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Simple Summary: Cacyreus marshalli is strictly dependent on its host plant (Pelargonium spp.), which
is widely cultivated as an ornamental plant in mountain areas. An experiment demonstrated that the
butterfly is able to develop on some wild geraniums, too, making mountain areas highly at risk for
a potential expansion to natural habitats. We therefore decided to carry out research in a protected
mountain area (Gran Paradiso National Park), focusing on the drivers which determine the distribution
of C. marshalli using data provided by either an opportunistic approach or a rigorous survey protocol.
The data collected via the planned survey were more informative than the opportunistic observations,
which were few and narrow. We suggest investing more in citizen science projects and combining
them with a designed protocol according to an integrated approach. We observed that C. marshalli
distribution is strictly linked to host plant availability but is constrained by cold temperatures, although
Pelargonium spp. are abundant. The temperature increase scenario showed an increase of butterfly
abundance, but halving of the host plant population could drive the rate of infestation to return to
what it was previously, excluding a countertrend in some high-altitude sites. It is therefore important
to test management actions designed to control alien species before implementing them.

Abstract: Cacyreus marshalli is the only alien butterfly in Europe. It has recently spread in the Gran Paradiso
National Park (GPNP), where it could potentially compete with native geranium-consuming butterflies.
Our study aimed to (1) assess the main drivers of its distribution, (2) evaluate the potential species
distribution in GPNP and (3) predict different scenarios to understand the impact of climate warming and
the effect of possible mitigations. Considering different sampling designs (opportunistic and standardised)
and different statistical approaches (MaxEnt and N-mixture models), we built up models predicting habitat
suitability and egg abundance for the alien species, testing covariates as bioclimatic variables, food plant
(Pelargonium spp.) distribution and land cover. A standardised approach resulted in more informative data
collection due to the survey design adopted. Opportunistic data could be potentially informative but a
major investment in citizen science projects would be needed. Both approaches showed that C. marshalli is
associated with its host plant distribution and therefore confined in urban areas. Its expansion is controlled
by cold temperatures which, even if the host plant is abundant, constrain the number of eggs. Rising
temperatures could lead to an increase in the number of eggs laid, but the halving of Pelargonium spp.
populations would mostly mitigate the trend, with a slight countertrend at high elevations.

Keywords: allochthonous insect; species distribution; Pelargonium; N-mixture models; MaxEnt;
mitigation strategy; citizen science; climate change
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1. Introduction

The introduction of alien species is one of the most important causes of biodiversity
loss. Their impact on native ecosystems is even more problematic in protected areas,
where it becomes crucial to understand the distribution of invasive species to undertake
management strategies that can limit the spread and potential risks to biodiversity [1–3].

Originally from a wide area of southern Africa (Zambia, Mozambique, Zimbabwe,
Botswana, South Africa, Swaziland [4,5]), Cacyreus marshalli (Butler, 1898) (Lepidoptera:
Lycaenidae) was first introduced in Europe through the trade of Pelargonium (Geraniaceae),
and it currently represents the only non-native butterfly species among 482 European
species [6]. In Europe, despite the abundance of Geranium and Erodium species (sponta-
neous Geraniaceae), only the genus Pelargonium (not native to Europe) serves as a host
plant, facilitating the spread of the species through the commerce of ornamental plants [7].
No recording of eggs laid on wild European Geranium spp. has been reported. How-
ever, a previous research demonstrated the ability of C. marshalli to develop on some
native plant species in controlled conditions [8] and to overcome natural barriers such
as trees to find host plants [9]. Consequently, the risk of naturalisation of this species is
high, posing an important threat for autochthonous Geranium-consuming butterflies (i.e.,
Eumedonia eumedon and Aricia spp. [8]). In Italy, and particularly in the Alpine area,
Pelargonium cultivars are widely used as ornamental plants in both private and public
areas because of their colourful flowers and resistance to drought and cold weather. Thus,
the Alpine areas are zones with a potential elevated presence of C. marshalli with a high
risk of naturalisation. For these reasons, the Gran Paradiso National Park (GPNP—where
C. marshalli was detected for the first time in 2015) activated a monitoring program to
assess the distribution of this species, involving standardised monitoring projects and
opportunistic data collection through citizen science (CS).

GPNP is located in the Western Alps, an area for which models predict significant
climate warming in the next decades [10], which would have a complex impact on Alpine
ecosystems [11,12]. Heat-sensitive species usually redefine their range, shifting towards
higher elevations, with a change in ecosystems that can lead to a decline in populations and
a risk of extinction in the near future [13,14]. On the other hand, thermophilic or generalist
species can obtain advantages and invade territories that were previously precluded due
to temperature limits [15,16]. Alien species, often generalists and with high mobility, can
benefit from climate warming [17]. Butterflies are a sensitive taxon to climate changes, and,
in mountain areas, specialised species particularly suffer reductions in their distributions
and undergo shifts towards higher elevations [18,19]. Cacyreus marshalli is a thermophilic
species and it could benefit from these changes since its distribution could be limited by
low temperatures at high elevations [9]. Given the wide range of factors to consider in
relation to the potential impact on C. marshalli, it became crucial to obtain deep knowledge
of the species, utilising all the available data collected, both according to a standardised
survey design and to an opportunistic way. In our study, we applied two different methods
of species distribution models (MaxEnt and N-mixture models) to compare different results
and approaches in relation to the sampling effort. In the last few years, a huge number
of studies have focused on species distribution models [20,21], but less is known about
their employment in predicting the expansion of alien species populations and the effect of
management activities under different scenarios. The protected areas have the responsibility
to maintain their biodiversity heritage and, moreover, to detect and manage early on the
expansion of alien species. Collecting data about the presence and invasion of species
is essential to predict potential expansion in their territories, to set proper management
strategies using a science-based approach and to maximise the probabilities of success in
the control of alien species.

