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Abstract

We prove the dynamic programming principle (DPP) in a class of problems where
an agent controls a d-dimensional diffusive dynamics via both classical and singular
controls and, moreover, is able to terminate the optimisation at a time of her choosing,
prior to a given maturity. The time-horizon of the problem is random and it is the
smallest between a fixed terminal time and the first exit time of the state dynamics
from a Borel set. We consider both the cases in which the total available fuel for
the singular control is either bounded or unbounded. We build upon existing proofs
of DPP and extend results available in the traditional literature on singular control
(Haussmann and Suo in SIAM J Control Optim 33(3):916-936, 1995; SIAM J Control
Optim 33(3):937-959, 1995) by relaxing some key assumptions and including the
discretionary stopping feature. We also connect with more general versions of the
DPP (e.g., Bouchard and Touzi in SIAM J Control Optim 49(3):948-962, 2011) by
showing in detail how our class of problems meets the abstract requirements therein.
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1 Introduction

In this paper, we prove the dynamic programming principle (DPP) for problems of the
form:

sup J(7,, &)

7,08

where 7 is a stopping time and « and & are, respectively, a classical control and a
singular control. The objective function J (z, , £) is in the form of an expected reward
that depends on the path of the stochastic dynamics of a controlled diffusion process
X*¢ and on the amount of control exerted. The optimisation runs over a random time
horizon which is determined as the smallest between a deterministic time 7" and the
first time the state-dynamics leaves a given Borel set O. Furthermore, we treat both the
so-called finite- and infinite-fuel problem, meaning that the total amount of singular
control that can be exerted is either capped or uncapped (see Karatzas [27, 28]).

The DPP is easy to state, and rather intuitive, and it quite literally forms the backbone
of the whole stochastic (and deterministic) control theory. That is why it is important
to develop a full understanding of all the mechanisms underpinning DPP and its
rigorous mathematical proof across different classes of stochastic control problems.
Moreover, DPP goes hand in hand with the theory of viscosity solutions for partial
differential equations (see Crandall et al. [13]). In that respect, the DPP is the first step
to prove that the value function of a stochastic control problem is a viscosity solution
to a suitable (problem-specific) Hamilton Jacobi Bellman (HJB) equation. The link to
viscosity theory opens the door to the study of stochastic control problems via PDE
methods that are often more versatile than the classical techniques based on Sobolev-
type solutions (strong and weak). Notably, Bayraktar and Sirbu (see, e.g., [5, 6, 42,
43]) developed an alternative approach to showing that the value functions of certain
stochastic control problems/games are viscosity solutions of the corresponding HIB
equations. Their approach does not require the DPP, which is instead obtained as a
by-product. It does not seem to us that a direct application of those results is immediate
in our set-up.

Over the course of the past three decades mathematicians have increasingly come
to realise that there are numerous subtleties hidden in a rigorous mathematical proof of
the DPP. Perhaps the best known of such subtleties concerns the so-called ‘measurable
selection’ (see, e.g., Soner and Touzi [44] and references therein) which is needed in
order to concatenate e-optimal controls starting from random initial conditions. That
becomes problematic when the value function is only known to be measurable but
it is not an issue when, for example, the value function is known to be continuous.
Work by Bouchard and Touzi [8] and Bouchard and Nutz [7] develop a notion of
weak DPP that overcomes the measurable selection problem without even requiring
continuity of the value function (an extension of those ideas to the case of non-linear
expectations is provided by Dumitrescu et al. in [17]). It is also worth mentioning
an approach based on optimisation over families of probability measures, associated
to controlled dynamics, on the space of cadlag paths as in, e.g., El Karoui and Tan
[18, 19] or Zitkovic [48]. Further delicate technical problems arise from the use of

@ Springer



Applied Mathematics & Optimization (2023) 88:7 Page 3 of 48 7

regular conditional probabilities and the role played by null sets when changing the so-
called reference probability system while following the trajectories of the controlled
dynamics. Those difficulties are indicated in the monograph by Fabbri et al. [20] and
in the work by Claisse et al. [12], which we take as the main building blocks for our
study.

For an overview of classical results on the DPP we refer to traditional monographs
on stochastic control (e.g., Krylov [32], Fleming and Soner [21], Yong and Zhou
[46]) and to the references therein. Due to the singular control feature, our work is
closely related to work by Haussmann and Suo [22, 23] who originally developed the
DPP for singular control problems and their connection with viscosity solutions of
suitable HJB equations. Ma and Yong [34, 35] extended the results by Haussmann
and Suo to a more general set-up and gave sufficient conditions under which the value
function of the problem is the unigue continuous viscosity solution of a suitable HIB
equation. In a one-dimensional setting Chiarolla [11] obtained analogous results when
the diffusion coefficient of the singularly controlled dynamics is not Lipschitz, which
poses additional technical difficulties in proving continuity of the value function. Atar
and Budhiraja [2] study DPP for state-constrained singular stochastic control problems
and obtain that the value is the unigue viscosity solution of the corresponding HIB
equation. In particular, their controlled state process is a Brownian motion constrained
to evolve inside a cone.

Our proof of the DPP encompasses a framework that is more general than in the
papers from the paragraph above (except that we do not have a constraint on the con-
trolled dynamics as in [2]). We include the discretionary stopping feature, the exit
time from the domain O and we allow the cost of exerting singular controls to be
state-dependent. We also avoid making specific assumptions on the problem data,
which other papers normally introduce as sufficient conditions for growth estimates
and continuity of the value function. Instead we shift the focus to mild regularity of the
objective function J and pathwise uniqueness of the controlled dynamics (Assump-
tions 3.4 and 3.7). Of course our assumptions are implied by the more specific ones
made, e.g., in [35]. Continuity of the value function is also not required but it is replaced
by a weaker condition on the convergence of the expected values of suitable stochastic
processes (Assumption 3.9). Again, that requirement is satisfied if, for example, the
value function can be shown to be continuous. Finally, we do not impose that the gain
functions and costs appearing in the objective function J have a sign.

Works in [7, 8, 18, 48] provide the DPP under great generality. It seems reasonable
to expect that a suitable adaptation and combination of the results and techniques in
those papers would allow to devise a DPP in our setup. However, the task is highly non-
trivial. The generality attained in [7, 8, 18, 48] relies in part on abstract overarching
assumptions, including concatenability of controls and stability under conditioning (in
the language of [18]) that need to be verified on a case-by-case basis. Our work is self-
contained and complements those results: we present a constructive approach based
on probabilistic concepts and tools from the general theory of stochastic processes,
under assumptions for which we also provide simple sufficient conditions with wide
applicability. The overall philosophy in our paper is certainly inspired by [20] but the
actual derivation of key technical results requires a different line of argument, due to
the structural differences between our set-up and that in [20].
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The class of problems we consider encompasses modelling features that have
already attracted sustained attention from the scientific community. For applications
in singular control, it is interesting to consider exit times from a domain O as they do
appear, for example, in the famous optimal dividend problem (see, e.g., Jeanblanc and
Shiryaev [25]); in that context, O is the solvency region. Discretionary stopping is also
a desirable feature in several models addressed in the literature. In the case with only
classical controls and without exit time from a domain we find work by Karatzas and
Zamfirescu [31] characterising martingale properties of the value process (see also
Karatzas and Wang [30] for duality methods). In a similar setting but adopting relaxed
controls (a notion close to that of randomised controls) we find work by Bassan and
Ceci [9], who prove that the value function is a viscosity solution of a suitable HIB
equation. Explicit solutions in some particular problems of singular control with dis-
cretionary stopping over an infinite-time horizon are obtained by Davis and Zervos in
[14] for one dimensional controlled dynamics. In a similar set-up, Morimoto [37] adds
also an exit time of the controlled dynamics (a controlled geometric Brownian motion)
from an interval of the real line. Using variational methods and penalisation techniques
[37] proves that the value function solves a suitable HIB equation. A finite-fuel sin-
gular control problem with discretionary stopping and infinite-time horizon is solved
by Karatzas et al. in [29] in closed form using free boundary methods applied to a
parametric family of ordinary differential equations. Chen and Yi [10] use (parabolic)
PDE methods and free boundary theory to solve a finite-time horizon problem of sin-
gular control with discretionary stopping with one dimensional controlled dynamics.
Our contribution to this stream of the literature is to provide a rigorous derivation of
the DPP, which was missing so far, in sufficient generality to cover all the models
mentioned above and more.

The paper is organised as follows. In Sect.2 we collate some notation that will
be used throughout the paper. In Sect.3 we set-up the problem and state standing
assumptions. The main results of the paper are presented in Sect. 4 but their proofs are
given in subsequent sections. In particular, in Sect.5 we prove independence of the
value function of our problem from the reference probability system adopted; this leads
to the equivalence of weak and strong formulation of the problem and to several useful
equivalences in law of the controlled dynamics under different reference probability
systems. In Sect.6 we use the technical results from Sect.5 to finally prove the DPP
and the other results stated in Sect.4. The paper is completed by a technical appendix
gathering useful results (largely known) on regular conditional probabilities.

2 Notation and Terminology
In this section we summarise notations and terminology adopted throughout the paper.

While this is a useful compendium of symbols, it can be skipped at a first read as all
concepts will be introduced in the paper when they first appear.

(a) T > 0 is the time horizon, d,d’,] € N denote dimensions of various state
processes.
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(b) For a vector x € R?, we denote by |x| its Euclidean norm. For x, y € R?, we
denote by (x, y) = >, x'y the inner product. Given a set A € RY, we denote
A¢ =R?\ A. For z € R, we denote (z)* = max{0, +z}.

(c) For a Polish space I', we denote by B(I") the Borel o-algebra on I'.

(d) For a random variable X : (2,F) — (I, S), defined on a probability space
(2, F, P) and with values in a measurable space (I", §), we denote by Lp(X) its
law. Notice that, in particular, X could be a stochastic process (see, e.g., [26, p.
241]).

(e) For a bounded variation function f : [0, T] — R? with f = (f!,..., fd),
we denote by f* = (fL*, ..., f4*) the two components of its Jordan
decomposition. Namely, for every i = 1, ..., d, we have

fits) = fHF(s) — f57(s), with f©F non-decreasing.
For each i, we denote by V[; ¢ (fi) the variation of fi on [t,s]:
Viest(fD) = fo4 @) = f2X 0+ 76 — 7@, selr, T

Then, the variation of f reads Vj; s1(f) := Z?:l Virs)(f5.
(f) My is the collection of the d x d’-dimensional real matrices.
(g) C(0,TI; RR?) is the collection of continuous functions ¢ : [0, T] — R?.
(h) For ¢ € [0, T], a reference probability system starting at time ¢ is a 5-tuple

vi=(Q,F, P AF Sserr. 1, W),

where:

(i) (2, F,P)is acomplete probability space;
(il) W = (Wy)ser. 1) is a d’-dimensional Brownian motion on (2, F, IP) starting
attime t,i.e., P(W, =0) = 1;
(i) Fi* := o(W, :u € [t, s]) and F! is the augmentation of F.* with the P-null
sets.

The class V; contains all reference probability systems starting at time ¢ € [0, T].

(1) We say that a reference probability system v € ) is standard if there exists a o'-
algebra FO such that ftT’O C FY C F, where F is the completion of FO with the
P-null sets and (2, F?) is a standard measurable space. Recall that a measurable
space is standard if it is Borel isomorphic to, e.g., (N, B(N)) with B(N) the Borel
o -algebra for the discrete topology.

() For t € [0, T], the canonical reference probability system (starting at time ¢) is
the 5-tuple

V= (QF, FL P, {Bé}se[t,T]’ W),

where:

(i) Q" :={we C(t. TI:RY) : 0(t) = O);
(ii) P* is the Wiener measure on (2*, B(2*)) that makes the canonical process
(s, w) = W} (w) = w(s) a Brownian motion starting at time #;
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(iii) F* is the completion of B(2*) with the P*-null sets;
(iv) B§’0 =0 (W) : u €[z, s]) and B! is the augmentation of B§’0 with the P*-null
sets.

(k) For a fixed v € Vy, we denote by A} the collection of {F}}-progressively mea-
surable processes o = (o )sefr, 7], taking values in a (possibly compact) subset
K C R (I € Nasin (a)).

(1) For a fixed v € V; and a given u € [t, T], we denote by X,/ the collection of
processes & = (&)se[r, 7] such that

(i) & is R?-valued and {F'}-adapted.
(ii) £ is left-continuous and of bounded variation P-a.s.
(iii) & = O for every s € [t, u], P-a.s.
@iv) E[lV[u,T] &7 ] < 00, for some fixed p > 0 (depending on the problem).
Similarly, for a given random variable ¢ € [0, c0), P-a.s., we denote by
X7 (¢) the class of finite-fuel controls, i.e., those for which condition (iv)
above is replaced by

(i) P(Viu11(§) <¢) = 1.
For £ belonging to either X} or X} (¢) its Jordan decomposition reads £ =
£t — &7, P-as.

(m) Fixu € [t,T]and 0 < z < 7 < oo. Given a control § € A’(Z —z) and a
]—"L’t—measurable random variable Z > z, P-a.s., we set

oz =infls > u: V&) >Z—Z}AT

and define the truncation of £* at Z (after time u) by (E‘iaz)se[,j]. The
increments after time u of the truncated process are denoted by

E51% =6t —&F, seluTl

sSAoz

(n) For a fixed v € V; and a given u € [z, T], we denote by 7, the collection of
{ﬁ}—stopping times suchthatu <7 < T, P-a.s.
(o) Fora fixed v € V; and z € [0, 00), we denote

Adm; =T7" x A x & and Adm;_ =7T" x A x &'(2).
(p) For a fixed v € V; and a given u € [¢, T], we denote by &£ the collection of

processes = (1s)sefs, 7] Such that

(i) nis {F!}-adapted.
(ii) n is left-continuous and non-decreasing [P-a.s.
(iii) ns € {0, 1} for every s € [t, T] and n; = O for every s € [t, u], P-a.s.

