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Abstract
Starting out from a new description of a class of parameter-dependent pseudodifferential
operatorswith finite regularity number due toG.Grubb,we introduce a calculus of parameter-
dependent, poly-homogeneous symbols whose homogeneous components have a particular
type of point-singularity in the covariable-parameter space. Such symbols admit intrinsically
a second kind of expansion which is closely related to the expansion in the Grubb–Seeley
calculus and permits to recover the resolvent-trace expansion for elliptic pseudodifferen-
tial operators originally proved by Grubb–Seeley. Another application is the invertibility of
parameter-dependent operators of Toeplitz type, i.e., operators acting in subspaces deter-
mined by zero-order pseudodifferential idempotents.

Keywords Pseudodifferential operators · Parameter-ellipticity · Resolvent · Trace
expansion · Operators of Toeplitz type

Mathematics Subject Classification 58J40 · 47L80 · 47A10

1 Introduction

In the present paper, we develop a calculus of parameter-dependent pseudodifferential oper-
ators (ψdo), both for operators in Euclidean space R

n and for operators on sections of
vector-bundles over closed Riemannian manifolds, which is closely related to Grubb’s cal-
culus of operators with finite regularity number [3] (for a recent application to fractional heat
equations see [5]) and to the Grubb–Seeley calculus introduced in [6]. The calculus allows
to obtain the classical resolvent-trace expansion for elliptic ψdo due to [6] and a systematic
treatment of ψdo of Toeplitz type in the sense of [14,15].

At the base of our calculus lies a “geometric” characterization of the above-mentioned
regularity number: consider a parameter-dependent ψdo a(D;μ) with symbol a(ξ ;μ)

depending, for simplicity, only on the covariable ξ ∈ R
n and the parameter μ ∈ R+. The

symbol a belongs to the parameter-dependent poly-homogeneous Hörmander class Sd if it
admits an asymptotic expansion
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a(ξ ;μ) ∼
+∞∑

j=0

a j (ξ ;μ) (1.1)

with symbols a j ∈ Sd− j
hom that are positively homogeneous in (ξ, μ) of degree d − j . If

S
n+ = {(ξ, μ) | |ξ |2 + μ2 = 1} denotes the unit semi-sphere, then

a j (ξ ;μ) = |(ξ, μ)|d− j â j

( (ξ, μ)

|(ξ, μ)|
)
, â j ∈ C∞(Sn+). (1.2)

The operator is parameter-elliptic if the homogeneous principal symbol a0 never vanishes,
i.e., â0 does never vanish on the unit semi-sphere. In this case there exists a parametrix
b(ξ ;μ) ∈ S−d such that b(D;μ) is the inverse of a(D;μ) for large μ.

In Sect. 4we show that a(D;μ) is an operator of order d andwith regularity number ν ∈ R

in the sense of [3] if a admits a decomposition a = ã + p with p ∈ Sd and where ã admits
an expansion of form (1.1), with components satisfying (1.2) but with singular functions â j :
introducing polar coordinates (r , φ) on Sn+, centered in the “north-pole” (ξ, μ) = (0, 1), they
belong to theweighted space rν− jC∞

B (̂Sn+), where Ŝn+ = S
n+\{(0, 1)} andC∞

B means smooth
functions which remain bounded on Ŝ

n+ after arbitrary applications of totally characteristic
derivatives r∂r and usual derivatives in φ.

This observation leads us to consider symbols a = ã + p with p ∈ Sd but where the
homogeneous components of ã originate from the weighted spaces rν− jC∞

T (̂Sn+), ν ∈ Z,
whereC∞

T (̂Sn+) is the space of all functions on Ŝn+ that, in coordinates (r , φ), extend smoothly
up to and including r = 0 (the subscript T stands for Taylor expansion). Symbols of this
kind do not only have an expansion (1.1) but intrinsically a further expansion of the form

a(ξ ;μ) ∼
+∞∑

j=0

a∞[ν+ j](ξ) [ξ, μ]d−ν− j , a∞[ν+ j](ξ) ∈ Sν+ j (Rn), (1.3)

where [ξ, μ] denotes a smooth function that coincides with the usual modulus away from the
origin and Sm(Rn) is the standard poly-homogeneous Hörmander class of order m without
parameter. See Sect. 5 for details. Evidently, expansion (1.3) resembles the one employed by
Grubb–Seeley in [6]. While Grubb–Seeley’s expansion is in powers of μ and has its origin
in a meromorphic (at infinity) dependence on the parameter μ, (1.3) directly originates from
the Taylor expansion of the homogeneous components and makes no use of a holomorphic
dependence on the parameter. However, expanding [ξ, μ]m in powers ofμ allows us to obtain
a Grubb–Seeley expansion and ultimately we can recover the resolvent-trace expansion of
ψdo shown in [6]. This is discussed in detail in Sects. 6 and 7.6.

Ellipticity in our class is most simple for a positive regularity number ν > 0. In this
case, the homogeneous principal symbol extends by continuity to the north-pole, and its
non-vanishing yields the existence of a parametrix which is the inverse of a(D;μ) for large
values of the parameterμ. For ν = 0, ellipticity is more involved and two additional symbolic
levels come into play:

(a) the principal angular symbol which originates from the leading term of the Taylor expan-
sion of the homogeneous principal symbol,

(b) the principal limit-symbol, i.e., the symbol a∞[0] from (1.3).

Non-vanishing of the homogeneous principal symbol, of the principal angular symbol, and
invertibility of the operator a∞[0](D) guarantee the existence of a parametrix in the class which
is the inverse for large values of μ. Concerning (a), our calculus appears to be related with
Savin-Sternin [8] where a similar structure occurs.

123



Annals of Global Analysis and Geometry

We show that our calculus of operators on R
n is invariant under changes of coordinates,

see Sect. 7.1. Thus, we can define corresponding classes of ψdo on closed manifolds M ,
acting on sections of finite-dimensional vector-bundles. While the homogeneous principal
symbol and the principal angular symbol have a global meaning as bundle morphisms on
(T ∗M ×R+)\0 and T ∗M \0, respectively, expansion (1.3) is shown to have a global analog
too, namely

A(μ) ∼
+∞∑

j=0

A∞[ν+ j] �d−ν− j (μ), A∞[ν+ j] ∈ Lν+ j (M; E0, E1), (1.4)

where �α(μ) ∈ Lα(E0, E0), α ∈ R, denote elliptic elements in Hörmander’s class with
(scalar) homogeneous principal symbol (|ξ |2x + μ2)α/2, where | · | refers to some fixed
Riemannian metric on M . This is shown in Sect. 7.2. The so-called limit-operator A∞[ν] takes
the place of the above used limit-symbol. In Sect. 7.7 we discuss an application to parameter-
dependentψdo of Toeplitz type, here on closed manifolds; originally the concept of Toeplitz
type operators emerged in the study of boundary value problems with Atiyah-Patodi-Singer
type boundary conditions, see [12,13].

In the present paper, we limit ourselves to ψdo on R
n or closed manifolds. However, it

is a natural question whether the established calculus allows to build up a corresponding
calculus for boundary value problems, in the spirit of [3,4] and [9], leading to a parameter-
dependent version of the classical Boutet deMonvel algebra [1]. Similarly, one could address
the analogous question for manifolds with singularities (conical singularities, in the simplest
case), following and extending the approach of Schulze [10,11]. We plan to address these
questions in future work.

Hoping to help the reader in reading this paper, we finish this introduction by listing the
most important spaces of pseudodifferential symbols used in the sequel:

Sd
1,0(R

n), Sd(Rn) : Section 2.2

Sd,ν
1,0 , Sd,ν , Sd,ν

hom : Definitions 3.1, 3.3, and 3.4

Sd
1,0, Sd , Sd

hom : Definitions 3.7, 3.9, and 3.10

S̃d,ν
1,0 , S̃d,ν , S̃d,ν

hom : Definitions 3.12, 3.15, and 3.14

S̃d,ν
1,0 , S̃d,ν , S̃d,ν

hom : Definitions 5.1, 5.14 and 5.12

Sd,ν ,Sd,ν
hom : Definition 5.18

2 Notations, symbols, and Leibniz product

2.1 Basic notations

Let 〈y〉 = (1 + |y|2)1/2 for y ∈ R
m with arbitrary m. Let y �→ [y] : Rm → R denote a

smooth, strictly positive function that coincides with the modulus |y| outside the unit-ball. If
y = (ξ, μ), we write shortly |ξ, μ| := |(ξ, μ)|, 〈ξ, μ〉 = 〈(ξ, μ)〉, and [ξ, μ] := [(ξ, μ)].

A zero-excision function onRm is a smooth function χ(y) that vanishes in a neighborhood
of the origin and such that (1 − χ)(y) has compact support.

If f , g : 
 → R are two functions on some set 
 we shall write f � g or f (ω) � g(ω)

if there exists a constant C ≥ 0 such that f (ω) ≤ Cg(ω) for every ω ∈ 
.
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Let f (ω, y) be defined on a set of the form
× (Rm \{0}). With slight abuse of language,
we shall call f homogeneous of degree d in y if

f (ω, t y) = td f (ω, y) ∀ (ω, y) ∀ t > 0;
it would be correct to use the terminology positively homogeneous, but for brevity we shall
not do so. Suppose y = (u, v)with u ∈ R

k and v ∈ R
m−k (k may be equal to m, i.e., y = u).

We shall say that f is homogeneous of degree d in (u, v) for large u if there exists a constant
R ≥ 0 (frequently assumed to be equal to 1) such that

f (ω, tu, tv) = td f (ω, u, v) ∀ (ω, v) ∀ |u| ≥ R ∀ t ≥ 1.

2.2 Hörmander’s class

The uniform Hörmander class Sd
1,0(R

n) consists of those symbols a(x, ξ) : Rn × R
n → C

satisfying the uniform estimates

|Dα
ξ Dβ

x a(x, ξ)| � 〈ξ 〉d−|α|

for every multi-indices α, β ∈ N
n
0. This is a Fréchet space with the system of norms

‖a‖ j = max|α|+|β|≤ j
sup
x,ξ

|Dα
ξ Dβ

x a(x, ξ)|〈ξ 〉|α|−d , j ∈ N0. (2.1)

Let us denote by Sd
hom(Rn) the space of all smooth functions a(x, ξ) defined onRn×(Rn\{0})

which are homogeneous of degree d in ξ and satisfy

|Dα
ξ Dβ

x a(x, ξ)| � |ξ |d−|α|.

A symbol a(x, ξ) ∈ Sd
1,0(R

n) is called poly-homogeneous if there exist functions a(x, ξ) ∈
Sd−

hom (Rn) such that

ra,N (x, ξ) := a(x, ξ) − χ(ξ)

N−1∑

=0

a(x, ξ) ∈ Sd−N
1,0 (Rn)

for every N , where χ(ξ) is an arbitrary fixed zero-excision function (note that ra,0 = a).
Denote by Sd(Rn) the space of all such symbols. It is a Fréchet space with the system of
norms ‖a‖ j,N := ‖ra,N ‖ j , j, N ∈ N0, and

‖a‖′
j, = max|α|+|β|≤ j

sup
x,|ξ |=1

|Dα
ξ Dβ

x a(x, ξ)|, j,  ∈ N0. (2.2)

The ψdo associated with a(x, ξ), denoted by a(x, D), is

[a(x, D)u](x) =
∫

eixξ a(x, ξ )̂u(ξ) d̄ξ, x ∈ R,

acting on the Schwartz spaceS (Rn) of rapidly decreasing functions; here, d̄ξ = (2π)−n dξ .
The composition of operators a0(x, D) and a1(x, D) corresponds to the so-called Leibniz
product of symbols,

(a1#a0)(x, ξ) =
∫∫

eiyηa1(x, ξ + η)a0(x + y, ξ) dyd̄η. (2.3)
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(integration in the sense of oscillatory integrals), cf. for example [7]. If the a j have order d j ,
then a1#a0 has order d0 + d1. The adjoint symbol

a(∗)(x, ξ) =
∫∫

e−iyηa(x + y, ξ + η;μ) dyd̄η

gives the formal adjoint operator of a(x, D), i.e.,

(a(x, D)u, v)L2 = (u, a(∗)(x, D)v)L2 , u, v ∈ S (Rn).

If a(x, ξ ;μ) is a symbol that depends on an additional parameterμ, we shallwrite a(x, D;μ),
Leibniz product and adjoint are applied point-wise in μ.

Throughout the paper we consider a parameter μ ∈ R+ := [0,+∞).

3 Symbols with finite regularity number

3.1 Grubb’s calculus

We briefly review a pseudodifferential calculus introduced by Grubb. For further details, we
refer the reader to Chapter 2.1 of [3].

Definition 3.1 By Sd,ν
1,0 with d, ν ∈ R (called order and regularity number, respectively)

denote the space of all symbols a(x, ξ ;μ) satisfying

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � 〈ξ 〉ν−|α|〈ξ, μ〉d−ν− j + 〈ξ, μ〉d−|α|− j . (3.1)

The space of smoothing or regularizing symbols, defined as

Sd−∞,ν−∞ = ∩
N≥0

Sd−N ,ν−N
1,0 , (3.2)

consists of those symbols satisfying, for every N and all orders of derivatives,

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � 〈ξ 〉−N 〈μ〉d−ν− j .

Proposition 3.2 The Leibniz product induces maps

Sd1,ν1
1,0 × Sd0,ν0

1,0 −→ Sd0+d1,ν
1,0 , ν = min(ν0, ν1, ν0 + ν1). (3.3)

Asymptotic summations can be performed within the class, in the following sense: Given
a sequence of symbols a ∈ Sd−,ν−

1,0 , there exists an a ∈ Sd,ν
1,0 such that

a(x, ξ ;μ) −
N−1∑

=0

a(x, ξ ;μ) ∈ Sd−N ,ν−N
1,0 (3.4)

for every N ; a is uniquely determined modulo Sd−∞,ν−∞.

Definition 3.3 A symbol a ∈ Sd,ν
1,0 is called poly-homogeneous if it satisfies (3.4) with a ∈

Sd−,ν−
1,0 that are homogeneous of degree d −  in (ξ, μ) for |ξ | ≥ 1. The space of these

symbols is denoted by Sd,ν .
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If a ∈ Sd,ν , its homogeneous principal symbol is defined as

ah(x, ξ ;μ) := |ξ |da0
(

x,
ξ

|ξ | ;
μ

|ξ |
)

= lim
t→+∞ t−da(x, tξ ; tμ), ξ �= 0.

It satisfies

|Dα
ξ Dβ

x D j
μah(x, ξ, μ)| � |ξ |ν−|α||ξ, μ|d−ν− j + |ξ, μ|d−|α|− j . (3.5)

Definition 3.4 Sd,ν
hom denotes the space of all smooth functions a(x, ξ ;μ) defined for ξ �=

0, which are homogeneous of degree d in (ξ, μ) and satisfy (3.5) for arbitrary orders of
derivatives.

If a ∈ Sd,ν
hom and ν > 0, then a extends by continuity to a function defined for all x and

(ξ, μ) �= 0; the larger ν is, the more regular (i.e., differentiable) is this extension. This is the
justification for the terminology “regularity number.” In this case we shall identify a with its
extension.

Definition 3.5 A symbol a(x, ξ ;μ) ∈ Sd,ν , ν > 0, is called elliptic if ah(x, ξ ;μ) �= 0 for
all x and all (ξ, μ) �= 0 and |ah(x, ξ, μ)−1| � |ξ, μ|−d .