Considering all these aspects, we hypothesized that climate variables could be key
drivers of C. marshalli distribution and that a temperature increase could exacerbate infesta-
tion, even in the colder sites located at high elevations. However, we believe that reducing
the number of host plants could mitigate the climate warming effect and lower the risk
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of potential invasions in new areas. Thus, the aims of our study were to: (1) assess the
main drivers of the distribution of the species in Alpine areas; (2) obtain a potential species
distribution, comparing different modelling approaches based on different quality datasets
(MaxEnt vs. N-mixture models) in order to compare predictions; and (3) evaluate different
future scenarios to understand the impact that climate warming may have in the coming
years and the possible mitigation effects of management strategies aimed to reduce the
presence of the host plant.

2. Materials and Methods
2.1. Study Area

Our research focused on GPNP, an Alpine protected area in northwest Italy. Its territory
extends for 71,043 hectares in two Italian regions (52% of the surface in the Aosta Valley and
48% in Piedmont) and it is mainly mountainous, including the Western Alps. Its elevation
ranges between 800 and 4061 m a.s.l. (Gran Paradiso mountain). Thanks to its diversity in
terms of habitat types, geological and lithological characteristics, elevation and temperature
excursions, the Park hosts a huge amount of biodiversity.

GPNP includes 37 natural habitat types of community interest, listed in Annex I of the
European Commission Habitats Directive (92/43/CEE). More than 1120 floristic species
are present, of which 81 are endemics and 6 are protected by the Habitats Directive (Annex
II, IV and V). The park is part of the Natura 2000 network and contains 168 vertebrate
species (52 mammal, 101 bird, 8 reptile, 3 amphibian and 4 fish species), among which the
International Union for Conservation of Nature (IUCN) has classified, at national level,
2 species as critically endangered (CR), 3 species as endangered and 18 as vulnerable
(VU). The park has a long tradition of studying invertebrates, mostly butterflies. The
park butterfly community includes 121 species, of which 4 are listed in the annexes of the
Habitats Directive and are threatened at a European level according to the Red List [6].
Unfortunately, the park is not exempt from alien species invasions. Several alien fish species
were introduced in the past for fishing, for example, Salvelinus fontinalis Mitchill (1814)
(Salmoniformes: Salmonidae), which heavily impacted alpine lake ecosystems and for
which the park has launched many projects [22]. Less is known about the presence of alien
invertebrates in the protected area. C. marshalli is the only alien insect species currently
studied, whose presence is recorded inside the park as the focus of a research project
undertaken in collaboration with the Zoology Laboratory (ZooLab) of the Department of
Life Sciences and Systems Biology (Turin University).

The Park’s area includes five mountain valleys split between two Italian regions (two
valleys in the Piedmont region and three valleys in the Aosta Valley region). Since most of
the urban areas are outside of the protected area, we decided to extend the study area to the
bordering municipalities because we considered them operational to study the distribution
of C. marshalli (Figure 1).
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same variables in both analyses using the MaxEnt and N-mixture models. 
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from the high-resolution temperature map (250 m spatial resolution) created by Metz et 
al. [23]. Since the spread of C. marshalli is potentially favoured by warm temperatures 
[9,24], we decided to test the effect of annual mean temperature on butterfly distribution. 
We then included temperature seasonality in order to better understand how temperature 
stability or variability among seasons could affect species distribution, probably via 
influencing phenology and survival at different developmental stages. We did not 
consider additional climatic variables because the owners of Pelargonium usually protect 
and look after the ornamental plants, balancing the water supply and storing the pots 
during winter.  

To calculate pel_abu and pel_neigh variables, we counted the number of ornamental 
Pelargonium pots in all the inside and bordering municipalities of the Gran Paradiso 

Figure 1. The study area in Gran Paradiso National Park (GPNP). The green dotted line shows
the park boundaries that are under the jurisdiction of two regions. Piedmont region: Val Soana
(villages: Valprato Soana 12 and Ronco Canavese 10); Valle Orco (villages: Ceresole Reale 2, Noasca,
Locana 5, Sparone 11 and Ribordone (9). Aosta Valley region: Valle di Cogne (villages: Cogne 3 and
Aymavilles 1); Valsavarenche (villages: Valsavarenche 13, Introd 4 and Villeneuve 14); Val di Rhêmes
(villages: Rhêmes-Notre-Dame 7 and Rhêmes-Saint-Georges 8).

2.2. Habitat and Climatic Variables

The habitat and climatic variables were calculated in a grid with a 250 × 250 m
resolution covering the entire surface of the study area. We selected seven explanatory
variables, two of which were bioclimatic, two related to the host plant and three related
to land cover (Table S1): (1) annual mean temperature (bio01), (2) temperature seasonality
(bio04), (3) number of Pelargonium pots (pel_abu), (4) neighbouring Pelargonium abundance
(pel_neigh), (5) woodland (wood), (6) ecotone (eco) and (7) grassland (grass). We tested the
same variables in both analyses using the MaxEnt and N-mixture models.