(q) For a fixed v € V, we denote by Pq the o-algebra of {.Ff,’o}-predictable sets.
Recall that Pq is a o-algebra on [¢, T] x 2 and it is generated by the sets of the
form

(s,u] x A witht§s<u§TandAe]:§f
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and of the form
{t} x A, with A e F'0.

Notice that by left-continuity of the raw Brownian filtration, we have F, s’ 0= Fi 0
for every s € (¢, T] (and by convention ]—',';O = .7-';’0). A process Y : [t, T] x
Q — R that is Po/B(R?)-measurable is called {]:f’o}-predictable.

3 Problem Formulation

Let p > 0,d,d’,] € N.Fix ¢t € [0, T] and let V, be the collection of reference
probability systems starting at time ¢. That is, v € V; means:

v=(Q,FPA{F er.11, W),

where (2, F,P) is a complete probability space equipped with a d’-dimensional
Brownian motion W = (Wj)s¢[, 7] starting at time ¢, i.e., P(W; = 0) = 1, and .7-"5’ is
the augmentation of Fi 0. o(W, :u € [t, s]) with the P-null sets. With no loss of
generality, we assume that r — W;(w) is continuous for all ® € Q. For completeness
we should use the notation W’ for the Brownian motion, in order to keep track of the
starting condition W/ = 0. We omit this notation here as the time 7 will be fixed (but
arbitrary) throughout the paper.

An admissible control-stopping treble (7, &, &) € 7,” x A} x X} in the reference
probability system v includes a stopping time 7 and a pair of processes («, &) such
that:

(i) 7 isa {F!}-stopping time such thatt <7 < T, P-as.
(i) o = (@s)sepr. ] 18 {F!}-progressively measurable and taking values in a (possibly
compact) subset K C R
(i) & = (&)sepr. 1 18 R4-valued, {.7-'; }-adapted, left-continuous and of bounded
variation P-a.s. with & = 0, P-a.s. and such that E[W[z,T](E)W] < 00.

Here V;, 11(§) is the (random) total variation of the process & over the time interval
[¢, T] defined as the sum of the variations of each coordinate §&',i = 1, ...d; that is,

d

d
Vies)(§) = > (8T + ) Z

g (&R +£07), (3.1)
i=1 -

su
t=r

where £/ = &6+ — £17 is the Jordan decomposition of the i-th entry of the vector &
and we use monotonicity of £/-%.

Alternatively, we can also consider control-stopping trebles (z, o, ) € 7,” x A} x
X (¢) where for a given random variable ¢ € [0, c0), P-a.s., we denote by X" (¢)
the class of finite-fuel controls, i.e., those satisfying (iii) above but when the condition
E[IVir,11(6)I7] < oo is replaced by the stricter condition P(Vj;,71(§) < ¢) =
Notice that, formally, X}” C X}"(00).
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The results in this paper hold for both types of control pairs (finite and infinite fuel)
and we will explicitly refer to small differences in the arguments of proof as needed.
For future reference, given u € [¢, T'], we also introduce the subsets X} C X} and
X} (z) C X} (z) of processes from (iii) above but such that P(§; = 0 for s € [t, u]) =
1.

Given an admissible pair («, &) the controlled state process for our problem follows
the stochastic differential equation (SDE)

N s
X, :x+/ M(r,Xr,ar)dr+f o(r, Xr,0)dW, + &, set,T], xeR,
t t

(3.2)
where 1 [0, T] x RY x K — R4, o : [0, T] x R? x K — M, o. We will assume
that the SDE (3.2) admits a unique, caglad, {F!}-adapted solution for any admissible
pair (, &), up to indistinguishability (see Assumption 3.4).

Sometimes it is convenient to denote the solution of (3.2) by X’*V:%¢ to highlight
the dependence on the reference probability system v, the admissible controls (¢, &)
and the initial condition (¢, x). However, when no confusion shall arise we may also
use the notations X'*®§ X" X*& or simply X depending on the circumstances.

t,x;v;a,€

Similarly, we denote by p5 the first exit time of the process X*V:®§ from a
domain O € B(Rd), i.e.,

PV eE = infls = 11 XIVVE ¢ O AT (3.3)

When no confusion shall arise we may also use the simpler notations pgx;a’s, pgé
and po.

Given an initial condition (¢, x) € [0, T] x R%, a reference probability system

v € V; and an admissible treble (7, «, £) € 7, x A} x &}”, the objective function in
our problem reads

Jtljx (‘Ca as s)

TAPO
= ]E|:/ f(sa XSa C(S)ds - f <C+(S, XS)a déj)
t [t,tApo)

- / (c—(s, X5),d§7) + g1(p0, Xpo) Lipp <z} + &2(7, Xt)l{po>‘r}:|’ (3.4)
[t,tApO)

where f : [0, T]xR? x K — Risarunning gain, g : [0, T]xR? — Ris the terminal
gain when the controlled process leaves the set O prior to 7, g : [0, T] x RY — R
is the terminal gain when t occurs prior to pp and c+ : [0, T] X RY — RY are the
vectors of cost per unit of singular control exerted. The integrals with respect to the
controls £* are Lebesgue-Stieltjes integrals and are understood as

d
/[)<ci(s,xs),dg§> :=Z/[ cly (s, X;)dg0™.
T i=1

1,7)
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We allow for different costs ¢ and ¢_ associated to the two increasing processes £
and £, respectively. For the sake of generality, c+ take values in R? so that negative
costs may be allowed too.

Remark 3.1 It is worth emphasising that while in the case of state-independent costs,
c+ (1), thereis aunique interpretation of the integrals above, in the state-dependent case,
c+(t, x), the classical Lebesgue-Stieltjes integral is known to cause some technical
problems with the use of Hamilton-Jacobi-Bellman (HJB) equations. This fact is well-
illustrated in [1] where the absence of an admissible optimal control is demonstrated
in a one-dimensional problem. This misalignment can be resolved, at least in the case
when the cost of control is the same in all directions, i.e., cit = cji = cforalli, j, by
taking a different type of integral. Namely, for the singular control one should use the
representation & = f[o, " ngd|&|s, where ny € R isa unitary vector, (s, w) — ng(w)
is progressively measurable and |& | (@) denotes the total variation of & (w) on [0, s].
Then, the cost per unit of control exerted is defined as

‘E‘s+
/ c(s, X5)odé; := / c(s, X)d|ECs + Z / c(s, X5+ Ang)dA, (3.5)
[t,7) [t,7) 1§

O0<s<rt Is

where £€ is the continuous part of £. With this formulation, it is normally possible
to connect the singular stochastic control problem with a HIB equation with gradient
constraint (see, e.g., [47]). From the point of view of our analysis, the specific choice
of the integral is irrelevant, as long as it is a measurable function of the paths of the
controlled state process. So we avoid delving further into this matter as our results
continue to hold under, for example, the specification in (3.5).

Naturally, we assume that the functions (s, y, a) — f(s, y,a), (s, y) — c+(s, y),
(s,y) — gi(s,y) and (s, y) — g2(s, y) are Borel-measurable.

The controller-stopper aims at maximising the objective function J,”, (z, &, §) over
all admissible trebles (z, «, £). To simplify the notation, we set

Adm} =7 x A x &}

A priori there are two formulations of the problem:
Strong formulation. For fixed (¢, x) € [0, T] x R4 and v € V;, we define

w'(t, x) = sup J (T, §). (3.6)
(t.o.&)eAdm!

Weak formulation. For fixed (¢, x) € [0, T'] x RY, we define

v(t, x) 1= sup sup J (T, e, &) = sup w" (¢, x). 3.7
veV, (t,a,&)eAdm! veV;

In the case of finite fuel, we must fix the total fuel z € [0, co) and add one state vari-
able to the problem that accounts for the remaining fuel at each moment in time. That
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means that we will consider the state process (s, X?’S, Zf) se[t, 7] With the additional
dynamics

78 = 7NV =V q(8), selt, Tl £ €X' (Z—2), (3.8)

where z € [0, z]. Analogously to X, we may use the simpler notations Z"%¢ and Z
when no confusion would arise. The objective function may be taken as in (3.4) or it
may also depend on the total amount of fuel exerted. In the latter case, we denote it by

TAPO
I (T 8) = E[/ (s, Xs, Zs, a5)ds —/ (c4(s, Xy), dgH)
t [

LIAPO)

_/ (c*(s’XS)’dés_> +gl(pOaXpo9Zpo)]1{p(9§r}
[t,TAPO)

+ g2(7, X¢, Zr)ﬂ{po>r}:| ,

where now pp = inf{s > ¢ : (X';’g, Zf) ¢ O}AT forsome © C RY x [0, z] and with
obvious changes to the domains of the functions f, g1 and g». It will be completely
clear from our analysis below that our results hold if we take an even more general
form of the cost per unit control exerted, i.e., c+ (s, X5, Z;). We refrain from adding
that extension to avoid further notational complexity. Instead, to simplify the notation,
we set

=T" x A} x X' (z — 2).

The value functions in the two formulations with finite fuel read as follows:
Strong formulation. For fixed (¢, x, z) € [0, T] x RY x [0,z] and v € V;, we define

w'(t, x,z) == sup Jix (T, 0 8). G
(r,a.6)eAdm; -,

Weak formulation. For fixed (¢, x, z) € [0, T] x RY x [0, Z], we define

v(t, x,z) := sup sup J (T, &) = sup wh(z, x, 2). (3.10)
veV; (T’O"S)EAdm;},E—z veV,

Notice that £ € X (z — z) implies IP’(Z;Z‘g <D=PVyn¢) <z—-2=1.

As it will be shown, weak and strong formulations (both for finite and infinite fuel)
are in fact identical. The dual approach is, however, essential in order to prove the
DPP (see Remark 6.3).

Remark 3.2 We adopt the same terminology as in [20, Sect. 2.1]. The term “weak”
in (3.7) and (3.10) refers to the fact that the reference probability system can vary
together with the controls whereas in the “strong” formulation v is fixed (see (3.6) and

3.9)).
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Remark 3.3 Our setup is well suited to cover also the following situations:

(a) Controls that do not operate in all directions, i.e., Si =0forsomei =1,2,...,d.
(b) Monotone controls, i.e., either T = 0 or £~ = 0.

We can accommodate fully degenerate controlled diffusions. In particular, this allows
to consider a state-dependent discount factor in the definition of the objective function

J/' and J, _ by taking, e.g.,
N
Xf:/ ru, XY X9 Ydu
1
and
fx )= Fexl L x ), gt ) = el x0T e,

for some functions f , 8,1 = 1,2 (and analogously for the costs c).

Throughout the paper we make a number of standing assumptions that simplify
the exposition. Such assumptions concern mainly the controlled dynamics and the
objective function and can be checked on a case-by-case basis in practical appli-
cations. In particular, ideas contained in [34] for singular control problems can be
easily adapted to our setting and, more specifically, [36, Ch. III, Sec. 9] contains mild
sufficient conditions for problems of singular control with discretionary stopping.
Assumptions 3.4-3.8 below hold throughout the paper, whereas Assumption 3.9 is
only needed in Theorems 4.4 and 4.5.

Assumption 3.4 For every admissible pair («, &) the SDE (3.2) admits a unique {F}}-
adapted solution, up to indistinguishibility.

When V|; 11(§) is p-integrable with p > 2, and u and o are Lipschitz-continuous,
Assumption 3.4 holds by standard SDE techniques. When no integrability on & is
assumed one can use results from [16]. Assumption 3.4 also yields the following
simple lemma.

Lemma3.5 Fix (t,x,z) € [0,T] x R? x [0,Z] and v € V. Let €', €% € X (or
gl g2 e XY (2)) and al a? e A be such that &' and £? are indistinguishable and
al = o2, ds x P-a.e. Then,

P(x* ¢ = x8 Vselr, T]) =1.

Proof With probability one

S N
X?‘l*f‘=x+/ u(r,X‘;”f‘,a})dH/ o, X al)dw, + &
t

t

s N
:x—i—/ ,u(r,X‘r)‘l’sl,arz)dr—i—/ o(r, X“l’gl,arz)dWr—i—éXz,
t

t

@ Springer



7 Page120f48 Applied Mathematics & Optimization (2023) 88:7

for all s € [t, T], where the second equality holds because El and 52 are indistin-
guishable and al = a2, ds x P-a.e. Thus, X‘)‘I’SI verifies the same SDE as X"‘Z'SZ on
v and so, by Assumption 3.4, xe"¢" and X°*¢” are indistinguishable. O

For concreteness, we assume some integrability of the reward/cost functions appear-
ing in the objective of our optimisation. Given an admissible treble (z, @, &) on a
reference probability system v, we introduce the process

£ UNTAPO

v,

Nu/\‘[ = f f(sa XS5 ZS’ Ols)ds - v/[\ <C+(Sa XS)5 déj)
t

LUATAPO)
_/ <C_(S, Xs)sdé_g_>
[t,untApo)

+ 8100, Xpo» Zpo) Lipo <tintpo <u)
+g2(‘[’ XTva)]l{T<uAp@}v ue [t’ T]v (31])

with (X, Z) = (X"*®§ 7538) An analogous process is clearly defined for the
infinite-fuel problem, by dropping the dependence on Z. We also denote (x)* :=
max{0, £x}.

Assumption 3.6 (Objective function I) There is a constant g > O such thatfori = 1,2
itholds g; (¢, x, z) > —gforall (¢, x, z). Moreover, for any (¢, x, z) and any admissible
treble (7, @, &) in a reference probability system v, we have IE[(N;;AD.‘;S)_] < oo for
anyu € [t,T].

