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“One, remember to look up at the stars and not down at your feet. Two, never give up work.
Work gives you meaning and purpose and life is empty without it. Three, if you are lucky
enough to find love, remember it is there and don’t throw it away.”
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Developing a unified pipeline for large-scale structure data analysis with galaxy
number count angular power spectra

by Konstantinos TANIDIS

In this PhD thesis, we set forth to develop a cosmological parameter estimation
code for (tomographic) angular power spectra analyses of galaxy number counts
in Limber approximation and linear scales. We deem this a worthwhile purpose,
urged by the consideration that the range of scales and redshifts probed by forth-
coming surveys likely calls for a change of paradigm in the treatment of the data
and the theoretical modelling. As a starting point we include, for the first time, the
full expression for the redshift-space distortions (RSD) correction in the Limber ap-
proximation. This allows for a speed-up in computation time, and we emphasise
that only angular scales where the Limber approximation is valid are included in
our analysis. We show that a correct modelling of RSD is crucial not to bias cos-
mological parameter estimation. This happens not only for spectroscopy-detected
galaxies, but even in the case of galaxy surveys with photometric redshift estimates.
Moreover we show that a correct implementation of RSD is especially valuable in
alleviating the degeneracy between the amplitude of the underlying matter power
spectrum and the galaxy bias. We argue that our findings are particularly relevant
for present and planned observational campaigns, such as the Euclid satellite or the
Square Kilometre Array, which aim at studying the cosmic large-scale structure and
trace its growth over a wide range of redshifts and scales.
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Then, we include the weak lensing effect of magnification bias on top of density
fluctuations and RSD in our modular parameter estimation code. We thus forecast
constraints on the parameters of the concordance cosmological model, dark energy,
and modified gravity theories from galaxy clustering tomographic angular power
spectra. We find that a correct modelling of magnification is crucial not to bias the
parameter estimation, especially in the case of deep galaxy surveys. For this case
study we adopt the specifications of the Evolutionary Map of the Universe, which is
a full-sky, deep radio-continuum survey, expected to probe the Universe up to red-
shift z ∼ 6. We also show that there is a trend for more biased parameter estimates
from neglecting magnification when the redshift bins are very wide. We conclude
that this result implies a strong dependence on the lensing contribution, which is
an integrated effect and becomes dominant when wide redshift bins are considered.
Additionally, we note that instead of being considered a contaminant, magnification
bias encodes important cosmological information, and its inclusion leads to an alle-
viation of the degeneracy between the galaxy bias and the amplitude normalisation
of the matter fluctuations.

In the last part of the thesis, we apply for first time the multi-tracer technique
to angular power spectra with a likelihood-based approach. This goes beyond the
usual Fisher matrix formalism hitherto implemented in this kind of analyses, open-
ing up a window for future developments and direct application to available data
sets. At the same time, we also release a fully-operational modified version of the
publicly available code CosmoSIS, where we consistently include all the add-ons pre-
sented in the previous works. The result is a modular cosmological parameter es-
timation suite for galaxy number count angular power spectra, allowing for single
and multiple tracers, and including density fluctuations, RSD, and weak lensing
magnification. We demonstrate the improvement on parameter constraints enabled
by the use of multiple tracers on a multi-tracing analysis of luminous red galaxies
and emission line galaxies of the Dark Energy Spectroscopic Instrument. We obtain
an enhancement of 44% on the 2σ upper bound of the sum of neutrino masses. The
code is publicly available at https://github.com/ktanidis/Modified_CosmoSIS_
for_galaxy_number_count_angular_power_spectra.

https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
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Chapter 1

Introduction

The establishment of Λ cold dark matter (ΛCDM) as the concordance cosmologi-
cal model has been led by the unprecedented wealth of data obtained over the past
decades. Undoubtedly, precise measurements of the cosmic microwave background
(CMB) temperature and polarisation anisotropies (Durrer, 2008; Durrer, 2015; Ade
et al., 2014; Ade et al., 2016; Ade et al., 2015) have given profound evidence for the
validity of this model. However, several analyses and observations show a certain
degree of tension among different data sets (Spergel, Flauger, and Hložek, 2015;
Addison et al., 2016; Battye, Charnock, and Moss, 2015; Raveri, 2016; Joudaki et al.,
2017a; Joudaki et al., 2017b; Pourtsidou and Tram, 2016; Charnock, Battye, and Moss,
2017; Camera, Martinelli, and Bertacca, 2019). To tackle this issue, and possibly to
understand whether these are real hints at the necessity of a change of paradigm in
our understanding of the cosmos, a better insight of structure formation and evolu-
tion is needed, both on linear and nonlinear scales.

One way to probe the cosmic large-scale structure (LSS) and its growth is by us-
ing galaxy catalogues. Galaxy surveys are going to become as powerful as the CMB
in constraining cosmological parameters, thanks to the fact that they encode the full
three-dimensional (3D) information about the distribution of density fluctuations in
the Universe, whereas CMB is ultimately a two-dimensional (2D) surface. Therefore,
if we want to study the distribution of galaxies on cosmological scales, we would in
principle employ the Fourier-space galaxy power spectrum, Pg(k, z)(see section 3.8).
It is often dubbed ‘3D’ meaning that the wavevector k is the Fourier mode of the
3D separation s = |x1 − x2| between a pair of galaxies located at positions x1 and
x2, at redshift z. However, to link the galaxy clustering data to the Fourier power
spectrum we need to assume a background cosmology. This is due to the fact that
what we actually measure is redshifts and angles (or, equivalently, line of sight direc-
tions n̂), meaning that to translate them to 3D positions x(z, n̂) we need to assume
a cosmological background. Furthermore, the matter power spectrum is a gauge-
dependent quantity, and the arbitrariness on the choice of gauge shows up on the
largest scales (Bonvin and Durrer, 2011; Yoo, 2010; Challinor and Lewis, 2011b) . On
the contrary, the harmonic-space galaxy angular power spectrum, Cg

` , is a more suit-
able tool. It represents a natural and gauge-invariant observable for the correlation
of galaxy number counts (see e.g. Camera et al., 2018), and it is often referred to as
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‘2D’ because it is a summary statistics for the correlation of two sky maps.
Forthcoming galaxy surveys like those that will be performed at optical/near-

infrared wavelengths by the European Space Agency Euclid satellite (Laureijs et al.,
2011; Amendola et al., 2013; Amendola et al., 2018), or in the radio band by the
Square Kilometre Array (SKA) (Maartens et al., 2015; Abdalla et al., 2015; Bacon et
al., 2018) will supplement us with information that will push further our knowledge
of the Universe. Moreover, synergistic observations at different wavelengths cover-
ing large overlapping sky areas will provide us with independent measurements of
the clustering and evolution of cosmic structures, thus allowing for valuable cross-
correlation studies. This will be a major advantage to tackle systematic effects (see
e.g. Camera et al., 2017), and possibly to mitigate cosmic variance (McDonald and
Seljak, 2009b; Seljak, 2009; Fonseca et al., 2015). By doing so, multiple probes will
achieve high precision and yield strengthened results on the evaluated cosmolog-
ical model (Weinberg et al., 2013). Finally, let us emphasise that, besides galaxy
clustering, other LSS observables like weak lensing cosmic shear can be employed
simultaneously to take better advantage of their complementary information, and to
lift degeneracies among cosmological parameters.

A starting point in the literature related to such a synergistic approach has been
the combination of the galaxy clustering, galaxy-galaxy lensing and cosmic shear
(e.g. Bernstein, 2009; Joachimi and Bridle, 2010; Yoo and Seljak, 2012; Mandelbaum
et al., 2013; Cacciato et al., 2013; Kwan et al., 2017). Other sophisticated approaches
were implemented, e.g. Liu, Ortiz-Vazquez, and Hill (2016) used cross-correlations
of CMB lensing with galaxy overdensity and cross-correlations of galaxy overden-
sity and the shear field to probe the multiplicative bias for CFHTLenS. Such ap-
proaches are currently being extensively employed by the Dark Energy Survey Col-
laboration, (see e.g. Elvin-Poole et al., 2018; Abbott et al., 2018b; Abbott et al., 2018a).
Furthermore, there have been thorough theoretical investigations using non-Gaussian
covariances between galaxy clustering, weak lensing, galaxy-galaxy lensing, galaxy
cluster number counts, galaxy clusters and photometric baryon-acoustic oscillations
for photometric galaxies (Eifler et al., 2014; Krause and Eifler, 2017), also with the in-
clusion of CMB data (Nicola, Refregier, and Amara, 2016; Singh, Mandelbaum, and
Brownstein, 2017).

In chapter 2 we describe the Standard Cosmological Model and introduce the
basic concepts of modern Cosmology, while in chapter 3 we discuss about the New-
tonian perturbation theory, the structure formation and the galaxy clustering probes
as well as the correcting effects of the RSD and the weak lensing magnification bias.

The analyses part of the thesis starts with chapter 4 where we present a work that
is the first of a series in which we aim to go beyond standard Fisher matrix analyses
for the tomographic angular power spectrum of galaxy number counts. There, we
focus only on forecasts for single probes using galaxy clustering, and leave multi-
tracing for chapter 6. We consider two broad families of galaxy surveys, both of
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which are used to probe the cosmic LSS. One of them is represented by the spectro-
scopic observations, where the redshift of the galaxies is inferred with high accuracy.
The other deals with photometric surveys, where galaxies are binned into broad-
band redshift slices, due to the large uncertainty in the determination of photometric
redshifts. A noteworthy work is that of (Chaves-Montero, Hernández-Monteagudo,
and Angulo, 2018) where they studied the effect of photo-z errors on the galaxy
number counts using the Fourier-space power spectrum. We, on the other hand,
aim to study galaxy number counts by measuring the tomographic angular power
spectrum, Cg

` (zi, zj), in different redshift bins, zi and zj. The importance of the tomo-
graphic approach in galaxy clustering using the density fluctuations with auto- and
cross-spectra between photometric redshift bins, has been studied by (Balaguera-
Antolínez et al., 2018) with the 2MPZ catalogue at the local universe. To this purpose,
we adopt as proxies of the two aforementioned families of galaxy surveys a Euclid-
like photometric instrument and the specifications of HI-line galaxy observations
with the Phase 1 of the SKA (SKA1). We perform an extensive Bayesian analysis for
the two showcases, for which we generate synthetic data including both leading-
order Newtonian density fluctuations and the linear-order contribution due to RSD
(e.g. Kaiser, 1987a; Szalay, Matsubara, and Landy, 1998). Some original pieces of
work which considered a spherical harmonic analysis in redshift-space are (Scharf,
Fisher, and Lahav, 1994; Heavens and Taylor, 1995). In particular, we provide the
reader with an expression for RSD in Limber approximation (Kaiser, 1987b; LoVerde
and Afshordi, 2008). To our knowledge, this is the first in the literature along with
that of Chisari et al., 2019 published in the same period. The chapter is organised
as follows. In section 4.1 we introduce the tomographic angular power spectrum
Cg
` (zi, zj) with and without RSD (Kaiser, 1987b; Kaiser, 1992), which we implement

in the public CosmoSIS code (Zuntz et al., 2015) by using today’s Fourier-space linear
power spectrum Plin(k) provided by CAMB (Lewis, Challinor, and Lasenby, 2000). A
comparison between our Limber approximated spectra obtained with our modified
CosmoSIS module and the full solution provided by CLASS (Lesgourgues, 2011; Blas,
Lesgourgues, and Tram, 2011; Di Dio et al., 2013) is presented in subsection 4.3.1
for different test window functions. In section 4.2 we present the surveys speci-
fications and then in section 4.3, we compare the equi-spaced and equi-populated
binning scenarios via Fisher matrices for an idealistic case involving cosmological
parameters only. In addition we show the likelihood applied in the final analysis. In
section 4.4, we perform the Bayesian forecasting analysis for the same idealistic case
and then including real-world nuisance parameters. Throughout this chapter, we
assume a fiducial ΛCDM model with the best-fit parameters as of Ade et al. (2016)
(see Table 4.2 in section 4.4 for symbols and fiducial values).

Following chapter 4, the work of chapter 5, focuses on one of the SKA precursors,
the Evolutionary Map of the Universe (EMU, Norris et al., 2011) radio-continuum
survey on the Australian SKA Pathfinder (ASKAP) telescope. Unlike the photomet-
ric (optical/near-IR) and the spectroscopic (optical/near-IR or HI-line galaxy survey
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in the radio) experiments, radio continuum surveys like EMU have the advantage
of being able to scan very quickly large areas of the sky by averaging over all fre-
quencies, thus increasing the signal-to-noise ratio of each source. Despite the fact
that the deep and fast scanning in redshift space can detect a large number of galax-
ies, including also very faint sources, their redshift estimation is quite poor. Given
the insufficient redshift information, the angular tomographic clustering is usually
adopted to analyse radio continuum galaxy catalogues, instead of the more usual
three-dimensional Fourier-space power spectrum.

In this chapter, we move past the Fisher matrix approach hitherto employed, to a
full likelihood-based analysis. We particularly turn our interest to the investigation
of the cosmological information encoded in the weak lensing effect of magnification
bias on the density fluctuations of the galaxy field (see Bartelmann and Schneider,
2001, for a seminal review on gravitational lensing). This effect is widely known and
is due to the weak lensing contribution caused by the underlying matter field. It
induces a modulation in the clustering signal across redshift bins, inducing a corre-
lation between background and foreground sources.

chapter 5 is outlined as follows. In section 5.1, we introduce the harmonic-space
angular power spectrum Cg

` (zi, zj) with and without the magnification bias correc-
tion, and implement it in the publicly available CosmoSIS code (Zuntz et al., 2015). In
section 5.2, we present the EMU survey specifications and simulation results used to
construct the tomographic redshift bins that will be later applied in the analysis. In
subsection 5.4.1, we perform a comparison test between our Limber approximated
CosmoSIS code version and the full solution obtained with CLASS (Lesgourgues, 2011;
Blas, Lesgourgues, and Tram, 2011; Di Dio et al., 2013). In section 5.3, we present the
theoretical models considered, while the likelihood for the forecast is presented in
section 5.4. In section 5.5, we examine in detail the Bayesian analysis of an idealis-
tic and two realistic scenarios for the cosmological models considered, and we also
show that the redshift-space distortions (RSD) correction to the density field has
negligible effect in our case.

Finally in chapter 6 we implement the multi-tracer technique with the Dark En-
ergy Spectroscopic Instrument (DESI, Aghamousa et al., 2016) to constrain neutrino
masses. Concerning the Cosmic neutrinos, they are the most abundant particles in
the Universe after photons, yet little is known about their mass and energy budget
contribution today. Nonetheless, it has been detected with high significance, that
there are three neutrino species each having a radiation number density contribu-
tion ≈ 112/cm3 in the early Universe and a temperature around ≈ 1.6 · 10−4eV
(Ade et al., 2016). In addition to this, the neutrino oscillation measurements have
shown that there are at least two massive out of the three neutrino mass eigenstates,
contrary to the Standard Model of Particle Physics describing them as as fundamen-
tal but massless particles, and therefore suggesting that there is evidence for physics
beyond the Standard Model.

It is also known that neutrino oscillation measurements provide us not with
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the individual neutrino masses, but rather with the two squared mass splittings:
the solar splitting with ∆m2

12 ≈ 7.6 · 10−4 eV and the atmospheric splitting with
|∆m2

13| ≈ 2.5 · 10−3 eV (Gonzalez-Garcia, Maltoni, and Schwetz, 2016; Capozzi et al.,
2016; Esteban et al., 2017; Capozzi et al., 2017; Salas et al., 2018b). Given the sign un-
certainty in the atmospheric splitting we can have a normal hierarchy with ∆m2

13 > 0
and m1 ≥ 0 eV, m2 ≥ 0.0087 eV and m3 ≥ 0.049 eV the three mass eigenstates, or
an inverted hierarchy for ∆m2

13 < 0 and m1 ≥ 0.049 eV, m2 ≥ 0.05 eV, m3 ≥ 0 eV.
In case one of the three eigenstates is ≥ 0.1eV then m1 ≈ m2 ≈ m3 and we have a
quasidegenerate hierarchy. The relic neutrino density along with the oscillation data
provide a lower limit on the sum of the neutrino species which is ∑ mν ≥ 0.06eV
for normal hierarchy and ≥ 0.1eV for inverted, whilst the upper limit provided by
the latest cosmological data suggests that is ∑ mν ≤ 0.15eV at 95% confidence level
(Ade et al., 2016; Capozzi et al., 2016).

With the forthcoming experimental campaigns aimed at scrutinising the large-
scale structure of the Universe, such as the aforementioned Euclid satellite, the SKA,
the Rubin Observatory (formerly Large Synoptic Survey Telescope, LSST) (LSST Sci-
ence Collaboration et al., 2009), or the Dark Enery Spectroscopic Instrument (DESI)
(Aghamousa et al., 2016), we will be able to put constraints on the neutrino mass at
the 3-4σ level, possibly ruling out the inverted hierarchy (Blennow, 2014; Hannestad
and Schwetz, 2016; Vagnozzi et al., 2017; Simpson et al., 2017; Gerbino et al., 2017;
Salas et al., 2018a; Long et al., 2018).

Generally, the presence of massive neutrinos affects the total matter fraction in
the Universe in the sense that the linear growth of the matter fluctuations is sup-
pressed for scales k > kfs where kfs the neutrinos free streaming scale (Lesgourgues
and Pastor, 2006). This effect can be studied with lensing of the cosmic microwave
background (CMB), the clustering of galaxies and other biased tracers of the large
scale structure, and the weak lensing effect of cosmic shear, thus putting constraints
on the (sum of) neutrino mass(es) (Hu, Eisenstein, and Tegmark, 1998).

Another consequence of the presence of massive neutrinos is a scale depen-
dence induced on the linear growth rate of cosmic structures and on the galaxy
bias (LoVerde, 2014; Font-Ribera et al., 2014; Upadhye et al., 2016). These quanti-
ties, unlike the matter power spectrum, are not dependent on a specific realisation
of the density perturbation field and therefore are not affected by the cosmic vari-
ance (Seljak, 2009; McDonald and Seljak, 2009a; Bernstein and Cai, 2011). Thus, we
can decrease the measured error on these quantities by increasing the number of
tracers. With the so-called ‘multi-tracer’ technique, one considers two or more dif-
ferent galaxy populations—which are not independent by definition, since they both
trace the same underlying dark matter field, but with different biases (Guzzo et al.,
1997; Benoist et al., 1996). By multi-tracing, we effectively measure the ratio of the
two biases (see e.g. Witzemann et al., 2019), net of the stochastic nature of the power
spectrum. This is also true for the growth rate. As a result, an analysis employing
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consistently multiple tracers can yield improved constraints on the sum of the neu-
trino masses, compared to a single tracer, due to the more precise measurements on
the cosmic variance free quantities of the galaxy bias and the growth rate of struc-
tures via redshift-space distortions (RSD) (e.g. Kaiser, 1987a; Szalay, Matsubara, and
Landy, 1998).

chapter 6 is summarised as follows. In section 6.1, we describe the Limber ap-
proximated angular power spectra in the case of multi-tracing and define the RSD
and magnification bias scale dependent corrections. In section 6.2, we present our
benchmark survey specifications, namely the spectroscopic survey DESI. In sec-
tion 6.3, we review the massive neutrinos effect on the linear galaxy bias. Then,
in section 6.4 we show the likelihood used for the forecast as well as the multipole
cuts applied in our analysis. Lastly, the results are presented in section 6.5. The
modified publicly available code is described in section D.1.

In chapter 7 we discuss the drawn conclusions of the results presented in this
PhD thesis.
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Chapter 2

The Standard Cosmological Model

Cosmology is the area of physics that concerns the modelling, evolution and the
large-scale structure of the Universe at scales beyond our Galaxy. At these scales and
on a background level a spatial isotropy (the so called Copernican Principle) and ho-
mogeneity is observed throughout its history, with the Cosmic Microwave Background
(hereafter CMB) measurements (Ade et al., 2016; Hinshaw et al., 2012; Mather et
al., 1994) at the early Universe and with the galaxies distribution (Marinoni, Bel, and
Buzzi, 2012; Abazajian et al., 2009) at the late times. This assumption is the Cosmolog-
ical Principle and constitutes one of the most important Modern Cosmology pillars.
Along with this Principle and the assumption that General Relativity (hereafter GR)
holds true at all scales, cosmologists have built the Standard Cosmological Model. We
can summarize those two core elements of the Model:

• Copernican Principle: The widely accepted Standard Model implicitly agrees
with the assumption that there is no such a special spot in the Universe for
Earth to occupy. Beyond a doubt, one would need to test this further by mak-
ing observations at several different positions in the Universe, though some
tests could be done in order to check the consistency of the models supporting
it. New tests propose that there is supporting evidence in favor of the homo-
geneity, consistently showing that this statement is valid beyond the scales of
100Mpc (Ntelis et al., 2017; Laurent et al., 2016; Sarkar et al., 2009). On the
contrary, it is important to note that this accelerated Hubble expansion that we
observe, could be explained if Earth is placed in an advantaged position. This
could be the center of a large local under-density (February et al., 2010).

• GR is valid at all scales: The next basic assumption for the Standard Model is
that GR holds true at a variety of scales. GR has successfully been tested within
our Solar System at the order of ≈ 10−4pc, while the galaxy supercluster La-
niakea, which our Galaxy is part of, at the scale of ≈ 108pc. Considering the
cosmological scales, one should account for a 12 order of magnitude gap, in
order to test GR. Under this supposition, we describe the gravity as geometri-
cal, where a metric tensor characterizes the spacetime. One should know that
there is an ongoing development of non-geometrical descriptions (Milgrom,
2015; Verlinde, 2011), although the geometric one fairs well in being theoreti-
cally complex and explaining a plethora of phenomena at the same time.
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We will hereafter elaborate these ideas in a mathematical framework.

2.1 The Hubble Expansion

With the term ”Expanding Universe“ we mean that the distance between us and the
distant background galaxies is larger than that at the early times. This cosmological
recession can be described with the scale factor α = α(t). At present time t0 we
have α0 = α(t = t0) = 1 and at any earlier time t < t0, α(t) < 1. We should note
that in this thesis the subscript 0 corresponds to the present time unless otherwise
stated. The physical distance in the units of the scale factor, is defined as the comoving
distance. This means that two points at rest in the expanding universe always have
the same comoving distance between them during the evolution of the Universe.
Nonetheless, the physical distance being proportional to the scale factor changes
in time. Given that, we can set a reference frame in which an observer at rest has
coordinates that never vary in the Universe’s history. This is the Comoving frame
where we measure the distance between two points with the comoving distance
(for more details see section 2.8). Thus, at rest, an observer has varying physical
coordinates with the scale factor α, and constant comoving coordinates.

We can describe the spacetime geometry with three cases. Flat, closed or open
Universe (see Figure 2.2). The flat Universe is also called Euclidean, in which if two
particles begin to travel parallely, they shall remain as such unless/until an external
interaction occurs. In a closed (open) Universe, on the other hand, these moving
particles will converge (diverge) after a certain point, even if they initially move par-
allely. Those three cases, correspond to a null, positive or negative curvature value,
respectively. As we will see in section 2.4, in GR the spacetime geometrical prop-
erties are closely related to the energy density: We have a flat Universe with null
curvature if the energy density is equal with the total critical density. There is sub-
stantial observational evidence (Aghanim et al., 2020) suggesting that our Universe
is flat (or approximately flat).

In order to examine the history of the expansion of the Universe, one is necessary
to know the time evolution of the scale factor α(t). This dependency is given by the
Hubble factor that reads:

H(t) =
α̇

α
, (2.1)

where (̇) = d/dt denotes the derivative with respect to time. Another important
quantity which is closely related to the total critical energy density that will be dis-
cussed in section 2.4, is the Hubble constant which is the present value of the Hubble
factor: H0 = H(t0). Consider having two observers at rest in a comoving frame. The
velocity with which they are moving away from one another depends on the vary-
ing scale factor. For the local Universe (or equivalently at low redshift (definition in
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Equation 2.10) ) the Hubble Law relates the observers’ relative recessional velocity v
and physical distance between them d such that:

v = H0d, (2.2)

FIGURE 2.1: The original plot of Hubble showing the velocity-
distance relation of galaxies. The radial velocities accounting for solar
motion are shown as a function of distances calculated for incorpo-
rated stars and nebulae’s mean luminosities in a cluster. The filled
dots and the solid line represent the solar motion solution consider-
ing each nebulae separately. The solution after combining the nebulae
in groups is presented with empty dots and the dashed line. The cross
shows the mean velocity - mean distance relation for 22 nebulae that

could not have their individual distances estimated.

where the constant H0 is found 67.3 Km s−1Mpc−1 (Ade et al., 2016). Cosmol-
ogists often use the dimensionless Hubble constant which is h = 0.67 where h =

H0/100 Km s−1Mpc−1.

2.2 The metric and Friedmann Equations

For the derivation of the Fridmann equations here we assume that the speed of light
is c = 1. The core of the Standard Cosmological Model starts from the Einstein
equations:

Gαβ = 8πGTαβ. (2.3)

The quantity Gαβ is the Einstein tensor while Tαβ is the stress-energy tensor cor-
responding to the matter and energy distribution and G the gravitational constant.
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Equation 2.3 tells us that the geometry of the spacetime (on the left side) strongly
relates with this distribution (on the right side). Also:

Gαβ = Rαβ −
1
2

gαβR, (2.4)

where the quantity Rαβ is the Ricci tensor, gαβ the metric of the spacetime, and
the Ricci scalar R = Rαβgαβ stands for the curvature. Given a perfect fluid with
stress-energy tensor:

Tαβ = ρvαvβ + P(gαβ + vαvβ), (2.5)

where ρ the density, P the pressure and vα the four-velocity of the fluid, the fol-
lowing conservation law holds (Wald, 1984):

∇αTαβ = 0, (2.6)

representing the continuity and Euler equations (dynamics of classical fluids) in
the relativistic extension (for the derivation in the Newtonian regime see chapter 3).
One special case of the analytical solutions of the Einstein equation is of cosmological
importance. The geometrical metric assuming isotropy and homogeneity takes the
form:

ds2 = −dt2 + α2(t)
[

dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2)

]
, (2.7)

which is called Friedmann-Robertson-Walker metric (FRW). The quantity t is the
cosmic time, while r, θ, φ are the spatial comoving coordinates. The spatial curva-
ture denoted with K as explained in section 2.1, takes the values 0, 1,−1 for flat
(Euclidean), spherical (closed) or hyperbolic (open) geometry. If we substitute 2.7
into Equation 2.3, we obtain the Friedmann equations(

α̇

α

)2

=
8πG

3
ρ− K

α2 , (2.8)

α̈

α
= −4πG

3
(ρ + 3P). (2.9)

In the introduction of chapter 2, we explained the terms of homogeneity and
isotropy. It is actually true that the universe is not homogeneous and isotropic, oth-
erwise we would not be able to observe the structures in the Universe, such as voids,
filaments, clusters and galaxies. However, we can safely adopt this approximation
on a background level when we consider scales above some hundreds of Mpc. Un-
der this assumption the stress-energy tensor corresponds to the perfect fluid case.
Furthermore, the above equations can be simplified if we introduce the equation of
state parameter w = P/ρ for all the fluid components in the Universe: w = 0 for
non relativistic dark matter, w = 1/3 for radiation, and w = −1 for cosmological
constant. It is important to note that from Equation 2.9, the Universe in no case can
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be static but is free to contract or expand, since the assumption for ρ > 0, and P ≥ 0
always ensures α̈ 6= 0.