Annual mean temperature (bio01) and temperature seasonality (bio04) were extracted
from the high-resolution temperature map (250 m spatial resolution) created by Metz
et al. [23]. Since the spread of C. marshalli is potentially favoured by warm tempera-
tures [9,24], we decided to test the effect of annual mean temperature on butterfly dis-
tribution. We then included temperature seasonality in order to better understand how
temperature stability or variability among seasons could affect species distribution, proba-
bly via influencing phenology and survival at different developmental stages. We did not
consider additional climatic variables because the owners of Pelargonium usually protect
and look after the ornamental plants, balancing the water supply and storing the pots
during winter.
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To calculate pel_abu and pel_neigh variables, we counted the number of ornamental
Pelargonium pots in all the inside and bordering municipalities of the Gran Paradiso National
Park, carrying out the survey in 2017 and following it with two updates in 2018 and 2019.
We conducted an exhaustive census during which we counted and georeferenced all
the pots containing Pelargonium cultivars (see [9] for details). Through the Pelargonium
census we obtained 247 cells containing Pelargonium plants in the study area, with the
highest number of 519 pots being located in Cogne Valley. All cells with at least one
Pelargonium perfectly overlapped the urban environment, confirming the fact that the host
plant is unable to spread in nature in our study area. Using the counts of the census, we
calculated the number of pelargoniums in the neighbouring cells, considering only the nine
cells contiguous to each focus cell. Consideration of food plant abundance is crucial for
understanding C. marshalli populational trends in relation to the increase in the number of
ornamental plants. At the same time, we chose to include in the analysis the number of
Pelargonium plants in the neighbouring cells to better understand how host plant spatial
availability around the focal site (isolated vs. wide availability) could affect ovipositional
behaviour and, consequently, C. marshalli distribution.

Land cover variables were calculated using a local land cover map developed by
the botanical service of the protected area (GIS GPNP Habitat Map 2016—restricted use—
www.sit.parco.gran-paradiso.g3wsuite.it (accessed on 1 September 2021)). We obtained, for
each cell, land cover percentages for three main habitat categories (woodland, ecotone and
grassland) in order to investigate the potential role of macrohabitat structure in determining
C. marshalli site preferences. The calculation of all the variables was performed with QGIS
“Hannover” Version 3.16.11 (2020).

2.3. Cacyreus marshalli Data
2.3.1. Opportunistic Data

We chose to collect opportunistic data (Figure S1) from all the available open access
datasets: iNaturalist, Global Biodiversity Information Facility (GBIF) and the national
distribution dataset CKmap [25].

We found 138 georeferenced occurrences of C. marshalli only in the CkMap dataset.
CkMap is a database developed for the publication of distributional data for Italian fauna.
It includes an annual updated version of the initial database provided by the Italian Min-
istry for the Environment [26]. The dataset includes over 210,000 individual records (the
2007 version comprised 60,000 records) mapped on a 10 × 10 km Universal Transverse
Mercator (UTM) grid from data available in the scientific literature, from museum collec-
tions and from recent reports. Given the fine-grained resolution of our study (250 × 250 m),
for our analysis we considered only precisely georeferenced observations (Table S2) and we
deleted all occurrences for which only the UTM grid code was known. These observations
were of adults, caterpillars and eggs collected from previous studies conducted in the area
and from other researchers.

We also considered in the analysis three observations collected by the Gran Paradiso
CS project (“Diventa citizen scientist per il Parco”; http://www.pngp.it/en/node/15302
(accessed on 1 September 2021)), in which C. marshalli is one of the focal species.

2.3.2. Standardised Sampling Data

In 2018, we collected egg abundance data for C. marshalli in the Orco Valley (GPNP)
using stratified random sampling. We considered an altitudinal range between 500 and
2000 m and the sampling was based on a grid composed of 3116 cells (250 × 250 m). We
grouped our cells in three altitudinal bands: 500–1000 m (band 1), 1000–1500 m (band 2) and
1500–2000 m (band 3). For each cell we calculated the average altitude with QGIS (“Han-
nover” Version 3.16.11) software using TINITALY DEM, provided by Tarquini et al. [27].
Then, we selected cells that included open areas (meadows, pastures, cultivated areas)
covering at least a quarter of the cell’s surface and urban areas (towns and villages). In
the higher altitudinal band, for logistical reasons, we only selected cells that included

www.sit.parco.gran-paradiso.g3wsuite.it
http://www.pngp.it/en/node/15302
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paths to obtain a representative sample for band 3. We defined the sampling sites by
randomly selecting 25 cells for each altitudinal band—206, 140 and 220 cells, respectively.
Field activities were carried out from July to September to detect eggs during the flight
periods of the species. We planned three repetitions for each of the 75 cells on different
days to increase the probability of sampling eggs, and we counted the eggs on host plants
(ornamental Pelargonium spp.). Considering the phenology of the species, we completed the
three repetitions within each altitudinal range within a month to count a single generation
of the species. Furthermore, the three bands were sampled in a staggered way, starting
from the lowest band, in order to follow the different flight periods of C. marshalli for each
altitudinal band.

