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Abstract In this paper we prove that an isometry between orbit spaces of two proper iso-
metric actions is smooth if it preserves the codimension of the orbits or if the orbit spaces
have no boundary. In other words, we generalize Myers–Steenrod’s theorem for orbit spaces.
These results are proved in the more general context of singular Riemannian foliations.
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1 Introduction

Given a Riemannian manifold M on which a compact Lie group G acts by isometries, the
quotient M/G is in general not a manifold. Nevertheless, the canonical projection π : M →
M/G gives M/G the structure of a Hausdorff metric space. Moreover, following Schwarz
[11] one can define a “smooth structure” on M/G to be the R-algebra C∞(M/G) consisting
of functions f : M/G → R whose pullback π∗ f is a smooth, G-invariant function on M .
If M/G is a manifold, the smooth structure defined here corresponds to the more familiar
notion of smooth structure. A map F : M/G → M ′/G ′ is called smooth if the pull-back of
a smooth function f ∈ C∞(M ′/G ′) is a smooth function on M/G.
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These concepts can actually be formulated in the wider context of singular Riemannian
foliations. A singular foliation F on M is called singular Riemannian foliation (SRF for
short) if every geodesic perpendicular to one leaf is perpendicular to every leaf it meets, see
[9, page 189].

A typical example of a singular Riemannian foliation is the partition of a Riemannian
manifold into the connected components of the orbits of an isometric action. Such singular
Riemannian foliations are called Riemannian homogeneous.

Given (M, F), one can define a quotient M/F , also called leaf space. If the leaves of
F are closed, M/F can again be endowed with a metric structure and a smooth structure,
exactly as in the case of group actions.

When dealing with Riemannian manifolds, a theorem of Myers and Steenrod states that
the metric structure of a Riemannian manifold uniquely determines its smooth structure. In
the same way, one can ask whether the metric structure on a quotient M/G or M/F uniquely
determines its smooth structure in the sense described above. This question can be restated
in the following way: given an isometry

F : M/F → M ′/F ′

between the quotients of two Riemannian manifolds, is F smooth?
Classic theorems, like the Chevalley Restriction Theorem [3] and the Luna–Richardson

Theorem [8] give a positive answer when F, F ′ come from some special group actions.
Recently, Alexander Lytchak and the first named author generalized the results above, answer-
ing the question in the positive for special foliations F, F ′ (namely infinitesimally polar
foliations, cf. [1]). Nevertheless, a general answer to this question is not known, even for
isometric group actions.

In the present paper we provide a new sufficient condition for an isometry to be smooth.

Theorem 1.1 Let M1 and M2 be complete Riemannian manifolds and (M1, F1), (M2, F2)

be singular Riemannian foliations with closed leaves. Assume that there exists an isometry
ϕ : M1/F1 → M2/F2 that preserves the codimension of the leaves. Then ϕ is a smooth map.

Remark 1.2 Notice that not every isometry ϕ : M1/F1 → M2/F2, which preserves the
codimension of the leaves, lifts to a foliated diffeomorphism M1 → M2. This fact can be
illustrated with examples constructed via a procedure called suspension of homomorphism,
see e.g. [9, Sect. 3.7]. Also notice that in [5] the authors produce arbitrary numbers of pairwise
non isometric foliations (Vi , Fi ) on vector spaces of the same dimension, having isometric
2-dimensional leaf spaces and the same codimension of the leaves.

Remark 1.3 The above theorem implies that if Mi/Fi are isometric orbifolds, then they are
diffeomorphic in the sense of Schwarz and hence in the classical sense, see e.g., Strub [12]
and Swartz [13, Lemma 1].

In the special case of leaf spaces without boundary (see Definition in Sect. 2), a small
modification in the proof of Theorem 1.1 allow us to prove the next result; see Remark 3.2.

Theorem 1.4 Let (Mi , Fi ), i = 1, 2, be singular Riemannian foliations with closed leaves,
and ϕ : M1/F1 → M2/F2 be an isometry. If M1/F1 has no boundary, then ϕ is smooth.