FIGURE 2.2: Here are presented the three possible scenarios a
universe could experience as described by the FRW metric. No-
tably, depending on the curvatures 0, 1,−1 we can have a flat
(plane), a positively curved (spherical) or a negatively curved
(hyperbolic) universe. With Ω0 we denote the total fractional
density parameter as presented in Equation 2.17 (image on

http://www.relativitycalculator.com/glossary.shtml)

It wasn’t until Hubble discovered that the Universe is expanding and therefore
each galaxy recedes from us and each other. At this point, it is noteworthy that Equa-
tion 2.2 can be recovered by the Friedmann equations. In detail, he could not esti-
mate this velocity directly, but he rather measured the Doppler shift in the objects’
spectral lines due to the growing scale factor. This displacement is the cosmological
redshift. This quantity is defined as:

z =
λ0

λ
− 1 =

α(t0)

α(t)
− 1, (2.10)

where t0 is observer’s cosmic time, λ and λ0 is the radiation wavelength traveling
from the sources and the rest frame measurement respectively. By Taylor expanding
Equation 2.10 around (t0 − t) up to second order we obtain:

z = H0(t− t0) +
(

1 +
q0

2
H0

2
)
(t0 − t)2 +O(t0 − t)2, (2.11)

where q0 is the rest frame value of the deceleration parameter defined as:

q = − 1
H2

α̈

α
. (2.12)

If we multiply with the speed of light c the linear term of Equation 2.11 assuming
z << 1 we can recover again Equation 2.2.
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2.3 Different species domination eras

As we look back in time, the Universe becomes smaller, denser and hotter. The
cosmos as we know it described by the spacetime metric is the outcome of the huge
explosion named ”Big Bang“. Nothing can be said for the singularity at the initial
moment t = 0s of the explosion since any physics occurring before tPlanck < 10−43s
needs for a satisfactory unified quantum-gravity theory which is yet to be found.
Despite the inaccessibility in the physical phenomena taking place in the newborn
Universe, we can still extract useful pieces of information about the cosmic evolution
working with Friedmann equations. After a few manipulations one can obtain the
first law of thermodynamics analogue:

d
dt
(ρα3) + P

d
dt

α3 = 0. (2.13)

If we consider an equation of state parameter for radiation with P = ρ/3 we
have:

ρ ∝ α−4, (2.14)

while for matter P = 0:

ρ ∝ α−3, (2.15)

and for dark energy P = −ρ:

ρ = constant. (2.16)

This means that matter density decreases slower than the radiation density, while
the dark energy density remains constant throughout the cosmic history. Thus, it is
evident that the cosmic history is divided into three fundamental eras: radiation,
matter and dark energy epoch, starting from the early towards the late Universe
(Figure 2.3). It is radiation dominated until t ≈ 5 · 104yr after the ”Big Bang“ when
its energy density reached that of matter at zeq ≈ 3600. The next period is that
of the non relativistic matter domination which is responsible for the formation of
structures. This lasted until α = 0.75 corresponding to t = 9.8Gyr where the dark
energy epoch started.

2.4 Fractional densities of the hypothetical fluids

In order to understand the geometry of the Universe, it is clear that the ρ quantity
from Equation 2.8 plays an important role to investigate this. We define the total
fractional density parameter today as:

Ω0 =
ρ0

ρc
, (2.17)
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FIGURE 2.3: This figure presents how the radiation (red), matter
(blue), and dark energy (green) densities evolve with the scale fac-

tor. Plot taken from Debono and Smoot, 2016

where ρ0 is the present density and

ρc =
3H0

2

8πG
, (2.18)

the critical density corresponding to a flat Universe with K = 0. In detail, the
spacetime is flat for Ω0 = 1, spherical for Ω0 < 1 and hyperbolic for Ω0 > 1 (see
again Figure 2.2). The closed scenario implies that the expansion of the Universe
would have a turnaround process leading to the ”Big Crunch“, while the open sce-
nario along with an equation of state parameter w < −1 would eventually tear apart
the spacetime causing the ” Big Rip “.

2.5 The cosmological constant problem

The groundbreaking evidence for the accelerated expansion of the Universe came
with the SNIa data analysis by Riess et al., 1998 and Perlmutter et al., 1998 (see sec-
tion 2.9 for details). In addition, the CMB measurements (Ade et al., 2016) as we
will see in section 2.6 suggest that depending on the main peak position (bottom
panel of Figure 2.5), the total fractional density is Ω0 ≈ 1. Nonetheless, the matter
contribution is found to be only 0.3 and is not enough to account for the flat uni-
verse requirement. There should exist an additional component which is the dark
energy (hereafter DE) to solve the issue. The simplest hypothesis is that this fluid
component can be described by a constant term Λ added to the stress-energy tensor:
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Gαβ = 8πGTαβ −Λgαβ, (2.19)

and the Friedmann equations now read:(
α̇

α

)2

=
8πG

3
ρ− K

α2 +
Λ
3

, (2.20)

α̈

α
= −4πG

3
(ρ + 3P) +

Λ
3

. (2.21)

Now it is pretty clear that for a given density ρ and pressure P there is Λ > 0
such that the Universe accelerates with α̈ > 0. There are many of a model for the
description of DE with that of the cosmological constant with the equation of state
parameter wDE = −1 being the simplest of all. The physical meaning of Λ is that
some form of vacuum energy fills naturally the expanding space, and since it has
constant energy density, after a certain point (see again section 2.3) it surpasses the
matter. According to the quantum field theory, these are the vacuum fluctuations
with a contribution of the order of ρvac ≈ 2 · 10110 erg · cm −3, while the cosmological
observations suggest a value ρΛ ≈ 2 · 10−10 erg · cm −3. This huge-120 order of
magnitude-gap is yet to be explained. We can now rewrite Equation 2.20 in the form
of fractional densities for all the components:

[H(z)/H0]
2 = Ωm(1 + z)3 + Ωγ(1 + z)4 + Ωk(1 + z)2 + ΩΛe3

∫ z
0

1+wDE(z′)
1+z′ dz′ , (2.22)

where all the component fractional densities:

1 =
8πG
3H2 (ρm + ργ + ρK + ρΛ) = ∑

i
Ωi, (2.23)

with Ωm the non relativistic matter density parameter including baryons, Ωγ the
radiation and relativistic matter density (neutrinos or ”hot“ dark matter), ΩΛ the DE
density parameter and ΩK the curvature density. For Euclidean (flat) Universe ΩK =

0, while for closed is negative and for open positive. In the case of cosmological
constant the general non-static term for the dark energy equation of state becomes
simply wDE(z) = wDE = −1.

Current measurements from Ade et al., 2016 show that Ωb ≈ 0.05, leaving the
rest 25% dominant gravitational component to be some form of unknown dark matter
(hereafter DM). DM lacks any kind of electromagnetic emission and its nature can
either be particle or just a modification of gravity that could provide insight about
the dark sector (including DM and DE).
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TABLE 2.1: The Ade et al., 2016 results for the cosmological param-
eters suggest that the Universe is described very well by the flat

ΛCDM model (cosmological constant and cold dark matter)

Parameter Best fit (±1σ)
Ωbh2 0.02222± 0.00023
Ωch2 0.1197± 0.0022

H0 67.3± 1.2
ΩΛ 0.685± 0.013
Ωm 0.315± 0.013

FIGURE 2.4: The theoretical prediction of the blackbody spectrum
and the COBE observations (Mather et al., 1994). The measured er-

rorbars are smaller than the thickness of the theoretical solid curve

2.6 CMB

Another important time in cosmic history, is that of recombination when the Universe
was only 380000yrs (zrec ≈ 1100), in which radiation and matter decouple. Before
that time, electrons and protons cannot form hydrogen atoms due to the constant
scattering with the high energetic interacting photons. As the scale factor grows, so
does the radiation wavelength, and eventually photons are allowed to travel long
paths freely making the primordial Universe transparent. Those fossil photons are
imprinted on the Cosmic Microwave Background (hereafter CMB), discovered back in
1965 by Penzias and Wilson, later providing us with unprecedented insights into
the fundamental cosmology. There are three full-sky satellite experiments exclu-
sively dedicated to the CMB. First, the launch of NASA’s experiment, named COs-
mic Background Explorer (COBE) in 1989 (Mather et al., 1994), then the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) in 2001 (Bennett et al., 2003) and more recently the
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ESA’s Planck in 2009 (The Planck Collaboration, 2006). COBE with angular resolu-
tion of 2o, measured the temperature fluctuations T = 2.728± 0.002K, and pointed
out the blackbody spectrum nature of the CMB whose observational errorbars are
way smaller than the thickness of the theoretical curve (see Figure 2.4). WMAP
worked with better angular resolution targeting the CMB acoustic oscillations. The
breakthrough precision measurements regarding resolution (3 times higher than the
WMAP) and sensitivity (5 times higher than the WMAP) came with Planck, provid-
ing the cleanest maps of the CMB as of today.

By looking at the CMB, it is sensible to wonder about the origin of these tem-
perature perturbations in the full sky. Now we know that these are the result of the
initial density field perturbations. The temperature perturbations read:

δT
T

=
T − T̄

T̄
, (2.24)

where T̄ is the mean temperature and T = T(n̂) is a specific temperature mea-
surement at the sky position (θ, φ).

We can also expand these fluctuations in spherical harmonics as:

δT
T

=
∞

∑
`

`

∑
m=−`

g`m(zCMB)Y`m(n̂), (2.25)

with Y`m the Laplace spherical harmonics and g`m the harmonic coefficients. The
perturbations can be quantified by introducing the temperature angular power spec-
trum. We can do this since the temperature CMB map can be assumed as a realiza-
tion of a stochastic field (the same can be also applied for the density field as we will
see in section 3.14). Thus we define:

C` =
√
〈|g`m|2〉, (2.26)

where with 〈〉 we denote the ensemble average. The bottom panel of Figure 2.5
presents the temperature angular power spectrum as a function of multipoles ` mea-
sured by the Planck satellite. It is clearly seen that the observational points agree
very well with the ΛCDM model. We can summarize the main results for the CMB
synergies as the following:

• The Universe can be considered isotropic at a remarkable extent, an observa-
tion that is consistent with the Standard Cosmological Model. The temperature
fluctuations (of the order of δT/T ≈ 10−5) are quite small, yet able to provide
useful pieces of information about the primordial density anisotropies from
which all the structures stemmed.

• Yield strict constraints on the cosmological parameters (see Table 2.1). The de-
tection of the peaks determines the values of the cosmological parameters, and
in detail, with the ratio between the first-third peak and the second-forth peak,
and the space between we can estimate the baryon and total matter density
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FIGURE 2.5: Top: In this plot we see how the CMB experiments mea-
sured the fluctuation in temperature corresponding to the primordial
seeds of the density perturbations with progressively better angu-
lar resolution. Bottom: Here we see with the red points the CMB
temperature anisotropy angular power spectrum measurements as a
function of multipoles (angular separation). The blue solid line is the
ΛCDM theory best fit (see Table 2.1). We should note that the cosmic
variance (for details see section 3.6) becomes important at large scales

where the errorbars are larger
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2.7 Inflation

Despite having been in exceptional agreement with the observational data, the Stan-
dard Cosmological Model has been, as of today, insufficient to provide a solution to
a number of problems stemming from the current observations. These issues con-
cern the fine tuning that should be impose on the initial conditions of the Universe
in order to explain what is measured.

• Flateness: As we saw in the previous section the evidence from Ade et al., 2016
suggest that the Universe is flat having a fractional density Ωtot = 1 within a
few percent accuracy. Going back in time the constraints on the unity become
even stronger. For instance, at Planck time tPlanck ≈ 10−44s the relation reads
|1−ΩtPlanck | ≤ 10−60 rendering a coincidence highly unlikely. This flattening
of the Universe warrants for a physical process acting on the early ages.

• Horizon: This is the problem of the observed homogeneity and isotropy of the
Universe. The CMB experiments have shown that the amplitude of the tem-
perature fluctuations are only ≈ 10−5 and hard to be explained by the ”Big
Bang“ scenario since the gravitational expansion gives no time for the system
to reach thermal equilibrium. Also, the horizon size at the time of recombi-
nation is half of the angular separation of two anti diametric points at the last
scattering surface. As a result, those two regions receding from each other with
speed greater than the speed of light, cannot have been in casual contact. This
is quite puzzling considering that the separation of two points by a horizon
distance at the time of recombination is ≈ 2o and at the same time the Ade
et al., 2016 measurements show that above that distance the temperature per-
turbations are very small. Given the no light interactions among those regions
this temperature homogeneity is not explainable.

• Magnetic monopoles: Accepting the ”Big Bang“ theory would also mean that
there should have been massively produced, heavy and stable primordial mag-
netic monopoles which ought to have persisted until the present day. Nonethe-
less, these relic magnetic fields are yet to be found setting quite stringent con-
straints on their density.

The inflationary solution proposed in the 1980s is the most successful theoretical
paradigm developed to overcome the problems of the ΛCDM model (for a review in
inflation see Liddle, 1999). Apart form the late cosmological expansion dominated
by the DE, it has been proposed that the Universe at the very early stages of its his-
tory underwent another outward accelerated space-time expansion dominated by a
cosmological constant ΛI . This phase lasted from the time 10−36s to roughly the time
10−33 or 10−32s after the ”Big Bang“. After that time, the Universe continued to ex-
pand but at a slower accelerated rate. Similarly to the late time DE, the origin of this
mechanism is unknown, although its existence is supported after it has successfully
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made predictions which were later confirmed by observations. It is true that the ob-
served Universe is only a small part of the enormous unobserved Universe, and the
frontier between them is the well-known cosmological horizon. Equation 2.20 can
be written down for inflation as: (

α̇

α

)2

=
ΛI

3
. (2.27)

The evolution of the scale factor for an inflationary period starting at a time tα

and lasting until tβ is:

α(t) =


αα(t/tα)1/2 if t < tα

ααe[HI(t−tα)] if tα < t < tβ

ααe[HI(tβ−tα)](t/tβ)
1/2 if t > tβ

, (2.28)

with HI =
(

ΛI
3

)1/2
the Hubble constant at the time of the inflationary period, in

which the resulting scale factor grew by:

αβ

αα
= e[HI(tβ−tα)] (2.29)

In case the inflation lasts long and is comparable with the Hubble time 1/HI , the
expansion is sudden and the cosmological horizon remains unchanged. This expo-
nential expansion results in separating two nearby regions very rapidly and their
distance finally exceeds the horizon size. The space-time starts a less accelerated ex-
pansion when the inflationary field gradually goes to vacuum and the cosmological
constant becomes zero. At this stage, the new areas that come into contact now are
the same that were pushed far beyond the horizon at the time of the inflation giving
a substantial explanation for the observed homogeneity of the temperature. Given
that the total fraction density becomes:

|1−Ω(t)| ∝ e(−2HI t), (2.30)

yielding a nearly flat curvature produced by an abrupt stretching of the space-
time even if the duration of the inflation is short. The absence of the strong magnetic
monopoles could be explained by supposing that the energy density of the particles
describing them at the time of the inflation is diluted and drops to values that cannot
be currently observed.

There has been a variety of mechanisms for the inflation. The most widely ac-
cepted scenario is the following. We can postulate that there exists a scalar field
φ(~r, t) with potential V(φ) and the perfect fluid stress-energy tensor form ρ = φ̇2/2+
V(φ) and P = φ̇2/2−V(φ). If V0 is the plateau potential as shown in Figure 2.6 and
the inflationary field is pushed from φα = 0 to φ = dφ, it starts slowly to roll down
until the end of the inflation φβ and then rapidly proceed to a meta-stable poten-
tial until reaching and oscillating around the φ = φ0 minimum. At this point the
inflationary field starts to interact with other fields and cause the reheating (where
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vacuum energy decays into some particle content). It is during the times φα-φβ tran-
sition when inflation freely occurs and the space-time expands exponentially. The
expansion then turns to a normal power-law expansion at the time in which the min-
imum is reached. Given that the plateau of the curve is quite flat and the equation
of state parameter w can take the form of

FIGURE 2.6: Here is presented the inflationary potential. The inflation
starts at φα and ends at φβ. In this initial part the curvature potential
is very flat (V(φ) = V0) to allow for slow roll in which time the Uni-
verse yields enough e-folds and then proceeds down the hill until it

reaches the minimum φ0

w =
−1 + φ̇2/2V(φ)

1 + φ̇2/2V(φ)
, (2.31)

we can have an effective cosmological constant (w = −1) driving the expansion
until φ = φ0.

Despite the general acceptance of the inflationary theory among the cosmologists
and the theoretical physicists community, there have been a series of criticisms con-
cerning the lack of substantial empirical evidence. One of the most popular is that
this inflationary field is an ad hoc artificiality accommodated to the current observa-
tions with no physical meaning. Either way this model is able to provide solutions
and it is still the most accepted for the description of the early Universe which is im-
possible to be probed directly. Hopefully, the upcoming cosmological surveys will
provide legacy datasets to be undergone thorough tests, shedding some light on this
theory.
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2.8 Cosmological distances

After having introduced the basic concepts in cosmology such as the scale factor
α, the redshift z, the Hubble constant H0, the cosmological parameters and the co-
moving frame, we will proceed with the mathematical framework of the distance
measures that have been applied in the observational cosmology.

2.8.1 Comoving distance

The comoving distance between two objects as we have already mentioned in sec-
tion 2.1 is the constant distance assuming that those two objects move along with
the Hubble flow. This is the proper distance (the measured distance with rulers at the
exact time of the observation) multiplied by the factor (1 + z). To calculate the co-
moving distance in the line of sight (hereafter l.o.s) direction between us and a distant
object at redshift z is to take all the infinitesimal contributions and integrate radially
from z = 0 to source. We can rewrite Equation 2.22 as H(z) = HoE(z). The time-
of-flight of a photon moving in a specific interval dz divided by that time α value
is given by dz/E(z). Thus, we can define the l.o.s comoving distance as the ratio of
proper distance with the scale factor α that reads the following integral:

χ(z) = dH

∫ z

0

dx
E(x)

, (2.32)

where dH = cH−1
o . This is the correct distance measurement for the large-scale

structure since it is that one between points having their distance estimated locally
today if they are both stuck within the flow of the Hubble expansion. All the other
distances in cosmology are simply based on the l.o.s comoving distance.

There is also the possibility for two objects to be separated by an angle δθ on
the sky while both of them are at the same redshift z. Then the comoving distance
between them is the angle δθ multiplied with the transverse comoving distance dtrans

which is related to the l.o.s comoving distance as:

dtrans(z) =


dH(1/

√
Ωk) sinh

(√
Ωkχ(z)/dH

)
if Ωk > 0

χ(z) if Ωk = 0
dH(1/

√
Ωk) sin

(√
Ωkχ(z)/dH

)
if Ωk < 0

. (2.33)

2.8.2 Comoving volume

Given that a specific survey targets a fraction of the sky that reads:

fsky =
Ωobs

4π
, (2.34)

with Ωobs the corresponding solid angle area, we can define the comoving vol-
ume in a redshift bin width dz:
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dV = 4π fskyχ(z)2dχ, (2.35)

and by integrating between χmin and χmax:

V =
4π

3
fsky
(
χ3

max(z)− χ3
min(z)

)
. (2.36)

2.8.3 Angular diameter distance

We can define the angular diameter distance by taking the ratio of the physical trans-
verse size l of an object to its measured angular size δθ (in radians). It is related to
the transverse comoving distance as:

dA(z) =
dtrans(z)

1 + z
=

dH

1 + z

∫ z

0

dx
E(x)

, (2.37)

with the far right part holding true for Ωk = 0. (For ΩK 6= 0 we have the dtrans

relation valid for ΩK > 0 and ΩK < 0 as given by Equation 2.33)

2.8.4 Luminosity distance

The luminosity distance can be defined as:

dL =

√
L

4πS
, (2.38)

where L is the bolometric luminosity and S the bolometric flux integrated over all
wavelengths. It is related to the angular diameter distance and the transverse comoving
distance as:

dL(z) = (1 + z)dtrans(z) = (1 + z)2dA(z) = dH(1 + z)
∫ z

0

dx
E(x)

, (2.39)

with the far right part holding true for Ωk = 0. (For ΩK 6= 0 we have the dtrans

relation valid for ΩK > 0 and ΩK < 0 as given by Equation 2.33)

2.9 Examples of geometrical probes: Supernovae Type Ia and
Baryon Acoustic Oscillations

Type Ia supernovae are objects known as ’standard candles‘, meaning that irrespec-
tive of the redshift where they are observed, they have distinct lightcurve shape from
which we can infer their distance. These objects led to the great discovery of the ac-
celerated expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1998) and on
top of that they are able to break degeneracies present in other data sets. SNIa are
observationally characterized by two quantities. The color parameter C indicating
the intrinsic reddening due to the dust present in its host galaxy at the peak of the
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FIGURE 2.7: B-band MB − 5 log h/65 as a function of time in days.
Top: As observed. Bottom: After applying the stretch factor correction

(Kim, 2004)

brightness and the stretch factor X1 which is the average light-curve stretch in time.
Thus, the observational distance modulus can be expressed as:

µobs = m∗B −MB + aX1 − βC, (2.40)

where a, β are nuisance parameters, MB is the absolute magnitude in the B band
and m∗B the rest frame peak magnitude in that band. It has been shown (Betoule, M.
et al., 2014) that there is a dependency between the SNIa MB and the mass of its host
galaxy by a step function that reads:

MB =

{
M1

B if Mstellar < 1010M�
M1

B + ∆M otherwise
, (2.41)

with ∆M a correcting nuisance parameter. The theoretical distance modulus is
defined as a function of luminosity distance:

µth = m−M = 5 log dL(z) + 25 in Mpc. (2.42)
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One can take the measurements of Equation 2.40 along with their corresponding
error provided by a vector or a covariance matrix (in the case of cross-correlations)
and the theoretical predictions of Equation 2.42 and fit several cosmological param-
eters.

The baryon acoustic oscillations (BAOs) are characteristic excess patterns ob-
served in the 2-pt correlation function of the galaxy clustering (firstly reported on
the SDSS Luminous Red Galaxies sample Eisenstein and Hu, 1998). They are pres-
sure waves produced by the DM overdensed regions on the the photo-baryonic fluid
at the early Universe. As we mentioned at the time of recombination (zrec ≈ 1100)
photons decouple from baryons and start to free stream in the Universe while the
sounds wave freeze. This exact scale is a ’standard ruler‘ and corresponds to the
sound horizon length ds = 100Mpc/h (Eisenstein et al., 2005). The isotropic mea-
surements of the BAO are taken by the ratio:

ds(zdrag)

Dv(z)
, (2.43)

where ds(zdrag) is the size of the comoving sound horizon at the redshift of the
baryon drag epoch zdrag ≈ 1060:

ds(zdrag) =
∫ ∞

zdrag

cs(z)dz
H(z)

, (2.44)

with cs(z) the sound velocity as a function of redshift:

cs(z) =
c√

3(1 + A(z))
, (2.45)

and A(z) = 3ρb/4ργ with ρb the baryon density and ργ the photon density re-
spectively. According to Eisenstein and Hu, 1998 we can approximate this term with
A(z) = 3.15× 104Ωbh2Θ−4

2.7(1 + z)−1 where Θ2.7 = TCMB/2.7. In the denominator of
Equation 2.43 we have the effective distance (Eisenstein et al., 2005):

Dv(z) =
(
(1 + z)2dA(z)2 cz

H(z)

)
, (2.46)

where dA(z) is the angular diameter distance. In the case of anisotropic measure-
ments we have two observed quantities being in the radial or transverse direction:

δz =
ds(zdrag)H(z)

c
, (2.47)

θ =
ds(zdrag)

(1 + z)dA(z)
. (2.48)

Similarly to the SNIa analysis we are able to fit cosmological parameters using
the theoretical predictions and the measured values with their joint uncertainties.
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Chapter 3

Newtonian perturbation theory,
structure formation and galaxy
clustering probes

Until this point we treat the Universe as homogeneous and isotropic at a ’Back-
ground‘ level. However, the observed Universe is inhomogeneous and the creation
and the evolution of this inhomogeneity is what we refer to as structure formation. We
can probe the Universe’s structure with the uneven distribution of galaxies called
galaxy clustering. This distribution of objects active in a broad range of frequencies
from radio to γ-rays, is of course nothing but the tracing of the non electromagneti-
cally interacting cold dark matter (hereafter CDM). The primordial fluctuations of the
young Universe were gravitationally amplified with the passing of time leading to
the structures we see today. The theory of structures is dependent on two assump-
tions:

• How these primordial fluctuations came about? The most widely accepted
scenario is inflation as we saw in section 2.7. It has been proposed that these
structures stemmed from quantum fluctuations of the inflationary field at the
time when scales crossed the horizon.

• What led the later growth of fluctuations up to the current observations. For
this less speculative part, we have the well-established GR. Although the the-
ory has been thoroughly tested, we are still unable to understand the exact
nature of the Universe’s largest components; DM and DE, the free streaming
lengths and equation of state of which affect the growth of structures.

3.1 Perfect self-gravitating fluid

The equations of motion of a perfect non-relativistic and self-gravitating fluid at a
position r and time t, with energy density ρ, pressure P << ρ and velocity v are the
Poisson, Continuity and Euler equations reading respectively:

∇2
r Φ = 4πGρ−Λ, (3.1)
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∂tρ +∇r · (ρv) = 0, (3.2)

∂tv + v · ∇rv = −1
ρ
∇rP−∇rΦ, (3.3)

with Λ the usual cosmological constant and Φ the gravitational potential such
that g = −∇rΦ where g the gravitational acceleration.

3.2 Recovering the Background cosmology: Newtonian ap-
proach

As we introduced in section 2.1 we consider the Universe as a sphere of fluid ex-
panding according to the Hubble law v = H(t)r. Considering that at r = 0, Φ = 0,
the Poisson equation becomes:

∂

∂r

(
r2 ∂Φ

∂r

)
= (4πGρ−Λ)r2, (3.4)

and if we integrate we have:

Φ =
1
6
(4πGρ−Λ)r2, (3.5)

then the Euler equation becomes:

∂H
∂t

r + H2r · ∇rr = −
1
3
(4πGρ−Λ)r, (3.6)

and since r · ∇rr = r we have:

∂H
∂t

+ H2 = −1
3
(4πGρ−Λ), (3.7)

which is the Newtonian limit of the Friedmann equations as seen in section 2.2
(there in the relativistic result has ρ + 3P instead of ρ) and finally the continuity
equation is:

∂tρ +∇r · [ρ(t)H(t)r] = ∂tρ + 3ρH = 0, (3.8)

which is the energy conservation equation giving the solution ρ ∝ α−3, the famil-
iar decay of the mass component during the expansion.

3.3 Coordinates of the comoving frame

As we have mentioned in section 2.1, any observer on the background level at phys-
ical position r has velocity v = dr/dt = H(t)r, and since the comoving distance x =

r/α(t) is constant with cosmic history, it is more convenient to be adopted. This
transforms the derivatives as:
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(
∂

∂t

)
r
=

(
∂

∂t

)
x
+

(
∂x
∂t

)
r
· ∇x =

(
∂

∂t

)
x
− H(t)x · ∇, (3.9)

with ∇ = ∇x|t and ∇r = ∇/α. Also we take ∂t at fixed comoving distance x.