2.4. Data Analysis
2.4.1. MaxEnt Model

To produce a species distribution model inside the park territories and its neighbour-
ing village using opportunistic data, we used the R package biomod2 [28], employing the
algorithm MaxEnt [29]. MaxEnt is a species distribution model based on a max entropy
approach that defines the relations between presence distribution points and explana-
tory variables. This method only analyzes presence data and it is largely used to map
species distributions and predict species occurrence correlates; some governmental and
non-governmental organizations have adopted MaxEnt as a tool to map biodiversity at
large-scale levels (https://www.pointblue.org (accessed on 27 February 2022)). MaxEnt
estimates the relative occurrence rate (ROR) or the relative probability that each cell in a
study area has a suitable predicted condition for the species in question [30].

It calculates the values of the environmental covariates under species points and
compares them with values under background points (pseudo-absence points in which
the species’ presence is not assessed). The output of the model predicts the probability of
potential distributions [29].

First of all, we randomly selected the pseudo-absence points in a restricted background
environment considering a buffer of 2.5 km around the presence points in order to correct
the spatial bias occurring in the sampling effort [31]. We chose to create a model including
the whole dataset and another using 80% of the data as a training set and the remaining 20%
as a test set to evaluate the model following a train–test split procedure. For this last model,
we performed 100 replicas in which the training set was chosen randomly for each replica.

2.4.2. N-Mixture Models

We generated N-mixture models to assess C. marshalli egg abundance and its re-
lationship with climatic and environmental predictors accounting for imperfect detec-
tion. N-mixture models rely on certain key assumptions: closed populations among
sampling surveys, no false-positive errors, independence and homogeneity of detectability
among individuals.

Since C. marshalli’s eggs are easily recognizable and laid uniformly rather than in clustered
patterns [8], we can assume that no false positives occurred and that counts were made without
a violation of the independence and homogeneity of detection probability assumptions.

In order to respect the closed population assumption, for each altitudinal band we
performed egg counts (three sampling repetitions) within 30 days, which corresponded to
one flight generation period considering the study area [9]. Moreover, C. marshalli larvae do
not eat egg chorion, so we would not miss hatched eggs during the counts among sampling
surveys. Despite these precautions, adult individuals are mobile animals capable of laying
eggs among sampling repetitions, therefore leading to a potential lack of closure. However,
N-mixture models could still be an efficient method to evaluate relationships between
abundance, climate and environment [32], as it is possible to change the perspective about
the estimates of abundance obtained, considering them as the number of individuals (eggs
in our case) occurring in the sites during the sampling period rather than as values for
absolute egg abundance definitively present in the sites [33]. Therefore, as we could not

https://www.pointblue.org
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define the assessed abundances as total egg abundances, we defined them as the numbers
of eggs by means of which the level of infestation of each of the sites would be determined,
allowing us to assess C. marshalli egg distribution over the study area.

Prior to analysis, to avoid collinearity issues, we selected only the explanatory variables
showing a Pearson correlation r < |0.7| [34]. We then scaled and centred all the covariates
to make them comparable and to facilitate model fitting [35].

Model building was based upon biological hypotheses adding covariates to the
null model (ρ. λ.) through the unmarked package [36] in the statistical software R 4.1.0
(R Core Team, 2021). We applied a two-step modelling approach which consisted of, first,
testing predictors for detectability (ρ) while keeping abundance (λ) constant at null [37].
As we considered only the pelargoniums accessible in each of the sites (Pelargonium avail-
ability; pel_ava) as the variables influencing egg detectability, model testing involved,
firstly, a comparison between this simple detection model (ρ pel_ava λ.) and the null model
(ρ. λ.). Once the importance of Pelargonium availability had been tested, as a second step,
we proceeded with modelling abundance, keeping constant the best model structure for
detection probability [38]. Following different biologically relevant combinations, we tested
as important predictors of C. marshalli egg abundance the following climatic and habitat
variables: annual mean temperature (bio01), temperature seasonality (bio04), Pelargonium
abundance (pel_abu), neighbouring Pelargonium abundance (pel_neigh), woodland cover
(wood), ecotone cover (eco) and grassland cover (grass). Model selection was based on
the Akaike information criterion corrected for small sample sizes (AICc), the best model
considered to be the one which showed the lowest AICc value and a ∆AICc > 2 compared
to the other candidate models [39]. We then focused on a suitable variance structure of the
best model by testing and comparing three different distributions for the λ parameter [40]:
Poisson (P), negative binomial (NB) and zero-inflated Poisson (ZIP).

To evaluate the predictive ability of the three N-mixture models, we performed a
graphical fit assessment by comparing residuals, fitted values and observed data with the
plot.Nmix.resi function in the R package AHMbook [41]. Lastly, we conducted a parametric
bootstrap chi-square test of goodness of fit (1000 replicates) for each of the three mixture
models using the function Nmix.gof.test in the AICcmodavg package [42]. Besides the Gof
test, the Nmix.gof.test function provided a calculation of the overdispersion factor (ĉ), which
is important to assess model robustness and, in case of moderate lack of fit [42], to adjust
the uncertainties of our estimates [43].

Once all the model diagnostics were performed, we created a distribution map of
C. marshalli egg abundance over the study area according to the predictions of the best model.

