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Abstract

Ultraliser is a neuroscience-specific software framework capable of creating accurate and biologically realistic 3D models of complex
neuroscientific structures at intracellular (e.g. mitochondria and endoplasmic reticula), cellular (e.g. neurons and glia) and even
multicellular scales of resolution (e.g. cerebral vasculature and minicolumns). Resulting models are exported as triangulated surface
meshes and annotated volumes for multiple applications in in silico neuroscience, allowing scalable supercomputer simulations that
can unravel intricate cellular structure–function relationships. Ultraliser implements a high-performance and unconditionally robust
voxelization engine adapted to create optimized watertight surface meshes and annotated voxel grids from arbitrary non-watertight
triangular soups, digitized morphological skeletons or binary volumetric masks. The framework represents a major leap forward in
simulation-based neuroscience, making it possible to employ high-resolution 3D structural models for quantification of surface areas
and volumes, which are of the utmost importance for cellular and system simulations. The power of Ultraliser is demonstrated with
several use cases in which hundreds of models are created for potential application in diverse types of simulations. Ultraliser is publicly
released under the GNU GPL3 license on GitHub (BlueBrain/Ultraliser).
Significance: There is crystal clear evidence on the impact of cell shape on its signaling mechanisms. Structural models can therefore
be insightful to realize the function; the more realistic the structure can be, the further we get insights into the function. Creating
realistic structural models from existing ones is challenging, particularly when needed for detailed subcellular simulations. We
present Ultraliser, a neuroscience-dedicated framework capable of building these structural models with realistic and detailed cellular
geometries that can be used for simulations.

Keywords: ultrastructure, mesh reconstruction, voxelization, watertight, in silico, molecular simulations, reaction–diffusion simula-
tions, optical imaging simulations, Ultraliser

Introduction
It has been more than a 100 years since Santiago Ramón y Cajal
(1854–1934) commenced his pioneering quest to study the brain
by elucidating its anatomical structures and establishing the

neuron doctrine [1]. Nevertheless, and so far, our knowledge is
still incomplete, particularly at cellular and synaptic levels of
detail [2]. Even with the broad spectrum of research that followed
Cajal’s leading efforts, taking into account the vast amount of
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resulting data, it has been proven that conventional wet lab exper-
iments alone are insufficient to unravel the underlying function
of the brain [3]. The generation of massive amounts of experi-
mental data in addition to the recent quantum leap in computing
technologies have led to the renaissance of a complementary
approach: simulation neuroscience [4]. Mathematical modeling,
computer simulations and terabytes of structural data resulting
from a myriad diversity of experiments are being successfully
consolidated—with this approach we can test our hypotheses and
predict the quantitative behavior of complex biological processes
[5].

Data-driven models integrated with systematic computational
methods can dramatically increase efficiency, efficacy and reli-
ability of simulations [6], particularly when our experimental
knowledge is fragmented [5]. An important question is whether
we can reuse existing structural data to synthesize detailed, mul-
tiscale and biologically plausible three-dimensional (3D) models
that can be integrated into simulation contexts to gain insights
into the cellular function. The interdependency of structure and
function produces a kind of metaplasticity [7] that requires per-
forming simulations within geometrically realistic subdomains at
ultrastructural resolutions in which molecular reactions can be
contained [8].

Structural neuroscientific datasets are either acquired from a
wide spectrum of imaging modalities, such as imaging scanners
and microscopes [9–11] or digitally synthesized in supercomputer
simulations to yield similar structural characteristics of biological
counterparts [12–15]. 3D models of structural data (on the scale
of 100 nm to 1 mm) can be classified according to their digital
representations into four principal formats: morphology skele-
tons, surface meshes, volumetric meshes and volumetric grids.
Each representation (Supplementary Figure S1) is convenient for
a specific category of simulation.

Morphology skeletons are point-and-diameter descriptions of
either acyclic or cyclic graphs that can model connectivity of
neuronal arborizations [16], astrocytic processes [15] and dense
vascular networks [17, 18]. Aside from their usage for topological
and visual analysis [19], these morphologies are used to conduct
one-dimensional (1D) compartmental simulations. Neuronal and
glial morphologies are used in NEURON [20] (neuron.yale.edu) to
simulate electrophysiology based on Hodgkin-Huxely ion channel
formalism [21], and vascular morphologies are used to simulate
blood flow in cerebral vasculature [22, 23]. Surface meshes are
sets of vertices, edges and facets (ideally triangles) that can define
the boundaries of 3D structures, such as cellular membranes of
neurons [24] and astrocytes [25] and tubular membranes of blood
vessels [26]. These meshes, if watertight, are extensively used
in particle-based stochastic molecular simulations, for example
with the MCell simulator [27, 28] (mcell.org). Volumetric meshes
are derived from their surface counterparts to model their inte-
rior volume with convenient discretization, for example, with
tetrahedral [29] or hexahedral [30] subdomains. Such meshes are
primarily used in reaction–diffusion simulations with STEPS [31]
(steps.sourceforge.net) or Smoldyn [32–34] (smoldyn.org). Carte-
sian volumetric grids use, alternatively, cubic discretization to
model the interior volume, in which we can account for the
variations in optical properties of different regions of the tissue
to simulate its interaction with light [35, 36].

Generally, the same 3D model can be converted from one
format to another to be used in hybrid or multimodal simulations;
however, the principal format with which a given 3D model can be
restructured into any other format is a surface mesh that must
be watertight [37] (Supplementary Figures S1b, S2). For instance,

the generation of a volumetric mesh from a surface input—using
TetGen [38], QuarTet [39], GMsh [40] or CGAL [41]—requires the
surface mesh to be watertight. TetWild can tetrahedralize non-
watertight meshes, but it has limited performance [29] and fails to
handle complex biological models with realistic geometries [42].
Moreover, accurate skeletonization of cerebral vasculature from
microscopy stacks requires multimodal algorithms that combine
an input volume with its corresponding watertight mesh to create
a morphological representation of the network [43–45]. Therefore,
to automate and systematize simulation workflows, watertight-
ness is essential, not only for the simulation per se, but also for
data conversion from one representation to another.

On one level, and as a consequence of the segmentation chal-
lenges of electron microscopy (EM) volumes, existing 3D mesh
models of cellular and subcellular brain structures are expected
to be fragmented and non-watertight. This applies to manually
segmented neuropil structures [11] or even those segmented with
state-of-the-art deep neural networks [46]. Machine learning (ML)
has helped automating the process [47] allowing the generation
of a massive amount of neuro-glia-vasculature (NGV) reconstruc-
tions that are disseminated online as demonstrated by several
research programs such as MICrONS [48], FAFB-FFN1 [49], and
FlyEM Hemibrain [50]. Nevertheless, the majority of the resulting
reconstructions requires many person-years of effort for proof-
reading. Online collaborative efforts are introduced to accelerate
the process [51], which could be effective in resolving fragmenta-
tion artifacts, but watertightness remains lacking.

On another level, there is a huge diversity of NGV morphologi-
cal models that have been released publicly to central databases,
for instance, NeuroMorpho.Org [16] and Brain Vasculature (BraVa)
[18]. These models are only appropriate for conducting 1D
compartmental simulations; there are no existing frameworks
that can convert them, taking into consideration their structural
artifacts, into watertight mesh models for applications in other
types of simulations. The key question therefore is, given an input
3D model in any of aforementioned formats, can we reconstruct
it in another format that can be systematically plugged into
simulation environments for in silico experimentation? A few
relevant remeshing frameworks are capable of handling geometric
topology and optimization issues for relatively small-scale struc-
tures (minuscule segments of spiny dendrites), such as GAMer
[52] and VolRoverN [53], but they are incapable of accomplishing
watertightness and they cannot process any kind of morphology
skeletons. Other applications presented applicable solutions
to construct polygonal meshes from morphology skeletons,
for (i) neurons such as NeuroTessMesh [54], NeuroMorphoVis
[19], Neuronize [55], AnaMorph [56], (ii) vasculature, such as
VessMorphoVis [26] and (iii) astrocytes [25] (summarized in
Supplementary Tables S1 and S2). Nonetheless, the resulting
meshes are neither optimized nor watertight (Supplementary
Section 3), furthermore they might have unrealistic geometries
and structural deficits. We present Ultraliser to eliminate the gap
and address those challenges, all within a unique and efficient
framework.

Results
Ultraliser
Ultraliser is a neuroscience-specific framework capable of
creating multiscale (from the subcellular scale up to mesoscale
circuits) and high fidelity 3D models of neuroscientific data
sets that can be integrated in the context of simulation-based
experiments, aiming to understand the function. Ultraliser is
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consistent and unconditionally robust, as it can systematically
build adaptively optimized watertight triangular meshes and
large-scale annotated volumes from input data models with
multiple formats including: (i) ill-conditioned, fragmented and
self-intersecting polygonal meshes with irregular topologies, (ii)
cyclic and acyclic morphological graphs, (iii) gray-scale volumetric
stacks with user-specified isovalues, (iv) binary volume masks
segmented from microscopy stacks and (v) tetrahedral volumetric
meshes.

