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Abstract 

The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic 

approaches and generating sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-

seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with massive high-

throughput sequencing producing billions of reads, scRNA-seq allows the assessment of fundamental biological properties of 

cells populations and biological systems at unprecedented resolution.  

In this chapter, we describe how cell subpopulation discovery algorithms, integrated into rCASC, could be efficiently executed 

on cloud-HPC infrastructure. To achieve this task, we focus on the StreamFlow framework which provides container-native 

runtime support for scientific workflows in cloud/HPC environments. 
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1 Introduction 

RNA sequencing (RNA-seq) became a routine method in biomedical research for discovering gene 

expression patterns across millions of cells. 

However, since RNA-seq is typically performed in bulk, which does not allow to retain the relevant 

biological differences among cells. To deal with this crucial aspect single-cell RNA-seq (scRNA-

seq) analysis was developed. In scRNA-seq, each sequencing library represents a single cell. 

Therefore, scRNA-seq allows assessing the fundamental biological properties of cells in more 

detail. 



Among the specific bioinformatics tools proposed in the literature for scRNA-seq, rCASC 

(https://github.com/kendomaniac/rCASC) [1-3] is specifically designed to provide an integrated 

analysis environment for cell subpopulation discovery providing a high level of flexibility and 

enabling computation reproducibility as part of the data analysis. rCASC provides, in a single 

computational environment, i) raw data preprocessing, ii) subpopulation discovery via different 

clustering approaches and iii) cluster-specific gene signature detection. These three analysis steps 

require different computational resources and computing models, leading to a workflow which 

requires a heterogeneous computing environment, e.g. CPU and GPU architectures, multi-cores 

hardware and multi-server environment. In particular, clustering is the most computationally 

demanding activity.  

In this chapter, we describe how the cell subpopulation discovery functions implemented in rCASC 

can be brought on a cloud-HPC infrastructure using StreamFlow (https://streamflow.di.unito.it) [4]. 

In such context, StreamFlow has been leveraged to execute the workflow on top of a hybrid cloud-

HPC environment. 

 
2 Materials 

2.1 Minimal hardware/software requirements 

The analyses described in the present chapter, performs best if implemented in a HPC cloud 

environment, e.g. https://hpc4ai.it/. 

Docker installation is required (https://docs.docker.com/get-docker/). R installation is required 

(https://cran.r-project.org/). Specifically, it is required the installation of devtools library and the 

rCASC github package (https://github.com/kendomaniac/rCASC). 

 

2.2 Exemplary dataset 

As exemplary dataset we used RNA5c, which is available at the GitHub repository 

https://github.com/kendomaniac/single_cell_transcriptomics/tian_et_al_2018.git. This dataset 

includes the human lung adenocarcinoma cell lines H2228, H1975, A549, H838 and HCC827 

mixed at the same ratio. RNA-5c includes 3904 cells: 1242 cells of A549, 436 cells belong to 



H1975, 749 cells of H2228, 879 cells belong to H838, and 598 cells of HCC827 cells. The raw data 

set is available at GEO repository GSM3618014 [5]. The count table in GitHub has the cell types 

associated with each cell name. Analysis results are available at 

https://github.com/Gepiro/rCASC_StreamFlow/tree/main/Results. 

 

2.3 Used Hardware 

For the experiments reported in this chapter, we used eight virtual machines: each of them with 8 

cores, 32 GB RAM, Ubuntu 20.04 LTS and Docker 20.10.6. These machines were provided by the 

High-Performance Computing for Artificial Intelligence (HPCAI) center at the University of 

(https://hpc4ai.unito.it/). 

 

2.4 StreamFlow 

The StreamFlow framework [4] was created as container-native runtime support for scientific 

workflows on cloud/HPC environments. In particular, StreamFlow automatically manages the life 

cycle of complex, multi-container environments, the remote execution of potentially distributed 

tasks (e.g. MPI, MapReduce), and the data movements between subsequent steps. 

StreamFlow was designed to seamlessly integrate with external coordination semantics, allowing 

users to execute existing workflows on distributed infrastructures without modifying the business 

logic. In particular, it is fully compliant with the Common Workflow Language (CWL) [6] open 

standard. The same design concept applies to most supported execution environments, described 

in an external, well-known format whenever such format exists (e.g. Helm charts for Kubernetes 

deployments or Slurm scripts for HPC workloads). 