3.4 Perturbed quantities

In perturbation theory we can write down a quantity as the sum of a background
(where homogeneity and FRW Universe is assumed as we saw in section 3.2) value
and a perturbation term deviating from that background value. For example at a
given point x and at a time t the energy density ρ, pressure P and the velocity v of a
perfect fluid as well as the potential Φ can be written as:

ρ = ρ(t) + δρ, (3.10)

P = P(t) + δP, (3.11)

v = α(t)H(t)x + u, (3.12)

Φ = Φ(x, t) + φ, (3.13)

with φ the perturbed gravitational potential, and u the peculiar velocity. The latter
quantity describes the deviations from the Hubble expansion in the comoving frame
with time, since a particle in the flow has a velocity:

v =
dr
dt

=
d(αx)

dt
= αHx + α

dx
dt

= αHx + u. (3.14)

The δ is the defined quantity:

δ(x, t) =
δρ(x, t)

ρ(t)
, (3.15)

as the relative density fluctuation, and it is necessary for δ ≥ −1 since always ρ ≥
0. It is possible to write these quantities for each fluid component of the Universe
(CDM, radiation, DE). DE is expected to have negligible perturbation and in case of
vaccum energy it is zero. For the late Universe we are going to focus on the matter
density fluctuations that read:

δm(x, t) =
δρm(x, t)

ρm(t)
. (3.16)

So hereafter by δ we mean δm. Generally, perturbations are very small on the
large scales, while at small scales they have grown large. Assuming that the per-
turbations are small, the approximated theory here is the linear perturbation theory.
This means that higher order terms (the product of two or more perturbations are
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zero) are eliminated. In detail, on the mean expansion rate the overdensities can-
cel the underdensities such that the average values would evolve as if there are no
perturbations at all.

The idea is that if we subtract the zero terms corresponding to the homogeneity
and isotropy from the equations, we end up with the perturbation equations contain-
ing only first order perturbation terms which are easy to be Fourier transformed.

In section 2.7 we saw that the cosmological scales exit the horizon during infla-
tion, and then later enter back as we proceed to different species domination eras.
After entering the horizon the matter fluctuations that are in subhorizon scales can
be studied with the Newtonian approach of perturbation theory, while those at super-
horizon or near the size of the horizon scales should be treated with relativistic per-
turbation theory.

Given that Equation 3.2 equals:

(1 + δ)∂tρ̄− Hρ̄x · ∇δ + ρ̄∂tδ +
ρ̄

α
∇ · [(1 + δ)(αHx + u)] = 0, (3.17)

and separating the terms to zeroth, first and second order we have:

[∂tρ̄ + 3ρ̄H] +

[
(∂tρ̄ + 3ρ̄H)δ + ρ̄∂tδ +

ρ̄

α
∇ · u

]
+

[
ρ̄

α
(u · ∇δ + δ∇ · u)

]
= 0, (3.18)

by substituting the background term and ignoring the second order perturba-
tions we get:

∂tδ +
1
α
∇ · u = 0. (3.19)

It is also easy to show that Poisson and Euler equations linearise as:

∇2φ = 4πGα2ρ̄δ, (3.20)

∂tu + Hu = − 1
αρ̄
∇δP− 1

α
∇φ. (3.21)

By taking the time derivative of Equation 3.18 we get:

∂2
tδ−

1
α

H∇ · u +
1
α
∇ · ∂tu = 0, (3.22)

and after combining this with Equation 3.20 and Equation 3.21 we yield:

∂2
tδ−

1
α

H∇ · u− 1
α
∇ ·

[
Hu +

1
αρ̄
∇δP +

1
α
∇φ

]
, (3.23)

which finally is:

∂2
tδ + 2H∂tδ− 4πGρ̄δ− 1

αρ̄
∇2δP = 0. (3.24)
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The above equation is the most fundamental in the Newtonian theory describing
the competition of gravity with pressure as seen in the terms 4πGρ̄δ and ∇2δP re-
spectively. Assuming a barotropic fluid satisfying P = P(ρ) we have:

δP =
∂P
∂ρ

ρ̄δ = c2
sρ̄δ, (3.25)

with cs the sound speed. By Fourier transforming with ∇2 → −k2 the previous
equation becomes:

∂2
tδk + 2H∂tδk +

[
k2c2

s

α2 − 4πGρ̄

]
δk = 0. (3.26)

This is but the oscillator equation in the Hubble expansion and if 4πGρ̄ < k2c2
s/α2

the pressure prevails giving rise to the sound waves of the fluid (acoustic oscilla-
tions). On the other hand, if 4πGρ̄ > k2c2

s/α2 the gravitational accretion induces
instability in the system. We can therefore define the Jeans length:

λJ = c2
s

√
π

ρ̄G
, (3.27)

and those fluctuations exceeding the Jeans length become unstable under grav-
ity, while for smaller scales they undergo pressure oscillations. For the case of a
perfect fluid with P > (−1/3)ρ the Jeans length grows faster than the comoving
scale (proportional to α) during the expansion of the Universe affecting in this way
the Fourier modes of the fluctuations, which initially start outside the Jeans scale
and grow under gravitation and then later are inside the Jeans scale and oscillate.

3.5 CDM applications

3.5.1 EdS period

Long before the DE starts to prevail and right after the matter-radiation equality, we
can describe the Universe as Einstein-de-Sitter with curvature K = 0 and pressure
P = 0. In this era the cosmological scales are way larger than the Jeans length for
the baryonic component and thus both baryons and CDM perturbations satisfy the
same dynamics equations. Soon after the recombination the baryon fluctuations δb

reaches that of the CDM δc and together behave as one single pressure-less fluid with
total fluctuations such that:

δm =
ρbδb + ρcδc

ρb + ρc
≈ δc. (3.28)

Also during this period H2 ∝ ρ ∝ α−3 and α ∝ t2/3 which means that 4πGρ =

2/(3t2). Thus, the density perturbations of matter are given by Equation 3.24 as:

∂2
tδm +

4
3t

∂tδm −
2

3t2 δm = 0. (3.29)
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There are two independent solutions to the above equation, the decaying mode
δm ∝ α ∝ t2/3 and the growing mode δm ∝ t−1. Here, we should mention that as the
Universe expands the gravitational growth has a power-law relation of δ, as opposed
to the predicted exponential one in a non-expanding scenario. The gravitational
potential remains constant since Equation 3.20 in Fourier space becomes:

− k2φ = 4πG = const. (3.30)

3.5.2 The Meszaros phenomenon

According to this effect, during the radiation domination epoch the CDM fluctua-
tions grow logarithmically for smaller scales than the sound horizon. We can gener-
alise Equation 3.24 until the j-th component for a set of only gravitationally interact-
ing fluids since CDM understands every clustered component through gravity:

∂2
tδj + 2H∂tδj − 4πG ∑

i
ρiδi −

1
α2ρ̄j
∇2δPj = 0. (3.31)

In the case of pressure-less CDM:

∂2
tδc + 2H∂tδc − 4πG ∑

i
ρiδi = 0. (3.32)

In the Newtonian approach, during the radiation epoch, the Jeans length for the
fluctuations in the radiation fluid (where cs = 1/

√
3) equals the size of the Hubble

radius. The radiation perturbations with scales below that size are oscillating sound
waves with zero time averaged density. Thus, only the CDM manage to cluster at
this period:

∂2
tδc +

1
t

∂tδc − 4πGρδc = 0, (3.33)

having used H = 1/(2t) since α ∝ t1/2, and the CDM fluctuations evolve at
cosmological timescales so:

∂2
tδc ≈ H2δc >> 4πGρcδc, (3.34)

with ρr >> ρc during radiation epoch. Therefore, we can neglect the last term
of Equation 3.33 and obtain the solutions δc = const and δc ∝ ln t, meaning that the
unclustered radiation keeps the δc growing only logarithmically.

3.5.3 Structure formation suppressed by late time Λ domination

In the late Universe the total matter component δm = δc + δb is the clustering com-
ponent so we get:

∂2
tδm + 2H∂tδm − 4πGρmδm = 0. (3.35)
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During the matter domination the above equation reduces to Equation 3.29 and
δm ∝ α, but at the time when Λ starts to dominate H ≈ const and α ∝ et

√
Λ/3. Given

that H2 >> 4πGρm so:

∂2
tδm + 2H∂tδm ≈ 0, (3.36)

with solutions δm = const or δm ∝ α−2 meaning that the growth of structure
is suppressed in Λ epoch. In addition to that, a constant density fluctuation has
as a consequence a decaying gravitational potential ∝ α−1. This is the well known
integrated Sachs-Wolfe effect leaving an imprint on the CMB.

3.5.4 The baryon perturbations after recombination

Before recombination, the baryonic component has dynamics linked to the radiation
via Compton scattering. At scales smaller than the sub-Hubble the δb oscillates sim-
ilarly to radiation, after the radiation-matter equality δc ∝ α, and the moment after
decoupling δc >> δb. Consequently, the baryons fall in the potential wells already
formed by the CDM.

Provided that we ignore Λ and the baryonic pressure, the dynamics between
baryons and CDM is given by:

∂2
tδb +

4
3t

∂tδb = 4πG(ρbδb + ρcδc), (3.37)

∂2
tδc +

4
3t

∂tδc = 4πG(ρbδb + ρcδc). (3.38)

By using Equation 3.28 and ∆ = δc − δb we can decouple these equations:

∂2
t∆ +

4
3t

∂t∆ = 0, (3.39)

having the solutions ∆ = const or ∆ ∝ t−1/3, and δm following Equation 3.29
with solutions ∝ t−1 and ∝ t2/3. We have:

δc

δb
=

ρmδm + ρb∆
ρmδm − ρc∆

→ δm

δm
= 1. (3.40)

It is clear that δb → δc, and as a result a non negligible initial value of δb at the
time of recombination leaves oscillations imprint on the late time matter fluctuation
at a particular scale. This is the BAO as we saw in section 2.9.

3.6 Statistics of a stochastic field

The perturbations are a stochastic process having their origin back to the early Uni-
verse. The locations where these over-densities (δ > 0) or under-densities (δ < 0)
occured are randomly determined, and thus we are not able to make precise theoret-
ical predictions about them. What we can do is to make predictions of the statistical
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properties of the homogeneous δ(x, t) field. These properties are defined as averages
of particular quantities. There are two kind of categories: the ensemble average and
the volume average. The former is a theoretical and the later an observational concept.
The volume average of a quantity f (x) is:

f̄ =
1
V

∫
V

d3x f (x), (3.41)

with V the volume depending on each case. Regarding the ensemble average, we
can assume that our Universe is but a single ensemble (realisation) of an infinite pos-
sible universes that could have randomly resulted from the initial fluctuations. To
know this process would mean to know the probability distribution of every quan-
tity generated. We can denote these quantities with q. These, for example, could be
the produced initial density fluctuations at all positions δ(x) or their Fourier trans-
forms δ(k) (as we will see in section 3.8). We can define the ensemble average (also
named expectation value) of a quantity f (q) depending on the q quantities as:

〈 f 〉 =
∫

dqP(q) f (q), (3.42)

where P(q) the probability distribution, and an example of f could be the density
ρ(x, t), while the integral can in general have infinite dimensions. This is the prob-
ability distribution of all the possible universes. The prediction of such probability
distribution can be made with a cosmological theory which is nonetheless unable to
reproduce our real Universe realisation out of this distribution.

In the beginning of chapter 2 we talked about the homogeneity and isotropy of the
Universe which constitute the first of the main pillars of Cosmological Principle and
can be justified with the quantum fluctuations during the inflationary period (see
section 2.7). Such properties can be described with the ensemble average. With the
term statistical homogeneity we mean that at any x the ensemble average 〈 f (x)〉 has
to be the same, so 〈 f (x)〉 = 〈 f 〉. As for the statistical isotropy, this means that while
some quantities depend on direction, the statistical properties are independent of
this. For instance, all directions are equi-probable for the case of vector v and thus
〈v〉 = 0.

One can reasonably wonder how is it possible to compare theory with obser-
vations since the reality is just one case of the theoretical ensemble. Given a large
number of realisations we should be capable of reproducing similar statistics for
a specific part of the Universe when comparing it with different parts, providing
in this way a good sample of the overall probability distribution. This is what we
call Ergodicity and gives an estimate of how well one can compare theory with ob-
servations. Cosmological perturbations are assumed to be ergodic. Any field f (x)
satisfying:

〈 f 〉 = f̄ , (3.43)
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can be called ergodic at any random location x for 〈 f 〉, and an infinite V for f̄ . If
the volume V under study is not infinite, the equality does not hold between theoret-
ical predictions f̄ and observations probing 〈 f 〉. This difference is the cosmic variance
which is inverse proportional to the volume.

3.7 Autocorrelation function

As we saw in the previous section, the stochastic quantities like the density fluctua-
tion are ergodic and therefore ρ̄ = 〈ρ〉 so 〈δρ〉 = 0 and generally 〈δ〉 = 0. Given that
we are unable to measure inhomogeneity with that quantity. However, we can take
the square of this which does not average out as 〈δ〉 and it is necessary that is always
≥ 0. It is defined as the variance of the density fluctuation:

〈δ2〉 = 〈ρ
2〉

ρ̄2 , (3.44)

and its root mean square:

δrms =
√
〈δ2〉, (3.45)

which is the absolute value we could expect in a random position. This is a
measure to test the level of inhomogeneity but nothing more beyond that. To access
more information like the sizes and the shapes of the inhomogeneities, we should
define the 2-pt autocorrelation function of the density perturbations at two locations
x1 and x2:

ξ(x1, x2) = 〈δ(x1)δ(x2)〉. (3.46)

With this function we can probe how the density fluctuations correlate between
different locations, and it can be positive if the two regions have the same sign (if
both are over-densities or under-densities) and negative if they have the opposite
sign (one over-density and one under-density). We can redefine the correlation func-
tion using the separation distance r = x2 − x1 due to the space homogeneity:

ξ(r) = 〈δ(x)δ(x + r)〉, (3.47)

and from spherical symmetry and statistical isotropy:

ξ(r) = ξ(r). (3.48)

As we can see in Figure 3.1 the correlation function is positive and large at r
smaller than the standard under- or over- density region size and then smaller at
larger r. When the separation distance is zero we have:

〈δ(x)δ(x)〉 = 〈δ2〉 = ξ(0). (3.49)
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Given only one realisation we can also write:

ξ̂(r) =
1
V

∫
d3xδ(x)δ(x + r), (3.50)

and by integrating over r:

∫
d3rξ̂(r) =

1
V

∫
d3rd3xδ(x)δ(x + r) =

1
V

∫
d3δ(x)

∫
d3δ(x + r) = 0, (3.51)

due to the last integral being δ̄ = 0. This integral applies also to ξ(r) since ξ(r) =
〈ξ̂(x)〉. Thus the correlation function ξ(r) has to be negative at a certain point, so
that an under-dense region is more probable to be found given some distance from
an over-dense region. Of primary interest is the initially positive region of ξ(r) at
small r, while for very large separations the correlation function may have a very
small amplitude and oscillate around zero.

FIGURE 3.1: This is the 2-pt correlation function obtained from the
DR9 (data release 9) of the CMASS BOSS (Baryonic Oscillation Spec-
troscopic Survey). The red dots with the errorbars are the observa-
tional points while the theoretical prediction for the ΛCDM model is
shown with the dashed line. Around the scale of 100Mpch−1 we see
the characteristic excess in the correlation function known as BAO (as

we mentioned in section 2.9 (Sánchez et al., 2012)

3.8 The Fourier transformation and the power spectrum

In order to be easier to handle the distance scales on which the physics depends,
one should separate these scales via Fourier transforming. Let us assume that the
observable Universe is within a cubic box with periodic boundary conditions of vol-
ume V = L3 and the region under study is a very small part of this, such that these
conditions cannot affect it. Thus, if we consider the volume average of the Universe,
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it has to be equal to the volume average of this box. Also the volume should be large
enough to represent a fair ensemble sample as we saw from ergodicity. We can write
to Fourier series a function f (x) as:

f (x) = ∑
k

fkeik·x, (3.52)

where the coefficients fk are given by

fk =
1
V

∫
V

f (x)e−ik·xd3x, (3.53)

and the summed wavevectors k = {k1, k2, k3} defined as:

ki =
2πni

L
, (3.54)

with ni = 0,±1,±2, and k = 0 is impossible if f (x) is a perturbation with zero
mean value. This expansion holds when the curvature of the background Universe
is flat or even closed or open provided that the curvature radius is way larger that
the size of the region under study. For separations ∆ki = 2π/L we can replace the
series with an integral:

f (x) = ∑
k

fkeik·x
[

L
2π

]3

∆k1∆k2∆k3 ≈
1

(2π)3

∫
f (k)eik·xd3k, (3.55)

with f (k) = L3 fk while the volume V and the coefficient’s size depend on each
other. The above approximation at the limit of V → ∞ is exact, taking the pair of
Fourier transform:

f (x) =
1

(2π)3

∫
f (k)eik·xd3k and f (k) =

∫
f (x)e−ik·xd3x, (3.56)

which converges requiring that for |x| → ∞, f (x)→ 0.
Now we shall expand with a Fourier series the density fluctuations:

δ(x) = ∑
k

δkeik·x, (3.57)

where

δk =
1
V

∫
V

δ(x)e−ik·xd3x, (3.58)

with δ−k = δ∗k. We should note that 〈δ(x)〉 = 0 meaning that 〈δk〉 = 0.
Having defined the correlation function ξ(x, x′) we shall proceed to the Fourier

spaced correlation 〈δ∗kδk′〉, such that the autocorrelation 〈δ∗kδk〉 = 〈|δk|2〉 ≥ 0 is
just the δk variance. Now we can calculate:

〈δ∗kδk′〉 =
1

V2

∫
d3xe−ik·x

∫
d3x′e−ik′·x′〈δ(x)δ(x′)〉, (3.59)
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and by applying x′ = x + r and 〈δ(x)δ(x + r)〉 we obtain:

=
1

V2

∫
d3xe−ik·x

∫
d3re−ik′·(x+r)〈δ(x)δ(x+ r)〉 = 1

V2

∫
d3re−ik′·rξ(r)

∫
d3xei(k−k′)·x,

(3.60)
which is finally:

=
1
V

δkk′

∫
d3re−ik·rξ(r) =

1
V

δkk′P(k), (3.61)

resulting from the fact that the plane waves are orthogonal and the space is sta-
tistically homogeneous and we have:

∫
d3xe−i(k−k′)·x = δkk′ → (2π)3δ3

D(k− k′), (3.62)

at the limit V → ∞ with δkk′ the Kronecker delta. By replacing δ(k) = Vδk we
see that the δk Fourier coefficients are correlated due to the statistical homogeneity
since:

〈δ(k)∗δ(k′)〉 = Vδkk′P(k)→ (2π)3δ3
D(k− k′)P(k). (3.63)

And the quantity called power spectrum, giving the variance of δk is defined as:

P(k) = V〈|δk|2〉 =
∫

d3re−ik·rξ(x), (3.64)

which is the 3-dimensional Fourier transform of the correlation function ξ(x):

ξ(r) =
1

(2π)3

∫
d3keik·rP(k), (3.65)

and is always positive unlike the correlation function that goes to zero for large
separations making this one the most optimal choice when the large distances are of
interest. In addition to that, we infer from statistical isotropy that ξ(x) = ξ(x) →
P(k) = P(k) and any function maintains its spherical symmetry in the 3D Fourier
transform. It is therefore easy to write the 1-dimensional correlation function and
power spectrum in spherical coordinates:

ξ(r) =
(

1
2π

)3 ∫ ∞

0
P(k)

sin (kr)
kr

4πk2dk, (3.66)

P(k) =
∫ ∞

0
ξ(r)

sin (kr)
kr

4πr2dr. (3.67)

The power spectrum has dimensions Mpc3h−3. The density autocorrelation func-
tion reads:

ξ(0) = 〈δ2〉 =
(

1
2π

)3 ∫ ∞

0
P(k)4πk2dk =

∫ ∞

−∞
∆2(k)d ln k, (3.68)
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where we defined the dimensionless power spectrum:

∆2(k) =
k3

2π2 P(k). (3.69)

3.9 Growth factor, transfer function and matter power spec-
trum

At the time of matter-radiation equality (where ρr = ρm) those modes with k > keq

are inside the horizon while those for k < keq are outside. Also, during radiation
domination it holds that H ∝ α−2 and during the matter domination H ∝ α−3/2.
As we have already mentioned, the matter fluctuations inside the gravitational po-
tential stem from the primordial fluctuations during inflation. They were initially on
super-horizon scales due to the exponential growth and later evolved classically. GR
predicts that these fluctuations remained almost constant when outside the horizon.
After crossing the horizon they start to evolve and affect the matter fluctuations.
Regarding the CDM perturbations, they can only be influenced by the gravitational
potential since the sound velocity is zero rendering the pressure insignificant. We
should note that, the Fourier modes evolve identically at late times. Prior to that,
what is important is the exact time of the mode crossing inside the horizon and in
particular whether it occurs before or after αeq. This has the consequence that modes
with k > keq are suppressed while those with k < keq are not. Given that, we can
factorize the gravitational potential as:

Φ(k, α) = Φζ(k) · T(k) ·
D(α)

α
, (3.70)

with Φζ(k) the primordial potential, T(k) the transfer function describing the
Fourier mode evolution in the horizon crossing and at the time of the matter-radiation
equality and D(α) the scale-independent growth factor describing the late time growth
of the perturbations which is normalised as D(α) = α in the Einstein-de Sitter model.
The transfer function is usually defined as:

T(k) =
Φ(k, α+)

Φ(kLS, α+)
, (3.71)

with kLS the large-scale modes and α+ the times very close to decoupling. Also
the scale-independent growth factor can be expressed at late times as:

D(α)

α
=

Φ(k, α)

Φ(k, α+)
. (3.72)

Now we can rewrite Equation 3.70 as:

Φ(k, α) =
9
10

Φζ(k)T(k)
D(α)

α
, (3.73)
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where the prefactor corresponds to a 10% decrease at large scales during the
radiation period. Additionally, we know that in Fourier space the Poisson equation
becomes:

− k2

α2 Φ = 4πGρ̄δ, (3.74)

and with some easy manipulations we have:

δ(k, α) = −αk2Φ(k, α)
3
2 ΩmH2

0
. (3.75)

Finally by inserting Equation 3.73 we get:

δ(k, α) = −3
5

k2

ΩmH2
0

Φζ(k)T(k)D(α). (3.76)

Starting from inflation described by a scalar field we derive the power spectrum
similarly to the definition Equation 3.63 seen in section 3.8:

〈
Φζ(k)∗Φζ(k′)

〉
= (2π)3δ3

D(k− k′)Pζ(k), (3.77)

where

Pζ(k) =
50π2

9k3δ−2
H

(
k

H0

)ns−1 ( Ωm

D(α = 1)

)2

, (3.78)

with ns the spectral index and δH the large scale normalisation constant. Now,
we define the matter power spectrum (which from now on is denoted simply as P)
as:

〈
δ(k)∗δ(k′)

〉
= (2π)3δ3

D(k− k′)P(k, α), (3.79)

and considering Equation 3.76,Equation 3.77,Equation 3.78 we finally obtain for
times α > α+:

P(k, α) =
2π2δ2

Hkns

Hns+3
0

T2(k)
(

D(α)

D(α = 1)

)2

, (3.80)

which can be written at present time α = 1:

P(k) = ζ(k)T2(k), (3.81)

where ζ(k) = Akns the primordial power spectrum and A the new constant con-
taining the previous constants.

The treatment inside the horizon assuming the Newtonian approach is feasible,
while that outside the horizon warrants for the GR. The scale factor at the matter-
radiation equality is αeq = (1 + zeq)−1 = Ωr/Ωm with a wavenumber keq = Heqαeq

since the comoving distance is (Heqαeq)−1. Generally, a mode k crosses the horizon
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at the point where k = Hα. The comoving Hubble length grew after inflation, and
during the radiation period was ∝ t1/2 while in the matter period was ∝ t1/3.

As the time passed, new scales entered the horizon. Those scales for k < keq

which are larger than (Heqαeq)−1 crossed the horizon in the matter period. Those
modes never stopped growing since they grew by α2 in radiation period and by α

in matter period. Thus, the fluctuations with k < keq between a time ti before the
equality and a time t f after it evolved like:

δ(t f ) =
δ(teq)δ(t f )

δ(ti)δ(teq)
δ(ti) =

α2
eqα f

α2
i αeq

δ(ti), (3.82)

which is a scale-independent quantity, allowing the transfer function to be con-
stant at this regime.

Regarding the scales k > keq, those crossed the horizon during the radiation
period, experiencing a suppression of growth contrary to the larger scales while
inside the horizon at the radiation period. As a result a scale kcross = Hcrossαcross

is suppressed between the times tcross and teq for k > keq yielding:

δ(t f ) =
δ(tcross)δ(t f )

δ(ti)δ(teq)
δ(ti) =

α2
crossα f

α2
i αeq

δ(ti) =
α2

cross
αeq
·
(

α2
eqα f

α2
i α2

eq

)
δ(ti). (3.83)

FIGURE 3.2: The matter power spectrum as a function of scale (image
produced using the CosmoSIS package code)

with the second term being the same as in the case of k < keq and the first term
yielding the growth suppression for the mode inside the horizon at the radiation



40
Chapter 3. Newtonian perturbation theory, structure formation and galaxy

clustering probes

epoch where kcross ∝ α−1
cross. Hence, the transfer function has the scale-dependent

behavior:

T(k)

{
= 1 if k < keq

∝ k−2 if k > keq
, (3.84)

imprinted also on the present day matter power spectrum with the characteristic
bend on the scale keq ∝ hΩm (see Figure 3.2),

P(k)

{
∝ k if k < keq

∝ k−3 if k > keq
. (3.85)

We should note that in the case of including baryons on top of the cold dark mat-
ter fluctuations (hereafter CDM) we have the damping effect on the matter power

spectrum (excluding neutrinos) due to the BAOs at the scale k = nπ
(

cs
∫ trec

0
dt

α(t)

)−1

with n a positive integer.

3.10 Galaxy bias

The galaxy density fluctuations are related to the matter density fluctuations in the
large-scale limit according to:

δg = bδm, (3.86)

where the linear galaxy bias constant b accounts for the fact that the galaxies
are not the perfect representation of the underlying matter field. The galaxy bias is
generally described as a scale-independent function of redshift, the functional form
of which changes according to the galaxy survey type specifications. Nonetheless,
it can also be a scale-dependent quantity if the physics considered demands it (for
example, in a massive neutrino scenario; for details see chapter 6). Hence, the galaxy
Fourier space power spectrum due to Equation 3.79 is defined as:

Pg(k) = b2P(k). (3.87)

3.11 Growth rate

One way to discriminate between different theories of gravity and cosmological
models (Song and Percival, 2009) is with the linear growth rate f of the large-scale
structure. This parameter can be constrained with the measurements of the peculiar
velocities and the redshift-space distortions (hereafter RSD) (Raccanelli et al., 2013).
The modelling of the large-scale RSD is feasible with the linear perturbation theory
(Guzzo et al., 2008). The growth rate is defined as:

f =
d ln D
d ln α

= − (1 + z)
D

dD
dz

. (3.88)
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From Equation 3.26 we can easily derive the growth rate f evolution equation:

d f
d ln α

+ f 2 +

(
2 +

Ḣ
H2

)
=

3
2

Ωm. (3.89)

There are several parameterisations of the growth rate with the most common
and simplest that of a power-law total matter fraction parameter (Peebles, 1980):

f (z) = Ωm(z)γ, (3.90)

where γ is the growth index, which is generally a constant and time-invariant.
However, the γ value predictions can differ depending on the considered theory of
gravity. For example, the vanilla ΛCDM+GR model yields γ ≈ 0.55, while self-
accelerating Modified Gravity models predict a γ ≈ 0.68 (Linder, 2008). Thus, it is
essential that this parameter be constrained.