Contrary to traditional remeshing applications that use
geometry-based methods [57] to repair the geometric topology of
non-watertight meshes, the core engine of Ultraliser is designed
based on efficient voxelization kernels that create intermediate
high resolution proxy volumes, with which we can extract
continuous surface meshes that are adaptively optimized and
watertight, refer to Figure 1 and Supplementary Figure S2. The
core library of Ultraliser is exploited to develop several applica-
tions that can be part of a large-scale software ecosystem for
establishing fully automated neuroscientific pipelines involving
multimodal simulation systems. The current version of Ultraliser
integrates the following applications:

(i) ultraMesh2Mesh, restructures an input polygonal surface
mesh composed of a set of unorganized triangles with
no defined connectivity—i.e. a triangle soup—into a
smooth, optimized, two-manifold and watertight triangular
surface mesh.

(ii) ultraMeshes2Mesh, a similar application to ultraMesh2Mesh,
but it produces a single output watertight mesh from a list
of non-watertight input meshes that have existing spatial
relationship.

(iii) ultraMesh2Volume, reconstructs1-bit (one bit per voxel) and 8-
bit (one byte per voxel) volumes from an input mesh that is
not necessarily watertight and might have severe geometric
deficits including self-intersecting facets, fragmented parti-
tions and even floating vertices.

(iv) ultraVolume2Mesh, generates a watertight surface mesh from
a single-channel volume stack. The surface of the resulting
mesh is established based on a user-specified isovalue or
range of isovalues.

(v) ultraMask2Mesh, a similar application to ultraVolume2Mesh,
but it takes an input binary mask that is typically segmented
from microscopy stacks, where the isosurface is already
reconstructed as a set of voxels.

(vi) ultraNeuroMorpho2Mesh, converts an input acyclic graph rep-
resenting a neuronal morphology skeleton into an optimized
and continuous membrane with a biologically realistic 3D
somatic profile reconstructed on a physically plausible basis.
Spines can be also integrated along the dendritic surface if
the morphology is reconstructed in a digital microcircuit [2],
where synaptic locations are determined.

(vii) ultraAstroMorpho2Mesh, converts an input astrocytic mor-
phology containing branching processes and endfeet
surfaces into an optimized and continuous membrane
surface.

(viii) ultraVessMorpho2Mesh, converts an input cyclic graph repre-
senting a large-scale vascular network into an optimized,
watertight and multi-partitioned mesh model with accurate
branching geometries.

(ix) ultraCircuit2Volume, takes an input microcircuit and a con-
figuration file, and produces a volumetric tissue model that
is tagged with multiple optical properties. The configuration
file describes the annotation details of the circuit [10].

In the following sections, we demonstrate the significance
of Ultraliser for in silico neuroscience taking into account
several use cases that involve multiple types of input structural
data including: non-watertight surface meshes of cellular
and subcellular structures segmented from EM volumes and
NGV (neuronal, astrocytic and vascular) morphologies that are
either segmented from optical microscopy stacks or generated
synthetically.

Remeshing cellular and subcellular structures of
the NGV ensemble
In the context of a recent collaboration between EPFL and KAUST,
we developed a multi-stage framework (imaging, segmentation,
modeling, simulation and visualization) to re-create the NGV
ensemble in silico [58]. This framework aims to advance our under-
standing of the substantial role of cytoscale structures and func-
tions in controlling brain energy metabolism. Our fundamen-
tal objective is to digitally reconstruct 3D structural models of
NGV structures with realistic geometries to fuel detailed sub-
cellular simulations [59, 60], allowing us to investigate the bio-
chemical and biophysical properties of oligocellular networks
[61]. Realizing the objectives of this framework, however, has
been impeded by the lack of availability of topologically accurate
watertight meshes with which we can conduct the simulations or
even skeletonize the meshes extracted in the segmentation stage
(Figure 2A).

We acquired a 750,000 cubic micron volume from layer IV of the
somatosensory cortex of a two-weekold rat. Within this volume,
a total of 186 structures were labeled, segmented, and classi-
fied into (i) cellular structures including: astrocytes, neurons,
microglia, pericytes and oligodendrocytes, (ii) subcellular struc-
tures including: nuclei, mitochondria and endoplasmic reticula
(ER), (iii) other fragmented structures including a few blood vessel
segments and a group of myelinated axons and (iv) other non-
identifiable structures. From this collection, the following com-
plete structures—that are of central significance to our modeling
objectives—were segmented: four astrocytes, four neurons, four
microglia, four pericytes and a single oligodendrocyte in addition
to the mitochondria of all the cells and the ER of the astrocytes
(Supplementary Section 5).

A surface mesh model corresponding to each structure is
exported into a Wavefront OBJ file for qualitative and quantitative
analysis (Supplementary Tables S3 and S4). From those 17 cells
and their subcellular structures, only the meshes of three peri-
cytes and astrocytic ER were verified to be watertight, but they
had poor geometric topologies. Meshes of the remaining cells were
confirmed to be non-watertight; containing thousands of non-
manifold edges and vertices in addition to tens of self-intersecting
polygons.

We then remeshed all the cellular and subcellular meshes
using ultraMesh2Mesh to reconstruct corresponding watertight
manifolds that are accurate and geometrically optimized
(Methods). Geometric accuracy, tessellation and topology of
the resulting meshes are subject to two principal parameters:
voxelization resolution and number of optimization iterations.
Resolution is defined by the number of voxels per micron used
to rasterize the input mesh. Geometric accuracy is primarily
measured by the Hausdorff distance and difference in volume
between the input and output meshes.

To estimate the optimum values of these two parameters,
we constructed five analysis matrices for an exemplar mesh
(Astrocyte 4, shown in Figure 2B) in which we can apply those
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Figure 1. Ultraliser workflow. Ultraliser implements a voxelization-based remeshing engine to create annotated volume models and watertight surface
manifolds from input morphology skeletons, non-watertight triangular soups, gray scale volumes and segmented binary masks. The workflow has
five essential stages: surface and solid voxelization, triangular mesh reconstruction from uniformly sampled volume grids, surface optimization, and
watertight verification. Detailed workflow is illustrated in Supplementary Figure S2.

optimum values to other cellular meshes in the block. Figure 2C
illustrates four quantitative matrices showing the effect of vary-
ing the two principal parameters on the Hausdorff distance, num-
ber of vertices, surface area and volume of the output mesh.
The number of vertices determines the footprint of the result-
ing mesh. Essentially, the lower this footprint is, the better for
processing. However, the lower it becomes, the values of the
difference in volume and Hausdorff distance between resulting
and original meshes are increasing, which implies altering shape
or losing detail—for example, of a spine located along a den-
dritic branch. Therefore, we must combine the volume analysis
and Hausdorff distance matrices to determine convenient val-
ues of voxelization resolution and optimization iterations that
could preserve the geometry and volume of the original mesh
(Supplementary Section 4). Figure 2D shows the effect of using
one, five and ten optimization iterations on the tessellation and
topology of the resulting mesh. The full analysis matrix is shown
in Supplementary Figure S4. From this analysis, the optimum
values were estimated to be five voxels per micron and five
optimization iterations. Those values are then used to remesh all
the cellular meshes in the block. Supplementary Figures S5–S26
(Supplementary Table S6) reveal detailed quantitative, qualitative
and visual comparisons (the results for Astrocyte 2 are shown in
Figure 2E) between the input and output meshes of the complete
cellular structures shown in Figure 2A.

Subcellular meshes were remeshed with higher voxelization
resolution (10 voxels per micron) to ensure resolving their frag-
mented and minuscule segments. Complete comparative analysis
of the subcellular meshes is shown in Supplementary Figures S29
– S53 (Supplementary Table S7).

Resulting astrocytic meshes were therefore applicable for
skeletonization, with which we have successfully developed a
novel pipeline to synthesize a digital reconstruction of the NGV
ensemble at micrometer anatomical resolution [15]. Moreover,
all the resulting meshes were tetrahedralized using TetGen [38]
and Gmsh [40] to create corresponding volume, or simulation-
ready, meshes for STEPS [31] simulations with which we have
successfully completed the objectives of the collaboration.
Simulation results are beyond the scope of this sequel.