As an immediate corollary of Theorem 1.1, we obtain the following

Corollary 1.5 Let (M, F) be a singular Riemannian foliation with closed leaves and ϕ :
M/F × (−ε, ε) → M/F a continuous family of isometries ϕt : M/F → M/F such that
ϕ0 = idM/F . Then each ϕt is smooth.
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Remark 1.6 Flows of isometries on the leaf spaces of foliations appear naturally in the
study of the dynamical behavior of non closed singular Riemannian foliations. Recall that
a (locally closed) singular Riemannian foliation (M, F) is locally described by submetries
πα : Uα → Uα/Fα , where {Uα} is an open cover of M and Fα denotes the restriction of
F to Uα . If a leaf L is not closed, one might be interested to understand how it intersects
a given neighborhood Uα , and in particular how the closure L of L intersects Uα . In the
regular case, the local quotient Uα/Fα is a manifold, and it turns out (cf. [9, Thm 5.2])
that the projection πα(L ∩ Uα) is a submanifold, which is spanned by flows of isometries
ϕα on Uα/Fα . As one tries to generalize this result to singular Riemannian foliations, the
main difficulty is that the local quotient Uα/Fα is no longer a manifold. In particular, when
studying the smoothness of the flows of isometries ϕα (which still exist) one cannot rely on
classical theorems anymore, hence the need to develop new techniques to deal with these
more general situations. Corollary 1.5 is a first result in this direction. Other results on this
topic are the center of a forthcoming paper.

We end this introduction sketching the strategy of the proof of Theorem 1.1. This is
divided into three steps. First, we linearize the problem and reduce it to the case of foliations
(Rn, Fi ), i = 1, 2, with an isometry ϕ : R

n/F1 → R
n/F2 preserving the dimension of the

leaves. Secondly, we prove (Proposition 3.1) that in the Euclidean case, the mean curvature
vector fields Hi of the regular leaves in Fi are basic, i.e., can be projected to vector fields
Hi ∗ in R

n/Fi , and ϕ takes H1∗ to H2∗. Finally, in the last step we prove (Proposition 3.5)
the smoothness of ϕ. The idea behind the proof of this proposition is to check that for any
smooth basic function f ∈ C∞(Rn, F2), the pull-back ϕ∗ f ∈ C0(Rn, F1) satisfies, in a
weak sense, the elliptic equation

� ϕ∗ f = ϕ∗ � f. (1)

This is checked using the second step, i.e., the fact that the projections of the mean curvature
vector fields are preserved by ϕ. Then, since ϕ is C1 (see Proposition 3.3), we conclude via
a bootstrap type argument that ϕ∗ f is smooth, which in turns proves the smoothness of ϕ.

2 Preliminaries

2.1 The leaf space

Let (M, F) be a singular Riemannian foliation with closed leaves. The foliation induces an
equivalence relation ∼ on M , where p ∼ q if and only if p, q lie in the same leaf. The
quotient M/ ∼ is called leaf space of (M, F) and is denoted by M/F . The canonical map
π : M → M/F gives M/F the structure of a Hausdorff metric space, where the distance
between two points is given by the distance between the corresponding leaves. Also recall
that the image of a stratum � (the set of leaves with the same dimension) is an orbifold of
dimension dim π(�) = dim � − dim F |� . If Mreg denotes the regular stratum (the set of
leaves with maximal dimension), the quotient codimension of � is

qcodim(�) = dim π(Mreg) − dim π(�) = dim M − dim F − dim � + dim F |�.

To say that M/F has no boundary is equivalent to requiring that qcodim(�) > 1 for every
singular stratum.

The metric space M/F has a natural smooth structure. More precisely, one can define the
ring C∞(M/F) of smooth functions on M/F to be the ring of functions f : M/F → R
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whose pullback π∗ f is a smooth function on M . Notice that by contruction π∗ f is basic,
i.e., it is constant along the leaves of F .

A map F : M1/F1 → M2/F2 is said to be smooth if for every smooth function f ∈
C∞(M2/F2) (in the sense defined above) the pullback F∗ f is again a smooth function in
C∞(M1/F1). A smooth map F is a diffeomorphism if it is a bijection, and F−1 is smooth
as well. By definition, the canonical projection π : M → M/F is smooth and a submetry.
Moreover, when restricted to the regular part Mreg → Mreg/F it is a Riemannian submersion.

Given a point p ∈ M or a vector x ∈ Tp M , we will denote with p∗, x∗ the projections
π(p), π∗(x) respectively.

