
Chapter 17

Bringing cell subpopulation discovery on a cloud-HPC using
rCASC and StreamFlow

1Sandro G. Contaldo, 2Luca Alessandri, 1Iacopo Colonnelli, 1Marco Beccuti
and 1Marco Aldinucci.

1Department of Computer Science, University of Turin, Turin, Italy; marco.beccuti@unito.it
2Molecular Biotechnology Center, University of Turin, Turin, Italy; l.alessandri@unito.it

Abstract

The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic

approaches and generating sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-

seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with massive high-

throughput sequencing producing billions of reads, scRNA-seq allows the assessment of fundamental biological properties of

cells populations and biological systems at unprecedented resolution.

In this chapter, we describe how cell subpopulation discovery algorithms, integrated into rCASC, could be efficiently executed

on cloud-HPC infrastructure. To achieve this task, we focus on the StreamFlow framework which provides container-native

runtime support for scientific workflows in cloud/HPC environments.

Key words: single-cell RNA sequencing, cloud computing, HPC environment StreamFlow.

1 Introduction

RNA sequencing (RNA-seq) became a routine method in biomedical research for discovering gene

expression patterns across millions of cells.

However, since RNA-seq is typically performed in bulk, which does not allow to retain the relevant

biological differences among cells. To deal with this crucial aspect single-cell RNA-seq (scRNA-

seq) analysis was developed. In scRNA-seq, each sequencing library represents a single cell.

Therefore, scRNA-seq allows assessing the fundamental biological properties of cells in more

detail.

Among the specific bioinformatics tools proposed in the literature for scRNA-seq, rCASC

(https://github.com/kendomaniac/rCASC) [1-3] is specifically designed to provide an integrated

analysis environment for cell subpopulation discovery providing a high level of flexibility and

enabling computation reproducibility as part of the data analysis. rCASC provides, in a single

computational environment, i) raw data preprocessing, ii) subpopulation discovery via different

clustering approaches and iii) cluster-specific gene signature detection. These three analysis steps

require different computational resources and computing models, leading to a workflow which

requires a heterogeneous computing environment, e.g. CPU and GPU architectures, multi-cores

hardware and multi-server environment. In particular, clustering is the most computationally

demanding activity.

In this chapter, we describe how the cell subpopulation discovery functions implemented in rCASC

can be brought on a cloud-HPC infrastructure using StreamFlow (https://streamflow.di.unito.it) [4].

In such context, StreamFlow has been leveraged to execute the workflow on top of a hybrid cloud-

HPC environment.

2 Materials

2.1 Minimal hardware/software requirements

The analyses described in the present chapter, performs best if implemented in a HPC cloud

environment, e.g. https://hpc4ai.it/.

Docker installation is required (https://docs.docker.com/get-docker/). R installation is required

(https://cran.r-project.org/). Specifically, it is required the installation of devtools library and the

rCASC github package (https://github.com/kendomaniac/rCASC).

2.2 Exemplary dataset

As exemplary dataset we used RNA5c, which is available at the GitHub repository

https://github.com/kendomaniac/single_cell_transcriptomics/tian_et_al_2018.git. This dataset

includes the human lung adenocarcinoma cell lines H2228, H1975, A549, H838 and HCC827

mixed at the same ratio. RNA-5c includes 3904 cells: 1242 cells of A549, 436 cells belong to

H1975, 749 cells of H2228, 879 cells belong to H838, and 598 cells of HCC827 cells. The raw data

set is available at GEO repository GSM3618014 [5]. The count table in GitHub has the cell types

associated with each cell name. Analysis results are available at

https://github.com/Gepiro/rCASC_StreamFlow/tree/main/Results.

2.3 Used Hardware

For the experiments reported in this chapter, we used eight virtual machines: each of them with 8

cores, 32 GB RAM, Ubuntu 20.04 LTS and Docker 20.10.6. These machines were provided by the

High-Performance Computing for Artificial Intelligence (HPCAI) center at the University of

(https://hpc4ai.unito.it/).

2.4 StreamFlow

The StreamFlow framework [4] was created as container-native runtime support for scientific

workflows on cloud/HPC environments. In particular, StreamFlow automatically manages the life

cycle of complex, multi-container environments, the remote execution of potentially distributed

tasks (e.g. MPI, MapReduce), and the data movements between subsequent steps.

StreamFlow was designed to seamlessly integrate with external coordination semantics, allowing

users to execute existing workflows on distributed infrastructures without modifying the business

logic. In particular, it is fully compliant with the Common Workflow Language (CWL) [6] open

standard. The same design concept applies to most supported execution environments, described

in an external, well-known format whenever such format exists (e.g. Helm charts for Kubernetes

deployments or Slurm scripts for HPC workloads).

StreamFlow relies on the hybrid workflows paradigm, in which the workflow steps, the topology of

deployment locations in charge of their execution, and the mapping relations among steps and

locations are included in the same model. This approach fosters portability and reproducibility,

directly including the entire execution environment in the workflow specification. Specifically, users

rely on a StreamFlow file, conventionally called streamflow.yml, to link each step in a workflow

with the service that should execute it with a declarative YAML syntax.