Remeshing poorly segmented meshes with
fragmented partitions and slicing artifacts
Dense reconstructions of brain circuits are made available with
volume EM and advanced ML-based segmentation solutions,
allowing us to render hundreds of thousands of cortical struc-
tures—including complete cells, cell parts, cytoplasmic organelles
and blood vessels—that are shared [62] and made freely available
online [49, 50, 63, 64]. A decent amount of the segmented
structures is proofread to resolve false-split (fragmentation) and
false-merge (connectivity) errors. Nevertheless, pipelines involved
in the segmentation process yield triangular mesh models char-
acterized by sharp features, rough surfaces and high tessellation
rates, leading to triangle soups with large numbers of geometric
deficits. The meshes might have large discontinued partitions
with overlapping geometries (Figures 3A, B, F), gaps (Figure 3J) and
tiny disconnected fragments (Supplementary Figure S75) due to
common slicing and misalignment artifacts [65]. Those poorly
reconstructed and fragmented meshes cannot be effectively
repaired—or remeshed to produce watertight counterparts—
relying on geometric-based solutions [57]. Thanks to its voxeliza-
tion engine, Ultraliser can transparently handle these deficits and
build a continuous, adaptively tessellated and high resolution
manifold of the entire structure with superior topology.

To accomplish this objective, we used ultraMesh2Mesh, with
which the polygons of an input surface mesh are independently
rasterized into a volume grid, where self-intersecting and
duplicate facets are implicitly eliminated; they are rasterized
to the same voxel or a neighboring one. This grid is then
processed by isosurface extraction kernels to produce an
intermediate highly tessellated surface, which is smoothed,
adaptively optimized and finally verified to be watertight (see
section Methods). Figure 3 demonstrates how effective Ultraliser
can be in processing an exemplar mesh—segmented from layer
II/III of the visual cortex of a young rat—with thousands of
mesh partitions, self-intersections and other geometric artifacts.
Supplementary Figures S55–S74 show comparative remeshing
results for a small subset of meshes of pyramidal neurons (the full
block is shown in Supplementary Figure S54) that were publicly
provided by MICrONS program [48, 66]. All the resulting meshes
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Figure 2. Ultraliser creates high-fidelity watertight surface manifolds of neuropil structures from non-watertight inputs. (A) The EM volume block
is segmented semi-automatically to extract 3D mesh models of individual cell morphologies and other structures (Supplementary Figure S3). (B) An
exemplar mesh (Astrocyte 4) is selected for evaluating the optimum values of the remeshing parameters. (C) The effect of varying voxelization resolution
(in voxels per micron) and the number of optimization iterations on—from left to right—the Hausdorff distance (in μm), number of vertices, total surface
area (in μm2)[2] and volume (in μm3) [3] of the mesh. Astrocyte 4 has been remeshed at multiple voxelization resolutions (0.1–1.0 μm) and optimized
with different optimization iterations (1–10) to determine the most optimum values for these parameters as a reference to be used to remesh all the
other segmented structures from the neuropil volume. (D) The input mesh of Astrocyte 4 is not watertight and is also over tessellated with ∼1.7 million
triangles. This mesh has been remeshed with a voxelization resolution of 5 voxels per micron (200 nm), and optimized with one, five and ten optimization
iterations. (E) ultraMesh2Mesh creates an adaptively optimized watertight mesh with only ∼425 thousand triangles. The distributions show a comparison
between the qualitative analysis metrics of the input mesh and resulting one. Scale bars, 5 μm (B), 2.5 μm (D).
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Figure 3. Remeshing fragmented mesh model with multiple mesh partitions, self intersecting faces and slicing artifacts. (A) Segmented mesh model of a
neuron extracted from layer II/III of the visual cortex of the rat. The closeup in (B) shows the messy fragmented structure of the mesh. This triangle soup
has been processed with Ultraliser to generate an optimized, connected and two-manifold mesh model with high quality topology at three different
resolutions: (C) one, (D) five and (E) 10 voxels per micron. The closeups in (F)–(I) focus on a small spiny branch to highlight the effect of varying the
reconstruction resolution on the ultrastructure of the mesh. Supplementary Figure S55 shows comparative analysis between the input mesh and the
ultralized one. (J) The mesh contains a few gaps due to the misalignment and slicing artifacts. The three-way solid voxelization is used to reconstruct a
continuous manifold with optimized topology at different resolutions (K–M). Scale bars, 10 μm (A), 5 μm (B–E, J–M), 1 μm (F–I).

are watertight and have a single mesh partition with a continuous
manifold.

Segmented meshes suffering from slicing or alignment
artifacts are, in certain cases, characterized by thin gaps
across their surfaces. Such gaps lead to surface discontinuity
(Figure 3J) or disconnected fragments of the mesh (shown in
red in Supplementary Figure S75). Those gaps cannot be easily
detected and might require advanced and computationally
intensive ML-based algorithms to identify and repair them. In
our implementation, we extended the voxelization stage and
integrated a three-way solid voxelization algorithm, that is
seamlessly taking into account repairing those gaps, in which the
interiors bounded by cell membranes are voxelized along each
axis independently and then merged into a single volume (see
section Methods). Figure 3K–M illustrate the results of remeshing

a pyramidal neuron mesh with three obvious slicing artifacts (two
of them exist on the soma and one is located along a dendritic
branch) into a continuous surface mesh at three different
voxelization resolutions. Supplementary Figure S75 illustrates a
side-by-side comparison between an input mesh with several
artifacts and the resulting one from ultrasMesh2Mesh, in which all
the gaps are filled to connect the disconnected fragments to the
surface of the mesh to produce a continuous surface.

Generating biologically realistic neuronal meshes
from digitized morphologies
There is a huge diversity of neuronal morphologies (mainly in
SWC format) that is routinely used for simulating electrical activ-
ity in NEURON [20] and its modern extensions [67, 68]. Such
diversity can be a significant resource for performing mesoscale
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hybrid simulations combining electrophysiology with intracellu-
lar calcium dynamics simultaneously [69]. However, this objective
entails the development of a robust technique that can construct
biologically detailed and watertight neuronal mesh models con-
sistent with their morphological counterparts. Several applica-
tions were developed to create neuronal surface meshes from
their corresponding morphologies (Supplementary Table S1). The
majority was focused on building low-tessellated, non-watertight
and visually appealing mesh models that can be rapidly generated
and efficiently used for visualization or in visual analytics [19,
24, 54, 55, 70]. Only a few ones addressed the watertightness
challenge, however, using simplified geometries and without sup-
port to integrate spine models [56, 71]. We therefore implemented
an application (ultraNeuroMorpho2Mesh) capable of consolidating
neuronal meshes combining both features, biological realism and
watertightness, irrespective of the conditions or topology of the
input morphology.

To create an integrated mesh model of a spiny neuronal mor-
phology, our implementation addressed four principal challenges:
(i) creating a plausible 3D somatic surface that can simulate
the biological growth of the soma relying merely on the initial
segments of the neurites, (ii) creating neuritic arborization mem-
branes with non-overlapping geometries around their bifurcation
points, regardless of their branching angles, (iii) integrating realis-
tic spine models along the membranes of their dendritic branches,
and finally (iv) optimization and watertightness verification (see
section Methods).

Digitized neuronal morphologies are composed of three
distinct structural components: somata, neurities and den-
dritic spines (Supplementary Figure S76). Somata are typically
approximated with geometric primitives, mainly a sphere [71],
whose radius is computed based on the relative locations of the
initial segments of each neurite, or in some cases, cylinders [72].
Advanced traces digitize the soma into a two-dimensional (2D)
contour representing its projection along the optical axis. To
reconstruct a plausible 3D somatic profile, we apply the finite
element method (FEM) approach [73] to deform a volumetric
model of an elastic sphere by pulling towards each neurite in the
morphology. This approach preserves the initial volume of the
sphere, resulting into more realistic somatic surface (Figure 4A).
Neurites are represented by directed acyclic graphs (DAGs) as a
set of interconnected nodes, each of which defines a 3D Cartesian
position and radius (Figure 4B), with which we can reproduce
cross-sectional variations and orientation of each segment in
the morphology. A depth-first scheme is used to construct a
set of connected paths from the root node (or the soma) to
the terminal ones. For each path, a cross-sectional geometry
is created as an independent proxy mesh (Figure 4C) (see
section Methods). The integration of the spines along dendritic
membranes is optional; spines are not included by default
within the morphological descriptions of individual neurons
loaded from SWC files. Spiny neurons are modeled after circuit
building [2], where we can localize synapses and characterize their
spine attributes. We designed a set of realistic spine geometries
(Supplementary Figure S79) based on a few reconstructions of
interneurons segmented from the somatosensory cortex [11].
All the proxy meshes—of the soma, neurites and spines—are
agglomerated and rasterized in parallel to create a corresponding
solid volume, with which the final mesh is generated (see section
Methods). Figure 4 illustrates the steps of building a mesh model
of a spiny neuron from its morphology skeleton. The resulting
mesh is shown in detail in Supplementary Figure S80. Our
implementation has been tested with a group of 25 neurons with

various morphological types [16]. Morphology files and resulting
meshes are available in the Supplementary Data.

