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Introduction

This thesis is divided into two parts, the first one focused on generalized descriptive
set theory, and the second one on combinatorics and Ramsey theory.

According to Kechris [93], “Descriptive set theory (DST) is the study of “defin-
able sets” in Polish (i.e. separable completely metrizable) spaces”. Polish spaces
are ubiquitous in mathematics (and not only there), and found application in many
different fields. Classical DST has a natural generalization that occurs when count-
able is replaced by uncountable, called Generalized Descriptive Set Theory (GDST).
Until recently, GDST focused mainly on the study of the generalized Baire space κκ

for a cardinal κ satisfying κ<κ = κ, obtaining groundbreaking results (see e.g. the
wonderful connection with Shelah’s stability theory [135, 65, 88, 111]). However,
this framework is narrow compared to the one of (classical) DST, focusing mostly on
a single space, and heavily relying on cardinal assumptions as the regularity of κ.

The goal of the first part of this work is aimed at filling these gaps. We first
develop a solid theoretical framework consisting of a class of spaces that could take
the role of Polish spaces in the uncountable regular setting commonly considered in
the literature on the subject. Then we extend this theory to all cardinals satisfying
2<κ = κ, including in particular singular cardinals. Finally, we provide some ex-
amples of substantially new spaces in the theory. This first part is the sum of three
distinct works I have done during my PhD together with my supervisor Luca Motto
Ros and, partially, with our coauthor Philipp Schlicht [4, 3, 5].

The second part of the project deals with a notion of recent discovery in com-
binatorics. Hindman’s theorem [80], Carlson’s theorem [31], Gowers’s FINκ theo-
rem [74] and Furstenberg-Katznelson’s Ramsey theorem [68] are some of the most
famous theorems in combinatorics and had a major impact across many fields of
mathematics. All these theorems share a common underlying structure: they involve
a semigroup with a monoid acting on it. In [142], Solecki isolated these common
components into the notions of Ramsey and Y-controllable monoids, and then he
provided some necessary and some sufficient conditions for a monoid to satisfy one
or the other definition. This result generalized all previous statements at once and
showed that a big role in obtaining these theorems is played by the algebraic struc-
ture of the monoid acting on the semigroup.

The goal of the second part of this work is to continue the work started by Solecki
in [142]. We improve some of the results proved therein, and investigate further this
connection between algebra and combinatorics. We also introduce and study other
similar classes of monoids defined through combinatorics. The results obtained in
this part are taken from two works in collaboration with my PhD colleague and friend
Eugenio Colla, [2, 1].
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Introduction 5

Generalized Descriptive Set Theory

Generalized descriptive set theory (in short, GDST) on regular cardinals is a very
active field of research. Basically, the idea is to replace ω with an uncountable regular
cardinal κ in the definitions of the Baire space ωω and Cantor space 2ω , as well
as in all other topologically-related notions. For example, one considers κ-Borel
sets (i.e. sets in the smallest κ+-algebra generated by the topology) instead of Borel
sets, κ-Lindelöf spaces (i.e. spaces such that all their open coverings admit a <κ-
sized subcovering) instead of compact spaces, κ-meager sets (i.e. unions of κ-many
nowhere dense sets) instead of meager sets, and so on. See [65, 6] for a general
introduction and the basics of this subject.

The two spaces lying at the core of the theory are then the generalized or κ-
Baire space κκ and the generalized or κ-Cantor space 2κ , with the so-called bounded
topology. Since the classical Cantor and Baire spaces are second-countable, it is
natural to desire that, accordingly, κκ and 2κ have weight κ: this amounts to require
that κ<κ = κ, or, equivalently, κ regular and 2<κ = κ.

Despite the achievements already obtained by generalized descriptive set theory,
there are still some missing ingredients.

First, the success and strong impact experienced by classical descriptive set the-
ory in other areas of mathematics is partially due to its wide applicability: the theory
is developed for arbitrary completely metrizable second-countable (briefly: Polish)
spaces and for standard Borel spaces, which are ubiquitous in most mathematical
fields. In contrast, generalized descriptive set theory so far concentrated (with a few
exceptions) only on κκ and 2κ , and this constitutes a potential limitation.

Our first goal is to fill this gap by considering various generalizations of Polish
and standard Borel spaces already proposed in the literature ([7, 42, 71]), adding a few
more natural options, and then systematically compare them from various points of
view (see Figure 1). Some of these results substantially extend and improve previous
work appeared in [42, 71].

Second, GDST so far has been focused almost only on regular cardinals, and this
is another potential limitation to the subject. Even in models of ZFC where every
regular cardinal κ satisfies κ<κ = κ, there are still many cardinals on which there is
no GDST. Also, for certain aspects GDST on singular cardinals may reveal to be even
more interesting than GDST on regular cardinals. In the forthcoming papers [52, 53],
Dimonte and Motto Ros conduct a detailed study of GDST on singular cardinals of
countable cofinality, showing that in this context one may recover many theorems of
classical descriptive set theory that gets lost in the uncountable regular case.

Our second goal is then to extend the study of GDST to all singular cardinals
λ satisfying 2<λ = λ, with a particular focus on singular cardinals of uncountable
cofinality to complete the theory developed so far. In particular, for the first time one
can consistently have GDST on every cardinal (e.g. in models of ZFC + GCH).

Finally, one of the reasons why DST has been so successful is the abundance
of example of Polish spaces with substantially different proprieties. The Cantor and
Baire spaces plays certainly a central role in the theory, but we can not avoid the
need of other Polish spaces like the real numbers R, the complex field C, the Hilbert
cube [0, 1]ω, and so on. Our third and last goal is to study the diversity of spaces
that belong to the classes we defined before. We provide some new examples that are
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essentially different from κκ and 2κ , and show that the classes of spaces we defined
are as rich as possible, as each contains 2κ -many non-homeomorphic spaces.

All together, we believe that our results provide a wide yet well-behaved setup
for developing generalized descriptive set theory, opening thus the way to fruitful
applications to other areas of mathematics.

This part is divided into three chapters, each corresponding (roughly) to a dis-
tinct goal among the ones listed above. There is a partial overlap between the first
two chapters, as the result presented in the second chapter are strictly more general
and subsume the ones of the first chapter. However, we believed it would be more in-
formative to introduce the concepts gradually. The first chapter has still many points
in common with the literature (from the techniques used, to the kind of problems that
one has to face), and some proofs are simpler because in the regular case certain sub-
tleties can be avoided. The main focus of the second chapter, instead, is on problems
of a different kind, that arise only when the cardinal is singular and have to be faced
with new techniques.

GDST for regular cardinals

In Chapter 1, we focus on the study of classes of Polish-like spaces for GDST on a
regular uncountable cardinal κ satisfying κ<κ = κ. But what do we want from a
class of spaces in order to be considered “Polish-like”? There are at least two crucial
conditions. First, it should contain the generalized Cantor and Baire spaces. This
already compels us to abandon metrizability. Second, we should recover the usual
notion of Polish-space when κ = ω. Thus, our main focus will be on classes of
spaces of weight≤ κ that are defined by generalizing complete metrizability or other
notions which are equivalent to it in the classical case. When moving to uncount-
able cardinals, however, part of the theory seems naturally related to other classes of
spaces like ultrametrizable and zero-dimensional Polish space: for this reason, we
introduce also a few more classes that come from generalizations of other notions
and concepts from those areas.

We collected six classes that seem to us the most natural options. The first two
come from a direct generalization of the notion of metric. As we said, it is not possi-
ble to use classical metrizability in this context: the main reason is that metrizability
intrinsically contains a notion of “countable dimension” in itself. More in detail:
given a totally ordered Abelian group G, call degree of G, denoted by Deg(G), the
smallest length of a sequence of positive elements converging to zero. The prob-
lem with metrizability is then that Deg(R) is countable, and this implies that every
metrizable space is first countable. On the other hand the spaces 2κ and κκ are not
first countable if cof(κ) > ω. The idea is then to replace R with a totally ordered
Abelian group G of degree κ: in this way, we get a notion of metric (called G-metric)
that is suitable in this context (see Definition 1.1.5 and the preceding paragraph).

When it comes to completeness of G-metrics, there are (at least) two possible
ways to proceed. Cauchy completeness can be extended naturally to G-metrics by
looking at sequences of length Deg(G). We call a space G-Polish if it has weight
≤ κ and it is (Cauchy) completely G-metrizable (Definitions 1.1.5). When Deg(G) is
uncountable, the theory of G-metrics is closely related also to the theory of ultramet-
rics, and for these spaces, we have another natural notion of completeness. We call
an ultrametric spherically complete if the intersection of every decreasing sequence
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of balls (it does not matter whether we take them open or closed here, as all balls of
an ultrametric are clopen) is nonempty. This notion can be naturally extended to all
G-metrics as well. We call a space spherically complete G-Polish if furthermore the
G-metric can be taken to be spherically complete (Definition 1.1.29).

The idea of using generalized metrics has been rediscovered several times in dif-
ferent fields (see [117, 34, 89, 62], to mention a few instances), and this makes the
literature very sparse and difficult to deal with. The first systematic study of gen-
eralizations of metrics started around the half of last century ([90, 139]), and later
on, a more systematic study of G-metrics has been developed by various authors
in general topology (see e.g. [9, 83, 122, 126] and their bibliography). In contrast,
the literature on complete G-metrics seems scarcer, and it basically reduced to the
papers [7, 42, 71]. One of the main results of the theory of generalized metrics
is that fixed any totally ordered Abelian group G, if deg(G) = ω then every G-
metrizable space is also metrizable (in the classical sense, that is, R-metrizable),
while if deg(G) > ω, then every G-metrizable space is also G′-metrizable for any
other totally ordered Abelian group of the same degree ([126]). In particular, in
the countable degree case G-metrizability yields to the usual notion of metrizabil-
ity, while in the uncountable case we have a theory that is independent of the choice
of G. In this work, we prove that similar results hold for complete G-metrizability
(Corollaries 1.1.22, 1.1.23, and 1.1.33).

The second two classes we consider come from a well-known game-theoretic
characterization of Polish spaces: a second countable (regular Hausdorff will always
be tacitly assumed for every topological space) space is Polish if and only if it is
strong Choquet ([36, 93]). The strong Choquet game has a natural generalization
to higher cardinals by simply allowing the two players to play for κ-many rounds.
However, when κ is uncountable it may happen that the game stops at a limit ordi-
nal before κ because we already got an empty intersection. In these situations (that
are not present in the countable version of the game), we need to choose which of
the two players wins. Different choices lead to distinct notions: in the strong κ-
Choquet game, we stipulate that player I wins all runs that stop before κ, while in the
strong fair κ-Choquet game we instead declare that it is player II that wins in those
cases. A strong κ-Choquet space (or SCκ-space) is then a (regular Hausdorff) space
of weight ≤ κ in which player II has a winning strategy in the strong κ-Choquet
game, and we analogously define strong fair κ-Choquet spaces (or fSCκ-spaces)
using the strong fair κ-Choquet game instead of the strong κ-Choquet game (Def-
initions 1.1.2 and 1.1.3). The notion of SCκ-spaces and fSCκ-spaces have been
introduced quite recently: the notion of strong κ-Choquet space has been studied for
the first time in [42], while the notion of strong fair κ-Choquet is introduced in this
thesis and in the corresponding paper [4].

Finally, the last two classes we consider in the first chapter are inspired by the
following characterization of a zero-dimensionality within the class of Polish spaces:
a space is a zero-dimensional Polish space if and only if it is homeomorphic to a
closed subset of the Baire space ωω . In the classical case, a subset of ωω is closed
if and only if it is the set of branches (i.e. the body) of a pruned tree T ⊆ ω<ω ,
where pruned means that T has no leaves, or, equivalently, no branch of size < ω.
Once again, in the uncountable case κ > ω definitions that were equivalent in the
classical setup become distinct. Indeed, if we look at bodies of trees T ⊆ κ<κ that
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have no leaves (called now weakly pruned trees), then we get precisely the closed
subsets of κκ . However, we can also consider subsets of κκ which are the body of
a tree T ⊆ κ<κ that has no branch of length < κ: we call them superclosed sets.
Topological properties of closed subsets of the generalized Baire space have been
studied in several papers (see e.g. [6, 65] and their bibliography). Superclosed subsets
of the generalized Baire space have been studied, for example, in [42]. However,
very little was known about the relationship between these two classes (see e.g. the
diagram in [71, p. 25]).

Our first main result instead is to show that this is not the case, and these six
classes are nicely divided into two groups: a class of “weakly complete” (Polish-like)
spaces, containing G-Polish spaces, closed subsets of the generalized Baire space,
and fSCκ-spaces, and a class of “strongly complete” (Polish-like) spaces, containing
spherically complete G-Polish spaces, superclosed subsets of the generalized Baire
space, and SCκ-spaces.

Main Theorem 1 (Theorem 1.1.21). Assume κ<κ = κ > ω. For any (regular
Hausdorff) space X the following are equivalent:

(a) X is G-Polish;

(b) X is a κ-additive fSCκ-space;

(c) X is homeomorphic to a closed subset of κκ .

Main Theorem 2 (Theorem 1.1.32). Assume κ<κ = κ > ω. For any (regular
Hausdorff) space X the following are equivalent:

(a) X is a spherically complete G-Polish space;

(b) X is a κ-additive SCκ-space;

(c) X is homeomorphic to a superclosed subset of κκ .

G-metrizable or,
equivalently, κ-additive

(Up to homeomorphisms: subsets of κκ )

G-Polish
(Up to homeomorphism: closed subsets of κκ )

Spherically (<κ-)complete G-Polish
(Up to homeomorphism: superclosed subsets of κκ )

SCκ

fSCκ

Figure 1: Relationships among different Polish-like classes of regular Hausdorff
spaces of weight ≤ κ, for a totally ordered Abelian group G of degree deg(G) = κ.

When κ is not a weakly compact cardinal, in the above statements we can replace
the generalized Baire space κκ with the generalized Cantor space 2κ (as in this case
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κκ and 2κ are homeomorphic). If instead κ is weakly compact, we obtain two analo-
gous results characterizing κ-Lindelöf spaces as closed or superclosed subsets of the
generalized Cantor space (see Theorems 1.2.22 and 1.2.23).

The previous results also reveal another important dividing line: κ-additivity, a
property which is relevant only if κ > ω. More in detail, recall that a topological
space is κ-additive if every intersection of < κ-many open sets is still open. This
property implies strong forms of zero-dimensionality (see e.g. [10]), thus κ-additivity
can be thought of as the uncountable analogue of zero-dimensionality, an important
diving line in the context of (classical) Polish spaces. It is immediate to check that
(spherically complete) G-Polish spaces are κ-additive (and hence zero-dimensional):
this is not too surprising, as G-metrizability coincide with G-ultrametrizability when
deg(G) is uncountable ([121], see also Corollary 2.2.55).

Our analysis of the above-mentioned classes of Polish-like spaces reveals that
there is no preferred option among them. Depending on which properties one de-
cides to focus on, certain classes behave better than others, but there is no single
class simultaneously sharing all the nice features typically enjoyed by the collec-
tion of (classical) Polish spaces. For example, if one is interested in maintaining
the usual closure properties of the given class, then the “right” class is arguably the
one of “weakly complete” spaces. Indeed, both fSCκ-spaces and G-Polish spaces
are closed under continuous open surjections (Theorem 1.4.3), ≤ κ-sized sums and
products, and Gκδ -subspaces (Theorems 1.4.1 and 1.4.2). In the context of κ-additive
spaces, the latter can be turned into a characterization of “weakly complete” sub-
spaces which mimic a well-known classical result.

Main Theorem 3 (Theorems 1.1.28). Assume κ<κ = κ > ω. A subset Y of a
G-Polish space X is G-Polish if and only if Y is Gκδ in X .

In contrast, “strongly complete” spaces miss some of the above closure proper-
ties. Indeed, both SCκ and spherically complete G-Polish spaces are closed under
open subspaces, ≤ κ-sized sums and products, and continuous open surjections, but
they are not even closed under taking closed subspaces (see [42]). On the other
hand, these classes are arguably the “right” ones in other respects. For example, ev-
ery closed spherically complete G-Polish subspace of a G-Polish space is a retract
of it, and thus, every spherically complete G-Polish space is the continuous image
of the generalized Baire space κκ (Corollary 1.1.34). Moreover, we have a Cantor-
Bendixson theorem for perfect spaces within such classes (Theorem 1.2.6). All these
properties provably fail for the class of G-Polish spaces (Remark 1.2.7 and [105,
Theorem 1.5]).

The above different possibilities and behaviors are reconciled at the level of κ-
Borel sets: all the proposed classes give rise to the same class of spaces up to κ-Borel
isomorphism, and thus they constitute a natural and solid setup to work with if one
is interested in developing a (generalized) descriptive set theory from the level of
λ-Borel sets onward.

Main Theorem 4 (Theorem 1.1.40). Assume κ<κ = κ > ω. Up to κ-Borel isomor-
phism, the following classes of spaces are the same:

(1) fSCκ-spaces;

(2) SCκ-spaces;
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(3) G-Polish spaces;

(4) spherically complete G-Polish spaces.

We also provide a mathematical explanation of the special role played by the
κ-Cantor and κ-Baire spaces in the generalized setting. On the one hand, they ad-
mit nice characterizations which are analogous to the ones obtained in the classical
setup by Brouwer and Alexandrov-Urysohn. These theorems have been extended
to higher cardinals many times in different ways (see e.g. [87, Theorem 2.3], [121,
Theorems 3.5 and 3.9]). We provide here similar characterisations using the notion of
SCκ-space (Theorems 1.2.10, 1.2.14 and 1.2.15). On the other hand, when restricting
to κ-additive spaces all our classes can be described, up to homeomorphism, as col-
lections of simply definable subsets of κκ and 2κ (Theorems 1.1.21, 1.1.32, 1.2.22,
and 1.2.23).

Borel space and standard Borel spaces are other fundamental notions of (classi-
cal) descriptive set theory. These notions can be extended to the uncountable case by
considering κ+-algebras instead of σ-algebras ([118, 65, 6]). In the classical case,
there are multiple ways to define what a standard Borel space is: they can be defined
as the Borel spaces which are Borel isomorphic to some Borel subset of the Baire
space ωω (or of any other uncountable Polish space, including 2ω ); or, equivalently,
they can be defined as the Borel spaces generated by some Polish topology. We
show that in the generalized context the two possibilities coincide as well. To fix the
terminology, following [118] we introduce the following definition.

Definition. A κ-Borel space (X,B) is standard if it is κ-Borel isomorphic to a
κ-Borel subset of κκ .

Having introduced natural classes of generalized Polish spaces, we can now prove
the following:

Main Theorem 5 (Theorem 1.3.5). Assume κ<κ = κ > ω. A κ-Borel space (X,B)
is standard if and only if there is a topology τ on X such that Borκ(X, τ) = B and
(X, τ) is an fSCκ-space.

Moreover, Main Theorem 4 shows that in Main Theorem 5 we may equivalently
ask that (X, τ) belongs to any other class of Polish-like spaces considered in this
chapter. Main Theorem 5 is obtained via another fundamental technique concerning
Borel sets that can be nicely extended to higher cardinals: we can change the topology
of a Polish-like space, still maintaining most of its properties and structure, in order
to turn κ-Borel sets into clopen sets (Propositions 1.3.1 and 1.3.7).

On the practical side, the usefulness of Main Theorem 5 lies in the following
observation. In the literature, there are already a lot of results concerning the κ-Borel
subsets of κκ : thanks to Main Theorem 5, we can now extend them to the κ-Borel
structure of an arbitrary Polish-like space. Clearly, this paves the way for a wealth of
applications, still to be explored.

