting term is instead 
deformed as in (3.50): 𝑉 → 𝑉 ∕ (1 − 𝜏𝑉 ). This behaviour is a typical characteristic of TT-like Abelian gauge theories, and it reproduces 
11

the form of two-dimensional TT-deformed interacting theories [46].
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4. Palatini gravity

In the past century, considerable exploration has been undertaken into extending general relativity in minimal ways, offering 
opportunities to depart from the traditional Einstein-Hilbert framework and tweak gravitational dynamics. Among these efforts, 
a particularly promising category is the 𝑓 () Palatini theories [78] and their offshoots, the 𝑓 (𝜇𝜈) extensions, also dubbed as 
Ricci-based gravity theories [69], which do not require the introduction of additional degrees of freedom compared to standard 
Einstein-Hilbert General Relativity. Before plunging into the subtleties of these theories, let us briefly review how in practice the 
Palatini formalism works. For this purpose, we focus on the Einstein-Hilbert action4,5:

𝑆EH

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1

2 ∫ d𝑑𝐱
√
−𝑔 tr

[
(Γ)

]
. (4.1)

Notice that the action (4.1) has a functional dependence from the connection Γ: this tacitly denotes our commitment to the Palatini 
framework. Herein, both the metric and the connection are regarded as independent dynamical fields, and the Ricci curvature tensor

𝜇𝜈 = 𝜕𝛼Γ𝛼𝜈𝜇 − 𝜕𝜈Γ𝛼𝛼𝜇 + Γ𝛼𝛼𝛽Γ
𝛽
𝜈𝜇 − Γ𝛼𝜈𝛽Γ

𝛽
𝛼𝜇 (4.2)

is considered as a functional of the connection only. Here

 =
(
𝑔𝜇𝛼(𝛼𝜈)

)
𝜇,𝜈∈{0,…,𝑑−1} (4.3)

is the 𝑑 × 𝑑 matrix canonically associated with the symmetric part of the Ricci curvature tensor (𝜇𝜈), where indices are as usual 
raised and lowered through the action of the metric tensor. The fact that only the symmetric part of 𝜇𝜈 enters the action might 
seem inconsequential at present, but its significance will unveil in due course, as it will guarantee the stability of more complicated 
theories. Being 𝑔𝜇𝜈 and Γ𝜆𝜇𝜈 two independent objects, the equations of motion for the theory (4.1) are obtained by extremising the 
action with respect to both the metric and the connection. The variation of 𝑆EH with respect to 𝑔𝜇𝜈 yields

(𝜇𝜈)(Γ) −
1
2
tr[(Γ)]𝑔𝜇𝜈 = 0 , (4.4)

while – disregarding boundary contributions – the variation with respect to Γ𝜆𝜇𝜈 gives us

Γ𝜆𝜇𝜈 =
1
2
𝑔𝜆𝛼

(
𝜕𝜈𝑔𝜇𝛼 + 𝜕𝜇𝑔𝛼𝜈 − 𝜕𝛼𝑔𝜇𝜈

)
. (4.5)

Equations (4.4) are nothing more than Einstein’s vacuum field equations, albeit with the Ricci curvature depending upon the Palatini 
connection. But there is a catch: equation (4.5) tells us that, when on-shell, Γ𝜆𝜇𝜈 is the usual Levi-Civita connection from General 
Relativity. At least when in vacuum, the dynamics of the Palatini-Einstein-Hilbert action (4.1) is the same as the one described by 
General Relativity. In other words, the two theories they are dynamically equivalent. What happens when we add matter to our 
theory? For our purpose, it is handy to consider a matter theory 𝑆M = 𝑆M,𝜏0

as being the seed theory associated with some TT-like 
flow, as the ones described in the previous sections. Assuming that matter minimally couples with gravity, we write down the full 
theory as

𝑆
[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,Φ𝐼

]
= 𝑆EH

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
. (4.6)

It is important to underline that in (4.6) we assumed that the connection Γ𝜆𝜇𝜈 does not explicitly enter the matter action 𝑆M. This 
statement is equivalent to the condition that the theory must have vanishing hypermomentum:

Δ𝜇𝜈
𝜆

= −2√
−𝑔

𝛿𝑆M
𝛿Γ𝜆𝜇𝜈

= 0 . (4.7)

In other words, we are stating that matter fields refrain from direct coupling with the connection. This scenario generally holds for 
minimally coupled bosonic and Abelian gauge fields. Nevertheless, complications may emerge in the context of fermionic matter. For 
the sake of clarity, unless explicitly stated otherwise, we shall assume that all the matter theories we consider adhere to the condition 
(4.7). As for the equations of motion of (4.6), notice that, since Γ𝜆𝜇𝜈 plays no role in the matter sector, equation (4.5) is still valid: 
the connection for our theory is once again the Levi-Civita one. On the other hand, since 𝑔𝜇𝜈 takes part in 𝑆M, it is easy to see that 
the equations associated with the metric tensor become

(𝜇𝜈) −
1
2
tr[]𝑔𝜇𝜈 = 𝑇𝜏0 ,𝜇𝜈 , (4.8)

where we finally dropped the explicit Γ𝜆𝜇𝜈 dependence, as a way of indicating that the connection is the metric-compatible one. 
Equations (4.8) are, once again, equivalent to those from General Relativity. However, the genuine strength of the Palatini approach 
comes to light when we depart from the conventional Einstein-Hilbert action, as we will see shortly.

4 In this paper, we set the reduced Planck mass 8𝜋𝐺N = 1.
5 While the dimension 𝑑 remains arbitrary, caution is warranted in specific instances. Notably, when 𝑑 = 2 or 𝑑 = 3, the theory becomes topological, precluding 
12

the possibility of locally coupling matter degrees of freedom to gravity.
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4.1. 𝑓 () and Ricci-based gravity theories

One of the most straightforward ways to increase the complexity of the gravity functional is to add higher-order terms to the 
action (4.1). For example, one may decide to consider sufficiently well-behaved functionals, which can be then Taylor expanded into

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= ∫ d𝑑𝐱

√
−𝑔

∑
𝑚,𝑛

𝑐𝑚𝑛 𝜅
𝑛+𝑚−1tr[(Γ)]𝑚tr[𝑛(Γ)] . (4.9)

Note that when writing down the action (4.9) we were somehow forced to incorporate at least one dimensional parameter, which 
we denoted as 𝜅, with the convention that [𝜅] = −2 in mass units, so to ensure that [𝑆G,𝜅] = 1. The presence of 𝜅 sets a mass scale 
for the theory. Here the 𝑐𝑚𝑛 ’s are coefficients which define the theory. While refraining from detailing the specific structure of the 
action (4.9), it is understandable to require that its IR limit should converge to the Einstein-Hilbert action:

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 𝑆EH

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
+𝑂(𝜅) . (4.10)

This is easily achieved by setting 𝑐00 = 06 and 𝑐10 = 𝑐01 = 1∕4 (notice that these last two coefficients are associated to identical terms 
in (4.9)). When 𝑐𝑚𝑛 = 0 for every 𝑛 ≠ 0, the resulting theory can be Taylor expanded into powers of tr[] alone, and things get 
significantly simpler. These theories are known as 𝑓 () theories, and we will explore them in the following section. When there are 
no constraints on the coefficients 𝑐𝑚𝑛 – apart from those realising the low energy limit (4.10) – the theories in the class parametrised 
by (4.9) are generally known as Ricci-based gravity theories (RBGs for short). It is within the context of RBGs that our restriction to 
the symmetric component of 𝜇𝜈 becomes relevant: as shown in [79], even though the field equations of RBGs are, in general, of 
second order, it is necessary to impose projective invariance of the action to get rid of ghost-like dynamical degrees of freedom. A 
projective transformation of the connection field of the form

Γ𝜆𝜇𝜈 → Γ𝜆𝜇𝜈 + 𝜉𝜇𝛿
𝜆
𝜈 , (4.11)

reflects on the Ricci curvature tensor as

𝜇𝜈 →𝜇𝜈 + 𝜕𝜇𝜉𝜈 − 𝜕𝜈𝜉𝜇 . (4.12)

Consequently, the symmetric part of 𝜇𝜈 remains unaffected, and so does the gravitational action 𝑆G,𝜅 .