Generating astroglial meshes from complete
synthetic morphologies
Complete astrocytic morphologies with endfeet reconstructions
are sparse. NeuroMorpho.Org has ∼5500 astrocytes, but none of
them contains any endfeet descriptions; only the arborizations of
perisynaptic and perivascular processes. Based on a few recon-
structions of complete astroglial morphologies [11], we presented
in a recent study [15] an effective method to synthesize biolog-
ically inspired, and complete, astrocytic morphologies including
end-feet patches (the skeleton of an astroglial morphology is
shown Supplementary Figure S77). The objective of the study is to
allow the creation of a huge diversity of astrocytic morphologies
that can be used to understand their structure–function relation-
ship using molecular simulations.

We therefore complemented this effort and integrated a
specific application (ultraAstroMorpho2Mesh) to create simulation-
ready astrocytic meshes from their morphological counter-
parts. The mesh generation algorithm is similar to that used
to create neuronal meshes, but in addition, end-feet proxy
geometries are created using implicit surface modeling (see
section Methods). Figure 5 illustrates the results for reconstruct-
ing a watertight astrocytic mesh that is consistent with its
morphological description. We also tested the implementation
with a group of 25 astrocytes sampled from different cortical
regions and created their corresponding watertight manifolds
(Supplementary Data).

Generating continuous cellular meshes from
fragmented components
We extended the remeshing pipeline and integrated another
application (ultraMeshes2Mesh) that agglomerates a list of frag-
mented meshes—that are spatially overlapping—into a single and
continuous watertight mesh. This extension, however seamless,
enables the reconstruction of ultrarealistic cellular models based
on existing meshing implementations (Supplementary Table S1),
in which we can assemble 3D mesh models of different cellular
components generated independently by multiple third-party
applications into a single watertight mesh with continuous sur-
face (Methods). For instance, ultraNeuroMorpho2Mesh uses the FEM
to reconstruct a plausible 3D surface of the soma, but meanwhile,
there are other advanced implementations that use Hooke’s law
and mass-spring models to reconstruct 3D somatic profiles with
more realistic shapes, which could ultimately improve the realism
of resulting neuronal meshes. This can be demonstrated with the
Soma Reconstruction Toolbox in NeuroMorphoVis [19], where
users can fine tune the parameters of the soma reconstruction
algorithm and validate the resulting profile with respect to
a segmented ground-truth mesh. Supplementary Figure S81
provides an example of creating a watertight mesh of a spiny
neuron from a set of input meshes, each representing a single
component of the neuron (soma, arbor or even a spine).
ultraMeshes2Mesh can therefore be seen as a complementary or
post-processing application that can ensure the watertightness
of resulting mesh models of NGV cellular structures created by
other software applications.

Generating vasculature meshes from
corresponding graph networks
Another application is developed to create ‘multi-partitioned’
watertight mesh models of large-scale cerebral vascular
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Figure 4. Creating biologically realistic spiny neuronal surface mesh from its morphology. (A) Progressive reconstruction of the soma from an initial
icosphere into a 3D plausible profile based on the FEM approach [73]. (B) The morphology is rendered as a set of samples. (C) For each neurite, we
reconstruct a list of proxy-geometries linking a set of principal sections from the root node and until the leaf: level 1 is in red, level 2 is in green, and
level 3 is in blue. Note that the proxy geometries start from the origin of the soma to avoid any gaps when the soma mesh is added afterwards (D). (E)
Spine proxy geometries are added along the surface of the proxy-mesh. All the section geometries, spines and somatic mesh are rasterized to create a
continuous and watertight manifold. Renderings of multiple closeups of this mesh are shown in Supplementary Figure S80. Scale bars, 5 μm (A) and
20 μm (B–E).

networks. This application is intended to confront the rising
trend to automate the reconstruction of accurate 3D mod-
els of brain vasculature, with which we can analyze their
structural angioarchitecture and characterize their dynamic
behavior [17, 74]. The networks are typically segmented into
vectorized graphs, i.e. centerlines with point-and-diameter
representations (the structure of a vascular morphology graph is

shown in Supplementary Figure S78). Those graphs are becoming
imperative for performing vascular simulations, whether used
in vectorized format in 1D compartmental simulations or
being converted into alternative formats, for example, into
tetrahedral meshes that can be applied in reaction–diffusion
simulations. Such simulations pave the way to understand how
our brains meet the energy demands of neuronal computations.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac491/6847753 by Politecnico di Torino user on 12 January 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac491#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac491#supplementary-data


Ultraliser | 9

Figure 5. Creating a realistic and watertight astroglial mesh from synthetic astrocytic morphology with two endfeet. (A) Synthetic astrocytes are
excessively oversampled. (B) The processes are adaptively resampled to avoid any reconstruction artifacts during the mesh generation process. (B)
The processes are adaptively resampled for convenience. (D) Reconstruction of the astrocytic surface mesh with endfeet included. A high resolution
reconstruction of this mesh is illustrated in Supplementary Figure S82. Scale bars, 10 μm (A–D).

Nevertheless, creating such ‘simulation-ready’ vascular models
from segmented data is challenging.

The first challenge is the fragmentation of the network. Even
with current state-of-the-art imaging and segmentation proto-
cols, it is nearly impossible to reconstruct a full—and accu-
rate—high-resolution cerebral vascular network segmented into
a single and connected graph [75]. Resulting graphs are typi-
cally composed of multiple disconnected partitions, which com-
plicates the creation of watertight meshes if the partitions are
self-intersecting. The second challenge is the scale of segmented
networks, which has been exponentially growing due to the recent
advances in lightsheet imaging and Clarity [76, 77], allowing the

creation of whole-brain vascular maps down to capillary level
[78]. The third challenge is the segmentation quality of the vessel
network; in particular, for small vessels, the quality is not opti-
mal, and the resulting skeletons might have severe topological
artifacts around branching terminals. Therefore, typical meshing
algorithms of branching structures would fail to build watertight
meshes of such complex geometries.

There are plenty of tools that can be used to visualize the
graphs, but only a few are capable of visualizing large-scale graphs
[26, 79]. Some tools [26, 54] can also create surface meshes from
their corresponding morphologies, but usually the results are
not watertight, particularly for dense graphs. To fill this gap, we
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designed ultraVessMorpho2Mesh, a vasculature-specific application
that can efficiently convert large-scale networks of vascular mor-
phologies into multi-partitioned and adaptively optimized water-
tight meshes with smooth branching geometries. Our algorithm
handles an input graph as a linear list of sections without the
necessity to have predefined connectivity information. Initially,
the morphology skeleton is analyzed, where high frequency vari-
ations in cross-sectional radii are filtered and short sections are
eliminated (Figure 6B). Each section in the graph is independently
converted into a proxy mesh. However, and to guarantee the
connectivity of branches along the surface of the final mesh, we
add multiple sphere meshes (icospheres) at both terminals of the
section. All the proxy meshes are then rasterized and converted
into a solid volume, with which the final mesh is generated (see
section Methods).

Due to the cyclic nature of vascular graphs, there is a high pos-
sibility that our slice-based solid voxelization algorithm will fail.
We therefore use three-way solid voxelization instead of three-
way voxelization, in which the flood-filling algorithm is applied on
every principal axis independently. Prior to the optimization stage,
the different partitions in the polygonized mesh object are split
and optimized individually. After optimization, these partitions
are regrouped again in a single mesh object (see section Methods).
Figure 6 depicts the stages of processing a fragmented vascular
network towards reconstructing a high fidelity watertight surface
mesh with multiple partitions. Supplementary Figure S83 shows
the results of converting a more complex vascular network into a
watertight mesh with ultraVessMorpho2Mesh and ultimately into a
tetrahedral one using TetGen [38].

Generating annotated 3D tissue volumes from
digital circuits
We also extended Ultraliser to create annotated voxel-based
tissue models from surface meshes of neuronal morphologies.
Voxel-based models are becoming essential, not only for visual
analytics, but also for performing in silico optical imaging exper-
iments that simulate light interaction with brain tissue using
physically plausible Monte Carlo visualization [10]. Simulation
applicability and even its accuracy are subject to two factors.
First, the derivation of advanced mathematical formalism of
the radiative transfer equation (RTE) that could account for
absorption, scattering and, in certain cases, fluorescence. Second,
the existence of biologically realistic 3D models that account for
(i) the optical properties of brain tissue across its different regions
at microscopic levels and (ii) the spectral properties of fluorescent
dyes used in wet lab experiments for cell labeling.

What is missing then? RTE was extended to model light inter-
action with low- and high-scattering fluorescent participating
media [35, 80], recent experiments were able to build accurate
3D brain atlases mapping the different optical properties of the
tissue [81], and fluorescence databases are available online, where
spectral properties of common fluorescent dyes are provided. The
only missing element is a robust application capable of creating
detailed biologically and optically accurate volume models of
cortical circuits. To address this issue, we implemented ultraCir-
cuit2Volume.