We conclude this chapter by collecting some remarks and some open questions
on the topic.
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GDST for singular cardinals

In Chapter 2, we focus on the study of GDST relatively to an arbitrary cardinal λ
of cofinality cof(λ) = µ satisfying 2<λ = λ. The case ω < µ < λ has never
been considered in the literature, and it nicely extends and completes the work from
Chapter 1 on regular cardinals and of [52, 53] on singular cardinals of countable
cofinality.

When moving to GDST for cardinals of arbitrary cofinality, various new issues
arise. For example, one must now pay attention to the fact that, depending on the
situation, ω can be replaced with either λ or its cofinality µ. Indeed, in notions de-
pending on the cardinality it is natural to use λ: for example, we study λ-Borel sets,
λ-Lindelöf spaces, λ-meager sets, spaces of weight ≤ λ, and so on. Nevertheless,
some other concepts intrinsically depend on the cofinality of λ rather than on λ it-
self: for example, we look at µ-metrizable spaces (i.e. G-metrizable for some totally
ordered Abelian group G of degree1 µ), µ-additive spaces, games of length µ, and so
on.

Moreover, it turns out that the right generalizations of the Cantor and Baire spaces
in this context are 2λ and λµ (rather than λλ ). The hypothesis 2<λ = λ then ensures
that both spaces have weight λ. Furthermore, when λ is not weakly compact then 2λ

and λµ are homeomorphic (see e.g. [121]), and this holds in particular for all singular
cardinals.

The (admittedly vague) concept of “right” class of Polish-like spaces changes as
well, depending on the cofinality. In fact, as in the regular case we still want that
each class we consider contains at least the generalized Cantor and Baire spaces 2λ

and λµ . However, we now want to develop a theory that is coherent not only with
classical DST, but also with the already existing setups of GDST for regular cardinals
and for uncountable singular cardinals of countable cofinality. More in detail, when
cof(λ) = ω the spaces 2λ and λω are completely metrizable, and the (only) right
class of Polish-like spaces in this context is arguably the one of λ-Polish spaces, i.e.
completely metrizable topological spaces of weight ≤ λ (see [52, 53]): thus we want
that when λ has countable cofinality one recovers (classical) complete metrizability.
On the other hand, when cof(λ) = λ, i.e. when λ is regular, we expect to recover
(at least) all the classes studied in Chapter 1, although we will also consider other
classes of spaces naturally arising in this new context.

All classes of spaces introduced in Chapter 1 can easily be extended to arbitrary
cardinals, but only some of them readily give a suitable Polish-like class, while some
others require additional conditions (which were implicit in the regular case but be-
come relevant for singular cardinals). Let us start with the ones that do extend in a
nice way, without any further effort.

We call (λ, µ)-Polish a Cauchy-completely µ-metrizable space of weight ≤ λ,
and spherically complete (λ, µ)-Polish a (λ, µ)-Polish space where furthermore the
G-metric can be taken to be spherically complete. These notions respect all our
requirements: when λ has countable cofinality, (λ, ω)-Polish spaces coincide with λ-
Polish spaces (Fact 2.3.16), and if we restrict ourselves to ultrametrizable spaces, we
get the same result for spherically complete (λ, ω)-Polish spaces (2.2.1). When λ =

1Notice that this is the unique natural choice, as the degree of a totally ordered Abelian group is
always a regular cardinal naturally defined in terms of cofinality (or, to be precise, coinitiality).
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µ > ω, instead, we recover exactly the classes of G-Polish spaces and spherically
complete G-Polish spaces from Chapter 1 (Fact 2.3.16).

Similarly, we can redefine the classes of spaces homeomorphic to closed or su-
perclosed subsets of λµ , without any significant change and in a way that is coherent
with the already known setups λ = cof(λ) or cof(λ) = ω.

The classes based on Choquet-like games need instead more work. A SCλ
µ-space

(respectively, fSCλ
µ-space) is a (regular Hausdorff) topological space X of weight

≤ λ such that player II has a winning strategy in the strong (respectively, fair) µ-
Choquet game on X . However, these concepts alone are not enough to grant what
we want, as they do not entail any form of (generalized) metrizability if λ > ω
is singular. For example, these classes do not coincide with λ-Polish spaces when
λ > cof(λ) = µ = ω, as there are examples of non-metrizable SCλ

ω-spaces for any
λ of countable cofinality.

This happens because Choquet-like games just characterize completeness, but not
metrizability. In the classical setting λ = ω, metrizability comes for free by second
countability, thanks to the well-known Urysohn’s metrization theorem. Such theorem
has an extension to higher regular cardinals: every µ-additive regular Hausdorff space
of weight ≤ µ is µ-metrizable (see [139]). This is why in the regular case, where the
weight naturally coincides with the additivity, we could ignore metrizability and only
care about completeness. However, for λ singular (and more generally for spaces
of weight > µ) there is no analogue of the Urysohn’s metrization theorem, and thus
it becomes crucial to find other suitable generalizations of metrizability. Of course
µ-metrizability is a natural option, but when µ is uncountable it implies being µ-
additive and Lebesgue zero-dimensional, thus it seems to be too restrictive. Once
again, the best way to find alternative notions of (generalized) metrizability is to
look at characterizations of (classical) metrizability that hold independently from the
weight of the space.

The first notion, leading to NSδµ-spaces (for 2 ≤ δ ≤ µ), is inspired by the
Nagata-Smirnov metrization theorem ([119, 141]), one of the most famous char-
acterizations of metrizable spaces holding unconditionally: a topological space is
metrizable if and only if it is regular Hausdorff and has a σ-locally finite basis (i.e.,
in our terminology, a NSωω-basis). This notion can easily be extended to higher car-
dinals, and indeed NSδµ-bases (with δ = 2 or δ = ω) have already been used in the
literature to characterize, together with µ-additivity, the class of µ-metrizable spaces
([137, 84]). Motivated by this, we define NSδµ-spaces as (regular Hausdorff) spaces
having a NSδµ-basis for their topology (Definition 2.2.4). To simplify the notation,
we simply write NSµ instead of NSµµ. Notice that, in contrast to the literature on
the subject, we are no longer requiring µ-additivity (and, for the sake of general-
ity, we also allow values of δ in between ω and µ): this allows us to overcome the
mentioned restrictions imposed by µ-metrizability itself and naturally include in our
classes non-zero-dimensional spaces too. It turns out that having a NSµ-basis is a
good substitute for (generalized) metrizability. On the one hand, when µ = ω we
recover the (classical) metrizable spaces by the mentioned Nagata-Smirnov metriza-
tion theorem. On the other hand, every basis of size ≤ µ is trivially a NS2

µ-basis,
thus if λ = cof(λ) = µ > ω is regular the condition of being a NSδµ-space (for any
2 ≤ δ ≤ µ) is automatically satisfied by all spaces considered in Chapter 1, which
always have weight ≤ λ = µ.
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Next we consider (µ-)tree-based spaces, i.e. (regular Hausdorff) spaces with a
basis for the topology that form a tree (of height ≤ µ) under the reverse inclusion
relation ⊇. Tree-based spaces have been introduced and studied for the first time
by Kurepa [99, 100], and later rediscovered in other papers (see e.g. [121]). When
µ = ω, rather than characterizing metrizability this notion characterize ultrametriz-
ability: a space is Hausdorff and ω-tree-based if and only if it is Lebesgue zero-
dimensional and metrizable ([44, 121]). Therefore, according to our desiderata, this
should exclude this option from the acceptable substitutes for metrizability. How-
ever, the class of (µ-)tree-based spaces is quite useful and serves as a bridge between
different notions, allowing us to simplify a significant part of the theory. Therefore
we nonetheless include it in our analysis.

To the best of our knowledge the last class we introduce has not been considered
before, and notably yields a new metrization theorem (even in the classical case µ =
ω). Most of the metrization theorems present in literature depend on the existence
of a certain particular basis for the topology. However, such bases might be difficult
to find if we are only presented with the topology, without a specific basis already
fulfilling the desired requirements. Moreover, in most practical situations what is
really used is not the existence of a well-behaved basis of the given metrizable space,
but rather the two most fundamental consequences of metrizability: paracompactness
and first countability. Even taken together, these two properties are not enough to
grant metrizability (consider e.g. to the Sorgenfrey line). We show that by replacing
first countability with the following “uniform” (therefore stronger) version of it, we
indeed get a characterization of metrizability. Let X be a topological space. The µ-
uniform local basis game is a game of length µ where at each round α < µ, player
I picks a point xα ∈ X , and player II replies with an open set Vα containing xα:

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...

At the end of the run, player II wins if either
⋂
α<µ Vα = ∅, or {Vα | α < µ} is a local

basis of a point of X; otherwise I wins. A topological space is µ-uniformly based
if (it is regular Hausdorff and) player II has a winning strategy in the corresponding
µ-uniform local basis game. Notice that despite its name, this notion just depends
on the topology and not on its bases. Using the above game, we can then give a new
characterization of metrizability which has a more descriptive-set-theoretic flavour.

Main Theorem 6 (Theorem 2.2.39). A topological space is metrizable if and only if
it is regular Hausdorff, paracompact and ω-uniformly based.

As hinted, the advantage to work with this notion rather than with bases is that this
game provides a user-friendly concrete tool to verify whether a space is metrizable
or not. Consider for example the Sorgenfrey line: it is immediate to see that player
I has a winning strategy in the ω-uniform local base game on it (it is enough that
(s)he keeps changing point going right in the order), and thus that this space is not
metrizable. Conversely, it is less immediate to see that there are no NSω-basis for the
topology of such space.

Main Theorem 6 has also a natural extension to µ-metrizability (Theorem 2.2.41)
once we replace paracompactness with its higher analogue (µ, µ)-paracompactness.2

2Paracompactness and (µ, µ)-paracompactness coincide when the space is µ-additive, and if fur-
thermore µ is uncountable they coincide also with Lebesgue zero-dimensionality — see [10]).
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The last class of spaces we consider is thus the one consisting of (µ, µ)-paracompact
µ-uniformly based spaces. This class satisfies again all the requirements to be “suit-
able” for developing GDST for singular cardinals. Indeed, when µ = ω it coincides
with the class of metrizable spaces. Moreover, every regular Hausdorff space of
weight ≤ µ is automatically (µ, µ)-paracompact and µ-uniformly based, thus this
condition trivializes when λ = µ is a regular cardinal, as in Chapter 1. Finally, this
class contains examples of non-zero-dimensional (and non-κ-additive) spaces.

The class of NSδµ-spaces and the class of (µ, µ)-paracompact µ-uniformly based
spaces are nicely ordered by inclusion: every NSδµ-space is also a NSδ

′
µ -space for

every 2 ≤ δ ≤ δ′ ≤ µ, and every NSµµ-space is also (µ, µ)-paracompact and µ-
uniformly based (Proposition 2.2.36). Without µ-additivity, the class of µ-tree-based
does not relate well with NSµ-spaces: the two classes are incomparable with respect
to inclusion because of zero-dimensionality and Proposition 2.5.2. However, every µ-
tree-based space is Lebesgue zero-dimensional (thus paracompact) and µ-uniformly
based (Proposition 2.2.38), so the former class is included in the latter. Figure 2
sums up the mutual relationships among these classes. Notably, all the distinctions
disappear in the realm of µ-additive spaces, where all the notions introduced above
coincide (see Theorem 2.2.1 and the following paragraph for the relevant references
to the literature). In particular, all these classes coincide up to λ-Borel isomorphism
(Theorem 2.4.12).

µ-uniformly based + (µ, µ)-paracompact
NSµ
NSδµ
NS2

µ

µ-metrizable µ-tree-based

Figure 2: Relationships among different generalizations of metrizability for (regular
Hausdorff) topological spaces. All classes coincide assuming µ-additivity.

Having found suitable analogues of metrizability, in Section 2.3 we step back
to completeness. The main novelty here is that we introduce two further notions
of completeness, closely related to compactness and defined through the existence
of a certain basis for the topology (linking thus the work on completeness with the
one on metrizability). Every form of compactness brings within itself a form of
completeness: for example, it is well-known that every compact metrizable space is
completely metrizable, and similar statements hold in the uncountable case as well
(Propositions 1.2.18 and 1.2.19). Compactness can be stated (equivalently) as the
property that the intersection of any family of closed sets with the finite intersection
property is nonempty (a similar statement holds for µ-Lindelöfness and families of
closed sets with the <µ-intersection property). It turns out that by limiting this prop-
erty to (the closure of) sets from a basis for the topology we get precisely a notion
of completeness (even for non-compact and non-µ-Lindelöf spaces). More in detail,
given a family B of open sets denote with cl[B] the family of the closures of its ele-
ments. We say that a space is compact-based is it (is regular Hausdorff and) admits
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a compact basis, i.e. a basis B such that every subfamily of cl[B] with the finite in-
tersection property has nonempty intersection. Analogously, we say that a space is
µ-Lindelöf-based if it (is regular Hausdorff and) admits a µ-Lindelöf basis, i.e. a
basis B such that every subfamily of cl[B] with the < µ-intersection property has
nonempty intersection (Definition 2.3.19. Compare it also with [7]).

Combining these notions with some form of (generalized) metrizability, and espe-
cially with the existence of µ-tree-bases, we get a tool that allows us to simplify a sig-
nificant part of the theory (compare e.g. Proposition 1.1.14 with Proposition 2.3.32)
and that better highlights some connections that naturally arise among different con-
cepts. For example, the equivalence between being Polish and being Gδ (and its
uncountable analogues, like Main Theorem 3) can be easily explained using the no-
tion of µ-Lindelöf µ-tree-bases (Theorem 2.3.27), and with this notion we get also
a (weaker) characterization of spherically complete (λ, µ)-Polish subspaces that we
could not get before (Lemma 2.3.30).

We conclude the study of completeness by proving Theorems 2.3.1 and 2.3.2,
which show that by adding µ-metrizability we can restore the picture we got in the
regular case. In particular, in that case, all the completeness notions get divided
into two classes: a first class of “weakly complete” spaces (containing (λ, µ)-Polish
spaces, fSCλ

µ-spaces, µ-Lindel”of-based spaces, and spaces homeomorphic to closed
subsets of λµ ), and a second class of “strongly complete” spaces (containing spheri-
cally complete (λ, µ)-Polish spaces, SCλ

µ-spaces, compact-based spaces, and spaces
homeomorphic to superclosed subsets of λµ ). Figure 3 sums up what we obtained so
far, and should be compared with Figure 1.

Main Theorem 7 (Theorems 2.3.1 and 2.3.2). Let X be a (regular Hausdorff) space
of weight ≤ λ, and further, assume that X be Lebesgue zero-dimensional if µ = ω.

(a) The following are equivalent:

(1) X is (λ, µ)-Polish;

(2) X is a spherically µ-complete µ-metrizable space;

(3) X is a µ-metrizable fSCλ
µ-space;

(4) X is a µ-Lindelöf-based µ-metrizable space;

(5) X is homeomorphic to a closed subset of λµ ;

(6) X is homeomorphic to a Gµδ subset of λµ ;

If furthermore µ = cof(λ), then they are also equivalent to the following:

(7) X is homeomorphic to a Gµδ subset of 2λ .

(b) The following are equivalent:

(1) X is a spherically <µ-complete (λ, µ)-Polish space;

(2) X is a spherically complete µ-metrizable space;

(3) X is a µ-metrizable SCλ
µ-space;

(4) X is a compact-based µ-metrizable space;

(5) X is homeomorphic to a superclosed subset of λµ .
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In particular, when µ = ω then all the above items (1)–(7) from part (a) and (1)–(5)
from part (b) (under the appropriate assumptions on λ) are equivalent to each other.

µ-additive

µ-metrizable
(Up to homeomorphism: subsets of λµ )

(λ, µ)-Polish
(Up to homeomorphism: closed subsets of λµ )

Spherically complete (λ, µ)-Polish
(Up to homeomorphism: superclosed subsets of λµ )

µ-uniformly based + (µ, µ)-paracompact

fSCλ
µ

SCλ
µ

Figure 3: Relationships among different Polish-like classes for regular Hausdorff
spaces of weight ≤ λ and for uncountable cardinals λ and µ.

Finally, in Section 2.4 we study λ-Borel spaces, for an arbitrary cardinal λ with
cof(λ) = µ satisfying 2<λ = λ. As discussed, Sections 2.2 and 2.3 introduce a large
number of classes of spaces which could claim to be the “right” generalization of
Polish spaces: this makes it very challenging to determine which are the best classes
to work with. Even if the situation might be chaotic from the topological viewpoint, a
better picture can be obtained from the point of view of (generalized) descriptive set
theory: all classes of topological spaces considered so far are the same up to λ-Borel
isomorphism, and actually, in most cases, the only differences concern the finite levels
of their λ-Borel hierarchy (even though λ might be very large in the cardinal hierar-
chy). A first positive result in this direction is Proposition 2.4.3, which shows that
most topological properties we considered (being NSµ, µ-tree-based, µ-uniformly
based, fSCµ or SCλ

µ) pass to the smallest µ-additive refinement of the topology; to-
gether with Main Theorem 7 and Corollary 2.4.9, this show, for example, that among
Lebesgue zero-dimensional NSµ-spaces all classes of complete Polish-like spaces
considered so far are the same up to λ-Borel isomorphism. Theorem 2.4.12 improve
this result, showing that all the different classes of weakly complete and strongly
complete spaces coincide up to λ-Borel isomorphism. Surprisingly, (µ-)metrizability
and the other related notions that we defined in Section 2.2 play no role at all from
this point of view, as we can always add any of them without altering the λ-Borel
hierarchy too much.

Main Theorem 8 (Theorem 2.4.12). Assume 2<λ = λ and cof(λ) = µ. Up to
λ-Borel isomorphism, the following classes of topological spaces coincide:

(1) fSCλ
µ-spaces;

(2) SCλ
µ-spaces;

(3) (λ, µ)-Polish spaces;
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(4) (Lebesgue zero-dimensional) spherically complete (λ, µ)-Polish spaces;

(5) µ-Lindelöf-based spaces;

(6) compact-based spaces.

As in the regular case, this implies that we have a unique notion of standard λ-
Borel space (Theorem 1.3.5), providing thus a solid ground for the development of
descriptive set theory from λ-Borel sets onward.

Main Theorem 9 (Theorem 2.4.13). Assume 2<λ = λ and cof(λ) = µ. Then a
λ-Borel space (X,B) is standard if and only if there is a topology τ ′ on X such that
Borλ(X, τ ′) = B and τ ′ belongs to any of the classes from Main Theorem 8.

Finally, we can classify which subsets of a standard λ-Borel space inherit a stan-
dard λ-Borel structure. In a (classical) standard Borel space (X,B), a subset A is
again standard Borel (with the inherited structure) if and only if A ∈ B. This result
is a direct consequence of Lusin’s separation theorem [110], which is known to fail in
the generalized context (see [65]). Nonetheless, we show that a different proof leads
to the desired result, unconditionally.

Main Theorem 10 (Theorem 2.4.15). Assume 2<λ = λ and cof(λ) = µ. Let (X,B)
be a standard λ-Borel space, and let A ⊆ X . Then (A,B � A) is a standard λ-Borel
space if and only if A ∈ B.