2.4.3. Distribution Maps and Scenarios

Following the outputs of the best species distribution model provided by each ap-
proach (MaxEnt vs. N-mixture), we predicted the potential distribution of C. marshalli
occurrence and egg abundance over the protected area and the bordering municipalities. At
first, we created two distribution maps (250 × 250 m cells) representing the predicted val-
ues of ROR (as percentages) and the estimated egg abundances of MaxEnt and N-mixture
models, respectively. We then looked ahead, mapping C. marshalli distribution under a
climate warming scenario and applying a management strategy to mitigate a potential
climate-induced populational expansion. For the climate warming scenario, we selected
a temperature increase of 1.5 ◦C (RCP 2.6, IPPC 2014) based on the forecast by Gobiet
et al. [10] for the year 2050 in the European Alps, and for the mitigation strategy we re-
duced the host plant species (Pelargonium spp.) numbers by 50%, supposing an efficient
awareness campaign involving municipalities and citizens. All the maps were created with
QGIS software (“Hannover” Version 3.16.11).
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3. Results
3.1. Cacyreus marshalli Data

We collected 138 occurrences in the national dataset CKmap from 2017 to 2019, includ-
ing the 55 cells that were used for training in the MaxEnt model. Otherwise, we did not find
any target species sightings in the two most important CS platforms (iNaturalist and GBIF)
for the study area, while only three presence points were found in the park CS project.

Regarding standardised sampling data collection, we counted 685 eggs (in 21 cells)
during 225 surveys (sampling repetitions) carried out over 44 days of field work.

3.2. MaxEnt Model Results

We obtained high values of TSS for both MaxEnt models (the full model including the
whole dataset and the model with the test set)—0.88 and 0.87, respectively.

Pel_abu was found to be the most important variable in the models, with a percentage
contribution of 90% in the full model and 88% in the second model (Table 1). Indeed,
the cells with high ROR values overlapped perfectly the cells containing pelargoniums
(Figure 2). The pel_negh variable played a marginal role in the model, considering the
contribution of 7.2% in the full model and 9.7% in the model using a test set. The variables
regarding temperature data (bio01, bio04) did not make a relevant contribution to the models,
showing percentage contributions of less than 2% and 0.5% for temperature seasonality
and annual mean temperature, respectively. Habitat variables (woodland, ecotone and
grassland) proved not to be significant variables (contributions < 0.01%); thus, we did not
report them in Table 1.

Table 1. The table shows the importance of each variable for the full MaxEnt model (including all the
data) but also the mean and the standard error for the 100 interactions tested on the split dataset that
included 80% of the data and 20% used as a test set: annual mean temperature (bio01), temperature
seasonality (bio04), Pelargonium abundance (pel_abu), neighbouring Pelargonium abundance (pel_neigh).

Variables

Full Model Test Set Model

Percent
Contribution

Permutation
Importance

Percent
Contribution

Permutation
Importance

pel_abu 90.7 70.7 88.1 74.8
pel_neigh 7.2 6.3 9.7 8.6

bio04 1.9 22.7 1.8 15.7
bio01 0.1 0.3 0.4 0.8

Thanks to the MaxEnt algorithm, we obtained the response curves for each variable.
ROR values rapidly increased, even with a low number of food plants in the cell (Figure 2).
At the same time, ROR value decreased in the cells when the number of neighbouring plants
was higher than 600 units (Figure 2). Due to the insignificance of the climatic variables, we
chose to not report them.

The MaxEnt analysis did not provide relevant ecological information about C. marshalli
distribution. Indeed, the variables that made the most important contributions were linked
to the host plant (Table 1), as we could have expected, since species presence is obviously
dependent on Pelargonium. Therefore, we did not run the scenario models using the
MaxEnt algorithm.
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3.3. N-Mixture Model Results

The first step of our modelling approach highlighted, as we supposed, the importance
of the pel_ava variable for detecting C. marshalli eggs (Figure 3). Indeed, looking at model
selection, we noticed that the detection model ρ pel_ava λ. showed a definitely higher AICc
value than the null model (∆AICc = 1089.19; Table 2).
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Figure 3. Single covariate responses in relation to the expected abundance and detection predicted
by the best N-mixture model. Grey lines indicate 1-SE bounds.

Table 2. Model selection of N-mixture models for Cacyreus marshalli egg abundance. Annual mean
temperature (bio01), temperature seasonality (bio04), Pelargonium abundance (pel_abu), neighbouring
Pelargonium abundance (pel_neigh), woodland cover (wood), ecotone cover (eco) and grassland cover
(grass). K = number of parameters, AICc = Akaike information criterion corrected for small samples,
∆AICc = AICc difference, Wi = weight of each model, Cum.Wi = cumulative weight.

Models K AICc ∆AICc Wi Cum.Wi

ρ pel_ava λ bio01 + pel_abu + pel_abu:bio01 + pel_neigh 7 979.54 0.00 1 1
ρ pel_ava λ bio01 + pel_abu + pel_neigh 6 1099.16 119.61 <0.01 1

ρ pel_ava λ bio01 + pel_abu 5 1102.05 122.51 <0.01 1
ρ pel_ava λ bio01 + pel_abu + wood 6 1102.58 123.04 <0.01 1

ρ pel_ava λ bio01 4 1135.79 156.24 <0.01 1
ρ pel_ava λ bio01 + pel_neigh 5 1136.25 156.70 <0.01 1

ρ pel_ava λ bio01 + wood 5 1138.09 158.54 <0.01 1
ρ pel_ava λ bio04 4 1186.08 206.53 <0.01 1