Our implementation uses the information retrieved from the
circuits that are digitally reconstructed by the Blue Brain Project
[2, 82]. These circuits identify neuron types, their coordinates
and orientation. Starting from raw morphologies, corresponding
surface meshes are generated either with Ultraliser directly or
relying on third-party applications, such as NeuroMorphoVis [19].
Meshes are then rasterized in voxel grids, where each voxel is

annotated with location-specific optical properties. In case of
fluorescence, voxels corresponding to intracellular spaces are
annotated with the spectral parameters of fluorescent dyes (see
section Methods). The resulting volumes are used with recently
developed in silico imaging simulators [10] to create synthetic
optical sections of cortical tissue models, on physically plausible
basis (shown in Figure 7).

Comparative analysis with existing frameworks
To demonstrate the critical significance of Ultraliser and its
accompanying applications, we performed detailed quantitative
and qualitative comparisons with relevant open source frame-
works that are used for remeshing and mesh reconstruction from
morphological skeletons of neurons (Supplementary Table S1)
and vascular networks (Supplementary Table S2). Comparative
results and their analysis are discussed in detail in Sup-
plementary Section 13. From the comparisons presented in
Supplementary Figures S85–S89, Ultraliser has demonstrated
obvious superiority in terms of topology, tessellation, watertight-
ness and its robust performance.

Conclusion
Biologically realistic simulations are indispensable for reveal-
ing the structure–function relationships within and among brain
cells. Driven by a quantum leap in computing technologies, in
silico brain research is complementing in vivo and in vitro methods.
Meanwhile, advances in imaging technologies and automated
ML-based segmentation algorithms are boosting the creation of
detailed and anatomically realistic 3D neuroscientific models that
are fueling simulation-based research. The goal of Ultraliser is to
provide a systematic and robust framework for creating accurate
watertight meshes and high resolution annotated volumes of
3D brain structures that can be integrated in multimodal super-
computer simulations. On one level, Ultraliser unconditionally
rectifies non-watertight mesh models that cannot be repaired
with existing meshing solutions. On another level, it has native
support to create ultrarealistic watertight meshes and annotated
volumes of NGV models from their morphological descriptions.
The framework has a modular and extensible architecture, mak-
ing it possible to integrate further relevant applications that are
of paramount importance in structural systems neuroscience.

Methods
Ultraliser: an overview
Ultraliser is an unconditionally robust and optimized framework
dedicated primarily to in silico neuroscience research, allowing
the generation of high fidelity and multiscale (from subcellular
and up to multicellular scales of resolution: 100 nm–1 mm)
3D neuroscientific models—such as: nuclei, mitochondria,
endoplasmic reticula, neurons, astrocytes, pericytes, neuronal
branches with dendritic spines, minicolumns with thousands of
neurons and large networks of cerebral vasculature—with realis-
tic geometries. Ultraliser implements an effective voxelization-
based remeshing engine that can rasterize non-watertight
surface meshes—in the form of triangular soups—into high
resolution volumes, with which we can reconstruct topologically
accurate, adaptively optimized and watertight surface manifolds
(Supplementary Figure S1). In addition to their importance for
accurate quantitative analysis, resulting models are primarily
intended to automate the process of conducting supercomputer
simulations of neuroscience experiments; complementing in
vivo and in vitro techniques. Watertight triangular meshes are
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Figure 6. Reconstruction of a watertight mesh of a cerebral vascular network from its corresponding vectorized graph. (A) The data set is sliced from a
larger cortical network with hundreds of millions of vertices to demonstrate how Ultraliser is effective in building mesh models with clean geometric
topology and accurate branching structures from raw vectorized morphologies. (B) The data set is qualitatively and quantitatively analyzed to evaluate
its local geometry and topology (Supplementary Table S9). (C) A closeup revealing the overlap between the different sections at a common branching
point, where each section is assigned a different color based on its average radius. (D) Each section of morphology is converted into a tubular proxy
mesh with a circular cross-section interpolated at every vertex along the section. (E) We add packing spheres (in yellow) at the terminal samples of
each section to ensure the smoothness and continuity of the proxy mesh. (F) The proxy mesh is rasterized into a volumetric grid with a resolution of
five microns per voxel, where the overlap between the different sections is obvious. (G) Applying the three-way solid voxelization algorithm fills the
intravascular space and removes any intersections, in which we can extract a continuous manifold of every partition in the volume. (H) A watertight
mesh is reconstructed with clean geometric topology and accurate branching. This mesh can be then used in several simulation experiments. Scale
bars, 100 μm (A), 50 μm (C1, D1, E1, F1, G1, H1), 25 μm (C2, D2, E2, F2, G2, H2).

used for (i) performing 3D particle simulations, (ii) mesh-based
skeletonization, in which accurate morphologies of cellular struc-
tures are obtained for performing 1D compartmental simulations
and (iii) tetrahedralization, where we can generate tetrahedral
volume meshes for 3D reaction–diffusion simulations. Annotated
volumetric tissue models are also used in in silico imaging
studies, where we can simulate optical imaging experiments
with brightfield or fluorescence microscopy [10]. Ultraliser’s
workflow is graphically illustrated in Figure 1 and a detailed
schematic showing the ecosystem and relationship between
its different modules is illustrated in Supplementary Figure S2.
The code is open sourced under the GNU General Public
License version 3.0 (GPL), and is available for free on GitHub at

https://github.com/BlueBrain/Ultraliser. Documentation and
tutorials are available online at https://github.com/BlueBrain/
Ultraliser/wiki. Quantitative and qualitative analysis scripts
used in this study are also open sourced and integrated into
NeuroMorphoVis [19] (github.com/BlueBrain/NeuroMorphoVis).
Images, movies and datasets produced in this study are publicly
available on Zenodo (10.5281/zenodo.7105941).

Data structures
Ultraliser is a C++ based library accompanied by several use
case-specific applications that can generate 3D models in two
principal formats: watertight triangular surface manifolds and
annotated, or tagged, volumes from a diverse set of input data
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Figure 7. Creating annotated volumetric tissue models for in silico imaging. (A) The mesh is created using NeuroMorphoVis [19] from a neuronal
morphology reconstructed from the somatosensory cortex of a P14 rat [82]. (B) The neuron is placed into a digital circuit [2] to determine its connectivity
in which we can identify the synaptic locations and integrate the spines along its dendritic arborizations. The neuron mesh is used to reconstruct a high
resolution annotated volume in which its intracellular space is tagged with optical properties of multiple fluorescent dyes. The volume is then used for
simulating the imaging of a single cell with fluorescence microscope. The following dyes are used Alexa Fluor 488, 405, 532, 658 and 610 in (C), (D1), (D2),
(D3) and (D4), respectively. The simulated tissue block is illuminated with collimated laser beams at a wavelength that corresponds to the maximum
excitation of each respective dye. (E) In silico brainbow optical section of a digitally reconstructed neocortical slice (920 × 640 × 1740 cubic microns)
simulating the imaging of lightsheet fluorescence microscope. The slice is tagged with six fluorescent labels (GFP, CFP, eCFP, mBannan, mCheery and
mPlum) and illuminated at the maximum excitation wavelength of each respective dye. Scale bars 25 μm (A–D), 50 μm (E).

formats including (i) digitized morphology skeletons, (ii) frag-
mented, self-intersecting and non-watertight polygonal surface
meshes, (iii) binary volume masks, (iv) grayscale volumes, and (v)
tetrahedral volume meshes (Supplementary Figure S1a). Result-
ing watertight meshes can be further processed and converted
into morphology skeletons or volume meshes relying on existing
mesh-based skeletonization or tetrahedralization applications,
respectively.

Morphology skeletons
Neuroscientific 3D models with branching topologies—that are
traced from optical microscopy stacks, for example: neurons,
astrocytes and vasculature—are segmented, digitized and typi-
cally stored as morphology skeletons. 3D models acquired with
electron microscopy [11, 58] are further processed and converted
into morphology skeletons using skeletonization [83, 84]. Neu-
ronal morphologies are commonly stored in the standardized
SWC file format [16]. This format is also used to store processes of
astroglial cells, but it does not account for any endfeet informa-
tion, which is typically stored as trianglular patches and requires
custom file formats that can combine branching and surface data
[15, 25]. The SWC format is adopted by the NeuroMorpho.Org [16]