Integrability of (N,)™ is a mild requirement. It is immediately satisfied when, for
example, the total variation of & is at least p-integrable with p > 1, f is bounded
from below and c4 are bounded from above. If the coefficients of the SDE (3.2) are
Lipschitz, then when p > 2 it is enough to assume that

|f(t,x, z,0)| + g1t x, )| + lg2(t, x, 2] < c(1 + |x* + [z

for some ¢ > 0 and c4 bounded from above.

We also impose some continuity on the objective function. This is easy to state for
infinite-fuel problems but it requires an additional notion of truncated controls in the
case of finite-fuel problems. Fix u € [¢f,T] and 0 < z < 7 < o0o. Given a control
EekX’(z—z)anda f;-measurable random variable Z € [z, 7], P-a.s., we set

oz :=inf{s >u: Vyg&)>2—-Z} AT

and define the truncation of & + at Z (after time u) by (éﬁ\oz)se[u,ﬂ. Increments
of the truncated controls read [£ i]?’z = Efioz — S,jt for s € [u,T] and setting
(6147 = [£T]“% — [£71“%, we have [£]“Z € XY(Z — Z) by construction. By
convention, to simplify the notation, we drop the superscript u in [£]*-% and we write
[£17 if £ € X (Z) for some Z € (0, 00).

Assumption 3.7 (Objective function II) Let u € [0, T] be arbitrarily fixed.
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o (Infinite fuel) The mapping y — J, y(l' , &) is continuous on R? uniformly in
(1, a, &) € Adm), and uniformly with respect to v € V,.

e (Finite fuel) For every (x1, z1), (x2,22) € RY x [0, z] with zo > z; and every
& > 0 there exists 6§ > 0 such that, if |(x1, 1) — (x2, 22)| < 8, then

|JY Xl Zl(t o, &) — ux2 ZZ(T o, [E1)] < e,

for every (7, a, §) € Adm,, a andallv € V,.

The continuity requirements for the objective function can be easily verified in the
infinite-fuel case when the coefficients in the SDE (3.2) are Lipschitz continuous, the
functions f, g1 and g, are, for example, Holder continuous and cy are functions of
time only (see [36, Proposition II1.9.5]). In the finite-fuel case, the uniform bound on
the total variation of the singular controls allows to prove these continuity requirements
(by a similar argument) also if ¢4 depend on the space variable and are, e.g., Holder
continuous. The next assumption is a minimal technical assumption on measurability
and finiteness of the problem’s value function in its weak formulation, that guarantees
well-posedness of the optimisation problem.

Assumption 3.8 (Value function) The function (¢, x) +— v(¢, x) is Borel-measurable
with v(t, x) < oo for every (t,x) € [0, T] x R4, Analogously, for the finite fuel
set-up, (¢, x,z) — v(t,x,z) is Borel-measurable with v(¢, x,z) < oo for every
(t,x,2) € [0, T] x R4 x [0, z].

It is not difficult to check that in the infinite-fuel case Assumptions 3.7 and 3.8
imply that for each u € [t, T], given any & > 0 there exists § > 0 such that

lv(u, x) —v(u, y)| <e, forlx—y|<S§.

Analogously, for the finite-fuel case it is not hard to prove that, for each u € [¢, T']
and any ¢ > 0, there exists § > 0 such that

|U(u7 X1, Zl) - U(u7x2, Z2)| <E§, for |(x17 Zl) - (x21 Z2)| < 87 with 22 =21
(3.12)

The inequality v(u, x1,z1) < v(u, x2, 22) + ¢ follows easily from Assumption 3.7
since zo > z1. The opposite inequality is slightly more delicate and can be shown as
follows. By Assumption 3.7, we have that if |(x1, z1) — (x2, z2)| < & then

Jixyon (T [E]?) < I (T, 0, 8) + 6 < w(u, x1,21) + &,
for every (7,, &) € Adm a . Since z» > zi, then Adm . ) Adm 2 and

u,2—z
the inequality above in part1cular holds for (r,«, &) € Adm’ I with [E ]Z2 =§.
That is,

u,z—22°

Tz (T2, E) S 0w, x1,21) + &
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Taking supremum over (7, «, §) € AdmZ’Z_Z2 yields
v(u, x2, z2) < v(u, x1,z1) + €.

For our last assumption, given an admissible treble (7, «, &) let the process M =
(M:j\ar’s)ue[t,TJ be defined as

UANTAPO
MM/\‘E = / f(S7 XS’ ZS7 (xs)ds - / <C+(S, XS)’ dé;)
t [

tLUNTAPO)
_/. <C_(S, Xs)sdgsi>
[t,untApo)

+ 81(00: Xpos Zpo) Lipo <tinipo <u)
+ g2(7, X, Zr)l{r<u/\p@} +v(u, Xy, Zu)]]-{r/\pozu}s (3.13)

with (X, Z) = (X"*§, Z2V:¢). Notice that M, = N, + v(u, X, Z,) on the event
{t A po > u}. An analogous definition holds in the infinite-fuel problem if we drop
the dependence on Z.

Assumption 3.9 (Convergence of M) Let (t,x,z) € [0, T] x R? x [0,Z], v € V; be
an arbitrary reference probability system and (7, &, §) € Adm;; . Leto € 7,” be
arbitrary and {o,},eny € 7,” be a sequence of stopping times such that o, 1 o as
n — 0o, P-a.s. on {o > t}. Then

lim E[My%E] = B[MYSE), (3.14)

n—0o0

and an analogous condition holds for the infinite-fuel case.

Recalling that s — (X, Zy) is left-continuous P-a.s., the convergence in (3.14)
can be obtained if, e.g., s — v(s, Xy, Z;) is also left-continuous and if the dominated
convergence theorem applies. Continuity of the value function and suitable growth
estimates are therefore sufficient. Continuity of v is generally satisfied when, for
example, the coefficients in the SDE (3.2) are Lipschitz continuous, the functions f,
g1 and g, are Holder continuous and the costs c+ depend continuously on time only
(see Corollary II1.9.8 and Proposition I11.9.10 in [36] for the infinite-fuel case when
p > 2;the finite-fuel case is analogous. See also [34, Theorem 3.3] for singular control
problems with both finite- and infinite-fuel).

As for the growth estimates, dominated convergence theorem can be applied in the
finite-fuel case if, e.g., f, g1, g2 have linear growth and ¢4+ are bounded (thanks also
to standard SDE estimates). In the infinite-fuel case, when the total variation of & is
p-integrable with p > 1, the functions f, g1, g> are bounded from above and cy are
bounded from below (as assumed in [34]) the resulting value function is bounded.
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4 Main Results

Under the standing Assumptions 3.4-3.8 we obtain the following versions of the DPP,
which are the main results in this paper. The proofs are distilled in Sect. 6 and build
upon a series of technical lemmas and propositions. The first two theorems state the
DPP for deterministic times in both the infinite- and finite-fuel setting, respectively.

Theorem 4.1 (Infinite fuel) Fix (¢, x) € [0, T] x RY and v € V,. For anyu € [t,T],
we have

UATAPO
v(t,x) = sup ]E|:/ f(s, Xs, o5)ds
(r,a,§)eAdm} t

- (te 52 X0, ) + (e (5. X, d8))
[t,untApo)
+ 8100, Xpo) Lipo<tinipo <u) T 82(T, X)Lz <unpe)

+v(u, Xu)ﬂ{rAp@zu}:|~

Theorem 4.2 (Finite fuel) Fix (¢, x,z) € [0, T] x R? x [0,Z] and v € V,. For any
u € [t, T], we have

UATAPO
v(t,x,z) = sup IE|:/ f(s, X5, Zg, ag)ds
(r,oz,é)eAdm;’HLZ t

_/ <C+(S7 XS)7 dgjj)
[t,untApo)

_/ (c*(s5XS)’d§y_>
[t,untAPO)

+ 8100, Xpo > Zpo) Lipo<tinipo <u)
+ g2(7, Xo, Zt)]l{‘[<u/\po}

+v(u, Xy, Zu)ﬂ{rApO>u}:|-

We also have a more probabilistic interpretation of the above results. We state it in
the next proposition, where we recall the definition of the process M in (3.13) and N
in (3.11).

Proposition 4.3 For any admissible treble (t, a, &) the process (M;ﬁ’g)se[z,r] defined
in (3.13) is a supermartingale in the reference probability system v. Assume further
that the treble (t*, o*, £*) is optimal and that

*

BN S |+ oAt X005 25 Dl <oo, foralluelt,T1.  (4.1)

UNT* UNT*

Then, the associated process (M;ﬁi’s*)selm is a martingale. The results hold for
both finite and infinite fuel.

Finally, under the additional Assumption 3.9, we obtain the DPP for stopping times.
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Theorem 4.4 (Infinite fuel) Fix (t,x) € [0, T] x R? and v € V;. Under Assump-
tion 3.9, for any o € 1,*, we have

ONTAPO
v(t, x) = sup IE|:/ f(s, Xs, ag)ds
(t,0,£)eAdmy t

-/ (e (5. X0, d1) + (e (5. X,), &) )
[t,oATAPO)
+ g1(po. Xpo)]l{pogr}ﬂ{po<a} + g2(7, Xr)ﬂ{r<0/\po}

+ U(Ua Xa)ﬂ{tApo>a}]-

Theorem 4.5 (Finite fuel) Fix (¢, x,z) € [0, T] x R x [0,%Z] and v € V,. Under
Assumption 3.9, for any o € T,”, we have

ONTAPO
U(t,x,Z)Z Sup E / f(saXS7ZS’aS)ds
(r,0,£)eAdm; - t

_/ <C+(S, XS)9d§y+>
[t,oATAPO)

- / <C—(S» Xs)» dEy_> + gl(pOa X,Dov Zpo)]-{pofr}ﬁ{po<a}
[t, o0 ATAPO)
+ &2(7, Xo, Z‘[)]l{‘[<6/\p(9} +v(o, Xo, Zcr)]l{r/\p@>a}:|-

In the next sections we will develop the theoretical framework that allows to prove
the main results stated above. The key steps are two:

(1) Showing the equivalence of strong and weak formulation via the so-called
independence of the reference probability system (Sect.5);

(2) Combining the use of strong and weak formulation with the use of regular
conditional probabilities to arrive at the DPP (Sect. 6).

For our analysis we follow closely the approach and main ideas in [20, Chap. 2],
where the DPP is obtained in an infinite-dimensional setting. In [20] only classical
controls are considered and without discretionary stopping or exit times from a given
domain. As stated in [20, Remark 2.15], the fine technical details of the proofs are
extremely sensitive to variations in the problem setting and particularly to conditions
imposed on the class of admissible controls that go beyond their measurability (for
instance, left-continuity, bounded variation and the integrability/finite-fuel condition
for singular controls, in our case). Additional difficulties arise from the discretionary
stopping and the exit time pp. Thus, we develop specific arguments to address our
needs.

5 Independence of the Reference Probability System

In this section we show that the problem is independent of the choice of the reference
probability system v € V; and thus that the strong formulation (3.6) and the weak
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formulation (3.7) coincide (respectively, for finite-fuel, (3.9) and (3.10)). In particular,
for every (7, x) € [0, T] x R? and v € V; given and fixed, we are going to show that
we have

w'(t, x) = v(t, x), (CR))

and analogously for the finite-fuel case. We develop all arguments in this section for
the infinite-fuel problem for notational simplicity and, when necessary, we show that
their analogue for the finite-fuel setting holds with obvious changes. From now on, let
(t,x) € [0,T] x R be fixed (analogously (¢, x, z) € [0, T] x RY x [0, Z] are fixed
in the finite-fuel setting). Unless stated otherwise, v € ) is an arbitrary reference
probability system.

It is useful to note an equivalent representation of stopping times in terms of a
non-decreasing process. Indeed, for € 7,” we can define n; = L5~} fors € [t, T']
so that (17 )seps, 77 is non-decreasing, left-continuous, with a single jump at time 7.
Motivated by this simple observation, given u € [¢, T'], we denote by £ the collection
of processes n = (1s)sefs, 7] such that

(i) nis {F!}-adapted.
(ii) 7 is left-continuous and non-decreasing P-a.s.
>iii) ns € {0, 1} forevery s € [t, T] and ny = O for every s € [¢, u], P-a.s.

Then, n* € & for t € 7,” and, conversely, given n € &’ we define a {F}-stopping
time

T=inf{s >t:n, =1} AT €T". (5.2)

Clearly £ C X, so that properties which we will prove below for elements of X"
immediately hold for elements of £ as well.

Noticing that 1(5<;} = 1 — n{ and 1<y = 1 — 5y, we can also rewrite the
objective function in another convenient form. For every admissible treble (7, «, &)
we have

00
) = [0 e X a0
t
[ Al X0 + (e (5. X0, d5)
[t.p0)

+ 8100, Xpp)(1 —n5,) +/ 82(s, Xs)dnf] =1 (n", &, §).

[t.00)
5.3)
Conversely, for every (n, o, &) € £ x A} x X, we have
I (0 8) =07 (T, £). (5.4
For the finite-fuel case J', .(v,a,&) = I/, (0", &) and I, (n,a,§) =

Je (T, ) by the exact same argument. For simplicity, but with a slight abuse
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of notation, we sometimes say that (n°, o, £) is an admissible treble belonging to
either Adm; or Adm}”z_z, provided that (7, «, &) is such.

The first difficulty in establishing the equivalence in (5.1) is that null-sets and
probabilistic properties vary along with the underlying reference probability systems.
We now show that while all processes are adapted to the P-augmented Brownian
filtration {F}, it is however possible to select representatives (in a suitable sense) that
are adapted to the raw Brownian filtration {F} ‘O}.

For classical controls the result can be found directly in [20], hence we do not prove
it here. We refer the reader to the final item in our Sect.2 for a formal definition of

(Fi ’0}-predictable process used below.

Lemma5.1 Given a € A} there exists a {F1:%Y-predictable process o° € A} such
that «° = «, ds x P-a.e. on [t, T] x .