2.4.1 Architecture

StreamFlow input is composed of three main elements:

● A workflow description.

● One or more deployment descriptions

● A StreamFlow file to bind each step of the workflow with the most suitable execution

environment

2.4.2 How to install

It is possible to install StreamFlow as a Python package with pip command:

pip install streamflow
StreamFlow requires Python >= 3.8 to be installed on the system. Then the workflow can be

executed through the StreamFlow CLI:

streamflow run /path/to/streamflow.yml
Moreover, StreamFlow can be installed by Docker. To download the latest StreamFlow image,

the following command can be used:

docker pull alphaunito/streamflow:latest

2.5 Clustering Algorithms

There are two main types of clustering algorithms in rCASC implemented in StreamFlow:

● Hierarchical clustering algorithm

● Partitional clustering algorithm

The former type provides a hierarchical decomposition of the set of data using some criterion. The

latter one constructs various partitions and then evaluates them by some criterion. Essentially the

key differences among these clustering types are related to running time and partitioning

assumptions.

Hierarchical clustering algorithms are typically slower than other clustering methods but require

fewer assumptions providing more meaningful and subjective division of clusters. Indeed, the

hierarchical clustering algorithm requires as input only a similarity measure, while partial clustering

requires stronger assumptions such as the number of clusters and the initial centers.

2.5.1 Hierarchical Clustering

Griph

Griph [7] is an R package for the analysis of single-cell RNA-sequencing data. It provides a graph-

based approach-based Louvain modularity. Thus, it clustering approach is like agglomerative

clustering methods, where every node is initially assigned to its own community and communities

are subsequently built by iterative merging.

2.5.2 Partitional Clustering

tSne + K-means

tSne [8] + K-means [9] is often used for the analysis of single cell RNA-seq data. Indeed, firstly

data reduction is performed using the tSne method, then cells are clustered by the k-means

method, which aims partitioning the points into k groups, such that the sum of squares from points

to the assigned cluster centers is minimized.

SIMLR

SIMLR [10], single-cell interpretation via multi-kernel learning, is a framework for learning a

similarity measures from single-cell RNA-seq data in order to perform dimensionality reduction,

clustering and visualization. In particular, the clustering task is provided through k-mean clustering.

3 Methods

3.1 Executing command

To run the workflow, users must execute the following command

bash testTime.sh

The script below is present in testTime.sh file. The first part of the script, i.e. lines 1 to 6, checks if

the output directory already exists, otherwise the script creates it. Then the second part implements

the StreamFlow workflow execution.

DIR=”ResultsWorkflow”

if [-d “$DIR”]; then
 echo “$DIR exists”
else
 mkdir ResultsWorkflow
fi

now=$(date)
echo “Start time : $now” >| time.txt
streamflow run path/to/testTime.yml –outdir ResultsWorkflow
now=$(date)
echo “End time : $now” >> time.txt

3.2 StreamFlow’s file

The testTime.yml reported in hereafter contains the description of three elements required by

StreamFlow as described in section 2.4.

#!/usr/bin/env streamflow
version: v1.0
workflows:
 master:
 type: cwl
 config:
 file: /path/to/testTime.cwl
 settings: path/to/config.yml
 bindings:
 - step: /
 target:
 model: ssh-model
models:
 ssh-model:
 type: ssh
 config:
 nodes:
 - worker1
 - worker2
 - worker3
 - worker4
 - worker5
 - worker6
 - worker7

 username: ubuntu
 sshKey: /home/ubuntu/.ssh/id_rsa
 maxConcurrentSessions: 8

The above descrition of the testTime.yml file includes a link to other two files reporting the workflow

description (i.e testTime.cwl) and the deployment descriptions as for instance R scripts or count

Matrix (i.e. config.yml).

testTime.cwl file

The script above is divided in the following sections:

● inputs -> the inputs necessary to each workflow step (e.g. R scripts and the additional

parameters)

● outputs -> files or directories saved inside the output folder.

● steps -> the description of the tasks executed in step.

#!usr/bin/env cwl-runner
cwlVersion: v1.0
class: Workflow
requirements:
 ScatterFeatureRequirement: [11]
inputs:
 fileRPermutationP: File
 skeletonPermutationP: File
 index_prova: string[]
 matrix: File
 nCluster: File
outputs:
 mtxKilledCell:
 type:
 type: array
 items: File
 outputSource: permutationP/mtxKilledCell
 mtxPermutationP:
 type:
 type: array
 items: File
 outputSource: permutationP/mtxPermutationP

steps:
 permutationP:
 run: permutationClusteringP.cwl
 scatter: index
 in:
 fileRPermutationP: fileRPermutationP
 mtxTopX: matrix
 skeleton: skeletonPermutationP
 index: index_prova
 nCluster: nCluster
 out: [mtxKilledCell, mtxPermutationP]

config.yml file

The script above, contains a list of the deployment description. For each item is specified:

● class -> the item’s class (e.g File, Directory)

● path -> the item’s relative path

Finally, the execution environment is specified in the last part of testTime.yml, where ssh protocol

is the execution environment for parallelization of the workflow on 8 nodes.