Examples of Polish-like spaces

In Chapter 3 we provide numerous examples of spaces inside the classes considered
above. This chapter is taken from a preliminary version of a work in progress. The
study is here conducted for a regular uncountable cardinal κ satisfying 2<κ = κ, with
the idea to extend it in the (near) future also to singular cardinals. In Sections 3.1, 3.2
and 3.3, we study some classes of spaces in which one can find examples of non-
κ-additive fSCκ (or SCκ) spaces. In Section 3.4, we instead go back to κ-additive
spaces and show that various classes of G-Polish and spherically complete G-Polish
spaces are rich enough and contain 2κ-many non-homeomorphic spaces. The plan
for the future is to extend the work of this third section also to non-κ-additive spaces
(possibly using bi-embeddability instead of homeomorphism) by employing the tools
developed in the first two sections.

The content of this chapter should serve as a complement to the theoretical study
carried out in the previous ones. However, there is also a second motivation behind
its first two sections.

Since its very beginning, one natural problem in GDST has been that of finding
the right analogue of the real line in that context. Two remarkable works on the
topic have been done by Asperó and Tsaprounis, who introduced and studied the
so-called field of long reals κ-R ([12]), and by Galeotti (partially together with Carl
and Löwe), who studied the subfield Rκ of the surreals numbers and showed, for
example, how one can recover for this space natural analogues of theorems from real
analysis ([70, 71, 30]).

The problem with generalizing R to the uncountable case is that one can not pre-
serve all its different proprieties at the same time. For example, it is well-known that
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there is no Dedekind-complete totally ordered field of uncountable degree ([43, 71]).
So depending on which direction one wants to look at, one should decide which
properties (s)he is willing to maintain and which ones (s)he can bear to lose. If one is
interested in the algebraic structure of R, then it is natural to ask to preserve the fact
that R is a totally ordered field, at the cost of sacrificing order properties (Dedekind-
completeness) and topological proprieties (being connected). For example, this has
been the choice in [12] and [71]. In contrast, in topology being connected is certainly
a fundamental property of the reals (from basic separation axioms like complete reg-
ularity to ideas like path-connectedness and homotopy theory). Also, the theory of
G-metrizable spaces shows that the algebraic structure of G (and thus of R) plays
a marginal role in metrization theory (to the point that G can be taken to be just a
semigroup, see [126]), while the order structure of G plays a fundamental role. For
these reasons, one can argue that at least for certain aspects of GDST the “right” gen-
eralization of the space of reals R should be searched within the class of complete
linear orders, equipped with their order topology. (Then one might partially reconcile
the two different options by looking at order completions of totally ordered fields.)

Hence, we decided to hit two birds with one stone and study linearly ordered
spaces as a source of examples of non-κ-additive fSCκ and SCκ-spaces. Since our
main objective is to find examples of fSCκ and SCκ-spaces with different properties,
we do not focus directly on proposing alternatives for the real line in the uncountable
setting: nevertheless, we believe that our study could contribute to understanding
which properties one should expect from such a space, hinting at where to search for
it.

In Section 3.1 we study the classes of linearly ordered topological spaces (LOTS)
and generalized ordered spaces (GO-spaces). More precisely, a LOTS is a linear
order equipped with the order-topology generated by its open intervals, while a GO-
space is a (both order-theoretical and topological) subspace of a LOTS. (Notice that
the topology of a GO-space might be strictly finer than the order-topology generated
by its open intervals.) This topic has been widely studied, as LOTS and GO-spaces
are relatively well-behaved topological spaces and enjoy many interesting properties.
We refer to [120] for a good introduction to the topic.

We begin by collecting various results we are interested in, providing also a short
proof for those results that are probably folklore but are not explicitly proved in [120].
Then we turn to the relation between order topologies and Choquet games. Our main
result on the topic is a theorem providing a sufficient condition for a GO-space (thus
including the case of LOTS spaces as well) to be fSCκ or SCκ.

Main Theorem 11 (Theorem 3.1.15). Let (X,<, τ) be a GO-space of weight ≤ κ.
Then X is SCκ (respectively, fSCκ) if and only if player II has a strategy winning
every run of the strong (respectively, fair) κ-Choquet game on (X, τ) in which player
I plays only open intervals fully contained in the intersection of the previous moves.

This (technical) result has several interesting and more concrete consequences.
For example, it implies (Corollary 3.1.17) that if a GO-topology τ is SCκ (or fSCκ),
than any other GO-topology τ ′ ⊇ τ of weight ≤ κ is again SCκ (or fSCκ). In
particular, if the order topology of a linear order (L, <) is SCκ (or fSCκ), than any
GO-topology of weight ≤ κ on (L, <) is again SCκ (or fSCκ). Main Theorem 11
also shows that, similarly to other compactness notions, completeness properties of
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GO-spaces are closely related to the presence or absence of gaps in the order (Propo-
sition 3.1.19 and Corollary 3.1.20).

In Section 3.2 we move to a particular class of LOTS: lexicographic spaces. In
particular, we study spaces of the form Lκ , where L is a given linear order, equipped
with the lexicographic order and the corresponding order-topology. Our main goal
is actually to study the lexicographic order topology on the κ-Cantor and κ-Baire
spaces, but first, we survey the properties of lexicographic topologies in general. We
also analyze the relationship between lexicographic spaces and Choquet games. Our
main result here is Proposition 3.2.7, where we show that the completeness of the
order-topology on the lexicographic space Lκ depends on the endpoints of L and on
the completeness of the lower-limit and/or upper-limit topology on L.

Main Theorem 12 (Proposition 3.2.7). Assume κ<κ = κ and let (L, <) be a linear
order of size ≤ κ.

• Suppose L has no maximum nor minimum. Then every GO-topology on
( Lκ , <lex) is SCκ.

• Suppose L has a maximum but no minimum. Then every GO-topology on
( Lκ , <lex) is fSCκ (respectively, SCκ) if and only if the lower-limit topology
on (L, <) is fSCκ (respectively, SCκ).

• Suppose L has a minimum but no maximum. Then every GO-topology on
( Lκ , <lex) is fSCκ (respectively, SCκ) if and only if the upper-limit topology
on (L, <) is fSCκ (respectively, SCκ).

• Suppose L has both maximum and minimum. Then every GO-topology on
( Lκ , <lex) is fSCκ (respectively, SCκ) if and only if both the upper-limit and
lower-limit topologies on (L, <) are fSCκ (respectively, SCκ).

For every lexicographic space Lκ , it is possible to define a notion of rationals
Q( Lκ ) and irrationals I( Lκ ) of Lκ . These notions are defined in analogy with the ra-
tionals and irrationals of R in the classical case and have many similarities with them.
In this context, we prove that we can extend the usual result on the homeomorphism
between the irrationals and the Baire space to the generalized setting.

Main Theorem 13 (Proposition 3.2.6). Assume κ<κ = κ. Suppose (L, <) is a linear
order of size 2 ≤ |L| ≤ κ, and that it has an end point. Then the irrationals I( Lκ )
(with the lexicographic topology) form a Gκδ subspace of Lκ homeomorphic to the
generalized Baire space κκ (with its usual bounded topology).

In Section 3.3 we conclude our study of LOTS and lexicographic spaces by col-
lecting some topological properties of the κ-Cantor set 2κ and the κ-Baire set κκ

with their respective lexicographic topologies, and show that they are both examples
of non-κ-additive zero-dimensional SCκ-spaces. We also show that the Dedekind-
completion of the κ-Baire set κκ with lexicographic order is a connected, compact,
SCκ-space. Finally, we briefly hint at how to obtain other examples of spaces with
different topological properties, like the generalized circle S1

1(L) generated by a lin-
ear order L with endpoints.

Finally, in Section 3.4 we go back to the realm of κ-additive spaces and show how
different classes of G-Polish and spherically complete G-Polish spaces are as rich as
possible in cardinality, since they contain 2κ-many non-homeomorphic spaces.
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Main Theorem 14 (Theorems 3.4.3, 3.4.6, 3.4.9, 3.4.12, and 3.4.16). Assume that
κ<κ = κ. The following classes contain 2κ-many pairwise not homeomorphic
spaces:

• The class of perfect G-Polish spaces of size 2κ.

• The class of spherically complete G-Polish spaces of size 2κ.

If furthermore κ is weakly compact, the same is true for:

• The class of perfect spherically complete G-Polish spaces of size 2κ.

• The class of perfect κ-Lindelöf G-Polish spaces of size 2κ.

• The class of κ-Lindelöf spherically complete G-Polish spaces of size 2κ.
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Ramsey theory and combinatorics

Many theorems in combinatorics share a very similar structure: “Let M be monoid
acting by endomorphism on a partial semigroup S. For each finite coloring of S,
there is a nice monochromatic subset N (usually closed under the action of M and
the operation of S, to a certain degree)”. They differ in the choice of M , S, and N .
Once S and the desired properties of N are fixed, each theorem of this form defines
a class of monoids that satisfy the above statement. Our aim is to study different
classes of monoids defined this way.

It turns out that S plays (almost) no role in the definition of the class of monoids
(Main Theorem 16 and Lemma 4.1.10). The condition that really causes different
statements to generate different classes of monoids is the structure of the monochro-
matic subset N .

Following this approach, we define and study four classes of monoids that cor-
respond to different theorems in combinatorics: Ramsey monoids (related to Hind-
man’s theorem or Gowers’ theorem or Carlson’s theorem), Y-controllable monoids
(related to Furstenberg-Katznelson Ramsey theorem), locally Ramsey monoids (re-
lated to infinite Carlson’s theorem), and locally Y-controllable monoids (related to
infinite Furstenberg-Katznelson Ramsey theorem).

The classes of Ramsey and Y-controllable monoids have been introduced and
studied by Solecki in [142], where he showed that the possibility to obtain certain
combinatorial statements is strictly linked to the algebraic structure of M . He pro-
vided some purely algebraic sufficient conditions for a monoid to be Ramsey, which
allows to improve several different results in combinatorics (for example, it gives
a simultaneous extension of Hindman’s theorem, Gowers’ theorem, Carlson’s the-
orem, and Furstenberg-Katznelson’s Ramsey theorem), and he showed that one of
these sufficient conditions is also necessary.

We show here that this link is even stronger, and the possibility to obtain cer-
tain combinatorial statements depends only on the algebraic structure of the monoid.
First, we prove that Ramsey monoids and locally Ramsey monoids can be completely
characterized in terms of their algebraic structures (Main Theorem 17 and Main The-
orem 20). Furthermore, we provide both necessary and sufficient conditions for
a monoid to be Y-controllable and locally Y-controllable (Main Theorems 18, 19,
and 21). This, in turn, also gives extensions of some results of Solecki’s [142] and of
all theorems previously mentioned.

Before presenting our results, let us start with a brief historical introduction. The
20th century has been a time of great development for combinatorics, with a big
impulse coming directly from its applications to algebra and number theory. One of
the first and most famous results in the field was obtained by Schur [133] while trying
to solve a (version of a) very famous problem.

Theorem (Fermat’s last theorem mod p — Schur, 1916). For every k ∈ N and for
every large enough prime p, there exists x, y, z ∈ N so that xk + yk ≡ zk (mod p).

This result is based on a wonderful lemma about the combinatorics of natural
numbers: “For every finite partition of N there exist two numbers a, b ∈ N such that
a, b and a+ b all belongs to the same piece of the partition”.

This lemma soon became a cornerstone of combinatorics, and many different
branches of combinatorics originated from it. For example, the set {a, a + b} is an
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arithmetic progression of length 2, and Schur’s lemma can be seen as a precursor of
further famous theorems about progressions, like Van der Waerden’s theorem [156]
and its variant by Brauer (see e.g. [24]).

Theorem (Brauer’s theorem, 1928). For every finite coloring of the natural numbers
and for every k ∈ N there exist two natural numbers x, d ∈ N such that the set
{d} ∪ {x, x+ d, x+ 2d, . . . , x+ kd} is monochromatic.

For further results on this research line, see for example [149], [67] or [19].
Schur’s lemma can also be seen as one of the first results about partition regularity

of families of solutions of linear equations. A familyF ⊆P(X) is said to be weakly
partition regular if whenever we partition X into finitely many pieces, one of these
pieces has a subset in F . Research on partition regularity of families of sets defined
through equations is currently a very active field of research. Schur’s lemma can
be seen as the first example of a theorem of this form: “The family of all possible
solutions in N to the equation x + y = z is weakly partition regular”. For more
results in this area, see for example [50], [106], [14].

Or again, one may wonder what happens if we require the monochromatic set to
be closed under multiplication instead of sum, or even under both operations. The
first result in this direction is easy to achieve and it is an immediate corollary of
Schur’s lemma: “For every finite partition of N there exist two numbers a, b ∈ N
such that a, b and a · b all belongs to the same piece of the partition”. The second
one is instead still wide open.

Open Problem. Is it true that for every finite coloring of the natural numbers there
are a, b ∈ N such that the set {a, b, a+ b, a · b} is monochromatic?

See also [22], [116] for recent developments on this problem.
The focus of this work is on yet another branch of combinatorics whose results

have a different form, so let us restate Schur’s lemma one last time. A finite coloring
of X is a function c : X → r with finite codomain. There is an obvious natural
identification between colorings c : X → r of X and partitions {c−1[i] | i ∈ r} of
X . Also, the set {a, b, a + b} can be seen as a particular example of a more general
family of sets. Given a set X with an operation · and a sequence s̄ ∈ X≤ω, the span
of s̄ is the set

〈s̄〉 = {si0 · . . . · sin | i0 < · · · < in < lh(s)}.
With this notation and terminology, Schur’s result can be formulated in the fol-

lowing way.

Theorem (Schur’s lemma,1912). For every finite coloring c : N → r of the natu-
ral numbers there exists a sequence s̄ = (a, b) ∈ N2 of length 2 such that 〈s̄〉 is
monochromatic.

It is natural to wonder whether one can improve this result to obtain sequences of
greater length with monochromatic span. The first improvement in this direction ap-
peared in the early 1930s, showing that the statement remains true if we require the
sequence to have arbitrary large finite length (this result has been proven indepen-
dently by different mathematicians almost simultaneously, but it is usually attributed
to Rado). In contrast, the question of whether one can obtain an infinite sequence
with monochromatic span remained open for a very long time, until Hindman solved
in 1974 the conjecture [80].
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Theorem (Hindman’s finite sum theorem, 1974). For every finite coloring c : N→ r
of the natural numbers there exists an infinite sequence s̄ = (si)i<ω ∈ Nω such that
〈s̄〉 is monochromatic.

Around the same time, Galvin and Glazer were working on a simple proof of
Hindman’s theorem based on a new method combining topological dynamics and
combinatorics. The key idea of this method is to find idempotents in the space of
ultrafilters over N, i.e. its Stone-Čech compactification βN, and then turn these idem-
potents into theorems in combinatorics. This revolutionary method proved to be suc-
cessful, to the point that it is now a standard argument in the field (and it is also one
of the main arguments used in this paper). See also [81, Section 5.6 (notes)] for a
good explanation of the contribution of Galvin and Glazer.

The proof of Galvin and Glazer can easily be adapted to obtain a strengthening of
the original Hindman’s theorem. In fact, one can further require that the span of the
sequence s̄ be contained in the span of another sequence t̄ chosen in advance. More-
over, it does not use anything specific to the structure of N except for the associativity
of its operation, and thus it works for arbitrary semigroups (see e.g. [81, Corollary
5.15]).

Let (S, ·) be a partial semigroup, and consider two sequences s̄ = (si)i<α and
t̄ = (ti)i<β ∈ S≤ω of elements of S. We say that s̄ is extracted from t̄, or s̄ ≤ t̄,
if there is an increasing sequence (in)n∈γ of natural numbers ≤ lh(t̄) such that sn ∈
〈tin , . . . , t(in+1)−1〉.

Theorem (Hindman’s theorem, stronger version [81]). For every semigroup S, every
infinite sequence t̄ = (ti)i<ω ∈ Sω, and every finite coloring c : 〈t̄〉 → r there exists
an infinite sequence s̄ ≤ t̄ with monochromatic span 〈s̄〉.

For those familiar with the subject, the difference between the weak and the
strong version (applied to S = N) of Hindman’s theorem coincides with the dif-
ference between weak partition regularity and (full) partition regularity of IP-sets.

Passing from the natural numbers N to arbitrary (partial) semigroups has been
the key step in extending the range of applicability of combinatorics outside number
theory. Two partial semigroups, in particular, immediately gained a central role in
the field. Let A be a set, called the alphabet. The semigroup of words WA =
(A<ω,a) over A is the free semigroup generated by A. In other words, WA =
(A<ω,a) is the set of all finite sequences of elements of A with concatenation of
sequences as operation. The partial semigroup of located words (FINA,

a) on
A is the partial subsemigroup of WY for Y = ω × A consisting of those words
((n0, a0), . . . , (ni, ai)) ∈WY such that n0 < · · · < ni.

Focusing on these two partial semigroups, many different generalizations of Hind-
man’s theorem (like Carlson’s theorem, Gowers’ theorem, Furstenberg-Katznelson
Ramsey theorem, ...) found soon applications in other branches of mathematics,
like functional analysis and ergodic theory. All these theorems extend Hindman’s
theorem in a similar way, that is, by finding a monochromatic span of a sequence
which is furthermore closed under a set of endomorphisms of S. Every set of endo-
morphisms, when closed under composition and together with the identity function,
forms a monoid which naturally acts on the partial semigroup itself. For this reason,
we can reduce to work with actions of monoids and introduce the following new class
of spans.
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Every action of a monoid M on a (partial) semigroup S defines an operation
between FINM and Sω: given s̄ = (si)i<ω ∈ Sω and w = (ni, ai)i<h ∈ FINM ,
we formally define w(s̄) = a0sn0 · · · ahsnh . When the semigroup is partial, this
expression is not necessarily well-defined: we say that s̄ is basic if w(s̄) is well-
defined for every w ∈ FINM .

Definition. Let M be a monoid acting by endomorphisms on a partial semigroup S,
and let s̄ be a sequence of elements of S. Given a family C ⊆ FINM , we define the
(combinatorial) C-span of s̄ as the set

〈s̄〉C = Cs̄ =
{
m0 si0 · · ·mn sin | (ih,mh)h≤n ∈ C

}
.

We also define theM -span 〈s̄〉M as the set VM s̄ = {w(s̄) | w ∈ VM} for VM the
set of located words of FINM containing the identity 1M (these are called variable
located words).

Similarly, we can extend to the new setup the notion of extraction of a sequence.

Definition. Let M be a monoid acting by endomorphism on a partial semigroup
(S, ·), and let s̄ = (si)i<lh(s) and t̄ = (ti)i<lh(t) be sequences of elements of S. We
say that s̄ is extracted from t̄ by M , or s̄ ≤M t̄, if there is an increasing sequence
(in)n∈ω of natural numbers such that sn ∈ 〈tin , . . . , t(in+1)−1〉M .

These tools allow us to restate many theorems in a very convenient way. For
example, the strong version of Hindman’s theorem corresponds to the existence of
a monochromatic M -span for every action of the trivial monoid M = {1} on an
arbitrary semigroup S. We can restate in a similar way other known theorems that
we are going to generalize, starting with Carlson’s theorem.

Consider a finite alphabet A with a variable x outside A. For every element
a ∈ A, we may define a function fa : WA∪{x} → WA that associates to every
word w ∈ WA∪{x} the word w[a/x] ∈ WA obtained by replacing each instance of
x with a. We call elements of WA∪{x} \WA variable words. It is not difficult to
see that each function fa is an endomorphism that maps WA∪{x} into WA, and that
fa(w) 6= w if and only if w is a variable word. Furthermore, fa ◦ fb = fb for every
a, b ∈ A. Thus words over an alphabet with a variable can be seen as a particular
case of a more general phenomenon.