Proof See [20, Lemma 1.99] or [45, Lemma 2.4]. O

A slightly stronger result, that we prove in the next lemma, holds for general left-
continuous {7 }-adapted processes and hence also for those in X} and &, for the
state process X and for the fuel process Z. An analogous result is stated without proof
in [15] after Thm. IV.78.

Lemma5.2 Letv = (Q, F, P, {F!}, W) € V, and y be an R?-valued, {F!}-adapted
process which is P-a.s. left-continuous. Then, there exists an {.Fg’o}—predictable
process y° which is indistinguishable from y .

Proof Let Qp C Q such that P(Q2p) = 1 and s — y;(w) is left-continuous for every
w € Q. Let n € N and let {tf}izlo be the corresponding dyadic partition of [¢, T'],
ie., 1 =t +1i/2"(T —t). By defining the sequence of processes

2"—1

vi= vl + D vl @), s €l T
i=0

we obtain that y;'(w) — ys(w) for every (s, w) € [t, T] x Qp as n — oo. For every
neNandi =0,1,...,2" there exists (see, e.g., [26, Lemma 1.25]) yf}, that is f;,’,o-
measurable and such that ]P’(J/z;' = yt?l) = 1. Thus, foreveryn e N,i =0, 1,...,2"

there exists Q™! C Q with P(Q™) = 1 such that for every w € Q" we have
yin(w) = yt(_,), (w). Let @ := Qo N (N,,;2™"), then P(2) = 1 and for every w € Q2 we

have Yin (w) = yt(_)[ (w) foreveryn € N,i = 0,1, ...,2". By defining, for n € N, the
new sequence of Iprocesses

21

v = L) + ) valag @), s €l T,
i=0
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we obtain that YO is {fg’o}-predictable and ySO "(w) = y!"(w) for every (s, w) €
[t, T] x 2,n € N. Let

yO i=liminf yO", s e[z, T).

n—oo
Then, y* is {F*°}-predictable and if » € Q we have
J/So(a)) := lim inf yso’"(a)) = liminf ' (w) = ys (@), Vs e[t T],
n—0oo n—0o0

i.e., y¥ and y are indistinguishable. O

Our next goal is to show that any {F; 0 }-predictable process on a reference probabil-
ity system v can be expressed as a deterministic, measurable function of the Brownian
paths. For that we must introduce the canonical reference probability system:

v = (QF, F* P* Bl serrr, W),

where

() @ :={w e C(t. T RY) : w(t) = 0);
(i) P* is the Wiener measure on (2*, 5(2*)) that makes the canonical process
(s, w) = W (w) = w(s) a Brownian motion starting at time #;
(iii) F* is the completion of B(2*) with the P*-null sets;
@iv) Bé’o == o (W} : u € [t,s]) and B is the augmentation of Bé’o with the P*-null
sets.

Since Q* with the usual supremum norm is a Polish space, then (2%, B(Q2*)) is
a standard measurable space (see, e.g., [39, Chap. V, Theorem 2.2]) and so v* is a
standard reference probability system. We denote by Pq+ the o-algebra of {Bﬁ.’o}-
predictable sets (see the last item in Sect. 2).

Lemma5.3 Let v = (Q,F,P,{F'},W) € V, and y be an R?-valued, {F.°}-
predictable process. There exists a Pg+/B(R?)-measurable function ¥ : [t, T] x
Q* — R? such that

ys(w) =Y (s, W(w)), (s,w)elt,T]x Q. (5.5)

The proof is omitted as it can be found in [20, Lemma 2.20].
Next we show how the map ¢ : [7, T] x Q* — R4 in (5.5) can be used to connect
admissible controls in different reference probability systems that have the same law.
The first lemma below is derived from distributional properties induced by measurable
maps. The result is well-known and we omit its proof which is based on a monotone
class theorem [15, Th. 1.21, p.14].

Lemma5.4 Fixn € Nand let ¢ : [t,T] x Q* — R" be Pgqx/B(R")-measurable.
For any two reference probability systems v = (Q,F,P{FL},W) and vV =
(Q, F,P, {.7};,}, W) set ys = Y(s, W) and y; = ¥ (s, W.), s € [t,T). Then, we
have Lp(y) = Li(7).
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In the next lemma we construct admissible controls that are equivalent in law under
different reference probability systems.
Lemma5.5 Letv = (Q, F, P, {F!}, W) and b = (Q, F, B, {F'}, W) be two distinct
reference probability systems in V;. Given (t,«a,&) € Adm} (or in Adm;’z), there
exists (T, &, 5) € Admf (orin Admf,z) that are {f;*o}-predictable and such that

Lo(t, a6, W) = Ls(F,a, &, W). (5.6)

Proof Let us first recall { = 1{s~). Thanks to Lemmas 5.1 and 5.2 we can pass to
the {fﬁ’o}—predictable representatives (n™°, a?, £%) of (57, &, &). For simplicity, we
denote (170, a0, £%) = (57, a, £) with a slight abuse of notation.

By Lemma 5.3, there exist a Po+/B (R!)-measurable function Yo [t, T] x Q* —
K, two P+ /B(R?)-measurable functions 1//5t 1, T1 x Q* — R and a P+ /B(N)-
measurable! function Yy o 1, TT x F — {0, 1} such that, for all (s, w) € [t, T] x
2,

@5 (@) = Yo (s, W), £ (@) = Y (s, W), 0l (@) = Py (s, W.(w)).
(5.7)
Clearly the map (s, @) — (s, W.(&)) is P&/ Pqo+-measurable as in Lemma 5.3. Thus,

the processes defined for all (s, @) € [#, T] x Q by

&5 (@) = Yo (s, WA@)), E5(@) =¥ (s, WA@)), 75(@) := Yy (5, W.(@)),
(5.8)

are {F; ’?}-preglictable. Hence, & € AY and it remains to construct (77, &) € £ x &,
(orin & x X} (2)).
By left-continuity of &, we can define

Vi (s—, W.()) = lim Vi (u, W) = lim EX(0) = £ (0) = £7(0) = ¥ (s, W.()).

Let D be the set of dyadic rationals in [z, T],i.e., D := {t!,n € N,i € {0,...,2"}}
with #' =t +i/2"(T — t). Notice that D is countable and dense in [¢, T']. Then, for
every s,t,u in D with s < ¢, we have
L=PEr <&t &f =65 ) =Py W)

<Y W, Y (, W) = Y (u—, W)

=Py (s, W) < (6, W), 7 (u, W) = 9 (u—, W)

=P(EF <& 65 =EL). (5.9)
where in the third equality we have used Lemma 5.4. That is, for every 5,7, u € D
with s < 7 the event 2" = {w € Q : £F(w) < 5 (w), EF(w) = £ (w)} has full

! Recall that B (N) is the Borel sigma-algebra for the discrete topology.
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measure. Thus, letting Q= ms,t,L,eszi;’ we have I@’(fz) =1 and
EX(w) < EF(w) and EX(w) = X (w) forevery s, t,u € D with s < u,

for every w € Q. Now, for every n € N, we set

2]
EX = E L 6) + ) Bl 1), s €[0T,
i=0
Then, EXm s (F ’0}-predictaPle and, for every o € ~SAZ, we have limy,_ o £ (@) =
EE(w) for s € D. We define ¥ (w) := liminf,_, oo £ () for (s, ®) € [£, T] x K,
so that § +is {fst ’0}-predictable and

~

PEE=£F, seD) =1. (5.10)

For each » € Q the mapping D > s — ési (w) is non-decreasing (componentwise)
so that £% is P-a.s. non-decreasing in time, with 50i = 0. Indeed, fix w € € and
let 51 < 555 then £ (@) = liminf, o0 &5, (@) < liminf, o0 &5 (@) = &5 (w),
where the inequality holds by definition of E+n Moreover, EX" (w) < EX" ! (w) for
alln € Nand all (s, ) € [¢, T] x €, with the inequality understood componentwise.
Thus, for any (s, ) € (¢, T] x 2 we have

.4 . .ot . .= .4, £+
{3&)1 £ () = 18%1 ,}lTrglo £ b () = ,}lﬁlo Eﬂ} £ () = ;}ITTO £ (w) = & (w),

where the limits can be swapped by monotonicity (again componentwise). This proves
that £* is P-a.s. left-continuous.

Setting € = £+ —£~, it remains to prove integrability (or finite- fuel) property of €. If
& € X/ (z), one simply adds the IP-a.s. condition V}; 71(§) = Zl 1 (S +&77 )
in (5.9) and thus obtains that V[,,T](é) = Z?:l (§}+ + ?,ng ) < z, P-as. Hence,
£ e X‘N’(Z) If instead & € , we must check that ]E[lV, T] (£)|P] < oo where E
denotes the expectation under the measure P. This will follow once we prove (5.6). By
an analogous construction to the one for g, we also find a {F}’ } predictable process
nt e 7 from which we obtain the stopping time 7 as in (5.2).

Next we show that the equality in law (5.6) holds, by proving that all finite-
dimensional distributions of («, &, ¥, W) and (&, é, 0, W) are the same (see, e.g.,
[26, Proposition 2.2.]). Fix a finite sequence of times {Sk}zzl C [¢, T] and sequences
of vectors {AY}7_, C R/, {Ai}zzl CRY, (A}, CRand {p}!_, C R?. Then, by
dominated convergence and left-continuity of n* and &, we obtain

[exp(Z( Fag) + O £+ A ng) + (s We)) |
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n

= lim E[exp (i D () + A E ) + (AL ) + s Wsk»)],
{fli}T{Sk} k=1 k k
{r{}eD

where the limit is understood as a limit over sequences {r,'g } jen such that r,{ 1 sy for
each k and r,f € D for each (j, k). By (5.10) we know that

(& (@), T (@) = (Y (s, W), Yyr (s, W.(@))), for (s, ») € D x 2.

Therefore by (5.7), (5.8) and Lemma 5.4 we have

n

tim B[ exp (i 2 (0 ag) + O £,) + () + (e W) )|
{f/'g}T{~Vk} k=1 k k
{r{}eD

n

= lim Efexp (i 30 (A &) + G5 &) + A7, + (e W) |

g1 tse) k=1 k k

{r{}eD

=

= Bl exp (i D (0 ) + Of B+ W ) + 0 W) .
k=1

where the final equality is by dominated convergence and P-a.s. left-continuity of
(€, ﬁf); Then (5.6) holds. That also implies E[| V{;,71(6)I”] = E[| V|;,71(§)|”], so that
EeXVifE e &Y. |

The equality in law under different reference probability systems extends also to
the processes X and Z and the stopping time pp, as illustrated in the next lemma,
where we use the same notation as in Lemma 5.5. The proof of the lemma relies on
a result by Kurtz [33] about strong solutions of stochastic equations, that generalises
the classical results by Yamada and Watanabe [24, Ch. III]. Informally, [33] states that
if Y is a stochastic input and X is a stochastic output of an equation of the form

I'(X,Y) =0, (5.11)

then pointwise uniqueness (in the language of [33]) implies X = W(Y) for some
measurable function W. Moreover, W is uniquely determined in the sense that if (X,Y)
is another pair solving (5.11) with Y = Y in law, then X = W(¥). We will apply
this result in the case that X and Y are caglad processes and, therefore, pointwise
uniqueness coincides with pathwise uniqueness.
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Lemma5.6 Let v,V € V;, and take (T, a, §) € Adm] (or in Adm;”z) and (%,&,€) €

Admf (orin Adm?z) as in Lemma 5.5. Then, we have

Co(r.o 6. W, XV0E Z2VE pusesy = £o(7, 6.5, W, XV Z0E phes)
(5.12)

Proof For simplicity and in keeping with the proof of Lemma 5.5, we denote
(nr’o, af, EO, XO) by (%, «, &, X), with a slight abuse of notation.

By Assumption 3.4, X*¢ is the pathwise unique solution of (3.2), which can
be written in the form of (5.11) with ¥ = («, &, W). Then, by [33, Corol-
lary 2.8], X*¢ = Wy(a, & W) for some measurable function Wx. Moreover,
Lp(a, &, W) = Lp(a, £, W) implies that X%5 = Wy (&, &, W) solves (3.2) in the
reference probability system v.

Next, recall from the construction in Lemma 5.5 that és = Ye(s, W.) and that
Es (w) = Sq (w) for (s, w) € D x Q with D countable and dense in [0, T]and IP’(Q) =1.
Since E is also left-continuous P-a.s., we then obtain

d

pETHET) =) sw (ETHET)

i=1 relt,sIND

M&

Vies1(€) = i

1

Il
.M&

sup (§;+ + ér’_) = V[,,S]mg(é'), foralls € [¢, T], P-as.
rE[t siND

1

Therefore, Z’ i =Yz(s, W.) for some Pgs /B(R)-measurable function vz, because
§S = Y& (s, w.). By left-continuity of the control £ in v, we also have V|; 51(§) =

Vit.sinp(§) and therefore it is clear that also Z;;g = Yz (s, W.) for the same {2,
because & = Ve (s, W.).
Recalling that Lp(7, a, &, W) = Lﬁ,,(f, a, &N', W), it is now clear that

Lo(r,a, &, W, X"8, 278 = L5(%,a, & W, XxV4E, 77%), (5.13)
Finally, to show that (5.12) holds, we set

= O @, &, W, X5 27) and £ = G, & E W, XV, 27
and we equivalently prove that the finite-dimensional distributions of (%, p%5v) and
(2, p%&7) coincide. For every r < s; < so < ... < s, < T, B € B(RN) with
N=nQ2d+d +1+2)andu € [t, T], we have

P((Sy. ..., Zy) € B, p"% > u) = P((5y,, ..., 55,) € B, p"%E > u).