4.1.1. 𝑓 () gravity

In this section, setting 𝑐𝑚𝑛 = 0 for every 𝑛 ≠ 0 in (4.9), we focus on the family of functionals

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= ∫ d𝑑𝐱

√
−𝑔

(
1
2
tr[(Γ)] +

∑
𝑚≥2

𝑐𝑚0𝜅
𝑚−1tr[(Γ)]𝑚

)
. (4.13)

It turns out that one of the most notable members of this class is also the simplest, non-trivial example of Palatini 𝑓 () gravity in 
𝑑 = 4, known as the Starobinsky model:

𝑆Star,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= ∫ d4𝐱

√
−𝑔

(1
2
tr
[
(Γ)

]
+ 𝜅

4
tr
[
(Γ)

]2)
. (4.14)

The action (4.14) will later play a central role in this article, but we will keep the discussion as general as possible for the moment 
being. As we did for the Einstein-Hilbert action in the Palatini framework, we add matter sources, minimally coupling the gravity 
theory to an arbitrary seed theory in 𝜏 = 𝜏0:

𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,Φ𝐼

]
= 𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
. (4.15)

For the sake of notational compactness, from now on we will drop the explicit Γ dependency in 𝜇𝜈 . It is then convenient to 
introduce a gravitational Lagrangian density G,𝜅 such that 𝑆G,𝜅 = ∫ d4𝐱

√
−𝑔G,𝜅 . Since, by assumption, G,𝜅 should exclusively 

depend on 𝑔𝜇𝜈 through the trace of the matrix , we can trade the metric variation of the gravitational Lagrangian with its variation 
with respect to tr[]:

𝜕G,𝜅

𝜕𝑔𝜇𝜈
=

𝜕G,𝜅

𝜕tr[]
𝜕tr[]
𝜕𝑔𝜇𝜈

=
𝜕G,𝜅

𝜕tr[]
(𝜇𝜈) . (4.16)

Requiring that the variation of 𝑆G,𝜅 with respect to 𝑔𝜇𝜈 should vanish, we obtain

2
𝜕G,𝜅

𝜕tr[]
(𝜇𝜈) −G,𝜅𝑔𝜇𝜈 = 𝑇𝜏0 ,𝜇𝜈 .

(4.17)

Finally, taking the trace of equation (4.17), we get

6 The 𝑐00 term simply amounts to the addition of a cosmological constant to the model, contributing to its vacuum energy. While our present discussion can be 
13

easily generalised to the case of non-vanishing cosmological constant, we will be ultimately interested in the analysis of asymptotically flat space-time.
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2
𝜕G,𝜅

𝜕tr[]
tr[] − 𝑑G,𝜅 = tr[𝐓𝜏0

] . (4.18)

This equation implies that tr[(Γ)] can be solved algebraically in terms of tr[𝐓𝜏0
], thus leading to tr[(Γ)] = 𝑓 (tr[𝐓𝜏0

]), as a function 
of the matter content (and possibly of the metric), but not of the independent connection. On the other hand, using

𝛿(𝜇𝜈) = ∇𝜆𝛿Γ𝜆𝜇𝜈 −∇𝜈𝛿Γ𝜆𝜇𝜆 , (4.19)

where ∇𝜇 denotes the covariant derivative associated to Γ𝜆𝜇𝜈 , the variation of (4.15) with respect to the connection yields

∇𝜆

(√
−𝑔

𝜕G,𝜅

𝜕tr[]
𝑔𝜇𝜈

)
= 0. (4.20)

We can introduce an auxiliary metric tensor ℎ𝜅,𝜇𝜈 , defined by its inverse 
(
ℎ−1𝜅

)𝜇𝜈
via

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔

𝜕G,𝜅

𝜕tr[]
𝑔𝜇𝜈 , ℎ𝜅 ∶= det

[
ℎ𝜅,𝜇𝜈

]
, (4.21)

with 
(
ℎ−1𝜅

)𝜇𝛼
ℎ𝜅,𝛼𝜈 = 𝛿𝜇𝜈 . Notice that the new metric ℎ𝜅,𝜇𝜈 is symmetric by construction, and it converges to the standard metric 𝑔𝜇𝜈

for sufficiently small values of the coupling 𝜅, as one can see from (4.13). The additional 1∕2 factor in (4.21) may appear arbitrary 
at first glance, yet its significance will become apparent in equation (4.35).

With this definition in mind, we can recast the equations of motion for the connection (4.20) into a far more familiar form:

Γ𝜆𝜇𝜈 =
1
2
(
ℎ−1𝜅

)𝜆𝛼 (
𝜕𝜈ℎ𝜅,𝜇𝛼 + 𝜕𝜇ℎ𝜅,𝛼𝜈 − 𝜕𝛼ℎ𝜅,𝜇𝜈

)
. (4.22)

Equation (4.22) simply states that the auxiliary metric ℎ𝜅,𝜇𝜈 is such that the connection must be ℎ𝜅 -compatible. Moreover, taking 
the determinant of both sides of (4.21), and plugging back in the value of 

√
−ℎ𝜅 , equation (4.21) can be simplified into

ℎ𝜅,𝜇𝜈 =
(
2
𝜕G,𝜅

𝜕tr[]

) 2
𝑑−2

𝑔𝜇𝜈 . (4.23)

This tells us that ℎ𝜅,𝜇𝜈 and 𝑔𝜇𝜈 are related by a theory-dependent Weyl rescaling. Relying on the fact that equation (4.18) allows 
us to trade traces of  with functionals of the trace of the stress-energy tensor 𝐓𝜏0

, the auxiliary metric and the standard one are 
ultimately linked by the matter content of the full theory. Notice that the dimension of space-time plays an important role in defining 
the behaviour of the auxiliary metric.

An interesting question arises: what happens in vacuum, when 𝐓𝜏0
= 0? From the equations of motion (4.18), we notice that tr[]

is fixed as a constant as we move throughout spacetime, and so is G,𝜅 . Introducing the auxiliary metric ℎ𝜅,𝜇𝜈 simply amounts to 
some homogeneous rescaling of 𝑔𝜇𝜈 , and the connection becomes 𝑔-compatible. In the absence of sources, the dynamics of Palatini 
𝑓 () gravity simplifies to that of General Relativity, albeit with the potential addition of an effective cosmological constant to 
accommodate the correct fixed value for the scalar curvature tr[] [78].

4.1.2. Ricci-based gravity

Despite their increased complexity, generic RBGs share various features with 𝑓 () theories, and the techniques employed for 
their study are essentially the same. This time, since G,𝜅 will depend on some functional of the matrix , we can trade the metric 
variation of the gravitational Lagrangian with its variation with respect to the combination 𝑔𝜇𝛼(𝛼𝜈), since

𝜕G,𝜅

𝜕𝑔𝜇𝜈
=

𝜕G,𝜅

𝜕𝑔𝜌𝛼(𝛼𝛽)

𝜕𝑔𝜌𝜎(𝜎𝛽)

𝜕𝑔𝜇𝜈
=

𝜕G,𝜅

𝜕𝑔𝜇𝛼(𝛼𝛽)
(𝛽𝜈) . (4.24)

Once the gravity theory has been suitably coupled with matter, the variation of the total action with respect to the metric yields

2
𝜕G,𝜅

𝜕𝑔𝜇𝛼(𝛼𝛽)
(𝛽𝜈) −G,𝜅𝑔𝜇𝜈 = 𝑇𝜏0 ,𝜇𝜈 . (4.25)

As far as the equations of motion for the independent connection are concerned, we can once again introduce an auxiliary metric 
tensor ℎ𝜅,𝜇𝜈 such that

Γ𝜆𝜇𝜈 =
1
2
(
ℎ−1𝜅

)𝜆𝛼 (
𝜕𝜈ℎ𝜅,𝜇𝛼 + 𝜕𝜇ℎ𝜅,𝛼𝜈 − 𝜕𝛼ℎ𝜅,𝜇𝜈

)
. (4.26)

In this case, the compatibility condition (4.26) is realised by defining

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔𝑔𝜇𝛼

𝜕G,𝜅

𝜕𝑔𝛼𝛽(𝛽𝜈)
. (4.27)

Just as for the 𝑓 () case, in vacuum, the field equations of RBGs (4.25) coincide with those of General Relativity [80]. This is 
a common feature of metric-affine gravity theories, where modifications to the gravitational sector emerge only in the presence 
14

of matter fields. The universality of this outcome ultimately stems from the covariance of the field equations, which implies that 
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– in a vacuum – the Ricci tensor must be proportional to the metric. An additional perspective on this broad result arises from 
recognising that General Relativity is the unique Lorentz invariant and unitary theory governing a self-interacting, massless spin-2
field, commonly referred to as the graviton. Thus, if by gravity we mean a theory for such a particle, we will inevitably find General 
Relativity in vacuum [58].