Note that if ah(x, ξ ;μ) is constant in x for large x , it suffices to require the pointwise
invertibility of ah(x, ξ, μ)

Theorem 3.6 Let ν > 0 and a ∈ Sd,ν . Then a is elliptic if and only if there exists a b ∈ S−d,ν

such that a#b − 1, b#a − 1 ∈ S0−∞,ν−∞.

Note that if r ∈ S0−∞,ν−∞ with ν > 0, then r(μ)
μ→+∞−−−−→ 0 in S−∞(Rn). In particular,

if a is elliptic then a(x, D;μ) is invertible for large μ.
(3.1) and (3.5) suggest to introduce two subspaces of Sd,ν

1,0 and Sd,ν
hom , respectively, with

estimates corresponding to the first and second term on the right-hand side, respectively.
These will be discussed in the next two subsections.

3.2 Strong parameter-dependence (symbols of infinite regularity)

In this section, we consider the space Sd
1,0 = ∩N≥0 Sd,N

1,0 and the poly-homogeneous sub-
class. For clarity we prefer to present it in an independent way.

Definition 3.7 Sd
1,0 consists of all symbols a(x, ξ ;μ) satisfying, for all orders of derivatives,

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � 〈ξ, μ〉d−|α|− j .

We shall call such symbols also strongly parameter-dependent, since differentiation with
respect to ξ or μ improves the decay in (ξ, μ).

The space of regularizing symbols S−∞ = ∩d∈RSd consists of those symbols which are
rapidly decreasing in (ξ, μ) and C∞

b in x .

Proposition 3.8 The Leibniz product induces maps Sd1
1,0 × Sd0

1,0 → Sd0+d1
1,0 .

Definition 3.9 Sd
hom consist of all symbols a(x, ξ ;μ) defined for (ξ, μ) �= 0 which are

homogeneous of degree d in (ξ, μ) and satisfy, for every order of derivatives,

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � |ξ, μ|d−|α|− j (3.6)
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Definition 3.10 A symbol a ∈ Sd
1,0 is called poly-homogeneous if there exists a sequence of

homogeneous symbols a ∈ Sd−
hom such that, for every N ,

a(x, ξ ;μ) −
N−1∑

=0

χ(ξ, μ)a(x, ξ ;μ) ∈ Sd−N
1,0 ,

where χ(ξ, μ) is an arbitrary zero-excision function. The space of such symbols will be
denoted by Sd .

We call a0 the homogeneous principal symbol of a ∈ Sd , and

a0(x, ξ ;μ) = lim
t→+∞ t−da(x, tξ ; tμ), (ξ, μ) �= 0.

Ellipticity of a is defined as in Definition 3.5 and the obvious analog of Theorem 3.6 is valid.

Remark 3.11 In the literature, the space Sd is frequently denoted by Sd
cl and the symbols are

called classical rather than poly-homogeneous.

3.3 Weakly parameter-dependent symbols

Let us describe the second natural subspace of Sd,ν
1,0 .

Definition 3.12 Let S̃d,ν
1,0 denote the space of all symbols a(x, ξ ;μ) which satisfy, for every

order of derivatives,

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � 〈ξ 〉ν−|α|〈ξ, μ〉d−ν− j .

Note that S̃d,ν
1,0 = Sd,ν

1,0 whenever ν ≤ 0. In particular, S̃d−∞,ν−∞
1,0 = Sd−∞,ν−∞

1,0

Proposition 3.13 The Leibniz product induces maps

S̃d1,ν1
1,0 × S̃d0,ν0

1,0 → S̃d0+d1,ν0+ν1
1,0 .

Definition 3.14 Let S̃d,ν
hom denote the space of all functions a(x, ξ ;μ) which are defined for

ξ �= 0, are homogeneous in (ξ, μ) of degree d and satisfy, for every order of derivatives,

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)| � |ξ |ν−|α||ξ, μ|d−ν− j . (3.7)

Definition 3.15 A symbol a ∈ S̃d,ν
1,0 is called poly-homogeneous if there exists a sequence of

homogeneous symbols a ∈ S̃d−,ν−
hom such that, for every N ,

a(x, ξ ;μ) −
N−1∑

=0

χ(ξ)a(x, ξ ;μ) ∈ S̃d−N ,ν−N
1,0 ,

where χ(ξ) is an arbitrary zero-excision function. The space of such symbols will be denoted
by S̃d,ν .

Again, a0 is called the homogeneous principal symbol of a ∈ S̃d,ν , and

a0(x, ξ ;μ) = lim
t→+∞ t−da(x, tξ ; tμ), ξ �= 0.
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Definition 3.16 A symbol a(x, ξ ;μ) ∈ S̃d,ν is called elliptic if a0(x, ξ ;μ) �= 0 for all x , μ
and all ξ �= 0, and |a0(x, ξ, μ)−1| � |ξ |−ν |ξ, μ|−d+ν .

Theorem 3.17 A symbol a ∈ S̃d,ν is elliptic if and only if there exists a b ∈ S̃−d,−ν such that
a#b − 1, b#a − 1 ∈ S̃0−∞,0−∞.

Note that ellipticity of a ∈ S̃d,ν is not equivalent to the point-wise invertibility of the
homogeneous principal symbol a0 on its domain, even not in case of independence of the
x-variable (see Theorem 4.4 and the subsequent comment). Moreover, a remainder r ∈
S̃0−∞,0−∞ is, in general, only bounded but not decaying asμ → +∞. Therefore, a(x, D;μ)

need not be invertible for large μ.

4 Regularity number and weighted spaces

In any of the so far introduced symbol spaces, the involved variable x enters as aC∞
b -variable,

while the spaces differ by the structures in the variables (ξ, μ). For this reason, and also to
keep notation more lean, in this section we ignore the x-dependence and focus on symbols
depending only on (ξ, μ).

Let us denote by Sn+ the unit semi-sphere,

S
n+ := {

(ξ, μ) ∈ R
n × R+ | |ξ |2 + μ2 = 1

}
. (4.1)

Every homogeneous symbol a ∈ Sd
hom is of the form

a(ξ ;μ) = |ξ, μ|d â
( (ξ, μ)

|ξ, μ|
)
, â = a|Sn+ ∈ C∞(Sn+), (4.2)

and the map a �→ â establishes an isomorphism between Sd
hom and C∞(Sn+). A symbol

a ∈ S̃d,ν
hom is defined for ξ �= 0 only, hence its restriction is defined only on the punctured unit

semi-sphere

Ŝ
n+ := S

n+ \ {(0, 1)} = {(ξ, μ) ∈ S
n+ | ξ �= 0}. (4.3)

We shall now investigate, which subspace of C∞(̂Sn+) is in 1-1-correspondence with S̃d,ν
hom .

To this end, we shall identify Ŝ
n+ with (0, 1] × S

n−1, using the (polar-)coordinates

ξ = rφ, μ =
√
1 − r2, (0 < r ≤ 1, φ ∈ S

n−1).

If E is an arbitrary Fréchet space, we shall denote by C∞
B ((0, ε), E) the space of all

smooth bounded functions u : (0, ε) → E such that (r∂r )
u is bounded on (0, ε) for every

order of derivatives.

Definition 4.1 With γ ∈ R define

C∞
B (̂Sn+) := {

a ∈ C∞(̂Sn+) | a(r , φ) ∈ C∞
B

(
(0, ε),C∞(Sn−1)

)
for some ε > 0

}
,

rγ C∞
B (̂Sn+) := {

a ∈ C∞(̂Sn+) | r−γ a ∈ C∞
B (̂Sn+)

}
.

In other words, the index γ indicates the rate of (non-)vanishing in the point (ξ, μ) =
(0, 1); we shall also speak of spaces with weight γ . Note that |ξ | = r .
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Definition 4.2 Let S̃(d,γ ) denote the space of all functions a(ξ ;μ) defined for ξ �= 0 of the
form

a(ξ ;μ) = |ξ, μ|d â
( (ξ, μ)

|ξ, μ|
)
, â ∈ rγC∞

B (̂Sn+).

Let a and â be as in the previous definition. Identifying â(ξ, μ)with its local representation
â(r , φ), we have the relations

â(r , φ) = a
(

rφ;
√
1 − r2

)
, a(ξ ;μ) = |ξ, μ|d â

( |ξ |
|ξ, μ| ,

ξ

|ξ |
)
. (4.4)

In particular, the d-homogeneous extension of â(r , φ) = rν is a(ξ ;μ) = |ξ |ν |ξ, μ|d−ν .

Lemma 4.3 Let χ̂ ∈ C∞(Sn+) vanish in a small neighborhood of (ξ, μ) = (0, 1) and let
χ(ξ, μ) = χ̂((ξ, μ)/|ξ, μ|) ∈ S0

hom be its homogeneous extension of degree 0. Then

χ Sd
hom = χ Sd,ν

hom = χ S̃(d,ν).

In fact, it suffices to observe that χ̂ (ξ, μ) is supported in a set of the form {(ξ, μ) | 0 ≤
μ ≤ c|ξ |} on which |ξ | ≤ |ξ, μ| � |ξ |.

The following theorem shows that, for weakly parameter-dependent homogeneous com-
ponents, regularity number and weight are the same thing.

Theorem 4.4 S̃(d,ν) = S̃d,ν
hom for every d, ν ∈ R. In particular, the map a �→ a |̂

S
n+ establishes

an isomorphism between S̃d,ν
hom and rνC∞

B (̂Sn+).

Proof Let us first prove the inclusion “⊆.” Let a(ξ ;μ) be as in Definition 4.2. By multiplica-
tion with |ξ, μ|−d , we may assume without loss of generality that d = 0. In view of Lemma
4.3 we may assume that â is supported in a small neighborhood of the point (0, 1). Hence, in
representation (4.4) we may assume that â(r , φ) ∈ rνC∞

B ((0, 1),C∞(Sn−1)). We also may
assume ν = 0, since the homogeneous extension of degree d = 0 of rν is just |ξ |ν |ξ, μ|−ν .
Thus we can write

a(ξ ;μ) = a′
( |ξ |

|ξ, μ| , ξ
)

, a′(r , ξ) := â
(

r ,
ξ

|ξ |
)

∈ C∞
B ((0, 1), S0

hom(Rn)).

Therefore,

∂μa(ξ ;μ) = (∂r a′)
( |ξ |

|ξ, μ| , ξ
)

∂μ

|ξ |
|ξ, μ| = −((r∂r )a

′)
( |ξ |

|ξ, μ| , ξ
)

μ

|ξ, μ|2
as well as

∂ξ j a(ξ ;μ) = (∂ξ j a
′)

( |ξ |
|ξ, μ| , ξ

)
− ((r∂r )a

′)
( |ξ |

|ξ, μ| , ξ
) ( ξ j

|ξ |2 + μ

|ξ, μ|2
)
.

By induction, we thus find that Dα
ξ D j

μa(ξ ;μ) is a finite linear combination of terms of the
form

a′
m

( |ξ |
|ξ, μ| , ξ

)
p j+(ξ, μ), , m ∈ N0,  + m = |α|,

with a′
m(r , ξ) ∈ C∞

B ((0, 1), S−m
hom(Rn)) and p j+ ∈ S−( j+)

hom . This yields

|Dα
ξ D j

μa(ξ ;μ)| �
∑

+m=|α|
,m∈N0

|ξ |−m |ξ, μ|− j− � |ξ |−|α||ξ, μ|− j .
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Next we shall show the inclusion “⊇.” Let a ∈ S̃d,ν
hom be given. It is enough to consider the case

d = ν = 0, since a ∈ S̃d,ν
hom if and only if |ξ |−ν |ξ, μ|ν−da ∈ S̃0,0

hom and |ξ |−ν |ξ, μ|ν−d = r−ν

in polar-coordinates. Again, a can be assumed do have support in a small conical neighbor-
hood containing (0, 1). Thus

â(r , φ) = a
(

rφ,
√
1 − r2

)
= a (φ; v(r)) , v(r) =

√
1 − r2

r
,

vanishes for r ≥ δ for some δ < 1. Extend â from (0, 1) × S
n−1 to (0, 1) × (Rn \ {0}) by

â(r , φ) = a

(
φ

|φ| ; v(r)

)
, 0 �= φ ∈ R

n .

Using that rv′(r)/v(r) = 1/(r2 − 1), it is straightforward to see that (r∂r )
∂α

φ â(r , φ) is a
linear combination of terms of the form

((μ∂μ) j∂
β
ξ a)

(
φ

|φ| , v(r)

)
q(φ)g(r), j ≤ , β ≤ α,

where q is smooth and homogeneous of degree −|α| in φ �= 0 and g ∈ C∞([0, 1)). Thus
(r∂r )

∂α
φ â(r , φ) is bounded for r ∈ (0, δ] and φ belonging to a small neighborhood of the

unit-sphere Sn . This shows the claim. ��
In particular, we see that S̃d,ν

hom does not behave well under inversion: if a ∈ rνC∞(̂Sn+)

is point-wise invertible, the inverse will, in general, not belong to such a weighted space. To
guarantee this, an additional control at the singularity of a is needed. This will be addressed
in the sequel.

Theorem 4.5 Sd,ν
hom = S̃d,ν

hom + Sd
hom for every d, ν ∈ R.

Proof The first identity is true in case ν ≤ 0, since then Sd
hom ⊆ Sd,ν

hom = S̃d,ν
hom by definition

of the involved spaces.
It remains to consider ν > 0. The inclusion ⊇ is clear. By multiplication with |ξ, μ|−d

we may assume without loss of generality that d = 0.
Let a ∈ S0,ν

hom be given. We use Theorem 4.4 and show that the restriction of a to Sn+ is the
sum of a smooth function and a function belonging to rνC∞

B (̂Sn+). By Lemma 4.3 it suffices
to find a decomposition for (1 − χ)a.

Let N be the largest natural number with N < ν. It can be shown (see Lemma 2.1.10 and
Proposition 2.1.11 in [3]) that a extends as an N -times continuously differentiable function
toRn ×R+ \ {(0, 0)} and if pN (ξ ;μ) denotes the Taylor-polynomial of a in ξ around ξ = 0,
then pN is smooth in μ > 0 and

rN (ξ ;μ) := a(ξ ;μ) − pN (ξ ;μ) =
∑

|α|=N+1

N + 1

α! ξα

∫ 1

0
(1 − t)N (∂α

ξ a)(tξ ;μ) dt .

Since (1 − χ)pN is smooth on S
n+, it remains to verify that the restriction of (1 − χ)rN

belongs to rνC∞
B (̂Sn+). To this end let

rα(ξ, μ) = ξα

∫ 1

0
(1 − t)N ∂α

ξ a(tξ ;μ) dt, |α| = N + 1.

Then, in polar-coordinates,

r̂α(r , φ) = φα

∫ 1

0
(1 − t)N (∂α

ξ a)(tφ; v(r)) dt, v(r) =
√
1 − r2

r
.
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It suffices to show that r̂α ∈ rνC∞
B ((0, ε),C∞(Sn−1)) for some ε > 0. We have

|̂rα(r , φ)| ≤
∫ 1

0
|tφ|ν−|α||tφ, v(r)|−ν dt = rν

∫ 1

0
t−1+(ν−N )|trφ,

√
1 − r2|−ν dt .