2.2 Non connected foliations

In this paper, we will have to consider Riemannian foliations with non connected leaves. These
kind of foliations comes up naturally: consider for example a Riemannian homogeneous
foliation (M, G). Even if G itself is connected, some isotropy subgroup might not be, and
the orbits of G p under the slice representation might also be disconnected. Therefore the
Riemannian homogeneous foliation (νp M, G p) would be an example of a disconnected
singular Riemannian foliation. In general, a singular Riemannian foliation with disconnected
leaves is a triple (M, F0, K) where (M, F0) is a (usual) SRF, K is a discrete group of
isometries of M/F0, and the non-connected leaves are just the orbits K · L p , for L p ∈ F0.
By letting F denote the partition of M into the disconnected leaves, we will sometimes refer
to (M, F) instead of (M, F0, K).

A leaf L of a disconnected foliation F is called a principal leaf if it satisfies the following
conditions:

(1) each connected component of L is a principal leaf of F0, i.e., a regular leaf (a leaf with
maximal dimension) that has a trivial holonomy; see e.g [9, page 22].

(2) If there exists an isometry k ∈ K which fixes any component of L in M/F0, k is the
identity.

2.3 Infinitesimal foliation

Let (M, F) be a singular Riemannian foliation with closed leaves. Given a point p ∈ M ,
let V ⊥

p = νp L p , and for some ε > 0, let Sp = expp(V ⊥
p ) ∩ Bε(p) be a slice through p,

where Bε(p) is the distance ball of radius ε around p. In the definition of Sp , we assume
ε to be small enough so that Sp does not contain any focal point of L p . The foliation F
induces a foliation F |0Sp

on Sp by letting the leaves of F |0Sp
be the connected components of

the intersection between Sp and the leaves of F . In general, the foliation (Sp, F |0Sp
) is not

a singular Riemannian foliation with respect to the induced metric on Sp . Nevertheless, the
pull-back foliation exp∗

p(F0) is a singular Riemannian foliation on V ⊥
p ∩ Bε(0) equipped

with the Euclidean metric (cf. [9, Proposition 6.5]), and it is invariant under homotheties
fixing the origin (cf. [9, Lemma 6.2]). In particular, it is possible to extend exp∗

p(F0) to

all of V ⊥
p , giving rise to a singular Riemannian foliation (V ⊥

p , F0
p) called the infinitesimal

foliation of F at p. The fundamental group π1(L p) acts on V ⊥
p /F0

p by holonomy maps in

such a way that it induces a disconnected foliation (V ⊥
p , Fp) = (M, F0

p, π1(L p)). Via the
exponential map, the leaves of Fp correspond to the intersections of the leaves of F with Sp

(i.e., we no longer restrict to the connected components), and in particular the exponential map
expp : V ⊥

p ∩ Bε(0) → Sp ⊆ M defines a diffeomorphism exp∗ between (V ⊥
p ∩ Bε(0))/Fp

and a neighborhood of p∗ = π(p) in M/F .
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If (M, G) is Riemannian homogeneous foliation, the infinitesimal foliation (V ⊥
p , F0

p)

(respectively the disconnected infinitesimal foliation (V ⊥
p , Fp)) is again Riemannian homo-

geneous foliation, given by the action of the identity component of the isotropy group G0
p

(respectively the action of the whole isotropy group G p) on V ⊥
p .

2.4 Orbifold part of the leaf space

Let (M, F) be a singular Riemannian foliation with closed leaves. A point p∗ ∈ M/F is
called orbifold point of M/F if there is a neighborhood of p∗ isometric to a quotient U/�,
where U is a Riemannian manifold and � is a finite group of isometries. The set of orbifold
points of M/F is denoted by (M/F)orb and called the orbifold part of M/F . By [7] the
preimage of (M/F)orb consists of those points whose infinitesimal foliation is polar, and the
complement of (M/F)orb in M/F has codimension ≥ 2.

3 Proof of Theorems 1.1 and 1.4

Suppose we have two singular Riemannian foliations (Mi , Fi ), i = 1, 2 with closed leaves,
and an isometry ϕ : M1/F1 → M2/F2 that preserves the codimension of the leaves. For
pi ∈ Mi , denote pi ∗ its projection under the canonical map πi : Mi → Mi/Fi .