database, which contains hundreds of thousands of neuronal and
astrocytic morphologies collected from a huge diversity of exper-
iments. The SWC format has been also adapted to store cerebral
arterial arborizations, for instance the datasets of the Brain Vas-
culature (BraVa) [18] database (cng.gmu.edu/brava). Ultraliser has
full support to load SWC morphologies of neurons, astrocytes and
cerebral vasculature. Moreover, it supports loading customized
file formats such as (i) H5 morphologies that were defined within
the scope of the Human Brain Project [85] and (ii) the VMV
format that is used to store vascular morphologies supported
by VessMorphoVis [26]. Morphology skeletons are represented by
a list of connected morphological samples, where each sample
has a unique identifier, 3D Cartesian coordinate, cross-sectional
radius, and optionally an index characterizing the type of the
branch it belongs to. A pair of adjacent samples defines a segment
or an edge, and a concatenated list of adjacent edges between
two branching points defines a section or strand. In memory,
morphologies are stored as a linear list of sections, where each
section has a unique index and references to its parent and child
sections. Those references are used to reconstruct the hierarchical
organization of the morphology when required. The structures of
neuronal, astrocytic and vascular morphologies are illustrated in
Supplementary Figures S76–S78, respectively.
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Polygonal surface meshes
Ultraliser has native support to import and export polygonal
surface meshes with multiple file formats including those that
are commonly used for visual analytics with Blender [86] (blender.
org) or MeshLab [87] (meshlab.net), such as OBJ and PLY, and
also those required for 3D printing, molecular simulations and
conversion into tetrahedral meshes by tetrahedralization appli-
cations [38, 39] such as STL and OFF file formats. The meshes
downloaded from the MICrONS program [48] are stored in H5
files based on the HDF5 [88] library. Although this format is not
standard, it is straightforward to reconstruct the triangulation
of the mesh. Ultraliser implements two complementary data
structures to store ‘triangular’ surface meshes. The first data
structure Ultraliser:: Mesh is a light version that only stores
vertices and triangles. It has low memory footprint, allowing
to perform most of the operations that do not necessitate any
details of surface normals, edges or patch connectivity. The other
data structure Ultraliser:: AdvancedMesh is much more advanced
and stores further information including surface normals, edges,
connectivity between vertices, edges and triangles. This structure
has been adopted from MeshFix [89] and adapted to address
the essential requirements needed to accomplish the objectives
of the framework. It is mainly used for repairing any geomet-
ric deficits in the mesh, detecting fragmented mesh partitions,
removing self-intersecting triangles and also for watertighntess
verification.

Volumetric models sampled on 3D Cartesian grids
Ultraliser processes and creates volume models sampled
uniformly on 3D Cartesian grids. Ultraliser can import and
export several volume formats including: 1-bit binary volumes
(in BIT/HDR format), 8-, 16-, 32- and 64-bit volumes (in RAW/HDR
and NRRD formats) and TIFF image stacks. The HDR file is
an ASCII file that contains the volume dimensions, i.e. the
number of voxels along each axis, and the precision of the data.
Ultraliser:: Volume implements three different types of grids.
Ultraliser::BitVolumeGrid uses bit-arrays [90] (Ultraliser::BitArray)
to represent every voxel in the volume by a single bit in memory.
The voxel is either set or unset; this is sufficient to voxelize the
interior of a polygonal mesh. By default and unless otherwise
specified, this data structure is used by the voxelization kernels,
making it possible to process large-scale volumes efficiently
with reduced memory footprint. Ultraliser:: UnsignedVolumeGrid
stores every voxel in the volume in either 1, 2, 3, or 4 byte(s)
in memory, allowing to define a grayscale volume. Ultraliser
:VoxelGrid stores a list of attributes per voxel, for example:
its value, an index representing the optical properties of a
participating medium or a sub-region in the volume it belongs too.
This data structure is mainly used for creating tagged volumes
that are needed to create physically plausible visualizations that
can simulate optical imaging experiments [35, 80].

Voxelization and volume reconstruction
Voxlization is the process of creating 3D volumes of geometric
models either from their parametric representations or from
polygonal or polyhedral, tetrahedral and hexahedral meshes. Vox-
elization is classified into two categories: surface and solid vox-
elization. Surface voxelization creates volumetric shells repre-
senting boundaries of surface manifolds as a series of connected
voxels–if no holes exist on the surface, while solid voxelization
fills their interiors [91].

Surface voxelization
We implemented a fast data-parallel surface voxelization algo-
rithm, which sets all the voxels that overlap with any triangle
in a given mesh using conservative rasterization [92]. In contrary
to standard rasterization, the conservative criterion guarantees
that a voxel is filled if it is partially overlapping or even touch-
ing a triangle. The algorithm can reconstruct a volumetric shell
corresponding to the extent of a given triangle soup, even in
the presence of self-intersecting triangles, non-manifold edges
and non-manifold vertices [93]. The bounding box of each voxel
is computed from its three-dimensional index and side length.
For every triangle in the mesh, a box-triangle intersection test is
performed to rasterize all the polygons in the mesh and create a
volumetric shell that reflects the surface of the mesh [94]. Note
that all the n-gons (n > 3) in the input mesh are automatically split
into triangles prior to voxelization.

Solid voxelization
Conventional solid voxelization algorithms in computer graphics
require a watertight manifold to successfully voxelize its interior
into occupancy grids. By definition, a watertight mesh consists of
a compact manifold that has clearly defined inside and does not
contain any holes across its surface; that is if the surface is punc-
tured with a hypodermic needle trying to fill it with water, it will
not leak. A triangular mesh is guaranteed to be watertight—if and
only if—it has no self-intersecting triangles, zero non-manifold
edges, zero non-manifold vertices, and no boundary edges (Sup-
plementary Section 4). In reality, and unfortunately, neuroscien-
tific mesh models segmented from microscopy stacks have ill
topologies with hundreds or even thousands of self-intersections,
non-manifold edges and vertices and even fragmented mesh
partitions. Major contributions have been introduced to fix the
topology of these meshes using geometric mesh conditioning [52,
95], nevertheless, their solutions are neither robust nor scalable,
based on trials. Therefore, existing solid voxelization algorithms
would fail to handle detailed mesh reconstructions with realistic
geometries. Contrary to traditional methods, we present an effi-
cient data-parallel, slice-based solid voxelization algorithm that
does not entail an input watertight mesh. Initially, the surface
voxelization algorithm converts a given triangular mesh into a
volumetric shell in a uniformly sampled 3D Cartesian grid. The
rasterization is binary, where each voxel in the grid is either set
or cleared. The interior of the shell can be filled using 3D flood-
filling. However, this algorithm is accompanied with extensive
computational loads and cannot be easily parallelized. Our algo-
rithm is based on 2D flood-filling that can be implemented in
parallel. The 2D flood-filling kernel is applied independently to
each slice in the volume. The aggregate result is exactly similar
to what can be accomplished with 3D flood-filling, but in much
less time.

Three-way solid voxelization
By default, the solid voxelization algorithm is applied on a
per-slice-basis along the Z-axis of a given volume grid, where each
slice is processed, or flood-filled, in a separate thread, indepen-
dently. Certain structures, for example vascular morphologies—
represented with cyclic graphs—have loops. In the general case,
the flood-filling algorithm is unable to identify any internal
boundaries beyond the first one detected. Therefore, running
the flood-filling kernel along a single axis will fail to capture
the entire geometry of an input mesh. To resolve this constraint,
we implemented a three-way solid voxelization algorithm which
processes the volume along the X, Y and Z axes to produce
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three volume grids that are combined later with a logical ANDing
operation to obtain the final grid. This approach makes it possible
to resolve all the loops in a given cyclic structure.

Mesh reconstruction
The binary volume resulting from the voxelization operation is
then processed to reconstruct a smooth, optimized and watertight
triangular mesh in four principal steps: (i) isosurface polygoniza-
tion, (ii) Laplacian smoothing, (iii) adaptive or non-adaptive mesh
optimization and (iv) watertightness verification.

Isosurface polygonization Ultraliser integrates efficient imple-
mentations of two popular isosurface extraction algorithms: the
default marching cubes (MC) algorithm [96] and its superior,
dual marching cubes (DMC) [97]. MC is relatively faster than
DMC, but in certain cases it cannot reproduce rough surfaces
with high frequency structures or sharp edges, while DMC can
preserve thin surface features without excessive tessellation.
The DMC algorithm reconstructs quadrilateral patches, but for
consistency, every tetragon—or quadrilateral—created is divided
and stored as two triangles with a shared edge. Moreover, MC
cannot handle complex triangulation configurations, leading
to self-intersecting faces and consequently non-watertight
meshes. Adaptive optimization and watertightness verification
are, however, implemented in subsequent stages whether any of
the two algorithms is used for surface reconstruction. Therefore,
using MC or DMC would ultimately yield an optimized and
watertight mesh.