Since |trφ,
√
1 − r2|−ν � 1 for r ≤ δ. we find that r−ν |̂rα(r , φ)| is bounded. Derivatives of

r̂α are treated similarly, proceeding as in the proof of Theorem 4.4. ��

This decomposition also shows how to associate with a symbol a ∈ Sd,ν
hom a symbol

p ∈ Sd,ν with homogeneous principal symbol equal to a. In fact, writing a = ã + asmooth

with ã ∈ S̃d,ν
hom and asmooth ∈ Sd

hom , choose

p(ξ ;μ) = χ̃(ξ )̃a(ξ ;μ) + χ(ξ, μ)asmooth(ξ ;μ)

with arbitrary zero-excision functions χ(ξ, μ) and χ̃ (ξ). Changing the cut-off functions
induces remainders in Sd−∞,ν−∞; hence we may assume that χ̃(ξ)χ(ξ, μ) = χ̃ (ξ) and
p = χ̃a + (1 − χ̃)χasmooth. Then taking another representation a = ã′ + a′

smooth with
associated symbol p′, we find

p − p′ = (1 − χ)(ξ)κ(ξ, μ)(asmooth − a′
smooth).

Noting that (after restriction to the unit-sphere)

asmooth − a′
smooth = rn(ν)b, n(ν) = smallest integer ≥ ν,

with b ∈ C∞(Sn+) one concludes that p − p′ belongs to Sd−∞,n(ν)−∞ ⊆ Sd−∞,ν−∞.
In combination with Lemma 4.3 we obtain the following:

Theorem 4.6 Let V = {(ξ, μ) | μ ≥ c|ξ |} with some constant c ≥ 0. Then

Sd,ν = S̃d,ν
V + Sd ,

where S̃d,ν
V ⊂ S̃d,ν is the subspace of those symbols whose homogeneous components have

support in V .

5 Expansion at infinity

One of the motivations for this paper is to extend the concept of ellipticity in the spaces Sd,ν

with positive regularity number ν to the case ν = 0. Ellipticity should still be characterized
by the invertibility of one or more principal symbols (plus some uniformity assumptions
for preserving the C∞

b structure in x) and should imply invertibility of a(x, D;μ) for large
values of the parameter μ. Recall that Sd,0 = S̃d,0; for systematic reasons we address this
question in S̃d,ν for arbitrary ν.

In a first step, in Sect. 5.1, we introduce a subclass S̃d,ν
1,0 of S̃d,ν

1,0 in which elliptic elements
are invertible for large values of μ. The ellipticity involves an estimate of the full symbol
and the invertibility of a so-called limit-symbol; the latter plays the role of a new principal
symbol. In a second step, we pass to the subclass of poly-homogeneous symbols S̃d,ν where
the full symbol can be replaced by the homogeneous principal symbol.
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5.1 Symbols with expansion at infinity

Definition 5.1 We denote by S̃d,ν
1,0 , d, ν ∈ R, the subspace of S̃d,ν

1,0 consisting of all symbols

a(x, ξ ;μ) for which exists a sequence of symbols a∞[ν+ j] ∈ Sν+ j
1,0 (Rn), j ∈ N0, such that

ra,N (x, ξ ;μ) := a(x, ξ ;μ) −
N−1∑

j=0

a∞[ν+ j](x, ξ)[ξ, μ]d−ν− j ∈ S̃d,ν+N
1,0

for every N ∈ N0; here [ξ, μ] ∈ S1 denotes a smooth positive function that coincides with
|(ξ, μ)| outside some compact set. The symbol a∞[ν] shall be called the principal limit-symbol
of a.

The definition does not depend on the choice of the function [ξ, μ], since the difference
of two such functions belongs to C∞

comp(R+ × R
n); for further discussion see Sect. 7.2. The

coefficients a∞[ν+ j](x, ξ) are uniquely determined by a. S̃d,ν
1,0 is a Fréchet spacewhen equipped

with the projective topology with respect to the mappings

a �→ ra,N : S̃d,ν
1,0 −→ S̃d,ν+N

1,0 , a �→ a∞[ν+ j] : S̃d,ν
1,0 −→ Sν+ j

1,0 (Rn).

Note that S̃d−N ,ν−N
1,0 ⊂ S̃d,ν

1,0 whenever N ∈ N; we define

S̃d−∞,ν−∞
1,0 = ∩

N∈N S̃
d−N ,ν−N
1,0 .

Obviously, the maps

a �→ 〈ξ 〉ea : S̃d,ν
1,0 −→ S̃d+e,ν+e

1,0 , a �→ [ξ, μ]ea : S̃d,ν
1,0 −→ S̃d+e,ν

1,0 ,

are isomorphisms with (〈ξ 〉ea)∞[ν+e+ j] = 〈ξ 〉ea∞[ν+ j] and ([ξ, μ]ea)∞[ν+ j] = a∞[ν+ j].

Example 5.2 Let a(x, ξ) ∈ Sd
1,0(R

n) be independent of μ. Then a ∈ S̃d,d
1,0 with a∞[d] = a and

a∞[d+ j] = 0 for every j ≥ 1.

Proposition 5.3 Let a ∈ Sd . Then a ∈ S̃d,0
1,0 with principal limit-symbol

a∞[0](x, ξ) = a0(x, 0; 1),
i.e., the homogeneous principal symbol of a evaluated in (ξ, μ) = (0, 1). Moreover, a∞[ j](x, ξ)

is a homogeneous polynomial in ξ of order j .

Note that the proof of Proposition 5.3 is constructive, i.e., for given a all symbols a∞[ j](x, ξ)

can be calculated explicitly.

Proof of Proposition 5.3 For convenience assume independence on the x-variable. First note
that Sd−N ⊆ S̃d−N ,0

1,0 ⊆ S̃d,N
1,0 , since

〈ξ, μ〉d−N−|α|− j ≤ 〈ξ 〉−|α|〈ξ, μ〉d−N− j ≤ 〈ξ 〉N−|α|〈ξ, μ〉d−N− j .

Thus we may assume that a(ξ ;μ) = χ(ξ, μ)a(ξ ;μ) with a ∈ Sd−
hom ,  ≥ 0, and a zero-

excision function χ(ξ, μ), and show that a belongs to S̃d−,0
1,0 ⊆ S̃d,0

1,0 .
Let κ̂ ∈ C∞(Sn+) be supported close to (0, 1) and κ ≡ 1 near (0, 1) and define κ(ξ ;μ) :=

κ̂((ξ, μ)/|ξ, μ|).
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Step 1: 1 − κ is supported in a conical set V of the form V = {(ξ, μ) | |ξ | ≥ cμ} with
c > 0. Therefore, (1 − κ)(ξ ;μ)a(ξ ;μ) ∈ S̃d−,L for every L , since 〈ξ 〉 ∼ 〈ξ, μ〉 on its
support, hence 〈ξ, μ〉d−−|α|− j ∼ 〈ξ 〉L−|α|〈ξ, μ〉d−−L− j .

Step 2: Assume that a|Sn+ vanishes to order N in (ξ, μ) = (0, 1). Then

u(ξ) := (κa)
(
ξ ;

√
1 − |ξ |2)

is a smooth function with compact support in B := {ξ | |ξ | < 1} that vanishes to order N in
ξ = 0. Write u(ξ) = ∑

|α|=N
ξαuα(ξ) with uα also compactly supported in B. Then

(κa)(ξ ;μ) = |ξ, μ|d−u(ξ/|ξ, μ|) = |ξ, μ|d−−N
∑

|α|=N

ξαuα(ξ/|ξ, μ|)

and therefore

(κa)(ξ ;μ) =
∑

|α|=N

ξα pα(ξ ;μ), pα ∈ Sd−−N .

Hence (κa)(ξ ;μ) ∈ S̃d−,N
1,0 and thus, by Step 1, a(ξ ;μ) ∈ S̃d−,N

1,0 .

Step 3: Let p(ξ ;μ) = ∑
|α|≤N−1

uαξα[ξ, μ]d−−|α| where uα is the α-th Taylor coefficient

of a

(
ξ ;√

1 − |ξ |2) in ξ = 0. Then p ∈ Sd− is homogeneous of degree d − for |ξ, μ| ≥ 1;

let p ∈ Sd−
hom be the homogeneous principal symbol. Write

a − p = χ(a − p) − (p − χ p) = χ(a − p) mod S−∞.

Since (a − p)|Sn+ vanishes to order N in (0, 1), we conclude by Step 2 that a − p ∈ S̃d−,N
1,0 .

Hence

a(ξ ;μ) ≡
N−1∑

j=0

a∞[ j](ξ)[ξ, μ]d−− j , a∞[ j](ξ) =
∑

|α|= j

uαξα,

modulo S̃d−,N
1,0 . ��

Lemma 5.4 The following holds true:
i) If ak ∈ S̃dk ,νk

1,0 for k = 0, 1, then a1a0 ∈ S̃d0+d1,ν0+ν1
1,0 with

(a1a0)
∞[ν0+ν1+ j] =

∑

k+= j

a∞
1,[ν1+]a∞

0,[ν0+k].

ii) Dα
ξ Dβ

x : S̃d,ν
1,0 → S̃d−|α|,ν−|α|

1,0 with (Dα
ξ Dβ

x a)∞[ν−|α|] = Dα
ξ Dβ

x a∞[ν],
iii) ∂

j
μ : S̃d,ν

1,0 → S̃d− j,ν
1,0 with (∂

j
μa)∞[ν] = (d − ν)(d − ν − 1) . . . (d − ν − j + 1)a∞[ν].

Proof i) is straight-forward, as is ii) using induction on |α|.
By induction, it is enough to show iii) for j = 1. Observe that

∂μ[ξ, μ]d−ν− j ≡ (d − ν − j)[ξ, μ]d−ν− j−2μ mod C∞
comp(R+ × R

n).

Now use the expansion of μ ∈ S̃1,01,0, cf. Proposition 5.3, to find a resulting expansion of ∂μa.
��
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Theorem 5.5 (Asymptotic summation) Let a j ∈ S̃d− j,ν− j
1,0 , j ∈ N0. Then there exists an

a ∈ S̃d,ν
1,0 such that a −

N−1∑
j=0

a j ∈ S̃d−N ,ν−N
1,0 for every N. Moreover,

a∞[ν+ j] ∼
+∞∑

k=0

a∞
k,[(ν−k)+ j], j ∈ N0,

asymptotically in Sν+ j
1,0 (Rn). The symbol a is unique modulo S̃d−∞,ν−∞

1,0 .

Proof Let χ(ξ) be a zero-excision function and denote by χc, c > 0, the operator of mul-
tiplication by χ(ξ/c). Then χc ∈ L (̃Sd,ν

1,0 ) for every d, ν with (χca)∞[ν+ j] = χca∞[ν+ j] and
(1 − χc)a ∈ S̃d−∞,ν−∞

1,0 .
Moreover, the following statements are checked by straight-forward calculations:

(1) If a ∈ S̃d−1,ν−1
1,0 then χca

c→+∞−−−−→ 0 in S̃d,ν
1,0 .

(2) If a ∈ S̃d−1,ν−1
1,0 then χca∞[ν−1+ j]

c→+∞−−−−→ 0 in Sν+ j
1,0 (Rn).

(3) If r ∈ S̃d−1,ν−1+N
1,0 then χcr

c→+∞−−−−→ 0 in S̃d,ν+N
1,0 .

In other words, given a ∈ S̃d−1,ν−1
1,0 then χca

c→+∞−−−−→ 0 in S̃d,ν
1,0 .

Now the existence of a follows from Proposition 1.1.17 of [11] (with E j := S̃d− j,ν− j
1,0

and χ j (c) = χc : E j → E j ). The remaining statements are clear. ��
For the detailed proofs of the following two theorems, concerning composition and

(formal) adjoint, see the appendix.

Theorem 5.6 Let a j ∈ S̃
d j ,ν j
1,0 , j = 0, 1. Then a1#a0 ∈ S̃d0+d1,ν0+ν1

1,0 and the limit-symbol
behaves multiplicatively: (a1#a0)∞[ν0+ν1] = a∞

1,[ν1]#a∞
0,[ν0]. Moreover,

a1#a0 ≡
N−1∑

|α|=0

1

α! (∂
α
ξ a1)(Dα

x a0) mod S̃d0+d1−N ,ν0+ν1−N
1,0 . (5.1)

Theorem 5.7 If a ∈ S̃d,ν
1,0 then a(∗) ∈ S̃d,ν

1,0 with (a(∗))∞[ν] = (a∞[ν])(∗) and

a(∗)(x, ξ ;μ) =
N−1∑

|α|=0

1

α!∂
α
ξ Dα

x a(x, ξ ;μ) mod S̃d−N ,ν−N
1,0 . (5.2)

5.2 Ellipticity and parametrix construction

For the following considerations it is convenient to introduce the spaces Sd
1,0(R+; E) con-

sisting of all smooth functions a(μ) with values in a Frèchet space E , such that

|||D j
μa(μ)||| � 〈μ〉d− j

for every j and every continuous semi-norm ||| · ||| of E .

Lemma 5.8 Let a(x, ξ ;μ) ∈ S̃0−∞,0−∞
1,0 and assume that 1 − a∞[0](x, D) is invertible

in L (Hs(Rn)) for some s ∈ R. Then 1 − a(x, D;μ) is invertible for large μ and
(1 − a(x, D;μ))−1 = 1 − b(x, D;μ) for some b(x, ξ ;μ) ∈ S̃0−∞,0−∞

1,0 .
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Proof First observe that S̃0−∞,0−∞
1,0 consists of those symbols a for which exists a sequence

of symbols a∞[ j] ∈ S−∞(Rn) such that, for every N ∈ N0,

a(x, ξ ;μ) =
N−1∑

j=0

a∞[ j](x, ξ)[ξ, μ]− j mod S̃0−∞,N−∞
1,0 = S−N

1,0 (R+, S−∞(Rn)).

Also recall that (1 − T )−1 = ∑N−1
j=0 T j + T N (1 − T )−1 whenever T belongs to a unital

algebra and 1 − T is invertible.
Step 1: Let us assume that a∞[0] = 0. In particular, a ∈ S−1

1,0(R+, S−∞(Rn)).

Due to the spectral-invariance of the algebra {p(x, D) | p ∈ S0
1,0(R

n)} in L (Hs(Rn)),
we find that 1 − a is invertible with respect to the Leibniz product for large μ and that
χ(μ)(1− a(μ))−# belongs to S0

1,0(R+, S0(Rn)) for a suitable zero-excision function χ . But
then

b := −a − a#χ(1 − a)−##a ∈ S−1
1,0(R+, S−∞(Rn))

and 1 − b = (1 − a)−# for large μ. Hence, for large μ,

(1 − a)−# = 1 +
N−1∑

j=1

a# j + a#N#(1 − b) ≡ 1 +
N−1∑

j=1

a# j mod S−N
1,0 (R+, S−∞(Rn)).

Using the expansions of a# j ∈ S̃0−∞,0−∞
1,0 and noting that (a# j )∞[0] = 0 for every j due to the

multiplicativity of the principal limit-symbol, we find a sequence of symbols b∞[ j] ∈ S−∞(Rn)

such that, for every N ∈ N0,

(1 − a)−# = 1 +
N−1∑

j=1

b∞[ j][ξ, μ]− j + rN , rN ∈ S−N
1,0 (R+, S−∞(Rn)),

for large μ. Thus, for a suitable zero-excision function κ(μ),

1 − b = κ(1 − b) + (1 − κ) − (1 − κ)b ≡ κ(1 − a)−# + (1 − κ) mod S−∞,

hence

1 − b ≡ 1 + κ

N−1∑

j=1

b∞[ j][ξ, μ]− j + κrN ≡ 1 +
N−1∑

j=1

b∞[ j][ξ, μ]− j ,

modulo S−N
1,0 (R+, S−∞(Rn)), since (1 − κ)b∞[ j] ∈ S−∞.