3.12 Redshift-space distortions

In principle, the spatial distribution of the galaxies can be reconstructed with Equa-
tion 2.32 provided that the galaxy redshifts and cosmological parameters of interest
are known. Nonetheless, in redshift-space the position of these objects is not an exact
representation of their positions. Apart from the cosmological recession, the galaxies
as members of groups, interact gravitationally with each other, as well as with their
local environment. This induces an extra term accounting for the peculiar velocities
that is added on top of the Hubble flow (see Equation 3.14) and the observed red-
shift is zobs = zcos + zpec. Thus, the resulting image of the sources in redshift-space is
squashed and deformed (see Figure 3.3). In particular, at large scales, the sources fall
into high density regions, squashing the density field in the redshift-space since the
clustering in the l.o.s direction is enhanced. This is known as the Kaiser effect (Kaiser,
1987a). In addition, the random and virialized motions of galaxies on small scales
result in the stretching of the density field when observed in redshift-space and the
clustering in the l.o.s is reduced. This is known as the Finger-Of-God effect (Jackson,
1972).

Assuming GR and neglecting the gravitational potential relating to the peculiar
velocities we can estimate the redshift of the observed light ray as:

1 + zobs =
Es(1 + us · n̂)

Eo
, (3.91)

with Es the photon energy at the source, Eo the photon energy at the observer,
us the peculiar velocity of the source and n̂ the l.o.s direction. Considering now that
there are not peculiar velocities the cosmological redshift would be:

1 + zcos =
Es

Eo
. (3.92)

From Equation 3.91 and Equation 3.92 we have:
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FIGURE 3.3: The Kaiser and the Finger-Of-God effect . The observer
is at the bottom of the figure looking up. Transverse motions do not

contribute any effect. From Thomas et al., 2004.

1 + zobs = (1 + us · n̂)(1 + zcos), (3.93)

and therefore the redshift difference induced by the source’s peculiar velocity is:

δz = zpec = zobs − zcos = (us · n̂)(1 + zcos). (3.94)

We can define the comoving distances in the real and the redshift space as r =

χ(zcos)n̂ and s = χ(zobs)n̂ respectively. By Taylor expanding to the first order the
real comoving distance:

χ(zobs) = χ(zcos + δz) = χ(zcos) +
dχ(zobs)

dzcos
δz, (3.95)

and according to the Equation 2.32 setting c = 1 we have

χ(zobs) = χ(zcos + δz) = χ(zcos) +
δz

H(zcos)
, (3.96)

and inserting Equation 3.94 we obtain:

s = r +
1 + zcos

H(zcos)
us(r) · n̂. (3.97)

From the mass conservation we know that the number desnity of galaxies ob-
served in the real and the redshift-space should be the same:

ns
gds = nr

gdr, (3.98)

which is:

nr
g(1 + δm(s))ds = nr

g(1 + δm(r))dr. (3.99)

Assuming cylindrical coordinates and the l.o.s on the z-axis direction, it holds:
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ds =
∂s
∂r

dr =
∂χ(zobs)

∂χ(zcos)
dr, (3.100)

where:

∂χ(zobs)

∂χ(zcos)
= 1 +

1
H(zcos)

∂δz
∂χ(zcos)

− 1
H2(zcos)

∂H(zcos)

∂χ(zcos)
δz, (3.101)

the third term is negligible since the Hubble rate is quite small compared to
the second term, and now using Equation 3.101, Equation 3.100, Equation 3.99 and
Equation 3.94 we finally have:

δm(s) = δm(r)−
1 + zcos

H(zcos)

∂

∂χ(zcos)
us(r) · n̂, (3.102)

which is the so-called Kaiser formula.
It is convenient to define the divergence field of velocity as follows:

θ(r) = − ∇ · us(r)
αcos f H(zcos)

, (3.103)

with the Fourier transformation:

us(k) = −iH(zcos)αcos f
k
k2 θ(k). (3.104)

Using the continuity equation Equation 3.19 and the growth rate definition Equa-
tion 3.88 we see that:

δr
m(k) = θ(k). (3.105)

Now, if we Fourier transform the observed matter fluctuation field in the plane-
parallel approximation (where the large-scale separations are smaller than the observer-
sources distance) we have:

δs
m(k) =

∫
dsδm(s)eik·s

=
∫

dr
(

δm(r)−
1

αcosH(zcos)

∂

∂χ(zobs)
us(r)·n̂

)
eik·r+ikµus/(αcos H(zcos)),

(3.106)

with µ = k̂ · n̂. Finally, keeping the linear order terms for us and δ and neglecting
the second power term in the exponential we have:

δs
m(k) = δr

m(k)−
∫

dreik·r 1
αcosH(zcos)

∂

∂χ(zcos)

∫ dk′

(2π)3 eik′·rus(k′)

= δr
m(k) + f

∫ dk′

(2π)3

∫
dre[i(k−k′)·r] kk′

k2 θ(k)

= δr
m(k) + µ2 f θ(k)

= (1 + f µ2)δr
m(k),

(3.107)
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which means that

δm(s) = (1 + f µ2)δm(r), (3.108)

and therefore the observed matter Fourier-space power spectrum is:

Ps(k, µ) = (1 + f µ2)2Pr(k). (3.109)

Due to Equation 3.86 the observed galaxy Fourier-space power spectrum reads:

Ps
g(k, µ) = b2(1 + βµ2)2Pr(k) = (1 + βµ2)Pr

g(k), (3.110)

where we define the distortion parameter β = f /b. A complete modelling of
the RSD would need for the small scale contribution of the Finger-Of-God effect.
The correct treatment for this, is to consider a dispersion model to account for the
damping effect on the non-linear scales. However, in this work we restrict our study
only in the linear regime, and therefore we do not include it.

We can expand the Ps
g(k, µ) with Legendre polynomials,

Ps
g(k, µ) = ∑

`

Ps
g,`(k)L`(µ), (3.111)

and

Ps
g,`(k) =

2`+ 1
2

∫ +1

−1
dµPs

g(k, µ)L`(µ). (3.112)

It is evident from Equation 3.108 that the terms are up to µ4 and since only the
absolute value of µ is important in the RSD, the odd multipoles Pg,1, Pg,3 are zero and
the Pg,0, Pg,2, Pg,4 which are the monopole, the quadropole and hexadecapole are non
vanishing, reading respectively:

Ps
g,0(k) =

1
2

∫ +1

−1
dµb2(1 + βµ2)2Pr(k)

=

(
b2 +

2
3

f b +
1
5

f 2
)

Pr(k),
(3.113)

Ps
g,2(k) =

5
2

∫ +1

−1
dµ

1
2
(3µ2 − 1)b2(1 + βµ2)2Pr(k)

=

(
4
3

f b +
4
7

f 2
)

Pr(k),
(3.114)

Ps
g,4(k) =

9
2

∫ +1

−1
dµ

35µ4 − 30µ2 + 3
8

b2(1 + βµ2)2Pr(k)

=

(
8
35

f 2
)

Pr(k),
(3.115)
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and provided that we know the galaxy bias b and the real matter Fourier-space
power spectrum Pr(k) we can solve the equations to find the growth rate f .

3.13 Magnification bias

It is well-known that light ray paths experience deflections by the intervening mat-
ter distribution lying on the l.o.s direction. This induces distortions in the images
of distant objects; such distortions, in the weak lensing limit, are usually decom-
posed into a ‘convergence’ κ and a ‘shear’ γ. The former—a surface mass density
integrated along the l.o.s—is responsible for changing the apparent size of a distant
galaxy’s image, whilst the latter—a complex, spin-2 quantity—stretches an observed
galaxy’s shape in different directions, making for instance ellipses out of circles (see
Clarkson, 2016, for some beautiful and intuitive illustrations of lensing distortions).
In turn, convergence and shear are jointly responsible for the magnification,

M =
∣∣(1− κ)2 − |γ|2

∣∣−1
. (3.116)

Cosmic magnification has been first measured by cross-correlating high-redshift
quasars with the low-redshift galaxies observed by the Sloan Digital Sky Survey
(Scranton et al., 2005), and later with galaxy-dust and galaxy-mass correlations by
Ménard et al., 2010. The same effect was detected with normal galaxy samples using
the Canada-France-Hawaii-Telescope Legacy Survey measurements (Hildebrandt,
H., van Waerbeke, L., and Erben, T., 2009). Furthermore, the magnification bias has
been proposed as a probe for the investigation of the primordial magnetic fields
(Camera, Fedeli, and Moscardini, 2014).

Besides being a lensing observable per se (e.g. Van Waerbeke, 2010), magnifi-
cation contributes to the observed correlation of galaxy number counts (Yoo, 2010;
Challinor and Lewis, 2011b; Bonvin and Durrer, 2011). The effect of magnification
on the observed clustering is due to foreground galaxies effectively acting as lenses
for sources in the background. On the one hand, images of a fixed set of sources are
distributed over a larger solid angle, thus reducing the number density by a factor
M−1. On the other hand, the magnification allows for the observation of fainter
sources, as the flux threshold is likewise lowered by theM−1 factor. Now, if Ng is
the comoving number density of galaxies above a certain flux threshold F∗ (or, equiv-
alently, below some magnitude threshold m∗), we can define,

Q = −
∂ ln Ng

∂ ln F

∣∣∣∣
F∗

=
5
2

∂ log10 Ng

∂m

∣∣∣∣
m∗

. (3.117)

Hence, in the weak lensing regime where M ≈ 1 + 2κ, it can be seen that the
fluctuations in galaxy number counts, δg, get a further contribution from lensing.
This is modulated byQ, for which reason is called ‘magnification bias’.1 Specifically

1An alternative notation is also known in the literature, with s = 2Q/5.
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the corrected galaxy density contrast (in comoving-synchronous gauge) is,

δg = b δm + f µ2δm + 2(Q− 1)κ, (3.118)

The first term in Equation 3.118 is the usual Newtonian density fluctuations, the
second term is RSD, and the last is the magnification contribution. According to the
convergence definition (Bartelmann and Schneider, 2001), at a lensed direction θ we
have:

κ(θ) =
1
c2

∫ ∞

0
χdχñi(χ)∇2

⊥Φ, (3.119)

where ∇2
⊥Φ the two-dimensional Laplacian of the gravitational potential in the

transverse direction and ñi(χ) reading:

ñi(χ) =
∫ ∞

χ
dχ′

χ′ − χ

χ′
ni(χ′), (3.120)

which is often called the lensing efficiency function with ni(χ) the number of
sources in a redshift bin i. After inserting the Poisson equation Equation 3.20 and
considering that the mean density is ρ̄ = 3H2

o Ωm
8πG α−3 we finally have:

κ(θ) =
3H2

o Ωm

2c2

∫ ∞

0
χdχ[1 + z(χ)]ñ(χ)δ(χ, θ). (3.121)

Thus, the magnification bias term can take the form:

2(Q− 1)κ(θ) = (Q− 1)
3H2

o Ωm

c2

∫ ∞

0
χdχ[1 + z(χ)]ñ(χ)δ(χ, θ). (3.122)

3.14 The spherical-harmonics power spectrum

The spherical-harmonics expansion of the matter fluctuations at a given position n̂
on the sky and redshift z is:

δ(r) =
∞

∑
`=0

`

∑
m=−`

g`,m(z)Y`,m(n̂), (3.123)

and multiplying with the spherical harmonic conjugate, while integrating over
the full assuming orthogonality, we get:

δ``′δmm′ =
∫

dΩY`,m(n̂)Y∗`′,m′(n̂), (3.124)

with dΩ the solid angle at n̂. Then the density fluctuations harmonic coefficients
become:

g`,m(z) =
∫

dΩY∗`′,m′(n̂)δ(r). (3.125)
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Since the density fluctuations are expanded in Fourier-space, this identity holds:

eik·r = eikµχ = ∑
`=0

i`(2`+ 1)P`(µ)j`(kχ), (3.126)

with j` the spherical Bessel function of order `. Inserting in Equation 3.125 the
coefficients become:

g`,m(z) =
1

(2π)3

∫ ∫
dkdΩY∗`,m(n̂)δ(k) ∑

`′=0
i`
′
(2`′ + 1)P`′(µ)j`′(kχ), (3.127)

which can be further simplified to

g`,m(z) =
i`

2π2

∫
dkδ(k)Y∗`,m(n̂)j`(kχ), (3.128)

g∗`,m(z) =
(−i)`

2π2

∫
dkδ(k)Y`,m(n̂)j`(kχ), (3.129)

under the property of the Legendre Polynomial:

∫
dΩY∗`,m(n̂)P′`(µ) =

4πY∗`,m(n̂)
2`+ 1

δ``′ . (3.130)

The spherical-harmonics power spectrum is defined as:

〈g`,m(zi)g∗`,m(zj)〉 = δ`,`′δm,m′C`(zi, zj), (3.131)

and substituting Equation 3.128 and Equation 3.129 we get:

〈g`,m(zi)g∗`′,m′(zj)〉 =
i`(−i)`

′

(2π2)2

∫ ∫
dkdk′Y`,m(n̂)Y∗`′,m′(n̂′)

· 〈δ(k)δ∗(k′)〉j`(kχ(zi))j`′(kχ(zj)). (3.132)

Instead of using δ which are the matter fluctuations, we are interested in the
galaxy density fluctuations following δg = bδ. Therefore, we can imagine a 2D radial
projection δ2D

g (z, n̂) which is connected to the 3D galaxy density field δg(z, n̂) as:

δ2D
g (zi, n̂) =

∫
dzni(z)δg(z, n̂) =

∫
dχni(χ)δg(χ, n̂), (3.133)

where ni(χ)dχ = ni(z)dz and
∫

dz ni(z) = 1 hold. It is convenient to rewrite
Equation 3.76 as:

δ(k, z) = C · K(k, z) · k1/2 · Pζ(k), (3.134)
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with C a new constant containing many constants, K(k, z) = T(k)D(z) and the
primordial power spectrum is now defined as Pζ(k) = As(k/k0)ns−1 with As the pri-
mordial amplitude parameter and k0 the pivot scale. The fluctuations of the density
field are:

〈δ(k, zi)δ(k′, zj)〉 = (2π)3δ3
D(k− k′)K(k, zi)K(k, zj)C2Pζ(k)k, (3.135)

and it holds that 〈δg(k, zi)δg(k′, zj)〉 = b(zi)b(zj)〈δ(k, zi)δ(k′, zj)〉. The result
after inserting 〈δ2D

g (k, zi)δ
2D
g (k′, zj)〉 and separating the angular and the radial terms

in spherical coordinates is:

〈g`m(zi)g∗`m(zj)〉 =
2
π
(−i)`i`

′
C2
∫

k3dk
∫

dχb(zi)n(zi)K(k, zi)j`(kχ(zi))

b(zj)n(zj)K(k, zj)j`′(kχ(zj)) · Pζ(k)
∫

dΩY`,m(n̂)Y∗`′,m′(n̂′), (3.136)

and finally with the property of orthogonality and from the definition Equa-
tion 3.131 we obtain the 2D tomographic angular power spectra for the galaxy den-
sity fluctuations:

Cg
` (zi, zj) = 4πC2

∫
d ln kPζ(k)W

g
` (k; zi)W

g
` (k; zj), (3.137)

with the new weight function:

Wg
` (k; zi) =

∫
dχ ni(χ)Wg

` (k, χ), (3.138)

where we have

Wg
` (k, χ) = b(χ)D(χ)T(k)j`(kχ), (3.139)

3.14.1 The RSD correction

As we have seen in section 3.12 in redshift-space the observed galaxies are affected
by the RSD. Thus, it is natural that this effect propagates to the angular power spec-
trum of the galaxy number counts. The RSD fluctuations are given by:

δRSD = f µ2δm = − ∂2

∂2(kχ)
f δm, (3.140)

and the spherical harmonic coefficient becomes:

gRSD
`,m (z) = − 1

(2π)3

∫
dkδ(k) f (z)n(z)

∂2

∂2(kχ)

∫
dΩeiµkχY∗`,m(n̂)

=
−i`

2π2

∫
dkδ(k) f (z)n(z)j′′` (kχ)Y∗`,m(n̂),

(3.141)
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after expanding the exponential according to Equation 3.126 and the Legendre
polynomial property Equation 3.130. The prime denotes derivatives with respect to
the argument of the function, viz. kχ. The angular power spectrum for the RSD
contribution is:

CRSD
` (zi, zj) = 4πC2

∫
d ln kPζ(k)WRSD

` (k; zi)WRSD
` (k; zj), (3.142)

and now the weight function:

WRSD
` (k; zi) =

∫
dχ ni(χ)WRSD

` (k, χ), (3.143)

and

WRSD
` (k, χ) = f (χ)D(χ)T(k)j′′` (kχ). (3.144)

3.14.2 The magnification bias correction

We have seen that the magnification bias fluctuations are given by:

δmag = 2(Q− 1)κ. (3.145)

Thus, the spherical-harmonic coefficient after inserting Equation 3.122 has now
the form:

gmag
`,m (z) =

1
(2π)3

∫
dkδ(k)(Q(χ)− 1)

3Ho
2Ωm

c2 [1 + z(χ)]χñ(χ)
∫

dΩeiµkχY∗`,m(n̂)

=
i`

2π2

∫
dkδ(k)(Q(χ)− 1)

3Ho
2Ωm

c2 [1 + z(χ)]χñ(χ)j`(kχ)Y∗`,m(n̂),

(3.146)

assuming again the exponential expansion Equation 3.126 and the Legendre poly-
nomial property Equation 3.130. The angular power spectrum of the magnification
bias fluctuations is:

Cmag
` (zi, zj) = 4πC2

∫
d ln kPζ(k)W

mag
` (k; zi)W

mag
` (k; zj), (3.147)

with the weight function:

Wmag
` (k; zi) = T(k)

∫
χdχ D(χ)[Q(χ)− 1]

3Ho
2Ωm

c2 [1 + z(χ)]ñ(χ)j`(kχ), (3.148)

3.14.3 The total angular power spectrum for galaxy number counts

The galaxy number count angular spectrum on linear scales can be written as
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Cg,tot
` (zi, zj) = 4πC2

∫
d ln kPζ(k)W

g,tot
` (k; zi)W

g,tot
` (k; zj), (3.149)

with the redshift-integrated kernels given by

Wg,tot
` (k; zi) = T(k)

∫
dχ D(χ)

{
b(χ)ni(χ)j`(kχ)

− f (χ)ni(χ)j′′` (kχ) + [Q(χ)− 1]wκ,i
` (k, χ)j`(kχ)

}
, (3.150)

with

wκ,i
` (k, χ) =

3ΩmH2
0

c2 [1 + z(χ)] χñi(χ) (3.151)

the lensing weight for the galaxy redshift distribution in the ith redshift bin,
ni(χ).

To sum up now, if we compare Equation 3.150 to Equation 3.118, the effect of
projecting in harmonic space becomes clear:

• Each different contribution to the fluctuations in the galaxy number density,
δg, is modulated by a peculiar quantity—the bias for the matter density con-
trast, the growth rate for the RSD, and the magnification bias for the lensing
convergence.

• Each contribution is weighted by the galaxy distribution in the redshift bin
considered—note that lensing convergence is an integrated effect, weighted
by a geometric factor, so that the source redshift distribution does not enter
explicitly the third term of Equation 3.138, but is integrated along the line of
sight via Equation 3.151.

• Each contribution is projected according to its specific spherical Bessel function—
e.g. for RSD it is derived twice, because it is a projected radial derivative.
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The importance of RSD for galaxy
number counts

4.1 The angular power spectrum of galaxy number counts

Here, we introduce the main tool of our analysis, i.e. the tomographic angular power
spectrum of galaxy number counts in the Limber approximation, for which we in-
clude RSD for the first time. To do so, we start from the Fourier-space matter power
spectrum, P(k, z), and at the end apply the Limber approximation to the harmonic-
space angular power spectrum, Cg

` (zi, zj). We modify modules of the publicly avail-
able CosmoSIS code. We check the agreement between our approximated spectra
and the full solution provided by the CLASS Boltzmann solver (see subsection 4.3.1).

4.1.1 The Fourier-space matter power spectrum

The linear matter power spectrum can be written as

Plin(k, z) = Plin(k)D2(z), (4.1)

where we also define the present-day linear matter power spectrum as Plin(k) ≡
Plin(k, z = 0). Hereafter, we shall limit our analysis to linear scales.

4.1.2 The harmonic-space galaxy angular power spectrum

From Equation 3.150, including up to RSD (no magnification bias correction), the
(tomographic) angular power spectrum reads:

Cg,den+RSD
` (zi, zj) = 4πC2

∫
d ln kPζ(k)W

g,den+RSD
` (k; zi)W

g,den+RSD
` (k; zj), (4.2)

with the redshift-integrated kernels given by

Wg,den+RSD
` (k; zi) = T(k)

∫
dχ D(χ)

{
b(χ)ni(χ)j`(kχ)− f (χ)ni(χ)j′′` (kχ)

}
, (4.3)
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As we have already discussed in subsection 3.14.3, the first term in Equation 4.3
is the main contribution to galaxy number density fluctuations, due to density per-
turbations, whereas the second term encodes RSD.

The computation of angular power spectra as in Equation 4.2 is time expen-
sive and prone to numerical instabilities, due to the integration of highly oscillat-
ing spherical Bessel functions. Therefore, the Limber approximation (valid on scales
` � 1) is often employed. In this limit, the spherical Bessel functions are propor-
tional to a Dirac Delta,

j`(kχ) −→
`�1

√
π

2`+ 1
δD

(
`+

1
2
− kχ

)
. (4.4)

By inserting this into Equation 4.2, and for now just considering the first term in
Equation 4.3, we obtain the well-known expression for the galaxy angular power
spectrum in Limber approximation,1

Cg,den
`�1 (zi, zj) =

∫
dχ

W i
b(χ)W

j
b(χ)

χ2 Plin

(
k =

`+ 1/2
χ

)
. (4.5)

Since the contribution to galaxy number counts from density fluctuations is modu-
lated by the galaxy bias, we have defined the window function

W i
b(χ) = ni(χ)b(χ)D(χ). (4.6)

Now, we want to include RSD in the Limber galaxy angular power spectrum. As
clear from Equation 4.3, RSD are driven by the growth rate, f (z), we thus introduce
a new window function,

W i
f (χ) = ni(χ) f (χ)D(χ). (4.7)

After some manipulations (see section A.1), and the introduction of a window func-
tion for the global ‘den+RSD’ signal,

W i(χ) = W i
b(χ) +

2`2 + 2`− 1
(2`− 1)(2`+ 3)

W i
f (χ)

− (`− 1)`
(2`− 1)

√
(2`− 3)(2`+ 1)

W i
f

(
2`− 3
2`+ 1

χ

)
− (`+ 1)(`+ 2)

(2`+ 3)
√
(2`+ 1)(2`+ 5)

W i
f

(
2`+ 5
2`+ 1

χ

)
, (4.8)

we eventually get

Cg,den+RSD
`�1 (zi, zj) =

∫
dχ

W i(χ)W j(χ)

χ2 Plin

(
k =

`+ 1/2
χ

)
. (4.9)

1Henceforth, we shall use, in comparisons, ‘den+RSD’ and ‘den’ to refer to Equation 4.9 or Equa-
tion 4.5, respectively. Otherwise, when no ambiguity arises, Cg

` (zi, zj) will either mean the galaxy
angular power spectrum in general, or the most comprehensive case considered in this chapter, viz.
‘den+RSD’.
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It is instructive to notice how RSD affect the harmonic-space angular power
spectrum. As we show in Equation 3.110 the Fourier-space galaxy power spectrum
Pg(k, z), which is isotropic if we consider density fluctuations only, due to RSD ac-
quires a further dependence on µ, the cosine between the wave-vector k and the l.o.s
direction n̂. We remind the reader that this translates into a quadrupolar anisotropy
pattern, resulting into the well-known squashing of the galaxy power spectrum on
large scales and in the direction perpendicular to the line of sight, and, oppositely,
into the so-called Finger-of-God effect on nonlinear scales and in the l.o.s direction
(see again section 3.12). On the contrary, the net effect of RSD on the harmonic-space
angular power spectrum Cg

` is far less straightforward. In this sense, the Limber
approximation makes it simpler to understand. If we look at Equation 4.8, we ap-
preciate that RSD effectively shuffle galaxies around among (neighbouring) redshift
bins due to the (2`− 3)/(2`+ 1) and (2`+ 5)/(2`+ 1) factors that modulate χ in
the RSD window functions. The reason behind this is the second derivative of the
spherical Bessel function in Equation 4.3, in turn coming from RSD being caused by
the radial derivative of the galaxies’ velocity along the line of sight (see e.g. Bonvin
and Durrer, 2011, Section III). As in the case of the Fourier-space galaxy power spec-
trum discussed above, linear RSD effects are stronger on the largest angular scales,
where (2`− 3)/(2`+ 1) or (2`+ 5)/(2`+ 1) deviate from unity the most. (We re-
mind the reader that we limit our analysis to linear scales, so we are not interested
in modelling Finger-of-God effects.)

4.2 Surveys adopted in the analysis

Here, we present the details of the two surveys adopted to test our pipeline. One
survey is a proxy for future photometric imaging experiments, and the other is a
representative of planned spectroscopic observational campaigns. Better to foresee
the potentiality of our pipeline when applied to oncoming data from cosmological
galaxy surveys, we decide to study both the cases of optical/near-infrared and radio
observations.

To model redshift binning in spectroscopic and photometric redshift surveys, we
here assume top-hat and Gaussian bins, respectively. This is clearly a simplification,
but it is enough to capture the main features of both observational strategies. On the
one hand, the exquisite redshift accuracy of spectroscopic measurements allows for
separating galaxies into sharp, non-overlapping redshift slices. This is implemented
here by the top-hat bins, to which we had a degree of smoothing to stabilise numer-
ical integration over the bin. On the other hand, photometric redshift estimation is
far less accurate than spectroscopy, and it usually results into a PDF p(zph|z) for each
galaxy, representing the probability of having estimated a photometric redshift, zph,
given the galaxy’s true redshift, z. Although one could, in principle, use each galaxy
separately (see e.g. Kitching and Heavens, 2011), it is customary to combine the var-
ious PDFs into a certain number of redshift bins, which look much broader than
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spectroscopic ones, and which often overlap each other to a greater or lesser extent,
depending on photometric redshift uncertainties. Without any loss of generality, we
follow the literature and model this effect by implementing Gaussian redshift bins
with a redshift-dependent (monotonically-increasing) width.

For a generic survey X, we shall denote: the total redshift distribution of sources
by nX(z); the distribution of sources in the ith redshift bin by ni

X(z); and the (angu-
lar) number density of galaxies by

n̄i
X =

∫
dz ni

X(z), (4.10)

so that the total number density of galaxies is n̄X = ∑i n̄i
X.2 The redshift distributions

for the two surveys under investigation, and the two binning strategies are shown
in Figure 4.1, and will be discussed in the following sections.