StreamFlow relies on the hybrid workflows paradigm, in which the workflow steps, the topology of 

deployment locations in charge of their execution, and the mapping relations among steps and 

locations are included in the same model. This approach fosters portability and reproducibility, 

directly including the entire execution environment in the workflow specification. Specifically, users 

rely on a StreamFlow file, conventionally called streamflow.yml, to link each step in a workflow 

with the service that should execute it with a declarative YAML syntax. 



 

2.4.1 Architecture 

StreamFlow input is composed of three main elements: 

● A workflow description. 

● One or more deployment descriptions 

● A StreamFlow file to bind each step of the workflow with the most suitable execution 

environment 

 
2.4.2 How to install 

It is possible to install StreamFlow as a Python package with pip command: 

pip install streamflow 
StreamFlow requires Python >= 3.8 to be installed on the system. Then the workflow can be 

executed through the StreamFlow CLI: 

streamflow run /path/to/streamflow.yml 
Moreover, StreamFlow can be installed by Docker. To download the latest StreamFlow image, 

the following command can be used: 

docker pull alphaunito/streamflow:latest  
 

2.5 Clustering Algorithms 

There are two main types of clustering algorithms in rCASC implemented in StreamFlow: 

● Hierarchical clustering algorithm 

● Partitional clustering algorithm 

The former type provides a hierarchical decomposition of the set of data using some criterion. The 

latter one constructs various partitions and then evaluates them by some criterion. Essentially the 

key differences among these clustering types are related to running time and partitioning 

assumptions. 

Hierarchical clustering algorithms are typically slower than other clustering methods but require 

fewer assumptions providing more meaningful and subjective division of clusters. Indeed, the 

hierarchical clustering algorithm requires as input only a similarity measure, while partial clustering 

requires stronger assumptions such as the number of clusters and the initial centers. 



 

2.5.1 Hierarchical Clustering 

 
Griph 

Griph [7] is an R package for the analysis of single-cell RNA-sequencing data. It provides a graph-

based approach-based Louvain modularity. Thus, it clustering approach is like agglomerative 

clustering methods, where every node is initially assigned to its own community and communities 

are subsequently built by iterative merging. 

 

2.5.2 Partitional Clustering 

tSne + K-means 

tSne [8] + K-means [9] is often used for the analysis of single cell RNA-seq data. Indeed, firstly 

data reduction is performed using the tSne method, then cells are clustered by the k-means 

method, which aims partitioning the points into k groups, such that the sum of squares from points 

to the assigned cluster centers is minimized. 

 
SIMLR 
 
SIMLR [10], single-cell interpretation via multi-kernel learning, is a framework for learning a 

similarity measures from single-cell RNA-seq data in order to perform dimensionality reduction, 

clustering and visualization. In particular, the clustering task is provided through k-mean clustering. 

  



3 Methods 

3.1 Executing command 

To run the workflow, users must execute the following command 

bash testTime.sh 
 
The script below is present in testTime.sh file. The first part of the script, i.e. lines 1 to 6, checks if 

the output directory already exists, otherwise the script creates it. Then the second part implements 

the StreamFlow workflow execution. 

DIR=”ResultsWorkflow” 
 
if [ -d “$DIR” ]; then 
  echo “$DIR exists” 
else 
  mkdir ResultsWorkflow 
fi 
 
now=$(date) 
echo “Start time : $now” >| time.txt 
streamflow run path/to/testTime.yml –outdir ResultsWorkflow 
now=$(date) 
echo “End time : $now” >> time.txt 

 
3.2 StreamFlow’s file 

 
The testTime.yml reported in hereafter contains the description of three elements required by 

StreamFlow as described in section 2.4.  