Step 2: In the general case, again by spectral invariance, we find a b∞[0] ∈ S−∞(Rn) such
that 1 − b∞[0](x, D) is the inverse of 1 − a∞[0](x, D). Then (1 − a)#(1 − b∞[0]) = 1 − a′,
where a′ ∈ S̃0−∞,0−∞

1,0 has vanishing principal limit-symbol. Apply Step 1 to 1− a′ to find a
corresponding parametrix 1−b′. Then the claim follows by choosing b = 1−(1−b∞[0])#(1−
b′) = b′ + b∞[0] − b∞[0]#b′. ��

Definition 5.9 We call a ∈ S̃d,ν
1,0 elliptic if there exist an R ≥ 0 such that

(1) a(x, ξ ;μ) is invertible whenever |ξ | ≥ R and

|a(x, ξ ;μ)−1| � 〈ξ 〉−ν〈ξ, μ〉ν−d ,

(2) a∞[ν](x, D) is invertible in L (Hs(Rn), Hs−ν(Rn)) for some s ∈ R.
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Note that condition (2) is equivalent to the existence of an inverse of a∞[ν](x, ξ)with respect

to the Leibniz product, with inverse belonging to S−ν
1,0(R

n).

Theorem 5.10 Let a ∈ S̃d,ν
1,0 be elliptic. Then there exists a b ∈ S̃−d,−ν

1,0 such that both a#b−1

and b#a − 1 belong to C∞
comp(R+, S−∞(Rn)). In particular, b(x, D;μ) = a(x, D;μ)−1

provided μ is sufficiently large.

Proof By order reduction we may assume without loss of generality that d = ν = 0.
Step 1: Since a∞[0](x, D) is invertible, a∞[0] is also elliptic. Thus we can choose a zero-

excision function χ(ξ) such that

χ(2ξ)a(x, ξ ;μ)−1 ∈ S̃0,0
1,0 , c̃∞[0](x, ξ) := χ(2ξ)a∞[0](x, ξ)−1 ∈ S0

1,0(R
n),

and χ(ξ)χ(2ξ) = χ(ξ). Now define recursively,

c̃∞[ j](x, ξ) = −c̃∞[0](x, ξ)
∑

k+= j,
< j

a∞[k](x, ξ )̃c∞[](x, ξ), j ∈ N,

and set c∞[ j](x, ξ) = χ(ξ )̃c∞[ j](x, ξ). Then

( N−1∑

j=0

a∞[ j](x, ξ)[ξ, μ]− j
)( N−1∑

j=0

c∞[ j](x, ξ)[ξ, μ]− j
)

= χ(ξ) − rN (x, ξ ;μ)

with rN ∈ S̃0,N
1,0 . Thus, if c(x, ξ ;μ) := χ(ξ)a(x, ξ ;μ)−1, then

c(x, ξ ;μ) = χ(ξ)χ(2ξ)a(x, ξ ;μ)−1

≡
( N−1∑

j=0

a∞[ j](x, ξ)[ξ, μ]− j
)( N−1∑

j=0

c∞[ j](x, ξ)[ξ, μ]− j
)
χ(2ξ)a(x, ξ ;μ)−1

modulo S̃0,N
1,0 . The first factor on the right-hand side equals a − ra,N with ra,N ∈ S̃0,N . It

follows that

c(x, ξ ;μ) ≡
N−1∑

j=0

c∞[ j](x, ξ)[ξ, μ]− j mod S̃0,N
1,0 .

This shows that c(x, ξ ;μ) = χ(ξ)a(x, ξ ;μ)−1 ∈ S̃0,01,0.
Step 2: Let c as constructed in Step 1. Then, by Theorem 5.6, a#c ≡ ac = χ(ξ) modulo

S̃−1,−1
1,0 . Thus a#c − 1 ∈ S̃−1,−1

1,0 and the usual Neumann series argument, which is possible

in view of Theorem 5.5, allows to construct a symbol c′ ∈ S̃0,01,0 such that a#c′ = 1 − r with

r ∈ S̃0−∞,0−∞
1,0 . Now define

c′′ := c′ + (a∞[0])−##r∞[0];

note that r∞[0] ∈ S−∞(Rn), hence c′′ −c′ ∈ S̃0−∞,0−∞
1,0 . It follows that a#c′′ −1 ∈ S̃0−∞,0−∞

1,0
and

(a#c′′ − 1)∞[0] = a∞[0]#((c′)∞[0] + (a∞[0])−1#r∞[0]) − 1 = a∞[0]#(c′)∞[0] + r∞[0] − 1 = 0
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by construction. Thus a#c′′ = 1 − r ′, where r ′ ∈ S̃0−∞,0−∞
1,0 has vanishing limit-symbol.

Using Proposition 5.8 we thus find a right-parametrix bR ∈ S̃0,01,0 such that a#bR − 1 ∈
C∞
comp(R+, S−∞(Rn)).
Analogously, we construct a left-parametrix bL . Then the claim follows by choosing

b = bL or b = bR . ��

5.3 Poly-homogeneous symbols with expansion at infinity

As already mentioned S̃d,ν
hom

∼= rνC∞
B (̂Sn+) does not behave well under inversion because

there is no sufficient control at the singularity. We pass to a subclass which also is compatible
with the previously introduced expansion at infinity.

In the following definition, we consider the north-pole (0, 1) as a singularity of the semi-
sphere and consider functions having a particular asymptotic structure near this singularity.
Asymptotics of this form are well-known in the context of manifolds with conical singulari-
ties, cf. for instance [11, Section 2.3].

Definition 5.11 A function â(ξ ;μ) ∈ rνC∞
B (̂Sn+) is said to have aweighted Taylor expansion

(centered in the point (0, 1)), if there exist â〈ν+ j〉 ∈ C∞(Sn−1), j ∈ N0, such that the
representation â(r , φ) = â(rφ;√

1 − r2) of a in polar-coordinates satisfies

â(r , φ) − ω(r)

N−1∑

j=0

rν+ j â〈ν+ j〉(φ) ∈ rν+NC∞
B ((0, 1),C∞(Sn−1))

for every N ∈ N0, where ω ∈ C∞
0 ([0, 1)) is a cut-off function, i.e., ω has compact support

in [0, 1) and ω ≡ 1 near the origin. The space of all such functions â(ξ ;μ) will be denoted
by rνC∞

T (̂Sn+).

Note that â(ξ ;μ) ∈ rνC∞
T (̂Sn+) is invertible with inverse in r−νC∞

T (̂Sn+) if, and only if,
â(ξ ;μ) �= 0 whenever ξ �= 0 and â〈ν〉(φ) �= 0 for all φ ∈ S

n−1.

Definition 5.12 S̃d,ν
hom consists of all functions of the form

a(x, ξ ;μ) = |ξ, μ|d â
(

x,
(ξ, μ)

|ξ, μ|
)
, â ∈ C∞

b

(
R

n
x , rνC∞

T (̂Sn+)
)
.

Define the principal angular symbol a〈ν〉(x, ξ) ∈ Sν
hom(Rn) (cf. Section 2.2) of a as

a〈ν〉(x, ξ) = |ξ |ν â〈ν〉
(

x,
ξ

|ξ |
)

= |ξ |ν lim
r→0+ r−ν a

(
x, r

ξ

|ξ | ;
√
1 − r2

)
.

Note that, by construction, S̃d,ν
hom ⊆ S̃d,ν

hom . The following proposition shows that such
homogeneous components intrinsically admit an expansion at infinity in the sense of Defi-
nition 5.1.

Proposition 5.13 Let a(x, ξ ;μ) ∈ S̃d,ν
hom be as in Definition 5.12 with â as in Definition 5.11.

Let p(x, ξ ;μ) = χ(ξ)a(x, ξ ;μ) with a zero-excision function χ(ξ). Then p ∈ S̃d,ν
1,0 with

p∞[ν+ j](x, ξ ;μ) = χ(ξ)|ξ |ν+ j a〈ν+ j〉
(

x,
ξ

|ξ |
)
, j ∈ N0.
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Proof By Theorem 4.4,

p(x, ξ ;μ) ≡ χ(ξ)|ξ, μ|dω
( |ξ |

|ξ, μ|
) N−1∑

j=0

( |ξ |
|ξ, μ|

)ν+ j
a〈ν+ j〉

(
x,

ξ

|ξ |
)

≡ χ(ξ)ω
( |ξ |

|ξ, μ|
) N−1∑

j=0

|ξ |ν+ j a〈ν+ j〉
(

x,
ξ

|ξ |
)
[ξ, μ]d−ν− j

modulo S̃d,ν+N for every N . Now observe that w(ξ ;μ) := (1 − ω)
( |ξ |

|ξ,μ|
)
is a smooth

function on (Rn × R+) \ {0} which is homogeneous of degree 0 and is supported in a set
of the form {(ξ, μ) | 0 ≤ μ ≤ c|ξ |}. Thus, if κ(ξ, μ) is a zero-excision function, then
κ(ξ, μ)w(ξ ;μ) ∈ S̃0,L

1,0 for every L , since on its support 〈ξ, μ〉 ∼ 〈ξ 〉. Choosing κ such that
κ(ξ, μ)χ(ξ) = χ(ξ), we conclude that

p(ξ ;μ) ≡
N−1∑

j=0

χ(ξ)|ξ |ν+ j a〈ν+ j〉
(

x,
ξ

|ξ |
)
[ξ, μ]d−ν− j

modulo S̃d,ν+N for every N . This concludes the proof. ��
Definition 5.14 The space S̃d,ν consists of all symbols a(x, ξ ;μ) ∈ S̃d,ν

1,0 for which exists a

sequence of homogeneous components a j (x, ξ ;μ) ∈ S̃d− j,ν− j
hom such that

a(x, ξ ;μ) − χ(ξ)

N−1∑

j=0

a j (x, ξ ;μ) ∈ S̃d−N ,ν−N
1,0 (5.3)

for every N ∈ N0. The principal angular symbol of a(x, ξ ;μ) is, by definition, the prin-
cipal angular symbol a0,〈ν〉(x, ξ) of the homogeneous principal symbol of a0(x, ξ ;μ) (cf.
Definition 5.12).

Due to Proposition 5.13 and Theorem 5.5, given any sequence of homogeneous compo-
nents a j (x, ξ ;μ) ∈ S̃d− j,ν− j

hom , there exists an a ∈ S̃d,ν satisfying (5.3). If a is as in (5.3) then
the principal limit-symbol a∞[ν](x, ξ) belongs to Sν(Rn) and has the asymptotic expansion

a∞[ν](x, ξ) ∼ χ(ξ)

+∞∑

j=0

|ξ |ν− j a j,〈ν− j〉
(

x,
ξ

|ξ |
)
.

In particular, we have the following:
Proposition 5.15 Let a(x, ξ ;μ) ∈ S̃d,ν . Then the homogeneous principal symbol of the
principal limit-symbol a∞[ν](x, ξ) coincides with the principal angular symbol of a(x, ξ ;μ).

Now let us turn to ellipticity and parametrix.

Definition 5.16 A symbol a(x, ξ ;μ) ∈ S̃d,ν is called elliptic if

(1) The homogeneous principal symbol a0(x, ξ ;μ) is invertible whenever ξ �= 0 and

|a0(x, ξ ;μ)−1| � |ξ |−ν |ξ, μ|ν−d .

(2) a∞[ν](x, D) is invertible in L (Hs(Rn), Hs−ν(Rn)) for some s ∈ R.
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Due to Proposition 5.15, condition (2) implies the invertibility of the principal angular
symbol of a. Moreover, if the homogeneous principal symbol of a(x, ξ ;μ) does not depend
on x for large |x |, then condition (1) in Definition 5.16 can be substituted by

(1′) The homogeneous principal symbol a0(x, ξ ;μ) is invertible whenever ξ �= 0.

Theorem 5.17 Let a ∈ S̃d,ν be elliptic. Then there exists a b ∈ S̃−d,−ν such that both a#b−1
and b#a − 1 belong to C∞

comp(R+, S−∞(Rn)). In particular, b(x, D;μ) = a(x, D;μ)−1

provided μ is sufficiently large.

Proof By ellipticity assumption (2), there exists a b(x, ξ) ∈ S−ν(Rn) which is the inverse of
a∞[ν](x, ξ)with respect to the Leibniz product. By Proposition 5.15 it follows that the principal
angular symbol of a (i.e., that of a0) is invertible and the inverse is just the homogeneous
principal symbol of b. Together with (1)we conclude that the homogeneous principal symbol
a0(x, ξ ;μ) is invertible with inverse belonging to S̃−d,−ν

hom . Thus there exists a c(x, ξ ;μ) ∈
S̃−d,−ν which is a parametrix of a(x, ξ ;μ) modulo S̃−1,−1. Then proceed as in Step 2 of the
proof of Theorem 5.10. ��

5.4 Refined calculus for symbols of finite regularity

As proved in Theorem 4.6, Grubb’s class Sd,ν coincides with the non-direct sum S̃d,ν + Sd .
In light of the above considerations it is now natural to introduce the following class:

Definition 5.18 With d ∈ R and ν ∈ Z define

Sd,ν = S̃d,ν + Sd , Sd,ν
hom = S̃d,ν

hom + Sd
hom .

The limitation to integer values of ν is needed to ensure compatibility between the spaces
S̃d,ν

hom and Sd
hom in the sense that the Taylor expansions (cf. Definition 5.11) associated with

elements of either space only contain integer exponents; in particular, we have Sd,ν = S̃d,ν

whenever ν ≤ 0, and Sd,ν ⊂ S̃d,0 whenever ν > 0. The choice of integer ν is also important
in view of Lemma 5.19.

By Proposition 5.3 and Theorem 5.6, the Leibniz product induces maps

Sd1,ν1 × Sd0,ν0 −→ Sd0+d1,ν , ν = min(ν0, ν1, ν0 + ν1).

By Theorem 5.7 the class is closed under taking the (formal) adjoint. Since in both spaces
involved in Definition 5.18 asymptotic summation is possible (cf. Sect. 3.2 and Theorem
5.5), a sequence of symbols a j ∈ Sd− j,ν− j can be summed asymptotically in Sd,ν .

Lemma 5.19 Let ν be a positive integer1. Then the space rνC∞
T (̂Sn+) + C∞(Sn+) is closed

under inversion, i.e., if a(ξ ;μ) ∈ rνC∞
T (̂Sn+)+C∞(Sn+) is point-wise invertible everywhere

on S
n+ then2 a(ξ ;μ)−1 ∈ rνC∞

T (̂Sn+) + C∞(Sn+).

Proof Write a = â + a0 with â ∈ rνC∞
T (̂Sn+) and a0 ∈ C∞(Sn+). Clearly a is smooth on

Ŝ
n+. We proceed in two steps:
Step 1: Let us assume that a0 ≡ 1 in some neighborhood of the point (0, 1). Choose

ψ1, ψ ∈ C∞(Sn+) having their support contained in this neighborhood and such thatψ,ψ1 ≡

1 Actually, for the validity of this lemma it is sufficient to assume that 2ν is a positive integer.
2 Recall that a(ξ ; μ) extends by continuity to the whole semi-sphere, since ν > 0.
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1 near (0, 1) as well as ψ1 ≡ 1 on the support of ψ . Let b̂ = −ψ1â. Then b̂ ∈ rνC∞
T (̂Sn+)

and, choosing ψ1 with sufficiently small support, we have that |̂b| ≤ 1/2 on S
n+, since

lim(ξ,μ)→(0,1) â(ξ ;μ) = 0. Then

ψa−1 = ψ(1 + â)−1 = ψ(1 + ψ1â)−1 = ψ(1 − b̂)−1.