In order to avoid cumbersome notations, we will denote each basic function f : Mi → R

and the induced function on Mi/Fi by the same letter f .
We now prove Theorem 1.1, closely following the steps presented at the end of the intro-

duction. We first observe that the main problem can be reduced to a problem in Euclidean
space, following standard arguments from the theory of SRF’s; see [2,7,9]. Fixing p1, p2 in
such a way that ϕ(p1∗) = p2∗, ϕ restricts to an isometry ϕ : (Sp1 , g1)/F1 → (Sp2 , g2)/F2.
Recall that the flat metrics gpi are the limit of metrics gi

λ = 1
λ2 h∗

λgi as λ → 0, where hλ

denotes the homothetic transformation around pi . In particular, since the isometry ϕ induces
an isometry ϕ : (Sp1 , g1

λ)/F1 → (Sp2 , g2
λ)/F2 for any λ ∈ (0, 1), by taking the limit as

λ → 0 we obtain an isometry

ϕ∗ : (V ⊥
p1

, gp1)/Fp1 → (V ⊥
p2

, gp2)/Fp2 .

This is an isometry between leaf spaces of foliations in Euclidean space. Moreover, around
p1, ϕ can be written as (exp2)∗ ◦ ϕ∗ ◦ (exp1)

−1∗ , where (expi )∗ are diffeomorphisms, and
therefore ϕ is smooth around p1 if and only if ϕ∗ is smooth. Thus in order to prove the
theorem, it is enough to check it on Euclidean spaces.

Proposition 3.1 Let (Rn1 , F1), (R
n2 , F2)be two (possibly non-connected) SRF’s with closed

leaves, and let ϕ : R
n1/F1 → R

n2/F2 be an isometry that preserves the codimension of the
leaves. Then the mean curvature vector fields of the corresponding principal leaves are basic
and ϕ preserves the projections of those vector fields.

Proof This result was proved in Gromoll and Walschap [6, Theorem 4.1.1] in the case of
regular Riemannian foliations. In what follows we will explain how that proof can be adapted
in the case of SRF’s.

For i = 1, 2 let pi ∈ Mi = R
ni be a principal point of Fi such that ϕ(p1∗) = p2∗.

Moreover, let xi ∈ V ⊥
pi

, i = 1, 2 be horizontal vectors such that ϕ∗(x1∗) = x2∗. Finally,
define γi (t) = pi + t xi .
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In order to prove the proposition, it is enough to show that tr(Sx1) = tr(Sx2), where Sxi

is the shape operator of the leaf L pi through pi . We will actually show something stronger,
namely that every nonzero eigenvalue of Sx1 is an eigenvalue of Sx2 of the same multiplicity,
for almost every x1.

Since the complement of the orbifold part (M1/F1)orb has codimension ≥ 2, almost every
projected horizontal geodesic stays in (M1/F1)orb for all time, and in what follows we will
assume that our fixed geodesic γ1 has this property.

Because ϕ ((M1/F1)orb) = (M2/F2)orb, and ϕ takes projected horizontal geodesics in
(M1/F1)orb to projected horizontal geodesics in (M2/F2)orb, we conclude that ϕ(π1 ◦γ1) =
π2 ◦ γ2; see [13].

On the one hand, since πi ◦ γi are contained in (Mi/Fi )orb, we know that the ϕ preserves
conjugate points along πi ◦ γi , as well as their multiplicity. We also know, by hypothesis,
that ϕ preserves codimension of the singular points contained in γ1.

On the other hand, by [7, Lemma 5.2] the focal index, i.e., the number of focal points of
L pi along γi counted with multiplicity, is a sum of two indices, namely:

– the horizontal index, which counts conjugate points of πi (pi ) with their multiplicity
along πi ◦ γi . The notion of conjugare point along πi ◦ γi makes sense, since πi ◦ γi is
contained in the orbifold part of Mi/Fi .

– The vertical index, which counts the singular points of Fi contained in γi , their multi-
plicity being the jump in codimension codim Lγi (t) − codim F at those points; see also
the discussion in [7, Sect. 5.2].

These facts combined, imply that ϕ preserves the focal points of L pi along γi and their
multiplicities.