Every monoid (M, ∗, 1) acts on itself by multiplication, and thus it also acts
coordinate-wise on the semigroup of words WM over the alphabet M . If M =
A ∪ {x} and we define the operation on M as ab = b for every a, b ∈ A and let x
be the identity of the monoid, then we get that the coordinate-wise action of M on
WM is exactly the set of endomorphism defined above. We call Carlson’s monoid a
monoid (M, ∗, 1) such that ab = b for every a, b ∈M \ {1}.

Carlson’s theorem [31] can then be restated in the following way.

Theorem (Carlson’s theorem, 1988). For every finite Carlson’s monoid M , every
finite coloring of WM , and every infinite sequence t̄ ∈ (WM )ω of (variable) words,
there exists an infinite sequence s̄ ≤M t̄ with monochromatic M -span 〈s̄〉M .

Let us now move to Gowers’ theorem. It focuses on the partial semigroup of
located words over a natural number k ∈ N, using endomorphisms of the form
fi : FINk → FINk−i defined by fi((nj , aj)j<h) = (nj ,max(aj − i, 0))j<h for
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every located word (nj , aj)j<h ∈ FINk and for every i ≤ k. The aim is to find an
infinite basic sequence s̄ ∈ (FINk \FINk−1)ω such that 〈s̄〉M is monochromatic.

Once again, the partial semigroup FINk with this set of endomorphism can be
seen as a particular case of a more general situation. Given a monoid (M, ∗, 1), then
M acts on itself by multiplication, and thus it acts coordinate-wise on the partial
semigroup of located words FINM over the alphabet M . Notice that fi ◦ fj = fi+̄j
for i +̄ j = min(i+ j, k), thus F = ({fi | i ≤ k}, ◦, f0) is isomorphic to the monoid
M = ({0, . . . , k}, +̄, 0). Moreover, if f ′i is the coordinate-wise action of i ∈ M
on FINM and φ : FINk → FINM is the isomorphism defined by φ((nj , aj)j<h) =
(nj , k − aj)j<h, we have φ(fi(w)) = f ′i(φ(w)). Thus the action of F on FINk

is equivalent (up to isomorphism) to the coordinate-wise action of M on FINM .
Define a Gower’s monoid as a monoid (isomorphic to one) of the form Gk+1 =
({0, . . . , k}, +̄, 0) for some k ∈ N.

Under this notation, Gowers’ theorem [74] is the following.

Theorem (Gowers’ FINk theorem, 1992). For every (finite) Gowers’ monoidM and
every finite coloring of FINM , there is an infinite basic sequence of variable located
words s̄ ∈ (FINM )ω with monochromatic M -span 〈s̄〉M .

Solecki proved in [142] a powerful generalization of Gowers’ theorem, by ex-
tending both the class of partial semigroups and the class of monoids for which the
statement of Gowers’ theorem hold.

The partial semigroup of located words 〈(Xn)n∈ω〉 on the family of alphabets
(Xn)n∈ω is the partial subsemigroup of WY for Y =

⋃
n∈ωXn consisting of all

those sequences x1
a ...a xn ∈ WY for which there exists i1 < ... < in ∈ ω such

that xk ∈ Xik . We say that (Xn)n∈ω is a uniform sequence of pointed M -sets if M
acts on Y =

⋃
n∈ωXn, and for every i < ω there is a fixed element xi ∈ Xi called a

variable such that Mxi = Xi.
Given a monoid M , define X(M)= {aM | a ∈ M} to be the set of all principal

right ideals of M . We say that M is almost R-trivial if for every distinct a, b ∈ M ,
if aM = bM then Ma = {a} (and Mb = {b}).

Theorem (Solecki’s X(M) theorem [142]). For all finite almost R-trivial monoids
M with linear X(M), for all uniform sequences of pointed M -sets (Xn)n∈ω, and for
all finite colorings of the partial semigroup 〈(Xn)n∈ω〉, there is a basic sequence of
variable words s̄ ∈ (〈(Xn)n∈ω〉)ω with monochromatic M -span 〈s̄〉M .

Notice that all Gowers’ monoids are almost R-trivial and have linear X(M),
and FINM can be written as 〈(Xn)n∈ω〉 for Xn = {n} × M . Thus this theorem
extends Gowers’ theorems. With some additional work, one can also derive from
this theorem the strong version of Hindman’s theorem and Carlson’s theorem (see
Section 4.1 and Main Theorem 16). Nevertheless, we show that it is possible to
improve this result so that it directly subsumes Hindman’s theorem and Carlson’s
theorem (and Solecki’s X(M) theorem). Our contribution is twofold: we extend
Solecki’s theorem by working with the class of all partial semigroups; and we extend
the class of monoids to the biggest possible class for which a similar statement can
be obtained (see Main Theorem 17).

We say that a monoid M is aperiodic if for every a ∈M there is n ∈ ω such that
an+1 = an. This notion has been widely studied in finite automata theory because of
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Schützenberger’s theorem [134]. Surprisingly, it appears to be the key notion in this
area of combinatorics as well.

Main Theorem 15 (Theorem 5.2.11 and Proposition 4.1.11). For every finite ape-
riodic monoid M with linear X(M), for every partial semigroup S, for every finite
coloring c of S, and for every infinite basic sequence t̄ ∈ Sω, there is an infinite
sequence s̄ ≤M t̄ with monochromatic M -span 〈s̄〉M .

Notice that every finite almostR-trivial monoid is aperiodic, while there are (even
finite) aperiodic monoids that are not almost R-trivial — see Proposition 4.2.6 and
the ensuing paragraphs. Morevoer, if t̄ = (xn)n∈ω are the variables of (Xn)n∈ω, then
t̄ is basic and every sequence s̄ ≤M t̄ consists of variable words (but being extracted
from t̄ gives a strictly stronger notion: see Remark 4.1.7).

One may wonder whether we can further extend the previous theorem. We al-
ready considered the class of all partial semigroups, so we can not improve the result
in that direction. (Unless we drop associativity, which might have interesting appli-
cations e.g. to work with the exponential on the natural numbers like in [51], but it
is outside the scope of this work.) But we also show that, as anticipated, we can not
extend it to more monoids either.

Before coming to that, however, we need to address one problem. A priori, it
might seem possible that each theorem among the ones considered above is true for
a different class of monoids. Luckily this is not the case, and all previous statements
isolate the same class of monoids. This fact is surprising, since it implies that results
on located words (that are often treated as strictly stronger than results on words)
can actually be derived from results on words. For example, the Bergelson-Blass-
Hindman theorem on located words [18] can be derived directly from Carlson’s the-
orem on variable words [31]. Maybe even more surprisingly, Schur’s lemma has the
same strength (in terms of the class of monoids isolated by it) as Hindman’s theorem,
or as any other theorem we listed.

Main Theorem 16 (Proposition 4.1.11 and Theorem 5.2.13). The following are
equivalent for a monoid M :

(a) For every (partial) semigroup S on which M acts by endomorphisms, every
(basic) sequence t̄ ∈ Sω, and every finite coloring of S there is an infinite
sequence s̄ ≤M t̄ such that 〈s̄〉M is monochromatic (cf. Hindman’s theorem
and Main Theorem 15).

(b) For all sequences of pointed M -sets (Xn)n∈ω on which M acts uniformly and
for all finite colorings of 〈(Xn)n∈ω〉 there is a basic sequence of variable words
s̄ ∈ (〈(Xn)n∈ω〉)ω with monochromatic M -span 〈s̄〉M (cf. Solecki’s X(M)
theorem).

(c) For every finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉M is monochromatic (cf. Gowers’ theorem).

(d) For all finite colorings of WM and for all sequences of variable words t̄ ∈
(WM )ω there is an infinite s̄ ≤M t̄ with 〈s̄〉M monochromatic (cf. Carlson’s
theorem).
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(e) For every finite coloring of WM there are two variable words s̄ = (s0, s1) ∈
(WM )2 such that 〈s̄〉M monochromatic (cf. Schur’s lemma).

With this theorem in mind, we can start analyzing the class of monoids defined by
these statements. We call a monoid Ramsey if any of the conditions above hold. Thus
Hindman’s theorem (in its strong version for semigroups), Carlson’s theorem, and
Gowers’ theorem can all be interpreted as saying that certain monoids (respectively:
the trivial monoid, the Carlson’s monoids, and the Gowers’ monoids) are Ramsey.

Ramsey monoids have been introduced and studied by Solecki in [142], using
point (b) of Main Theorem 16 as their definition. He also provided the first necessary
condition for a monoid to be Ramsey: every Ramsey monoid has linear X(M). Con-
tinuing this work, we provide a purely algebraic characterization of Ramsey monoids,
showing in particular that all sufficient conditions of Main Theorem 15 are necessary
as well.

Main Theorem 17 (Theorems 4.4.7 and 5.2.11). A monoid is Ramsey if and only if
it is finite, aperiodic, and X(M) is linear.

The other classes of theorems (and monoids) we consider differ from the above
ones because of the monochromatic subsets they aim at finding. Let us first introduce
another important generalization of Hindman’s theorem: Furstenberg-Katznelson’s
Ramsey theorem [68]. Given two disjoint sets A,B and a variable x outside A ∪
B, the (generalized) Furstenberg-Katznelson’s Ramsey theorem studies the partial
semigroup of located words over the alphabet X = A∪B ∪{x}. Given w ∈WA∪B ,
define w as the word obtained from w by the reduction b→ ∅ and aa→ a for every
a ∈ A and b ∈ B. Also, denote with w[a/x] the word obtained by replacing every
occurrence of x with a.

Theorem (Generalized Furstenberg-Katznelson’s Ramsey theorem, 1989). For ev-
ery pair of disjoint sets A,B together with a variable x /∈ A ∪ B, for every finite
coloring c : FINA∪B → r of the partial semigroup of located words over A ∪ B,
and for every finite F ⊆ A<ω, there exists an infinite sequence of variable words
w̄ ∈ (FINB∪{x} \FINB)ω such that the set{

wi0 [c0/x] · · ·win [cn/x] | n ∈ ω, i0 < · · · < in, c0 · · · cn = f
}

is monochromatic for every f ∈ F .

Once again, this theorem can be seen as a particular case of a more general form
(thanks to Solecki). Given a monoid M , define Y(M)⊆ P(X(M)) as the family
of all non-empty chains (i.e. linear suborders) of (X(M),⊆). Given x, y ∈ Y(M),
define x ≤Y y if x ⊆ y and all elements of y \ x are larger with respect to ⊆ than
all elements of x. Then, M acts by endomorphism on (X(M),⊆), and thus also on
(Y(M),≤Y). Define also 〈My〉, with operation ∨, as the semigroup freely generated
by the set My = {my ∈ Y(M) | m ∈M} modulo the relations

p ∨ q = q = q ∨ p for p ≤Y q.

Given y ∈ Y(M), every element f ∈ 〈My〉 can be seen as an equivalence class
f = {(ni,mi)i≤h ∈ FINM | m0y ∨ · · · ∨mhy = f}, and thus if M acts on a partial
semigroup S we can define the f -span 〈s̄〉f of a sequence s̄ ∈ Sω as the set

〈s̄〉f = fs̄ =
{
m0 si0 · · ·mn sin | i0 < · · · < in < ω,m0y ∨ · · · ∨mhy = f

}
.
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Once the above notation is settled, let us go back to Furstenberg-Katznelson’s
Ramsey theorem. Given two disjoint setsA,B and a variable x outsideA∪B, we can
define a monoid operation on M = A ∪B ∪ {x}: we let x be the identity of M , and
for every a, a′ ∈ A and b, b′ ∈ B we let aa′ = a, ab = ba = b, and bb′ = b′. We call
these monoids Furstenberg-Katznelson’s monoids. The action of M on FINB∪{x}
is by substitution: for every a ∈ M and w ∈ FINB∪{x}, we have a(w) = w[a/x].
Also, M \ {x} acts on FINM in the same way as it acts on FINB∪{x}, because every
a ∈ A behaves like the variable x since ma = m for every m ∈ M \ {x}. So it is
irrelevant whether we obtain a sequence s̄ ∈ FINB∪{x} or a sequence s̄′ ∈ FINM ,
since from the latter we can always pass to the former by replacing every a ∈ s′i ∩A
with x. Finally, notice that X(M) = {B,M}∪

⋃
a∈A{B∪{a}}. Let y = {B,M} ∈

Y(M): then we have (c0, . . . , cn), (e0, . . . , em) ∈ WA∪B and c0 · · · cn = e0 · · · em
if and only if c0y ∨ · · · ∨ cny = e0y ∨ · · · ∨ emy ∈ 〈My \ {y}〉.

Then the Furstenberg-Katznelson’s Ramsey theorem can be restated as follows:
“For every finite Furstenberg-Katznelson’s monoid M , every finite coloring c of
FINM , and every finite F ⊆ 〈My \ {y}〉, there exists an infinite sequence of variable
words w̄ ∈ (FINM )ω with monochromatic f -span 〈s̄〉f for every f ∈ F ”.

In [142], Solecki proved a much stronger version of this theorem.

Theorem (Solecki’s Y(M) theorem [142]). For all finite almost R-trivial monoids
M , maximal y ∈ Y(M) and finite F ⊆ My, for all uniform sequences of pointed
M -sets (Xn)n∈ω, and for all finite colorings of 〈(Xn)n∈ω〉, there is a basic sequence
of variable words s̄ in (〈(Xn)n∈ω〉)ω with monochromatic f -span 〈s̄〉f for all f ∈ F .

Our second goal is to study the class of monoids that satisfy the above statement.
Our first result in this direction improves Solecki’s Y(M) theorem, in that we con-
sider all partial semigroups and a wider class of monoids, including certain infinite
monoids. Define XR(M) = {aM ∈ X(M) | [a]R is non-trivial}. Notice that if M
is aperiodic, then XR(M) has size one (see Proposition 4.2.6).

Main Theorem 18 (Theorem 5.3.19 and Proposition 4.1.14). Let M be a (possibly
infinite) aperiodic monoid such that eachR-class is finite, X(M) contains no infinite
chains, and XR(M) is linear. For all maximal y ∈ Y(M) and finite F ⊆My, for all
partial semigroup S on which M acts by endomorphism, for all finite coloring of S,
and for all basic t̄ ∈ Sω, there is an infinite sequence s̄ ≤M t̄ with monochromatic
f -span 〈s̄〉f for every f ∈ F .

In Section 4.6, Theorem 5.3.12, and Section 5.4 we prove that similar results hold
for other classes of monoids satisfying different hypotheses, hence the hypothesis
above are not optimal. However, some of them are indeed necessary. First of all, as
it happens for Ramsey monoids, we show that different statements lead to the same
class of monoids.

Proposition (Proposition 4.1.14). Given a monoidM , a maximal element y ∈ Y(M),
and a finite F ⊆ 〈My〉, the following are equivalent:

(a) For every (partial) semigroup S on which M acts by endomorphisms, every
(basic) sequence t̄ ∈ Sω, and every finite coloring of S, there is a sequence
s̄ ≤M t̄ such that 〈s̄〉f is monochromatic for every f ∈ F .
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(b) For every uniform sequence of pointedM -sets (Xn)n∈ω and every finite color-
ing of 〈(Xn)n∈ω〉 there is a basic sequence of variable words s̄ in (〈(Xn)n∈ω〉)ω
with monochromatic f -span 〈s̄〉f for every f ∈ F .

(c) For all finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉f is monochromatic for every f ∈ F .

(d) There is a rapidly increasing sequence of variable words t̄ ∈ (WM )ω such that
for all finite coloring of WM there is a sequence s̄ ≤M t̄ with 〈s̄〉f monochro-
matic for every f ∈ F .

We say that a monoid M is Y-controllable if for every maximal element y ∈
Y(M) and for every finite F ⊆ 〈My〉, one of the equivalent conditions above holds.

Main Theorem 18 provides sufficient conditions for a monoid to be Y-controllable.
We also prove that the following conditions are necessary.

Main Theorem 19 (Propositions 5.2.3 and 5.2.4). LetM be a Y-controllable monoid.
Then M is aperiodic and (My,≤Y) contains no infinite chains for every maximal
y ∈ Y(M).

If moreover we have that X(M) is linear, then having only finite R-classes be-
comes necessary as well (see Proposition 5.2.6). As a corollary, we get the following.

Proposition (Corollary 5.2.12). A monoid is Ramsey if and only if it is Y-controllable
and X(M) is linear.

Finally, we analyze some local (infinite) versions of the theorems stated before.
Let M be a (possibly infinite) monoid acting by endomorphisms on a partial semi-
group S, and let s̄ be a sequence of elements of S. Given a sequence (Mi)i∈ω of
finite subsets of M , we define a local span of s̄ by allowing only elements of Mi to
act on the i-th coordinate of s̄. In other words, using previous notation, this local
span is the L-span 〈s̄〉L for L = {(ni,mi)i<h ∈ FINM | mi ∈ Mni}. For ease of
notation, given a family C ⊆ FIN<ω, we define

〈s̄〉C(Mi)i∈ω
= 〈s̄〉C ∩ 〈s̄〉L =

{
m0 si0 · · ·mn sin | mh ∈Mih , ((ij ,mj))j≤h ∈ C

}
.

WhenC = VM is the set of variable located words of FINM , we just write 〈s̄〉(Mi)i∈ω .

Theorem (Infinite Carlson’s theorem [31]). For every (possibly infinite) Carlson’s
monoid M , every sequence (Mi)i<ω of finite subsets of M , every finite coloring of
WM , and every infinite sequence t̄ ∈ (WM )ω of (variable) words, there exists an
infinite sequence s̄ ≤M t̄ such that 〈s̄〉(Mi)i<ω is monochromatic.

Theorem (Infinite Furstenberg-Katznelson’s Ramsey theorem [68]). For every (pos-
sibly infinite) Furstenberg-Katznelson’s monoidM , every sequence (Mi)i<ω of finite
subsets ofM , every finite coloring c of FINM , and every finite F ⊆ 〈My\{y}〉 there
exists an infinite sequence of variable words w̄ ∈ (FINM )ω such that 〈s̄〉f(Mi)i<ω

is
monochromatic for every f ∈ F .

These two theorems isolate two distinct classes of monoids extending the ones of
Ramsey and Y-controllable monoids.
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Definition. A monoid M is called locally Ramsey if for every (partial) semigroup
S on which M acts by endomorphisms, every (basic) sequence t̄ ∈ Sω, every finite
coloring of S, and every family (Mi)i∈ω of finite subsets of M , there is a sequence
s̄ ≤M t̄ such that 〈s̄〉(Mi)i<ω is monochromatic.

Similarly, we define a local version of Y-controllable monoids.

Definition. A monoidM is said locally Y-controllable if for every maximal element
y ∈ Y(M), every finite F ⊆ 〈My〉, every family (Mi)i∈ω of finite subsets of M ,
every (partial) semigroup S on which M acts by endomorphisms, and every (basic)
sequence t̄ ∈ Sω, for every finite coloring of S, there is a sequence s̄ ≤M t̄ such that
〈s̄〉f(Mi)i<ω

is monochromatic for every f ∈ F .

As for the non-local case, these definitions could be stated using smaller classes
of (partial) semigroups (see Propositions 5.1.1 and 5.1.3). In this fashion, the in-
finite Carlson’s theorem and the infinite Furstenberg-Katznelson’s Ramsey theorem
are indeed corollaries of the statements that certain (classes of) monoids are locally
Ramsey or locally Y-controllable.