By chain rule it is straight-forward to see that (1 − b̂)−1 ∈ C∞
B (̂Sn+). Moreover,

(1 − b̂)−1 = 1 +
L−1∑

j=1

b̂ j + ĉL , ĉL := b̂L(1 − b̂)−1, L ∈ N.

Since ν is integer, b̂ j ∈ rνC∞
T (̂Sn+) for every j . Inserting the Taylor expansion for each b̂ j

and noting that ĉL ∈ rν+NC∞
B (̂Sn+) provided L = L(N ) is taken large enough, we conclude

that (1 − b̂)−1 = 1 + ĉ with ĉ ∈ rνC∞
T (̂Sn+). Therefore,

a−1 = ψa−1 + (1 − ψ)a−1 = ψ ĉ + (
ψ + (1 − ψ)a−1) ∈ rνC∞

T (̂Sn+) + C∞(Sn+).

Step 2: Consider the general case. Since a0(0; 1) = a(0; 1) is invertible, there exists a
b0 ∈ C∞(Sn+) everywhere invertible and such that b0 = a0 in a neighborhood of (0, 1).
Then ab−1

0 ∈ rνC∞
T (̂Sn+) + C∞(Sn+) is everywhere invertible and ab−1

0 ≡ 1 near the point
(0, 1). According to the first step, b0a−1 = (ab−1

0 )−1 belongs to rνC∞
T (̂Sn+)+C∞(Sn+). By

multiplication with b−1
0 ∈ C∞(Sn+) we conclude that the same is true for a−1. ��

In case of x-dependence we need to pose, as usual, an additional uniform bound on the
inverse. Since symbols of Sd,ν

hom are just the homogeneous extensions of degree d of functions
from rνC∞

T (̂Sn+) + C∞(Sn+), we immediately have the following corollary.

Corollary 5.20 Let ν be a positive integer and a(x, ξ ;μ) ∈ Sd,ν
hom. Assume that a(x, ξ ;μ) is

invertible whenever (ξ, μ) �= 0 and that |a(x, ξ ;μ)−1| � |ξ, μ|−d . Then a(x, ξ ;μ)−1 ∈
S−d,ν

hom .

After this observation it is clear that we can construct a parametrix in the class:

Theorem 5.21 Let ν be a positive integer and a(x, ξ ;μ) ∈ Sd,ν be elliptic (i.e., the
homogeneous principal symbol satisfies the assumptions of Corollary 5.20). Then there
exists a parametrix b(x, ξ ;μ) ∈ S−d,ν such that both a#b − 1 and b#a − 1 belong to
C∞
comp(R+, S−∞(Rn)).

If a ∈ Sd,ν with positive integer ν, then also a ∈ S̃d,0. Due to Propositions 5.13 and 5.3,
its principal limit-symbol is

a∞[0](x, ξ) = a0(x, 0; 1),
where a0 is the homogeneous principal symbol of a (defined on Sn+ by continuous extension).
Recalling Definition 5.16, we find the following result which unifies the notions of ellipticity
for symbols of regularity number ν = 0 and ν ∈ N, respectively.

Proposition 5.22 Let ν be a nonnegative integer and a ∈ Sd,ν . Then a is elliptic if, and only
if, a is elliptic as an element of S̃d,0.
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6 Resolvent-kernel expansions

We shall discuss how our calculus allows to recover thewell-known resolvent trace expansion
for elliptic ψdo due to Grubb–Seeley, cf. [6].

In the following we shall write r(x, ξ ;μ) = O(μm, SM
1,0) if μ−mr(μ) ∈ SM

1,0(R
n) uni-

formly in μ > 0.

6.1 Preparation

The following Lemma is a slight modification of [6, Lemma 1.3].

Lemma 6.1 Let a(x, ξ ;μ) ∈ Sm be homogeneous of degree m for |ξ, μ| ≥ 1. Let m+ =
max(m, 0). Then there exist symbols ζ j (x, ξ) = ∑

|α|= j
c jα(x)ξα such that

a(x, ξ ;μ) =
N−1∑

j=0

ζ j (x, ξ)μm− j + O(μm−N , Sm++N
1,0 )

for every N ∈ N. In particular, ζ0(x, ξ) = a(x, 0; 1) and μ−ma(x, ξ ;μ) → a(x, 0; 1) in
Sm++1
1,0 (Rn) as μ → +∞.

Proof For convenience of notation assume independence of x . Obviously it suffices to con-
sider μ ≥ 1. Then a(ξ ;μ) = μma(ξ/μ; 1). Let u(t, ξ) = a(tξ ; 1), 0 ≤ t ≤ 1. The j-th
t-derivative of u is

u( j)(t, ξ) =
∑

|α|= j

cαξα(∂α
ξ a)(tξ ; 1)

with certain universal constants cα . Thus the Taylor expansion of u in t centered in t = 0 is
of the form

u(t, ξ) =
N−1∑

j=0

ζ j (ξ)t j + t N
∫ 1

0
(1 − τ)N u(N )(tτ, ξ) dτ

with polynomials ζ j (ξ) as described. Then using the fact that

|∂β
ξ [(∂α

ξ a)(tτξ ; 1)]| � (tτ)|β|〈tτξ 〉m−|α|−|β| � (tτ)|β|〈tτξ 〉−|β|〈ξ 〉m+ � 〈ξ 〉m+−|β|,

for 0 ≤ t, τ ≤ 1, the above integral belongs to Sm++N
1,0 (Rn) uniformly in 0 ≤ t ≤ 1.

Substituting t = 1/μ yields the claim. ��
A case of particular interest below is that

[ξ, μ]m =
N−1∑

j=0

ζm, j (ξ)μm− j + O(μm−N , SN
1,0) (6.1)

whenever m ≤ 0; any ζm, j (ξ) is a homogeneous polynomial of degree j .

Corollary 6.2 Let a(x, ξ ;μ) ∈ S̃d,ν
1,0 with d − ν ≤ 0 have the expansion

a(x, ξ ;μ) =
N−1∑

j=0

a∞[ν+ j](x, ξ)[ξ, μ]d−ν− j mod S̃d,ν+N
1,0 .
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Then

a(x, ξ ;μ) =
N−1∑

=0

q(x, ξ)μd−ν− + O(μd−ν−N , Sν+N
1,0 ),

where, with notation of (6.1),

q(x, ξ) =
∑

j+k=

a∞[ν+ j](x, ξ)ζd−ν− j,k(ξ) ∈ Sν+
1,0 (Rn).

Proof First note that for r(x, ξ ;μ) ∈ S̃d,ν+N ,

|∂α
ξ ∂β

x r(x, ξ ;μ)| � 〈ξ 〉ν+N−|α|〈ξ, μ〉d−ν−N ,

hence r(μ) = O(μd−ν−N , Sν+N ). Inserting the expansions

[ξ, μ]d−ν− j =
N− j−1∑

k=0

ζd−ν− j,k(ξ)μd−ν− j−k + O(μd−ν−N , SN− j
1,0 )

the result follows immediately. ��
Theorem 6.3 Let a(x, ξ ;μ) ∈ S̃d,ν with d < −n and d − ν ≤ 0. Let

k(x, y;μ) =
∫

ei(x−y)ξ a(x, ξ ;μ) d̄ξ

the distributional kernel of a(x, D;μ). Then there exist functions c(x), c′
(x), c′′

 (x), j ∈ N0,
which are continuous and bounded such that, for μ → +∞,

k(x, x;μ) ∼
+∞∑

j=0

c j (x)μd− j+n +
+∞∑

=0

(
c′
(x) logμ + c′′

 (x)
)
μd−ν−.

Proof We follow closely the proof of [6, Theorem 2.1]. Let N be fixed. Choose, and fix, a
J ∈ N so large that

ν − J + N < −n (6.2)

and write

a(x, ξ ;μ) = χ(ξ)

J−1∑

j=0

a j (x, ξ ;μ) + r(x, ξ ;μ), r ∈ S̃d−J ,ν−J ,

where a j (x, ξ ;μ) ∈ S̃d− j,ν− j
hom and χ is a zero-excision function such that 1−χ is supported

in the unit-ball centered in the origin.
By Corollary 6.2 (with d, ν replaced by d − J , ν − J ) we have

r(x, ξ ;μ) =
N−1∑

=0

q(x, ξ)μd−ν− + O(μd−ν−N , Sν−J+N
1,0 )

with q(x, ξ) ∈ Sν−J+
1,0 (Rn). Recalling (6.2), the associated kernel kr (x, y;μ) satisfies

kr (x, x;μ) =
N−1∑

=0

c′′
r ,(x)μd−ν− + O(μd−ν−N ).
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Now let k j (x, y;μ) denote the kernel associated with χ(ξ)a j (x, ξ ;μ). Decompose

k j (x, x;μ) = k(1)
j (x, x;μ) + k(2)

j (x, x;μ) with

k(1)
j (x, x;μ) =

∫

|ξ |≥μ

χ(ξ)a j (x, ξ ;μ) d̄ξ.

Then, for every μ ≥ 1, using the homogeneity of a j ,

k(1)
j (x, x;μ) = μd− j+n

∫

|ξ |≥1
a j (x, ξ ; 1) d̄ξ = c j (x)μd− j+n;

note that the integrand is bounded by 〈ξ 〉d− j , hence integrable since d < −n.
Next choose L with L ≥ N and L > J − 1 − n − ν (i.e., ν − j + L > −n for every

j = 0, . . . , J − 1). Apply Corollary 6.2 (with d, ν replaced by d − j, ν − j) to write

χ(ξ)a j (x, ξ ;μ) =
L−1∑

=0

q j,(x, ξ)μd−ν− + s j,L(x, ξ ;μ),

s j,L(x, ξ ;μ) = O(μd−ν−L , Sν− j+L
1,0 );

(6.3)

by Proposition 5.19 (more precisely, the last formula in its proof) the symbols q j,(x, ξ) ∈
Sν− j+
1,0 (Rn) are homogeneous of degree ν − j +  for |ξ | ≥ 1. Thus s j,L(x, ξ ;μ) is homo-

geneous of degree d − j in (ξ, μ) for |ξ | ≥ 1. We now write

k(2)
j (x, x;μ) = k(2a)

j (x, x;μ) + k(2b)
j (x, x;μ)

=
∫

|ξ |≤1
χ(ξ)a j (x, ξ ;μ) d̄ξ +

∫

1≤|ξ |≤μ

a j (x, ξ ;μ) d̄ξ.

By (6.3) we obtain immediately that

k(2a)
j (x, x;μ) =

L−1∑

=0

c′′
j,(x)μd−ν− + O(μd−ν−L).

By homogeneity for |ξ | ≥ 1 of the q j, and by using polar-coordinates,

∫

1≤|ξ |≤μ

q j,(x, ξ) d̄ξ =
{

c′
j,(x)(μν− j++n − 1) : ν − j +  + n �= 0,

c′
j,(x) logμ : ν − j +  + n = 0

By the second line in (6.3) and the homogeneity of s j,L ,

s j,L(x, ξ ;μ) = |ξ |d− j s j,L

(
x,

ξ

|ξ | ;
μ

|ξ |
)

= O(μd−ν−L |ξ |ν− j+L), |ξ | ≥ 1. (6.4)

If sh
j,L denotes the extension by homogeneity of s j,L from |ξ | ≥ 1 to all ξ �= 0 (defined by

the second term in (6.4)), then

sh
j,L(x, ξ ;μ) = O(μd−ν−L |ξ |ν− j+L), ξ �= 0.

Then
∫

1≤|ξ |≤μ

s j,L(x, ξ ;μ) d̄ξ =
∫

0≤|ξ |≤μ

sh
j,L(x, ξ ;μ) d̄ξ −

∫

0≤|ξ |≤1
sh

j,L(x, ξ ;μ) d̄ξ

= c j,L(x)μd− j+n + O(μd−ν−L).

This yields the expansion of k(2b)
j (x, x;μ) and completes the proof. ��
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6.2 Application to the resolvent of aÃdo

Assume we are given two ψdo, p(x, ξ) ∈ Sm(Rn) of positive integer order m ∈ N and
q(x, ξ) ∈ Sω(Rn) with ω ∈ R. Moreover, let

� = {μeiθ | μ ≥ 0, 0 ≤ |θ | ≤ �}, 0 < � < π,

be a sector in the complex plane. Then, for every θ ,

aθ (x, ξ ;μ) := μm − e−iθ p(x, ξ) ∈ Sm,m .

Note that eiθ aθ (x, ξ ; r1/m) = reiθ − p(x, ξ). Now assume that aθ is elliptic, uniformly with
respect to θ , i.e.,

|(μm − e−iθ p0(x, ξ))−1| � 1, |ξ, μ| = 1,

uniformly in x ∈ R
n and 0 ≤ |θ | ≤ �. Using Theorem 5.21, there exists a bθ (x, ξ ;μ) ∈

S−m,m , depending uniformly on θ , such that aθ (x, D;μ) is invertible for large μ with
aθ (x, D;μ)−1 = bθ (x, D;μ). We then find, for every positive integer ,

cθ (x, D;μ) := q(x, D)
(
μmeiθ − p(x, D)

)− = e−iθq(x, D)bθ (x, D;μ).

Note that the -fold Leibniz product of bθ belongs to S−m,m = S̃−m,m + S−m. Since
S−m ⊂ S̃−m,0, we find that cθ = c(1)

θ + c(2)
θ with

c(1)
θ (x, ξ ;μ) ∈ S̃ω−m,ω+m, c(2)

θ (x, ξ ;μ) ∈ S̃ω−m,ω,

with uniform dependence on θ . If  is so large that ω − m < −n, we can apply Theorem
6.3 to both c(1)

θ and c(2)
θ . This is the key to obtain the following:

Theorem 6.4 With the above notation and assumptions, let k(x, y; λ) be the distributional

kernel of q(x, D)
(
λ − p(x, D)

)−
. Then there exist C∞

b -functions c j (x), c′
j (x), c′′

j (x), j ∈
N0, such that

k(x, x; λ) ∼
+∞∑

j=0

c j (x)λ
n+ω− j

m − +
+∞∑

j=0

(
c′

j (x) log λ + c′′
j (x)

)
λ−− j

m , (6.5)

uniformly for λ ∈ � with |λ| −→ +∞. Moreover, c′
j = c′′

j ≡ 0 whenever j is not an integer
multiple of m.

Proof of Theorem 6.4 Applying Theorem 6.3 to both c(1)
θ and c(2)

θ one obtains an expansion

k(x, x;μmeiθ ) ∼
+∞∑

j=0

c̃ j (x, θ)μn+ω− j−m +
+∞∑

j=0

(
c̃′

j (x, θ) logμ + c̃′′
j (x, θ)

)
μ−m− j ,

for μ → +∞, uniformly in θ . Writing logμ = log(μeiθ ) − iθ , μa = (μeiθ )a(e−iθ )a , and
substituting μ = r1/m yields expansion (6.5), but with coefficient functions depending on θ .
However, due to the holomorphy of the left-hand side (for fixed x), the coefficients must be
constant in θ as shown in [6, Lemma 2.3].