4.2. The two frames of Palatini gravity

It has been shown [67,69,81] that Ricci-based gravity theories such as (4.6) can be recast into General Relativity, provided we 
introduce modified couplings in the matter sector of the full action. To see how this works, we start by focusing on the 𝑓 () case, 
and introduce the auxiliary action

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈 ,𝜇

𝜈

]
= ∫ d𝑑𝐱

√
−𝑔

{
G,𝜅 (tr[]) + (tr[] − tr[])

𝜕G,𝜅

𝜕tr[]

}
, (4.28)

and we couple it to the same matter content introduced in the previous section:

𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,𝜇

𝜈 ,Φ𝐼

]
= 𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈 ,𝜇

𝜈

]
+ 𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
. (4.29)

Importantly, this theory depends on the additional matrix field , which will prove crucial in establishing a dynamical equivalence 
between 𝑆𝜅 and the auxiliary action 𝑆𝜅 . For 𝑓 () theories, the additional dependence of 𝑆𝜅 is entirely summarised within the trace 
of , which can be regarded as a single auxiliary scalar field. Performing the variation of (4.29) with respect to tr[], we obtain

𝛿𝑆𝜅

𝛿tr[]
= ∫ d𝑑𝐱

√
−𝑔

{
𝜕G,𝜅

𝜕tr[]
+ (tr[] − tr[])

𝜕2G

𝜕tr[]2
−

𝜕G,𝜅

𝜕tr[]

}
, (4.30)

which, when set to zero, constrains the on-shell value of  to

tr[⋆] = tr[] , (4.31)

provided that the second derivative of G,𝜅 in (4.30) does not vanish. Plugging (4.31) back into (4.29), we observe that,

𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,

(⋆
)𝜇
𝜈
,Φ𝐼

]
≃ 𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈 ,Φ𝐼

]
, (4.32)

i.e., the two actions satisfy the same Euler-Lagrange equations. We notice moreover that the gravitational sector of 𝑆𝜅 can be recast 
into a more familiar structure by rearranging its terms as follows:

𝑆G,𝜅 = ∫ d𝑑𝐱
√
−𝑔 tr[]

𝜕G,𝜅

𝜕tr[]
+ ∫ d𝑑𝐱

√
−𝑔

(
G,𝜅 − tr[]

𝜕G,𝜅

𝜕tr[]

)
. (4.33)

At this point, we introduce yet another auxiliary metric tensor, which we suggestively call ℎ𝜅,𝜇𝜈 , defined by

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔

𝜕G,𝜅

𝜕tr[]
𝑔𝜇𝜈 . (4.34)

The resemblance to (4.21) is not unintentional: once we integrate out the field , thus ensuring that 𝑆𝜅 ≃ 𝑆𝜅 , the value of ℎ𝜇𝜈 will 
be defined by

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔

𝜕G,𝜅

𝜕tr[]
𝑔𝜇𝜈 . (4.35)

This quite elementary observation bears a profound meaning. The dynamical equivalence of 𝑆𝜅 and 𝑆𝜅 is manifested on configura-

tions of  satisfying the equations of motion (4.31). Intriguingly, it so happens that these configurations are such that the auxiliary 
tensor ℎ𝜅,𝜇𝜈 automatically meets the compatibility conditions for the connection. On the other hand, the introduction of ℎ𝜅,𝜇𝜈 as a 
new metric allows isolating in equation (4.33) the standard Einstein-Hilbert action with respect to ℎ𝜅,𝜇𝜈 , and we can finally rewrite 
(4.29) as

𝑆𝜅 =
1
2 ∫ d𝑑𝐱

√
−ℎ𝜅 tr𝜅 [] + ∫ d𝑑𝐱

√
−𝑔

(
G,𝜅 − tr[]

𝜕G,𝜅

𝜕tr[]

)
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
= 1

2 ∫ d𝑑𝐱
√
−ℎ𝜅 tr𝜅 [] +𝑆M,𝜏0+𝜅

[
𝑔𝜇𝜈,𝜇

𝜈 ,Φ𝐼

]
.

(4.36)

Here we borrowed the notation introduced in section 2, denoting by tr𝜅 traces taken using the auxiliary metric ℎ𝜅,𝜇𝜈 . In the second 
line of (4.36) we defined a new matter action 𝑆M,𝜏0+𝜅 , which incorporates the residual -dependence of the theory. In principle, 
the modified matter action can be rewritten in terms of ℎ𝜅,𝜇𝜈 and Φ𝐼 alone, by solving the definition (4.34) for 𝑔𝜇𝜈 . This means that 
the dynamics of a matter theory 𝑆M minimally coupled to 𝑓 () gravity is equivalent to that of a deformed matter theory 𝑆M,𝜏0+𝜅
minimally coupled to standard General Relativity. Here we say standard because the connection we are working with is, by definition 
15

of the auxiliary metric tensor, ℎ𝜅 -compatible. Explicitly defining the stress-energy tensor
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𝑇𝜏0+𝜅,𝜇𝜈 =
−2√
−ℎ𝜅

𝛿𝑆M,𝜏0+𝜅

𝛿(ℎ−1𝜅 )𝜇𝜈
, (4.37)

the equations of motion resulting from the variation of (4.36) with respect to ℎ𝜅,𝜇𝜈 can be expressed as:

(𝜇𝜈) −
1
2
tr𝜅 []ℎ𝜅,𝜇𝜈 = 𝑇𝜏0+𝜅,𝜇𝜈 . (4.38)

As expected, the expression in (4.38) corresponds to the Einstein field equations formulated in terms of the auxiliary metric tensor 
ℎ𝜇𝜈 . These results can be generalised for arbitrary RBG theories, by introducing the auxiliary action

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈 ,𝜇

𝜈

]
= ∫ d𝑑𝐱

√
−𝑔

{
G,𝜅 () +

(
𝑔𝜇𝛼(𝛼𝜈) −𝜇

𝜈

) 𝜕G,𝜅

𝜕𝜇
𝜈

}
. (4.39)

Similarly, we have

𝛿𝑆𝜅

𝛿𝛼
𝛽

= ∫ d𝑑𝐱
√
−𝑔

{
𝜕G,𝜅

𝜕𝛼
𝛽

+
(
𝑔𝜇𝜌(𝜌𝜈) −𝜇

𝜈

) 𝜕2G

𝜕𝜇
𝜈 𝜕𝛼

𝛽

−
𝜕G,𝜅

𝜕𝛼
𝛽

}
, (4.40)

which forces ⋆ =. When we substitute this result back into (4.39), we obtain the dynamical equivalence

𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,

(⋆
)𝜇
𝜈
,Φ𝐼

]
≃ 𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈 ,Φ𝐼

]
. (4.41)

Again, we carefully rearrange terms in (4.39), and write down the gravity sector as

𝑆G,𝜅 = ∫ d𝑑𝐱
√
−𝑔 𝑔𝜇𝛼(𝛼𝜈)

𝜕G,𝜅

𝜕𝜇
𝜈

+ ∫ d𝑑𝐱
√
−𝑔

(
G,𝜅 −𝜇

𝜈

𝜕G,𝜅

𝜕𝜇
𝜈

)
. (4.42)

As in (4.34), we can introduce the auxiliary metric

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔𝑔𝜇𝛼

𝜕G,𝜅

𝜕𝐻𝛼
𝜈

, (4.43)

which, to ensure that (4.41) is realised, assumes the familiar form

1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔𝑔𝜇𝛼

𝜕G,𝜅

𝜕𝑔𝛼𝛽(𝛽𝜈)
. (4.44)

Noting that the first term in (4.42) represents the Einstein-Hilbert action expressed in terms of the metric ℎ𝜅,𝜇𝜈 , we obtain

𝑆𝜅 =
1
2 ∫ d𝑑𝐱

√
−ℎ𝜅 tr𝜅 [] + ∫ d𝑑𝐱

√
−𝑔

(
G,𝜅 −𝜇

𝜈

𝜕G,𝜅

𝜕𝜇
𝜈

)
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
= 1

2 ∫ d𝑑𝐱
√
−ℎ𝜅 tr𝜅 [] +𝑆M,𝜏0+𝜅

[
𝑔𝜇𝜈,𝜇

𝜈 ,Φ𝐼

]
.