Our main contributions in this direction are the following. We provide a full alge-
braic characterization of locally Ramsey monoids. And we provide some necessary
algebraic conditions and some sufficient algebraic conditions for a monoid to be lo-
cally Y-controllable. The sufficient conditions for, respectively, locally Ramsey and
locally Y-controllable monoids, in turn, extend the infinite Carlson’s theorem and
the infinite Furstenberg-Katznelson’s Ramsey theorem, respectively. It turns out that
there is one specific algebraic condition that seems to distinguish the local classes
from the non-local ones: the possibility of having infiniteR-classes.

Main Theorem 20 (Theorem 5.3.20). A (possibly infinite) monoid is locally Ramsey
if and only if it is aperiodic and X(M) is finite and linear.

Main Theorem 21 (Propositions 5.2.3 and 5.2.4 and Theorem 5.3.18). Suppose that
the (possibly infinite) monoid M is aperiodic, X(M) contains no infinite chains, and
XR(M) is linear and finite. Then M is locally Y-controllable.

Conversely, if M is locally Y-controllable, then it is aperiodic and (My,≤Y)
contains no infinite chains for every maximal y ∈ Y(M).

As a corollary, we obtain that a monoid M is locally Ramsey if and only if it is
locally Y-controllable and X(M) is linear. Also, M is Ramsey if and only if it is
locally Ramsey and everyR-class is finite. Finally, we obtain the following:

Proposition (Corollary 5.3.5). If M is locally Y-controllable and [a]R is finite for
every a ∈M , then M is Y-controllable.

In Theorem 5.3.12 and Section 5.4 we also present other results along the same
lines, as well as examples of locally Y-controllable monoids that do not satisfy some
of the sufficient conditions of Main Theorem 21.
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Chapter 1

Generalized Polish spaces at
regular uncountable cardinals

1.1 Polish-like spaces

1.1.1 Spaces, games, and metrics

In this chapter, we study Polish-like classes of spaces in generalized descriptive set
theory on an uncountable regular cardinal κ. Throughout the chapter we work in
ZFC and assume that κ is an uncountable regular cardinal satisfying 2<κ = κ (equiv-
alently: κ<κ = κ). Unless otherwise specified, from now on all topological spaces
are assumed to be regular and Hausdorff, and we will refer to them just as “spaces”.
In this framework, (classical) Polish spaces can equivalently be defined as:

(Pol. 1) completely metrizable second-countable spaces;

(Pol. 2) strong Choquet second-countable spaces, where strong Choquet means
that the second player has a winning strategy in a suitable topological
game, called strong Choquet game, on the given space (see below for the
precise definition).

The two spaces lying at the core of generalized descriptive set theory are:

1. the generalized Baire space

κκ = {x | x : κ→ κ}

of all sequences with values in κ and length κ, equipped with the so-
called bounded topology τb, i.e. the topology generated by the sets of
the form

Ns = {x ∈ κκ | s ⊆ x}
with s ranging in the set κ<κ of sequences with values in κ and length
<κ;

2. the generalized Cantor space

2κ = {x | x : κ→ 2}

of all binary sequences of length κ, which is a closed subset of κκ and is
thus equipped with the relative topology.

32
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The assumption κ<κ = κ ensures then that the two spaces κκ and 2κ have weight κ.
Consider now pairs (X,B) with X a nonempty set and B a σ-algebra on X .

Such pairs are called Borel spaces if B is countably generated and separates points1

or, equivalently, if there is a metrizable second-countable topology on X generating
B as its Borel σ-algebra. Standard Borel spaces can then equivalently be defined as:

(St.Bor. 1) Borel spaces (X,B) such that there is a Polish topology onX generating
B as its Borel σ-algebra;

(St.Bor. 2) Borel spaces which are Borel isomorphic to a Borel subset of ωω (or any
other uncountable Polish space, including 2ω ).

In [118], a notion of standard κ-Borel space was introduced by straightforwardly
generalizing the definition given by (St.Bor. 2). Call a pair (X,B) a κ-Borel space
if B is a κ+-algebra on X which separates points and admits a κ-sized basis. The
elements of B are then called κ-Borel sets of X . If (X,B) is a κ-Borel space and
Y ⊆ X , then setting B � Y = {B ∩ Y | B ∈ B} we get that (Y,B � Y ) is again
a κ-Borel space. If (X,B) and (X ′,B′) are κ-Borel spaces, we say that a function
f : X → X ′ is κ-Borel (measurable) if f−1(B) ∈ B for all B ∈ B′. A κ-Borel
isomorphism between (X,B) and (X ′,B′) is a bijection f such that both f and
f−1 are κ-Borel; two κ-Borel spaces are then κ-Borel isomorphic if there is a κ-
Borel isomorphism between them. Finally, a κ-Borel embedding f : X → X ′ is an
injective function which is a κ-Borel isomorphism between (X,B) and (f(X),B′ �
f(X)). Notice that every T0 topological space (X, τ) of weight κ can be seen as a
κ-Borel space in a canonical way by pairing it with the collection

Borκ(X, τ)

of all its κ-Borel subsets, i.e. with the smallest κ+-algebra generated by its topology.
(We sometimes remove τ from this notation if clear from the context.) If not specified
otherwise, we are always tacitly referring to such κ+-Borel structure when dealing
with κ-Borel isomorphisms and κ-Borel embeddings between topological spaces.

We are now ready to generalize (St.Bor. 2).

Definition 1.1.1. A κ-Borel space (X,B) is standard2 if it is κ-Borel isomorphic
to a κ-Borel subset of κκ .

Generalizations of (St.Bor. 1) were instead not considered in [118] because at that
time no natural generalization of the concept of a Polish space was introduced yet.
But clearly, once we are given a notion of a Polish-like space for κ (e.g. the ones we
are going to consider below, namely SCκ-spaces, fSCκ-spaces, or G-Polish spaces),
we can accordingly generalize (St.Bor. 1) by considering those κ-Borel spaces which
admit a topology of the desired type generating B as its κ+-algebra of κ-Borel sets.
This yields to several formally different definitions: we will however show that they
all coincide, so that there is no need to notationally and terminologically distinguish
them at this point.

1A family B ⊆P(X) separates points if for all distinct x, y ∈ X there is B ∈ B with x ∈ B and
y /∈ B.

2Our definition of a standard κ-Borel space is slightly different yet equivalent to the one considered
in [118]. Indeed, the difference is that in [118, Definition 3.6] a ≤ κ-weighted topology generating the
standard κ-Borel structure is singled out—see also the discussion after Corollary 1.3.11.
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We now move to some natural generalizations of Polishness. In [42], the authors
considered a natural generalization of (Pol. 2) to uncountable regular κ in order to
obtain a notion of ‘ ‘Polish-like” spaces, called therein strong κ-Choquet spaces. Let
us recall the relevant definitions. The (classical) Choquet game Gω(X) on a topo-
logical space X is the game where two players I and II alternatively pick nonempty
open sets Un and Vn

I U0 U1 . . .

II V0 V1 . . .

so that Un+1 ⊆ Vn ⊆ Un; player II wins the run if the set
⋂
n∈ω Un =

⋂
n∈ω Vn

is nonempty. The strong Choquet game Gs
ω(X) is the variant of Gω(X) where I

additional plays points xn ∈ Un

I (U0, x0) (U1, x1) . . .

II V0 V1 . . .

and II ensures that xn ∈ Vn ⊆ Un; the winning condition stays the same.
It is (almost) straightforward to generalize such games to uncountable κ’s: just

let players I and II play for κ-many rounds, and still declare II as the winner of
the run if the final intersection

⋂
α<κ Uα =

⋂
α<κ Vα is nonempty. However, since

κ > ω we now have to decide what should happen at limit levels γ < κ. Firstly,
since the space X is not necessarily κ-additive we require Uγ , Vγ to be just open
relatively to what has been played so far, i.e. relatively to

⋂
α<γ Uα =

⋂
α<γ Vα (this

obviously applies to all rounds with index γ ≥ ω, not only to the limit ones). A more
subtle issue is deciding who wins the game if at some limit γ < κ we already have⋂
α<γ Uα =

⋂
α<γ Vα = ∅, so that the game cannot continue from that round on.

Following [42], the (strong) κ-Choquet game G
(s)
κ (X) on X is defined by letting I

win in such situations. In other words, II has to ensure that for all limit γ ≤ κ (thus
including, in particular, the final stage γ = κ), the intersection

⋂
α<γ Uα =

⋂
α<γ Vα

is nonempty. This leads to the following definition.

Definition 1.1.2. A space X is called strong κ-Choquet (or SCκ-space) if it has3

weight ≤ κ and player II has a winning strategy in Gs
κ(X).

The other natural option, not yet considered so far in the literature, is to make the
game more fair by deciding that I partially shares the burden of having a nonempty
intersection and takes care of limit levels γ < κ. In other words: II wins if he
can guarantee that

⋂
α<κ Uα =

⋂
α<κ Vα 6= ∅, provided that for all limit γ < κ

the intersection
⋂
α<γ Uα =

⋂
α<γ Vα is nonempty (if this fails at some limit stage

before κ, then II automatically wins). We call this version of the Choquet game fair
κ-Choquet game and denote it by fGκ(X), while its further variant with player I
additionally choosing points is called strong fair κ-Choquet game and is denoted
by fGs

κ(X), accordingly.

3Notice that we are deliberately allowing our spaces to have weight strictly smaller than κ. Although
this might sound unnatural at first glance, it allows us to state some of our results in a more elegant
form and is perfectly coherent with what is done in the classical case, where one includes among Polish
spaces also those of finite weight.
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Definition 1.1.3. A space X is called strong fair κ-Choquet (or fSCκ-space) if it
has weight ≤ κ and player II has a winning strategy in fGs

κ(X).

Since it is more difficult for player II to win the strong κ-Choquet game than
its fair variant, it is clear from the definition that every SCκ-space is in particular an
fSCκ-space. Moreover, both κκ and 2κ are trivially SCκ-spaces (any legal strategy
where II plays basic open sets is automatically winning in the corresponding strong
κ-Choquet games), and thus they are also fSCκ-spaces.

Remark 1.1.4. Although it is not part of the rules in Choquet-like games, in the above
definitions one could equivalently require the players to pick only open sets from any
given basis of the topological space (possibly intersected with all previous moves, if
the space is not κ-additive)—see [42, Lemma 2.5]. This restriction will turn out to
be useful in some of the proofs below.

We next move to generalizations of (Pol. 1). This requires to find suitable ana-
logues of metrics over the real line for spaces that are not necessarily first countable.
One solution is to consider metrics over a structure other than R. Consider a totally
ordered4 (Abelian) group

G = 〈G,+G, 0G,≤G〉

with degree Deg(G) = κ, where Deg(G) denotes the coinitiality of the positive cone
G+ = {ε ∈ G | 0G <G ε} of G.5 A G-metric on a nonempty space X is then a
function d : X2 → G+ ∪ {0G} satisfying the usual rules of a distance function: for
all x, y, z ∈ X

• d(x, y) = 0G ⇐⇒ x = y

• d(x, y) = d(y, x)

• d(x, z) ≤G d(x, y) +G d(y, z).

Every G-metric space (X, d) is naturally equipped with the (d-)topology generated
by its open balls

Bd(x, ε) = {y ∈ X | d(x, y) <G ε},

where x ∈ X and ε ∈ G+. If X is already a topological space, we say that the
G-metric d is compatible with the topology of X if the latter coincides with the
d-topology. A topological space is called G-metrizable if it admits a compatible
G-metric.

Let (X, d) be a G-metric space. A sequence6 (xi)i<κ of points from X is called
(d-)Cauchy if

∀ε ∈ G+ ∃α < κ ∀β, γ ≥ α (d(xβ, xγ) <G ε).

The space (X, d) (or the G-metric d) is Cauchy-complete if every Cauchy sequence
(xi)i<κ converges to some (necessarily unique) x ∈ X , that is,

∀ε ∈ G+ ∃α < κ ∀β ≥ α (d(xβ, x) <G ε).

We are now ready to generalize (Pol. 1).
4This means that the order ≤G is linear and translation-invariant (on both sides).
5This is also called the base number of G in [71] and the character of G in [139].
6Notice that when speaking about Cauchy sequences and Cauchy-completeness we always refer to

sequences of length κ = Deg(G).
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Definition 1.1.5. A space X is G-Polish if it is completely G-metrizable and has
weight (equivalently, density character) ≤ κ.

Remark 1.1.6. These definitions are not new. Spaces with generalized metrics tak-
ing values in a structure different from R have been introduced in [139] and have
been widely studied since then, see for example [137, 126, 122]. To the best of
our knowledge, the systematic study of completely G-metrizable spaces is instead of
more recent interest, and so far it has been developed mainly in [71].

Clearly, G-Polish spaces are closed under closed subspaces. Moreover, the space
κκ (endowed with the bounded topology) is always G-Polish, as witnessed by the
G-metric

d(x, y) =

{
0G if x = y

rα if x � α = y � α and x(α) 6= y(α)
(1.1.1)

where (rα)α<κ is a strictly decreasing sequence coinitial in G+ (the choice of such a
sequence is irrelevant). It follows that all closed subspaces of κκ , notably including
2κ , are G-Polish for any G as above. Notice also that commutativity of the group

operation is not strictly needed in order to define the metric, but it is usually required
to ensure that G itself form a G-metric space with distance function d(x, y) = |x−G
y|G. Sometimes it is further required that G is Cauchy-complete with respect to the
above metric: in this case G itself would become G-Polish.

We decided to work with the theory of metrics over a totally ordered Abelian
group G since it is arguably the most common choice in literature. However, other
choices are possible. For example, Reichel in [126] studied metrics with values in
a totally ordered Abelian semigroup with minimum. Coskey and Schlicht in [42]
considered (ultra)metrics with values in a linear order (where the operation +G is the
minimum function). Or G can be non-Abelian as well. All these choices would essen-
tially lead to the same results presented here for Abelian groups: see Remark 1.1.24.
The reason why we decided to follow the common practice of sticking to totally
ordered Abelian groups is that metrics over groups grant most of the properties of
standard metrics. For example, it is easy to show that for every x ∈ X and every
sequence (rα)α<κ coinitial in G+, the family {Bd(x, rα) | α < κ} is a local basis of
x well-ordered by reverse inclusion⊇. If one wants to consider metrics taking values
in less structured sets, like monoids or semigroups, this condition must be explicitly
added to the axioms that define the metric (see e.g. [126]).

We conclude this section by addressing another natural question: is there any ad-
vantage in choosing a particular totally ordered Abelian group G over the others? In
the countable case, R plays a key role among all the possible choices of range for the
metrics: for example, every connected (real-valued) metric space does not admit a
metric with range contained in Q. In the uncountable case, the situation is the oppo-
site: different choices of G almost always lead to the same class of spaces, making
less relevant the actual choice of the range of the metrics. For example, it is well-
known that given an uncountable regular cardinal κ and two totally ordered Abelian
groups G and G′ of degree Deg(G) = Deg(G′) = κ, a space of weight ≤ κ is
G-metrizable, if and only if it is G′-metrizable if and only if it is κ-additive (see The-
orem 1.1.12, which is taken from [139], but see also [137]). In Theorem 1.1.21 and
Corollary 1.1.22, we show that a similar statement holds for completely G-metrizable
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spaces, hence the notion of G-Polish as well is independent from the choice of the
actual G.

The fact that there is no preferred structure for the range of our generalized met-
rics implies that every possible generalization-to-level-κ of the reals yields to an ex-
ample of G-Polish space (as long as this generalization preserves properties like be-
ing Cauchy-complete with respect to its canonical metric over itself). For example,
this applies to the long reals introduced by Klaua in [97] and studied by Asperó and
Tsaprounis in [12], or to the generalization of R introduced in [71] using the surreal
numbers. See also [43] for other examples of G-Polish spaces, as well as methods to
construct Cauchy-complete totally ordered fields.

1.1.2 Relationships

The goal of this subsection is to compare the proposed classes of Polish-like (topo-
logical) spaces; in Section 1.3 we will extend our analysis to encompass the various
generalizations of standard (κ-)Borel spaces.

Definition 1.1.7. Let X be a space. A set A ⊆ X is Gκδ if it can be written as a
κ-sized intersection of open sets of X .

It is easy to construct fSCκ-subspaces of, say, the generalized Cantor space 2κ

which are properly Gκδ , e.g.

{x ∈ 2κ | ∀α∃β ≥ α (x(β) = 1)}. (1.1.2)

As in the classical case, this specific example is particularly relevant.

Fact 1.1.8. The generalized Baire space κκ is homeomorphic to the Gκδ subset of 2κ

from equation (1.1.2).

The following is a well-known fact, but we reprove it here for the reader’s conve-
nience.

Lemma 1.1.9. Every closed subset C of a space7 X of weight ≤ κ is Gκδ in X .

Proof. Let B be a basis for X of size ≤ κ. By regularity of X , for every x ∈ X \ C
there is U ∈ B such that x ∈ U and cl(U) ⊆ X \ C. Thus

C =
⋂
{X \ cl(U) | U ∈ B ∧ cl(U) ∩ C = ∅}.

Proposition 1.1.10. If X is an fSCκ-space and Y ⊆ X is Gκδ , then Y is an fSCκ-
space as well.

Proof. Let Oα ⊆ X be open sets such that Y =
⋂
α<κOα and fix a winning strategy

τ for II in fGs
κ(X). We define (by recursion on the round) a strategy for II in

fGs
κ(Y ) as follows. Suppose that until a certain round α < κ, player I has played a

sequence 〈(Uβ, xβ) | β ≤ α〉 following the rules of fGs
κ(Y ). Each set Uβ is open

in Y relatively to the intersection of all previous moves, hence it can be seen as the
intersection of Y (and all previous moves of I) with some open set of X . Proceeding
recursively, we can thus associate to each Uβ a set Ũβ ⊆ Oβ such that Uβ = Ũβ ∩Y ,

7Recall that all spaces are tacitly assumed to be regular Hausdorff.
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where Ũβ is open in X relatively to the intersection
⋂
ζ<β Ũζ of all previous sets

(this can be done because each Oβ is open in X). Then 〈(Ũβ, xβ) | β ≤ α〉 is a
legal sequence of moves for I in fGs

κ(X). If Vα is what τ requires II to play against
〈(Ũβ, xβ) | β ≤ α〉 in fGs

κ(X), we get that Vα ∩ Y 6= ∅, as witnessed by xα itself,
and Vα ⊆ Ũα ⊆ Oα: so we can let II respond to I’s move in the game fGs

κ(Y ) on
Y with Vα ∩ Y . By construction, the resulting strategy for II is legal with respect to
the rules of fGs

κ(Y ). Moreover, if for all limit γ < κ the intersection
⋂
α<γ(Vα∩Y )

is nonempty, then so is
⋂
α<γ Vα: since τ is winning in fGs

κ(X), this means that⋂
α<κ Vα 6= ∅, whence by Vα ⊆ Oα we also get⋂

α<κ

(Vα ∩ Y ) =

( ⋂
α<κ

Vα

)
∩ Y =

⋂
α<κ

Vα ∩
⋂
α<κ

Oα =
⋂
α<κ

Vα 6= ∅.

Definition 1.1.11. Let ν be an infinite cardinal. A topological space X is ν-additive
if its topology is closed under intersections of length < ν.