By definition (3.3) and left-continuity of (X, Z), this is equivalent to showing that

P((Z,, ... Zy,) € B, {(XV5,ZY%) € O, Vs € [t,u)))
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=B((Sy,, ... 5y,) € B {((XPE, 278) € O, Vs € [1,u)}),

which holds thanks to the equality in law (5.13) and the proof is complete. O

We are now ready to prove independence of the value function from the reference
probability system, i.e., (5.1).

Proposition 5.7 Fix (t, x) € [0, T1xR andletv, v € V,. Forevery (t,a, £) € Adm;
there exists (T, a, 5) € Adm;y such that

(7: o, &) = J” 7,4, §&). (5.14)
Consequently, for every (t,x) € [0, T] x R and v € V,, we have that
w’(t, x) = v(t, x).

Proof Fix an arbitrary treble (t, o, £) € Adm; and construct an admissible treble
(7, a, § ) € Adm} as in Lemma 5.5 so that (5.6) holds. Then, Lemma 5.6 guarantees
that

Lo(r, @, X8, pUis) = £5(F,a, &, X758, pu®f) (5.15)

Since we can write

I §) = Elp(r, a, &, X8, pi*%)] and

IE,a,8) = B[p@, @, & XWEE, plth),

for some measurable function ¢, then by (5.15) we obtain (5.14). This also yields that

Jo (T, 8) = JU (F,a,8) <w'(r,x), forall (x,w &) € Admy;.

Hence w" (¢, x) < w‘~’(t, x) and symmetrically we obtain wi(t, x) < wV(¢, x) so that
w"(t, x) = w"(t, x). Since the equality holds for any pair v, v € V; then v(z, x) =
supey, w'(t, x) = w'(z, x). O

By an identical argument of proof we also obtain the finite-fuel version of the above
proposition. One only needs to recall the process Z from (3.8) and notice that

Co(z, 0,8, X6, 206 puty = £4(7,8, 8, XVOE 206 pries),

by Lemma 5.6.

Proposition 5.8 Fix (t,x,z) € [0, T] X RY x [0, z] and let v, v € V,. For every
(t,a, &) € Admt z_, there exists (T, a,é) e Adm;’,z_Z such that

Jt‘jx)z(fa avé) - J[Ux Z(~ &’E)
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Consequently, for every (t,x,z) € [0, T] x RY x [0, Z] and v € V;, we have that

w"(t,x,2) = v(t, x, 2).

6 Dynamic Programming Principle

Using regular conditional probabilities, in this section we prove the main results of the
paper: Theorems 4.1 and 4.2, Proposition 4.3 and Theorems 4.4 and 4.5. In Appendix A
we provide a detailed digression on regular conditional probabilities, for completeness,
while here we only introduce the related notation.

Unless otherwise stated, we fix (¢,x,z) € [0,T] x RY x [0, z] and a standard
reference probability system v = (2, F, P, {}'Sl}, W) € V,. Then, we also fix u €
(t, T) and denote by P, the regular conditional probability on (2, F) given f,ﬁ’o. That
is,

P,(A) = P(A|F%) (w) forevery A € F for P-ae. w.

The expectation with respect to PP, is denoted by E,, and the o-algebra F, is the
completion of F° with the P,,-null sets. To be precise, we should use P instead of
P, in order to keep track of the time u with respect to which we evaluate the regular
conditional probabilities. However, u will be fixed throughout and so we can use a
simpler notation.

Let W) := W, — W, for s € [u, T'] be the increments of W after time u and let
]-'f’o = o (W} : r € [u, s]) be the raw filtration generated by such increments. We
denote by F“® the augmentation of F"° with the P,,-null sets. Now, for P-a.e. € €,
we can define a standard reference probability system v, € V, as

Vo = (R, Fo, Poos AF2Ysetu.r1, W), (6.1)

which will be frequently needed in the proofs below (it is indeed shown in Proposi-
tion A.4 that v, € V, and so, in particular, W¥ is a {F; “}-Brownian motion under
P, for P-a.e w € Q).

In order to simplify notations in some proofs, for s € [, T'], on the event {s <
T A po}, let us set

TAPO
Is(po, t,a,8,X,7) ::/ f@r, Xy, Z,, op)dr
N

—/ (ter 0. X)), d&F) + e, X,). d))
[s,TApO)

+ 21(p0, Xpps Zpo)l{pofr} +82(7, X¢, Z) L po>1)s
(6.2)
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and

PO
AS(pO’n’(X’SaX’Z) :2/ (l_nr)f(raxrazraar)dr

s

_ f (L= m)es (ra X,). dEF)
[s.00)

—/ (1= e (r X,). dE7)
[s,00)

+gl(vaXposZpo)(l_77po)+/ &, X, Z,)dn,,
[s.00)

where (X, Z) = (X"*¢, ZY:¥) for a given couple of admissible controls (e, &) on v.
Then, from the same arguments as in (5.3) we have

ﬂ{sfrApo}Fs(p(’)v T,0,6,X,7)= l{sfrApo}As(pOs 77I7 a8, X,72), P-as.
(6.3)
and, setting s = ¢,

I (o, £) =E[T(po. 1. o, &, X5, Z%)]
=E[A(po. 0" . £, X5, 2] = 1), .(n", &, §). (6.4)

Clearly, removing the state variable Z in the definitions of I and A we obtain analogous
expressions for the infinite-fuel case.

Remark 6.1 In the proofs of this section we often use the expression “P-a.e. w” to
indicate that a certain property IT; holds on a set ; € F with P(€2;) = 1. Clearly,
the nature of the set {2; depends, in general, on the property I1; of interest. Since in
our proofs we only consider a finite number of properties I1y, 15, ..., I, then the
expression “P-a.e. w” refers to a universal set Q" := N"_,Q; € F with P(Q') = 1 and
such that all properties 1y, Iy, ..., I, hold for all w € &'.

Here we prove Theorem 4.2. The proof of Theorem 4.1 is similar but easier as it
involves one fewer state variable, so we omit it in order to avoid repetitions.

Proof of Theorem 4.2 Recall that (¢, x, z) € [0, T]1xR? x [0,Z],u € [t, T]and v € V,
are fixed. The proof is split into two steps.
Step 1. (inequality <). Given an admissible treble (t, o, &) € Adm;’j_z, set X =

xvied 7 = 7€ and po = p(‘ﬂ;a’g. By definition of I", we have

UNTAPO
Pea(taf) = E[/ Fis. Xy Zs. a5)ds —f[ (4 (s, Xy, dEF)
t

LUATAPO)

—/ (e~ (s, X5), d&57) + 81000, Xpo s Zpo) Lipo <t} Lz Apo <u}
[t,untApo)

+ g2(7, Xv, Xr)]l{p@>r}ﬂ{t/\p@<u} +Tulpo, 7, 0,8, X, Z)]l{r/\pozu}:|-
(65)
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It remains to show that

E[Tu(p0. 7.0 6, X, DLienpoza | < B[00 X Z)Verpoza | (66)
Let us rewrite the left-hand side as

E[T4(p0. 7. 6 X, DL ierpoza | = E[ Au(00. 1706 X, D)L irzu Lpozul |

= E[ Aulpo. "o £ X 2)(1 = 1) Lipozul |
6.7)

By Lemma 5.1 and 5.2, we obtain a {.Fé’o}—predictable control treble (n7%°, £9)
such that @ = &, ds x P-a.e. and (n’*o, 50) is indistinguishable from (n®, &). Then,

by Lemma 3.5, X = X%¢ and x*£ are indistinguishable. Moreover, Z¢ is indis-
tinguishable from 78° =: 70 and the latter is {.Fg’o}—predictable as well (recall the

definition of variation in (3.1)). Since X o«*.6” i also left-continuous, Lemma 5.2 guar-
antees that there exists a {F. ’0}—predictable process X° which is indistinguishable of

x"€° In summary, we have a pair of processes (X 0,79 that are {F} ’0}-predictable
and indistinguishable from the original controlled pair (X, Z). Thus, setting

pg =inf{s >1: (X%, 29 ¢ O} AT, (6.8)

we also have P(pp = ,o%) =1.

For s € [u, T], let us denote n" = ]1{s>,,}n§’0 and £>" = g0 — &0, With this
notation, we obtain

EI:AM(IO(Qv nts o, é? X’ Z)(l - n;)l{pozu}]
= E[Au (p?’)» UT’O, 0507 an XO’ ZO)(I - n;’o)ﬂ{p(ggzu}]

= E[Au(od, 1%, % 60, X0, 200 = i1 0] 69)
where the first equality is by equivalence of the processes under expectations and the
second equality uses that A, only depends on the increments of £ after time u and

that n§’0 = ng’” for every s € [t, T] on the event {t > u}.
By indistinguishability of X*"¢° and X° we have P-a.s., for all s € [u, T,

x0 = xo"¢'

o' SO $ oY SO 0 $ oY SO 0 0 0
=X, " + ur, X7 5, a)dr + o(r, Xy ° o )dW, + &/ —§,
u

u

S S
=X2+/ pL(r,X?,ot?)dr+/ o(r, X%, a®)dw! 4 £, (6.10)
u u

Since (X ,9, ZS) is .Eﬂ’o—measurable, by a well-known property of regular conditional
probabilities (see (A.2) in the Appendix), we have
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IP’w({a/ e Q: (X)), 2%)) = (X%(w), zg(w))}) =1, forP-ac. o.

It is also recalled in Lemma A.1 that if P(2;) = 1 for some Q; € F, then Q| € F,
and P, (21) = 1 for a.e. w € Q. Thus, taking €21 as the set where the SDE (6.10)
holds, we have that P,-a.s., for P-a.e. v €

s s
X0 = X0 + / 1, X0, a)dr + f o (r, X0, Q)W + g0,

u u

70 = 7%(w) + Viur ("), (6.11)

for every s € [u, T]. Likewise P, (pp = ,02)) = 1 for P-a.e. w € Q. There are
two subtle points related to (6.11): (i) a first one (raised in [12]) is that the stochastic
integral in (6.11) is constructed with respect to the regular conditional probability P,
and it is P-indistinguishable from the original one (see Lemma A.5 for details); (ii) a
second one is that it is possible to check that the treble (n%*, a®, £%%) belongs to the

admissible class Adm;‘”z_ 29) for P-a.e. € Q (see Proposition A.4). Finally, X© is

{]—"S”O}-adapted and therefore it is {F,"“}-adapted for P-a.e. @ (see Lemma A.3).

In conclusion, up to P,-indistinguishability, the process (X°, Z°) is the unique
solution of (6.11) in the reference probability system v, for P-a.e. w € €2. Consistently
with the notation introduced in Sect. 3 around the SDE (3.2) and the process Z in (3.8),
we should say that for [P-a.e. @ the process (X?, Z?)Se[ujl is indistinguishable from
the pair X Xa@)ivoid® " gnd 7z Zi@3v0iE™" byt we avoid such heavy notation as
no confusion shall arise.

Notice that, on the event { p(og > u}, we have

po =inf{s > u: (XY, 2% ¢ OYA T,

so that p% is equal to the first time affer time u when the process (XY, Z%)sepu, 71

leaves the set O. Thus, ,0?9 defines a stopping time in the reference probability system

Vw. This fact will be used in the next group of equations, without further mention.
Then, continuing from (6.9), by tower property we obtain

B[ Aoy, ™, o, 6%, X0, 201 = i1 0, |

= E[E[Au(pd, 1", o, 67, X0, 2| 70 [ @)1 = 1 (@)1 2 (@)]

= E[E, [ Aulp, 1™, €%, X0, 2% |1 = (@)1 0 - @)

= B[ 10 0 2000 " 2% €71 = @) T - @) ]

< E[v(e, X)), ZY@)( = 1 @)1, @) | = E[ v, X Z) Lienpz |
(6.12)

where the second equality is by property (A.1) of the measure P, (and Assump-
tion 3.6), the third one uses the definition of " (see (5.3)) and the fact that the
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processes (no’”, af, SO’”, X0, ZO) are well-defined in the reference probability sys-
tem v,, for P-a.e. w (see Proposition A.4); the inequality follows from admissibility of

the treble (n%4, ¥, £94) € AdmZ“Z_ 29w) for P-a.e. w and Proposition 5.7; in the final
expression we recall that (XS, ZS, n©o, ,o%) and (X, Z,, n*, po) are equal P-a.s.

Combining (6.7), (6.9) and (6.12), we obtain (6.6) which, together with (6.5), gives

Jt‘jx)z("") av g)

UNTAPO
SE[/ f(s,XS,ZS,as)ds—/ <C+(saXs)ad‘§s+>
t [t,untApo)

- / (C*(sﬂ X‘Y)v dés_)
[t,untApo)

+ 8100, Xpo Zpo) Lipo <tintpo <u)

+ &2(7, Xo, Z‘L’)]l{‘r<u/\po} +v(u, Xy, Zu)]l{f/\POEM}i|'

Taking the supremum over all admissible trebles we obtain the first inequality

UNTAPO
o(tx )< sup EU £(5. Xy, Zy, ag)ds
(t.a.§)eAdm; -, t

- / (c+(s, Xy), d&;1)
[t,untApO)

- / (c—(s, Xy), dé;) + 81 ()0(’), Xpov Zpo)l{pofr}ﬂ{po<u}
[t,untApO)
+ &2(7, X¢, Zr)ﬂ{rqmpo} +v(u, Xy, Zu)hr/\pgiu}il-

Step 2. (inequality >). At the start of the proof we fixed (¢, x, z), u € [¢, T] and
v eV, Letnow (7, @, &) € Adrn;’,z_Z be arbitrary but fixed too. The idea is to construct

another admissible treble (7, @, é) € Adm’

t 7z which coincides with (7, o, §) up to
time u and whose restriction to [u, T] is §-optimal with respect to v(u, X 3’5, zi) for
some § > 0.