(4.45)

This tells us that the equations of motion for 𝑆𝜅 can be written as

(𝜇𝜈) −
1
2
tr𝜅 []ℎ𝜅,𝜇𝜈 = 𝑇𝜏0+𝜅,𝜇𝜈 , (4.46)

with 𝑇𝜏0+𝜅,𝜇𝜈 defined as in (4.37). We shall henceforth designate 𝑆𝜅 – defined in terms of the new metric ℎ𝜅,𝜇𝜈 and leading to the 
familiar Einstein equations – as the Einstein frame action, while denoting 𝑆𝜅 – defined by the original metric 𝑔𝜇𝜈 – as the Palatini 
frame action. In 𝑓 () theories, realised when the gravitational Lagrangian G,𝜏 is a function of tr

[

]

only, the geometries of the 
two frames are conformally related [82]. There is a close analogy between the above discussion and the existence of two frames 
in scalar-tensor theories of gravity, which we address in section 5. In the broader framework of RBGs, the connection equation can 
still be solved in terms of an auxiliary geometry which, nonetheless, is not conformal in general, but disformal [83]. Recapitulating, 
the integration of  in 𝑆𝜅 automatically enforces the metric compatibility condition, while simultaneously ensuring 𝑆𝜅 ≃ 𝑆𝜅 . As a 
consequence, we can write the dynamical equivalence

𝑆G,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
≃ 𝑆EH

[
ℎ𝜅,𝜇𝜈

]
+𝑆M,𝜏0+𝜅

[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
, (4.47)

together with the definition of the modified matter theory

𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ ∫ d𝑑𝐱

√
−𝑔

(
G,𝜅 − 𝑔𝜇𝛼(𝛼𝜈)

𝜕G,𝜅

𝜕𝑔𝜇𝛽(𝛽𝜈)

)}||||||𝑔=𝑔(ℎ) , (4.48)
16

and of the auxiliary metric ℎ𝜅,𝜇𝜈
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1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔𝑔𝜇𝛼

𝜕G,𝜅

𝜕𝑔𝛼𝛽(𝛽𝜈)
. (4.49)

Notice that we dropped the presence of Γ𝜆𝜇𝜈 in the right-hand side of (4.47), since it is realised as the Levi-Civita connection of the 
metric ℎ𝜅,𝜇𝜈 . More importantly, notice the resemblance between equation (4.48) (on the gravity side) and equation (2.8) (on the 
seemingly unrelated TT-like side). There are scenarios, as we shall soon discover, where these equations convey equivalent insights 
regarding the underlying physics.

5. 𝐓𝐓-like dressing from gravitational reframing

As we noted before, there is an interesting similarity between equation (4.48), characterised by a metric deformation as defined 
by (4.49), and the TT-like dressing introduced in (2.8). The Legendre transform of G,𝜅 appearing in (4.48) can be expressed as a 
function of the Ricci tensor. If we then impose the field equations (4.25), we can write (4.48) in terms of the energy-momentum 
tensor 𝑇𝜏0 ,𝜇𝜈 associated with the theory in the Palatini frame. Similarly, also the auxiliary metric ℎ𝜅,𝜇𝜈 can be written as a function 
of the original metric 𝑔𝜇𝜈 and the stress tensor of the matter sector. Then, if G,𝜅 is such that this rewriting produces the desired 
TT-like operator and the Einstein frame metric aligns with the corresponding TT-deformed metric, it automatically follows that the 
matter action in the Einstein frame is dynamically equivalent to the TT-like deformation of the Palatini frame matter action. As we 
will show through specific examples later on, our deliberate choice to have 𝑆G,𝜅 depended on the irrelevant parameter 𝜅 endows 
the latter with the role of a flow parameter 𝜏 governing the deformation, up to some linear transformation. We have fixed [𝜅] =−2, 
so that standard dimensional analysis settles that the correspondence should be established for 𝜅 ∝ 𝜏 − 𝑐, where 𝑐 is some constant. 
However, as our ultimate aim is to express (4.48) in terms of the stress tensor of the Palatini frame theory, implementing consistent 
gluing conditions requires setting 𝑐 = 𝜏0, so that

𝜅 ∝ 𝜏 − 𝜏0. (5.1)

In the end, the specific value of the proportionality constant in (5.1) turns out to be physically irrelevant, as we retain the flexibility 
to redefine the deforming parameter 𝜏 at will. Our discussion so far implies that appropriately crafted modified gravity theories can 
serve as a source for generating compatible TT-like deformations. Fixing 𝜅 as in (5.1), and setting (without loss of generality) the 
proportionality constant in (5.1) to 1, the dynamical equivalence introduced in (4.47) reads7:

𝑆G,𝜏−𝜏0 +𝑆M,𝜏0
≃ 𝑆EH +𝑆M,𝜏 , (5.2)

where 𝑆M,𝜏 is the TT-deformed matter action at the point 𝜏 . On the other hand, 𝜏0 is arbitrary, so we can promote it to a tunable 
parameter on the same standing as 𝜏 . Relabelling the parameters in (5.2), we obtain

𝑆G,𝜏0 +𝑆M,𝜏−𝜏0 ≃ 𝑆EH +𝑆M,𝜏 . (5.3)

This implies that

𝑆G,𝜏−𝜏0 +𝑆M,𝜏0
≃ 𝑆G,𝜏0 + 𝑆M,𝜏−𝜏0 . (5.4)

For infinitesimal values of 𝜏 − 𝜏0, the dynamical equivalences (5.4) induce the on-shell flow

𝜕𝑆G,𝜏

𝜕𝜏
≃
𝜕𝑆M,𝜏

𝜕𝜏
, (5.5)

where, by assumption, the expression on the right-hand side of equation (5.5) is governed by the TT-like flow associated with the 
matter sector. Alternatively, flipping the sign of 𝜏 in the right-hand side of (5.5), we may write

𝜕
𝜕𝜏

(
𝑆G,𝜏 +𝑆M,−𝜏

)
≃ 0 . (5.6)

On the other hand, regarding 𝜏 and 𝜏0 as independent, and relabelling 𝜏 − 𝜏0 → 𝜏1 and 𝜏0 → 𝜏2, we obtain

𝑆G,𝜏1 +𝑆M,𝜏2
≃ 𝑆G,𝜏2 + 𝑆M,𝜏1

. (5.7)

On-shell, the TT-like flow parameter and the characteristic scale of high-energy gravitational corrections are interchangeable. It is 
crucial to notice that, since our analysis is valid on the shell of the gravitational degrees of freedom, and recognising that the equations 
of motion of Ricci-based gravity theories exhibit a pronounced dependence on the specific source theory of matter to which they 
couple, the resulting stress tensor flow will strongly depend on the chosen matter sector. In the following sections, we will explicitly 
craft gravitational theories capable of accommodating the effects of trace-squared deformations, as well as TT-like deformations of 
Abelian gauge theories. The analytic results are presented for the 𝑑 = 4 case, even though, in principle, these techniques can be 
17
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employed in arbitrary space-time dimensions. However, additional complications arise when extending the previous analysis beyond 
the four-dimensional setting. In section 5.1.1, we will explore why matters become more complex.

5.1. Trace-squared deformations from Starobinsky gravity

We begin our analysis by applying the results from section 4 to the Starobinsky model in four dimensions, which we introduced 
in (4.14) as a simple prototype for 𝑓 () theories. Its Lagrangian density is given by

Star,𝜅 =
1
2
tr
[

]
+ 𝜅

4
tr
[

]2

, (5.8)

where, as usual, tr
[

]

is seen as a function of some independent connection. Metric compatibility for such connection is achieved 
as in (4.23), via the introduction of the auxiliary tensor

ℎ𝜅,𝜇𝜈 = 2
𝜕Star,𝜅

𝜕tr[]
𝑔𝜇𝜈 = (1 + 𝜅tr[])𝑔𝜇𝜈 . (5.9)

We would now like to express ℎ𝜅,𝜇𝜈 as a function of the stress-energy tensor of the matter sources in the model, and we do this by 
considering the equations of motion (4.18):

2
𝜕Star,𝜅

𝜕tr[]
tr[] − 4Star,𝜅 = −tr[] = tr[𝐓𝜏0

] . (5.10)

Plugging (5.10) back into (5.9), we get

ℎ𝜅,𝜇𝜈 =
(
1 − 𝜅tr[𝐓𝜏0

]
)
𝑔𝜇𝜈 . (5.11)

On the other hand, from (4.48), we know that the Palatini frame action for some arbitrary matter sector can be written as

𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ ∫ d4𝐱

√
−𝑔

(
G,𝜅 − tr[]

𝜕G,𝜅

𝜕tr[]

)}|||||𝑔=𝑔(ℎ)
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
− 𝜅

4 ∫ d4𝐱
√
−𝑔 tr[]2

}|||||𝑔=𝑔(ℎ)
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
− 𝜅

4 ∫ d4𝐱
√
−𝑔 tr[𝐓𝜏0

]2
}|||||𝑔=𝑔(ℎ) ,

(5.12)

where, going from the second to the third line, we used (5.10). Finally, setting 𝜅 = 𝑎(𝜏 − 𝜏0), we find

𝑆M,𝜏

[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
−
𝑎(𝜏 − 𝜏0)

4 ∫ d4𝐱
√
−𝑔 tr[𝐓𝜏0

]2
}|||||𝑔=𝑔(ℎ) , (5.13)

where the relation between 𝑔𝜇𝜈 and ℎ𝜅,𝜇𝜈 is specified by (5.11), yielding, in terms of the new parameter 𝜏 :

ℎ𝜏,𝜇𝜈 =
(
1 − 𝑎(𝜏 − 𝜏0)tr[𝐓𝜏0

]
)
𝑔𝜇𝜈 . (5.14)