In Fig. 1, the implemented workflow schema with its inputs and outputs is shown.

FIG 1

3.3 Analysis

We evaluated the speed-up achievable in clustering using StreamFlow with respect to a single

multi-core server. rCASC implements a metrics focused at evaluating the cluster stability: cell

stability score (CSS) [1]. CSS requires the perturbation of the initial dataset, i.e. removal of a

skeletonPermutationZero:
 class: File
 path: ../Zero/permutationClusteringSW.R
skeletonPermutationP:
 class: File
 path: ../RFiles/skeleton_PermutationClusteringP.R
matrix:
 class: File
 path: ../dataset/RNA-5c.csv

random subset of cells, and the clustering of the perturbed dataset. Perturbation/clustering are

repeated multiple times to evaluate the overall stability of cells partitioning, measuring how many

times each cell remains in a specific cluster independently by the effect of the perturbations

disturbing the overall dataset structure.

We tested on the RNA-5c (3904 cells), see exemplary dataset section, SIMLR, tSne + Kmean and

Griph.

FIG. 2

In Fig. 2, the effect of executing the different clustering algorithms using rCASC on a single

multicore server and StreamFlow parallelization is shown. StreamFlow shows a progressive

reduction of the clustering time with the progressive increase of the parallelization nodes with all

three clustering tools. The effect on SIMLR is the most dramatic with reduction of the clustering

time which is linearly inversely proportional to the increment of the computing nodes.

References

1. Alessandri L, Cordero F, Beccuti M, Licheri N, Arigoni M, Olivero M, Di Renzo MF, Sapino A,
Calogero R (2021) Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining.
NPJ Syst Biol Appl 7 (1):1. doi:10.1038/s41540-020-00162-6
2. Alessandri L, Ratto ML, Contaldo SG, Beccuti M, Cordero F, Arigoni M, Calogero RA (2021)
Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis. Int J
Mol Sci 22 (23). doi:10.3390/ijms222312755
3. Alessandri L, Cordero F, Beccuti M, Arigoni M, Olivero M, Romano G, Rabellino S, Licheri N,
De Libero G, Pace L, Calogero RA (2019) rCASC: reproducible classification analysis of single-
cell sequencing data. Gigascience 8 (9). doi:10.1093/gigascience/giz105
4. Colonnelli I, Cantalupo, B., Merelli, I., Aldinucci, M (2021) StreamFlow: Cross-Breeding
Cloud With HPC. IEEE Transactions on Emerging Topics in Computing 9 (4).
doi:10.1109/TETC.2020.3019202
5. Tian L, Dong X, Freytag S, Le Cao KA, Su S, JalalAbadi A, Amann-Zalcenstein D, Weber TS,
Seidi A, Jabbari JS, Naik SH, Ritchie ME (2019) Benchmarking single cell RNA-sequencing
analysis pipelines using mixture control experiments. Nat Methods 16 (6):479-487.
doi:10.1038/s41592-019-0425-8
6. Crusoe M, Abeln, S., Iosup, A., Amstutz, P.,Chilton, J., Tijanić, N., Ménager, H., Soiland-
Reyes, S., Goble, C. (2021) Methods Included: Standardizing Computational Reuse and
Portability with the Common Workflow Language. doi:
https://doi.org/10.48550/arXiv.2105.07028
7. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, Stadler MB, Strnad P,
Papasaikas P, Vischi D, Waldt A, Roma G, Liberali P (2019) Self-organization and symmetry
breaking in intestinal organoid development. Nature 569 (7754):66-72. doi:10.1038/s41586-
019-1146-y
8. van der Maate L, Hilton, G. (2008) Visualizing Data using t-SNE. Journal of Machine Learning
Research 9
9. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination
of genetic network architecture. Nat Genet 22 (3):281-285. doi:10.1038/10343
10. Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S (2017) Visualization and analysis of
single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 14 (4):414-416.
doi:10.1038/nmeth.4207
11. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD,
McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA,
Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu
LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen
TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single
cells. Nat Commun 8:14049. doi:10.1038/ncomms14049

Figures legend

Fig. 1. Implemented workflow schema: The parallelized clustering algorithm takes in input: count matrix file; the permutation file,

which is the script required to execute the parallelization; the permutation Index; the number of clusters to be uses for the

partitioning; the total number of permutations to be performed. For each permutation, that runs independently, the following files

are generated: mtxkilledCell, where all the cells that were removed as a consequence of the bootstrap algorithm are stored;

mtxPermutationP, where all the remaining cells are labeled according to the belonging cluster.

Fig. 2. Time required to cluster the 3904 cells of the RNA5c dataset, using 80 bootstraps respectively on a multi-core server with

rCASC and using StreamFlow on 1, 2, 4 and 8 nodes. A) SIMLR, B) Kmeans + tsne and C) Griph.