Letusdenote BX = {x e R? : |x| <k, z € [0, Z]}. By Assumption 3.7 and (3.12),
for any ¢ > 0 we can pick §; > 0 such that if (x1, z1), (x2,22) € B!, withz; < 22

and |(x1, z1) — (x2, z2)| < &1, then

Y (T &Y = T (o TET) A+ o, x1, 21) — v, x2, 22)] < &,
(6.13)
forall (v/,a’, &) € Adm;i_Zl andany v’ € V,. Since R? x [0, 7] is separable, we can

choose a partition { B,{ }nen of B! into countable disjoint Borel sets with diam(B,i) < 61
foreveryn € N, where diam(B) := sup{|(x, z2)—(x, 2)| : (x, 2), (x', Z’) € B}. Then,
(6.13) holds for any (x1, z1), (x2, 22) € B,l with z;1 < zp and n € N. Similarly, we can
choose 6, > 0 such that if (x1, z1), (x2, 22) € B2, z1 < zpand |(x1, z1) — (x2, 22)| <
87, then (6.13) holds too. Thus, we can also choose a partition {B,%}neN of B2 \ Blinto
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countable disjoint Borel sets with diam(B,%) < &, forevery n € N so that (6.13) holds
for all (x1, z1), (x2,22) € B,%. Iterating this argument, we find a partition {B,'f}k,,,eN
of R4 x [0, 7] into countable disjoint Borel sets such that for arbitrary n, k € N, given
(x1, z1), (x2,22) € B,]f with z1 < z», the condition (6.13) holds. With a slight abuse
of notation we relabel the partition {B,’f Yk.nen simply by {Bg},eN.

Let us fix a reference probability system v = (Q, F, P, {F*}, W) € V,, which will
be used as an auxiliary system when dealing with regular conditional probabilities.
Let n,m € N and take (x,, z,) € B,. For convenience, we pick z, so that z, > z
for all (x, z) € B,. That is, with no loss of generality, the partition of [0, z] is of the
form {{0}, (0, a], (a, b], .. .}. By Proposition 5.7, there exist (75", /(™) gn:(m)y ¢
Adm” . such that

U,2—2n

J;Xn . (.[n:(m)’ a";(m)’ g";(m)) > v(u, Xn, 2n) — L
For the moment m is fixed and we drop the superscript for notational convenience.
Hence, we write (7", o, €") instead of (¢/%), (™) gn:(m)y,

For future reference we set n =n S” = Lis>n) € 8,‘;’ and we recall that there exists
(F& } predictable representatives (™0, ™0, "0 such that & = oY, ds x P-a.s.
and (™0, £79) is P-lndlstlngulshable from (n", &™). Then, by Lemma 5 3, we have
Pq+-measurable maps Yyn, 1//5,1 and yr,n such that

(@) = Yan (s, W(w)), &M (w) = 1//35, (s, W.()),
10 (w) = Y (s, W.(w)), s €[u,T1.

These will be used later. It is clear that by equivalence of the controls we have (recall

5.4 5 n n n
>4) I e e =10, ("0, a0, £m0). (6.14)

As in Pemma 5.5 we construct a treble of {}}" *“}-predictable, admissible controls
([",&", §") € Adm,”__ such that

Zn

Lo, a0 M0 W) = Lp, (7", &", E", W"), P-ae. w. (6.15)

It is worth noticing that effectively the treble (7", &@", £”) is independent of the specific
w € Q that determines the reference probability system v,. That happens because
W* = W. — W, is a Brownian motion on every v, for P-a.e. w, and the mappings
Yan, Yryn and Yen do not depend on w. Moreover, the set Q" C Q where 7" and &"
satisfy all the admissibility conditions (left-continuity, bounded variation, (7], 55‘) =
(0, 0)) belongs, by construction, to F° and Pw(ﬁn) = 1 for P-a.e. w (see the proof
of Lemma 5.3). Therefore, we also have P(Q") = 1 (see Lemma A.1) and settlng
Q = N,2" € F° we conclude that the admissibility conditions of (1", EM) are
satisfied for every n € N for all w € Q with P(Q) = 1.
By (6.15) and Lemma 5.6, we have P-a.e. w € Q

n,0 En,()

n,0 _n0 &n,0 u,xp; ;a0 g1:0 U,z ;€m0 u,xn,zns Vs
‘C[P)(r , X ’ S I X " s ’ Z " g ’ IOO

_ ~n ~n &n U, Xp i Ve @ EN U,Zp 3V, ;~" M,Xn,Znivw;&n,gn
—AC]P’{U(T,(X,S,X n>Vo §7Z nwg’po )
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with 70 = inf{s > u : n?’o =1} AT and t" = inf{s > u : )y = 1} A T. Thanks to
the above and (6.14), w, we have

VAN CANLN )
=1y, . " a" EY =1k (& E =) . (F.a"EY),  (6.16)
which we will need later on to conclude our proof. Notice that the P-null set where
the above fails may depend on (x,, z,).

Recall the initial admissible treble (r,«,&) € Adm;’j_z and denote by

170, a0, £9) its {F°)-predictable representative. Set (X, Z) = (X"i@"£" zvie%)
and denote by (X, Z°) the (F: ’O}—predictable processes indistinguishable of (X, Z).
Define the events O, := {w : (XS, ZS) € B,}. Since {B,},eN forms a partition of
R4 x [0, 7], the events {0, }nen form a partition of 2. Then, letting Uy := Uﬁzl 0,
for k € N we have Uy 1 Q as k — oo.

For every k € Nand s € [t, T], define

k
it = 0L ) + [0+ (= g0 (D o, + Lug ) [Lwn),

n=1
k

&y = ot Ljpa(s) + [25‘?10,1 +“?1Uk‘}]l(uﬂ(s)»

n=1

©

k
Bt = 6 () + [Z (B +£50)10, + §f’o]lu,§i| La71(5).

n=1

where notice that by construction éf“i e X (Z—1z,) S Xz — ZS (w)) for P-a.e.
w € O, because Zg(a)) < z, for P-a.e. w € O, (recall that z,, was chosen so that
zn, > z forall (x, z) € By). Finally, we set

and notice also that ék € XY(z — z). Then, defining thk = inf{s > 1 : ﬁf =

1} AT (cf. (5.2)) we have (£, &, £K) € Adm;;__ and, in particular, (n*, &, ) are

(Fi ’0}-adapted by construction.
Clearly,
On C{oeQ: @55 =@ &+, sewTl}

and, moreover, we have
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Py (0p) = Eu[lo,] = E[1o, |7y (@)
=E[lo,|F](®) = 1o,(@) =1, P-ae. we O, (6.17)

where the third equality is by Lemma A.2. The equation above confirms the intuitively
obvious fact that, P,-a.s. for P-a.e. € O,, ( Esk i) = (ay E,jt + és"i) for all
s € (u, T]

Let us denote by X*0 the {F!’ } predlctable process which is P-indistinguishable
from the controlled dynamics X" @8 Asin (6.11), we have P,,-a.s. for P-a.e. w € Q2

S
xk0 = xk0(4) +/ w(r, X80 %ydr

u

s
+/ o(r, XK0 akyawr + EF — EX fors e [u, T1.

u>’
u

Again, we remark that X*-0 defines a process on v,, that is P,-indistinguishable from
the solution of the controlled SDE on v, denoted by XX @iv0id 8 wWe avoid
further notation and simply identify the two processes on v,,. Likewise, let Zf‘o =
7+ V[t,s](ék) for s € [¢t, T] so that Z?’O = Zg(w) + V[u,s](ék), P,-a.s. for P-a.e. w
for every s € [u, T].

Recall the exit time po = p(g"‘ ' _infls > 1 : (X, Zy) ¢ O} AT of the
process (X Z) from O after time ¢ (or equivalently for the process (X°, Z%)) and let

'0(9 = '0(9 LE be the analogous exit time for the process (X%-0, Z%-0). Since

P((n°, ?, &%) = (3K, 6%, €5y, s e [, u]) =
then

P((Xy, Zy) = (X2, 20) = (XX, 280, s e [1,u]) = 6.18)
P(po Au=pHAu)y=1 and Pt Au=1thru) = ’
Moreover, on the event {pp > u}, we have
,ol(i) = inf {s >u: (Xf’o, Zf’o) ¢ 0} AT
i.e., the exit time is after time u, and pé‘g is a stopping time in the reference probability

system v,,.
Since (£, GF, &%) e Adm; :__ we have

UNTEAPE
v(t, x,7) > E[/ f(s, x50, K0 gkyds

t

— / (c+ (s, XK0), dgk-t)
[t.untkApd)
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- / (e (s, X00), dgFT)
[t,u/\fk/\p’(‘g)
k vkO k0O
+gl(,0@, Xpl(cﬁ, Zp](‘,))l{ﬁ)](cgffk}:ﬂ'{fk/\ﬂg<u}
~k vk,0 k0
+82(8% XG50 Za) Lt oy List gl <

+Tu(pb, . 5, §*, X80, Zk’o)ﬂ{mpém}].

Thanks to (6.18), the expression simplifies to
v(t, x,2)
UATAPO
> E[ / f(s, Xy, Zs, ag)ds — f (c1(s, Xy), d&)
t [t,untApo)
- / (c—(s, Xy), d%—) + &1 (,0(9, Xpo, Z,oo)]l{pogt}ﬂ{p@<u}
[t,untApo)

+ g2(77 Xz, Z‘[)]l{‘[<po/\u} + Ty (;0]({9, fky &k, ék’ Xk’o, Zk’o)ﬂ{r/\pozu}:|7
6.19)

where we also used that the equality between stopping times in (6.18) implies
(BXAph = uy ={t A po = u).

Thus, recalling (6.3) and the event Uy, for the last term in (6.19) we have

E[Fu(pés 'Ek, &k’ ékv Xk’o» Zkyo)]l{rApozu}:I

~

= E[ru(p(’g, 6k, &5, x50, 250 1 ppozu (Ly, + 110;)]
= E[ Ay (ol i, 65, 85 X5, Z50) Liep o (Lu + 1) |- (620)

On the event Uy, we partition over the sets { O, },<x and use that on each O, the control
treble (7%, &%, £X)sc (.1 becomes (77, @7, &0 + EM)se(u.7)- Then, we obtain

E[ Au(pby. it @, 85, X0, ZE0) L 02 L

k
= Y E[Au(oby, 7", & &0 + 8" X5, 250 L0200,

n=1
k
= ZE[AM(,OI(B, ﬁnv &na €n5 Xk,oa Zk’o)ﬂ{rApOZu}ﬁOniI,

n=1
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where in the final equality we use that the explicit dependence of the objective function
A, on the control € is only via its increments after time u (while of course also depend-
ing implicitly on & via the processes (X%, Zk0)). Since (7",a", £", X*0, zk-0)
defines a process on v, by the tower property and Assumption 3.6, we arrive at

E[ru (ok), 25, &k, & Xk, Zk*o)n{mozu}ﬂyk]

k
= Y E[E[Autpby. i@ &7, K0, Z80)| FL | @) Lienpozuino, @]

n=1

= Y B[Eu[ Auloly, i 8 X5, 250 |1 enpozuno, @], 62D)

because E,[Y] = E[Y|f,§’0](w) = E[Y|F]](w) for F-measurable Y with E[(Y)~] <
oo (Lemma A.2). For P-a.e. € {t A po > u} N O, the process (Xk0, Zk0y js
Pw-indistinguishable from (X“’ VAR by (6.17), where X®" — XXi@)ive;a E"
and ZO" = Z4Zi@voif" | ikewise, g is Py-a.s. equal to py" = inf{s > u :
(X", 22"y ¢ O} A T. Then, recalling (6.4), we have for P-a.e. w
]Ea)l:Au(p]gQ9 ﬁnv &nv éns Xk,ov Zk’o)]ﬂ{TAPOZu}QOn (Cl))
= I:wxﬂ(w) Zo(w)(~ &n’ %-n)]l{TAPOZM}QOn (a))

= 1% 0w 200y T & ED Lz rpozuin0, (@), (6.22)

where 7" = inf{s > u : i} = 1} A T. By construction of {B,},cn (see (6.13)) and
since (Xg(a)), Zg(w)) € O,, Py-a.s. for P-a.e. w € 2, we have

T 200y B & EN L0, @) = (115, ., & ) = )10,(@),  (623)

upon also recalling that Zg(a)) <z, for P-ae. w € O,.
Plugging (6.22) and (6.23) back into (6.21) and using (6.16), we obtain

I:Fu(p(gv Aka o ék’ Xk’()’ Zk’o)]]-{r/\pozu}ﬂUk]

k
= Y B[40, @& ED = &) Lienpozuno, |
n=1
k
=Y E[(400 (" @ 8 = ) Lienpozuno, | (6.24)

Now recall that the treble (z”, &", &™) € Admg is %-optimal. Thus,

—2Zn
E[<J;Xn Zn ( an’ E") - S)H{TAPOZM}QOniI
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= E[(”(”» Xn,Zn) — € — %)ﬂ-{r/\pozu}ﬁOn]

> B[ (v, Xu» Z1) = 26 = 2) Lierpozuno, | (6.25)

where the second inequality uses once again (6.13) and that (X, (w), Z,(w)) € B, for
w € O,.Combining (6.24) and (6.25) and summing over the indicator functions, we
arrive at

E[Fu(oby, 2,65, 8, x50, 28001 oz Ty |

> E[(v(u, Xy, Za) — 26 — %)hwozu}ﬂw]- (6.26)
On the event U; we have f){j + = 1, which corresponds to £k = u. Then, in (6.20)
]EI:FM (pé! .Ek’ &k’ é\k’ Xk’oa Zk’o)]l{r/\poZu}ﬂUk‘]
= B[ (9100 X5, ZEOT Ly + 8200 X5 ZEOT e VL empoza Lo |
= E[ (g1, XE, Z9) 1 ipomu) + 8200t Xb, ZD L ipomi)) Lierpozu Lug | 627)

where the final equality is by (6.18). Putting together (6.26), (6.27) and (6.19) we
arrive at

