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1. Introduction 

In this work we focus our research in Lang’s HLP models for contingency tables, 
constraining the expected table counts through the Goodman and Kruskal tau-b and, or 
the Gini’s index. Although we have used them, a lot of other measures can be used in 
this kind of models. For example, to measure association in discrete variable we could 
use odds ratios or coefficients derived from them such as the Goodman and Kruskal’s 
gamma or Kendall’s tau. For HLP models link function is allowed to be many-to-one and 
nonlinear. If the link functions are many to one as in our work, it is generally not 
possible to re-express the likelihood in terms of the linear predictor parameter β alone. 
This is one of the main reason that the ML approach has in the past typically been 
abandoned in favour of alternative fitting methods. Although less of an issue today, ML 
estimation was also avoided in the past because of computational complexity. 
Following Lang’s approach we use ML estimation which is an attractive alternative to 
non iterative weighted least squares for several reason: including model based estimates 
of cell probabilities along with cell specific residuals are available; likelihood ratio and 
score statistics are available and, unlike the Wald statistics, are invariant to the model 
parameterization; profile likelihood confidence intervals are available; smoothed 
estimates of the link function variance are used, mitigating potential problems with zero 
counts; the ML estimation method does not require full rank link function Jacobian; ML 
estimates are invariant; and estimators have higher order efficiency properties that are 
not shared by WLS estimators. 
In order to calculate the derivatives respect to the joint probabilities of the link functions 
we have introduced the exp-log notation, in this way, only the derivative matrix of this 
formula has been implemented and derived. Then, because following Lang the 
constraint functions for HLP models must be function of the single variable m, to use the 
Goodman and Kruskal measure of association and the Gini’s heterogeneity index as 
constraints, we have specified them in the exp-log notation using the expected counts. 
To use them in existing Lang’s computer procedure mph.fit, we have written some new 
R’s functions. Two functions which calculate the measures using expected counts and 
exp-log notation; and two function which calculate their derivatives. 

2. Lang’s MPH and HLP Models 

J. B. Lang (2004) introduced a broad new class of contingency table models. This class 
is called Multinomial-Poisson Homogeneous (MPH) models, which can be characterized 



by a sampling plan (Z, ZF, nF) and a system of homogeneous, sufficiently smooth, 
constraints h(m) = 0, where m is the vector of expected table counts. Let Z be a (c x s) 
population matrix and let ZF = ZQF be a sampling constraint matrix, the sampling plan 
is characterized by the triple where Z determines the strata from which samples are 
drawn, ZF indicates which samples have a priori fixed sample size, the non fixed sample 
sizes have Poisson distributions and nF gives the collection of fixed sample sizes, and 
the collection of unknown expected sample sizes is denoted δ and the entire collection 
of expected sample sizes by γ. We consider the joint probability function of q variables. 
The vector of the joint probabilities will be denoted by the vector π and its probabilities 
are called pre-sample probabilities. The data model probabilities are denoted by p: pis is 
a conditional probability, given sample from stratum s, the chance of a type i outcome. 
The vector of conditional probabilities satisfies this property: 

 ( )1 0−= >'p D ZZ π π  (2.1) 

The likelihood function is assumed to be the product of f multinomial probability 
functions depending on the elements of p and s - f Poisson probability functions 
depending on the elements of δ. It follows that y, the vector of observed counts, is said 
to have a product multinomial-Poisson distribution with respect to the sampling plan. 
There is a one-to-one correspondence between the (γ, p) parameters and the expected 
counts or mean parameter: m = D(Zγ.)p and p = D-1(ZZ’m)m. 
The probability density function of the Multinomial-Poisson (MP) random vector y, can 
be parameterized in terms of (γ, p): MPZ

* (γ, p | ZF, nF); or in terms of the expected 
count vector: MPZ

 (m | ZF, nF). The (γ, p) parameterization is useful for the study of 
asymptotic behavior of model estimators, while the m parameterization is convenient 
for model fitting and specification. 
A function h: Ω → Ru is Z-homogeneous of order o(j), j = 1, …, u, if and only if for 
every component hj  of the function h it is: 