Equation (5.13), together with the metric deformation (5.14), define how the matter sector is modified in the Palatini frame of four-

dimensional Starobinsky gravity. More importantly, they are the same equations describing the trace-squared dressing of arbitrary 
matter theories in 𝑑 = 4. This defines an exact duality between the dynamics of matter gravitating according to the Starobinsky 
model, and matter deformed by trace-squared deformations, as shown in equation (5.7):

𝑆Star,𝜏1 +𝑆M,𝜏2
≃ 𝑆Star,𝜏2 + 𝑆M,𝜏1

. (5.15)

Setting 𝜏1 = 𝜏 and 𝜏2 = 0, we see that (5.15) reduces to

𝑆Star,𝜏 +𝑆M ≃ 𝑆EH + 𝑆M,𝜏 . (5.16)

Matter theories in a Starobinsky-type universe behave as trace-squared deformed theories in the standard Einstein-Hilbert space-

time. With the results from section 2 in mind, it is now intuitive to understand why, in a universe containing traceless matter 
– such as, for example, pure Maxwell – Starobinsky gravity has the same effects as General Relativity [84]: the operator driving 
the dual stress tensor deformation automatically vanishes. Of course, the same statement holds for any seed matter theory with a 
traceless stress-energy tensor, such as the ModMax Lagrangian (3.65). Notice also that the way trace-squared deformations affect 
the potential of scalar theories, such as in (3.17), reproduces the typical slow-roll suppression widely used in inflationary models 
[85–87]. Infinitesimally, the gravity theory and the deformed matter theory share the same stress-tensor flow, according to (5.5):

𝜕𝑆Star,𝜏 𝜕𝑆M,𝜏 𝑎 √ [ ]2

18

𝜕𝜏
≃

𝜕𝜏
=

4 ∫ d4𝐱 −𝑔 tr 𝐓𝜏0
. (5.17)
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The Starobinsky/trace-squared duality serves as a very intuitive playground to understand how deformations of the gravity sector 
can be seen as deformations of the matter theory. With more complex RBG theories, the computations are more subtle, but the 
philosophy remains unchanged.

5.1.1. The dimensionality problem

As described in section 2, trace-squared deformations in arbitrary dimensions correspond to metric deformations of the form

ℎ𝜏,𝜇𝜈 =
(
1 − 𝑎(𝜏 − 𝜏0)tr[𝐓𝜏0

]
) 4

𝑑
𝑔𝜇𝜈 . (5.18)

Since (5.18) depends solely on the trace of 𝐓𝜏0
, it is natural to assume that the associated gravity theory should belong to the 𝑓 ()

family. Let us then consider some unspecified gravity Lagrangian G,𝜅 , and let us see what conditions must be imposed on it such 
that the metric deformation (5.18) is realised on-shell. From (4.23), we know that

ℎ𝜅,𝜇𝜈 =
(
2
𝜕G,𝜅

𝜕tr[]

) 2
𝑑−2

𝑔𝜇𝜈 . (5.19)

On the other hand, the tr[𝐓𝜏0
] term in (5.18) can be replaced with some functional of tr[] using the equations of motion, so that 

(setting for convenience 𝑎(𝜏 − 𝜏0) = 𝜅), one must have(
2
𝜕G,𝜅

𝜕tr[]

) 2
𝑑−2

=
[
1 − 𝜅

(
2
𝜕G,𝜅

𝜕tr[]
tr[] − 𝑑G,𝜅

)] 4
𝑑

. (5.20)

When 𝑑 = 4, the exponents on both sides automatically match: 2∕(𝑑 − 2) = 4∕𝑑. In arbitrary dimensions, this does not happen, and 
equation (5.20) cannot be analytically solved in general. This problem is not confined to 𝑓 () theories, and it is ultimately what 
renders it difficult to extend gravity/deformations dualities to generic space-time dimensions.

5.2. Deformed Abelian gauge theories from EiBI gravity

In this section, we consider four-dimensional Eddington-inspired Born-Infeld (EiBI) gravity, a Ricci-based gravity theory that will 
soon display profound links with the TT-like deformations of Abelian gauge theories discussed in section 2. The 𝑑 = 4 EiBI action is 
given by

𝑆EiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1
𝜅 ∫ d4𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝜅(𝜇𝜈)(Γ)

]
−
√
−𝑔

}
. (5.21)

Computing the associated auxiliary metric, from (4.27) we obtain

ℎ𝜅,𝜇𝜈 = 𝑔𝜇𝜈 + 𝜅(𝜇𝜈). (5.22)

Notice that the determinant of ℎ𝜅,𝜇𝜈 , defined in (5.22), appears explicitly in the EiBI action (5.21), and this allows us to easily 
compute the equations of motion associated with the metric tensor as [58]:√

−ℎ𝜅
(
ℎ−1𝜅

)𝜇𝜈 =√
−𝑔

(
𝑔𝜇𝜈 − 𝜅𝑇 𝜇𝜈

𝜏0

)
. (5.23)

We can now write the Palatini frame action for matter sources coupled to (5.21) in 𝑑 = 4:

𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ ∫ d4𝐱

√
−𝑔

(
G,𝜅 − 𝑔𝜇𝛼(𝛼𝜈)

𝜕G,𝜅

𝜕𝑔𝜇𝛽(𝛽𝜈)

)}||||||𝑔=𝑔(ℎ)
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ 1
𝜅 ∫ d4𝐱

[1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈
𝑔𝜇𝜈 −

√
−ℎ𝜅 −

√
−𝑔

]}|||||𝑔=𝑔(ℎ)
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ 1
𝜅 ∫ d4𝐱

[1
2
√
−𝑔

(
4 − 𝜅tr[𝐓𝜏0

]
)
−
√
−ℎ𝜅 −

√
−𝑔

]}|||||𝑔=𝑔(ℎ)
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ ∫ d4𝐱

√
−𝑔

[
1
𝜅

(
1 −

√
−ℎ𝜅√
−𝑔

)
− 1

2
tr
[
𝐓𝜏0

]]}||||||𝑔=𝑔(ℎ) ,

(5.24)

where, going from the second to the third line, we made use of the equations of motion (5.23). Using again (5.23), and taking the 
determinant of both sides, we can eliminate the residual ℎ𝜅 dependency in the last line, obtaining√

−ℎ𝜅
√ [ ]
19

√
−𝑔

= det 𝟏− 𝜅𝐓𝜏0
. (5.25)
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To pursue further simplifications, we need to give up full generality and introduce specific assumptions concerning the matter sector 
of the theory. For the current purposes, it is convenient to assume that the stress-energy tensor of the matter sector satisfies the 
degeneracy conditions discussed in (3.27). As pointed out before, such degeneracy is characteristic of Abelian gauge theories in 
𝑑 = 4 (but not necessarily restricted to them). If 𝐓𝜏0

admits only two independent eigenvalues, the following identity holds in the 
four-dimensional case:

1 − 1
2
𝜅tr

[
𝐓𝜏0

]
−
√

det
[
𝟏− 𝜅𝐓𝜏0

]
= −𝜅2

√
det

[
𝐓𝜏0

]
. (5.26)

The validity of (5.26) is easily checked after diagonalising the stress-energy tensor. Making use of (5.26) in (5.24), we obtain

𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
− 𝜅 ∫ d4𝐱

√
−𝑔

√
det

[
𝐓𝜏0

]}||||||𝑔=𝑔(ℎ) . (5.27)

Finally, under the degeneracy condition (3.27), it is possible to verify that the Einstein frame metric satisfies

ℎ𝜅,𝜇𝜈 = 𝑔𝜇𝜈 + 𝜅
(
𝑇𝜏0 ,𝜇𝜈 −

1
2
tr
[
𝐓𝜏0

]
𝑔𝜇𝜈

)
. (5.28)

In fact, (
ℎ−1𝜅

)𝜇𝛼 [
𝑔𝛼𝜈 + 𝜅

(
𝑇𝜏0 ,𝛼𝜈 −

1
2
tr
[
𝐓𝜏0

]
𝑔𝛼𝜈

)]
=

√
−𝑔√
−ℎ𝜅

(
𝑔𝜇𝛼 − 𝜅𝑇 𝜇𝛼

𝜏0

)[
𝑔𝛼𝜈 + 𝜅

(
𝑇𝜏0 ,𝛼𝜈 −

1
2
tr
[
𝐓𝜏0

]
𝑔𝛼𝜈

)]
=

√
−𝑔√
−ℎ𝜅

(
𝛿𝜇𝜈 − 1

2
𝜅tr

[
𝐓𝜏0

]
𝛿𝜇𝜈 + 𝜅2

√
det

[
𝐓𝜏0

]
𝛿𝜇𝜈

)
= 𝛿𝜇𝜈 .