UNTAPO
v(ta-xa Z) Z E[[ f(sa XS’ Z‘Y’as)ds _f <C+(S’ Xi)vdgj—>
t [t

JUATAPO)

- f (c—(s, X5),dE;) + 81(p0, Xpos Zpo) Lipo<tinipo<u)
[t,untApo)
+ g2(7, Xo, Zt)]l{‘[<p(9/\u} + (U(ua Xu, Zy) — 26 — %)]l{r/\pozu}lUk

+ <gl(’/h Xu, Zu)]l{p@:u} + g2(u, Xy, Zu)]l{p@>u}>l{12u}ﬂU,€i|-

Letting k — oo we have Uy 1 Q and U | @. Moreover, v > g3 by definition and
both g1 and g, are bounded from below by Assumption 3.6. Then, by Fatou’s lemma,
we obtain

UNTAPO
v(t,x,2) > E[/ f(s, Xs, Zs, a5)ds —f (c4 (s, Xy), d&")
t [

LUANTAPO)

- / (c—(s, Xy), ds;) + g1(po, Xp@, Zp@)l{pofr}ﬂ{po<u}
[t,untApO)

+ &2(7, Xo, Zr)ﬂ{r<poAu} +vu, Xy, Zu)]l{rApOZM}]

— (L +26)P(x A po = u) (6.28)
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Lettingm — oo and e — 0, then taking the supremum over (7, «, &) € 7,V x A} x XY
in (6.28) we obtain our second inequality. Recalling the result in step 1 of this proof
we conclude. O

Remark 6.2 The proof of Theorem 4.1 follows by identical arguments but dropping the
dependence on the state process Z (i.e., the state dynamics is only given by the couple
(t, X)). The only note of caution is that instead of the finite-fuel condition, in the
infinite-fuel problem one must check the admissibility condition E[| Vie,11 (ék ) |1’] <
o¢o. That is not hard because

k
Vi 1) = Vi €0 + D Vi 1lo, + Vi €N Ly
n=1

Clearly,
E[|Vir,u1(6°) + Vi 1€ LyelP] < B[V, 11(E%)|"] < o0
because EO € &X”. Moreover, recalling (6.15) we also obtain, for all n < k,

E[IVie,11EMIP] = E[E( Vi, 11EMIP | F£ 01 ()]
E[Eol|Viu,11ENIPT] = E[E[ Vi, 71 (E19)171]
= E[|Viu.11EMIP] < o0,

where the final equality is by P-indistinguishability of £” and £”-0 and the inequality
isby &" € X}).

Remark 6.3 In the proof of Theorem 4.1 we use the equivalence between weak formu-
lation and strong formulation of the stochastic control problem (see Proposition 5.7).
For example, when we pass to the reference probability system v, at time u € [, T']
we need the weak formulation to argue that the inequality in (6.12) holds. Similar
technical steps in other parts of the proof use the same argument.

Our next goal is to extend the DPP to stopping times o € (¢, T). In the process
we also prove Proposition 4.3, which turns out to be a useful tool in the proof of
Theorems 4.4 and 4.5.

Proof of Proposition 4.3 We perform the full proof only in the case of finite fuel. The

analogue for the infinite-fuel problem follows by the same arguments. Following
[40, Ch. IL1] we need to show that E[(M"%*)~] < oo for all s € [t,T] and
E[M, AO;’SLEZ] < M:Aarg forall t < u < s < T. The integrability condition is
immediate from Assumption 3.6. Let us now prove the supermartingale inequality.
Fix (¢, x, z) and an arbitrary admissible treble (7, o, &) € Adm}’,z_Z on a given
reference probability system v € V;. Setting X = XV%¢, Z = 7" and pp := pga’é
and arguing as in the proof of Theorem 4.2 we obtain an {F; ’0}—predictable treble
"0, a?, &%) € Adm;” :_, and a process (X 0, 7% that are P-indistinguishable from
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the original ones (notice that actually & = «” only Px ds-a.e.). Then, given an arbitrary
u € [t, T], for P-a.e. w € Q2 we introduce the reference probability system v, € V,
defined in (6.1). In this system, we have

]P’w({w’ e Q: (X%, %)) = (X%w), Z,‘}(w))}) — 1.

Moreover, defining 2" = ]l{s>u}77§’0 and £2" = g0 — £0, the process (X, Z°) fol-
lows the dynamics (6.11) in the reference probability system v,,, i.e., more precisely, it
is IP,,-indistinguishable of the pair of processes X" Xu(@)ivwia® ™" ang Zu Zy(@);ve:s™"
defined as in (3.2) and (3.8) but under v,,. From indistinguishibility of (X, Z) and
(X9, 79), it follows that P(po = ,0%) = 1, with p% as in (6.8), and therefore
Py(po = p((),)) = 1 for P-a.e. w € Q2 (Lemma A.l). In particular, below we will
use that on the event {p» > u} we have ,o(09 =inf{s > u: (X?, Z?) ¢ O} AT, ie.,
,o% is defined after time u and therefore it is a non-trivial stopping time in v,,. In the

same spirit, on the event {t > u}, we have T = inf{s > u : 77?’“ =1} AT sothat 7 is
a non-trivial stopping time in v,,.

Let AV be such that v, € V, forevery w € Q\N withP(N) = Oand fix® € Q\N.
Then, by the DPP equation (Theorem 4.2) applied in the reference probability system
Ve € V, with (X9, Z9) as described above, we have

Lir@npo@=uy0 (1, X0 (@), Z)(@))
SATAPY 0 0 o
zﬂ{r(@)Apo(@)zu}E@/ fr, X;, Z), a)dr

u

- / (e+(r, X)), g2
[u,s/\rApoo)
0 0,u;— 0 0 0
- Au sATAPY )<67 e, Xr)’ dgr ’ )+ gl(,O@, XPOO’ Zp?j)]l{ﬂ?gff}ﬁ{ﬂoo<s}
’ (@]

+ ga(z, Xg’ Z(f))]l{r<s/\poo} + (s, X?’ va))]]‘{rAp%ZS}i|
= Lir@npo @ zu) Yus (@), (6.29)
for every s € [u, T], as (z, af, EO'“) € AdmZ@z—ZO(@) (see Proposition A.4). Since

the above expression holds for arbitrary @ € 2\ N, plugging it into our definition of
MVi%E (see (3.13)) we obtain P-a.s.

ik UNTAPO
M = (f f(s, Xy, Zs, ag)ds
t
-/ (ter 5, X0, 46 + e (5, X4, d&)))
[t,unTApEO)

+ g1(po, Xp@, Zp@)]l{pofr}ﬁ{po<u} + g2(7, Xo, Zr)]l{r<uApo})

+ ]l{r/\poZu}\pu,y (6.30)
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Recalling that E, [Y] = E[Y|_7-'f,’0](w) = E[Y|F}1(w) for any F-measurable ¥ such
that E[(Y)™] < oo (Lemma A.2), we obtain by Assumption 3.6, for P-a.e. w,

\l/u,s ()

SATAPO
:E[/ f(rs ererar)dr_/ <C+(r,Xr),d§j>
u [u,sATAPO)
- / (e_(r, X;), ds;) + g1(po, Xp(ga Zp@)l{posr}ﬁ{po<s}
[u,sATAPO)

+ g2(7, X¢, Zt)l{r<s/\po} + v(s, X;, Zs)]l{r/\pon}

}"L’t](w), (6.31)

where we also used the P-equivalence of (7,«, £, po, X, Z) and their {]—"S"O}-
predictable counterpart (t°,a?, £, p%, X°, Z%) and that ded"* = dg¥* for
r € [u,T], P-as. by construction. Combining (6.30) and (6.31), we arrive at
M;)Aats > E[M‘fﬁ’ﬂf;], P-a.s., as needed.

Now assume that the treble (%, a*, £*) € Adm;’,z_Z is optimal, i.e.,

u(t,x,2) = J, (% o, EY). (6.32)

Then, repeating step 1 in the proof of Theorem 4.2 with the treble (r,a,&) =
(%, a*, £*), we obtain

J;jx,z('f*, o, EY)
UNTFAPE
< E[/ fGs, X5, 7 al)ds
t

-/ (e XD, dE57F) + (e (5. XD, d&5 7))
[t unt*Apg)
+ gl(p(*gs X:(*D’ Z:g)]l{p(*gft*}ﬂ{p(*9<u}

+ gz(r*’ Xj*, Z;ﬁ*)l{r*<uAp’;9} + v(u, X:, Z:;)]l{r*/\p(*g>u}:|’

where we have denoted (X*, Z*) := (XVi@ &7 zvie™.§%) apd pH = pga*’g*. Using
the inequality above and (6.32) it is not difficult to prove that

v(u, Xi(w), ZH(w)) = J;,wx;(w),Z;(w)(T*’ a*, &%), forP-aew e {t" Apo >u}.

Then, the inequality in (6.29) becomes an equality upon replacing (z, °, £%) therein
with (t*, o*, £*). Thus, MSV/\O;*s is a martingale. Notice that IE[|M;1);*’g ] < o0
holds thanks to (4.1). O

We can now prove the DPP for stopping times (Theorems 4.4 and 4.5). Once again
we only provide the full proof for the finite-fuel problem as the one for the infinite-fuel
case follows the same arguments but with one fewer state variable.
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Proof of Theorem 4.5 The proof is split into two steps and it uses a standard approx-
imation argument for stopping times, combined with Theorem 4.2. Fix (¢, x,z) €
[0, T] x R4 x [0, z]. For every n € N let II,, := {t,il}%io be the n-th dyadic partition
of [t, T i, ti :=1t+i/2"(T —1).

Step 1. (inequality <). Let (t, a, £) € Adm”.__andlet (X, Z) = (X8, Zvied),

1,2—z
Let 0 € 7Y be arbitrary but fixed. Since o is a stopping time with respect to the

augmented Brownian filtration {F!}, then it is {F]}-predictable (see, e.g., [40, Ch. V,
Cor. 3.3]). Thus, there exists a sequence (oy,),eN of {F!}-predictable stopping times
such that 0, 1 o asn — oo on the event {o > t} and o, takes values in IT, (see, e.g.,
[15, Ch. IV, Thm. 77]). We set A, := {0, =t} € ;f;

Recalling I'y from (6.2) we have, for every n € N,
J (T 8)
T ATAPO
:E[f f(svx.YsZ.YsaS)ds_f (C+(sts)’d‘§5+>
t [t,onATAPO)
- f {e—(s, Xs), dgs_) + g1(po, X,o@, Zp@)]-{pogf}:u-{'r/\po<(fn}
[t,onATAPO)

+ g2(7, Xt Zr)]l{po>r}1[r/\p@<an} + Iy, (po, 7, a,&, X, Z)ﬂ[r/\poza,,}i|

2" i ATAPO
=ZE[(/ f(s,Xs,zs,as)ds—f ' (4 (s, Xy), dgT)
i=0 t [1,5,ATAPO)

- f ) (c—(s, X5), d%_g'_) + 81(;0(97 Xpoa Zp@)]l{pogf}n{po<f'il}
[t.ti AT APO)

+ g2(7, X1, Zr)]l{rqril/\po} + Ft’il (po, T, 0,8, X, Z)ﬂ{rApozt};})ﬂA;}' (6.33)

Now, for every n € Nand everyi = 0,1,...,2", we apply the same argument as
in the DPP for deterministic times (6.7)—(6.12) with u = ¢, and using the regular

conditional probability ]P’Zlﬁ (A) = IP’(Al]—'[’ ;O) = IP’(Al]—'[’i) (also notice that A’ € ]—'[’,- ).
Thus, we obtain ! ! !

E[r,}i (00, T, 0, €, X, Z)IL{,Apozt’,-l}]lA;] < E[u(t;;, X, z,é)n{mpz,é}%].

Plugging this inequality into (6.33) and summing over the events Aj;, i=0,...2",
we have

J[‘jx,z(rv (X, E)

OpNTAPO
< E[ / f(s, X5, Zs, a5)ds — / (c1(s, Xy), d&)
t [t,onATAPO)
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- / {c—(s, Xy), d%;) + gl(p(Qv X,Oos Zpo)]l{pogr}ﬂ{po<a,,}
[t,onATAPO)
+ 81, Xe, Z) Nt <o, npo) + V(00 Xo,» Za,,)l{r/\pOZJ,,}jI-

Letting n — o0, by Assumption 3.9, we obtain

Jt‘jx’z(‘[’ a) é)

TATAPO
< E[/ f(s, X5, Zy, a5)ds —/ (et (s, Xy), d&)
t [t,oAnTAPO)
- / (C,(S, Xs)a dé;) + 81 (PO, X,oo’ Zp@)]l{pogt}ﬂ{p@<a}
[t,oATAPO)

+ g2(7, X¢, Zt)l{r<a/\po} +v(o, X, Z(T)]l{tApoZO’}]‘

Taking the supremum over (7, @, §) € Adm;’;__ we conclude this step in the proof.
Step 2. (inequality >). Again, let (t,«,&) € Adm!.__ and let (X,Z) =

1,2—2
(Xviees | zvie§) The process M":%% defined in (3.13) is a supermartingale on v by
Proposition 4.3, with Mtvﬁ’g = M;”Ol’g = v(t,x,z). Foreveryn € N, let o, € 7,
be as in step 1 above. Since o, takes values in a discrete set we can apply optional
sampling theorem in discrete time to the left-continuous supermartingale M,';AO;S and
obtain v(t, x,z) = M;*** > E[M}:5% ], foralln € N, since 7} = F', is trivial. That
is, for every n € N, ’

TUATAPO
v(t, x,z) > E[/ f(s, X5, Zs, ag)ds —/ (c4(s, Xy), d&)
t [t,on ATAPO)
- / (C,(S, Xs)v ds;) + 81 (p(’)’ Xp(gv Zp@)l{pofr}ﬁ{po«f,,}
[t,on ATAPO)

+ g2(7, X¢, Zt)ﬂ{r«rnApo} + v(oy, X(rn, Z(rn)]l{tApozdn}i|'

Letting n — oo, by Assumption 3.9, we obtain

OATAPO
v(t, x,2) > IE[/ (s, Xs, Zs, a5)ds —/ (et (s, Xy), d&T)
t [t,oATAPO)
- / (c—(s, Xy), d%;) + g1(po, XPO’ Zpo)l{pofr}ﬁ{po<a}
[t, o0 ATAPO)
+ &2(7, X, Zr)]l{r«rApo} +v(o, Xo, Zo)l{r/\pOZG}:|-

Combined with step 1 above, we conclude. O
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Remark 6.4 Notice that for the controls £ € &}”, the condition E[| V[, 71(§)|”] < o0
is not needed to prove the DPP (if anything it makes some arguments lengthier).
Therefore, our study could have been developed without assuming any integrability of
the admissible singular controls. It is also worth noticing that existence and uniqueness
of the solution to the SDE (3.2) is guaranteed by, e.g., [16, Theorem 1] without
assuming integrability on the singular controls.