To see that the coefficients c′
j and c′′

j vanish whenever j is not an integer multiple of ,
one needs to repeat the considerations from [6, Section 2.2] concerning the construction of
the parametrix of μm − p(x, ξ). ��
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7 Operators onmanifolds

We shall show that the various symbol classes introduced so far lead to corresponding
operator-classes on smooth compact manifolds. In particular, we shall show that the expan-
sion at infinity and the concept of principal limit-symbol extend to the global setting.

7.1 Invariance under change of coordinates

Let κ : R
n → R

n be a smooth change of coordinates and assume that ∂ jκk ∈ C∞
b (Rn)

for all 1 ≤ j, k ≤ n, and that |det κ ′| is uniformly bounded from above and below by
positive constants; here, κ ′ denotes the first derivative (Jacobian matrix) of κ . For an operator
A : S (Rn) → S (Rn) its push-forward κ∗ A is defined by

(κ∗ A)u = [A(u ◦ κ)] ◦ κ−1, u ∈ S (Rn).

Its pull-back is κ∗ A := (κ−1)∗ A. If A(μ) is depending on a parameterμ, pull-back and push-
forward are defined in the same way, resulting in families κ∗ A(μ) and κ∗ A(μ), respectively.
It is thenwell-known that the classes Sd

1,0 and Sd are invariant under the change of coordinates
x = κ(y).

Theorem 7.1 The classes S̃d,ν
1,0 , S̃d,ν , S̃d,ν

1,0 , and S̃d,ν are invariant under the change of coor-
dinates x = κ(y). In the classes of poly-homogeneous symbols, the homogeneous principal
symbols satisfy the (usual) relation

(κ∗a)0(x, ξ ;μ) = a0
(
κ−1(x), κ ′(κ−1(x))tξ ;μ

)
,

where κ ′(y)t denotes the adjoint of the first derivative κ ′(y).

Proof In Theorem 2.1.21 of [3] the invariance is shown for the classes Sd,ν
1,0 and Sd,ν . This

includes the classes S̃d,ν
1,0 and S̃d,ν for ν ≤ 0. If ν > 0, we choose a symbol p(x, ξ) ∈

S−ν(Rn) which has inverse q(x, ξ) ∈ Sν(Rn) with respect to the Leibniz product. Given
a(x, ξ ;μ) ∈ S̃d,ν

1,0 , we find

κ∗a = κ∗(a#p)#κ∗q ∈ S̃d,ν
1,0 ,

since a#p ∈ S̃d−ν,0
1,0 . Analogously we argue for S̃d,ν .

Next let a(x, ξ ;μ) ∈ S̃d,ν
1,0 be as in Definition 5.1. The invariance follows from the obser-

vation that the classes Sν+ j
1,0 (Rn) and S̃d,ν+N

1,0 are invariant, while κ∗[ξ, μ]d−ν− j ∈ Sd−ν− j ⊂
S̃d−ν− j,0
1,0 has a complete expansion due to Proposition 5.3. This allows to find the complete

expansion of κ∗a(x, ξ ;μ). Using the formula for the asymptotic expansion of κ∗a, one sees
that poly-homogeneous symbols remain poly-homogeneous. ��

Let us have a closer look to the homogeneous principal symbol of a ∈ S̃d,ν . For conve-
nience of notation let us set p(x, ξ ;μ) = (κ∗a)0(x, ξ ;μ) and K(x) = κ ′(κ−1(x))t . To see
that p belongs to S̃d,ν

hom we write

p(x, ξ ;μ) = |ξ, μ|d p̂
(

x,
(ξ, μ)

|ξ, μ|
)
,

where, in polar-coordinates,

p̂(x, r , φ) = p(x, rφ,
√
1 − r2) = a

(
κ−1(x), rK(x)φ,

√
1 − r2

)
.
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Introducing

n(x, r , φ)2 = ∣∣rK(x)φ,
√
1 − r2

∣∣2 = 1 − r2
(
1 − |K(x)φ|2),

s(x, r , φ) = r |K(x)φ|/n(x, r , φ),

θ(x, φ) = K(x)φ/|K(x)φ|,
we find

p̂(x, r , φ) = nd â
(
κ−1(x), sθ,

√
1 − s2

)
.

Noting that n is smooth in r up to r = 0 and using the weighted Taylor-expansion of â, one
finds that p̂ admits a weighted Taylor-expansion with principal angular symbol

p̂〈ν〉(x, φ) = lim
r→0+ nd(r/s)−νs−ν â

(
κ−1(x), sθ,

√
1 − s2

)

= |K(x)φ|ν a〈ν〉(κ−1(x), θ).

This results in the following observation:

Proposition 7.2 Let a ∈ S̃d,ν . The principal angular symbols of a and κ∗a satisfy the relation

(κ∗a)〈ν〉(x, ξ) = a〈ν〉
(
κ−1(x), κ ′(κ−1(x))tξ

)
.

In other words, the principal angular symbol transforms as a function on the cotangent-
bundle of Rn .

Remark 7.3 In the above discussion we have focused on changes of coordinates defined on
R

n , satisfying certain growth conditions at infinity. This is the natural setting for symbols
which are globally defined onRn . Alternatively, we could consider arbitrary diffeomorphisms
κ : U → V with arbitrary open subsets U , V of Rn and the push-forward of ψdo of the
form φ a(x, D;μ)ψ with φ,ψ ∈ C∞

comp(U ). We would obtain a corresponding invariance
property; the details are left to the reader.

The invariance under changes of coordinates permits to define corresponding classes for
manifolds.

Definition 7.4 Let M be a smooth closed manifold. With L̃d,ν
1,0 = L̃d,ν

1,0 (M;R+) we denote
the space of all operator-families A(μ) : C∞(M) → C∞(M) with the following property:
Given an arbitrary chart κ : 
 ⊂ M → U ⊂ R

n and arbitrary functions φ,ψ ∈ C∞
comp(
),

the operator-family κ∗(φ A(μ)ψ) defined by

u �→ κ∗(φ A(μ)ψ)u = [φ A(μ)(ψ(u ◦ κ))] ◦ κ−1, u ∈ S (Rn), 3

is a ψdo with symbol from S̃d,ν . Analogously, define the spaces L̃d,ν = L̃d,ν(M;R+),
L̃d,ν
1,0 = L̃d,ν

1,0 (M;R+), and L̃d,ν = L̃d,ν(M;R+).

In L̃d,ν both homogeneous principal symbol and principal angular symbol arewell defined
functions on (T ∗M \ 0) ×R+ and T ∗M \ 0, respectively. Let us mention that L̃d−∞,ν−∞

1,0 =
L̃d−∞,ν−∞ = Sd−ν

1,0 (R+, L−∞(M)).
Proceeding as usual, one can show that any of the four classes is closed under composition

and, after fixing an arbitrary Riemannian metric on M which allows the definition of a
corresponding space L2(M) of square integrable functions, under taking the formal adjoint:

3 In this definition, smooth functions with compact support in some open set are considered as functions on
the whole ambient space after extension by zero.
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Theorem 7.5 Composition of operator-families induces a map L̃d1,ν1
1,0 × L̃d0,ν0

1,0 →
L̃d0+d1,ν0+ν1
1,0 ; taking the formal adjoint induces a map L̃d,ν

1,0 → L̃d,ν
1,0 . Analogous results

hold for the three other classes introduced in Definition 7.4.

For an alternative description of the operator-classes, let us choose a system of charts
κi : 
i → Ui , i = 1, . . . , m, such that the 
i cover M ; moreover let φi , ψi ∈ C∞(
i ) such
that the φi are a partition of unity and ψi ≡ 1 in a neighborhood of the support of φi . Then
L̃d,ν
1,0 consists of all operators of the form

A(μ) =
m∑

i=1

κ∗
i

(
(φi ◦ κ−1

i ) ai (x, D;μ) (ψi ◦ κ−1
i )

)
mod L̃d−∞,ν−∞

1,0

with ai ∈ S̃d,ν
1,0 . The analogous statement holds for the other classes.

7.2 Complete expansion and limit operator

The extension of the concept of complete expansion and principal limit-symbol to manifolds
requires some additional analysis. The key is to show that the symbol [ξ, μ]α involved in the
definition of S̃d,ν can be replaced by other ones.

It is convenient to use the notation λα(ξ, μ) = [ξ, μ]α , α ∈ R. Then the expansion of a
symbol a(x, ξ ;μ) ∈ S̃d,ν

1,0 takes the form

a =
N−1∑

j=0

a∞[ν+ j]#λd−ν− j mod S̃d,ν+N
1,0 ;

note that here the Leibniz product actually coincides with the point-wise product of the
involved symbols.

Definition 7.6 A family of order-reducing symbols is a set � = {λα(x, ξ ;μ) | α ∈ R} of
symbols λα ∈ Sα which satisfy

(1) λ0 = 1 mod S−1,
(2) λα#λβ = λα+β mod Sα+β−1 for every α, β ∈ R.

Note that any λα in such a family is parameter-elliptic in Sα and thus has a parametrix in
S−α; this parametrix coincides with λ−α modulo S−α−1.

Theorem 7.7 Let � be a family of order-reducing symbols as in Definition 7.6. Then for a
symbol a(x, ξ ;μ) ∈ S̃d,ν

1,0 the following are equivalent:

a) a ∈ S̃d,ν
1,0 (cf. Definition 5.1).

b) There exist a�,∞
[ν+ j](x, ξ) ∈ Sν+ j

1,0 (Rn) such that, for every N ∈ N,

a =
N−1∑

j=0

a�,∞
[ν+ j]#λ

d−ν− j mod S̃d,ν+N
1,0

If a∞[ν](x, ξ) is the principal limit symbol of a then

a�,∞
[ν] = a∞[ν]#λ

−(d−ν)
0 (x, 0, 1),

where λα
0 (x, ξ ;μ) denotes the homogeneous principal symbol of λα .
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Before coming to the proof, let us show that the coefficients in any expansion of Theorem
7.7.b) are uniquely determined: Suppose a = 0 and that we already have verified that
a�,∞
[ν+ j] = 0 for j = 0, . . . , N − 1. Then a�,∞

[ν+N ]#λd−ν−N ∈ S̃d,ν+N+1
1,0 . Composing from the

right with λ−(d−ν−N ) one finds

a�,∞
[ν+N ](x, ξ) = (a�,∞

[ν+N ]#r0)(x, ξ ;μ) + r1(x, ξ ;μ)

with some r0 ∈ S−1 and r1 ∈ S̃ν+N ,ν+N+1
1,0 . The right-hand side decays as 1/μ in any

semi-norm of Sν+N+1
1,0 (Rn). Thus a�,∞

[ν+N ] = 0.

Proof of Theorem 7.7 Firstwe argue thatwemay assumewithout loss of generality that ν = 0.
To this end let ps(ξ) := 〈ξ 〉s , s ∈ R. Then p−ν#a ∈ S̃d ′,0

1,0 for d ′ = d − ν.

Given hypothesis a), then p−ν#a ∈ S̃d ′,0
1,0 and we show the existence of an expansion

p−ν#a =
N−1∑

j=0

b�,∞
[ j] #λd ′− j mod S̃d ′,N

1,0 .

Multiplying from the left with pν we find the desired expansion for a with a�,∞
[ν+ j] :=

pν#b�,∞
[ j] . We argue similarly when starting out from hypothesis b).

Now let ν = 0; we show that b) implies a). By Proposition 5.3, λd− j ∈ S̃d− j,0
1,0 has an

expansion

λd− j =
N−1∑

=0

b∞
j,[]#λd− j− mod S̃d− j,N

1,0 ;

in particular, b∞
j,[0](x) = λd− j (x, 0; 1). Therefore,

N−1∑

j=0

a�,∞
[ j] #λd− j− =

N−1∑

j=0

N−1∑

=0

a�,∞
[ j] #b∞

j,[]#λd− j− mod S̃d,N
1,0 ,

since a�,∞
[ j] # S̃d− j,N

1,0 ⊂ S̃d,N+ j
1,0 ⊂ S̃d,N

1,0 for every j . If m := j +  ≥ N ,

a�,∞
[ j] #b∞

j,[]#λd− j− ∈ Sm
1,0(R

n)#Sd−m ⊂ S̃m,m
1,0 # S̃d−m,0

1,0 ⊂ S̃d,m
1,0 ⊂ S̃d,N

1,0 .

We thus find

a =
N−1∑

k=0

a∞[k]#λd−k mod S̃d,N
1,0 , a∞[k] :=

∑

j+=k

a�,∞
[ j] #b∞

j,[] ∈ Sk
1,0(R

n).

In particular, a∞[0] = a�,∞
[0] #b∞

0,[0] = a�,∞
[0] #λd

0(x, 0; 1).
Next we show that a) implies b) (again with ν = 0). We start out from the expansion

a =
N−1∑

j=0

a∞,0
[ j] #λd− j mod S̃d,N

1,0 ;

the additional super-script 0 is introduced for systematic reasons, since we will now establish
an iterative procedure to transform this expansion in an expansion using the family �. Write

a∞,0
[0] #λd = a∞,0

[0] #(λd#λ−d)#λd + a∞,0
[0] #r0 (7.1)
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with r0 ∈ Sd−1. By Proposition 5.3 we have expansions

λd#λ−d =
N−1∑

j=0

b∞[ j]#λ− j mod S̃0,N
1,0 ,

r0 =
N−2∑

j=0

r∞[ j]#λd−1− j mod S̃d−1,N−1
1,0 ⊂ S̃d,N

1,0 .

Inserting this in expansion (7.1) and using for j ≥ 1 expansions

λ− j#λd =
N−2∑

=0

c∞
j,[]#λd− j− mod S̃d− j,N−1

1,0 ⊂ S̃d,N−1+ j
1,0 ⊂ S̃d,N

1,0 ,

we find

N−1∑

j=0

a∞,0
[ j] #λd− j = a∞,0

[0] #b∞[0]#λd +
N−1∑

j=1

N−2∑

=0

a∞,0
[0] #b∞[ j]#c∞

j,[]#λd− j−

+
N−2∑

j=0

(a∞,0
[ j+1] + a∞,0

[0] #r∞[ j])#λd−1− j mod S̃d,N
1,0 .

The second term on the right-hand side equals

N−2∑

j=0

N−2∑

=0

a∞,0
[0] #b∞[ j+1]#c∞

j+1,[]#λd−1− j−

=
N−2∑

k=0

( N−2∑

j+=k

a∞,0
[0] #b∞[ j+1]#c∞

j+1,[]
)
#λd−1−k mod S̃d,N

1,0 .