In particular, every topological space is ω-additive, and the generalized Baire
and Cantor spaces κκ , 2κ are both κ-additive when κ is regular. Moreover, if X is
regular and ν-additive for some ν > ω, then X is zero-dimensional (i.e. it has a basis
consisting of clopen sets). Indeed, fix a point x ∈ X and an open neighborhood U of
it. Using regularity, recursively construct a sequence (Un)n∈ω of open neighborhoods
of x such that U0 = U and cl(Un+1) ⊆ Un. Then V =

⋂
n∈ω Un =

⋂
n∈ω cl(Un)

contains x, it is closed, and it is also open by ν-additivity (here we use ν > ω). Thus
X admits a basis consisting a clopen sets, as required. Notice also that if X has
weight κ, then such a clopen basis can be taken of size κ as well.

Recall also the correspondence between closed subsets of κκ and trees on κ.
Given an ordinal γ and a nonempty set A, we denote by Aγ the set of all sequences
of length γ and values in A. We then set κ<κ =

⋃
γ<κ κγ , and for s ∈ κ<κ we

let lh(s) be the length of s, that is, the unique ordinal γ < κ such that s ∈ κγ .
The concatenation between two sequences s, t is denoted by sat, and to simplify the
notation we just write sai and ias if t = 〈i〉 is a sequence of length 1. If α ≤ lh(s),
we denote by s � α the restriction of s to its first α-many digits. We write s ⊆ t to
say that s is an initial segment of t, that is, lh(s) ≤ lh(t) and s = t � lh(s). The
sequences s and t are comparable if s ⊆ t or t ⊆ s, and incomparable otherwise.
A set T ⊆ κ<κ is called tree if it is closed under initial segments. For α < κ we
denote by Levα(T ) the α-th level of the tree T , namely,

Levα(T ) = {t ∈ T | lh(t) = α}.

Given s ∈ T , we also define the localization of T at s as

Ts = {t ∈ T | t is comparable with s}.

The bounded topology on κκ is the unique topology on such a space with the follow-
ing property: a set C ⊆ κκ is closed if and only it there is some tree T ⊆ κ<κ such
that C = [T ], where the body [T ] of the tree T is defined by

[T ] = {x ∈ κκ | ∀α < κ (x � α ∈ T )}.

The above tree T can always be required to be pruned, that is, for every s ∈ T there
is x ∈ [T ] such that s ⊆ x. Indeed, if C is closed, then the tree TC = {x � α | x ∈
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C ∧ α < κ} is pruned and such that C = [TC ]. Sometimes, one needs to consider
a further closure property for trees. We say that the tree T is <κ-closed if for all
sequences s ∈ κγ with γ < κ limit, if s � α ∈ T for all α < γ, then s ∈ T as well. A
tree T is called superclosed if it is pruned and <κ-closed; this in particular implies
that if s ∈ T , then Ns ∩ [T ] 6= ∅ or, equivalently, [Ts] 6= ∅. Not all closed subsets of
κκ are the body of a superclosed tree: consider e.g. the set

X0 = {x ∈ 2κ | |{α < κ | x(α) = 0}| < ℵ0}. (1.1.3)

This justify the following terminology: a closed C ⊆ κκ is called superclosed if
C = [T ] for some superclosed tree T .

Sikorski proved in [139, Theorem (x)] that every regular κ-additive space of
weight≤ κ is homeomorphic to a subspace of 2κ , and that the latter is G-metrizable.
We can sum up his results as follows, where we additionally use Fact 1.1.8 to further
add item (d) to the list of equivalent conditions.

Theorem 1.1.12 ([139, Theorem (viii)-(x)]). For any space X of weight ≤ κ and
any totally ordered Abelian group G with Deg(G) = κ the following are equivalent:

(a) X is κ-additive;

(b) X is G-metrizable;

(c) X is homeomorphic to a subset of 2κ ;

(d) X is homeomorphic to a subset of κκ .

Since conditions (a), (c), and (d) do not refer to G at all, this shows in particular
that the choice of the actual group in the definition of the generalized metric is irrel-
evant. We are now going to prove that analogous results holds also for fSCκ-spaces,
SCκ-spaces, and G-Polish spaces (see Theorems 1.1.21 and 1.1.32).

Proposition 1.1.13. Let X be a κ-additive fSCκ-space. Then X is homeomorphic
to a closed C ⊆ κκ . If furthermore X is an SCκ-space, then C can be taken to be
superclosed.

Proof. We prove the two statements simultaneously. Let (Bα)α<κ be an enumeration
of a clopen basis B of X , possibly with repetitions. Depending on whether X is an
SCκ-space or just an fSCκ-space, let σ be a winning strategy for player II in Gs

κ(X)
or fGs

κ(X). By Remark 1.1.4, without loss of generality we can assume that the
range of σ is contained in B. To simplify the notation, given an ordinal β, let Succ(β)
be the collection of all successor ordinals ≤ β. Set also

κ<Succ(κ) = {s ∈ κ<κ | lh(s) ∈ Succ(κ)}.

We will construct a family of the form

F =
{
xs, Us, Vs, V̂s | s ∈ κ<Succ(κ)

}
,

and set for every t ∈ κ≤κ = κ<κ ∪ κκ with lh(t) = γ ≤ κ,

V (t) =
⋂

α∈Succ(γ)

V̂t�α. (1.1.4)
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(In particular, when γ = 0 we get V (∅) = X because Succ(0) = ∅.) The family F
will be designed so that for any γ < κ and s ∈ κγ+1 the following properties are
satisfied:

(i) xs ∈ X , and Us, Vs, V̂s are all clopen in X .

(ii) If V (s) 6= ∅, then the sequence 〈(Us�α, xs�α), Vs�α | α ∈ Succ(γ + 1)〉 is a
(partial) run in the strong (fair) κ-Choquet game on X in which II follows σ.

(iii) Either V̂s ⊆ Bγ or V̂s ∩Bγ = ∅.

(iv) V̂s ⊆ Vs ⊆ Us ⊆ V (s � γ).

(v) {V̂s | s ∈ κγ+1 } is a partition8 of X .

Condition (iv) implies that
V̂s ⊆ V̂s�α (1.1.5)

for every s ∈ κ<Succ(κ) and α ∈ Succ(lh(s)). Together with condition (v), this
entails that

(v’) For any γ < κ, successor or not, {V (t) | t ∈ κγ } is a partition of X .

From condition (v’) it easily follows that if t, t′ ∈ κ<κ are such that V (t)∩V (t′) 6= ∅,
then t and t′ are comparable. Equation (1.1.5) also implies that if lh(t) is a successor
ordinal, then V (t) = V̂t. If instead γ = lh(t) ≤ κ is limit, then

V (t) =
⋂

α∈Succ(γ)

Ut�α =
⋂

α∈Succ(γ)

Vt�α (1.1.6)

by condition (iv) again. Notice also that the additional properties discussed in this
paragraph have a local (i.e. level-by-level) nature: for example, to have (v’) at some
level γ, it is enough to have conditions (iv) and (v) at all levels γ′ ≤ γ.

Given F as above, one obtains the required homeomorphism of X with a (su-
per)closed set C ⊆ κκ as follows. Since X is Hausdorff, if lh(t) = κ then V (t) has
at most one element by condition (iii). Consider the tree

T = {t ∈ κ<κ | V (t) 6= ∅}.

It is pruned by condition (v’) and the comment following it. Furthermore, if X is
an SCκ-space (i.e. σ is a winning in the game Gs

κ(X)), then T is also <κ-closed by
condition (ii) and equation (1.1.6).

We now prove that the (super)closed set C = [T ] is homeomorphic to X . Since
σ is a winning strategy in the strong (fair) κ-Choquet game, the set V (t) is nonempty
for every t ∈ [T ] by condition (ii) and equation (1.1.6) again, thus it contains exactly
one point: let f : [T ] → X be the map that associates to every t ∈ [T ] the unique
element in V (t). We claim that f is a homeomorphism.

Claim 1.1.13.1. f is bijective.
8An indexed family {Ai | i ∈ I} of subsets of X is a partition of X if

⋃
i∈I Ai = X and

Ai ∩Aj = ∅ for distinct i, j ∈ I . In particular, some of the Ai’s might be empty and for i 6= j we have
Ai = Aj if and only if both Ai and Aj are empty.



CHAPTER 1. GDST AT REGULAR CARDINALS 41

Proof. To see that f is injective, let t, t′ ∈ [T ] be distinct and α < κ be such that
t � α 6= t′ � α. By condition (v’) we have V (t � α) ∩ V (t′ � α) = ∅, and hence
f(t) 6= f(t′) because f(t) ∈ V (t) ⊆ V (t � α) and f(t′) ∈ V (t′) ⊆ V (t′ � α). To
see that f is also surjective, fix any x ∈ X . By (v’) again (and the comment following
it), for each α < κ there is a unique tα of length α with x ∈ V (tα), and moreover
tα ⊆ tβ for all α ≤ β < κ. Let t =

⋃
α<κ tα, so that x ∈ V (t) =

⋂
α<κ V (tα) =⋂

α<κ V (t � α): then x itself witnesses t ∈ [T ], and f(t) = x.

Claim 1.1.13.2. f is a homeomorphism.

Proof. Observe that by definition of f , its surjectivity, and condition (v’),

f(Ns ∩ [T ]) = V (s) = V̂s (1.1.7)

for all s ∈ T with lh(s) ∈ Succ(κ). Since {Ns ∩ [T ] | s ∈ T ∩ κ<Succ(κ) } is a basis
for the relative topology of [T ], while {V̂s | s ∈ T ∩ κ<Succ(κ) } is a basis for X by
conditions (i), (iii), and (v), then f and f−1 are continuous.

It remains to construct the required family F by recursion on γ < κ. We assume
that for every t ∈ κ<κ with lh(t) = γ and all α ∈ Succ(γ), the elements xt�α,
Ut�α, Vt�α, and V̂t�α have been defined so that conditions (i)–(v) are satisfied up to
level γ (when γ > 0 this is the inductive hypothesis, while if γ = 0 the assumption
is obviously vacuous because Succ(0) is empty): our goal is to define xtai, Utai,
Vtai, and V̂tai for all t as above and i < κ in such a way that conditions (i)–(v) are
preserved.

Recall the definition of the sets V (t) from equation (1.1.4). If V (t) = ∅, then
we set Utai = Vtai = V̂tai = ∅ for all i < κ and let xtai be an arbitrary point
in X . Assume now that V (t) 6= ∅. Notice that V (t) is clopen: if γ > 0 this
follows from κ-additivity ofX and the fact that V̂t�α is clopen for every α ∈ Succ(γ)
by (i), while if γ = 0 then V (∅) = X by definition. By condition (ii), the sequence
〈(Ut�α, xt�α), Vt�α | α ∈ Succ(γ)〉 is a partial run in the corresponding Choquet-like
game in which II is following σ. We let such run continue for one more round by
letting I play some (U, x) with U clopen and x ∈ U ⊆ V (t), and II reply with some
V ∈ B following the winning strategy σ, so that in particular x ∈ V ⊆ U . Let
{Vj | j < δ} be the collection of all those V ’s that can be obtained in this way: even
if there are possibly more than κ-many moves for I as above, there are at most κ-
many replies of II because |B| ≤ κ, hence δ ≤ κ. For each j < δ we then choose one
of player I’s moves (Uj , xj) yielding Vj as II’s reply. In particular, xj ∈ Vj ⊆ Uj .
Let (V̂i)i<ν (where ν ≤ κ) be an enumeration without repetitions of the nonempty
sets in{(

Vj \
⋃

`<j
V`

)
∩Bγ

∣∣∣ j < δ
}
∪
{(
Vj \

⋃
`<j

V`

)
\Bγ

∣∣∣ j < δ
}
,

and for each i < ν let j(i) < δ ≤ κ be such that V̂i ⊆ Vj(i). Notice that the V̂i’s are
clopen by κ-additivity again. Finally, set

xtai = xj(i) Utai = Uj(i) Vtai = Vj(i) V̂tai = V̂i

if i < ν, and Utai = Vtai = V̂tai = ∅ with xtai an arbitrary point of X if ν ≤ i < κ.
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It is not hard to see that conditions (i)–(iv) are preserved by construction. As for
condition (v), by inductive hypothesis (or V (∅) = X if γ = 0) we get (v’) at level γ,
that is, {V (t) | t ∈ κγ } is a partition of X . Thus the desired result straightforwardly
follows from the fact that the Vj’s cover V (t) because in our construction player I
can play any x ∈ V (t) in her last round (paired with a suitable clopen set U such that
x ∈ U ⊆ V (t), which exists because V (t) is clopen).

We now consider the problem of simultaneously embedding two κ-additive fSCκ-
spaces X ′ ⊆ X into κκ . Applying Proposition 1.1.13 to X we get a closed C
and a homeomorphism f : C → X . If X ′ is a closed in X , it follows that also
C ′ = f−1(X ′) is closed in C and hence in κκ . However, when X ′ is an SCκ-space
we would like to have that C ′ is superclosed. To this aim we need to modify our
construction.

Proposition 1.1.14. Let X be a κ-additive fSCκ-space and X ′ ⊆ X be a closed
SCκ-subspace. Then there is a closed C ⊆ κκ and a homeomorphism f : C → X
such that C ′ = f−1(X ′) is superclosed.

Proof. The idea is to apply the argument from the previous proof but starting with a
strategy σ that is winning for II in fGs

κ(X) and, when “restricted” to X ′, in Gs
κ(X ′)

as well. Let B be a basis for X of size ≤ κ.

Claim 1.1.14.1. There is a winning strategy σ for player II in fGs
κ(X) with range in

B such that for any (partial) run 〈(Uα, xα), Vα | α < γ〉 in fGs
κ(X) where player II

followed σ, one has
⋂
α<γ Vα ∩X ′ 6= ∅ if and only if Vα ∩X ′ 6= ∅ for every α < γ.

Proof of the claim. Let σ′ be an arbitrary winning strategy for II in Gs
κ(X ′), and let

σ′′ be a winning strategy for II in fGs
κ(X) with range contained in B. Define the

strategy σ as follows. Suppose that at stage α < κ player I has played the sequence
〈(Uβ, xβ) | β ≤ α〉 in the game fGs

κ(X).

(1) As long as all points xβ belongs to X ′, player II considers the auxiliary partial
play 〈(Uβ ∩X ′, xβ) | β ≤ α〉 of I in Gs

κ(X ′) and she uses τ ′ to get her next
move V ′α in the game Gs

κ(X ′). Since V ′α is open in X ′, there is W open in
X such that V ′α = W ∩ X ′: let II play any Vα ∈ B such that xα ∈ Vα ⊆
W ∩

⋂
β≤α Uβ as her next move in the game fGs

κ(X) (this is possible because
W ∩

⋂
β≤α Uβ is open by κ-additivity).

(2) If α is smallest such that xα /∈ X ′, from that point on player II uses her strategy
σ′′ pretending that (Uα\X ′, xα) was the first move of I in a new run of fGs

κ(X).

We claim that σ is as required, so fix any γ ≤ κ. Let 〈(Uα, xα), Vα | α < γ〉 be a
partial run in which II followed σ and assume that Vα ∩ X ′ 6= ∅ for every α < γ.
By (2) this implies that xα ∈ X ′ for all α < γ. If γ = α + 1 is a successor ordinal,
then

⋂
β<γ Vβ ∩X ′ = Vα ∩X ′ 6= ∅ by assumption. Assume instead that γ is limit.

By xα ∈ X ′ and (1), for all α < γ we have

Uα+1 ∩X ′ ⊆ Vα ∩X ′ ⊆ V ′α ⊆ Uα ∩X ′, (1.1.8)

where V ′α ⊆ X ′ is again II’s reply to the partial play 〈(Uβ ∩ X ′, xβ) | β ≤ α〉 of I
in Gs

κ(X ′) according to σ′. It follows that 〈(Uα ∩ X ′, xα), V ′α | α < γ〉 is a (legal)
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partial run in Gs
κ(X ′) where II followed σ′, and since the latter is winning in such

game we get
⋂
α<γ Vα ∩X ′ =

⋂
α<γ V

′
α 6= ∅ (the first equality follows from (1.1.8)

and the fact that γ is limit). This also implies that σ wins fGs
κ(X) in all runs where

Vα ∩X ′ 6= ∅ for all α < κ; on the other hand, when this is not the case and α < κ
is smallest such that Vα ∩X ′ = ∅, then the tail of the run from level α on is a (legal)
run in fGs

κ(X) in which II followed σ′′, thus II won as well. This shows that σ is
winning for II in fGs

κ(X) and concludes the proof.

Starting from σ as in Claim 1.1.14.1, argue as in the proof of Proposition 1.1.13 to
build a familyF =

{
xs, Us, Vs, V̂s | s ∈ κ<Succ(κ)

}
and a homeomorphism f : C →

X , where C = [T ] is the closed subset of κκ defined by the tree T = {t ∈ κ<κ |
V (t) 6= ∅}, and f(t) is the unique point in V (t) for all t ∈ [T ]. Consider now the
tree defined by

T ′ = {t ∈ κ<κ | V (t) ∩X ′ 6= ∅}.

Clearly T ′ ⊆ T . Moreover, for every t ∈ T ′ we have Nt ∩ [T ′] 6= ∅: indeed, if
t ∈ T ′, then there is x ∈ V (t) ∩ X ′, hence f−1(x) ⊇ t and by construction x
witnesses f−1(x) � α ∈ T ′ for all α < κ, so f−1(x) ∈ Nt ∩ [T ′]. In particular,
this implies that T ′ is pruned. We now prove that T ′ is also superclosed. Let t ∈ κγ

for γ < κ limit be such that t � α ∈ T ′ for all α < γ. Then V̂t�α ∩ X ′ 6= ∅ for
all α ∈ Succ(γ), hence also Vt�α ∩ X ′ 6= ∅ by V̂t�α ⊆ Vt�α. By the choice of σ, it
follows that

⋂
α∈Succ(γ) Vt�α ∩X ′ 6= ∅, hence t ∈ T ′ since V (t) =

⋂
α∈Succ(γ) Vt�α

when t has limit length.
Finally, we want to show that f−1(X ′) = [T ′]. Given x ∈ X ′, then x itself

witnesses f−1(x) ∈ [T ′]. Conversely, if t ∈ [T ′] then Vt�α∩X ′ ⊇ V (t � α)∩X ′ 6= ∅
for all α ∈ Succ(κ), hence by the choice of σ again we have that

⋂
α∈Succ(κ) Vt�α ∩

X ′ 6= ∅. Since
⋂
α∈Succ(κ) Vt�α = V (t) = {f(x)}, it follows that f(x) ∈ X ′ as

desired.

Proposition 1.1.14 allows us to considerably extend [105, Proposition 1.3] from
superclosed subsets of κκ to arbitrary closed SCκ-subspaces of a κ-additive fSCκ-
space.

Corollary 1.1.15. Let X be a κ-additive fSCκ-space. Then every closed SCκ-
subspace Y of X is a retract of it.

Proof. By Proposition 1.1.14, without loss of generality we may assume that X is a
closed subspace of κκ and Y ⊆ X a superclosed set. By [105, Proposition 1.3] there
is a retraction r from κκ onto Y . Then r � X is a retraction of X onto Y .

None of the conditions on Y can be dropped in the above result: every retract of a
Hausdorff space is necessarily closed in it, and by [105, Proposition 1.4] the spaceX0

from equation (1.1.3) is a closed fSCκ-subspace of the SCκ-space 2κ which is not
a retract of it. Notice also that there are even clopen (hence strong κ-Choquet) sub-
spaces of κκ which are not superclosed, for example {x ∈ κκ | ∃n < ω (x(n) 6= 0)}.
This shows that even in the special case X = κκ , our Corollary 1.1.15 properly ex-
tends [105, Proposition 1.3].