4.2.1 Photometric galaxy survey

As a proxy of an optical/near-infrared photometric galaxy survey, we adopt the
specifications of a Euclid-like experiment (Laureijs et al., 2011; Amendola et al., 2013;
Amendola et al., 2018). The Euclid satellite will be launched in 2022 and will probe
15, 000 deg2 of the sky for weak lensing and photometric galaxy clustering in the
redshift range 0 < z . 2.5, detecting n̄Euc = 30 galaxies per square arcminute.
The source redshift distribution and the redshift-dependent galaxy bias are given by
(Amendola et al., 2013)

nEuc(z) =
3n̄Euc

2z3
0

z2exp

[
−
(

z
z0

)3/2
]

arcmin−2, (4.11)

bEuc(z) = αEuc(1 + z)βEuc , (4.12)

where z0 = 0.9/
√

2, 0.9 being the mean redshift of the survey, αEuc = 1, and
βEuc = 0.5. In Figure 4.1 (left panels) we present the equi-spaced and equi-populated
binned nEuc(z), implementing photometric redshift errors. We use photometric un-
certainties in redshift following Ma, Hu, and Huterer (2005). That is, the given true
redshift distribution of galaxies inside the ith photometric redshift bin with photo-
metric redshift estimate zph in the range zi

ph < zph < zi+1
ph can be expressed as

ni
Euc(z) =

∫ zi+1
ph

zi
ph

dzph nEuc(z)p(zph|z), (4.13)

2We remind the reader that the term ni(z) appearing in Equation 3.138, Equation 4.6, and Equa-
tion 4.7 is normalised, meaning that it in fact corresponds to ni

X(z)/n̄i
X .
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FIGURE 4.1: Galaxy redshift distributions for the Euclid-like photo-
metric galaxy survey (left panels) and the SKA1 HI-line galaxy survey
(right panels). Top and bottom panels respectively show equi-spaced

and equi-populated bins.

where p(zph|z) is the probability distribution of photometric redshift estimates zph

given true redshifts z. More specifically, we adopt a probability distribution of Gaus-
sian form,

p(zph|z) =
1√

2πσz
exp

[
−
(
z− zph − δz

)2

2σ2
z

]
, (4.14)

with δz the redshift bias (set to zero in our case), and σz =0.05(1+ z) the scatter of
the photometric redshift estimate with respect to the true redshift value— a typical
value in photometric redshift measurements (see e.g. Hoyle et al., 2018).

4.2.2 Spectroscopic galaxy survey

As a representative of oncoming cosmological experiments operating at radio fre-
quencies, we choose a spectroscopic HI galaxy survey performed by SKA1 (Maartens
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et al., 2015; Abdalla et al., 2015; Bacon et al., 2018), which will be able to access even
very large angular scales (Camera, Santos, and Maartens, 2015a; Camera, Maartens,
and Santos, 2015a). Such a survey with this large radio telescope will probe 5000 deg2,
detecting n̄SKA = 0.28 galaxies per square arcminute (Yahya et al., 2015, ‘reference’
case). The survey specifications adopted in this work for the range 0 < z . 0.9 are

nSKA(z) = 105.438 z1.332 e−11.837z deg−2, (4.15)

bSKA(z) = αSKA exp (βSKAz) , (4.16)

with αSKA = 0.625 and βSKA = 0.881. Similarly to the case of Euclid, we consider
equi-spaced and equi-populated bins as shown in Figure 4.1 (right panels). In both
scenarios we choose 10 bins. For the top-hat bins, we define a smoothed top-hat
window function (the same functional form is implemented in CLASS), i.e.

wSKA(z) =
1
2

{
1− tanh

[
|z− z̄| − σSKA1

rσSKA

]}
, (4.17)

where z̄ is the central value of the bin, σSKA is half of the top-hat width, and r is the
smoothing edge factor, with a realist value of 0.03.

4.3 Pipeline implementation

Here we describe the various ingredients and tests performed to implement and
validate our pipeline.

4.3.1 Validation of the code

Here, we perform some tests to validate the expressions derived in subsection 4.1.2,
namely the agreement between the Limber approximation in Equation 4.9 and the
full solution involving the double integral and the spherical Bessel functions of
Equation 4.2. We consider four window functions for the angular power spectrum.
Our code is validated against the results of CLASS, where the Limber approximation
is applied for multipoles ` ≥ 100, but we also cross-checked that our results do not
change if we enforce CLASS never to use the Limber approximation.

Consequently, these cases are considered to be indicative of the binning scenarios
for Euclid and SKA1 as shown in subsection 4.2.1 and subsection 4.2.2 and are chosen
as templates to validate the performance of the code.

For the sake of simplicity, let us assume that we have only one redshift bin cover-
ing the range 0 < z ≤ 2 and peaking at z̄ = 1. We can define a Gaussian distribution
of sources in the bin as

nG(z) =
1

σG
√

2π
exp

[
− (z− z̄)2

2σ2
G

]
, (4.18)
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FIGURE 4.2: Various window functions: broad and narrow Gaussian
(left panel), and broad and narrow smoothed top-hat (right panel).

where σG is the width of the distribution. We consider both a narrow and a broad
bin by setting σG = 0.05 and σG = 0.2, respectively. Such a Gaussian bin is shown in
the left panel of Figure 4.2.

Similarly, we adopt Eq. 4.17 where now σTH is half of the top-hat width, and r
is the smoothing edge factor. Again, we consider both a narrow and a broad red-
shift bin, respectively defined by {σTH, r} = {0.05, 0.003} and {0.5, 0.03}. They are
presented in the right panel of Figure 4.2.

We check our code performance against the CLASS for the case of density per-
turbations only in Figure 4.3 (top panels) for the broad and narrow Gaussian and
top-hat bins. Similarly, the convergence is shown for the case of density and RSD as
seen in Figure 4.3 (bottom panels).

4.3.2 Multipole range

Since the Limber approximation is not a good approximation on large angular scales,
we set the minimum multipole in our analysis, `min, by performing the same com-
parison as in Figure 4.3 for each bin pair, binning scenario, and survey. For the rest
of this analysis, we consider the convergence between Limber-approximated spectra
and the full solution of Equation 4.2 met when the relative error between CosmoSIS

and CLASS is below 5%. This is a reasonable choice, since such a percentage dif-
ference between correct and approximated angular power spectra is well within the
standard deviation of the signal (see section 5.4 for the covariance matrix). The result
of this is presented in Table 4.1.

Generally, it is evident that there is a trend of increasing `min with redshift, apart
from the equi-populated bins for SKA1, to whose highest z bin(s) correspond a lower
`min. This happens because the broader the top-hat bin, the more accurate the Limber
approximation (see also the right panels of Fig. 4.3). Interestingly, we also find that
in the case of the smoother, photometric redshift bins of the Euclid-like survey, the
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FIGURE 4.3: Code comparison for the window functions (solid lines:
broad bins; dashed lines: narrow bins). Top and bottom panels re-
spectively refer to ‘den’ and ‘den+RSD’, with Gaussian (top-hat) win-
dow functions on the left (right). In each panel, the bottom plot shows
the relative error due to Limber approximation as implemented in
our modified version of CosmoSIS, with respect to the full solution
of CLASS; the three black solid lines correspond to 10%, 5% and 1%

relative errors from top to bottom, respectively.
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TABLE 4.1: Mininum and maximum multipoles for the two binning
strategies. The former are set so that the relative error between an-
gular spectra computed with CosmoSIS and CLASS is below 5%. The

latter follow `max = χ(z̄i)kmax in redshift bin i centred on z̄i.

Equi-spaced bins Equi-populated bins
Euclid SKA1 Euclid SKA1

`min `max `min `max `min `max `min `max
den den+RSD den den+RSD den den+RSD den den+RSD

2 2 133 3 13 45 4 3 348 2 7 32
8 6 373 1 13 134 10 7 480 7 30 80

12 9 581 14 26 218 12 9 576 11 78 109
16 11 759 29 40 299 15 10 659 13 77 136
22 13 913 33 60 375 17 12 733 15 80 164
28 17 1046 43 70 448 18 13 806 19 80 194
32 20 1162 63 73 518 20 14 880 22 91 228
36 22 1265 60 101 584 22 15 957 26 82 270
40 25 1356 70 110 647 24 17 1054 30 65 331
50 30 1437 80 120 707 25 19 1181 11 44 564

agreement between Limber and non-Limber spectra extends to larger scales when
RSD are included, than what happens with density perturbations only.

Additionally, we want to find the upper limits of the multipole range for each
redshift bin so that we safely remain within the linear regime. This corresponds to
setting the largest angular scale, `max, corresponding to the maximum wavenum-
ber before entering the nonlinear regime, kmax. This is estimated through the rms
fluctuations of the total mass density in spheres of radius R at z = 0,

σ2
M(R) =

∫ dk
2π2 k2Plin(k)

[
3j1(kR)

kR

]2

. (4.19)

We choose kmax such that σ2
M(Rmin) = 1 and kmax = π/(2Rmin). Since we are consid-

ering multipoles ` � 1, where the Limber approximation is a good approximation,
we simply set `max = kmaxχ(z̄i), with z̄i the centre of the ith redshift bin. We find
kmax = 0.25 h Mpc−1 for our fiducial model.

4.3.3 Likelihood

To construct the likelihood of the signal, we start from the Gaussian covariance ma-
trix implemented in CosmoSIS, Γ``′ , whose entries are

Γij,kl
``′ =

δ``
′

K
2`∆` fsky

[
C̃g
` (zi, zk)C̃

g
` (zj, zl) + C̃g

` (zi, zl)C̃
g
` (zj, zk)

]
, (4.20)
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where ∆` is the width of the multipole bin, fsky the sky fraction covered by the
survey, δK is the Kronecker symbol, and the observed signal is

C̃g
` (zi, zj) = Cg

` (zi, zj) +
δ

ij
K

n̄i , (4.21)

with n̄i defined in Equation 4.10. Then, for Nz redshift bins and N` = 20 multipole
bins, we can write the data vector as

d` =

{
Cg
`min

(z1, z1), . . . , Cg
`min

(z1, zNz)︸ ︷︷ ︸
Auto- and cross-
bin spectra at `min

between bin 1 and
all other Nz bins.

, Cg
`min

(z2, z2), . . . , Cg
`min

(z2, zNz)︸ ︷︷ ︸
Auto- and cross-
bin spectra at `min

between bin 2 and
all other Nz − 1
bins.

,

Cg
`min+1(z1, z1), . . . , Cg

`max
(zNz , zNz)︸ ︷︷ ︸

Last of
all the
N`Nz(Nz +

1)/2 data
points.

}
, (4.22)

and then build the Gaussian log-likelihood as

− 2 ln L =
`max

∑
`,`′=`min

{
ln [2π det (Γ``′)] + [d` − t`(θ)]

T (Γ``′)
−1 [d` − t`(θ)]

}
. (4.23)

Here, t`(θ) is the vector of the theoretical prediction based on a cosmological model
defined by its cosmological parameters, whose values are stored in the parameter
vector θ; the superscripts ‘T’ and ‘−1’ denote matrix transposition and inversion,
respectively. This likelihood function is maximised for a given combination of values
of the model parameters. In the current analysis, the Gaussian covariance matrix of
Equation 4.203 is assumed to be independent on the parameters, and therefore the
normalisation term of Equation 4.23 can be ignored.

4.3.4 Binning strategy

To optimise our method, we adopt two binning strategies. First, we consider bins
of the same size in redshift space (hereafter, ‘equi-spaced’ bins), and then the case
of bins with an equal number of galaxies in each (‘equi-populated’ bins). To choose
among the two binning strategies presented in the previous section, i.e. equi-spaced

3Note that the denominator of Equation 4.20 should actually read (2`+ 1), and not 2` as reported
in Joachimi and Bridle (2010). Such a difference, however, is negligible for ` � 1 where the Limber
approximation holds true. Moreover, we are here interested in comparing two methods (i.e. fitting the
data with or without RSD), so the absence of the +1 factor does not affect the validity of our results.
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FIGURE 4.4: Marginal 1σ Fisher matrix errors divided by the fiducial
parameter value, for the two binning scenarios and the two proxy
surveys. Left panel: Model with density fluctuations only. Right panel:

Model with density fluctuations and RSD.

vs equi-populated bins, we perform a preliminary Fisher matrix analysis (Tegmark,
Taylor, and Heavens, 1997). Assuming a Gaussian likelihood for the cosmological
parameters of interest, we can define the Fisher matrix F with entries

Fαβ =
`max

∑
`,`′=`min

∂Cg
` (zi, zj)

∂θα

(
Γ−1
``′

)ij,kl ∂Cg
`′(zk, zl)

∂θβ
, (4.24)

where θα are the elements of the parameter vector θ = {Ωm, h, σ8}.
We forecast constraints on cosmological parameters by computing the Fisher ma-

trix (in the appropriate multipole range) for both binning strategies, as well as for
both Cg,den

`�1 and Cg,den+RSD
`�1 . (Note that the covariance matrix in Equation 4.24 is

always the correct one, i.e. it includes both density fluctuations and RSD.) Then,
we compare the results. In Figure 4.4 we show the relative marginal errors on
{Ωm, h, σ8} for all the cases considered. Constraints for Euclid are always marginally
tighter for equi-populated bins. In the case of SKA1, however, both binning strate-
gies give almost equivalent results for the ‘den+RSD’ model, whilst equi-populated
bins yield tighter constraints for the ‘den’ case. Overall, it is evident that the Euclid-
like survey is more constraining compared to SKA1. In order to investigate this, we
calculate the cumulative signal-to-noise ratio (SNR) for the input reference cosmol-
ogy,

SNR =

√√√√ `max

∑
`,`′=`min

Cg
` (zi, zj)

(
Γ−1
``′

)ij,kl
Cg
`′(zk, zl). (4.25)

In Figure 4.5, we present the cumulative SNR for Euclid (red) and SKA1 (blue)
with the ‘den-only’ and ‘den+RSD’ models (dashed and solid lines respectively) in
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FIGURE 4.5: Cumulative SNR as a function of the maximum mul-
tipole included in the analysis, `max, for Euclid and SKA1 equi-
populated bins (red and blue curves, respectively) and the two mod-
els considered, i.e. den-only (dashed lines) and den+RSD (solid lines).
The blue, dotted curve refers to the SKA1 SNR for density perturba-
tions only in the case where we compute it in the same multipole

range as for den+RSD.

the equi-populated scenario (this applies to the equi-spaced case as well). If we ig-
nore for a while the different cumulative SNR between these two models within the
same experiment, it is clear that generally the SNR for Euclid is always greater than
that of SKA1. The reason for this, is that Euclid as seen in Table 4.1 extends to higher
`maxvalues and also the sky fraction fsky covered by this survey is three times that of
SKA1.These two factors minimize the covariance matrix (see again Equation 4.23),
yielding to an overall higher SNR. The specific features seen in Figure 4.5 will be
discussed in more detail in subsection 4.4.1.

Furthermore, we perform preliminary MCMC tests for both surveys to make
clear which binning configuration is computationally cheaper in terms of a faster
convergence of the chains. Considering the case of density fluctuations and equi-
populated bins, the chains converge quicker compared to equi-spaced bins for all the
cases considered, whilst the convergence speed for den+RSD is comparable. Conse-
quently, we conclude that the equi-populated redshift bins are more suitable to be
adopted in the extensive and computationally expensive analysis of section 4.4.
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TABLE 4.2: Fiducial values and priors of cosmological and nuisance
parameters.

Parameter description Parameter symbol Fiducial value Prior type Prior range
Present-day fractional matter density Ωm 0.3089 Flat [0.1, 0.4]
Dimensionless Hubble parameter h 0.6774 Flat [0.5, 1.0]
Amplitude of clustering‡ σ8 0.8159 Flat [0.5, 1.2]
Present-day fractional baryon density Ωb 0.0486 – –
Slope of the primordial curvature power spectrum ns 0.9667 – –
Amplitude of the primordial curvature power
spectrum‡

ln(1010As) 3.064 – –

Optical depth to reionisation τre 0.066 – –
Photo-z survey bias amplitude parameter¶ αEuc 1.0 Flat [0.6, 1.4]
Photo-z survey bias slope parameter¶ βEuc 0.5 Flat [0.1, 0.9]
Spectro-z survey bias amplitude parameter¶ αSKA 0.625 Flat [0.2, 1.0]
Spectro-z survey bias slope parameter¶ βSKA 0.881 Flat [0.5, 1.3]
Bin-dependent bias amplitude parameters§ bg,i 1.0 Flat [0.1, 1.9]

‡ Adopting the LSS convention, we use σ8 to parameterise the amplitude of matter fluctuations, thus
setting the prior on this parameter rather than on the primordial amplitude parameter, As.
¶ Parameter varied in the reported prior range only in the ‘realistic scenario’ of subsection 4.4.2.
§ A dummy amplitude parameter for each redshift bin of Euclid or SKA1 varied in the reported prior
range only in the ‘conservative scenario’ of subsection 4.4.3.

4.4 Results and discussion

Throughout our analysis, in order to constrain the parameters of interest, we applied
the Bayesian-based emcee sampler (Foreman-Mackey et al., 2013) and Multinest

(Feroz, Hobson, and Bridges, 2009) interchangeably, depending on which sampling
method is optimal/faster for each case. As discussed above, we focus on the set
of cosmological parameters θ = {Ωm, h, σ8}. Moreover, we also include a certain
number of nuisance parameters, as described in the following three scenarios:

i) An ideal case where we constrain the cosmological parameter set assuming
perfect knowledge of the galaxy bias;

ii) A realistic case with two bias nuisance parameters per experiment (see Eqs 4.12
and 4.16);

iii) A conservative case where we include a nuisance parameter per redshift bin,
thus allowing for a free redshift evolution of the bias.

Reality is believed to lie between the last two cases. We note again that the procedure
we follow is based on the rationale explained in subsection 4.3.4. That is, to create
a mock data set where both density fluctuations and RSD are present, and then fit it
against either a (wrong) model that ignores RSD, or a (correct) model that includes
both density and RSD.

In an analysis where the emcee or the Multinest sampler is used, both high and
the low likelihood areas are sampled, in contrast to the Fisher matrix, which only
characterises the likelihood near its peak, assuming it is well approximated by a
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Gaussian. With our pipeline we want to explore the multi-dimensional parameter
space of the two aforementioned models given the mock data in a Bayesian way. A
major point in our analysis is the fact that we construct the mock data and, therefore,
have perfect knowledge of the information it encodes. Hence, when we fit the mock
data with the correct model, containing exactly the same information as the mock
data, we expect this model to fit the data better than the wrong model, where the
effect of the RSD in galaxy clustering is neglected. This latter, wrong model may or
may not be sufficient to describe the data, depending mostly on the relative impor-
tance of signal, cosmic variance, and noise. In case it is proven not to be sufficient,
the results will be biased. This bias will manifest as a misplaced peak in the pos-
terior distribution. (Alternatively, it might also happen that the posterior exhibits
some degree of bimodality.) In order to avoid referring to best-fit values—which can
sometimes be misleading for strongly non-Gaussian posterior distributions—we opt
for the means. The results of the pipeline analysis with Euclid and SKA1 for the three
scenarios discussed above are presented in Figure 4.6, Figure 4.8 and Figure 4.10, re-
spectively. Table 4.3 and Table 4.4 list estimates of the means and 68% marginal
errors on each parameter. We discuss these results thoroughly in the following sub-
sections.

4.4.1 Ideal scenario

In Figure 4.6 (top panels) we show the 68% and 95% joint marginal error contours for
the Bayesian analysis with Euclid on the parameter set {Ωm, h, σ8}. We use priors and
fiducial values as given in Table 4.2. These constraints appear quite stringent, and
it is clear that, when we fit the mock data with the correct model (in red), the input
reference cosmology (white cross) lies well within the 1σ regions of the reconstructed
parameter error intervals. On the contrary, if we assume the wrong data model—
namely we do not include RSD in the theoretical data vector—it is evident that the
reconstructed contours (in grey) are biased with respect to the input cosmology. It is
worth noticing that the 2σ regions do not overlap in parameter space. This may seem
somewhat unexpected, as it is often assumed that RSD do not matter when one deals
with photometric galaxy surveys. However, this finding, which represents one of the
main results of our work, is also in agreement with previous literature focussed on
galaxy clustering including RSD for photometric redshifts (e.g. Makarov et al., 2007;
Blake et al., 2007; Crocce, Cabré, and Gaztañaga, 2011). For instance, Ross, Percival,
and Nock (2010) proposed a new binning scheme based on galaxy pair centres rather
than the galaxy positions, to alleviate the anisotropic RSD on the projected galaxy
two-point function. This is more evident in Figure 4.7, where the estimated mean
for the incomplete model (red bullet point) is more than 1σ away (red, dashed line)
from the input values of parameters {Ωm, σ8}, shown as vertical dashed black lines.

Similarly, in Figure 4.6 (bottom panels) we present the constraints on the param-
eters from the SKA1. In particular, SKA1 yields weaker constraints than Euclid due
to the lower SNR (see Figure 4.5) , as discussed at the end of subsection 4.3.4, namely
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FIGURE 4.6: Constraints on cosmological parameters for the ideal
case, i.e. no nuisance parameters. Outer and inner contours respec-
tively correspond to 95% and 68% confidence levels in the joint 2D
parameter space. Top panels: (Bottom panels:) parameter estimation
from the Euclid-like optical/near-infrared photometric (SKA1-like ra-
dio spectroscopic HI-line) galaxy survey with the red (blue) and grey
contours accounting for the complete and the incomplete model re-

spectively. The white cross indicates the fiducial cosmology.
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FIGURE 4.7: 1σ marginal errors (horizontal solid (complete model)
and dashed (incomplete model) lines) on the estimated mean value
(filled bullets) for Euclid and SKA1 in the ideal scenario. The verti-
cal dashed black line corresponds to the input value of our fiducial

cosmology.

the smaller fsky and the more limited multipole range. In this case, too, it is evident
that the estimate from the incomplete, density-only model is biased beyond 1σ for all
cosmological parameters, whereas results from the den+RSD model are consistent
with the input cosmology (see again Figure 4.7 the blue lines). However, we find
that den+RSD model yields slightly weaker constraints compared to the (biased)
ones we get when neglecting RSD.

In order to understand this we need to go back to Figure 4.5. In this plot as pre-
viously seen in subsection 4.3.4 the SNR is shown, with red and blue curves respec-
tively referring to Euclid and SKA1, and dashed(solid) lines for den-only(den+RSD);
we also show, as a blue dotted curve, the SKA1 cumulative SNR for den-only in
the case where we use the same multipole range as for den+RSD. We notice that for
Euclid the SNR curve corresponding to den+RSD is always higher than that of the
density fluctuations only in the whole multipole range. This makes sense, since we
consider additional information by adding the RSD on top of the density fluctua-
tions and, as a result, we increase the signal and obtain higher SNR. Regarding the
SKA1 setup, the SNR curves will be significantly lower than in the case of Euclid
for the reasons explained in subsection 4.3.4. By looking the SNR, we see that the
curve for the complete (density+RSD) model is below that of the incomplete one,
which neglects RSD. This trend seems to be the exact opposite of the what discussed
for Euclid. However, we should note that in the case of SKA1 the multipole range
where we can trust the Limber approximation is smaller for density+RSD, compared
to density perturbations only (see Table 4.1). Given that, we compute again the SNR
of the density model but now evaluated at the shorter multipole range that was ap-
plied for the correct model. After implementing this (dotted curve), we now observe
the same trend as for Euclid. This implies that the relatively larger contours for SKA1
den+RSD have to be attributed to the higher `min limit resulting in a slightly shorter
multiple range.
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4.4.2 Realistic scenario

As mentioned at the beginning of the section, the assumption that our knowledge
of the galaxy bias is perfect is an idealistic one. Thus, we now introduce nuisance
parameters to account for our inherent ignorance of the bias. Such parameters will
then be fitted alongside cosmological parameters. To this purpose, we choose a sim-
ilar modelling for the two surveys under consideration, i.e. an overall normalisation
of the galaxy bias over the whole redshift range, and a parameter accounting for the
redshift dependence of the bias. In other words, we let the parameters αX and βX of
Equation 4.12 and Equation 4.16 to vary freely, with X = {Euc, SKA}. The normali-
sation and power-law bias nuisance parameters with their corresponding priors for
the surveys are shown in Table 4.2.

Figure 4.8 (top panels) shows the results for the optical/near-infrared Euclid-like
photometric survey, after marginalising over bias nuisance parameters. Interest-
ingly, the constraints on h and Ωm are very similar to those of the ideal scenario.
That is, the biased estimate for density only lies beyond 1σ on Ωm but not for h with
respect to the fiducial values. However, the picture is completely different when it
comes to σ8. It is clear that σ8 is totally unconstrained by the density-only model
(grey contours). The reason for this is that density fluctuations are sensitive to the
galaxy bias (the angular power spectrum depends linearly on the bias squared). This
means that when we consider an overall normalisation of the bias—common to the
whole redshift range—we cannot break the degeneracy present between αX and σ8.
On the other hand, once we include RSD (red contours), the degeneracy is lifted
considerably.

The SKA1 results for this realistic bias scenario are shown in the bottom panels of
Figure 4.8. We can appreciate a similar behavior compared to the case of Euclid. The
incomplete model containing only density fluctuations is statistically significantly
biased on Ωm and, again, the constraint on σ8 is very degenerate for the reasons
explained above. By incorporating RSD in our modeling we manage to alleviate this
and get an unbiased estimate of Ωm. Again, the constraining power of SKA1 is not
so good as that of the Euclid-like survey, due to the lower SNR.

4.4.3 Conservative scenario

Let us now consider the pessimistic case in which the galaxy bias evolution with
redshift is utterly unknown. Thus, we add bias nuisance parameters per redshift bin
bg,i, with i = 1, Nz, and flat priors in the range [0.1, 1.9]. We then obtain constraints
over the full parameter set consisting of 13 parameters—namely three cosmological
parameters plus Nz bias nuisance parameters—and present the joint 2D marginal
error contours on the cosmological parameters by marginalising over all the bias
parameters.

As before, in Figure 4.10 (top panels) we present the cosmological constraints
from Euclid. Again, we can clearly see that the results on h and Ωm are quite similar
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FIGURE 4.8: Same as Figure 4.6 but for the realistic scenario, i.e. two
nuisance parameters modelling the overall amplitude and the red-

shift evolution of the bias.

FIGURE 4.9: Same as Figure 4.7 but for the realistic scenario



4.4. Results and discussion 69

FIGURE 4.10: Same as Figure 4.6 but for the conservative scenario, i.e.
one nuisance bias parameter per redshift bin.

FIGURE 4.11: Same as Figure 4.7 but for the conservative scenario
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TABLE 4.3: Means and corresponding 68% marginal error intervals
on cosmological parameters for the optical/near-infrared Euclid-like

photo-z galaxy survey.