We conclude that

a =
N−1∑

j=0

a∞,0
[ j] #λd− j = a�,∞

[0] #λd +
N−2∑

j=0

a∞,1
[ j+1]#λ

d−1− j mod S̃d,N
1,0 .

with a�,∞
[0] = a∞,0

[0] #b∞[0] and resulting symbols a∞,1
[ j+1] ∈ S j+1

1,0 (Rn). This finishes the first
step of the procedure. In the second step we write

a∞,1
[1] #λd−1 = a∞,1

[1] #(λd−1#λ−(d−1))#λd−1 + a∞,1
[1] #r1

with r1 ∈ Sd−2 and proceed as above to finally obtain

N−2∑

j=0

a∞,1
[ j+1]#λ

d−1− j = a�,∞
[1] #λd−1 +

N−3∑

j=0

a∞,2
[ j+2]#λ

d−2− j mod S̃d,N
1,0 .

with resulting a�,∞
[1] and a∞,2

[ j+2] ∈ S j+2
1,0 (Rn), hence

a = a�,∞
[0] #λd + a�,∞

[1] #λd−1 +
N−3∑

j=0

a∞,2
[ j+2]#λ

d−2− j mod S̃d,N
1,0 .
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We iterate this procedure until the N -th step which consists in writing

0∑

j=0

a∞,N−1
[ j+N−1]#λ

d−(N−1)− j = a∞,N−1
[N−1] #λd−(N−1) = a�,∞

[N−1]#λ
d−(N−1) mod S̃d,N

1,0 .

resulting in

a =
N−1∑

j=0

a�,∞
[ j] #λd− j mod S̃d,N

1,0

as claimed in b). The proof is complete. ��
The following lemma will be useful in discussing localizations of operator-families.

Lemma 7.8 Let a(x, ξ ;μ) ∈ S̃d,ν
1,0 have the expansion

a =
N−1∑

j=0

a�,∞
[ν+ j]#λ

d−ν− j mod S̃d,N
1,0

with respect to some family of order-reducing symbols �. Let K ⊂ R
n be a compact set and

assume that a#φ = a for every function φ ∈ C∞
comp(R

n) with φ ≡ 1 in an open neighborhood
of K . Then, for every such function φ and every j ≥ 0,

a�,∞
[ν+ j]#φ = a�,∞

[ν+ j]. (7.2)

The analogous result for left-multiplication with φ holds also true (and follows trivially from
the uniqueness of the coefficient-symbols in the expansion).

Proof We proceed by induction. Since

a − a�,∞
[ν] #λd−ν ∈ S̃d,ν+1

1,0 ,

multiplication from the right with φ yields

a − a�,∞
[ν] #φ#λd−ν + a�,∞

[ν] #[λd−ν, φ] ∈ S̃d,ν+1
1,0 ,

where [·, ·] is the commutator (with respect to #). Now the third term belongs to

Sν(Rn)#Sd−ν−1 ⊂ S̃ν,ν
1,0 # S̃d−ν−1

1,0 ⊂ S̃d−1,ν
1,0 ⊂ S̃d,ν+1

1,0 .

Therefore,

a − (a�,∞
[ν] #φ)#λd−ν ∈ S̃d,ν+1

1,0 .

The uniqueness of the coefficients in the expansion then implies a�,∞
[ν] #φ = a�,∞

[ν] .
Now suppose that (7.2) holds for j = 0, . . . , N − 1. Given a function φ choose φ0 ∈

C∞
0 (Rn) such that φ0 ≡ 1 near K and φ ≡ 1 near the support of φ0. Then, by induction

assumption, we have

a = a#φ =
N−1∑

j=0

a�,∞
[ν+ j]#φ0#λ

d−ν− j#φ

+ a�,∞
[ν+N ]#φ#λ

d−ν−N + a�,∞
[ν+N ]#[λd−ν−N , φ] mod S̃d,ν+N+1

1,0 .
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As above, the last term is shown to be in S̃d,ν+N+1
1,0 . Moreover, φ0#λd−ν− j#(1− φ) belongs

to S−∞. Using again the induction hypotheses we derive

a =
N−1∑

j=0

a�,∞
[ν+ j]#λ

d−ν− j + (a�,∞
[ν+N ]#φ)#λd−ν−N mod S̃d,ν+N+1

1,0 .

Thus, by uniqueness of the coefficients, (7.2) holds j = N . ��

Now lets turn to the global situation of operators on the manifold M . Let us fix some
Riemannian metric g on M .

Definition 7.9 A family of order-reducing operators on M is a set � = {�α(μ) | α ∈ R}
where �α(μ) ∈ Lα has homogeneous principal symbol

σα(�α)(v;μ) = (|v|2 + μ2)α/2

and �0 = 1 (|v| denotes the modulus of a co-vector v ∈ T ∗M with respect to g).

Theorem 7.10 Let A(μ) ∈ L̃d,ν
1,0 . Then there exists uniquely determined operators A∞[ν+ j] ∈

Lν
1,0(M), j ∈ N0, such that, for every N ∈ N,

A(μ) =
N−1∑

j=1

A∞[ν+ j]�d−ν− j (μ) mod L̃d,ν+N
1,0 .

The leading coefficient A∞[ν] is called the limit-operator of A(μ).

Proof The proof of the uniqueness is analogous to the one given after Theorem7.7. Therefore,
we shall focus on the existence of the expansion.

Let 
1, . . . , 
m be a covering of M such that any union 
i ∪
 j is contained in a chart(-
domain) of M . Let φi ∈ C∞

comp(
i ), i = 1, . . . , M , be a sub-ordinate partition of unity.
Then A(μ) = ∑

i, j φi A(μ)φ j . It suffices to show the existence of an expansion for each
summand.

Thus we may assume from the beginning that there exist a chart κ : 
 → U and two
functions φ,ψ ∈ C∞

comp(
) such that A(μ) = φ A(μ)ψ . Let a(x, ξ ;μ) ∈ S̃d,ν
1,0 be the symbol

of κ∗ A(μ) and let K be the union of the supports of φ ◦ κ−1 and ψ ◦ κ−1, respectively. K is
a compact subset of U .

Let V be an open neighborhood of K with compact closure contained in U . Take θ ∈
C∞
comp(U )with θ ≡ 1 onV and letλα(x, ξ ;μ) ∈ Sα be the symbol of κ∗

(
(θ◦κ)�α(μ)(θ◦κ)

)
.

Note that

λα(x, ξ ;μ) = θ2(x)
(|ξ |2x + μ2)α/2

χ(ξ, μ) + rα(x, ξ ;μ),

where χ is a zero-excision function and rα ∈ Sα−1. Now define

λ̃α(x, ξ ;μ) = (
θ(x)|ξ |2x + (1 − θ)(x)|ξ |2 + μ2)α/2

χ(ξ, μ) + rα(x, ξ ;μ);
then �̃ = {̃λα | α ∈ R} is a family of order-reducing symbols in the sense of Definition 7.6
and λ̃α(x, ξ, μ) = λα(x, ξ, μ) whenever x ∈ V .

By Theorem 7.7 we have an expansion a ∼ ∑
j a∞[ν+ j]#̃λd−ν− j . If θ0 ∈ C∞

comp(V ) with
θ0 ≡ 1 near K then, by Lemma 7.8, θ0a∞[ν+ j] = a∞[ν+ j]#θ0 = a∞[ν+ j]. Thus, taking another
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θ1 ∈ C∞
comp(V ) with θ1 ≡ 1 near the support of θ0, we find

a =
N−1∑

j=0

a∞[ν+ j]#θ0̃λd−ν− j#θ1 mod θ0 S̃d,ν+N
1,0 #θ1.

Since θ0̃λ
d−ν− j = θ0λ

d−ν− j by construction, and applying the pull-back under κ , we find

A(μ) =
N−1∑

j=1

A∞[ν+ j] (θ0 ◦ κ)�d−ν− j (μ) (θ1 ◦ κ) mod L̃d,ν+N
1,0

with A∞[ν+ j] = κ∗a∞[ν+ j](x, D). Finally, note that (θ0 ◦ κ)�d−ν− j (μ) (1 − θ1) ◦ κ ∈ L−∞
due to the disjoint supports of θ0 and 1 − θ1 and that A∞[ν+ j] (θ0 ◦ κ) = A∞[ν+ j]. ��

Example 7.11 If A(μ) ∈ Ld then A(μ) ∈ L̃d,0 as well; its limit-operator is the operator of
multiplication with the function σ(A)(x, 0; 1) (the homogeneous principal symbol of A(μ)

evaluated in (ξ, μ) = (0, 1)).

Theorem 7.12 The limit-operator behaves multiplicative under composition: If A j (μ) ∈
L̃

d j ,ν j
1,0 have limit-operator A∞

j,[ν j ] then A0(μ)A1(μ) ∈ L̃d0+d1,ν0+ν1
1,0 has the limit-operator

A∞
0,[ν0] A∞

1,[ν1].

Proof In a first step, let A(μ) ∈ L̃d,ν
1,0 have limit-operator A∞[ν]. Then

A∞[ν] = lim
μ→+∞ A(μ)�ν−d(μ) (convergence in Lν+1

1,0 (M)).

In fact, using the expansion with N = 1,

A(μ)�ν−d(μ) = A∞[ν] + A∞[ν] R(μ) mod L̃ν,ν+1
1,0 (7.3)

with an R(μ) ∈ L−1 ⊂ S−1
1,0(R+, L0

1,0(M)). Then L̃ν,ν+1
1,0 ⊂ S−1

1,0(R+, Lν+1
1,0 (M)) yields the

claim. Also one sees that A(μ)�ν−d(μ) is bounded as a function ofμwith values in Lν(M).
Since A0(μ)A1(μ) ∈ L̃d0+d1,ν0+ν1

1,0 , it suffices to show that A0(μ)A1(μ)�ν0+ν1−d0−d1(μ)

converges to A∞
0,[ν0] A∞

1,[ν1] in Lm
1,0(M) for some m ≥ ν0 + ν1 + 1. Reasoning as before, we

see that

A0(μ)A1(μ)�ν0+ν1−d0−d1(μ) ≡ A0(μ)A1(μ)�ν1−d1(μ)�ν0−d0(μ)

≡ A0(μ)�ν0−d0(μ)�d0−ν0(μ)A1(μ)�ν1−d1(μ)�ν0−d0(μ)

modulo terms belonging to S−1
1,0(R+, Lν0+ν1

1,0 (M)). It remains to show that

�d0−ν0(μ)[A1(μ)�ν1−d1 ]�ν0−d0(μ)
μ→+∞−−−−→ A∞

1,[ν1]
in Lm

1,0(M) for some m ≥ ν1 + 1. Using the analogue of (7.3) for A1(μ) this is readily seen
to be equivalent to

�d0−ν0(μ)A∞
1,[ν1]�

ν0−d0(μ)
μ→+∞−−−−→ A∞

1,[ν1]. (7.4)

However, from Lemma 6.1 it follows that μ−α�α(μ) is bounded in Lα+
1,0(M) and, for μ →

+∞, converges to 1 in Lα++1
1,0 (M) for every α. Therefore, (7.4) holds true with convergence

in Lν1+|d0−ν0|+1
1,0 (M). ��
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7.3 Extension to vector-bundles

Given smooth vector-bundles E j , j = 0, 1, on M of dimension n0 and n1, respectively,
the above definitions and results extend in a straight-forward way to operator-families act-
ing as maps �(M, E0) → �(M, E1) between the spaces of smooth sections of E0 and
E1, respectively. The definition of the spaces L̃d,ν

1,0 (E0, E1), L̃d,ν(E0, E1), L̃
d,ν
1,0 (E0, E1),

and L̃d,ν(E0, E1) uses local trivializations of the vector-bundles and (n1 × n0)-matrices
a(x, ξ ;μ) = (

a jk(x, ξ ;μ)
)
where the symbols a jk are from the corresponding symbol-

classes S̃d,ν
1,0 , etc. We leave the details to the reader.

As above, given a bundle E , a family of order-reducing operators is a set �E of operators
�α

E (μ) ∈ Lα(E, E), α ∈ R, which have (scalar-valued) principal symbol λα
0 (x, ξ ;μ) =

(|ξ |2x + μ2)α/2 and such that �0
E (μ) is the identity operator. Then we obtain:

Theorem 7.13 Let A(μ) ∈ L̃d,ν
1,0 (E0, E1). Then there exists uniquely determined operators

A∞[ν+ j] ∈ Lν
1,0(E0, E1), j ∈ N0, such that, for every N ∈ N,

A(μ) =
N−1∑

j=1

A∞[ν+ j]�
d−ν− j
E0

(μ) mod L̃d,ν+N
1,0 (E0, E1).

The leading coefficient A∞[ν] is called the limit-operator of A(μ); it behaves multiplicatively
under composition.

7.4 Symbolic structure and ellipticity in˜Ld,�(E0, E1)

With any A(μ) ∈ L̃d,ν(E0, E1) we associate:

(1) the homogeneous principal symbol

σ(A) ∈ S̃d,ν
hom((T ∗M \ 0) × R+; E0, E1)

(a homomorphism acting between the pull-backs to (T ∗M \ 0) × R+ of the bundles E0

and E1, respectively),
(2) the principal angular symbol

σ̂ (A) ∈ Sd,ν
hom(T ∗M \ 0; E0, E1)

(a homomorphism acting between the pull-backs to T ∗M \ 0 of the bundles E0 and E1,
respectively).

(3) the principal limit-operator A∞[ν] ∈ Lν(M; E0, E1).

Recall the compatibility relation

σ̂ (A) = σ(A∞[ν]), (7.5)

i.e., the principal angular symbol coincides with the homogeneous principal symbol of the
limit-operator.

Proposition 7.14 Let A(μ) ∈ L̃d,ν(E0, E1) and assume that both homogeneous principal
symbol and principal angular symbol are invertible on their domains. Then there exists a
(rough) parametrix B(μ) ∈ L̃−d,−ν(E1, E0), i.e.,

A(μ)B(μ) − 1 ∈ L̃0−∞,0−∞(E1, E1), B(μ)A(μ) − 1 ∈ L̃0−∞,0−∞(E0, E0).
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This result follows from the fact that the invertibility of a homogeneous principal symbol
belonging to S̃d,ν

hom((T ∗M \ 0) × R+; E0, E1) together with the invertibility of its angular

symbol implies that its inverse belongs to the class S̃−d,−ν
hom ((T ∗M \ 0) × R+; E1, E0), cf.

the local situation mentioned after Definition 5.11.

Definition 7.15 We call A(μ) ∈ L̃d,ν(E0, E1) elliptic if its homogeneous principal symbol is
invertible on its domain and its principal limit-operator is invertible as a map Hs(M, E0) →
Hs−ν(M, E1) for some s3.

Theorem 7.16 Let A(μ) ∈ L̃d,ν(E0, E1) be elliptic. Then there exists a parametrix B(μ) ∈
L̃−d,−ν(E1, E0) and a μ0 ≥ 0 such that

A(μ)−1 = B(μ), μ ≥ μ0.

Proof By Proposition 7.14, there exists a rough parametric B0(μ) ∈ L̃−d,−ν(E1, E0) such
that A(μ)B0(μ) = 1 − R0(μ) with R0(μ) ∈ L̃0−∞,0−∞(E1, E1).

Now let B1(μ) := B0(μ) + (A∞[ν])−1R∞
0,[−∞]�−(d−ν). Then

B1(μ) − B0(μ) ∈ L̃−d−∞,−ν−∞(E1, E0);
hence B1(μ) is also a rough parametrix of A(μ), i.e., A(μ)B1(μ) = 1− R1(μ)with R1(μ) ∈
L̃0−∞,0−∞(E1, E1). Moreover, R1(μ) has vanishing limit-operator, since

R∞
1,[−∞] = 1 − A∞[ν]

(
B∞
0,[−ν] + (A∞[ν])−1R∞

0,[−∞]
) = 1 − (1 − R∞

0,[−∞]) − R∞
0,[−∞] = 0.