(5.29)

As before, all is left to do is identify 𝜅 = 𝜏 − 𝜏0: the matter action in the Palatini frame matches the TT-like dressing equation (3.64), 
and the auxiliary metric (5.28) corresponds to the deformed metric (3.63). This shows that ordinary matter coupled to EiBI gravity 
shares the same dynamics of TT-like deformed matter which gravitates in accordance with the laws of General Relativity. In terms 
of flows, provided that the matter theory exhibits the desired degeneracy, we have

𝜕𝑆EiBI,𝜏

𝜕𝜏
≃
𝜕𝑆M,𝜏

𝜕𝜏
= ∫ d4𝐱

√
−𝑔

√
det

[
𝐓𝜏

]
. (5.30)

From the gravity point of view, it was observed in [84] that coupling EiBI with Maxwell’s theory yields identical dynamics to coupling 
General Relativity with Born-Infeld electromagnetism. However, when working from a purely gravitational perspective, calculations 
get messy when dealing with more complicated matter theories. In the TT-like framework, provided that the theory features the 
expected degeneracy, the following dynamical equivalence is always established:

𝑆EiBI,𝜏1 +𝑆M,𝜏2
≃ 𝑆EiBI,𝜏2 +𝑆M,𝜏1

. (5.31)

Choosing 𝜏1 = 𝜏 and 𝜏2 = 0, we obtain

𝑆EiBI,𝜏 +𝑆M ≃ 𝑆EH + 𝑆M,𝜏 . (5.32)

For example, the computations in this section show that any 𝑈 (1) gauge theory obeys (5.32). It is possible to express both Starobinsky 
and EiBI gravity as limiting cases of a single gravity theory: we shall explore this scenario in Appendix B.

6. Perturbative gravity flows

As we discussed in section 4, the explicit four-dimensional correspondences presented in the previous sections originate from a 
more general setup in the context of RBGs. A natural question is whether a somehow weaker version of this setup can be extended 
to larger families of deformations, regardless of the existence of an exact dressing mechanism. Even if we abandon the idea of the 
dressing mechanism, it may still be feasible to study more general deformations related to the stress-energy tensor perturbatively. 
The idea is to focus on infinitesimal dualities, extending the family of gravitational on-shell flows introduced in (5.5) to

𝜕𝑆G,𝜏

𝜕𝜏
≃
𝜕𝑆M,𝜏

𝜕𝜏
= ∫ d𝑑𝐱

√
−𝑔𝜏 , (6.1)

where this time the choice of the deforming operator 𝜏 is left completely arbitrary. It should be noted here that, despite the obvious 
similarity to previous results, the existence of stress tensor flows as (6.1) is a weaker property of field theories when compared to 
the class of full analytical dualities explored in previous sections. As a noteworthy example, we consider for the matter sector the 
20

four-dimensional Modified Nambu-Goto action:
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𝑆MNG,𝜏
[
𝑔𝜇𝜈,𝜙

]
= 1
𝜏 ∫ d4𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝑢𝜏𝑋𝜇𝜈 + 𝑣𝜏𝑋𝑔𝜇𝜈

]
−
√
−𝑔

}
, 𝑢, 𝑣 ∈ℝ , (6.2)

where 𝑋𝜇𝜈 = 𝜕𝜇𝜙𝜕𝜈𝜙, and 𝑋 simply denotes its trace. Expanding (6.2) for small values of the coupling 𝜏 , we obtain

𝑆MNG,𝜏
[
𝑔𝜇𝜈,𝜙

]
= 1

2 ∫ d4𝐱
√
−𝑔 (𝑢+ 4𝑣)𝑋 +𝑂(𝜏) , (6.3)

so that (6.2) converges to the free bosonic action provided that 𝑢 + 4𝑣 = 1. We henceforth impose this limit to consistently fix one of 
the free parameters of the theory. On the gravitational side, we consider the Modified Eddington-inspired Born-Infeld (MEiBI) action 
[88]

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1
𝜅 ∫ d4𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝛼𝜅(𝜇𝜈)(Γ) + 𝛽𝜅tr[]𝑔𝜇𝜈

]
−
√
−𝑔

}
, (6.4)

where 𝛼 and 𝛽 are real parameters. Again, they are not fully independent, as one can see by expanding (6.4) in powers of 𝜅:

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1

2 ∫ d4𝐱
√
−𝑔 (𝛼 + 4𝛽) tr[] +𝑂(𝜅) . (6.5)

As we did for (6.2), we fix 𝛼+4𝛽 = 1 to recover the Einstein-Hilbert action at the leading order. It is now easy to show that, assuming

⎧⎪⎨⎪⎩
𝑢 = 𝛼 ,

𝑣 = 𝛽 ,

𝛼(𝜇𝜈) + 𝛽 tr
[

]
𝑔𝜇𝜈 = −𝑢𝑋𝜇𝜈 − 𝑣𝑋𝑔𝜇𝜈 .

(6.6)

the following on-shell flow is realised:

𝜕
𝜕𝜏

(
𝑆MEIBI,𝜏 +𝑆MNG,−𝜏

)
≃ 0 . (6.7)

Taking the trace of the last equation in (6.6), and using 𝑢 + 4𝑣 = 1, we obtain

(𝜇𝜈) = −𝑋𝜇𝜈. (6.8)

On the other hand, switching to matrix notation, explicit computation shows that

𝐗 = 1
2
tr
[
𝐓0

]
𝟏−𝐓0 , (6.9)

where 𝑇0,𝜇𝜈 is the stress-energy tensor associated to the modified Nambu-Goto action in 𝜏 = 0, i.e., to the free bosonic action

𝑆FB
[
𝑔𝜇𝜈,𝜙

]
= 1

2 ∫ d4𝐱
√
−𝑔𝑋 . (6.10)

We immediately recognise that (6.8) and (6.9) are nothing more than Einstein’s field equations from four-dimensional General 
Relativity, provided that the matter sector is described by (6.10). This tells us that the following dynamical equivalence must be 
satisfied:

𝑆MEiBI,𝜏 +𝑆MNG,−𝜏 ≃ 𝑆EH +𝑆FB . (6.11)

Notice that, setting 𝑣 = 0 in (6.2), the matter action reduces to the Nambu-Goto action in the static gauge:

𝑆NG,𝜏
[
𝑔𝜇𝜈,𝜙

]
= 1
𝜏 ∫ d4𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝜏𝑋𝜇𝜈

]
−
√
−𝑔

}
. (6.12)

In turn, the dynamical equivalence is realised by fixing 𝛽 = 0 in the gravitational sector, and the theory reduces to EiBI gravity. 
Accordingly, equation (6.11) yields

𝑆EiBI,𝜏 +𝑆NG,−𝜏 ≃ 𝑆EH +𝑆FB . (6.13)

This last outcome aligns with the findings reported in [68]. As shown in [89], the emergence of Nambu-Goto-like theories as a 
response to stress tensor deformations is generally associated with families of operators which are way more intricate than those 
explicitly examined in this paper. However, it is interesting that we can generate deformations of classical field theories by coupling 
their corresponding Lagrangians to modified theories of gravity, using the concept of Lagrangian flow equation. In this specific case, 
since the right-hand side of (6.13) does not depend on 𝜏 , the analogue of (6.1) is the on-shell flow

𝜕𝑆G,𝜏

𝜕𝜏
≃
𝜕𝑆NG,𝜏

𝜕𝜏
= ∫ d4𝐱

√
−𝑔ℜ

𝜏 , (6.14)
21

where the deforming operator ℜ
𝜏 is defined by [89]
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ℜ
𝜏 = 1

16
tr
[
𝐓𝜏

]2 − 1
8
tr
[
𝐓2
𝜏

]
− 1

8
tr
[
𝐓𝜏

]√1
3

(
tr
[
𝐓2
𝜏

]
− 1

4
tr
[
𝐓𝜏

]2)
. (6.15)

7. Conclusions

In this paper, we examined explicit examples illustrating the connection between TT-like deformations in dimensions greater than 
two and Palatini’s theories of gravity. This correspondence is associated with the dynamical equivalence (1.3) and explored through 
the TT-like dressing mechanism discussed in section 2.1 and the on-shell flow equation (5.5). We introduced a broadly applicable 
scheme for investigating this connection and confirmed that the equivalence (1.3) arises from a process of reframing within Ricci-

based gravity theories coupled to matter. While we discussed several physically interesting models in 𝑑 = 4, there are aspects 
touched on in this article that merit further investigation. For example, a potential avenue for future research might correspond to 
the generalisation of the analysis of 𝑈 (1) gauge theories presented here to encompass non-Abelian Yang-Mills models and exploring 
the Root-TT class of marginal deformations [44,77,90–92]. In this respect, it would be important to understand whether it is possible 
to compute the TT deformed metric and Lagrangian associated with non-Abelian gauge theories (possibly coupled to gravity) by 
relying on the method of characteristics [48]. Furthermore, it was demonstrated in [93] that integrating a massive graviton leads 
to the most general duality-invariant vector interactions in four-dimensional spacetime, with the specific case of Born-Infeld theory 
arising from ghost-free de Rham-Gabadadze-Tolley (dRGT) massive gravity [94]. Therefore, another potentially fruitful study might 
be conducted based on the similarity between the natural bimetric structure of dRGT gravity and the Einstein-frame representation 
of Eddington-inspired Born-Infeld gravity.
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Appendix A. Counting degrees of freedom