Euclid
Ideal scenario Realistic scenario Conservative scenario

den den+RSD den den+RSD den den+RSD
Ωm 0.3006± 0.0042 0.3091± 0.0046 0.3003± 0.0040 0.3089± 0.0045 0.3038± 0.0042 0.3089± 0.0045
h 0.6865± 0.0107 0.6770± 0.0111 0.6837± 0.0101 0.6775± 0.0109 0.6791± 0.0105 0.6778± 0.0108
σ8 0.8247± 0.0034 0.8157± 0.0036 0.8534± 0.1823 0.8111± 0.0474 0.859± 0.1298 0.8211± 0.0469

TABLE 4.4: Means and corresponding 68% marginal error intervals
on cosmological parameters for the radio SKA1-like spectro-z galaxy

survey.

SKA1
Ideal scenario Realistic scenario Conservative scenario

den den+RSD den den+RSD den den+RSD
Ωm 0.2833± 0.0256 0.3028± 0.0311 0.2821± 0.0232 0.3063± 0.0316 0.2811± 0.0239 0.3084± 0.0329
h 0.6504± 0.0793 0.7077± 0.0866 0.6404± 0.0684 0.7054± 0.0897 0.6443± 0.0752 0.6887± 0.0857
σ8 0.8425± 0.0048 0.8135± 0.0055 0.8552± 0.1613 0.7872± 0.1238 0.8438± 0.1703 0.7467± 0.1118

to those from the ideal and the realistic scenario with the matter density parame-
ter Ωm being more than 1σ away from the input values for the incomplete model.
Likewise, the results on the normalisation σ8 are equivalent to that of the pessimistic
case. That is, the persistence of the degeneracy on σ8. We, again, alleviate this with
the correct den+RSD model—since RSD are not sensitive to the galaxy bias—which
yields results in agreement with the fiducial cosmology.

The case for SKA1 is shown in Figure 4.10 (bottom panels). It is obvious, as
well, that the picture does not change with respect to the pessimistic scenario. In
a similar fashion, the incomplete model yields degenerate results on σ8, while the
correct model gives more tighter constraints. In addition to that, the estimate of the
density model on Ωm remains biased more than 1σ away.
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Chapter 5

A case study for magnification bias
and radio continuum surveys

5.1 Galaxy clustering in harmonic space

Here, we describe how to construct the galaxy clustering (tomographic) angular
power spectrum, Cg

` (zi, zj), including contributions from density fluctuations, RSD,
and magnification bias. Again, to ensure the robustness of our cosmological results,
we use only linear scales (see Jalilvand et al., 2019, for a study on nonlinearities in
angular spectra) in a region where the Limber approximation holds true (Limber,
1953; Kaiser, 1992). In the following analysis, we implement this framework in a
modified version of the CosmoSIS package. The treatment in our analysis follows
closely that of chapter 4, to which we refer the reader for any clarification.

5.1.1 The observed galaxy number count angular power spectrum

The total linear angular power spectrum including for the RSD and magnification
bias correction on the galaxy density field is given by Equation 3.149 and Equa-
tion 3.150.

The inclusion of the lensing magnification in cross and auto-correlations of galaxy
clustering and cosmic shear has been studied with Fisher analysis (Duncan et al.,
2013; Villa, Di Dio, and Lepori, 2018; Thiele, Duncan, and Alonso, 2019; Vanessa
Böhm and Castorina, 2019), where it has already been suggested that the ignorance
of the magnification bias may induce a bias in the cosmological parameter estima-
tion. Here, as we will see, we test this hypothesis by performing a full likelihood
mock data analysis.

If we are interested in constraining standard cosmological parameters, the low-
est multipoles, corresponding to ultra-large scales, are of little interest (Camera,
Maartens, and Santos, 2015b; Lorenz, Alonso, and Ferreira, 2018). As we have al-
ready mentioned in chapter 4, this allows us to resort to the Limber approximation,
thus getting rid of the integration of the spherical Bessel functions, which is compu-
tationally expensive and highly oscillating, thus inducing numerical instabilities. It
is worth noting, however, that there are nowadays publicly available routines im-
plementing fast Fourier transforms, such as AngPow (Campagne, J.-E., Neveu, J., and
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Plaszczynski, S., 2017), which can be applied for the computation of tomographic
power spectra beyond the Limber approximation in the case one was interested to
the largest scales or wanted to reduce the multipole cuts for cross-bin correlations,
(see also Chisari et al., 2019).

The Limber approximation works well for ` � 1, and the spherical Bessel func-
tions are replaced by a Dirac Delta, (see Equation 4.4). By implementing this into
Equation 3.149, we get:

Cg
`�1(zi, zj) =

∫
dχ

W i
g(χ)W

j
g(χ)

χ2 Plin

(
k =

`+ 1/2
χ

)
, (5.1)

with
W i

g(χ) = W i
g,den(χ) + W i

g,RSD(χ) + W i
g,mag(χ). (5.2)

Here, we have split the contributions into three separate window functions: the stan-
dard one, for density fluctuations,

W i
g,den(χ) = ni(χ)b(χ)D(χ); (5.3)

the one for RSD, found in chapter 4 to be

W i
g,RSD(χ) =

2`2 + 2`− 1
(2`− 1)(2`+ 3)

[
ni f D

]
(χ)

− (`− 1)`
(2`− 1)

√
(2`− 3)(2`+ 1)

[
ni f D

] (2`− 3
2`+ 1

χ

)
− (`+ 1)(`+ 2)

(2`+ 3)
√
(2`+ 1)(2`+ 5)

[
ni f D

] (2`+ 5
2`+ 1

χ

)
; (5.4)

and that of magnification bias,

W i
g,mag(χ) =

3ΩmH2
0

c2 [1 + z(χ)] χñi(χ) [Q(χ)− 1] D(χ). (5.5)

5.2 Survey specifications

As mentioned in chapter 1, we decide to focus on radio continuum surveys, because
they are an ideal test case for magnification, thanks to their unrivalled depth. The
NRAO VLA Sky Survey (NVSS, Condon et al., 1998) has been the primary source
of data for previous cosmological analyses based on radio continuum galaxies (e.g.
Boughn and Crittenden, 2001; Overzier, R. A. et al., 2003; Boughn and Crittenden,
2004; Nolta et al., 2004; Smith, Zahn, and Doré, 2007; Raccanelli et al., 2008; Ho et
al., 2008; Afshordi and Tolley, 2008; Xia et al., 2011; Rubart, M. and Schwarz, D. J.,
2013; Giannantonio et al., 2014; Nusser and Tiwari, 2015; Planck Collaboration et al.,
2016). The potentiality of oncoming radio continuum surveys for cosmology has
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TABLE 5.1: Estimated number densities, galaxy bias, and magnifica-
tion bias for EMU sources grouped in 2 redshift bins.

Bin zmin zmax # of gal. (×106) bias mag. bias
1 0.0 1.0 10.68 0.833 1.050
2 1.0 6.0 11.58 2.270 1.298

also been extensively studied in recent years (Raccanelli et al., 2012; Camera et al.,
2012; Raccanelli et al., 2015; Bertacca et al., 2011; Jarvis et al., 2015; Camera, Santos,
and Maartens, 2015b; Ferramacho et al., 2014; Karagiannis et al., 2018; Scelfo et al.,
2018; Ballardini et al., 2018; Bernal et al., 2019).

For the present analysis, we adopt the specifications of the Evolutionary Map
of the Universe (EMU). EMU is a deep radio-continuum full-sky survey (Norris et
al., 2011) at ASKAP (Johnston et al., 2007; Johnston et al., 2008), whose goal is to
detect extragalactic objects in the continuum across the entire southern sky, up to
δ = +30◦. Even though ASKAP was designed as a precursor to the SKA, the large
field of view, accurate pointing and angular resolution, and sensitive phased-array
feeds will render it the foremost radio survey instrument in the frequency range
around 1 GHz during the next decade. The EMU survey, covering such a wide
area, and going much deeper than previous large-area radio continuum surveys,
will be able to map the large-scale distribution of matter over a larger volume than
has previously been possible, and so will be ideal to investigate extensions of the
ΛCDM model (Raccanelli et al., 2012; Camera et al., 2012; Bernal et al., 2019).

EMU will cover an area of 30, 000 deg2 with a sensitivity of 10 µJy per beam rms,
and a resolution of ∼ 10 arcsec, over the frequency range of 800-1400 MHz. To esti-
mate the redshift distribution n(z) of active galactic nuclei and star-forming galax-
ies, a 10-sigma detection limit of 100 µJy is assumed, and galaxies are sampled from
the mock catalogues generated by the SKA Simulated Skies (S-cubed)1 simulations
down to that limit. The distribution of redshifts and magnitudes from these mocks
are used to estimate the overall n(z), and also the magnification bias, Q(z).

Under the assumption that additional external data will be available for the
redshifts of part of EMU galaxies (e.g. cross-identifications, McAlpine et al. 2012;
Bayesian hierarchical models, Harrison, Lochner, and Brown 2017; or so-called clus-
tering redshifts, Ménard et al. 2013), we here scrutinise two binning scenarios. The
former, in which we assume we can differentiate only between low- and high-redshift
galaxies (divide set at z = 1), is more conservative; the latter sees five redshift bins,
four of which of width ∆z = 1 below z = 2, and the fifth collecting all the galaxies
above. The expected numbers for these settings are given in Table 5.1 and Table 5.2.

We discussed above that radio continuum surveys lack information in redshift
and therefore the most realistic representation of the galaxy sampling in redshift
space is that of residing in Gaussian bins. However, we decide to consider the case
of sharp top-hat bins which are not correlated in redshift. We apply this mostly for

1http://s-cubed.physics.ox.ac.uk/
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TABLE 5.2: Same as Table 5.1, but for EMU sources grouped in 5 red-
shift bins.

Bin zmin zmax # of gal. (×106) bias mag. bias
1 0.0 0.5 5.55 1.000 0.953
2 0.5 1.0 5.13 1.124 1.273
3 1.0 1.5 4.43 1.920 1.569
4 1.5 2.0 2.70 3.250 1.176
5 2.0 6.0 4.05 4.046 0.964

the sake of fully exploring the potential of magnification. The magnification bias
is expected to induce a correlation even between uncorrelated redshift bins, in a
sense that the lower-z bins are the ‘lenses’ and the high-z bins the ‘sources’. Thus,
it is worth investigating magnification in this case, too, implemented at least at the
ΛCDM scenario.

Given that dN is the number of galaxies inside a bin of width dz, the redshift
distribution of sources is N(z) = dN/dz.2 Then, the N(z) points are fitted with a
7th order polynomial, n(z), by which we denote the total number counts of sources
with redshift. The distribution of sources residing in the ith bin thus is ni(z), and the
angular number counts of galaxies reads

n̄i =
∫

dz ni(z), (5.6)

Therefore, the total number counts of galaxies is simply n̄ = ∑i n̄i.3 The final, fitted
redshift distributions, convolved with the bins, are shown in Figure 5.1.

Top-hat bins (left panels of Figure 5.1) have been modelled by Equation 4.17 and
we quote the formula again here for clarity,

ni(z) =
1
2

{
1− tanh

[
|z− z̄i| − σ

rσ

]}
, (5.7)

where z̄i is the centre of the ith bin, σ the half top-hat width, and r the smoothing
edge, which we fix to 0.03. The smearing ensures the numerical stability in the inte-
gration over the bin. Instead, to model Gaussian bins, we consider the ranges zmin

and zmax of Table 5.1 and Table 5.2, and definde

ni(z) =
1
2

n(z)

[
erfc

(
zi

min − z√
2σ(zi

min)

)
− erfc

(
zi

max − z√
2σ(zi

max)

)]
. (5.8)

Note that, in this latter case, we introduce a redshift dependence of the scatter of the
distribution, σ(z). Specifically, we adopt a quite large uncertainty, σ(z) = 0.1(1+ z).
The Gaussian bins are shown in the right panels of Figure 5.1.

2The number of sources has also been calculated in very narrow 32 redshift bins, which are not
shown here for clarity.

3Note again that ni(z) is normalised to unity in the equations of the previous section, like Equa-
tion 5.3, Equation 5.4, and Equation 5.5, meaning that it as to be read as ni(z)/n̄i.
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FIGURE 5.1: The EMU galaxy redshift distribution for top-hat (left
panels) and Gaussian (right panels) binning. The top and bottom

panels present the 2 and the 5 bins, respectively.
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5.3 Cosmological models

In this work, we will investigate the vanilla ΛCDM model and two of its most pop-
ular extensions: the case of a dynamical DE component and a phenomenological
modified gravity model. All the model parameters are summarised in Table 6.3. For
ΛCDM, we present the constraints for the parameter set {Ωm, h, σ8} alone, whilst
the other parameters are fixed to their fiducial values.

5.3.1 Dark energy

The first extension to the ΛCDM model is a dynamical DE model, where the DE
equation of state is not constant throughout the cosmic history, but it is rather al-
lowed to evolve with time. According to (Chevallier and Polarski, 2001; Linder,
2003), by Taylor expanding an evolving dark energy equation of state and keeping
only the first order term we have

wDE(z) = w0 + wa
z

1 + z
. (5.9)

Therefore, we add to the ΛCDM model the parameter set both w0 and wa.

5.3.2 Modified gravity

An alternative explanation for the late-time accelerated cosmic expansion is offered
by modified gravity theories (MG, hereafter). This approach sees the effects we as-
cribe to dark energy (and even dark matter) are in fact due to our wrong interpreta-
tion of the data in a regime where general relativity no longer holds (Clifton et al.,
2012). For the purpose of our work, we assume a popular phenomenological param-
eterisation accounting for the peculiar effect of modified gravity on structure forma-
tion (Amendola, Kunz, and Sapone, 2008; Zhao et al., 2010; Dossett et al., 2015).
Specifically, we can assume a modified Poisson equation

∇2Φ = 4πGQα2ρ̄δ, (5.10)

where Q is in principle a function of space and time, and acts as an effective grav-
itational constant. Moreover, the two metric potentials can be different, and the
function R describes the ratio of the two, viz.

R =
Ψ
Φ

. (5.11)

Thus, we add as free parameters the two present-values of these quantities, Q0 and
R0. In fact, given that they are degenerate, it is very convenient to define the derived
parameter Σ0 = Q0(1+ R0)/2, and therefore use the parameter set {Q0, Σ0} instead,
along with the parameters of the ΛCDM model.
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TABLE 5.3: Prior ranges and fiducial values on the nuisance and
cosmological parameters (ΛCDM best-fit of Ade et al. 2016). Some
parameters are purposely allowed to have wider or narrower prior
ranges due to the difference in the constraining power of the results
depending on the number of the bins considered. (When two sets of
values are present, values in parentheses refer to the 5 bin case, as

opposite to those outside that are relative to the 2 bin case.)

Parameter description Parameter symbol Fiducial value Prior type Prior range
Present-day fractional matter
density

Ωm 0.3089 Flat [0.1, 0.6]

Dimensionless Hubble pa-
rameter

h 0.6774 Flat for 2(5) bins [0.3, 1.0]([0.5, 1.0])

Amplitude of clustering‡ σ8 0.8159 Flat for 2(5) bins [0.4, 1.4]([0.5, 1.2])
Present-day fractional
baryon density

Ωb 0.0486 – –

Slope of the primordial cur-
vature power spectrum

ns 0.9667 – –

Amplitude of the primordial
curvature power spectrum‡

ln(1010As) 3.064 – –

Optical depth to reionisation τre 0.066 – –
Bias amplitude parameter for
the whole redshift range¶

αEMU 1.0 Flat [0.4, 1.6]

Free bias amplitude in each
redshift bin§

bi i = 1 . . . 2(5) See Table 5.1(Table 5.2) Flat for 2(5) bins [0.1, 3.5]([0.1, 9.0])

Present-day dark energy
equation of state

w0 −1.0 Flat [−3.0, 2.0]

Dark energy evolution pa-
rameter

wa 0.0 Flat [−6.0, 4.0]

Modified gravity parameter Q0 1.0 Flat [0.0, 8.0]
Modified gravity parameter R0 1.0 Flat [−1.0, 8.0]

‡ Instead of setting the prior on the parameter As accounting for the matter perturbations amplitude,
we opt for σ8, following the convention in LSS.
¶ The prior range reported on the parameter is applied in the ‘realistic’ scenario alone (notation
mirrors chapter 4).
§ The prior range reported on the parameter is applied in the ‘conservative’ scenario alone.
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5.4 Methodology

To forecast constraints on cosmological parameters, we follow a likelihood-based
approach. The first step is to estimate the covariance matrix, Γ``′ , for our observ-
able, namely the galaxy clustering power spectrum in harmonic space given in Equa-
tion 5.1. We use the analytical form of the Gaussian covariance matrix, as already
implemented in CosmoSIS, and described by Equation 4.20. We employ N` = 20
multipole bins (see subsection 5.4.1 for the range adopted), and for all redshift and
multipole bin values we construct the full data vector d` (see Equation 4.22), as well
as the theory vector t`(θ), which is a function of the parameter set, θ. With all the
above one can construct the Gaussian log-likelihood Equation 4.23 which is to be
minimised for some specific values of the parameters.

5.4.1 Multipole cuts

Since Limber approximation is valid only at ` � 1, we have derived the `min below
which we can trust no longer the angular power spectra values computed via Equa-
tion 5.1. To do so, we compare results computed by our modified CosmoSIS code
with the full solution of the CLASS Boltzmann solver and keep only the multipoles
where the relative error between the two codes is below 5% (see again chapter 4).
We make this choice since this percentage offset is within the standard deviation of
the signal measurement.

Additionally, we apply an upper cut at `max = χ(z̄i)kmax, since we ignore the
nonlinear scales in our analysis. Here, z̄i is the centre of the ith redshift bin, whilst the
maximum wavenumber is chosen to be kmax = π/(2Rmin), where Rmin is the radius
of a sphere inside which the over-density fluctuations at z = 0 have a value given
by Equation 4.19. The matter density variance is chosen again to be σ2(Rmin) = 1,
yielding kmax = 0.25 h Mpc−1. We should note that we keep the same kmax value for
all the analyses in this thesis for completeness.

The `min and `max cuts are applied to each bin pair according to the all the config-
urations of the EMU distribution (see again Figure 5.1), and are shown in Table 5.4,
where RSD do not appear explicitly because we found that their inclusion does not
affect the value of `min. (On the other hand, `max does not depend on the terms in-
cluded in Equation 5.1, as it is only a function of kmax and the central redshift of the
bin.)

5.5 Results and discussion

Let us summarise again here the cosmological parameter sets for the three differ-
ent cosmological models, θΛCDM = {Ωm, h, σ8}, θDE = θΛCDM ∪ {w0, wa} and
θMG = θΛCDM ∪ {Q0, Σ0}. In our forecasting analysis, we use the Bayesian sam-
pler Multinest (Feroz, Hobson, and Bridges, 2009).
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TABLE 5.4: The `min and `max values for all the EMU bin configura-
tions. The former is specified as the point where the relative error
between CosmoSIS and CLASS angular power spectra measurements
is below 5%, while the latter in the limit where `max = kmaxχ(z̄i) with

z̄i the centre of the ith bin.

2 redshift bins 5 redshift bins
`min `max `min `max

Top-hat Gaussian Top-hat Gaussian
w/o mag w/ mag w/o mag w/ mag w/o mag w/ mag w/o mag w/ mag

3 2 2 2 480 2 2 2 2 257
10 12 10 10 1718 6 6 8 8 673
− − − − − 17 18 11 11 982
− − − − − 24 25 10 10 1215
− − − − − 24 25 9 9 1813

We forecast cosmological parameter constraints using both the incomplete Cg,den
`�1

and the correct Cg,den+mag
`�1 spectra for the different binning configurations of EMU,

fitting the mock data using a likelihood of the form described in section 5.4. Note
that for the moment we neglect RSD in the modelling of the synthetic data. The
reason for this will be come clear afterwards, and we discuss the issue in subsec-
tion 5.5.6. The mock-data vector d` is thus constructed assuming the density pertur-
bations and the magnification bias described in section 5.1, according to the fiducial
cosmology given in Table 5.3.

Additionally, we need to add a number of extra nuisance parameters to our anal-
ysis, that will be marginalised over, in addition to the cosmological parameters of
interest. These nuisance parameters model our ignorance on some underlying quan-
tity such as the galaxy bias, and depend also upon the binning strategy adopted. We
introduce three cases:

1. An idealistic scenario, where the galaxy bias is perfectly known, keeping its
fiducial values as in Table 5.1 and Table 5.2;

2. A realistic scenario, with an single bias amplitude parameter spanning the
whole redshift range, which is taken as a free parameter;

3. A realistic, yet conservative scenario, allowing for a free galaxy bias parameter
per each redshift bin.

Let us finally remark that the magnification bias for each redshift bin keeps its
fiducial value as in Table 5.1 and Table 5.2, and it remains fixed throughout the anal-
ysis and for all the scenarios. Moreover, we choose to take the means of the posterior
distribution instead of the best-fit values to allow for safer conclusions in the case of
highly non-Gaussian posterior distributions (see section 4.4). The results are pre-
sented and discussed thoroughly in the next subsections where we uniformly opt to
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FIGURE 5.2: EMU mean and 68% confidence intervals on the derived
S8 (left) and h (right) cosmological parameter for Gaussian binning
as a function of the number of nuisance parameters for the ΛCDM
model. Note the different colors accounting for the number of bins
and the combination of density and magnification in the theory vec-

tor.

show the constraints on the derived parameter

S8 = σ8

√
Ωm

0.3
, (5.12)

which is better constrained than σ8, and is not correlated with Ωm. In all plots the
means of the posterior along with the 68% marginal errors for each parameter are
shown.

5.5.1 Constraints on ΛCDM

In Figure 5.2 we present the 68% marginal confidence intervals and the means on
{S8, h} for 2 and 5 Gaussian bins—a binning scenario closer to reality. As a general
remark, we shall see that whether we consider the realistic or the conservative sce-
narios, the constraining power that we get from the correct model (i.e. den+mag) is
comparable. This is true for both binning configurations, and as we will see in the
following sections, this feature remains the same in the cases of extensions of the
ΛCDM model.

Results for top-hat bins are very similar to those obtained with more realistic
Gaussian bins, so we report the corresponding figure and tables in section B.1, limit-
ing ourselves to point out that the main difference between Gaussian and top-hat
binning is that the latter sees mildly biased estimates for h even in the 5-bin, 1-
nuisance parameter case. This is mainly due to the slightly tighter constraints ob-
tained with top-hat bins in this configuration, meaning that the observable is more
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sensitive to the Hubble constant thanks to the better redshift resolution. Besides this,
on a general ground, we see no further, major difference between top-hat and Gaus-
sian bins. This has to be attributed to the fact that the bins considered for the EMU
distribution are quite wide regardless of the top-hat or Gaussian bin choice.

Nonetheless, the offsets in the parameter estimates obtained with Gaussian bins
are always a bit more pronounced compared to top-hat bins. That is, Gaussian bins,
given the poor redshift estimate, are wider than the sharp top-hats, and so have
more sources with a significantly different dynamical time, along the line of sight in
the same redshift bin. As a result, the wider the bin is, the larger the magnification
bias is, inducing a larger offset in the results when excluded.

5.5.2 Two Gaussian bins

In the case where the galaxy bias is perfectly known—the idealistic scenario, marked
by ‘0 nuisance parameters’ on abscissas of Figure 5.2—it is evident that when we fit
the mock data with the complete model (blue error bar), the input reference values
are well within the 68% error interval calculated on both parameter, S8 and h. On
the other hand, when we assume the incomplete model (cyan error bar), namely
ignoring the magnification contribution in the theory vector, the estimates of {S8, h}
are clearly biased with respect to the input reference.

Then, in the realistic scenario we introduce a free galaxy bias parameter αEMU for
the whole redshift range (‘1 nuisance parameters’ mark on the x-axis). The results
presented on the cosmological set {S8, h} are then obtained after marginalising over
this nuisance parameter. Interestingly, now the results on S8 are different. That is,
even with the incorrect model S8 becomes totally unconstrained (cyan error bar).
The reason for this is that the galaxy density field is highly sensitive to the galaxy
bias. As a result, there is a degeneracy between the galaxy bias and the amplitude
of matter fluctuations, S8. Nonetheless, when we consider magnification, too (blue
error bar), we lift this degeneracy considerably, and the error bar shrinks.

Now, we examine the conservative scenario, where we allow for a nuisance bias
parameter for each redshift bin, bi, in the range [0.1, 3.5] to be marginalised over (‘2
nuisance parameters’ tick). Constraints on S8 is quite similar to those of the realistic
scenario, with the incomplete model yielding a degenerate S8 (cyan error bar) es-
timate, in turn mitigated by the incorporation of the magnification bias (blue error
bar) for the same reasons mentioned above. On the contrary, we see no deviance in
the h for the wrong model (cyan error bar). This is probably due to the fact that we
use a larger number of nuisance parameters, leading to an overall broadening of the
confidence intervals.

The findings for the case of 2 Gaussian bins are quantitatively summarised in
Table 5.5.
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TABLE 5.5: Means and corresponding 68% marginal error intervals
on cosmological parameters for the EMU radio continuum galaxy

survey applying 2 Gaussian bins with the ΛCDM model.

2 Gaussian bins (ΛCDM)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.962± 0.045 0.830± 0.044 1.04± 0.34 0.82± 0.12 0.88± 0.25 0.81± 0.12
h 0.502± 0.059 0.686± 0.096 0.481± 0.066 0.69± 0.12 0.68± 0.14 0.68± 0.14

5.5.3 Five Gaussian bins

Let us now turn to the results obtained with 5 bins. Starting from the idealistic case,
where the galaxy bias is known exactly, it is clear that there is no bias on any cosmo-
logical parameter of interest when using the wrong model (yellow error bar). After
marginalising over the normalisation bias parameter for the whole redshift range
(realistic scenario), a degeneracy between this αEMU and S8 appears (yellow error
bar), in a similar fashion to the 2 bin analysis with density only. In agreement with
the previous results, the correction of the magnification effect yields more stringent
constraints (red error bar). Also, h estimated with the incomplete model (yellow er-
ror bar) stays consistent with the fiducial cosmology for both the realistic and the
conservative case.

It is worth noting that the picture changes in the conservative case (now allow-
ing this prior range [0.1, 9.0]) concerning the estimate on S8 with the wrong model
(yellow error bar). In detail, this estimate is biased for more than 68% below the
reference value. However, the inclusion of magnification corrects for this bias com-
pletely (red error bar). The last result on S8 may seem a bit unexpected, as it is
evident from the analysis with the 2 bins that both the realistic and the conservative
scenarios yield comparable results on S8 that are quite degenerate, yet not biased,
with the density-only model.4

To understand this, let us draw the reader’s attention to the galaxy bias fiducial
values of Table 5.2, chosen for the reference cosmology to produce the mock data, it
is evident that these values are quite large. This is normal since the EMU survey as a
radio continuum experiment probes very high redshifts, where the galaxy bias is ex-
pected to be rather large. In addition to this, we have already proved that an incom-
plete model chosen to fit the correct data can sometimes be insufficient to describe it
successfully, leading to a misplaced/biased peak of the posterior. This, along with
the fact that the galaxy bias extends to high values, leads the incomplete model to
make erroneous overestimates of the galaxy bias nuisance parameters, which are
counterbalanced by a rather low and therefore biased measurement on σ8, which is
of course imprinted on S8 as well.

4It is worth mentioning that this degeneracy is also shown on σ8 for the cases of photometric and
HI-galaxy surveys (see chapter 4), when one tries to fit mock data simulated assuming both density
and RSD, against spectra including density fluctuations only.
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TABLE 5.6: Same as Table 5.5, but for the case of 5 Gaussian bins.