Lemma 1.1.9, Proposition 1.1.10 and Proposition 1.1.13 together lead to the fol-
lowing characterization of κ-additive fSCκ-spaces.
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Theorem 1.1.16. For any space9 X the following are equivalent:

(a) X is a κ-additive fSCκ-space;

(b) X is homeomorphic to a Gκδ subset of κκ ;

(c) X is homeomorphic to a closed subset of κκ .

In particular, κκ is universal for κ-additive fSCκ-spaces, and hence also for κ-
additive SCκ-spaces.

Proof. The implication from (a) to (c) is Proposition 1.1.13, while (c) trivially implies
(b) by Lemma 1.1.9. Finally, (b) implies (a) because κκ is trivially a κ-additive
fSCκ-space and such spaces are closed under Gκδ subspaces by Proposition 1.1.10.

From Proposition 1.1.13 we also get a characterization of κ-additive SCκ-spaces.
(The fact that every superclosed subset of κκ is an SCκ-space is trivial.)

Theorem 1.1.17. For any space X the following are equivalent:

(a) X is a κ-additive SCκ-space;

(b) X is homeomorphic to a superclosed subset of κκ .

Remark 1.1.18. Since κκ is κ-additive and the latter is a hereditary property, Theo-
rems 1.1.16 and 1.1.17 can obviously be turned into a characterization of κ-additivity
inside the classes of fSCκ-spaces and SCκ-spaces.

Recall that an uncountable cardinal κ is (strongly) inaccessible if it is regular
and strong limit, that is, 2λ < κ for all λ < κ. An uncountable cardinal κ is weakly
compact if and only if it is inaccessible and has the tree property: [T ] 6= ∅ for every
tree T ⊆ κ<κ satisfying 1 ≤ |Levα(T )| < κ for all α < κ. A topological space
X is κ-Lindelöf if all its open coverings admit a subcovering of size < κ. (Thus
ω-Lindelöfness is ordinary compactness.) It turns out that the space 2κ is κ-Lindelöf
if and only if κ is weakly compact [118, Theorem 5.6], in which case 2κ and κκ

are obviously not homeomorphic; if instead κ is not weakly compact, then 2κ is
homeomorphic to κκ by [86, Theorem 1]. This implies that if κ is not weakly com-
pact, then we can replace κκ with 2κ in both Proposition 1.1.13 and Theorem 1.1.16.
Moreover, since one can easily show that if κ is not weakly compact then there are
homeomorphisms between κκ and 2κ preserving superclosed sets, for such κ’s we
can replace κκ with 2κ in Theorem 1.1.17 as well. As for weakly compact cardinals
κ, the equivalence between (a) and (b) in Theorem 1.1.16 still holds replacing κκ with
2κ by Fact 1.1.8, but the same does not apply to part (c) and Theorem 1.1.17 because

for such a κ all (super)closed subsets of 2κ are κ-Lindelöf—see Theorems 1.2.22
and 1.2.23.

We now move to G-Polish spaces. Our goal is to show that such spaces coincide
with the κ-additive fSCκ-spaces, and thus that the definition is in particular indepen-
dent of the chosen G. Along the way, we also generalize some results independently

9Recall that all spaces are tacitly assumed to be regular Hausdorff.
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obtained in [71, Section 2.3] and close some open problems and conjectures con-
tained therein, obtaining a fairly complete picture of the relationships among all the
proposed generalizations of Polish spaces.

In the subsequent results, G is a totally ordered Abelian group with Deg(G) = κ.
The next lemma was essentially proved in [139, Theorem (viii)] and it corresponds
to (b)⇒ (a) in Theorem 1.1.12. We reprove it here for the reader’s convenience.

Lemma 1.1.19. Every G-metric spaceX is κ-additive, hence also zero-dimensional.

Proof. Let γ < κ and (Uα)α<γ be a sequence of nonempy open sets. If
⋂
α<γ Uα 6=

∅, consider an arbitrary x ∈
⋂
α<γ Uα. The family {Bd(x, ε) | ε ∈ G+} is a local

basis of x, so for every α < γ we may find εα ∈ G+ such that Bd(x, εα) ⊆ Uα.
Since Deg(G) = κ > γ, there is ε ∈ G+ such that ε ≤G εα for all α < γ: thus
x ∈ Bd(x, ε) ⊆

⋂
α<γ Bd(x, εα) ⊆

⋂
α<γ Uα.

Lemma 1.1.20. Every G-Polish space X is strong fair κ-Choquet.

Proof. Fix a compatible Cauchy-complete metric d on X and a strictly decreasing
sequence (rα)α<κ coinitial in G+. Consider the strategy τ of II in fGs

κ(X) in which
he replies to player I’s move (Uα, xα) by picking a ball Vα = Bd(xα, εα) with εα ∈
G+ small enough so that εα ≤G rα and cl(Vα) ⊆ Uα. In particular, we will thus
have cl(Vα+1) ⊆ Vα. Suppose that 〈(Uα, xα), Vα | α < κ〉 is a run in fGs

κ(X) in
which

⋂
α<γ Vα 6= ∅ for every limit γ < κ. Then the choice of the εα’s ensures that

(xα)α<κ is a Cauchy sequence, and thus it converges to some x ∈ X by Cauchy-
completeness of d. It follows that x ∈

⋂
α<κ cl(Vα) =

⋂
α<κ Vα 6= ∅, and thus τ is a

winning strategy for player II.

Theorem 1.1.21. For any space X the following are equivalent:

(a) X is G-Polish;

(b) X is a κ-additive fSCκ-space;

(c) X is homeomorphic to a Gκδ subset of κκ ;

(d) X is homeomorphic to a closed subset of κκ .

Proof. The equivalence of (b), (c), and (d) is Theorem 1.1.16, and (d) easily im-
plies (a). The remaining implication, (a) implies (b), follows from Lemma 1.1.19
and Lemma 1.1.20.

As usual, when κ is not weakly compact we can replace κκ with its homeomor-
phic copy 2κ in conditions (c) and (d) above. When κ is instead weakly compact,
by Fact 1.1.8 we can still replace κκ with 2κ in condition (c), but the same does not
apply to condition (d) because of κ-Lindelöfness—see Theorem 1.2.22. In view of
this observation, the implication (a)⇒ (c) in Theorem 1.1.21 is just a reformulation
of [71, Corollary 2.36], which is thus nicely complemented by our result.

Theorem 1.1.21 shows in particular that the notion of G-Polish space does not
depend on the particular choice of the group G.

Corollary 1.1.22. Let G,G′ be two totally ordered (Abelian) groups, both of degree
κ, and X be a space. Then X is G-Polish if and only if it is G′-Polish.
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Notice that thanks to Choquet Theorem ([36], see also [93]), Lemma 1.1.20 im-
plies that when G has countable degree we recover the usual notion of Polish space.

Corollary 1.1.23. Let G be a totally ordered (Abelian) group of countable degree.
Then every G-Polish space is Polish.

For this reason, from now on will systematically avoid to specify which kind of
G we are considering and freely use the term “G-Polish” as a shortcut for “G-Polish
with respect to a(ny) totally ordered (Abelian) group of degree κ”.

Remark 1.1.24. In the proofs of Lemma 1.1.19 and Lemma 1.1.20, the only property
required of the metric d is that

For all x ∈ X, the family {Bd(x, ε) | ε ∈ G+} is a local basis of x. (1.1.9)

Hence, Theorem 1.1.12 and Theorem 1.1.21 (and Corollary 1.1.22) can be extended
to metrics taking values in any other kind of structure, as long as equation (1.1.9)
is still satisfied. (In particular, commutativity of G is not really needed.) This in-
cludes the case of completely S-quasimetrizable spaces for a totally ordered semi-
group S considered in [126], or spaces admitting a complete κ-ultrametric as defined
in [42]. In particular, the concepts of (complete) metric space and (complete) ultra-
metric space lead to the same class of spaces in generalized descriptive set theory.
This is in strong contrast to what happens in the classical setting, where Polish ultra-
metric spaces form a proper subclass of arbitrary Polish spaces because admitting a
compatible ultrametric implies zero-dimensionality.

Another easy corollary of Theorem 1.1.21 is that aGκδ subset of a G-Polish space
is necessarily G-Polish as well. We complement this in Corollary 1.1.27, using an
extension result for continuous functions (Proposition 1.1.26). These results are the
natural generalization of the classical arguments in [93, Theorems 3.8 and 3.11], and
already appeared in [71, Theorems 2.34 and 2.35] where, as customary in the subject,
the fact that G is Abelian is assumed and used. However, we fully reprove both results
for the sake of completeness and to confirm that also in this case commutativity of G
is not required.

Lemma 1.1.25. Let G be a totally ordered (non-necessarily Abelian) group with
arbitrarily small positive elements. Then for every ε ∈ G+ and every n ∈ ω there is
δ ∈ G+ with10 nδ ≤G ε.

Proof. It is clearly enough to prove the result for n = 2. Let ε′ ∈ G+ be such that
0G <G ε

′ <G ε and set δ = min{ε′,−ε′ +G ε}. Since ≤G is translation-invariant on
both sides we get

δ +G δ ≤G ε
′ +G (−ε′ +G ε) = ε.

Proposition 1.1.26. LetX be a G-metrizable space, and (Y, d) be a Cauchy-complete
G-metric space. Let A ⊆ X be any set and f : A→ Y be continuous. Then there is
a Gκδ set B ⊆ X and a continuous function g : B → Y such that A ⊆ B ⊆ cl(A)
and g extends f , i.e. g � A = f .

10As customary, we denote by nδ the finite sum δ +G . . .+G δ︸ ︷︷ ︸
n times

.
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Proof. Given any ε ∈ G+, let Oε be the collection of those x ∈ X admitting an open
neighborhood U such that d(f(y), f(z)) <G ε for all y, z ∈ U ∩ A. By definition,
each Oε is open in X , and since f : A → Y is continuous then A ⊆ Oε for all
ε ∈ G+ (here we are implicitly using Lemma 1.1.25). Fix a strictly decreasing
sequence (rα)α<κ coinitial in G+, and set

B = cl(A) ∩
⋂
α<κ

Orα ,

so that A ⊆ B ⊆ cl(A) and B is Gκδ by Lemma 1.1.9. Fix x ∈ B, and for every
α < κ fix an open neighborhood Uxα of x witnessing x ∈ Orα . Without loss of
generality we may assume that Uxβ ⊆ Uxα if α ≤ β < κ (if not, then Ũxβ =

⋂
ζ≤β U

x
ζ

is as desired by κ-additivity of X). Since x ∈ B ⊆ cl(A), for each α < κ we can
pick some yα ∈ Uxα ∩ A. The sequence (f(yα))α<κ is d-Cauchy by construction,
thus it converges to some y ∈ Y by Cauchy-completeness of d: set g(x) = y. By
uniqueness of limits, it is easy to check that the map g is well-defined (i.e. the value
g(x) is independent of the choice of the Uxα’s and yα’s), and that g(x) = f(x) for all
x ∈ A. It remains to show that g is also continuous at every x ∈ B. Given any ε ∈
G+, we want to find an open neighborhood U of x such that g(U∩B) ⊆ Bd(g(x), ε).
Let Uxα and yα be as in the definition of g(x). Using Lemma 1.1.25, find δ ∈ G+

such that 3δ ≤G ε. Let α be large enough so that d(f(yα), g(x)) < δ and rα < δ,
so that f(Uxα ∩ A) ⊆ Bd (g(x), 2δ). We claim that U = Uxα is as required. Indeed,
if z ∈ U ∩B, then when defining g(z) we may without loss of generality pick U zα so
that U zα ⊆ Uxα : it then follows that

g(z) ∈ cl(f(U zα ∩A)) ⊆ cl(f(Uxα ∩A)) ⊆ cl (Bd (g(x), 2δ)) ⊆ Bd(g(x), ε),

as required.

Corollary 1.1.27. Let X be a G-metrizable space, and let Y ⊆ X be a completely
G-metrizable subspace of X . Then Y is a Gκδ subset of X .

Proof. Apply Proposition 1.1.26 withA = Y and f the identity map from Y to itself.
The resulting g : B → Y is then the identity map on B, hence Y = B and thus Y is
Gκδ .

In [71] it is asked whether the reverse implication holds, i.e. whether Gκδ subsets
of G-Polish spaces need to be G-Polish as well (see the discussion in the paragraph
after [71, Theorem 2.10]): our Theorem 1.1.21 already yields a positive answer, and
thus it allows us to characterize which subspaces of a G-Polish space are still G-
Polish.

Theorem 1.1.28. Let X be G-Polish and Y ⊆ X . Then Y is G-Polish if and only if
Y is Gκδ in X .

Proof. One direction follows from Corollary 1.1.27. For the other direction, since
X is homeomorphic to a closed subset of κκ by Theorem 1.1.21, every Gκδ subspace
Y ⊆ X is homeomorphic to a Gκδ subset of κκ . Using again Theorem 1.1.21, it
follows that Y is G-Polish as well.
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By Theorem 1.1.21, Theorem 1.1.28 admits a natural counterpart characterizing
fSCκ-subspaces of κ-additive fSCκ-spaces.

To complete the description of how our classes of spaces relate one to the other,
we just need to characterize those spaces which are in all of them and thus have the
richest structure (this includes e.g. the generalized Cantor and Baire spaces). To this
aim, we need to introduce one last notion inspired by [42, Definition 6.1] and [71].

Definition 1.1.29. A G-metric d on a spaceX is called spherically complete11 if the
intersection of every decreasing (with respect to inclusion) sequence of open balls is
nonempty. If in the definition we consider only sequences of order type κ (respec-
tively, <κ or ≤κ) we say that the metric is spherically κ-complete (respectively,
spherically <κ-complete or spherically ≤κ-complete).

Remark 1.1.30. Let (X, d) be a G-metric space.

(i) If the space X has weight κ, then the metric d is spherically complete if and
only if it is spherically ≤κ-complete. For the non trivial direction, fix in G+

a decreasing sequence (εi)i<κ converging to 0G and consider an arbitrary de-
creasing chain of balls Bα = Bd(xα, rα) for α < λ with λ a regular cardinal
greater than κ. If for all i < κ there is αi < λ such that rαi < εi, then by
spherically κ-completeness we have

⋂
i<κBαi = {x} for some x. It follows

that Bα = {x} for all α ≥ supi<κ αi, whence
⋂
α<λBα = {x} 6= ∅. The

remaining case is when there is δ ∈ G+ such that rα ≥ δ for all α < λ.
If
⋂
α<λBα = ∅, then we could recursively construct an increasing sequence

(αβ)β<λ of ordinals < λ such that xαβ /∈ Bαβ′ for all β < β′ < λ. By case
assumption, we thus have d(xαβ , xαβ′ ) ≥ δ for all distinct β, β′ < λ, against
the fact that X has weight κ < λ.

(ii) If d is spherically κ-complete, then it is also Cauchy-complete (independently
of the weight of the space). Thus if d is spherically complete, then it is both
spherically <κ-complete and Cauchy-complete.

(iii) The converse does not hold: there are examples of G-metric spaces (X, d) of
weight κ such that d is both Cauchy-complete and spherically <κ-complete,
yet it is not spherically κ-complete. For example, consider the subspace X =
{xα ∈ 2κ | α < κ} of 2κ , where xα(α) = 1 and xα(β) = 0 for all
β 6= α. Fix a decreasing sequence (rα)α<κ converging to 0 in the distance
group G and a strictly positive element s ∈ G. The ultrametric d(xα, xβ) =
s+ max{rα, rβ} on X is discrete and hence trivially Cauchy-complete. More-
over, it is < κ-spherically complete. But the decreasing sequence (Bd(xα, s +
rα))α<κ has empty intersection. Thus for a given G-metric d being Cauchy-
complete and spherically <κ-complete is strictly weaker than being spherically
(≤κ-)complete.

11This notion is defined in multiple ways in different parts of the literature: for example, sometimes
a metric is called spherically complete if the intersection of every decreasing sequence of closed balls
is nonempty, or sometimes it is requirement that the balls are open, but the closure of each ball is con-
tained in all previous ones. These alternative definitions closer resemble the original characterization
of metrizability given by Cantor’s intersection theorem. While there is difference between these defini-
tions at the level of (G-)metrics, the difference disappears at the level of the induced topologies (at least
for G-metrics for G of uncountable degree) and the two definitions lead to the same class of topological
spaces. We opted for the current definition to be consistent with [42].
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Definition 1.1.31. A G-Polish space is spherically (<κ-)complete if it admits a
compatible Cauchy-complete metric which is also spherically (<κ-)complete.

In [71], spherically <κ-complete G-Polish spaces are also called strongly κ-
Polish spaces. Although in view of Remark 1.1.30(iii) this seems to be the weak-
est among the two possibilities considered in Definition 1.1.31, it will follow from
Theorem 1.1.32 that they are indeed equivalent: if a space of weight ≤ κ admits a
compatible Cauchy-complete spherically <κ-complete G-metric, then it also admits
a (possibly different) compatible Cauchy-complete G-metric which is (fully) spheri-
cally complete. We point out that the implication (c)⇒ (a) already appeared in [71,
Theorem 2.45], although with a different terminology.

Theorem 1.1.32. For any space X the following are equivalent:

(a) X is a κ-additive SCκ-space;

(b) X is both an SCκ-space and G-Polish;

(c) X is a spherically <κ-complete G-Polish space;

(d) X is a spherically complete G-Polish space;

(e) X is homeomorphic to a superclosed subset of κκ .

Proof. Item (b) implies (a) because all G-Polish spaces are κ-additive (Lemma 1.1.19),
while (a) implies (e) by Theorem 1.1.17. Moreover, any superclosed subset of κκ is
trivially spherically complete with respect to the G-metric on κκ defined in equa-
tion (1.1.1), thus (e) implies (d), and (d) obviously implies (c). Finally, to prove
that (c) implies (b), recall that every G-Polish space X is an fSCκ-space by Theo-
rem 1.1.21. Fix a compatible spherically<κ-complete G-metric onX and a winning
strategy τ for II in fGs

κ(X), and observe that by Remark 1.1.4 we can assume that τ
requires II to play only open d-balls Vα because the latter form a basis for the topol-
ogy of X . Then τ is also winning in Gs

κ(X) because spherically <κ-completeness
implies that

⋂
α<γ Vα 6= ∅ for every limit γ < κ .

As any superclosed subset of κκ is spherically complete G-metrizable over any
totally ordered (Abelian) groups of degree κ, Theorem 1.1.32 shows also that the
notion of spherically complete G-Polish space does not depend on the choice of G.

Corollary 1.1.33. Let G,G′ be two totally ordered (Abelian) groups, both of degree
κ, and X be a space. Then X is spherically complete G-Polish if and only if it is
spherically complete G′-Polish.

Theorems 1.1.21 and 1.1.32 allow us to reformulate our Corollary 1.1.15 on re-
tractions in terms of G-Polish spaces. (Again, we have that none of the conditions on
Y can be dropped, see the comment after Corollary 1.1.15.)

Corollary 1.1.34. If X is G-Polish, then all its closed subspaces Y which are also
spherically complete G-Polish (possibly with respect to a different G-metric) are re-
tracts of X .
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Moreover, using the results obtained so far, one can easily observe that the classes
of SCκ-spaces and G-Polish spaces do not coincide. On the one hand, there are G-
Polish spaces which are not SCκ-spaces: in [71, Theorem 2.41] it is observed that
Sikorski’s κ-R is such an example, but it is also enough to consider any closed subset
of κκ which is not strong κ-Choquet, such as the one defined in equation (1.1.3).
Conversely, there are SCκ-spaces which are not G-Polish (to the best of our knowl-
edge, examples of this kind were not yet provided in the literature): just take any
non-κ-additive SCκ-space, such as κκ equipped with the order topology induced by
the lexicographical ordering.