For scalar-tensor theories of gravity, in the so-called Jordan frame, matter fields are minimally coupled to the metric. Conversely, 
in the Einstein frame, gravity is described by the Einstein-Hilbert term, and matter fields couple to a conformally deformed metric, 
with the conformal factor being dependent on some scalar field. In the context of RBGs, a similar scenario unfolds, albeit with a 
crucial distinction: there are no additional propagating degrees of freedom [58]. As an illustrative example, we turn our attention 
to the class of 𝑓 () theories in four-dimensional space-time. We start by introducing an auxiliary scalar field 𝜙 – usually called the 
dilaton field – defined by

𝜙 = 2
𝜕G,𝜅

𝜕tr
[

] . (A.1)
22

In terms of the dilaton, the conformal rescaling of the metric introduced in equation (4.35) can be written as
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ℎ𝜅,𝜇𝜈 = 𝜙𝑔𝜇𝜈 . (A.2)

Moreover, notice that equation (4.36) becomes

𝑆𝜅 =
1
2 ∫ d4𝐱

√
−𝑔

(
𝜙 tr

[

]
− 𝑉 (𝜙)

)
+ 𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
, (A.3)

where we introduced the dilaton potential

𝑉 (𝜙) ∶= 𝜙 tr
[

]
− 2G,𝜅 . (A.4)

As a simple example, consider the 𝑑 = 4 Starobinsky Lagrangian

G,𝜅 =
1
2
tr
[

]
+ 𝜅

4
tr
[

]2
. (A.5)

The associated dilaton potential is then

𝑉 (𝜙) = 4
𝜅
(𝜙− 1)2 . (A.6)

If we define the Christoffel symbols of the metric 𝑔𝜇𝜈 as

Θ𝜆
𝜇𝜈 =

1
2
𝑔𝜆𝛼

(
𝜕𝜈𝑔𝜇𝛼 + 𝜕𝜇𝑔𝛼𝜈 − 𝜕𝛼𝑔𝜇𝜈

)
, (A.7)

and introduce the associated scalar curvature

𝑅(𝑔) = 𝑔𝜇𝜈
(
𝜕𝛼Θ𝛼

𝜈𝜇 − 𝜕𝜈Θ𝛼
𝛼𝜇 +Θ𝛼

𝛼𝛽Θ
𝛽
𝜈𝜇 −Θ𝛼

𝜈𝛽Θ
𝛽
𝛼𝜇

)
, (A.8)

it is possible to rewrite equation (A.3) as [95]

𝑆𝜅 =
1
2 ∫ d4𝐱

√
−𝑔

[
𝜙𝑅(𝑔) − 𝜔

𝜙

(
𝜕𝜇𝜙𝜕

𝜇𝜙
)
− 𝑉 (𝜙)

]
+ 𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
, 𝜔 = −3

2
. (A.9)

Hence, the reframed action for 𝑓 () gravity turns out to be equivalent to a Brans-Dicke gravity theory [96] with coupling parameter 
𝜔 = −3

2 . In the Brans-Dicke theory, the scalar field 𝜙 is governed by the equation

(3 + 2𝜔)□𝜙+ 2𝑉 (𝜙) −𝜙
𝑑𝑉
𝑑𝜙

= tr
[
𝐓𝜏0

]
, (A.10)

which, using 𝜔 = −3
2 , reduces to

2𝑉 (𝜙) − 𝜙
𝑑𝑉
𝑑𝜙

= tr
[
𝐓𝜏0

]
. (A.11)

Notice that the dynamical field equation (A.10) for the Brans-Dicke scalar degenerates into the algebraic identity (A.11). In particular, 
the lack of dynamics for the dilaton field explicitly demonstrates that the change of frame does not introduce any new propagating 
degrees of freedom. It is intriguing to observe the notable resemblance between the features of two-dimensional JT gravity [39] and 
the emergence of the dilaton field in the Brans-Dicke representations of 𝑓 () theories.

Appendix B. A possible unified framework for EiBI and Starobinsky gravity

In [88], the 𝑑 = 4 Modified Eddington-inspired Born-Infeld (MEiBI) gravity action was introduced as the most general action 
constructed from a rank-two tensor that contains up to first-order terms in curvature:

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1
𝜅 ∫ d4𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝜅𝜇𝜈(Γ)

]
−
√
−𝑔

}
. (B.1)

Here 𝜇𝜈 is a rank-2 covariant tensor constructed from the symmetric part of the Ricci tensor (𝜇𝜈) in the Palatini formalism:

𝜇𝜈 ∶= 𝛼(𝜇𝜈) + 𝛽tr [𝐑]𝑔𝜇𝜈, 𝛼, 𝛽 ∈ℝ . (B.2)

The MEiBI action was briefly introduced in section 6 when discussing generalisations of gravity flows to Nambu-Goto-like matter 
Lagrangians. Notice that the action contains a mass scale induced by the dimensional parameter of the theory, given by

𝑚−2
G = 𝜅 . (B.3)

If we insist that in the infrared limit – i.e., for large enough values of 𝑚G – the action (B.1) should reduce to General Relativity, the 
free parameters 𝛼 and 𝛽 are found not to be entirely independent. By expanding the MEiBI action for small values of 𝜅, we can see 
that

1 √

23

𝑆MEiBI,𝜅 = 2 ∫ d4𝐱 −𝑔 (𝛼 + 4𝛽) tr [𝐑] +𝑂(𝜅) . (B.4)
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Therefore, if we set

𝛼 + 4𝛽 = 1 , (B.5)

at lower orders, we retrieve the conventional Einstein-Hilbert action. Then, the action (B.1) represents a one-parameter family of 
gravity theories, labelled by 𝛽 ∈ ℝ. It is straightforward to notice that fixing 𝛽 = 0 – and consequently 𝛼 = 1 – the action of MEiBI 
gravity reduces to the EiBI action (5.21). Less obviously, by setting 𝛼 = 0 and 𝛽 = 1∕4, we recover the Starobinsky action (4.14). To 
see this, notice that the integrand in (B.1) becomes

1
𝜅

{√
−det

[
𝑔𝜇𝜈 +

𝜅
4
tr
[

]
𝑔𝜇𝜈

]
−
√
−𝑔

}
= 1
𝜅

√
−𝑔

{(
1 + 𝜅

4
tr
[

])2

− 1
}
. (B.6)

The coefficient of the tr
[

]2

term in (B.6) differs by a factor of 1∕4 if compared with the action introduced in (4.14), by the full 
equivalence can be restored through a rescaling of 𝜅. It is fascinating to observe that EiBI gravity and Starobinsky gravity, both 
intimately related to TT-like deformations in four-dimensional space-time, can be interpreted as originating from the more general 
framework of MEiBI theories. In this appendix, we study the equations of motion associated with (B.1), and we apply the reframing 
procedure discussed in section 4. For the sake of full generality, we extend the MEiBI action to arbitrary 𝑑 dimensional space-time, 
and account for the presence of a non-vanishing cosmological constant as follows:

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
= 1
𝜅 ∫ d𝑑𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝜅𝜇𝜈(Γ)

]
− 𝜆

√
−𝑔

}
. (B.7)

Expanding, perturbatively, (B.7) for small values of 𝜅, we obtain

𝑆MEiBI,𝜅 =
1
2 ∫ d𝑑𝐱

√
−𝑔

[
(𝛼 + 𝑑𝛽) tr [𝐑] − 2

(
𝜆− 1
𝜅

)]
+𝑂(𝜅) . (B.8)

Therefore, we identify 𝛼 + 𝑑𝛽 = 1, and we introduce an effective cosmological constant

Λ = 𝜆− 1
𝜅

. (B.9)

The next step involves incorporating matter into the action, which we do via the minimal coupling prescription:

𝑆𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈,Φ𝐼

]
= 𝑆MEiBI,𝜅

[
𝑔𝜇𝜈,Γ𝜆𝜇𝜈

]
+ 𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
. (B.10)

Once again, we assume that Γ𝜆𝜇𝜈 does not enter the matter action 𝑆M. To obtain the equations of motion for (B.10), it is quite 
convenient to introduce the tensor