#!/usr/bin/env streamflow 
version: v1.0 
workflows: 
  master: 
    type: cwl 
    config: 
      file: /path/to/testTime.cwl 
      settings: path/to/config.yml 
    bindings: 
      - step: / 
        target: 
          model: ssh-model 
models: 
  ssh-model: 
    type: ssh 
    config: 
      nodes: 
        - worker1 
        - worker2 
        - worker3 
        - worker4 
        - worker5 
        - worker6 
        - worker7 



      username: ubuntu 
      sshKey: /home/ubuntu/.ssh/id_rsa 
      maxConcurrentSessions: 8 

 
The above descrition of the testTime.yml file includes a link to other two files reporting the workflow 

description (i.e testTime.cwl) and the deployment descriptions as for instance R scripts or count 

Matrix (i.e. config.yml).  

testTime.cwl file 

 

The script above is divided in the following sections: 

● inputs -> the inputs necessary to each workflow step (e.g. R scripts and the additional 

parameters) 

● outputs -> files or directories saved inside the output folder. 

● steps -> the description of the tasks executed in step. 

#!usr/bin/env cwl-runner 
cwlVersion: v1.0 
class: Workflow 
requirements: 
  ScatterFeatureRequirement: [11] 
inputs: 
  fileRPermutationP: File 
  skeletonPermutationP: File 
  index_prova: string[] 
  matrix: File 
  nCluster: File 
outputs:  
  mtxKilledCell: 
    type:  
      type: array 
      items: File 
    outputSource: permutationP/mtxKilledCell 
  mtxPermutationP: 
    type:  
      type: array 
      items: File 
    outputSource: permutationP/mtxPermutationP 
 
steps: 
  permutationP: 
    run: permutationClusteringP.cwl 
    scatter: index 
    in: 
      fileRPermutationP: fileRPermutationP 
      mtxTopX: matrix 
      skeleton: skeletonPermutationP 
      index: index_prova 
      nCluster: nCluster 
    out: [mtxKilledCell, mtxPermutationP]  



config.yml file 

 

The script above, contains a list of the deployment description. For each item is specified: 

● class -> the item’s class (e.g File, Directory) 

● path -> the item’s relative path 

 

Finally, the execution environment is specified in the last part of testTime.yml, where ssh protocol 

is the execution environment for parallelization of the workflow on 8 nodes. 

In Fig. 1, the implemented workflow schema with its inputs and outputs is shown. 

 

FIG 1 
 

 
3.3 Analysis 
 
We evaluated the speed-up achievable in clustering using StreamFlow with respect to a single 

multi-core server. rCASC implements a metrics focused at evaluating the cluster stability: cell 

stability score (CSS) [1]. CSS requires the perturbation of the initial dataset, i.e. removal of a 

skeletonPermutationZero: 
  class: File 
  path: ../Zero/permutationClusteringSW.R 
skeletonPermutationP: 
  class: File 
  path: ../RFiles/skeleton_PermutationClusteringP.R 
matrix: 
  class: File 
  path: ../dataset/RNA-5c.csv  



random subset of cells, and the clustering of the perturbed dataset. Perturbation/clustering are 

repeated multiple times to evaluate the overall stability of cells partitioning, measuring how many 

times each cell remains in a specific cluster independently by the effect of the perturbations 

disturbing the overall dataset structure. 

We tested on the RNA-5c (3904 cells), see exemplary dataset section, SIMLR, tSne + Kmean and 

Griph. 

 

FIG. 2 
 
In Fig. 2, the effect of executing the different clustering algorithms using rCASC on a single 

multicore server and StreamFlow parallelization is shown. StreamFlow shows a progressive 

reduction of the clustering time with the progressive increase of the parallelization nodes with all 

three clustering tools. The effect on SIMLR is the most dramatic with reduction of the clustering 

time which is linearly inversely proportional to the increment of the computing nodes.  
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Figures legend 

Fig. 1. Implemented workflow schema: The parallelized clustering algorithm takes in input: count matrix file; the permutation file, 

which is the script required to execute the parallelization; the permutation Index; the number of clusters to be uses for the 

partitioning; the total number of permutations to be performed. For each permutation, that runs independently, the following files 

are generated: mtxkilledCell, where all the cells that were removed as a consequence of the bootstrap algorithm are stored; 

mtxPermutationP, where all the remaining cells are labeled according to the belonging cluster. 

 

Fig. 2. Time required to cluster the 3904 cells of the RNA5c dataset, using 80 bootstraps respectively on a multi-core server with 

rCASC and using StreamFlow on 1, 2, 4 and 8 nodes. A) SIMLR, B) Kmeans + tsne and C) Griph.  

 