Surface smoothing
Due to the finite resolution of volumes, and their discretized
nature, polygonal meshes reconstructed from those volumes
exhibit zigzagged or ‘staircase’ artifacts on their surfaces
(Supplementary Figure S1a). Such artifacts distort the organic
appearance of the resulting meshes, unless surface smoothing is
applied. We therefore use the Laplacian operator to remedy those
staircase artifacts in an iterative scheme. Initially, we build a list
of neighbor vertices and faces for each vertex. In each iteration,
it uses the aforementioned lists to compute a smoothing kernel
for each vertex, applies it and then updates the mesh surface to
prepare it for the next iteration. To compute the kernel, we identify
the difference between the vertex and the arithmetic sum of
the neighbor vertices, each weighted by their average cotangent.
To compute the average cotangent, we use the two cotangents
calculated from the two neighboring vertices of the edge formed
by the vertex to the neighbor. To obtain the smoothed vertex, we
linearly interpolate between the original vertex, and the original
vertex weighted by the kernel. The interpolating parameter, also
called the smoothing value, is an input to the algorithm chosen
by the user, which must be greater than zero to have an effect.
Additionally, an inflate parameter—also provided by the user—
can be specified to dampen the shrinking effect on thin parts
of the mesh. This parameter is used in the same form as the
smoothing value, but with the opposite effect, and its value must
be less than zero to have an effect.

Mesh optimization
Irrespective to the applied surface extraction algorithm, the tes-
sellation of the reconstructed surface depends primarily on the
resolution of the volume grid that is used to sample and vox-
elize the input mesh. For convenience, the resolution is set in
terms of number of voxels per micron. The resolution is a free
parameter that is either controlled by the user or automati-
cally set based on the axis-aligned bounding box (AABB) of the

input mesh, the size of the finest detail in the mesh and the
scale or focus of the potential experiment in which the resulting
mesh will be plugged in. Ultraliser takes advantage of binary
volume grids, in which each voxel is represented in memory
with a single bit; it is therefore capable of creating large-scale
volumes which can resolve the finest features of an object, for
example: the ultrastructure of a dendritic spine in tall-tufted
layer 5 pyramidal neurons [98]. With such resolutions, the recon-
structed mesh is excessively tessellated, possibly with tens of
millions of polygons, whose practicality is undoubtedly ques-
tionable. Ultraliser integrates a mesh optimization module that
can adaptively refine highly tessellated meshes to create opti-
mized counterparts with preserved features. The mesh optimiza-
tion module extends an existing implementation [99] that uses
an angle-based approach for adaptive tessellation and normal-
based smoothing to guarantee the quality of the resulting surface.
The optimization process includes: surface smoothing, normal
smoothing, flat coarsening, dense coarsening and also adaptive
optimization.

Watertightness verification
The optimized meshes are guaranteed to have good topology and
convenient polygonization, nevertheless, their watertightness is
not guaranteed; the optimizer might introduce self-intersecting
triangles depending on surface complexity and roughness. Water-
tightness has been addressed by extending an existing solution
based on MeshFix [89] that uses a heuristic iterative approach
that strives to reconstruct a single compact manifold with
neither degeneracies nor self-intersections from a low quality
input.

Meshes with multiple partitions
In certain cases, 3D models of cellular structures are not com-
posed of a single and continuous object (or partition), but rather
of multiple fragmented objects that could be spatially overlap-
ping. This fragmentation is common due to labeling or tracing
artifacts that arise during the segmentation of cellular models
characterized with complex or thin structures [100] such as astro-
cytes, neurons or microglia (refer to Supplementary Table S3-
Partitions). Applying mesh reconstruction kernels to segmented
volume stacks of such cellular models will result in polygonal
surface meshes with multiple partitions, in which each partition
is isolated as an independent set of polygons, nevertheless, and
is still part of the mesh. Mesh analysis applications expect a
watertight mesh to have a single partition represented as a set
of connected vertices, edges and faces on a continuous manifold.
Processing fragmented meshes with multiple partitions requires
special handling to avoid generating incomplete or even non-
watertight meshes. We allow the user to choose either to process
the largest partition in the mesh and remove the other ones
or to preserve all the partitions in the mesh. In the latter case,
each partition is split and treated as an independent mesh object
during the optimization. Afterwards, all the partitions are grouped
together in a single mesh objects.

Watertight mesh generation from input triangle
soup
Triangular soups of fragmented non-watertight meshes are pro-
cessed to create watertight counterparts in two steps: voxeliza-
tion and isosurface polygonization. Initially, the input mesh is
triangulated, in which each polygon (n-gon: n > 3) in the mesh
is split into a list of corresponding triangles. The AABB of the
mesh is then computed. Based on the dimensions of this AABB
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and the voxelization resolution (in voxels per micron) defined by
the user, a binary 3D volume grid is created to cover the spatial
extent of this AABB. The mesh is converted into a volumetric shell
using surface voxelization, where every triangle along the surface
of the mesh is independently rasterized in the volume grid. The
interior of the resulting volumetric shell is then filled using solid
voxelization; a 2Dflood-filling kernel is applied independently
to every slice in the grid along the Z-axis. If the input mesh
was suspected to have loops, three-way solid voxelization is then
performed, in which the flood-filling kernel is applied along the X,
Y and finally the Z axis. In the second stage, the binary volume grid
is processed by a user-selected isosurface polygonization kernel
(MC or DMC) to reconstruct a low-quality triangular mesh. This
mesh is then post-processed to generate an optimized watertight
manifold in three steps: (i) surface smoothing using the Laplacian
operator, (ii) re-tessellation to remove unnecessary small triangles
resulting from the polygonization process, and (iii) watertightness
verification, ensuring that all self-intersecting triangles, boundary
edges, floating vertices and non-manifold edges and vertices are
removed.

Watertight mesh generation from input
morphology skeletons
The conversion of morphology skeletons into watertight meshes is
performed in two steps: (i) creation of intermediate proxy meshes
that can be accurately rasterized into volumetric grids and (ii)
applying the remeshing routine used to create watertight meshes
from triangle soups. These proxy meshes are known to be spatially
overlapping and self-intersecting, but they are only used to raster-
ize the geometry of every section in the morphology into the vol-
ume grid. We implemented two algorithms to build these proxy-
meshes. The first one converts every section in the morphology
into an independent mesh. Each mesh is overlapping with its
adjacent ones that correspond to parent and child sections in the
morphology. To guarantee the continuity between the neighboring
sections at their branching points, packing spheres are added.
The radius of every sphere is computed based on the largest
terminal sample of all the sections connected at the respective
branching point. This algorithm is optimum to reconstruct vas-
culature meshes from their corresponding morphologies and, in
general, can be applied to handle structures with cyclic graphs.
The other algorithm computes the longest connected paths along
the graph of an input morphology to create a proxy mesh, not on
a per-section-basis, but rather on a per-path-basis. Every path is a
continuous list of samples that can represent an individual sec-
tion or an aggregate of two adjacent sections or more. This algo-
rithm is well suited to handle morphologies with directed acyclic
graphs, including neuronal arborizations and astroglial processes.
As illustrated in Supplementary Figures S76–S78, each section in
the morphology is composed of a sequence of samples, each
defines a position and radius. For each section, or path, a mesh
is reconstructed by resampling the corresponding segments using
the cubic Hermite spline interpolation. The positions and tangents
of the new samples are defined by Supplementary Equations 1
and 2. To avoid loops or self-intersections between the different
sections in the reconstructed mesh, the tangent at each original
segment point is computed using the Centripetal CatmullRom
spline formulation, that uses the positions of the previous and
next samples to the current segment, as shown by Supplementary
Equations 3 and 4. Once all new samples of the section are
computed, a sectional geometry in the form of circumference
is used to interpolate along the path to construct a connected

vertex assembly in the form of a tubular mesh (Supplementary
Section 9).

Watertight mesh generation from input volumes
Input volumes are directly converted into watertight meshes
using isosurface polygonization followed by watertightness ver-
ification. 1-bit volumes, binary volumes or segmented masks are
directly processed to reconstruct a surface mesh. However, n-bit
grayscale volumes, where n is 8, 16, 32 or 64, require specifying
an additional parameter to complete the process: the isovalue,
with which an isosurface is segmented and used for surface
reconstruction.

Volume generation from input meshes or
morphologies
Volume generation is implicit; it is automatically implemented
within the remeshing pipeline during the voxelization stage.
Unless specified, resulting volumes are binary, in which every
voxel is represented by a single bit, and therefore, these volumes
are not annotated to account for any variations across the
spatial extent of the volume. To create annotated volumes,
Ultraliser::VoxelGrids are used for voxelization, in which we can
assign annotation indices to every voxel in the grid. Volumes can
be exported into BIN (1-bit), RAW (8-bit) and NRRD (8-bit) files.

Tetrahedralization
Ultraliser reads tetrahedral meshes for the purpose of data con-
version between formats, i.e. to create watertight surface meshes
and volumes from tetrahedral inputs using ultraTet2Surface. How-
ever, it does not implement any tetrahedral mesh generators
within its pipeline to create meshes in a direct manner. For this
purpose, we rely on existing implementations, mainly TetGen [38]
(tetgen.org) and Gmsh [40] (gmsh.info), which can complement
our pipeline to create tetrahedral volumetric meshes from the
watertight meshes created by Ultraliser.