𝑝𝜇𝜈 ∶= 𝑔𝜇𝜈 + 𝜅𝜇𝜈 . (B.11)

The variation of (B.10) with respect to the metric 𝑔𝜇𝜈 yields the field equations [88](
𝑝−1

)𝜇𝜈 (1 + 𝛽𝜅(𝛼𝛽)𝑔
𝛼𝛽
)
− 𝛽𝜅

(
𝑝−1

)𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜌𝑔𝜈𝜎(𝜌𝜎) = 𝛾
(
𝜆𝑔𝜇𝜈 − 𝜅𝑇 𝜇𝜈

𝜏0

)
, (B.12)

where 
(
𝑝−1

)𝜇𝜈
denotes the inverse of 𝑝𝜇𝜈 , and we introduced the ratio

𝛾 ∶=
√
−𝑔√
−𝑝

, 𝑝 ∶= det
[
𝑝𝜇𝜈

]
. (B.13)

Because the matter sector is assumed to be covariantly coupled to the metric 𝑔𝜇𝜈 only, the energy-momentum tensor is conserved as 
in General Relativity. On the other hand, the variation of (B.10) with respect to the connection Γ𝜆𝜇𝜈 yields,

∇𝜇

{√
−𝑝

[
𝛼
(
𝑝−1

)𝜇𝜈 + 𝛽
(
𝑝−1

)𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜈
]}

= 0, (B.14)

where the covariant derivative is defined with respect to the connection Γ𝜆𝜇𝜈 . Equation (B.14) implies the existence of an auxiliary 
metric tensor ℎ𝜅,𝜇𝜈 , defined by its inverse through√

−ℎ𝜅
(
ℎ−1𝜅

)𝜇𝜈 ∶=√
−𝑝

[
𝛼
(
𝑝−1

)𝜇𝜈 + 𝛽
(
𝑝−1

)𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜈
]
, ℎ ∶= det

[
ℎ𝜇𝜈

]
, (B.15)

such that Γ𝜆𝜇𝜈 is ℎ𝜅 -compatible, meaning that

Γ𝜆𝜇𝜈 =
1
2
(
ℎ−1𝜅

)𝜆𝛼 (
𝜕𝜈ℎ𝜅,𝜇𝛼 + 𝜕𝜇ℎ𝜅,𝛼𝜈 − 𝜕𝛼ℎ𝜅,𝜇𝜈

)
. (B.16)

It is worth noting that, from (B.15), we can calculate√ √ [ ( ) ] 1 √

24

−ℎ𝜅 = −𝑝 det 𝛼𝛿𝜇𝜈 + 𝛽 𝑝−1
𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜎𝑝𝜎𝜈
𝑑−2 ∶= 𝑓 (𝛼, 𝛽) −𝑝 . (B.17)
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The dynamical equivalence discussed in section 4 can be achieved through the introduction of the auxiliary functional

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈

]
= 1

2 ∫ d𝑑𝐱
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈 (𝜇𝜈)

+ 1
𝜅 ∫ d𝑑𝐱

(
1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈
𝑔𝜇𝜈 −

𝑑 − 2
2𝑓 (𝛼, 𝛽)

√
−ℎ− 𝜆

√
−𝑔

)
,

(B.18)

where ℎ𝜅,𝜇𝜈 is now some independent field. The notational overlap with the previously defined auxiliary metric is, once again, not 
accidental since, imposing the equation of motion for ℎ and re-expressing the on-shell value ℎ⋆𝜅,𝜇𝜈 in terms of 𝑝𝜇𝜈 via the definition 
(B.15), we find

𝑝𝜇𝜈
|||ℎ⋆𝜅 = 𝑔𝜇𝜈 +𝜇𝜈 . (B.19)

Substituting this result back into (B.18), we obtain

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈, ℎ

⋆
𝜅,𝜇𝜈 ,Γ

𝜆
𝜇𝜈

]
= 1
𝜅 ∫ d𝑑𝐱

{√
−det

[
𝑔𝜇𝜈 + 𝜅𝜇𝜈(Γ)

]
− 𝜆

√
−𝑔

}
, (B.20)

which proves the dynamical equivalence between (6.4) and (B.18). As expected, the first term appearing on the right-hand side of 
(B.18) is nothing more than the Einstein-Hilbert action, written in terms of the field ℎ𝜅,𝜇𝜈 . For later convenience, we define the 
remaining piece of (B.18) as

𝑆+,𝜅
[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈

]
∶= 1

𝜅 ∫ d𝑑𝐱
(
1
2
√
−ℎ𝜅

(
ℎ−1𝜅

)𝜇𝜈
𝑔𝜇𝜈 −

𝑑 − 2
2𝑓 (𝛼, 𝛽)

√
−ℎ𝜅 − 𝜆

√
−𝑔

)
, (B.21)

so that

𝑆MEiBI,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈

]
= 𝑆EH

[
ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈

]
+ 𝑆+,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈

]
. (B.22)

Coupling 𝑆MEiBI,𝜅 with matter produces the full action

𝑆𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈 ,Φ𝐼

]
= 𝑆MEiBI,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈

]
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
= 𝑆EH

[
ℎ𝜅,𝜇𝜈 ,Γ𝜆𝜇𝜈

]
+ 𝑆+,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈

]
+𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
.

(B.23)

We can integrate out 𝑔𝜇𝜈 , which is now a purely algebraic field, and substitute its on-shell value 𝑔⋆(ℎ𝜅 ) as a function of the auxiliary 
metric ℎ𝜅,𝜇𝜈 . This enables the definition of a modified matter sector in terms of ℎ𝜅,𝜇𝜈 alone as

𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
∶=

{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ 𝑆+,𝜅

[
𝑔𝜇𝜈, ℎ𝜅,𝜇𝜈

]}|||𝑔=𝑔(ℎ) , (B.24)

which is non-trivially coupled to the usual action from General Relativity. Notice that, since using the definition (B.15), together 
with the constraint (B.5), we have√

−ℎ𝜅
(
ℎ−1𝜅

)𝜇𝜈
𝑔𝜇𝜈 =

√
−𝑝

[
𝛼
(
𝑝−1

)𝜇𝜈 + 𝛽
(
𝑝−1

)𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜈
]
𝑔𝜇𝜈

=
√
−𝑝 (𝛼 + 𝑑𝛽)

(
𝑝−1

)𝜇𝜈
𝑔𝜇𝜈

=
√
−𝑝

(
𝑝−1

)𝜇𝜈
𝑔𝜇𝜈 ,

(B.25)

and since

𝑑 − 2
2𝑓 (𝛼, 𝛽)

√
−ℎ𝜅 =

𝑑 − 2
2

√
−𝑝 , (B.26)

we can write

𝑆+,𝜅 =
1
𝜅 ∫ d𝑑𝐱

(1
2
√
−𝑝

(
𝑝−1

)𝜇𝜈
𝑔𝜇𝜈 −

𝑑 − 2
2

√
−𝑝− 𝜆

√
−𝑔

)
= 1
𝜅 ∫ d𝑑𝐱

√
−𝑔
𝛾

(1
2
(
𝑝−1

)𝜇𝜈
𝑔𝜇𝜈 −

𝑑 − 2
2

− 𝜆𝛾
)
.

(B.27)

Taking the trace of the field equations (B.12) we obtain(
𝑝−1

)𝜇𝜈
𝑔𝜇𝜈 =

(
𝑝−1

)𝜇𝜈 (1 + 𝛽𝜅(𝛼𝛽)𝑔
𝛼𝛽

)
𝑔𝜇𝜈 − 𝛽𝜅

(
𝑝−1

)𝛼𝛽
𝑔𝛼𝛽𝑔

𝜇𝜌𝑔𝜈𝜎(𝜌𝜎)𝑔𝜇𝜈

= 𝛾 (𝜆𝑔𝜇𝜈 − 𝜅𝑇 𝜇𝜈)𝑔𝜇𝜈 = 𝛾
(
𝜆𝑑 − 𝜅tr[𝐓𝜏0

]
)
,

(B.28)
25

and using these results in (B.27) we finally get
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𝑆+,𝜅 = ∫ d𝑑𝐱
√
−𝑔

(
(𝑑 − 2)(𝜆𝛾 − 1)

2𝛾𝜅
− 1

2
tr
[
𝐓𝜏0

])
, (B.29)

thus the modified matter sector will be determined by{
𝑆M

[
𝑔𝜇𝜈,Φ𝐼

]
+ ∫ d𝑑𝐱

√
−𝑔

(
(𝑑 − 2)(𝜆𝛾 − 1)

2𝛾𝜅
− 1

2
tr
[
𝐓𝜏0

])}|||||𝑔=𝑔(ℎ) = 𝑆M,𝜏0+𝜅
[
ℎ𝜅,𝜇𝜈 ,Φ𝐼

]
. (B.30)
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