Then, arguing as in Proposition 5.8, there exists an S1(μ) ∈ L̃0−∞,0−∞(E1, E1) with van-
ishing limit-operator such that (1 − R1(μ))(1 − S1(μ)) = 0 for sufficiently large μ. Thus,
B(μ) := B1(μ)(1− S1(μ)) is a parametrix which yields a right-inverse of A(μ) for large μ.
Since we can construct in the same way a left-inverse of A(μ) for large μ, the claim follows.
��

7.5 Operators with finite regularity number

In analogy to Sect. 5.4 we introduce the class

Ld,ν(E0, E1) = L̃d,ν(E0, E1) + Ld(E0, E1), ν ∈ Z.

If ν is positive, the homogeneous principal symbol extends to a bundle homomorphism on
(T ∗M ×R+) \ 0 and ellipticity means invertibility of this extended symbol. Then Theorem
5.21 generalizes in the obvious way to the global setting.

7.6 Resolvent trace expansion

Let us return to the resolvent-trace expansion of Grubb–Seeley. Let� = {reiθ | 0 ≤ θ ≤ �}
and let A ∈ Lm(M; E, E),m ∈ N, be aψdo such thatλ−σ(A) is invertible on (T ∗M×�)\0.
Moreover, let Q ∈ Lω(M; E, E). Theorem 6.4 together with integration over M yields the
following:

3 or, equivalently, there exists a ψdo L−ν
1,0(M; E1, E0) which is the inverse.
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Theorem 7.17 With the above notation and assumptions and  ∈ N such that ω − m <

−dim M, there exist numbers c j , c′
j , c′′

j , j ∈ N0, such that

Tr Q(λ − A)− ∼
+∞∑

j=0

c jλ
n+ω− j

m − +
+∞∑

j=0

(
c′

j log λ + c′′
j

)
λ−− j

m , (7.6)

uniformly for λ ∈ � with |λ| −→ +∞. Moreover, c′
j = c′′

j = 0 whenever j is not an integer
multiple of m.

7.7 Pseudodifferential operators of Toeplitz type

Let us conclude with an application to so-called ψdo of Toeplitz type, cf. [14,15].
To this end, for j = 0, 1, let E j be a vector-bundle over M and Pj ∈ L0(M; E j , E j ) be

idempotent, i.e., P2
j = Pj . The Pj define closed subspaces

Hs(M, E j ; Pj ) := Pj
(
Hs(M, E j )

) ⊆ Hs(M, E j )

in the scale of L2-Sobolev spaces Hs . Given A(μ) ∈ L̃d,0(E0, E1), consider

A(μ) := P1A(μ)P0 ∈ L̃d,0(E0, E1). (7.7)

We are interested in the invertibility of

A(μ) : Hs(M, E0; P0) −→ Hs−d(M, E1; P1). (7.8)

Consider Pj as an element in L̃0,0(E j , E j ). Since Pj is idempotent, so is the homogeneous
principal symbol σ(Pj ) as morphism of the pull-back of E j to (T ∗M \ 0) × R+, hence
defines a sub-bundle denoted by E j (Pj ).

Theorem 7.18 Let notations be as above. Assume that

(i) σ (A) : E0(P0) → E1(P1) is invertible,
(i i) P1A∞[0] P0 : Hs(M, E0; P0) → Hs(M, E1; P1) is invertible for some s.

Then there exists a B(μ) ∈ L̃−d,0(E1, E0) such that, for B(μ) := P0B(μ)P1,

B(μ)A(μ) = P0, A(μ)B(μ) = P1 (7.9)

for sufficiently large values of μ. In particular, map (7.8) is an isomorphism for every choice
of s and μ large.

Proof For j = 0, 1 let us choose S j (μ) ∈ L jd−s(E j , E j ) which are invertible for every
μ ≥ 0 and with S j (μ)−1 ∈ Ls−d j (E j , E j ). Then

P ′
j (μ) := S j (μ)−1Pj S j (μ) ∈ L0(E j , E j ),

A′(μ) := S1(μ)−1A(μ)S0(μ) ∈ L̃0,0(E0, E1).

Note that the P ′
j (μ) are (parameter-dependent) idempotents.

IfA′(μ) = P ′
1(μ)A′(μ)P ′

0(μ) has a parametrixB′(μ) = P ′
0(μ)B ′(μ)P ′

1(μ)with B ′(μ) ∈
L̃0,0(E1, E0) (i.e., the analog of (7.9) is true), then

B(μ) := S0(μ)B ′(μ)S−1
1 (μ)
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yields the desired parametrix B(μ). However, this result follows from the general theory of
abstract pseudodifferential operators and associated Toeplitz operators developed in [14,15].
In fact, in the notation of [15, Section 3.1] let � = R+, let

G = {g = (M, E) | E vector-bundle over M}
be the set of all admissible weights and let H0(g) = L2(M, E) for g = (M, E). Moreover,
for g0 = (M, E0), g1 = (M, E1), and g = (g0, g1) let L0(g) = L̃0,0(M; E0, E1) and

L−∞(g) = {
A(μ) ∈ L̃0−∞,0−∞(M; E0, E1) | A∞[0] = 0

}
.

Now we can apply in [15, Theorem 1, Section 3.2], noting that (i), (ii) give the required
hypotheses. ��

As a particular case we can take A(μ) = P1(μ
d − A)P0 with a ψdo A ∈ Ld(M; E, E),

d ∈ N, and two idempotents P0, P1 ∈ L0(M; E, E). Note that A(μ) = μd − A considered as
an element of L̃d,0 has limit-operator A[0] ≡ 1, hence condition ii) in Theorem 7.18 reduces
to the requirement that P1 : Hs(M, E; P0) → Hs(M, E; P1) isomorphically for some s.
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8 Appendix: Calculus for symbols with expansion at infinity

Let us provide the detailed proofs of Theorems 5.6 and 5.7. They are based on the concept
of oscillatory integrals in the spirit of [7], but extended to Frèchet space valued amplitude
functions. For an account on this concept see [2].

Let E be a Fréchet space whose topology is described by a system of semi-norms pn ,
n ∈ N. A smooth function q = q(y, η) : Rm × R

m → E is called an amplitude function
with values in E , provided there exist sequences (mn) and (τn) such that

pn
(
Dγ

η Dδ
yq(y, η)

)
� 〈y〉τn 〈η〉mn

for all n and for all orders of derivatives. The space of such amplitude functions is denoted
by A(Rm × R

m, E). We shall frequently make use of the following simple observation:
Lemma 8.1 Let E0, E1 and E be Fréchet spaces and let ((·, ·)) be a bilinear continuous map
from E1 × E0 to E. If q j (y, η) are amplitude functions with values in E j , j = 0, 1, then
q(y, η) := ((q1(y, η), q0(y, η))) is an amplitude function with values in E.

If χ(y, η) denotes a cut-off function with χ(0, 0) = 1, the so-called oscillatory integral

Os −
∫∫

e−iyηq(y, η) dyd̄η := lim
ε→0

∫∫

Rn×Rn
e−iyηχ(εy, εη)q(y, η) dyd̄η
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exists and is independent of the choice of χ . Note that for a continuous, E-valued function
f with compact support,

∫∫
f (y, η) dydη is the unique element e ∈ E such that 〈e′, e〉 =∫∫ 〈e′, f (y, η)〉 dydη for every functional e′ ∈ E ′. For simplicity of notation we shall simply

write
∫∫

rather than Os − ∫∫
.

Proposition 8.2 Let a ∈ S̃d,ν
1,0 . Then

q(y, η) :=
(
(x, ξ, μ) �→ a(x + y, ξ + η;μ)

)
, y, η ∈ R

n,

defines an amplitude function q ∈ A(Rn × R
n, S̃d,ν

1,0 ). The principal-limit symbol is

q[ν](y, η) =
(
(x, ξ) �→ a∞[ν](x + y, ξ + η)

)
, y, η ∈ R

n,

(it is an amplitude function with values in Sν
1,0(R

n)).
Analogous results hold true for q1(η) := ((x, ξ, μ) �→ a(x, ξ + η;μ)) and q2(y) :=

((x, ξ, μ) �→ a(x + y, ξ ;μ)).

Proof Step 1: Suppose first that a ∈ S̃d,ν
1,0 only. We show that q is an amplitude function with

values in S̃d,ν
1,0 .

Recall that the topology of S̃d,ν
1,0 is defined by the semi-norms

pN (a) := max|α|+|β|+ j≤N
sup

x,ξ,μ

|Dα
ξ Dβ

x D j
μa(x, ξ ;μ)|〈ξ 〉|α|−ν〈ξ, μ〉ν−d+ j .

If |α| + |β| + j ≤ N and γ, δ ∈ N
n
0 are arbitrary, then

|Dα
ξ Dβ

x D j
μ Dγ

η Dδ
ya(x + y, ξ + η;μ)| ≤ Cγ,δ,N 〈ξ + η,μ〉d−ν− j 〈ξ + η〉ν−|α|−|γ |

≤ Cγ,δ,N 〈ξ, μ〉d−ν− j 〈η〉|d−ν− j |〈ξ 〉ν−|α|〈η〉|ν−|α||

≤ Cγ,δ,N 〈ξ, μ〉d−ν− j 〈ξ 〉ν−|α|〈η〉m N

with m N = max{|d − ν − j | + |ν − |α|| | |α| + j ≤ N }. This shows
pN

(
Dγ

η Dδ
yq(y, η)

)
� 〈η〉m N .

Step 2: Suppose a ∈ S̃d,ν
1,0 . Then

a(x + y, ξ + η;μ) =
N−1∑

j=0

a∞[ν+ j](x + y, ξ + η)[ξ + η,μ]d−ν− j+

+ ra,N (x + y, ξ + η;μ).

According to Step 1, ra,N (x + y, ξ + η;μ) defines an amplitude function with values in
S̃d,ν+N
1,0 . In the same way one sees that a∞[ν+ j](x + y, ξ + η) defines an amplitude function

with values in Sν+ j
1,0 (Rn). By Lemma 8.3, [ξ + η,μ]d−ν− j defines an amplitude with values

in Sd−ν− j hence, due to Proposition 5.3, with values in S̃d−ν− j,0
1,0 . Thus we can write, for

every M ,

[ξ + η;μ]d−ν− j =
M−1∑

=0

p∞
j,[d−ν− j+](η, ξ)[ξ, μ]d−ν− j− + r j,M (η, ξ ;μ),
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where p∞
j,[d−ν− j+](η, ξ) defines an amplitude function with values in Sd−ν− j+

1,0 (Rn)

and r j,M (η, ξ ;μ) an amplitude function with values in S̃d−ν− j,M . Note that one has
p∞

j,[d−ν− j](η, ξ) ≡ 1. Inserting these expansions above and re-arranging terms, we find
an expansion

a(x + y, ξ + η;μ) =
N−1∑

j=0

ã∞[ν+ j](y, η; x, ξ)[ξ, μ]d−ν− j + Ra,N (y, η; x, ξ, μ)

where ã∞[ν+ j](y, η; x, ξ) and Ra,N (y, η; x, ξ, μ) define amplitude functions with values in

S̃d−ν+ j
1,0 (Rn) and S̃d−ν,N

1,0 , respectively. Note that ã∞[ν](y, η; x, ξ) = a∞[ν](x + y, ξ + η). Alto-
gether, this shows the claims for q .

q1 and q2 are handled in the same way. ��
Lemma 8.3 Let a(ξ ;μ) ∈ Sd . Then

q(η) =
(
(ξ, μ) �→ a(ξ + η;μ)

)
, η ∈ R

n,

defines an amplitude function with values in Sd .

Proof By Taylor expansion,

a(ξ + η;μ) =
N−1∑

|α|=0

1

α!∂
α
ξ a(ξ ;μ)ηα + rN (η, ξ ;μ)

with

rN (η, ξ ;μ) = N
∑

|σ |=N

ησ

σ !
∫ 1

0
(1 − θ)N−1(∂σ

ξ a)(ξ + θη;μ) dθ.

Denoting by rN ,σ (η, ξ ;μ) the integral term, we have

|Dγ
η Dα

ξ D j
μrN ,σ (η, ξ ;μ)| �

∫ 1

0
〈ξ + θη, μ〉d−N−|α|−|γ | dθ

� 〈ξ, μ〉d−N−|α|〈η〉|d−N−|α||.

We conclude that rN (η, ξ ;μ) defines an amplitude function with values in Sd−N
1,0 . Write

∂α
ξ a(ξ ;μ) = χ(ξ, μ)

N−1−|α|∑

j=0

∂α
ξ a j (ξ ;μ) + sα,N (ξ ;μ)

with a zero-excision function χ , a j ∈ Sd− j
hom , and sα,N ∈ Sd−N

1,0 . We find that

a(ξ + η;μ) = χ(ξ, μ)

N−1∑

|α|+ j=0

1

α!∂
α
ξ a j (ξ ;μ)ηα + RN (η, ξ ;μ)

with an amplitude function RN (η, ξ ;μ) taking values in Sd−N
1,0 . Therefore, the homogeneous

components

[q(η)k](ξ ;μ) =
∑

|α|+ j=k

1

α!∂
α
ξ a j (ξ ;μ)ηα, k ∈ N0,
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are obviously amplitude functions with values in Sd−k
hom . According to the definition of the

topology of Sd this shows the claim. ��
Theorem 8.4 The Leibniz product induces continuous maps

(a1, a0) �→ a1#a0 : S̃d1,ν1
1,0 × S̃d0,ν0

1,0 −→ S̃d0+d1,ν0+ν1
1,0

and the limit-symbol behaves multiplicatively: (a1#a0)∞[ν0+ν1] = a∞
1,[ν1]#a∞

0,[ν0]. Moreover,
for every N ∈ N0,

a1#a0 ≡
N−1∑

|α|=0

1

α! (∂
α
ξ a1)(Dα

x a0) mod S̃d0+d1−N ,ν0+ν1−N
1,0 . (8.1)

Proof Recall that

(a1#a0)(x, ξ ;μ) =
∫∫

e−iyη a1(x, ξ + η;μ)a0(x + y, ξ ;μ)︸ ︷︷ ︸
=:p(y,η;x,ξ,μ)

dyd̄η.

By Proposition 8.2, p is an amplitude function with values in S̃d0+d1,ν0+ν1
1,0 , hence the oscil-

latory integral converges in this space.
Since the map a �→ a∞[ν] : S̃d,ν

1,0 → Sν
1,0 is linear and continuous, we find that

(a1#a0)
∞[ν0+ν1](x, ξ) =

∫∫
e−iyη p(y, η; x, ξ ;μ)∞[ν0+ν1] dyd̄η

=
∫∫

e−iyηa∞
1,[ν1](x, ξ + η)a∞

0,[ν0](x + y, ξ) dyd̄η

=(a∞
0,[ν0]#a∞

1,[ν1])(x, ξ).

Concerning expansion (8.1) recall that the difference of a1#a0 and the sum in (8.1) is given
by

rN (x, ξ ;μ) =N
∑

|σ |=N

∫ 1

0

(1 − θ)N−1

σ ! ×

×
∫∫

e−iyη∂σ
ξ a1(x, ξ + θη;μ)Dσ

x a0(y + x, ξ ;μ) dyd̄η dθ.

(8.2)

Similarly as before, one can show that the integrand in (8.2) is an amplitude function with
values in S̃d0+d1−N ,ν0+ν1−N

1,0 , depending continuously on θ . This yields the claim. ��
The proof of Theorem 5.7 is analogous, using

a(∗)(x, ξ ;μ) =
∫∫

e−iyηa(x + y, ξ + η;μ) dyd̄η,

and a similar formula for the remainder in (5.2).
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