Generating biologically realistic neuronal meshes
from digitized morphologies
A 3D somatic profile is created based on a finite element method
(FEM) approach [73]. The algorithm takes into account the coordi-
nates of the initial segments of the neurites that only emanate
from to the soma. The connected neurites are identified in a
pre-processing step, in which the distance between the initial
segments to the center of the soma is evaluated and relatively
compared with respect to its average radius. The soma is initially
modeled by a tetrahedral icosahedron (or icosphere) approximat-
ing the mean radius of the soma. Projective mapping is then
applied, where cross-sectional areas of the initial segments of
the connected neurites are projected onto the icosphere. Vertices
located within every projection surface are selected and grouped
together to identify their center. Simultaneously, a pulling force
is applied at every center to deform the icosphere towards the
neurites, giving it a realistic profile.

Every tree corresponding to an individual neurite in the mor-
phology is then processed and converted into a proxy mesh.
As aforementioned, proxy meshes are not watertight, but they
are essential to reconstruct a volumetric shell in the following
voxelization stage. Mesh branching at bifurcation (or trifurca-
tion) points is not explicitly implemented; most mesh branch-
ing algorithms at small branching angles (less than 30◦) fail to
reconstruct an organic and accurate bifurcation geometry. To
guarantee continuous branching, whatever the conditions at the
bifurcation point, we implemented an exhaustive algorithm that
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builds all the possible paths starting from the soma and until the
terminal segments. At every section in the morphology, the algo-
rithm reconstructs all the path combinations between the section
itself, its parent section and the child sections. These formed
paths are considered as independent polylines with thickness.
Each segment of the path is resampled using the cubic Hermite
spline interpolation to compute the positions and tangents of the
new generated intermediate nodes. Once all new nodes of the
path are computed, to mesh the complete polyline, a sectional
geometry in the form of circumference is placed at the origin of
coordinates of the plane defined by the position and the tangent
at each node. The tangent of the node is taken as the normal
vector of the plane. Finally, since the sectional geometry keeps
the same number of vertices along the path, the vertex assem-
bly consists in a simple connection between the already sorted
vertices.

To improve the realism of the resulting mesh models, we
extracted ∼50 spine meshes (Supplementary Figure S79) from
the four neurons shown in Supplementary Figures S10–S13. Each
neuronal mesh is loaded in Blender, where spine geometries are
visually identified. Afterwards, and for each spine, we created a
bounding box covering its spatial extent and overlapping with
the dendritic section it emanates from. We then applied, per
spine, a mesh intersection operator to extract its geometry as
an independent object. The spines are oriented along the Y-
axis after identifying their base and apex. Spine geometries are
then processed to clean any self-intersecting facets along their
surfaces, optimized and finally exported as independent mesh
objects.

Generating astroglial meshes from complete
synthetic morphologies
In terms of representation, processes of astroglial cells are sim-
ilar to neuronal arborizations, except that they have relatively
compact extents and star-shaped structure, and are excessively
oversampled in certain cases [15]. Moreover, astrocytic morpholo-
gies contain triangular surface patches that represent their end-
feet geometries (Supplementary Figure S77). Therefore, the same
routine used to reconstruct neuronal meshes is applied to build
astrocytic somata and processes. We then extended the imple-
mentation to generate endfeet proxy meshes using implicit sur-
faces. Endfeet patches are composed of a set of connected trian-
gles and their respective vertices, and each vertex has a specific
diameter that accounts for thickness at this particular vertex.
Implicit surface modeling requires sufficient vertex density to
avoid fragmented mesh partitions. Accordingly, we resample the
surface of every endfoot patch, in which the distance between
any two connected vertices across the patch is greater than the
thickness of the endfoot. Following to the rasterization of the
somatic and processes proxy meshes, resulting endfeet proxy
meshes are rasterized to create a continuous volume shell of the
entire astrocyte morphology. Surface reconstruction routines (MC
or DMC) are directly applied on the resulting volume shell without
applying solid voxelization. During the surface optimization pro-
cess, all the internal mesh partitions are automatically removed.
The partition with largest surface area (or tessellation), which
represents the astrocytic membrane, remains.

Generating continuous cellular meshes from
fragmented components
In general, ultraMeshes2Mesh can compile a group of individual
meshes into a single mesh object. If the input meshes are not

spatially overlapping at all, then the resulting mesh will be com-
posed of multiple partitions. In case that all the input meshes are
overlapping, the output mesh will have a single partition with
a continuous manifold. We therefore can use this application
to generate ultrarealistic structural mesh models of neurons or
astrocytes relying on a combination of already existing methods
that are summarized in Supplementary Table S1. For neurons, we
can use the Soma Reconstruction Toolbox in NeuroMorphoVis [19]
and create a plausible somatic mesh. Skin modifiers in Blender
(blender.org) can also be used to generate neuronal arborizations
with organic-looking or realistic branching structure [24]. These
individual meshes—of the soma and arborizations—can be com-
bined together to generate a single mesh object with a contin-
uous cellular surface. If spine meshes are available [101], even
at a later stage, we can also integrate them along the dendritic
surface of the resulting mesh to create an integrated spiny mesh
model of the neuron (as shown in Supplementary Figure S81).
Nevertheless, it is the responsibility of the user to ensure that
all the meshes of the cellular components (soma, neurites and
spines) are spatially overlapping without having any gaps either
between parent and child sections or between the soma and
the all branches that originate from it, to be able to establish
a single continuous surface manifold. ultraMeshes2Mesh loads a
list of meshes grouped in a single input directory and computes
an aggregate bounding volume, with which we can identify the
spatial extent of the resulting mesh. Based on the voxelization
resolution specified by the user, a binary volume grid is created,
where the input meshes are rasterized, in parallel. The interior of
the grid is filled with solid voxelization to create a homogeneous
volume, with which the surface mesh is reconstructed, optimized
and verified to be watertight.

Creating vasculature meshes from corresponding
graph networks
Frequently, vascular skeletons vectorized from optical microscopy
stacks are excessively oversampled. We accordingly apply adap-
tive resampling to every section in the morphology to remove
any unnecessary samples while preserving its structure. In certain
cases, resampling reduces the total number of samples by 60–70%,
thus lessening the tessellation of the proxy meshes created on
a per-section-basis. To avoid fragmentation artifacts, we identify
the samples with the least radii across the entire morphology,
with which we can identify the most convenient voxelization
resolution needed to preserve the integrity of the final vascular
mesh, avoiding the structural fragmentation that arise due to
surface smoothing and optimization. Samples with comparatively
small radii –or zero-radius samples– are interpolated, and short
sections with zero-length edges are eliminated. To ensure con-
tinuity between interconnected sections, i.e. smooth and accu-
rate branching geometries, we add packing spheres (explicit ico-
spheres) at the terminal samples of each section. Proxy geome-
tries are then created on a per-section-basis and rasterized in
a volume grid. Packing spheres are also rasterized to yield a
continuous shell of voxels for every partition in the morphology.
To avoid flood-filling vascular loops, three-way solid voxelization
is applied. The resulting volume grid is finally used for mesh
reconstruction and optimization.

Data sources
Cellular and subcellular NGV meshes segmented from the volume
shown in Figure 2 are provided by the collaborating co-authors
affiliated with KAUST. Neuronal meshes shown in Figure 3,
Supplementary Figures S55–S75 and S85 are publicly available
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from the MICrONS program [48]. Neuronal morphologies shown
in Figure 4, Supplementary Figures S80, S81 and S86 are publicly
available from NeuroMorpho.Org [16]. Astrocytic morphologies
(Figure 5 and Supplementary Figure S82) are provided by Zisis
[15]. Vascular morphologies (rat’s cerebral microvasculature)
shown in Figure 6 and Supplementary Figures S83, S84 are
courtesy of Bruno Weber [22], University of Zürich (UZH). The
vascular morphology of the arterial arborizations shown in
Supplementary Figure S88 is available from the Brain Vasculature
(BraVa) database [18] (cng.gmu.edu/brava).

Key Points

• Ultraliser creates spatial models of neuro-glia-vascular
(NGV) structures with realistic geometries.

• Ultraliser creates high fidelity watertight manifolds and
large-scale volumes from centerline descriptions, non-
watertight surfaces and binary masks.

• Resulting models enable scalable in silico experiments
that can probe intricate structure–function relation-
ships.

• The framework is unrivalled both in ease-of-use and in
the accuracy of resulting geometry representing a major
leap forward in simulation-based neuroscience.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib. Datasets produced in this study are publicly available on
Zenodo (10.5281/zenodo.7105941).

Software availability
Ultraliser is developed entirely in C++. The data-parallel sections
of the code are parallelized using OpenMP [102]. The code is
released to public as an open-source software (OSS) in accordance
with the regulations of the Blue Brain Project, École polytechnique
fédérale de Lausanne (EPFL) for open sourcing under the GNU
GPL3 license. The code is freely available online at github.com/
BlueBrain/Ultraliser. The version of the code used to create all the
results demonstrated in this study is available in the Supplemen-
tary Software.
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