Finally recall that, since Mi are Euclidean spaces, the focal points of L p1 along γ1 are at
distance 1/λ1, . . . 1/λr , where {λ1, . . . , λr } are the eigenvalues of Sx1 counted with the same
multiplicity, see [10, Proposition 4.1.8]. Since ϕ preserves focal points and their multiplicities,
we infer that the shape operator Sx2 of the leaf L p2 has the same eigenvalues as those of Sx1 ,
counted with the same multiplicity. In particular, tr(Sx1) = tr(Sx2) whenever the projection
of γ1(t) = p1 + t x1 is entirely contained in (M1/F1)orb. Because this condition is open and
dense, the fact that ϕ preserves mean curvature vector field follows from the continuity of
the mean curvature form.

Remark 3.2 1. The above proposition implies that, given a SRF F on R
n , then each principal

leaf L of F is a generalized isoparametric submanifold, i.e., the principal curvatures along
a basic vector field of L are constant.

2. If M1/F1, has no boundary, then almost every horizontal geodesic γ1 stays in the regular
stratum of M1. By the proof of Proposition 3.1 all the focal points of L p1 along γ1

correspond to conjugate points of π1(p1) along π1 ◦ γ1. In particular, if M1/F1 has no
boundary, ϕ preserves the mean curvature even without the assumption of preserving the
codimension of the leaves.

By the discussion above, Theorems 1.1 and 1.4 will both be proved once we show that any
isometry between leaf spaces preserving the (basic) mean curvature vector fields is smooth.
In order to do this, we show:

Proposition 3.3 Let M1 and M2 be complete Riemannian manifolds and (M1, F1) and
(M2, F2) be SRF’s with closed leaves. Then an isometry ϕ : M1/F1 → M2/F2 is of class
C1, i.e., for each smooth basic function f on M2, the basic function ϕ∗ f on M1 is of class
C1.
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Proof For i = 1, 2 let pi be a point in Mi , let Pi be a small tubular neighborhood of L pi

in the stratum containing pi , and let Ui be a small tubular neighborhood of Pi of radius ε,
with closest-point projection pi : Ui → Pi . We can make these choices so that ϕ(π1(p1)) =
π2(p2) and ϕ(π1(P1)) = π2(P2).

If f is a smooth basic function on M2, let f0 be the smooth basic function on U2 defined
as f0 = p∗

2( f |P2). Since the gradient of f at p2 is tangent to the stratum, ∇ f0 = ∇ f at p2.
Therefore, if we rewrite f as f = f0 + R (locally this is the Taylor formula), we conclude
that ∇ R = 0 at p2.

The pullback of f0 under ϕ is

ϕ∗ f0 = ϕ∗(p∗
2( f |P2)) = p∗

1

(
(ϕ∗ f )|P1

)
.

It is easy to prove that ϕ∗ f is smooth on each stratum of M1, in particular (ϕ∗ f )|P1 is smooth
and thus ϕ∗ f0 is smooth on U1. If we write

ϕ∗ f = ϕ∗ f0 + ϕ∗ R,

it now follows that ϕ∗ R is smooth on each stratum, and it makes sense to define the gradient
∇ϕ∗ R on each stratum. Moreover, since ϕ∗ R is basic, ∇ϕ∗ R is always horizontal and we
can compute lim p→p1 ‖∇ϕ∗ R‖ from the quotient:

lim
p→p1

‖∇ϕ∗ R‖(p) = lim
p′′→ϕ(π1(p))

‖∇ R‖(p′′) = 0, (2)

where we used the fact that ϕ is an isometry.
Equation (2) implies that ϕ∗ R is of class C1 ar p1 and ∇ϕ∗ R(p1) = 0. In particular

ϕ∗ f = ϕ∗ f0 + ϕ∗ R is C1 at p1, and this proves the proposition.

Remark 3.4 1. In Proposition 3.3, the fact that ϕ is an isometry is used only in Eq. (2). Here,
all we have really used is the fact that the derivative of ϕ (restricted to each stratum) is
locally bounded.

2. Observe that Proposition 3.3 does not use the assumption thatϕ preserves the codimension
of the leaves. In particular, every isometry between leaf spaces is of class C1.

The next proposition concludes the proof of Theorem 1.1 and Theorem 1.4.

Proposition 3.5 Let M1 and M2 be complete Riemannian manifolds and (Mi , Fi ) SRF’s with
closed leaves such that the mean curvature vector fields Hi of the corresponding principal
leaves are basic. Assume that there exists an isometry ϕ : M1/F1 → M2/F2 that preserves
the mean curvature vector fields restricted to the principal stratum. Then ϕ is a smooth map.