5 Gaussian bins (ΛCDM)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.826± 0.027 0.827± 0.026 0.83± 0.20 0.818± 0.099 0.62± 0.11 0.75± 0.11
h 0.699± 0.059 0.684± 0.057 0.698± 0.057 0.680± 0.055 0.683± 0.075 0.669± 0.072

TABLE 5.7: Same as Table 5.5, but for DE.

2 Gaussian bins (DE)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.78± 0.10 0.883± 0.083 0.92± 0.30 0.84± 0.10 0.77± 0.25 0.82± 0.10
h 0.68± 0.16 0.61± 0.13 0.66± 0.13 0.58± 0.13 0.74± 0.15 0.66± 0.12
w0 0.10± 0.66 −0.96± 0.63 0.02± 0.67 −1.22± 0.66 0.48± 0.55 −0.84± 0.78
wa −2.8± 1.5 −0.8± 1.8 −2.2± 1.4 −0.6± 1.4 −2.4± 1.1 −1.2± 1.6

Despite this peculiar result for the incomplete model in the conservative scenario
for the 5 bins, generally the biased estimates with the wrong model are those in the
analysis with 2 very wide bins described in the previous subsection. This leads to
the conclusion that the magnification contributing to the galaxy clustering is very
significant, and it may not be neglected when wide redshift bins are chosen. This
makes sense, too, since the magnification bias of Equation 6.6 is an integrated effect,
implying that the wider the redshift range of the sources who are inside the bin, the
more enhanced the effect of the magnification will be, leading to important biases
when it is not considered.

By comparing the results with the 2-bin case, one can easily appreciate that the
constraints obtained with the five narrower bins are tighter, especially on h. This can
be attributed to the fact that the parameter’s effect on the power spectrum can be
determined through an accurate determination of its redshift dependence, which is
more precise with narrower redshift bins.

The findings for the case of 5 Gaussian bins are quantitatively summarised in
Table 5.6.

5.5.4 Constraints on dark energy

Let us know move to the first extension to ΛCDM considered, namely dynamical
DE as in subsection 5.3.1. The 68% marginal confidence intervals and means on the
cosmological set {S8, h, w0, wa} are presented in Figure 5.3, Table 5.7, and Table 5.8.

Generally speaking, we find the same behaviour of constraints on S8 and h as for
ΛCDM, but there are a couple of points which nonetheless differ from the ΛCDM
results. The former is that in this parameterisation, the density-alone model for the
5 bins yields a slightly biased result on h in the realistic scenario. The latter concerns
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FIGURE 5.3: Same as Figure 5.2, but for the DE parameter set.

TABLE 5.8: Same as Table 5.6, but for DE.

5 Gaussian bins (DE)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.840± 0.035 0.839± 0.037 0.87± 0.22 0.812± 0.098 0.593± 0.085 0.73± 0.13
h 0.610± 0.068 0.666± 0.080 0.605± 0.060 0.663± 0.086 0.716± 0.087 0.632± 0.072
w0 −0.35± 0.26 −0.97± 0.25 −0.33± 0.24 −0.94± 0.26 0.02± 0.67 −0.64± 0.44
wa −1.64± 0.70 −0.14± 0.68 −1.68± 0.66 −0.22± 0.74 −2.2± 1.5 −1.6± 1.6
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TABLE 5.9: Same as Table 5.5, but for modified gravity.

2 Gaussian bins (MG)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.897± 0.080 0.842± 0.062 0.97± 0.30 0.83± 0.11 0.84± 0.22 0.82± 0.11
h 0.60± 0.12 0.69± 0.12 0.59± 0.16 0.70± 0.13 0.70± 0.13 0.70± 0.13
Q0 0.85± 0.23 0.77± 0.30 0.88± 0.23 0.80± 0.29 0.74± 0.32 0.73± 0.38
Σ0 0.89± 0.12 0.89± 0.15 0.91± 0.12 0.91± 0.15 0.90± 0.15 0.91± 0.19

that, in particular, the idealistic case constraints are a bit weaker than the ΛCDM
ones. This, of course, is due to the addition of the parameter set {w0, wa}, result-
ing in a larger statistical uncertainty in the posterior, keeping even the constraints
for the wrong model and the 2 wide bins, consistent within 1σ from the reference
cosmology. Apart from that, regardless of the binning, a correct modelling yields
comparable results for the realist and the conservative case, within 68% from the
fiducial values.

If we now focus on {w0, wa}, which constitutes one of the main points of our
work. It is evident that for any binning applied in the density-only model, since the
reconstructed results are always biased on both parameters whether we introduce
nuisance parameters to be marginalised over or not. In detail, we see that the picture
of the analysis with the 2 bins is independent of the status of knowledge of the galaxy
bias. The same is true for the 5 bins, apart form the conservative case where we
get weakened results. It is worth noticing again that from the two configurations,
the 5-bin choice yields better constraints. Indeed, after having a look at the mean
values estimated by the incomplete model, we can really appreciate that the bias is
more pronounced with the wider bins (cyan error bars compared to yellow ones).
Generally, it is obvious that the correct model (blue in the 2-bin and red in the 5-
bin case) always accepts the fiducial values w0 = −1 and wa = 0 within the 68%
marginal error.

Given these results, we infer that fitting the mock data with the complete model
containing the same full information (density fluctuations and magnification) does
not point to a spurious DE extension of the ΛCDM model, which would not other-
wise be the case if we ignored the magnification. This demonstrates the fact that the
inclusion of the magnification bias on the galaxy density field is indispensable, in
order to avoid misinterpretation of the results on the cosmological parameter esti-
mation.

5.5.5 Constraints on modified gravity

Finally, Figure 5.4, Table 5.9, and Table 5.10 present the parameter constraints on the
modified gravity model parameters {S8, h, Q0, Σ0}.

We see that for the 2-bins and for both the wrong (cyan error bar) and the correct
(blue error bar) model, the results on {S8, h} are always within 68% from the fiducial
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FIGURE 5.4: Same as Figure 5.2, but for the modified gravity param-
eter set.

TABLE 5.10: Same as Table 5.6, but for modified gravity.

5 Gaussian bins (MG)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.829± 0.043 0.828± 0.037 0.82± 0.20 0.83± 0.095 0.591± 0.085 0.75± 0.10
h 0.711± 0.088 0.700± 0.077 0.712± 0.086 0.705± 0.080 0.713± 0.087 0.700± 0.086
Q0 0.83± 0.23 0.83± 0.23 0.83± 0.23 0.84± 0.22 0.75± 0.32 0.78± 0.33
Σ0 0.93± 0.12 0.92± 0.12 0.92± 0.12 0.92± 0.11 0.90± 0.15 0.92± 0.16
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values, and once again the same pattern follows, with the degeneracy on S8 and
its alleviation after magnification is added in the realistic and the conservative case,
which again give comparable results. When it comes to the narrower 5 bins, we have
a similar behaviour with the exception that the constraints are more stringent, and
there is a biased underestimation of the S8 with the incomplete model (yellow error
bar) in the conservative case. Also, the constraining power here for both binning
scenarios on the set {S8, h} is similar to the case of DE.

Concerning the modified gravity parameters {Q0, Σ0}, if any of these two pa-
rameters deviates from unity, this would indicate that the ΛCDM model possibly
needs to be replaced by a modified theory of gravity. Nonetheless, we can see for
both binning configurations and both models that the results are comparable, while
all the estimates are unbiased with respect to the fiducial input value. In addition,
the narrower 5 redshift bins yield slightly tighter constraints than the 2-bin case.

Overall, we can conclude that even after ignoring the magnification correction in
galaxy clustering, we are not able to see a biased result on the {Q0, Σ0} that would,
incorrectly of course, imply that the vanilla ΛCDM model is not the complete theory
to describe the mock data.

5.5.6 Including RSD

At last, we examine the impact of RSD in the analysis. In chapter 4, we have already
presented results that show, for optical/near-IR and radio HI-line galaxy surveys,
that if one neglects RSD when fitting against the data, one can induce biases in the
cosmological parameter estimation.

In this case, we create the mock data including all terms in Equation 5.2. We
focus on the idealistic scenario, where the galaxy bias is perfectly known, as if no
deviation from the results described above is found in this case, we even less expect
to see any for the realistic and conservative cases. We constrain the parameter set
{Ωm, h, σ8} with four different constructions of the theory vector: i) density only;
ii) density and magnification (these two corresponding to what discussed in the
previous subsections); iii) density and RSD; iv) and density, RSD, and magnification.

Figure 5.5 presents the results for the four different models considered. The left
panels show the constraints on the set {S8, h} for the 2-bin case. It is clear that there
are biased estimates when the theory model includes the density fluctuations alone
or the density along with the RSD correction, neglecting in both cases the magni-
fication bias. On the contrary, the theory model that contains the full information
(density, RSD and magnification) as the mock data is well within 68% from the ref-
erence fiducial values, and so does the model which considers the density field and
the magnification flux, but ignoring now RSD. As for the results of the 5-bin case
shown in the right panels, it is obvious that the constraints are better on both S8 and
h, while there are no biased estimates at all with any of the three incomplete models
tested.
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FIGURE 5.5: EMU mean and 68% constraints on the derived S8 (top)
and h (bottom), cosmological parameter for 2 (left) and 5 (right) Gaus-
sian bins in a ΛCDM model where the galaxy bias is known exactly.
Note that the data to be fitted are constructed incorporating both RSD
and the magnification bias correction on the galaxy density field in a

ΛCDM fiducial cosmology (vertical dashed line).
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The above results, lead to the conclusion that the inclusion or the ignorance of
the RSD correcting term on the galaxy number counts, cannot affect our analysis at
any extend, and can be safely ignored in our study. The reason behind this is the
very large width of the redshift bins. Even when subdividing the redshift galaxy
distribution into 5 bins, they are still quite wide in the redshift space, thus leading
to a washing out of the RSD effect. Oppositely, narrower bins call for the inclusion
of RSD (see chapter 4). On the other hand, this test provides a further confirmation
that in the case of radio continuum surveys like EMU, the magnification bias ought
to be included in the modelling, in order to avoid potential biases in the cosmological
parameter estimation.
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Chapter 6

Implementing the multi-tracer
technique to constrain neutrino
masses

6.1 Formalism

Let us start with a set of:

• Ntr tracers of the underlying large-scale cosmic structure (different galaxy pop-
ulations, in the present case), labelled by upper-case Latin letters from the be-
ginning of the alphabet, viz. A, B . . .;

• NA
z redshift bins (for the Ath galaxy sample, in this case), labelled by lower-

case Latin letters from the middle of the alphabet, e.g. i, j . . .

Now, the harmonic-space power spectrum of the clustering between A-type galaxies
in redshift bin i and B-type galaxies in redshift bin j, Cg

` (z
A
i , zB

j ) is given by Equa-
tion 3.131 and in the case of different galaxy samples is written as〈

gA,i
`m g∗B,j

`′m′

〉
= δK

``′δ
K
mm′C

g
` (z

A
i , zB

j ), (6.1)

where e.g. gA,i
`m now indicates the spherical-harmonic expansion coefficients of the

sky map of the distribution of the A-th tracer in the i-th redshift bin. Clearly, the
case A = B reduces to the standard single-tracer analysis, whereas i = j means
restricting to auto-bin correlations.

If we focus on the main contributions to galaxy number density fluctuations—
namely matter density perturbations, RSD, and magnification (see e.g. Yoo, 2010;
Challinor and Lewis, 2011a; Bonvin and Durrer, 2011)—the theoretical expectation
of the harmonic-space power spectrum in a given cosmology can be computed in
the Limber approximation as we have already seen in chapter 4 and chapter 5 (we
write it again for clarity since we introduce different galaxy samples) via

Cg
`�1(z

A
i , zB

j ) =
∫ dχ

χ2 WA,i
g (k`, χ)WB,j

g (k`, χ)Plin (k`) , (6.2)
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where k` = (`+ 1/2)/χ, whilst

WA,i
g (k`, χ) = WA,i

g,den(k`, χ) + WA,i
g,RSD(k`, χ) + WA,i

g,mag(k`, χ) (6.3)

is the total weight function for each galaxy population and redshift bin pair. The
three terms of Equation 6.3 respectively read:

WA,i
g,den(k`, χ) = nA

i (χ)b
A
i (k`, χ)D(k`, χ), (6.4)

for matter density fluctuations;

WA,i
g,RSD(k`, χ) =

2`2 + 2`− 1
(2`− 1)(2`+ 3)

nA
i (χ) [ f D] (k`, χ)

− (`− 1)`
(2`− 1)

√
(2`− 3)(2`+ 1)

nA
i

(
2`− 3
2`+ 1

χ

)
[ f D]

(
k`,

2`− 3
2`+ 1

χ

)
− (`+ 1)(`+ 2)

(2`+ 3)
√
(2`+ 1)(2`+ 5)

nA
i

(
2`+ 5
2`+ 1

χ

)
[ f D]

(
k`,

2`+ 5
2`+ 1

χ

)
, (6.5)

for RSD; and

WA,i
g,mag(k`, χ) =

3ΩmH2
0

c2 [1 + z(χ)] χñA
i (χ) [Q(χ)− 1] D(k`, χ), (6.6)

for magnification.
It is important to note that in Equation 6.2 and below we have included the scale

dependence inside the kernels since we are interested in studying cosmology with
massive neutrinos. The following new quantities are: ; the linear scale dependent
galaxy bias, b(k, z); the growth factor, defined as D(k, z) =

√
Plin(k, z)/Plin(k); the

growth rate of matter perturbations, f (k, z) = −(1 + z)d ln T(k, z)/dz, with T(k, z)
the transfer function (and not just the growth factor D(z) since now we introduce
a scale dependence on the growth rate); the source redshift distribution of the A-th
galaxy population in the i-th redshift bin, nA

i (z),
1 and in Equation 6.6 the lensing effi-

ciency (given by Equation 3.120) for each redshift bin and galaxy population ñA
i (χ).

6.2 The survey

To investigate better the potentiality of multi-tracing, we choose to adopt as a ref-
erence experiment one that can simultaneously detect different galaxy populations.
In particular, we focus on the DESI (Aghamousa et al., 2016), a ground-based large-
scale structure experiment that has recently started its five year active period (as of
the second half of 2020). It aims at measuring the baryon acoustic oscillations and
the growth of structures via RSD. It will be a wide-area survey of 14, 000 deg2 with
a target list of galaxies and quasars observed spectroscopically. The target imaging
objects are divided in three classes according to their redshift range. The very low

1Note again that for any source distribution n(z)dz = n(χ)dχ holds.
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FIGURE 6.1: The total DESI (red) and the ELG (blue) and LRG (green)
galaxy sub-sample distributions in redshift.

redshift objects (z < 1) will be the luminous red galaxies (hereafter LRG), whilst
those in the intermediate redshifts (1 < z < 1.7) will be bright oxygen emission
line galaxies (hereafter ELG). Finally, at very high redshifts (2.1 < z < 3.5), quasars
will be traced thanks to their neutral hydrogen distribution using the Ly-α forest
absorption lines. Here, however, we will only consider the ELG and LRG galaxy
sub-samples, and shall refer to the total DESI galaxy sample as their summed dis-
tribution. The ELG and LRG distributions as a function of redshift are presented
in Table 6.1. We divide both samples in such a way that each bin’s edges coincide
between the tracers, in order to fully exploit the overlap binning for the multi-tracer
technique (see Figure 6.1). We consider four equi-spaced z-bins for each tracer apart
form the last one, where the LRG number density is almost zero and the ELG extents
to the end of the sample in redshift.

Let us consider that at a given redshift range dz the number of galaxies residing
there is dN, and the distribution of sources reads n(z) = dN/dz. Assuming that
N(z) are the points shown in Table 6.1, we can interpolate with a better sampled
distribution n(z) which will be the total source number counts as a function of red-
shift. Thus, inside a bin i of the A-th galaxy population, nA

i (z) galaxies reside, and
the total number counts of galaxies is

n̄A = ∑
i

n̄A
i , (6.7)
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TABLE 6.1: The DESI galaxy ELG and LRG sub-samples for an sky
area coverage 14, 000 deg2 as given in Aghamousa et al. (2016).

z dNELG/dz/dΩ [deg−2] dNLRG/dz/dΩ [deg−2]
0.65 309 832
0.75 2269 986
0.85 1923 662
0.95 2094 272
1.05 1441 51
1.15 1353 17
1.25 1337 0
1.35 523 0
1.45 466 0
1.55 329 0
1.65 126 0
1.75 0 0
1.85 0 0

whilst each bin’s angular number count of sources reads

n̄A
i =

∫
dz nA

i (z). (6.8)

Since the galaxies will be observed spectroscopically we choose a top-hat mod-
elling (given by Equation 4.17 and Equation 5.7 but we write it again here for clarity)
for the binning such that

nA
i (z) =

1
2

[
1− tanh

(
|z− z̄i| − ∆z/2

r∆z/2

)]
, (6.9)

with z̄i the i-th bin centre, ∆z the bin width, and r an edge smearing, which we chose
to be 0.03. We note again that the smearing of the bin edges mostly ensures that the
integration will be numerically stable.

The linear galaxy bias on scales k � knr for the ELG and LRG galaxy samples is
given by (Aghamousa et al., 2016) as bLRG(z) = 1.7/D(k � knr, z) and bELG(z) =

0.84/D(k � knr, z), whilst for the DESI distribution we choose a weighted average,
i.e.

bDESI(z) =
nLRG(z)bLRG(z) + nELG(z)bELG(z)

nLRG(z) + nELG(z)
. (6.10)

6.3 Neutrinos free streaming length and scale dependent galaxy
bias

The comoving free-streaming scale is a redshift dependent quantity defined as

kfs(z) =
√

1.5
H(z)

uth(1 + z)
, (6.11)
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with uth the neutrino thermal velocity. When neutrinos are relativistic, their kfs de-
creases as in Equation 6.11. However, after neutrinos become non-relativistic, their
thermal velocity starts to decay as

uth ≈
3Tν

mν
(6.12)

= 3(4/11)1/3 T0
γ

mν
(1 + z) (6.13)

≈ 151(1 + z)
(

1 eV
mν

)
km s−1, (6.14)

where mν the neutrino eigenstate mass in eV and T0
γ = 2.725′ K the photon tem-

perature today. Then, the free-streaming scale for the non-relativistic neutrinos be-
comes

kfs ≈ 0.81

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

( mν

1 eV

)
h Mpc−1. (6.15)

The redshift of the transition between relativistic and non-relativistic regimes is

1 + znr ≈ 1980
( mν

1 eV

)
, (6.16)

after which the free-streaming scale starts to grow, since kfs ∝ (1 + z)−1/2, passing a
minimum corresponding to

knr ≈ 0.018
( mν

1 eV

)1/2√
Ωmh Mpc−1. (6.17)

Modes with k > kfs result in the suppression of the growth of the CDM perturba-
tions due to the weakening of the gravitational potential wells, whilst for k < kfs per-
turbations are free to grow again. Free-streaming never affects modes with k < knr,
and the neutrino fluctuations evolve similarly to the CDM ones since the two fields
are coupled. Nonetheless, the baryon perturbations remain suppressed and are free
to grow in amplitude only after the matter-radiation decoupling, falling on the al-
ready formed gravitational neutrino damped CDM potentials. Thus, the galaxy bias,
b, which is the amplitude of the matter clustering ought to be properly modelled ac-
counting for scale dependence for studies concerning massive neutrinos. This is also
true for the growth rate of structures, f , which is sensitive to neutrinos.

For the scale dependent galaxy bias due to massive neutrinos we use the recipe
presented in Castorina et al., 2014. According to this, the galaxy bias can be written
with two definitions depending on the choice of the total matter or just the CDM
and the baryon component, namely

bm =
√

Pg
lin/Plin, (6.18)

bCDM+b =
√

Pg
lin/PCDM+b

lin , (6.19)

with Pg
lin and PCDM+b

lin the linear power spectra of clustering of galaxies and the
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FIGURE 6.2: Scale dependent galaxy bias as a function of scale,
with increasing redshift taken at the centre of each bin (see leg-
end for colors). The scale-dependent bias is shown with dotted
lines for ∑ mν=0eV, with dashed for ∑ mν=0.06eV and with solid for

∑ mν=0.2eV. The reference galaxy sample is the ELG catalogue.

CDM+baryon component, respectively. However, the galaxy formation is expected
to be relevant for k > kfs, where neutrinos do not cluster. Thus, it is more precise to
assume that the galaxies trace the field of the CDM+baryon perturbations and not
the total matter field which includes neutrinos (Vagnozzi et al., 2018) and hence opt
for bCDM+b as a definition of the galaxy bias.

In the case of ΛCDM cosmology with massive neutrinos and for k � knr, the bm

and bCDM+b converge since the total matter power spectrum and the CDM+baryon
power spectrum are the same, whilst for k � knr but well inside the linear regime
we have the behaviour

bm → bCDM+b(1− fν). (6.20)

where fν = Ων/Ωm with Ων = ∑ mν/(93.14h2). Apart from this recipe for the scale
dependent galaxy bias in section C.1 we describe another one by (LoVerde, 2016).

In order to account for a smooth transition for the linear galaxy bias values be-
tween k� knr and k� knr, we use the expression

b(k, z) = bk�knr(z) +
[bk�knr(z)− bk�knr(z)]

2

{
tanh

[
ln
(

k
knr

)γ]
+ 1
}

, (6.21)

with bk�knr or bk�knr the galaxy bias in the two asymptotic regimes and γ setting
the sharpness of the transition, for which we choose the value of 5—note that the
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actual value of γ does not impact the results. In Figure 6.2, we show the galaxy bias
as a function of scale for different redshifts corresponding to the centres of each bin
for the ELG galaxy sample (for colors, see legend). Solid, dashed and dotted lines
are for ∑ mν = 0.2, 0.06, 0 eV, respectively. It is evident that the amplitude of the
transition and its position in scale is strongly dependent on the neutrino mass (see
Equation 6.17 and Equation 6.20).

6.4 Likelihood and scale cuts

Similarly to chapter 4 and chapter 5, we plan to forecast cosmological parameters
with a Bayesian approach. For that purpose, we set up a Monte Carlo Markov Chain
sampling of the parameter posterior in the cosmological+nuisance parameter hyper-
space. We assume the familiar Gaussian likelihood for the data and minimise the
chi-square function (we write again the quantities for the clarity of the multi-tracer
method)

χ2(θ) =
`max

∑
`,`′=`min

[
dAB
` − tAB

` (θ)
]T (

ΓAB
``′

)−1 [
dAB
` − tAB

` (θ)
]

. (6.22)

In Equation 6.22, dAB
` = [Cg

` (z
A
i , zB

j )] is the data vector, constructed for our fiducial
cosmological model at θfid by flattening the NA

z × NB
z tomographic matrix in each

of its N` multipole bins; tAB
` (θ) is the corresponding theory vector. We remind the

reader that A, B label the galaxy sample, namely ELG or LRG.
For the data, we assume a Gaussian covariance matrix, which takes the signal

input of Equation 6.2 and reads

Γij,A;mn,B
``′ =

δ``
′

K
2`∆` fsky

×
[
C̃g
` (z

A
i , zB

m)C̃
g
` (z

A
j , zB

n ) + C̃g
` (z

A
i , zB

n )C̃
g
` (z

A
j , zB

m)
]

, (6.23)

and

C̃g
` (z

A
i , zB

j ) = Cg
` (z

A
i , zB

j ) +
δ

ij
KδAB

K

n̄A
i

, (6.24)

is the observed signal+noise, with n̄A
i defined in Equation 6.8.

It is worth remarking that:

• A = B represents the two single-tracer cases of ELG-ELG and LRG-LRG auto-
correlation power spectra;

• A 6= B is the ELG-LRG cross-correlation;

• the multi-tracer case is obtained by flattening the data and theory vectors, as
well as the covariance matrix, along the A, B indexes, too, thus considering
at the same time all auto- and cross-correlations between the different galaxy
samples.
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TABLE 6.2: The lower and upper multipole cuts for the LRG, ELG
galaxy samples, and their summed total DESI distribution. The `min
is set as the point where the relative error between the angular power
spectra measurement of CosmoSIS and CLASS is less than 5%, whilst in
the linear regime limit the upper cut is specified as `max = χ(z̄i)kmax,

where z̄i is the ith bin centre.

`min `max
LRG ELG DESI

63 124 119 611
78 82 108 705
98 99 125 791
166 133 170 872
176 20 20 (946)1075

The multipole range where the angular power spectra of Equation 6.2 are cal-
culated is comprised between a lower `min and an upper `max cut. The lower limit
is set due to the fact that the Limber approximation holds for ` � 1. Following
the same fashion of chapter 4 and chapter 6, we compare our Limber approximated
CosmoSIS spectra with the full spectra provided by CLASS (Lesgourgues, 2011; Blas,
Lesgourgues, and Tram, 2011; Di Dio et al., 2013), and hence set the `min where
the relative error between the two spectra is less than 5%. We note again that this
choice is justified since this difference is always inside the 1σ theory error bar of
the signal measurement. The choice of the upper bound `max is made due to the
fact that we consider only the linear scales in our analysis. This cut is defined as
`max = χ(z̄i)kmax, where z̄i is the centre of each redshift bin and the maximum wave-
length reads kmax = π/(2Rmin), with Rmin the sphere radius inside which the over-
density perturbations at present have a variance given by Equation 4.19 and is set
to σ2(Rmin) = 1 corresponding the kmax = 0.25 h Mpc−1. The lower and the upper
multipole cuts (shown in Table 6.2) are imposed in all the redshift bins of the LRG
and ELG galaxy samples, as well as their summed total DESI distribution (see again
Figure 6.1). We should note that the `max for the 5-th bin of the LRG sample is dif-
ferent than that of the ELG and DESI due to the lower z̄ considered. This choice is
reasonable since the LRG number density of galaxies in that bin goes quickly to zero
as already explained in section 6.2. In this analysis, we employ N`=20 log-spaced
multipole bins.

We have checked that for the particular spectroscopic binning width choice the
magnification bias correction is not affecting our analysis and therefore its contribu-
tion can be safely neglected (more about the importance of this effect on chapter 5).
This is in agreement with the findings of Jelic-Cizmek et al., 2020.

6.5 Results

To test the multi-tracer technique applied to harmonic-space power spectra and our
data analysis pipeline, we here aim to compare the constraints on the cosmological
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TABLE 6.3: Cosmological and nuisance parameters fiducial values
(the ΛCDM best-fit of Ade et al. 2016) with their priors. We consider
on top of the ΛCDM model the case of 1 massive and 2 massless neu-
trinos with a fiducial value set to the minimum mass ∑ mν=0.06eV.