It is however useful to have developed our arguments with such additional con-
straint, in order to allow for wider applicability of our results. Indeed, a-priori it is
not obvious that adding constraints to the set of admissible controls is without conse-
quence for the DPP ([20, Remark 2.15]). Moreover, the condition E[| V|, 71(§)[P] < o0
is useful to prove continuity of the value function (see, e.g., [36, Ch. III, Sec. 9]).
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Appendix A: Regular Conditional Probabilities

In this appendix, we gather well-known results on regular conditional probabilities
most of which can be sourced, for instance, from [24, Ch. I, Sec. III] and [20, Ch. II,
Sec. III]. Regular conditional probabilities allow us to construct reference probability
systems starting at future times u € [¢, T'] that preserve the history of the problem up
to time u (see Proposition A.4). These systems provide a pseudo-Markovian structure
(as proven in, e.g., [12]; see also [4, Lemma 3.2]) which is essential in order to obtain
the DPP for our (in principle non-Markovian) problem.

A.1: Background Material

Let (2, H, Q) be a probability space and G € H be a sub o-algebra. A function
p: 2 x H — [0, 1] is called regular conditional probability (given G) if

(i) for every w € €2, the function Q,, := p(w, -) is a probability measure on (2, H);
(ii) for every A € H, the function p(-, A) is G-measurable;
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(iii) for every A € H, we have Q,(A) = EQ[14|G1(w) =: Q(A|G) for Q-a.e. w.

By recalling that (X)* denote the positive/negative part of X, if X is H{-measurable
and either EQ[(X)_] < o0 or IEQ[(X)+] < 00, it follows that

EQ[X|G](w) = ER[X] := / X()dQu (@), Q-ae.w. (A1)
Q

Indeed, EQ[X] is well-defined if min{E2[(X)~], EQ[(X)*]} < oo (see, e.g., [41,
p. 25, eq. (2)]) and conditional expectations can be constructed in the standard way
with the aid of monotone convergence theorem.

Existence of regular conditional probabilities is non-trivial but the next result is
well-known. Let (2, F, IP) be a complete probability space, with (€2, Fo ) a standard
measurable space in the sense of item (i) in Sect.2 and F the P-completion of FO.
Then, given a sub-c-algebra G C FV, there exists a regular conditional probability
p: QxF? — [0, 1] whichis P-a.s. unique. Thatis, if p’ : Qx F° — [0, 1]is another
regular conditional probability, given G, then there exists N € G with P(N) = 0 such
that if o € Q \ N then p(w, A) = p'(w, A) for every A € FO. Moreover, if " is a
Polish space and y : @ — T is G/B(I")-measurable then

P,({o' € Q:y(@) =y} =1, P-ae o, (A.2)

i.e., y is P,-a.s. equal to the constant y (w) for P-a.e. w. For a proof of these results
see, e.g., Theorems 3.1, 3.2 and the subsequent Corollary of Chapter I in [24].

A.2: A Collection of Technical Results

Letv = (Q, F, P, {.7-'; }, W) € V; be a fixed standard reference probability system.
Recall that F is the completion of F9 with the P-null sets and that (§2, F°) is a standard
measurable space.

Let us fix u € [t, T]. We denote by P, the regular conditional probability given
}'Li’o. That is, P, (A) = IF’(A|]—'L’,’O)(w) for every A € F for P-a.e. w. We also denote
by F,, the completion of F° with the P,,-null sets. Thus,

Fo={AUN;:AecF' N, C N e F° P,(N)=0}.

For completeness we should use the notation IP% (-) = P(- |.7-"[,‘O)(w), but since u is
fixed we prefer a simpler notation and drop the superscript u.

We define W) := Wy, — W, for s € [u, T], .7-";"0 = oW} 1 r € [u,s]) and
we denote by F““ the augmentation of 7 with the P,,-null sets. For the sake
of simplicity, we also denote by [E the expectation with respect to P and by E,, the
expectation with respect to P,,.

In this framework, we have the following results.

LemmaA.l Let A € F, then A € F, for P-a.e. w. Moreover, if P(A) = 1, then
P,(A) = 1 for P-a.e. w. Conversely, let A € F° be such that P,,(A) = 1 for P-a.e.
w, then P(A) = 1.
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LemmaA.2 Let Y : Q — R? be a F-measurable random variable such that either
E[(Y)"] < coorE[(Y)T] < oo. Then, for P-a.e. w, we have that Y is F,,-measurable
with min{E,[(Y) "], E,[(Y)T]} < 00 and E,[Y] = E[Y|F.](w).

The proof of both lemmas is a straightforward adaptation of the arguments in [20, p.
102] and we omit it for brevity. Recall that for P-a.e. v € €, the filtration {F"“}se[u. 1]
is defined as the P,-augmentation of {F; ,O}Se[u’n- In the next lemma we show that,
for P-a.e. € €, it actually coincides with the P,-augmentation of {}'St’o}se[tj].

This conveys the intuitive idea that by adding all the P,,-null sets to {.ﬂ?”o}se[uj], we
recover the full Brownian filtration started at time ¢.

LemmaA.3 ([20, Lemma 2.26]) For P-a.e. w, F““ coincides with FI° augmented
by the Py,-null sets of F°.

In the next proposition, for P-a.e. € 2, we generate reference probability sys-
tems v, starting at time u € [¢, T], i.e., v, € V, and then we construct admissible
controls on v, starting from ones in the standard reference probability system v € V;.
The probability measure on the reference probability systems v, is the regular con-
ditional probability PP,,. To obtain these results, it is convenient to recall the notation
from Sect.5. Recall also that given any admissible treble (7, «, ), either in Adm;
or Adm;; ., and letting " be the increasing process associated to 7, it is possible

to construct a {.Fg’o}—predictable treble (n”o, af, SO) which is also admissible (see
Lemma 5.1 and 5.2).

Proposition A4 Fix v € V;. Let (t,a,&) € Adm; and denote by ™0, oe SO)
the associated {J”:;’O}-predictable admissible treble. Set Sso o= SO - Su, ns =
]1{3>L,}r]sr’0f0r s € [u, T and let %" be the restriction ofoz0 to [u, T). Finally, let

= (Q’ ]:a)’ ]P)a)a {]_‘;l,ﬂ)}’ Wu)

Then, for P-a.e. v € Q, we have v,, € V, (i.e., v, is a legitimate reference probability
system staring at time u) and (n®*, o %%y ¢ Adm,”. The same result holds if
we replace Adm! and Adm,” with Adm _ and Adm" respectively, where

750 = 2+ Vi (€°).

u,z—75%w)

Proof We first want to prove that v, € V), for P-a.e. w. By construction, (2, F,, Py)
is a complete probability space. It remains to show that, for P-a.e. w, the process W*
is a Brownian motion on (2, F,, P,) such that P, (W} = 0) = 1.

Obviously, WY = 0and W* has continuous paths. To prove it is a Brownian motion,
we must show that (see, e.g., [38, Proposition 1.2.7]), for P-a.e. w,

CN u u \'\2
Eo[e! Wi =W | pre) = =760 P, as., (A3)

forallu <r <s<Tandye€ RR?". For that we argue s1m11arly to [20, Lemma 2.25].
Since, for P-a.e. w, {F/"“} is the augmentation of {F}~ } with the Py,-null sets (see
Lemma A.3), then any A € F“ is of the form A = A; U N with A ¢ FLo
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P,(N) = 0 for P-a.e. w. Hence, for P-a.e. w, E,[Y|F"“] = Ew[Y|.7-',”O], P,-a.s., for
any integrable Y and in particular, for P-a.e. o,

Eyle' MW 0] = By[ef WS WD FLO) Pyeas,

forallu <r <s <Tandy € R Then, (A.3) is equivalent to proving that, for
P-a.e. w,

y2
Eyle™ 2 671 4]

=Ey[e!"W =W 1,], forallu<r<s<T,yecR? and A € F°.

Now letr € [u, TINQ, D := [t,r] N Q and (By)k be a countable generator of
B(Rd,). Since W is continuous, we have that .7:;’0 = 0(G) where G = {Wq_l(Bk), q €
D, k € N} is a countable generator. Let H := 7 (G) be the 7w-system generated by G,
then H is a countable w-system generating ]-",t’o. Thus, fors € (r,T]NQ, y € Q¢
and A € H, we have

Eyle™ 6701 4] = B, [l 07— | F11 4]
= By [Ele! W' =W 1 4| F1])
= E[E[e' " =W 141711401 ()
=E, [V —W1,], P-ae o, (A.4)

where in the first line we have used that W is a Brownian motion on (€2, F, IP), in the
third line we have used the regular conditional probability property (A.1) and in the
fourth line we have used the tower property. Thus, we have just shown that for every
r,s,y and A (taken in their respective countable sets) there exists SZ;“) sy © Q with

P(QA ) = 1 such that (A.4) holds for every w € szﬁ{s,y. Then, take

.8,y
Q= ﬂ m ﬂ Qf,s,y’

usr<s<T ,cQd AecH
r,s€Q yeQ

so that P(Q) = 1 and (A.4) holds for every w € Qandeveryu <r <s < T,
r.s € Q, y e QY, A € H. Since H is a countable 7-system generating F0 then

(see, e.g., [3, Theorem 1.1]) we obtain that (A.4) holds in fact for every A € ]-"rt’o.
Namely, for P-a.e. w, we have that

"2 . u u
Eyle™ 76D 14] = Ele! Wi W1 ], (A.5)

foreveryu <r<s<T,r,s€Q,ye€ Qd/ and A € .7-',”0. For arbitrary r € [u, T],
selr,T],ye R we select sequences (r,), C [u, T1NQ, (sp)n S [r, TINQ and
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(yn)n C Qd/ such that r, — r, s, — s and y, — y as n — 00. Then, forall w € Q,
using dominated convergence we obtain

E,[e-F 0 "14] = lim E [‘7“”_’")11A]= lim [0~ 1, ]

-E, [ (v, W =W ILA]

forall A € .7-',”0, where the second equality is by (A.5). This concludes the proof of
(A.3) and therefore v,, € V), is a reference probability system.

It remains to prove that (no’“, ol SO’”) is an admissible treble. Since, for IP-
ae. w, FI'O € F"® for every s € [u, T] (see Lemma A.3), then o is {F/“ w}
progressively measurable and 7% and &% are {F;"“}-adapted. By construction n%
is left-continuous and non-decreasing with n%* € {0, 1} and m, = 0, P-a.s. By
Lemma A.1, these properties hold P,,-a.s. for P-a.e. w and so %% € & ”‘”. Similarly, we
obtain that £%* is left-continuous, of bounded variation and with 53 =0, Py-a.s. for
P-a.e. w.

If £ € XY(z — z), then by definition V[,,T](SO) < 7z — z, P-a.s. Recall the
process Z& = z + Vir.)(6) from (3.8) and let Z5'° = z + Vi, (¢°) be its (F1°}-
predictable counterpart. Then, using (A.2) and Lemma A.1, it is immediate to check
that Vi, 71(E%") < 7 — Z5° (@), Py-a.s. for P-a.e. . Thus, £%¢ € X (z — 25 (w))
for P-a.e. w € Q. If instead £ € X", then

E[Eo[Viw,r1E")17]] = E[E[|(Viu, 11 E")IP| FL 0] (@)]
< E[IVi.n€)1”] < oo.

Therefore,
]Ew[IV[u,T](EO’“)IP] < oo, forP-ae. we g,

which guarantees £€%% € X, for P-a.e. w.
We then conclude that the treble (%%, «%#, £%-#) is admissible in v,, for P-a.e. w.
O

The final lemma in this appendix is essentially a repetition of [12, Lemma 11]. It is
shown that the stochastic integral with respect to the underlying probability P is indis-
tinguishable of the stochastic integral with respect to the regular conditional probability
P, for P-a.e. . Let {Hs}sefr, 7] be an adapted process on v = (2, F, P, {F!}, W)
which is P-a.s. square-integrable in [#, T'] with respect to the Lebesgue measure. Then,

T
P <f H2ds < oo) =1 (A.6)
t
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implies, by Lemma A.1, that

T
P, (f H2ds < oo) =1, forP-ae. w.
t

For such a process, we denote by

P
H.dW"
[u,s]

the stochastic integral of H against W* when constructed with respect to the probability

P and, similarly, by
P

H.dw!
[u,s]
the stochastic integral of H against W* when constructed with respect to the regular
conditional probability P,,.

LemmaA.5 ([12, Lemma 11]) Let H be an {}"S’}-adapted process such that (A.6)
holds. Then, P -a.s. for P-a.e. o, we have

P Py
H.dwW}! = H.dW}, foralls € [u,T].
[u,s] [u,s]
Proof This proof follows the same arguments as in [12, Lemma 11]. O
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