ρ pel_ava λ pel_neigh 4 1273.59 294.05 <0.01 1
ρ pel_ava λ wood 4 1275.42 295.88 <0.01 1
ρ pel_ava λ eco 4 1281.87 302.33 <0.01 1
ρ pel_ava λ eco 4 1282.99 303.45 <0.01 1

ρ pel_ava λ. 3 1286.70 307.15 <0.01 1
ρ pel_ava λ grassland 4 1287.91 308.36 <0.01 1

ρ. λ. 2 2375.88 1396.33 <0.01 1
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Once the observation process structure had been defined, we focused on testing the
predictors for the state process. Firstly, we observed that bio01, pel_abu and pel_neigh were
the most important variables affecting egg abundance (Table 2). We then hypothesised a
potential synergistic action between the bio01 and pel_abu variables; thus, we added to the
previous best model (ρ pel_ava λ bio01 + pel_abu + pel_neigh; Table 2) an interaction term. The last
model structure (ρ pel_ava λ bio01 + pel_abu + pel_abu:bio01 + pel_neigh) definitely proved to be the best
one (Table 2), highlighting positive effects of bio01, pel_abu and the interaction term pel_abu:
bio01 on egg abundance, while pel_neigh was shown to have a negative effect (Table 3).
The model’s output showed that a rise in temperature and host plant abundance favoured
egg abundance, while an increase in neighbouring Pelargonium availability resulted in a
decreasing number of eggs (Figure 3). The positive synergistic action between bio01 and
pel_abu revealed that the more temperature increases, the more Pelargonium abundance
positively affects C. marshalli egg abundance.

Table 3. β estimates for the best fitting N-mixture model.

Variables Egg Abundance (SE) Detectability (SE)

Intercept 3.095 (0.249) ** −2.632 (0.182) **
bio01 0.446 (0.209) *

pel_abu 0.320 (0.058) **
pel_neigh −0.343 (0.067) **

pel_abu:bio01 0.592 (0.119) **
pel_ava 0.399 (0.049) **

* p value < 0.05; ** p value < 0.01.

Once we had identified the best N-mixture model, we tested the best mixture for
abundance comparing P, NB and ZIP distributions. Model selection found NB to have
the best λ distribution (∆AICc = 97.43), while ZIP and P showed the second and third
AICc values, respectively (Table S3). Since NB distribution is generally favoured by AICc
selection [41] and it could sometimes provide higher abundance estimates [32,44,45], we
examined the residuals, fitted values and observed data of the three models. The graphical
fit assessment highlighted that the ZIP model had a much better predictive ability than the
NB and P models (for details, see Figure S2). Moreover, the ZIP model was the only model
to pass the goodness of fit test for chi-squared statistics (p = 0.06) and, considering the many
zeros characterising our egg counts (zeros = 80%), we felt confident in selecting the ZIP
mixture as a suitable distribution for abundance. Although the ZIP model adequately fitted
the data, the goodness of fit test showed weak model robustness, as highlighted by the c-hat
parameter (ĉ = 2.68), too. We therefore used calculated overdispersion (OD) to multiply
the variance–covariance matrix of the ZIP model in order to inflate the uncertainties of our
estimates according to an OD factor.

3.4. Distribution Maps and Scenario Results

The MaxEnt map highlighted that most of the cells showed high ROR values, indicat-
ing a wide potential distribution of C. marshalli over the study area considered (Figure 4).
This result is not surprising since the host plant is present in all the cells and even low
Pelargonium abundance determines a high percentage of site suitability (ROR = 64%).

Concerning N-mixture model projections, we noticed a high level of infestation in the
low- and middle-elevation municipalities, while we found low egg abundances in cells
overlapping the high-altitude municipalities in both regions (Figure 5). The Aosta Valley
side of GPNP showed an overall low rate of egg infestation compared to the Piedmont
region (Figure 5).
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in the analysis are shown in green, while the streets are in grey. The grey polygon marks the Park
territory, in which only one sampled valley is included entirely. The colour scale, in the top right
corner, indicates the ROR values.
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The potential rise in temperatures (1.5 ◦C) revealed that nearly all the cells experienced
increases in egg abundance (Table 4; Figure 6) along the whole elevational gradient, while
there were some exceptions at high elevations (Figure 7). Only a few cells showed new egg
infestations (Table 4), but all the newly infested sites were located in high-altitude munici-
palities (Rhêmes-Notre-Dame and Cogne). We then tested the climate change mitigation
strategy (50% Pelargonium reduction) and we noticed that the hypothetical management
action affected egg abundance in most of the cells (Table 4; Figure 8), with a significant
egg reduction in the low- and middle-elevation municipalities (Table 5). However, the
changes observed were not restricted solely to egg decreases but, surprisingly, also to
slight increases (Table 4; Figure 7), which were restricted mainly to high-elevation sites
(Table 5). Generally, the 50% Pelargonium reduction restored C. marshalli egg distribution
to the pre-temperature increase scenario, with a slight signal of a countertrend in the
high-elevation municipalities (Table 5; Figure 7). Considering the temperature elevation
relationship (higher elevation–colder temperatures; [46]), we reported the results of the
distribution maps and the scenarios following municipalities and elevation because we
considered them easily interpretable and more informative for management planning.

Table 4. Percentages of cells showing changes in egg abundance under different scenarios.

Change Categories
Starting Distribution

vs.
+1.5 ◦C Scenario

+1.5 ◦C Scenario
vs.