Proof Let gi denote the metric on Mi . Recall that we are using the notation Hi ∗ to denote the
projection πi ∗ Hi of the mean curvature vector field on the regular part of Mi . For i = 1, 2,
let pi be a regular point in Mi , and let Ui be a neighborhood of pi that admits a local quotient
qi : Ui → Bi , where the manifold Bi is the local model of the orbifold πi (Ui ) ⊆ Mi/Fi .
We can make these choices so that ϕ(π1(p1)) = π2(p2) and ϕ(π1(U1)) = π2(U2). Since

ϕ|π1(U1) : π1(U1) → π2(U2)

is an isometry, by [13] it lifts to an isometry ϕ : B1 → B2.
Let f be a smooth basic function of (M2, F2). We want to prove that ϕ∗ f is a smooth

basic function of (M1, F1).
Clearly f stays basic with respect to F2|U2 and thus it defines a function on B2, which

we still denote f .
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We recall that (see e.g., [6, page 53])

�Ui f = �Bi f − gi (∇ f, Hi ∗). (3)

Set u := �M2 f. Equation (3) implies that u is a smooth basic function on (U2, F2).
Since ϕ : B1 → B2 is an isometry and ϕ∗(H1∗) = H2∗ by assumption, it easily follows

from Eq. (3) that
�M1 (ϕ∗ f ) = ϕ∗u on U1. (4)

Since p1, p2 were chosen arbitrarily, it follows that �(ϕ∗ f ) = ϕ∗u in the regular part
(M1)reg . Since the complement of (M1)reg in M1 is a locally finite union of submanifolds
of codimension ≥ 2, Eq. (4) holds weakly on the whole M1 by the following Lemma.

Lemma 3.6 Let f, u be C1 functions on a manifold M, and let M ′ be a submanifold of M
such that:

– M \ M ′ is a locally finite union of submanifolds of codimension ≥ 2.
– f, u are smooth on M ′, and � f = u on M ′.

Then � f = u holds weakly on M, i.e.,
∫

M
f · �h =

∫

M
u · h

for every smooth function h with compact support on M.

Proof Let W be a neighborhood of M \M ′ with smooth boundary that ∂W . Let h be a smooth
function with compact support on M . By Green’s second identity

∫

M−W
� f · h −

∫

M−W
f · �h =

∫

∂W
h · g(∇ f, η) − f · g(∇h, η), (5)

where η is the normal vector field of ∂W .
Since � f = u on M − W ⊆ M ′, Eq. (5) becomes

∫

M−W
u · h −

∫

M−W
f · �h =

∫

∂W
h · g(∇ f, η) − f · g(∇h, η). (6)

Given ε > 0, it is possible to choose a small neighborhood W so that
∣∣∣∣

∫

M
u · h −

∫

M−W
u · h

∣∣∣∣ <
ε

3
, (7)

∣∣∣∣

∫

M
f · �h −

∫

M−W
f · �h

∣∣∣∣ <
ε

3
. (8)

Since M \ M ′ has codimension ≥ 2, we can choose W with boundary of arbitrarily small
volume. In particular we can assume

∣∣∣∣

∫

∂W
h · g(∇ f, η) − f · g(∇h, η)

∣∣∣∣ ≤ |∂W | · sup
M

|h · g(∇ f, η) − f · g(∇h, η)| <
ε

3
. (9)

Equations (6) through (9) now prove the Lemma.
By Lemma 3.6 above, the equation �ϕ∗ f = ϕ∗u holds weakly on the whole M1. Since

ϕ∗u is a function of class C1 (recall Proposition 3.3) we can apply the regularity theory of
solutions of linear elliptic equations (see e.g., the proof of Theorem 3, Sect. 6.3.1 of Evans
[4]), and this proves the smoothness of f . Therefore ϕ is smooth as well, and Proposition 3.5
follows.

123



Geom Dedicata

Acknowledgments The authors are grateful to Alexander Lytchak for inspiring the main questions of this
work, and for very helpful discussions and suggestions. The authors also thank Wolfgang Ziller, Dirk Töben,
Ricardo Mendes, Renato Bettiol and the referee for useful suggestions.

References

1. Alexandrino, M.M., Lytchak, A.: On smoothness of isometries between orbit spaces, Riemannian geom-
etry and applications. In: Proceedings RIGA, pp. 17–28. Ed. Univ. Bucureşti (2011)
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