 ( )( ) ( ) ( )( )o j
j jv jh hγ=D Zγ p p  (2.2) 

where ( )v jγ  is a component of the vector γ, ( ) { }1,2,...,jv s∈ . 
Sufficient, but not necessary, condition for Z-homogeneity is that if h is only a function 
of the expected counts m through the cell probabilities p, then h is Z-homogeneous. In 
words, if h is only a function of the expected counts m through the cell probabilities 
then h is Z-homogeneous. Necessary, but not sufficient, condition for Z-homogeneity: 
if h is Z-homogeneous then h(m) = 0 if and only if h(π(m)) = 0. In words, if h is Z-
homogeneous then constraining m via h(m) = 0 is equivalent to constraining p via h(p) 
= 0. An important special case of Z-homogeneous function is the following zero order 
function: h(D(Zγ)p) = h(p). Lang’s propositions describe the main consequences of 
these definitions that lead to simplification in model fitting and in derivations of the 
model equivalence results. 
A special case of these models are the so called HLP models for contingency tables, 
which constraint the expected table counts through L(m) = Xβ, where L is a sufficiently 
smooth link function that is allowed to be many-to-one and nonlinear, X is the design 
matrix and β is a vector of unknown regression parameters, together Xβ is referred to as 
the linear predictor. The HLP class is very broad and includes models that are not of the 



univariate and multivariate generalized linear model form. Most linear predictor 
contingency table models used in practice are member of this class. The constraint must 
satisfy the following conditions: 

( ) ( ) ( )a +L m = γ L p ,  ( ) ( ) ( ) ( )1 2 1 2/a a a aγ γ γ γ− = − 1 ; 

( ) ( )'=h m U L m  is sufficiently smooth and Z-homogeneous.       (2.3) 

Lang(1996) considers maximum likelihood methods for a broad class of models useful 
for describing multivariate categorical response data. These models, which are referred 
to as generalized log-linear models GLLM’s., can be specified in terms of the vector of 
cell probabilities π as Clog Aπ = Xβ. Standard log- and logit-linear models cumulative 
and adjacent-category logit models for marginal distributions and global cross-ratios 
models are all special cases of these generalized log-linear models. 

3. The Goodman and Kruskal tau-b and the Gini’s index 

Tau-b is a widely used measure of association for categorical data, introduced by 
Goodman and Kruskal has been proposed with a different interpretation by Light and 
Margolin (1971, 1974). Although the method used to arrive at R2 differs from the 
method used for τb and the interpretation is also different, Margolin’s R2 is algebraically 
equivalent to the Goodman and Kruskal’s τb. Tau-b is related to a well know categorical 
data measure of variation: the Gini’s index. 
In order to use the fitting and testing methods, the derivative matrix of these measures 
must be calculated then we introduce the Goodman and Kruskal τb and the Gini’s index 
in matrix notation. For this, we follow the approach of Kritzer (1977), who gave matrix 
formulas for several measures of association and the generalization introduced by 
Bergsma (1997). The method of matrix notation that we propose has been referred to as 
the “exp-log” notation. 
Following Lang it is useful to express the constraints using expected counts m. While to 
easily find the h(m) derivative, for the ML estimation, we need to write them in exp-log 
notation. 
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The Goodman and Kruskal’s τ, using the recursive definition and the expected counts is 
still an h2-function. 
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The Gini’s index, using the recursive definition and the expected counts is still an 
h1function. Both the link functions considered are zero order Z-homogeneous: formulas 
are identical using probabilities or expected counts and this is a special case that 
simplify inference too. 



For the applications presented we write some R functions, to define the constraints in 
the HLP models and to find their analytic derivatives. We use hmmm R’s package. 
We present two motivating example, in the first dataset consider occupants involved in 
car accident injuries classified according to injury gravity, restraint usage and year. We 
model five tau-b directly as a function of time. We test the hypothesis of no changing 
association in the five years and also the Gini’s index as link function. In the second 
motivating example we use data were obtained from a multicenter randomized clinical 
trial involving suitably eligible patients who were treated in four participating hospitals. 
We test the hypothesis of no changing association in the different hospitals, because 
model obtained could be compared to an additive model: Grizzle, Starmer and Koch 
(1969), using additive model, found that there are no significant hospital effects too. 
Forthofer and Koch (1973) used them in an analysis of rank correlation, where they use 
as compounded functions the tau-b. Interpreting the same model as a measure of the 
partial association between the severity of the dumping syndrome and the extent of the 
operation they had our same results too. An interesting case presented is that of an HLP 
model specified by simultaneous constraints. 

4. Conclusion 

Using this approach we obtain also approximate 95% confidence intervals and test 
statistics, G2, X2, W2, for assessing the overall goodness of fit, differently than with 
other approach, we obtain the estimated expected counts under the assumed hypothesis. 
As Lang we assumed that the ML estimates exist and uniquely solve the restricted 
likelihood equations. Unfortunately, to prove uniqueness or existence results, we use 
results for “regular” marginal models described by Bergsma (1997). Outside this and 
other special settings, however, the ML estimates may not exist, the likelihood equations 
may have several solution, and, or the ML estimate could be nonunique . The existence 
und uniqueness issue for the broad class of HLP models is an unsolved problem, and 
remains a topic for future research. 
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