−50% Pelargonium Scenario

Percentage of cells with egg
abundance changes 98.1 (264) 74 (199)

Percentage of cells with egg increases 98.1 (264) 22.7 (61)
Percentage of cells with egg decreases 0 51.3 (138)

Percentage of cells with new
egg infestations 3.3 (9) 0

Percentage of cell with no changes 5.2 (14) 29.7 (80)
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Table 5. Percentages of cells that showed a decrease or increase in egg abundance once the 50%
Pelargonium reduction was applied.

Municipality Elevation Percentage of Cells
with Egg Decreases

Percentage of Cells
with Egg Increases

Sparone 614 72.7 (24) 9.1 (3)
Locana 714 70.5 (55) 15.4 (12)

Villeneuve 966 100 (1) 0
Ronco Canavese 1050 56.7 (17) 3.3 (1)

Introd 1063 0 0
Noasca 1071 53.8 (14) 11.5 (3)

Ribordone 1127 52.2 (12) 8.7 (2)
Rhêmes-Saint-Georges 1249 75 (3) 0

Valprato Soana 1268 66.7(10) 13.3 (2)
Ceresole Reale 1581 0 40.6 (13)

Cogne 1586 9.5 (2) 66.7 (14)
Valsavarenche 1635 0 75 (6)

Rhêmes-Notre-Dame 1699 0 83.3 (5)

4. Discussion
4.1. Opportunistic Data and Standardised Sampling

Our research and the relative statistical analyses performed (MaxEnt vs. N-mixture
models) highlighted different results obtained with the two approaches (opportunistic
vs. standardised sampling). The comparison between methods revealed how N-mixture
analysis, supported by a standardised sampling design, provided much more relevant
ecological information compared to MaxEnt. This difference could have been caused
by the minor sampling effort which characterised the opportunistic data collection [47].
Indeed, we found 141 C. marshalli presence points, the majority of which came from the
national dataset (CKmap and integration from Balletto and colleagues), with only three
sightings coming from the Park’s CS project. Therefore, we noted some difficulties with
respect to citizens’ reports of species occurrence, probably due to the fact that the focal
species is not particularly conspicuous and so not as easy for local people to detect [48].
C. marshalli is a small and cryptic butterfly [4]. The larvae exhibit mimetic behaviour
and imitate Pelargonium stem colours; the adult is tiny and brown and, because of its
erratic flight pattern and the variety of nectar feeding sources, it is difficult to observe and
photograph. To obtain a large number of observations, it is important to improve citizen
scientists’ engagement by increasing training activities with the fundamental support of
the Park [49]. CS data have become more and more important in the last few years, and
they have largely been employed in species distribution models [50]. Furthermore, among
CS projects, butterflies are often used as target groups because they are easily recognisable
at the species level, well known and highly charming for the general public [51]. Indeed,
nowadays, butterflies are the only group of invertebrates that are monitored at the European
level through the involvement of citizens in a standardised monitoring scheme (see the
European Butterfly Monitoring Scheme). Projects run by local institutions are mostly
designed to obtain opportunistic observations, which have great potential use value in
modelling approaches. However, without an efficient communication campaign, these
projects generally collect few and narrow data with an unknown sampling effort [47],
while, in order to obtain relevant ecological information, it is fundamental to obtain a
high number of observations over vast territories [52]. A significant difference between
opportunistic and standardised sampling is surely the sampling effort, but it is fundamental
to consider the role of sampling design, too. The N-mixture analysis provided much more
relevant ecological information due to the stratified random sampling design adopted,
which allowed us to investigate an equal number of sites over different altitudinal bands
characterised by heterogeneous temperature regimes. Such site variability, in harmony
with the N-mixture analysis, revealed the important relationship between temperature,
host plant presence and egg infestation, underlining the important role of a planned survey
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design in investigations of species habitat relationships and their distributions. Obviously,
a rigorous survey protocol needs expert researchers, logistical support, time and a large
amount of resources [53], often covering a limited spatial extent, nevertheless.

For these reasons, we argue that the truth lies in the middle, so an integrated ap-
proach that combines opportunistic data with counts from a designed protocol could be
the way [54] to optimise the amount of information achievable with sustainable efforts
and resources.

4.2. Drivers of Cacyreus marshalli Distribution

The MaxEnt analysis mainly suggested that urban areas are suitable habitats for
Cacyreus marshalli because of the considerable presence of the food plant (Pelargonium)
widely used as an ornamental plant in the municipalities inside and bordering the Park.

Our results indicate that the species prefers its native host plant; when Pelargonium
is available, the exotic butterfly is not driven to naturalise itself on spontaneous food
sources such as native Geraniaceae, although it could have the potential to do so [8,9]. An
analogous relationship between urban habitats and distribution was found for another
alien insect, the Asian tiger mosquito (Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)).
This species has rapidly adapted to the newly invaded areas but has never been observed
using spontaneous trees as oviposition sites because it prefers sub-pots or tires that are
typical cavities in the urban areas [55]. The strong connection between C. marshalli and its
food plant was confirmed by the high contribution of the pel_abu variable in explaining
both C. marshalli occurrence and egg abundance, even with low levels of Pelargonium
abundance. The host plant demonstrated its importance in shaping C. marshalli distribution,
also, in terms of spatial availability. Indeed, the more Pelargonium abundance increases
in neighbouring cells, the less the alien butterfly lays its eggs in focal cells. This negative
relation could be explained by the propensity of the females to spread their eggs on different
plants due to the strong territorial behaviour of offspring [4]. Therefore, when the host
plant is widely distributed, the number of eggs in a site tends to decrease as they are
evenly propagated.