Parameter description Parameter symbol Fiducial value Prior type Prior range
Present-day fractional
matter density

Ωm 0.3089 Flat [0.1, 0.6]

Dimensionless Hubble
parameter

h 0.6774 Flat [0.5, 1.0]

Amplitude of clustering‡ σ8 0.8159 Flat [0.4, 1.2]
Present-day physical
fractional neutrino den-
sity

Ωνh2 0.00064 (∑ mν=0.06eV) Flat [0.00064, 0.05]

Present-day fractional
baryon density

Ωb 0.0486 – –

Slope of the primor-
dial curvature power
spectrum

ns 0.9667 – –

Amplitude of the pri-
mordial curvature power
spectrum‡

ln(1010As) 3.064 – –

Optical depth to reionisa-
tion

τre 0.066 – –

Overall redshift
range amplitude bias
parameter¶

α 1.0 Flat [0.1, 2.0]

Per redshift bin ampli-
tude bias parameter§

bi i = 1 . . . 5(10 for multi-tracing) 1.0 Flat [0.1, 2.0]

‡ Following the LSS convention, we choose to sample on the σ8 parameter to account for the matter
perturbations amplitude and not on the primordial amplitude As.
¶ Applied parameter prior range for the ‘realistic’ scenario (notation mirrors that of chapter 4,
chapter 5).
§ Applied parameter prior range for the ‘conservative’ scenario .

parameter set θΛCDM+∑ mν
= {Ωm, h, σ8, Ωνh2}

(where we include 1 massive and 2 massless neutrinos) provided by the LRG and
ELG galaxy sub-samples, the DESI total sample, and multi-tracing between LRG and
ELG. We include nuisance parameters that need to be marginalised over, to account
for the ignorance that we have on the galaxy bias. In this respect, we explore both of
the following scenarios:

1. A realistic case, with an overall normalisation nuisance parameter spanning
the whole redshift range.

2. A conservative choice of a nuisance parameter per redshift bin.

It is important to note that, as optimistic as the realistic case may seem, the anal-
ysis done in chapter 4 showed no substantial difference with the conservative choice
in the final results and therefore we deem this case worthy of investigation here.
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For the forecasting analysis, we use the Bayesian sampler emcee (Foreman-Mackey
et al., 2013). For the four aforementioned galaxy samples, we construct the mock ob-
servables (data vector dAB

` and covariance matrix given by Equation 6.23) within a
fiducial ΛCDM+∑ mν with fixed scale dependent galaxy bias considering the RSD
correction on the galaxy density field (the fiducial values are shown in Table 6.3).
Then, we explore the parameter space of the set θΛCDM+∑ mν

along with the nuisance
parameters (for the priors see again Table 6.3) until we reach convergence with the
sampler. In the analysis of chapter 4 and chapter 5 we studied the effect of ignoring
galaxy clustering corrections like RSD and magnification bias on the estimated cos-
mological parameter set. Thus, the resulting posteriors were expected to be biased
described by highly non-Gaussian and/or bimodal shapes due to the incomplete in-
formation in our modelling. For that reason in the previous pieces of work we opted
for the means. In the analysis here, however, we always fit the synthetic data with
the same model (which is RSD on the density field and ΛCDM+∑ mν cosmology)
and therefore feel safe to opt for the 1D marginalised peaks.

6.5.1 Realistic case

In Figure 6.3 we present the 1σ and 2σ contours on the parameter set {Ωm, h, σ8, ∑ mν}
for the LRG (green), ELG (blue), the multi-tracing (grey) and DESI (red) considering
the realistic case with the galaxy bias as given by Equation 6.20. We keep the same
contour colors in the whole analysis. The fiducial values used to generate the mock
data and the priors for the Bayesian analysis are shown in Table 6.3 where we al-
ways include the RSDs correction on the galaxy density field. It is worth mentioning
that the 2D contour of the Ωm-h plane is quite skewed on the Ωm direction. This is
natural, since the neutrino fraction in the case of massive neutrinos is included in
the total matter component and the uncertainty on the upper bound of their mass
allows a higher Ωm as well.

In detail, we see that constraints on the parameters of interest, namely the Ωm,
h, σ8, and ∑ mν, from LRG are the weakest. The ELG distribution yields tighter
constraints on the all the aforementioned parameters. This is expected, since the
ELG has higher galaxy number density and the sample extents to a higher redshift
range—note that the fifth bin for LRG is almost empty—containing in this way more
cosmological information. The DESI combined distribution, as we have already
mentioned, is the ELG and the LRG summed number density distribution with a
weighted average galaxy bias given by Equation 6.10, and naturally yields better
results on the whole parameter set than the two separate samples.

Finally, when we consider multi-tracing between LRG and ELG, we get even
tighter constraints, particularly on the 2σ upper bound on the sum of the neutrino
masses. This effectively means an enhancement of 24% with respect to the DESI
bound. This is a major point in our analysis, attesting that with the multi-tracer
technique we are able to considerably improve the results on the sum of the neutrino
masses.
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FIGURE 6.3: Cosmological parameter constraints for the realistic
galaxy bias case relation. The outer and inner contours are respec-
tively the 95% and 68% C.L. on the marginal joint two-dimensional
parameter space. The green, blue, and red empty contours corre-
spond to the LRG, ELG, and DESI whilst the multi-tracer is presented
with grey filled contours. The white cross stands for the fiducial cos-

mology considered for the generation of the synthetic data.

In addition, the more precise measurement on the scale dependent galaxy bias
thanks to multi-tracing is clear by looking at the left panel of Figure 6.5 where we see
the marginalised 1D peak and the 1σ error on the normalisation galaxy bias param-
eter. Here we can appreciate that the multi-tracing (black) yields better constraints
compared to those of the summed DESI galaxy distribution (red) by 30%. A similar
trend can also be noticed on the σ8 parameter (central panel of Figure 6.3), which is
the normalisation of the power spectrum and is generally known to be degenerate
with the galaxy bias (see again chapter 4 and chapter 5).

In subsection C.1.1 we present and discuss the results obtained using the recipe
provided by LoVerde, 2016 in the realistic scenario. The general outcome is that we
are not able to distinguish between the different galaxy sample cases and therefore
we do not proceed with the conservative case following this recipe.

6.5.2 Conservative case

Similarly to the previous subsection, Figure 6.4 presents the constraints on the cos-
mological parameter set of interest for all the galaxy samples, adopting a realistic
yet conservative scenario with a nuisance parameter per redshift bin ought to be
marginalised over.

The results in the conservative case are quite similar to those obtained with the
realistic scenario with the exception that the upper bounds on the sum of neutrino
masses is weaker. This is a consequence of the fact that we have included more
nuisance parameters in our modelling, and in particular galaxy bias parameters to
which the neutrino masses are very sensitive, increasing in this way the measured
error on this parameter. Generally, LRG yield again the weakest results, whilst better
but comparable with each other are now the results obtained with ELG and DESI.
This could also be attributed to the larger errorbars thanks to the extra parameters.
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TABLE 6.4: Marginalised 1D peak values along with their 68% confi-
dence level intervals on the cosmological parameter set {Ωm, h, σ8} as
well as the 2σ (%95 CL) upper bound on the neutrino mass in eV. The
results are obtained for the realistic scenario considering the LRG, and
ELG galaxy sub-samples, the multi-tracer technique between them

and the DESI total galaxy distribution.

Realistic scenario
LRG ELG DESI Multi-tracer

Ωm 0.3213+0.0251
−0.0146 0.3206+0.0135

−0.0167 0.3134+0.0154
−0.0086 0.3166+0.0092

−0.0109

h 0.6833+0.0394
−0.0258 0.6854+0.0315

−0.0263 0.6835+0.0257
−0.0197 0.6801+0.0221

−0.0191

σ8 0.7310+0.1496
−0.1635 0.8132+0.0981

−0.0990 0.7872+0.0989
−0.0413 0.8083+0.0577

−0.0410

∑ mν (95%CL) <0.9801 <0.5782 <0.4857 <0.3686

FIGURE 6.4: Same as Figure 6.3 but for the conservative scenario

The result of multi-tracing, however, are overall the most constraining again, having
now a percentage gain of 44% with respect to the DESI upper 2σ bound on the sum
of the neutrino masses.

Let us now focus on the constraints on the normalisation galaxy bias parameter
per redshift bin, presented in the right panel of Figure 6.5. Here, we can appreciate
that the 1σ error bars obtained with the multi-tracing corresponding to either the
first tracer LRG (solid black line) or the second tracer ELG (dotted black line) are
tighter than the the DESI error bars (solid red line) by ∼ 30%. This holds also true
for the normalisation of the power spectrum σ8, as we can see in the central panel of
Figure 6.4. Finally, it is worth noting that the normalisation galaxy bias marginalised
1D peak values although consistent within 1σ with the fiducial value are slightly
larger, counter balancing in this way the σ8 marginalised 1D peak values which are
oppositely a bit lower than the fiducial.
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TABLE 6.5: Same as Table 6.4 the conservative scale dependent bias
scenario

Conservative scenario
LRG ELG DESI Multi-tracer

Ωm 0.3159+0.0397
−0.0111 0.3277+0.0159

−0.0230 0.3257+0.0226
−0.0174 0.3203+0.0192

−0.0135

h 0.6868+0.0365
−0.0293 0.6843+0.0279

−0.0227 0.6835+0.0257
−0.0197 0.6830+0.0271

−0.0178

σ8 0.6495+0.1673
−0.0536 0.7165+0.1192

−0.0352 0.7814+0.0509
−0.0845 0.7656+0.0512

−0.0423

∑ mν (95%CL) <1.1342 <0.7161 <0.7470 <0.4198

FIGURE 6.5: Marginalised 1D peak values (bullets) and the 68% con-
fidence level asymmetric error bars (horizondal lines) for the realistic
(left panel) and the conservative (right panel) amplitude galaxy bias
parameters, considering the relation described by Equation 6.20. We
denote with green the LRG, with blue the ELG, with black the multi-
tracer, and with red the DESI results. Note on the right panel the solid
and dotted black error bars corresponding to the bias parameters of
the first (LRG) and the second (ELG) tracer respectively in the multi-
tracer technique. The vertical dashed black line stands for the fiducial

cosmology value.
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Chapter 7

Conclusions

This PhD thesis is dedicated to the development of a unified pipeline of large-scale
structure data analysis with galaxy number count angular power spectra. The project
led to the publication of three articles whose analyses have been presented in chap-
ter 4, chapter 5 and chapter 6. Here, we briefly discuss and highlight the most im-
portant results we obtained.

In the work done in chapter 4, we have studied the effect of redshift-space dis-
tortions (RSD) on the tomographic angular power spectrum of galaxy number count
fluctuations (in the linear regime). In detail, we estimated to what extent the infor-
mation encoded in the RSD term can affect a cosmological analysis. To this purpose,
we have introduced, for the first time to our knowledge, the full expression of the
RSD along with the density perturbations in the Limber approximation. We have
modified the publicly available CosmoSIS code, and we have validated it at given
redshift and multipole ranges against the Boltzmann solver code CLASS.

In order to study the impact of RSD, we have followed this rationale. First, we
construct mock observables in the form of galaxy number count tomographic angu-
lar power spectra, Cg

` (zi, zj), including both density fluctuations and RSD. Then, we
fit this synthetic data with two theoretical models:

• A model that incorporates exactly the same information as in the mock data
set;

• A model that ignores RSD.

For this analysis, we have adopted two planned galaxy surveys, one as a proxy
for future photometric missions in the optical/near-infrared waveband, and another
as a representative of oncoming spectroscopic experiments at radio frequencies. The
former follows the specifications of a Euclid-like satellite, whereas for the latter we
have considered HI-line galaxy observations as performed by SKA1 (the first phase
of the SKA radio telescope). In order to opt between an equi-populated and an equi-
spaced redshift binning, we have performed a Fisher matrix test and a preliminary
MCMC analysis on the cosmological set {Ωm, h, σ8}. After choosing the former as
the optimal binning configuration, we have proceeded to a more extensive Bayesian
analysis. For the final analysis, we have considered:

i) An ideal scenario, with no nuisance parameter to model the galaxy bias;
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ii) A realistic scenario, with an overall normalisation and a redshift dependence
to account for a certain ignorance of the bias;

iii) A conservative scenario, where the bias can evolve freely over the redshift
range.

Given these cases we can summarise our basic results as:

• The discrepancy on the estimated mean values of cosmological parameters be-
tween an analysis with and without RSD is statistically significant for both our
proxy surveys, especially for the parameters {Ωm, σ8}. This holds true for both
the ideal, the realistic and the conservative scenario (see Figure 4.7, Figure 4.9
and Figure 4.11).

• The wrong theoretical model (including only density perturbations) yields very
degenerate results on σ8, since the normalisation of the matter power spec-
trum and the overall normalisation of the bias are completely degenerate. This
happens in a similar fashion when we consider bias nuisance parameters per
redshift bin. We partially lift this degeneracy when we add RSD, which are
insensitive to the galaxy bias.

• Overall, SKA1 is less informative than Euclid due to the lower SNR ascribed to
the shorter multipole range and the smaller sky coverage.

These results demonstrate that the inclusion of RSD on top of the density fluc-
tuations in our theoretical predictions is of great importance in order to avoid large
biases which dominate the statistics and inevitably lead to selecting erroneous cos-
mological models. Moreover, given the fact that RSD are insensitive to the galaxy
bias, one can yield tighter constraints on the measurements of the amplitude of the
density perturbations in the power spectrum σ8.

Then, in chapter 5 we have aimed to assess the effect of correctly including
the weak lensing effect of magnification bias in galaxy number counts in a fully
likelihood-based parameter estimation analysis. We have not only investigated stan-
dard ΛCDM parameters, as well compelling extensions such as dynamical dark en-
ergy and a phenomenological parameterisation to modified gravity. To maximise
the impact of magnification—which, being lensing, is an integrated effect—we have
focussed the analysis on the specifications of deep radio continuum surveys using
the Evolutionary Map of the Universe as a reference, for which we chose both two
(very wide) and five (narrower yet broad) redshift bins. Again, we have restricted
the harmonic-space angular power spectrum to the Limber approximation and the
linear scales, and according to that, applied cuts on the multipole range. Then, we
have created mock data including the magnification in the galaxy clustering and fit
it with two theory vector constructions: one correctly including magnification bias,
and another neglecting lensing.

In addition to that, we introduced a number of scenarios regarding the knowl-
edge we have on the galaxy bias:
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1. An idealistic scenario where the galaxy bias is perfectly known;

2. A pessimistic scenario where a free normalisation galaxy bias parameter is in-
troduced at the whole redshift range;

3. A conservative scenario that allows for a nuisance galaxy bias parameter for
each bin.

Considering all these cases, we summarise here the most important results ob-
tained with the different cosmological models:

ΛCDM – Here, the results we obtained with both binning configurations (Gaus-
sian and top-hat) are comparable since the bins are always wide enough. In
detail, we saw that there are biased estimates for the parameters {S8, h} when
the galaxy bias is know exactly and if we neglect the magnification effect. This
bias is not seen when we include nuisance parameters, but it is evident that the
wrong theoretical model yields unconstrained results on the normalisation of
the power spectrum σ8 which is degenerate with galaxy bias. We lift this bias
when we consider the magnification flux which is independent on the galaxy
bias. Another point is that when the narrower binning is chosen, the param-
eters are more constrained due to the better redshift precision on the power
spectrum. In addition to that, we appreciate in this case that there is a biased
measurement in the conservative case with the incomplete model on S8 owing
to the overestimate of the nuisance galaxy bias parameters. This is also true for
the following cosmological models that we examined. The results from now
on were obtained adopting the more realistic case for the Gaussian redshift
bins.

DE – Regarding the constraints on this CPL Dark Energy model, the biased
estimates are not seen when we include the wrong theory vector in the 2-bin
case, except the biased result on h in the pessimistic scenario with the 5-bins.
Overall, as in the ΛCDM model, there are better constraints with the narrow
binning over the wide one, and also degeneracy on S8 which is alleviated with
the magnification flux in the pessimistic and the conservative scenarios. As
for the results on {w0, wa}, in the all the cases and the scenarios considered,
the estimates with the incomplete model are biased. In the wide binning, the
bias is slightly more enhanced since the magnification flux as a lensing effect
becomes more important.

MG – When we examine the Modified Gravity model, the results on {S8, h}
are similar to those of the CPL, but with the only bias now seen only for the
5-bin conservative case on S8. There are no biases on any parameter out of the
set {Q0, Σ0}.

In the final test we considered, we proved that the inclusion of the RSD correction
in the galaxy clustering is not important in the case of radio continuum surveys like
EMU, since the very poor redshift knowledge leads to the dilution of the effect.
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All the above results stress the importance that for the radio continuum surveys,
the incorporation of the magnification flux is is necessary on the one hand, to avoid
biases on the estimated parameters, and on the other hand, to break the degenerate
relation between σ8 and the galaxy bias. Also these biased estimates tend to increase
when very wide bins are considered, a results that demonstrates the fact that the
magnification effect becomes more important with time.

Finally in chapter 6 we implemented the multi-tracer technique with a likelihood-
based approach for harmonic-space power spectra, and investigated the potential of
improving the 2σ bound on the sum of the neutrino masses within a ΛCDM model.
For that purpose, we considered the luminous red galaxy (LRG) and the emission-
line galaxy (ELG) samples of the Dark Energy Spectroscopic Instrument (DESI). We
conducted mock data fitting with the emcee sampler, and we included the RSDs
correction on the galaxy density fluctuations. Since the contribution of the massive
neutrinos introduces a scale dependence on the growth factor and the growth rate of
structures, so does on the linear galaxy bias. For that purpose we examined the scale
dependence in the galaxy bias as described in Castorina et al., 2014. (and LoVerde,
2016 in section C.1). The modified CosmoSIS code including all the adds-on is pre-
sented in section D.1.

The produced angular power spectra were Limber approximated and in the lin-
ear regime, so we applied multipole scale cuts where the scales under considera-
tion are valid. We did this for the case of four galaxy distributions. The LRG and
ELG galaxy sub-samples, their multi-tracing, and their summed DESI distribution
with a weighed average galaxy bias. Given that we adopted two realistic scenarios
to account for the ignorance on the galaxy bias with the introduction of nuisance
parameters that should be marginalised over, namely: i) a nuisance normalisation
parameter spanning the whole redshift range; and ii) A conservative case with nui-
sance parameter per bin.

We can briefly summarise our results as following:

– Implementing the galaxy bias of LoVerde, 2016 we see unnaturally tight con-
straints on the sum of the neutrino masses and the total matter fraction, ren-
dering the comparison of the constraining power between the different galaxy
distributions impossible.

– In the realistic scenario (Castorina et al., 2014) we can appreciate a difference
between the cases. The results obtained with the multi-tracing are overall the
strongest with an enhancement of 24% on the upper 2σ bound of the sum of
neutrino masses with respect to DESI. Also the 1σ errors for the galaxy bias
nuisance parameter and for σ8 are tighter by 30%.

– Finally the results of the conservative scenario (Castorina et al., 2014) are com-
parable with those of the realistic one. One difference is the worsening of the
upper bound on the sum of the neutrino mass due to the larger parameter set
in the likelihood. Still, multi-tracing in this case improves the 2σ upper bound
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of the sum of the neutrino masses at 44% better than DESI. Again we see better
results on the 1σ error of the nuisance bias parameters and the σ8 parameter
by ∼ 30%.

The above results demonstrate that the multi-tracer analysis between at least two
different tracers results in the improvement on the cosmological parameters and es-
pecially on the 2σ upper bound on the sum of neutrino masses up to 44% compared
with the constraints considering a single tracer.
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Appendix A

A.1 Derivation of Eq. (10) for RSD

We apply the recurrence relations for the spherical Bessel functions to express j′′` (kχ)

in terms of j functions at different multipoles (see e.g. Grasshorn Gebhardt and
Jeong, 2018). Thence, we obtain
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`�1 (zi, zj) =
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where we recognise the first term as that in Equation 4.5; this implies a0 = 1. Then,
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and finally,
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The coefficients ai are presented in subsection A.1.1. Now, if we perform a change
of variable χ̃ = [(`+ A)/(`+ 1/2)]χ, Equation A.1 can be further simplified so that
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only the usual Limber identity k = (`+ 1/2)/χ appears. Thus, we have
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+ ã2W i
b(χ)W

j
f (χ) + ã3W i
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f

(
2`+ 5
2`+ 1

χ

)
W j

f

(
2`− 3
2`+ 1

χ

)]
, (A.5)

where {ã0, . . . , ã7} = {a0, . . . , a7}, {ã8, . . . , ã11} = (2`+ 1)/(2`− 3){a8, . . . , a11}, and
{ã12, . . . , ã15} = (2`+ 1)/(2`+ 5){a12, . . . , a15}. Eventually, by defining the global
den+RSD window function W i(χ) of Equation 4.8, we can recast Equation A.5 in the
more compact form of Equation 4.9.
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A.1.1
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B.1 EMU: Top-hat bins

Here, we present in Figure B.1 and Table B.1 the means and their corresponding 1σ

confidence levels on the cosmological set {S8, h} in the case of 2 wide and 5 narrower
top-hat bins for the ideal, the pessimistic and the conservative scenario.

TABLE B.1: Means and corresponding 68% marginal error intervals
on cosmological parameters for the EMU radio continuum galaxy
survey applying 2 (5) top-hat bins with the ΛCDM model on the top

table (on the bottom table).

2 top-hat bins (ΛCDM)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.9415± 0.0560 0.8298± 0.0422 0.9960± 0.3248 0.8245± 0.1185 0.8379± 0.2269 0.8031± 0.1101
h 0.5244± 0.0763 0.6847± 0.0915 0.5281± 0.07530 0.7008± 0.1161 0.6857± 0.1296 0.6883± 0.1296

5 top-hat bins (ΛCDM)
Ideal scenario Realistic scenario Conservative scenario

den den+mag den den+mag den den+mag
S8 0.8119± 0.0205 0.8191± 0.0195 0.7996± 0.1921 0.8150± 0.1216 0.6204± 0.1003 0.7570± 0.0950
h 0.7191± 0.0435 0.6969± 0.0419 0.7199± 0.0436 0.6976± 0.0408 0.7003± 0.0547 0.6867± 0.0491
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FIGURE B.1: EMU mean and 68% constraints on the derived S8 (left)
and h (right) cosmological parameter in top-hat (top) and Gaussian
(bottom) bins as a function of the number of nuisance parameters for
the ΛCDM model. Note the different colors accounting for the num-

ber of bins and the density w/o magnification spectra fitting
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C.1 Scale dependent galaxy bias by (LoVerde, 2016)

This is described by

b(k, z) =

{
b(z)− q fν(b(z)− 1) k� kfs

b(z) + b(z) fν k� kfs
(C.1)

where b(z) the usual scale-independent galaxy bias and q0 ≈ 0.6.

C.1.1 Results

In Figure C.1 we present the 1σ and 2σ contours on the parameter set {Ωm, h, σ8, ∑ mν}
for the 4 galaxy samples considering the realistic case and the LoVerde’s recipe for
the galaxy bias as given by Equation C.1. We mention again that the fiducial values
used to generate the mock data and the priors for the Bayesian analysis are shown in
Table 6.3 where we always include the RSDs correction on the galaxy density field.

It is clear that the constraints on the parameters are quite stringent and similar
for all the galaxy distribution cases with the exception that the multi-tracing and the
DESI yield slightly tighter constraints on h and Ωm. Most importantly, it is worth
mentioning that the results on the upper bound of the neutrino mass are somewhat
unexpected since they seem unnaturally strict. This is a consequence of the relation
Equation C.1 which imposes only very small values on the Ων parameter during the
emcee likelihood evaluation. This, in turn, affects the result on the Ωm parameter as
well, since it includes the massive neutrino contribution, and is therefore not allowed
to vary on the parameter space. As a result we are not able to estimate the difference
in the constraining power between all the galaxy distribution cases and therefore we
do not proceed with the conservative bias case.
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FIGURE C.1: Same as Figure 6.3 but for the galaxy bias given by Equa-
tion C.1

TABLE C.1: Same as Table 6.4 but for the galaxy bias given by Equa-
tion C.1

Realistic scenario
LRG ELG DESI Multi-tracer

Ωm 0.3124+0.0061
−0.0125 0.3106+0.0095

−0.0107 0.3113+0.0076
−0.0091 0.3062+0.0106

−0.0050

h 0.6708+0.0306
−0.0153 0.6836+0.0213

−0.0265 0.6794+0.0184
−0.0191 0.6706+0.0288

−0.0073

σ8 0.8159+0.0739
−0.1362 0.8147+0.0946

−0.0832 0.7901+0.1191
−0.0822 0.7448+0.1543

−0.0628

∑ mν (95%CL) <0.1831 <0.1366 <0.1426 <0.1040



119

Appendix D

D.1 The public code

Our public code can be downloaded from the github repository https://github.

com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra.
This is a modified version of the publicly available code CosmoSIS. In this version the
galaxy number count Limber approximated angular power spectra are calculated in
the linear regime allowing for single and multi-tracers and including the density
fluctuations, RSDs and magnification bias corrections. Inside the same repository
we provide installation instructions in the README.md file. Particularly, we describe
the required package dependencies and the set-up process. The physical framework
of the code is described in section 6.1.

To account for single or multi-tracer analysis, we use the CosmoSISmodule load_nz.
This module reads from a txt file the distributions for the i-th bin of the tracer A with
the format: 1st column redshift z, and the rest the NA

i (z) bins. For example for two
tracers A,B each having 2 bins in the redshift z range the columns read : z, trac-
erA:bin1, tracerA:bin2, tracerB:bin1, tracerB:bin2

The modified part of the code is the project_2dmodule (for the original CosmoSIS
module version see project_2d), and more specifically:

• utils.c: Loads the function Plin(k`), and calculates D(k`, z), f (k`, z), b(k`, z)
(based on Equation 6.20)

• kernel.c: Specifies the considered galaxy number count contributions under
the names DEN for the galaxy density field, RSD for redshift-space distortions
and MAG for the weak lensing magnification. It also calculates the correspond-
ing normalized NA

i and some prefacors (in the case of weak lensing magnifi-
cation)

• limber.c: Calculates the Cg
`�1(z

A
i , zB

j ) assuming Equation 6.3.

In addition to these, the python interface of the code is modified as well:

• limber.py: loads the source code functions

• project_2d.py: provides the output Cg
`�1(z

A
i , zB

j ). Three kernels are imple-
mented with the names W_source, F_source and M_source accounting for DEN,
RSD and MAG respectively.

https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
https://bitbucket.org/joezuntz/cosmosis/wiki
https://bitbucket.org/joezuntz/cosmosis/wiki
https://bitbucket.org/joezuntz/cosmosis/wiki/default_modules/load_nz_1
https://bitbucket.org/joezuntz/cosmosis/wiki
https://bitbucket.org/joezuntz/cosmosis/wiki/default_modules/project_2d_1.0
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NOTE: The current modified CosmoSIS version is valid for galaxy clustering
ONLY under the entry galcl-galcl=source-source-source (see the example ini file
provided in the README.md). DO NOT attempt to ask output for the section names
like CMB_kappa, Shear or Intrinsic alignments, etc (for these see again the origi-
nal module project_2d).

Finally, we modified the Gaussian likelihood module 2pt to account for the out-
put name galcl.

In order to test the code we provide an example ini file (for more details see
README.md and ini file provided). The pipeline specified there gives the output mock
data (data vector and covariance matrix) of multi-tracer galaxy number count an-
gular spectra between the LRG and the ELG samples of the DESI (Aghamousa et
al., 2016) given a fiducial cosmological model. The cosmological parameter values
are read from another values.ini file. There we can also declare whether we will
include or not the density fluctuations, the redshift-space distortions and weak lens-
ing magnification contributions by specifying the value 1 or 0 respectively for the
parameters DEN, RSD and MAG (default is 1).

https://bitbucket.org/joezuntz/cosmosis/wiki/default_modules/project_2d_1.0
https://bitbucket.org/joezuntz/cosmosis/wiki/default_modules/2pt_1
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