As C. marshalli is a species native to southern Africa, we hypothesised that temperature
could play an important role in driving species distributions, as suggested by Paradiso
et al. [9]. N-mixture models supported our hypothesis, highlighting a clear preference of
C. marshalli for mild temperatures, while, contrarily, it suffers in cold temperatures.

With annual mean temperatures below 4 ◦C, egg abundance shows very low values.
Thus, we can definitely assert that cold temperatures constrain butterfly distribution. For
insect groups, it is generally recognized that temperatures are important with respect to
limiting or facilitating the invasion process [56], and C. marshalli is not an exception. The
importance of temperature in limiting C. marshalli distribution is underlined, furthermore,
by the positive interactive effect with Pelargonium abundance. Temperature regulates the
effect of the host plant variable which is weaker in colder sites than in warmer ones. Indeed,
with an equal number of Pelargonium plants, the areas showing high temperatures are
definitely more heavily infested than areas with low temperatures.

4.3. Distribution Maps, Future Scenarios and a Potential Management Strategy

The potential distribution of C. marshalli obtained by the N-mixture model analysis
showed that high-elevation areas present low levels of egg infestation. This is largely be-
cause the high-elevation sites are characterised by cold temperatures, so that egg abundance
is consequently limited. For the same reason, in the Aosta Valley region we noticed a lower
number of eggs compared to the Piedmont region. Indeed, most of the Aosta Valley munic-
ipalities are located in a territory with a mean elevation higher than Piedmont (see Table 5),
and therefore cold temperatures, typical of high elevations, constrain egg abundance.

The role of temperature in shaping C. marshalli distribution is also supported by the
temperature increase scenario. A 1.5 ◦C increase in temperature positively affected egg
abundance over the whole study area, with a slight signal of expansion even in some
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high-elevation sites. Climate change is a crucial driving factor in the invasion process of
alien species [57]. In particular, warming temperatures are strictly related to the expansion
and establishment of exotic insect species [58]. Our research is in accordance with this
statement. A potential temperature rise would increase the establishment rate of C. marshalli
and favour a weak expansion trend in areas at high elevations that, due to the temperature
increase, would become more suitable as habitats.

To overcome the consequences of climate warming on C. marshalli distribution, we
considered a 50% Pelargonium reduction which resulted in a mitigation of egg infestation
in most of the sites located at low and middle elevations. The tested management action
demonstrated that it could be possible to reduce the climate warming effect in the areas
mainly affected by high rates of infestation, resulting in an egg distribution similar to
the pre-temperature increase scenario. However, focusing on high-elevation areas, we
noticed an opposite trend which indicates that a Pelargonium containment would result
in an increase in egg abundance, even though only very slight. This countertrend could
be likely caused by low Pelargonium availability on a wide spatial scale (host plants in
neighbouring cells) in high-elevation sites which are less likely to have urban characteristics.
Indeed, a further reduction in Pelargonium numbers could diminish the negative effect
of pel_neigh on egg abundance, which therefore could lead to increases in focal cells. A
potential increase in egg numbers in a focal cell may lead to a saturation process which
could stimulate the alien butterfly to explore new adjacent sites where native host plants
are reduced or absent and thus lay eggs on native Geraniaceae. The potential naturalisation
risk could be exacerbated by the integration of high-elevations cells in a matrix of proximal
natural habitats.

We therefore face a paradoxical effect caused by the management action which, acting
on the abundance and the availability of such a vital requirement as the host plant, should
have theoretically reduced the rate of infestation over the whole study area. According to
this result, we argue that it is important to previously test management actions designed
to control alien species because they could be counterproductive. However, although we
have highlighted these contrasting signals, we suggest being cautious in interpreting these
results because the changes in egg abundances in high-elevation sites are really slight.

5. Conclusions

In conclusion, the field survey protocol proved more informative than the oppor-
tunistic data collection because of the higher sampling effort and the planned sampling
design. However, opportunistic data derived from CS projects could have a great potential
if they are supported by investments and efficient communication campaigns. In this
framework, protected areas could play a crucial role in organizing and promoting CS
activities combined with research projects according to an integrated approach.

Temperature is a key driver in the establishment, expansion and restriction of
C. marshalli. The modelling results showed that high-elevation areas were generally pro-
tected by low temperatures, even if temperatures increased by 1.5 ◦C and the host plant
was abundant, while low- and middle-elevation sites showed a dramatic increase in egg
infestation rates under the climate warming scenario. We suggest that awareness ought to
be raised of the risks associated with a potential higher temperature scenario (>1.5 ◦C). A
50% reduction in host plant numbers could mitigate the effect of the rising temperatures,
but at high elevations we noticed a slight countertrend. We therefore urge that management
actions not be applied without first testing the effects in the local territorial context.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology11040563/s1, Table S1: Summary of the explanatory variables used for MaxEnt and N-
mixture analysis, Table S2: Details on the occurrence data used for Maxent analysis, Table S3: Model
selection of the selected N-mixture model with different distributions for the λ parameter, Figure S1:
Cacyreus Marshall presence points, Figure S2: Model residual diagnostics for the N-mixture models.
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