In a different direction, Theorem 1.1.32 allows us to characterize inside one given
class those spaces which happen to also belong to a different one in a very natural
way. For example, among SCκ-spaces we can distinguish those that are also G-Polish
by checking κ-additivity. Conversely, working in the class of G-Polish spaces we can
isolate those spaces X in which player II wins the strong κ-Choquet game Gs

κ(X)
by checking spherical completeness.

Figure 1 sums up the relationship among the various classes of (regular Haus-
dorff) spaces of weight ≤ κ considered so far. At the end of Section 1.2 we will
further enrich this picture by distinguishing the class of κ-Lindelöf spaces—see The-
orems 1.2.22 and 1.2.23.

Despite the fact that the classes we are considering are all different from each
other, we now show that one can still pass from one to the other by changing (and
sometimes even refining) the underlying topology yet maintaining the same notion of
κ-Borelness.

Proposition 1.1.35. Let (X, τ) be an fSCκ-space (respectively, SCκ-space). Then
there is τ ′ ⊇ τ such that Borκ(X, τ ′) = Borκ(X, τ) and (X, τ ′) is a κ-additive
fSCκ-space (respectively, SCκ-space).

Proof. It is enough to let τ ′ be the topology generated by the <κ-sized intersections
of τ -open sets. Arguing as in [42, Proposition 4.3 and Lemma 4.4], player II still
has a winning strategy in the relevant Choquet-like game on (X, τ ′). Moreover the
weight of (X, τ ′) is still ≤ κ because we assumed κ<κ = κ. Finally, κ-Borel sets do
not change because by definition τ ⊆ τ ′ ⊆ Borκ(X, τ).

This allows us to strengthen [42, Theorem 3.3] and extend it to fSCκ-spaces.

Corollary 1.1.36. If X is an fSCκ-space, then there is a pruned tree T ⊆ κ<κ and
a continuous bijection f : [T ] → X . Moreover, if X is an SCκ-space then T can be
taken to be superclosed.

Proof. Refine the topology τ of X to a topology τ ′ ⊇ τ as in Proposition 1.1.35.
Then use Theorem 1.1.13 to find a pruned (superclosed, ifX was SCκ) tree T ⊆ κ<κ

and a homeomorphism f : [T ] → (X, τ ′). Since f remains a continuous bijection
when stepping back to τ , we get that T and f are as required.

By Proposition 1.1.35 (together with Theorem 1.1.21), every fSCκ-space, and
thus every SCκ-space, can be turned into a G-Polish space sharing the same κ-Borel
structure by suitably refining its topology. In contrast, it is not always possible to
refine the topology τ of an fSCκ-space X to turn it into an SCκ-space, even if we
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start with a κ-additive (hence G-Polish) one and we further allow to change its κ-
Borel structure. Indeed, as shown in the next example, there are κ-additive strongly
fair κ-Choquet (i.e. G-Polish) spaces (X, τ) such that for every topology τ ′ ⊇ τ , the
space (X, τ ′) is not an SCκ-space.

Example 1.1.37. Consider a closed (hence G-Polish) subspace C ⊆ κκ which is
not a continuous image of κκ . Such a set exists by [105, Theorem 1.5]: we can e.g.
let C be the set of well-orders on κ (coded as elements of 2κ ⊆ κκ via the usual
Gödel pairing function). If one could find a refinement τ ′ of the bounded topology
on C such that (C, τ ′) is an SCκ-space (recall that any SCκ-space has weight ≤ κ
by definition), then (C, τ ′) would be a continuous image of κκ by [42, Theorem 3.5]
and thus so would be (C, τ), contradicting the choice of C.

Nevertheless, if we drop the requirement that τ ′ refines the original topology τ
of X , then we can get a result along the lines above. This is due to the next technical
lemma, which will be further extended in Section 1.3 (see Corollary 1.3.3).

Lemma 1.1.38. Every closed C ⊆ κκ is κ-Borel isomorphic to a superclosed set
C ′ ⊆ κκ .

Proof. If C has ≤κ-many points, then any bijection between C and C ′ = {αa 0(κ) |
α < |C|}, where 0(κ) is the constant sequence with length κ and value 0, is a κ-
Borel isomorphism between C and the superclosed set C ′, hence we may assume
without loss of generality that |C| > κ. Let T ⊆ κ<κ be a pruned tree such that
C = [T ]. Let L(T ) be the set of sequences s ∈ κ<κ of limit length such that s /∈ T
but s � α ∈ T for all α < lh(s). (Clearly, the set L(T ) is empty if and only if C is
already superclosed). Set C ′ = [T ′] with

T ′ = T ∪ {sa 0(α) | s ∈ L(T ) ∧ α < κ},

where 0(α) denotes the sequence of length α constantly equal to 0. The tree T ′ is
clearly pruned and <κ-closed, hence C ′ is superclosed. Notice also that C ′ \ C =
{sa0(κ) | s ∈ L(T )} has size ≤ κ. Pick a set A ⊆ C of size κ and fix any bijection
g : A → A ∪ (C ′ \ C). Since both C and C ′ are Hausdorff, it is easy to check that
the map

f : C → C ′, x 7→

{
g(x) if x ∈ A
x otherwise

is a κ-Borel isomorphism.

Combining this lemma with Proposition 1.1.35 and Theorem 1.1.16 we thus get

Proposition 1.1.39. Let (X, τ) be an fSCκ-space. Then there is a topology τ ′ on X
such that Borκ(X, τ ′) = Borκ(X, τ) and (X, τ ′) is a κ-additive SCκ-space (equiva-
lently, a spherically complete G-Polish space).

As a corollary, we finally obtain:

Theorem 1.1.40. Up to κ-Borel isomorphism, the following classes of spaces are the
same:

(1) fSCκ-spaces;
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(2) SCκ-spaces;

(3) G-Polish spaces;

(4) κ-additive SCκ-spaces or, equivalently, spherically complete G-Polish spaces.

Theorem 1.1.40 shows that, as we already claimed after Definition 1.1.1, we can
considered any class of Polish-like spaces to generalize (St.Bor. 1): they all yield
the same notion, and it is thus not necessary to formally specify one of them. Fur-
thermore, in Section 1.3 we will prove that the class of κ-Borel spaces obtained in
this way coincide with the class of all standard κ-Borel spaces as defined in Defini-
tion 1.1.1, so we do not even need to introduce a different terminology.

The sweeping results obtained so far allow us to improve some results from the
literature and close some open problems contained therein, so let us conclude this
section with a brief discussion on this matter. In [71, Theorem 2.51] it is proved
that, in our terminology, if X is a spherically <κ-complete G-Polish space and κ is
weakly compact, then every SCκ-subspace Y ⊆ X is Gκδ in X . By Theorem 1.1.21
and Corollary 1.1.27, we actually have that every SCκ-subspace Y of a G-metrizable
space X is Gκδ in X: hence the further hypotheses on κ and X required in [71, Theo-
rem 2.51] are not necessary. Furthermore, in [71, Lemma 2.47] the converse is shown
to hold assuming thatX is a G-metric SCκ-space (which through κ-additivity implies
that X is G-Polish by Theorem 1.1.32 again) and Y is spherically <κ-complete.
Theorems 1.1.28 and 1.1.32 show that we can again weaken the hypotheses on X by
dropping the requirement that X be a SCκ-space: if X is G-Polish and Y ⊆ X is
spherically <κ-complete and Gκδ , then Y is a SCκ-space. Finally, Theorem 1.1.32
shows that [71, Theorem 2.53] and [42, Proposition 3.1] deal with the same phe-
nomenon: if X is a κ-perfect SCκ-space, there is a continuous injection f from the
generalized Cantor space into X , and if furthermore X is κ-additive, then f can be
taken to be an homeomorphism on the image. This will be slightly improved in The-
orem 1.2.6, where we show that in the latter case the range of f can be taken to be
superclosed.

Summing up the results above, one can now complete and improve the diagram
in [71, p. 25], which corresponds to Arrows 1–7 of Figure 1.1 (although [71] some-
times requires additional assumption on the space Y or on the cardinal κ, see the
discussion below).

Y is sp. compl. G-Polish Y is SCκ Y is Gκδ in X

Y is G-Polish

1

4

2

8

9
10

3

5

7
6

Figure 1.1: Properties of subspaces Y ⊆ X forX a G-Polish space. A line means im-
plication without further assumptions, while a dotted line means that the implication
holds under the further assumption that Y is spherically complete or, equivalently, an
SCκ-space.

Here is a list of our improvements:
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• First of all, the ambient space X can be any G-Polish space, and need not to be
spherically complete as assumed in [71].

• The new Arrows 8 and 9 hold because by G-metrizability Y is κ-additive, and
hence a spherically <κ-complete G-Polish space.

• Arrow 10 holds as well by Theorem 1.1.28.

• The implication Arrow 2 holds unconditionally (κ needs not to be weakly com-
pact, as originally required in [71]).

• The requirement that, in our terminology, Y be spherically<κ-complete cannot
instead be dropped in the implication Arrow 3: indeed, there are even closed
subsets of X = κκ which are not homeomorphic to a superclosed subset of
κκ , and hence they are not strong κ-Choquet. Thus in this case the hypothesis

in [71] were already optimal.

• We now obtained that Arrows 5 and 6, which were forbidden in [71], holds
when additionally requiring that Y be spherically < κ-complete (same hypoth-
esis as in Arrow 3): taking into account Galeotti’s counterexamples, such hy-
pothesis cannot be dropped.

1.2 Characterizations of κκ and 2κ

The (classical) Cantor and Baire spaces play a central role in classical descriptive set
theory. It is remarkable that they admit a purely topological characterization (see [93,
Theorems 7.4 and 7.7]).

Theorem 1.2.1.

(1) (Brouwer) Up to homeomorphism, the Cantor space 2ω is the unique nonempty
perfect compact metrizable zero-dimensional space.

(2) (Alexandrov-Urysohn) Up to homeomorphism, the Baire space ωω is the unique
nonempty Polish zero-dimensional space such that all its compact subsets have
empty interior.

Our next goal is to find analogous characterizations of the generalized Baire and
Cantor spaces. To this aim, we first have to generalize the above mentioned topolog-
ical notions to our setup.

First of all, we notice that a special feature of κκ and 2κ which is not shared by
some of the other SCκ-spaces is κ-additivity: since this condition already implies
that the space be zero-dimensional, the latter will always be absorbed by κ-additivity
and will not explicitly appear in our statements. As for compactness, it is natural to
replace it with the property of being κ-Lindelöf. Notice that this condition may play
a role in the characterization of 2κ only when κ is weakly compact, as otherwise 2κ

is not κ-Lindelöf. However, this is not a true limitation, because if κ is not weakly
compact, then the spaces 2κ and κκ are homeomorphic, and thus the characterization
of κκ takes care of both. In view of the Hurewicz dichotomy [93, Theorem 7.10],
which in [104] has been analyzed in detail in the context of generalized descriptive
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set theory, we will also consider Kκ-sets, i.e. sets in a topological space which can
be written as unions of κ-many κ-Lindelöf sets.

We now come to perfectness. The notion of an isolated point may be transferred
to the generalized context in (at least) two natural ways:

• keeping the original definition: a point x is isolated in X if there is an open set
U ⊆ X such that U = {x};

• allowing short intersections of open sets (see e.g. [42, Section 3]): a point x is
κ-isolated in X if there are <κ-many open sets whose intersection is {x}.

A topological space is then called (κ-)perfect if it has no (κ-)isolated points.
If we restrict the attention to κ-additive spaces, as we do in this section, the two

notions coincide. However, the notion of κ-perfectness is in a sense preferable when
the space X is not κ-additive because it implies that X has weight at least κ and that
all its nonempty open sets have size ≥ κ (use the regularity of κ and the fact that all
our spaces are Hausdorff). If we further require X to be strong κ-Choquet, we get
the following strengthening of the last property.

Lemma 1.2.2. LetX be an SCκ-space. IfX is κ-perfect, then every open set U ⊆ X
has size 2κ.

Proof. If X is κ-perfect, then so is every open U ⊆ X . Since U is strong κ-Choquet
as well, there is a continuous injection from 2κ into U by [42, Proposition 3.1], hence
|U | = 2κ.

In the statement of Lemma 1.2.2 one could further replace the open set U with a
<κ-sized intersection of open sets. The lemma is instead not true for arbitrary fSCκ-
spaces, even when requiring κ-additivity (and thus it does not work for arbitrary G-
Polish spaces as well). For a counterexample, consider the closed subspace X0 of
2κ defined in equation (1.1.3): by Theorem 1.1.21, X0 is a κ-additive fSCκ-space

(equivalently, a G-Polish space), it is clearly κ-perfect, yet it has size κ.
In the next lemma we crucially use the fact that κ is such that κ<κ = κ.

Lemma 1.2.3. If Y is a T0-space of size > κ, then Y has weight ≥ κ.

Proof. Let B be any basis of Y . Then the map sending each point of Y into the set
of its basic open neighborhoods is an injection into P(B). Thus if there is such a B
of size ν < κ then |Y | ≤ 2ν ≤ κ<κ = κ.

A tree T ⊆ κ<κ is splitting if for every s ∈ T there are incomparable t, t′ ∈ T
extending s (without loss of generality we can further require that lh(t) = lh(t′)). We
now show that the splitting condition captures the topological notion of perfectness
for κ-additive SCκ-spaces. (Notice that the equivalence between items (a) and (e)
in Lemma 1.2.4 may be seen as the analogue of Theorem 1.1.17 for (κ-)perfect κ-
additive SCκ-spaces.)

Lemma 1.2.4. Let X be a κ-additive SCκ-space. The following are equivalent:

(a) X is (κ-)perfect;

(b) every nonempty open subset of X has size > κ;
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(c) every nonempty open subspace of X has weight κ;

(d) every superclosed T ⊆ κ<κ such that X is homeomorphic to [T ] is splitting;

(e) there is a splitting superclosed12 tree T ⊆ κ<κ with [T ] homeomorphic to X .

Proof. The implication (a) ⇒ (b) is Lemma 1.2.2, while the implication (b) ⇒ (c)
follows from Lemma 1.2.3. In order to prove (c)⇒ (d), notice that if s ∈ T then Ns∩
[T ] 6= ∅ because T is superclosed. Thus s must have two incomparable extensions,
since otherwise Ns ∩ [T ] would be a nonempty open set of weight (and size) 1. The
implication (d)⇒ (e) follows from Theorem 1.1.17, which ensures the existence of
a superclosed T ⊆ κ<κ with [T ] homeomorphic to X: such a T is then necessarily
splitting by condition (d). Finally, for the implication (e) ⇒ (a) notice that if T is
splitting and superclosed, then for every two incomparable extensions t, t′ ∈ T of a
given s ∈ T we have Nt ∩ [T ] 6= ∅ and Nt′ ∩ [T ] 6= ∅ but Nt ∩ Nt′ = ∅, hence
|Ns ∩ [T ]| > 1 for all s ∈ T .

Remark 1.2.5. Notice that if κ is inaccessible, then the splitting condition on the
superclosed tree T in items (d) and (e) above can be strengthened to

∀s ∈ T ∀ν < κ ∃α < κ (α > lh(s) ∧ |Levα(Ts)| ≥ ν). (1.2.1)

Notice also that if α < κ witnesses (1.2.1) for given s ∈ T and ν < κ, then every
α ≤ α′ < κ witnesses the same fact because T is pruned.

Lemma 1.2.4 allows us to prove the following strengthening of [42, Proposition
3.1] and [71, Theorem 2.53], answering in particular [42, Question 3.2] for the case
of κ-additive spaces.

Theorem 1.2.6. Let X be a nonempty κ-additive SCκ-space. If X is (κ-)perfect,
then there is a closed13 C ⊆ X which is homeomorphic to 2κ .

Proof. By Lemma 1.2.4 we may assume that X = [T ] with T ⊆ κ<κ superclosed
and splitting. Recursively define a map ϕ : 2<κ → T by setting ϕ(∅) = ∅ and
then letting ϕ(ta 0) and ϕ(ta 1) be incomparable extensions in T of the sequence of
ϕ(t). At limit levels we set ϕ(t) =

⋃
α<lh(t) ϕ(t � α), which is still an element of T

because the latter is <κ-closed.
By construction, ϕ is a tree-embedding from 2<κ into T , i.e. ϕ is monotone and

preserves incomparability. Moreover, lh(ϕ(t)) ≥ lh(t) for every t ∈ 2<κ . Let T ′ be
the subtree of T generated by ϕ( 2<κ ), that is

T ′ = {s ∈ T | s ⊆ ϕ(t) for some t ∈ 2<κ }.

It is easy to see that T ′ is pruned. We now want to check that it is also < κ-closed by
showing that if s /∈ T ′ for some s of limit length, then there is α < lh(s) such that
s � α /∈ T ′. (We present a detailed argument because the claim uses in an essential
way that 2<κ is finitely splitting, and would instead fail if e.g. 2<κ is replaced by
ω<κ .) Set A = {t ∈ 2<κ | ϕ(t) ⊆ s}. Since ϕ preserves incomparability, all

sequences in A are comparable and thus the sequence t̄ =
⋃
{t | t ∈ A} ∈ 2<κ is

12This is a bit redundant: if T is splitting and <κ-closed, then it is also automatically pruned.
13Superclosed if X ⊆ κκ .
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well-defined and such that ϕ(t̄) ( s (here we use that ϕ is defined in a continuous
way at limit levels and s /∈ T ′). Since s /∈ T ′, the sequences ϕ(t̄a0) and ϕ(t̄a1)
are both incomparable with s by the choice of t̄, and since lh(s) is limit there is
lh(ϕ(t̄)) < α < lh(s) such that the above sequences are incomparable with s � α as
well: we claim that such α is as required. Given an arbitrary t ∈ 2<κ , we distinguish
various cases. If t is incomparable with t̄, then ϕ(t) is incomparable with ϕ(t̄) and
thus with s � α as well because by construction ϕ(t̄) ⊆ s � α. If t ⊆ t̄, then by
monotonicity of ϕ we have that ϕ(t) ⊆ ϕ(t̄) = s � lh(ϕ(t̄)) and thus ϕ(t) is a
proper initial segment of s � α by α > lh(ϕ(t̄)). Finally, if t properly extends t̄, then
t ⊇ t̄a i for some i ∈ {0, 1}: but then ϕ(t) ⊇ ϕ(t̄ai) is incomparable with s � α
again. So in all cases we get that s � α 6⊆ ϕ(t), and since t was arbitrary this entails
s � α /∈ T ′, as required.

This shows that T ′ is a superclosed subtree of T . Moreover, ϕ canonically in-
duces the function fϕ : 2κ → C = [T ′] where

fϕ(x) =
⋃

α<κ
ϕ(x � α),

which is well-defined by monotonicity of ϕ and lh(ϕ(x � α)) ≥ α. Moreover fϕ is
a bijection because ϕ is a tree-embedding, and by construction fϕ(Nt) = Nϕ(t) ∩C
for all t ∈ 2<κ . Since {Nϕ(t) ∩C | t ∈ 2<κ } is clearly a basis for C, this shows that
fϕ is a homeomorphism between 2κ and C.

Remark 1.2.7. Notice that the spaceX0 from equation 1.1.3 is a nonempty κ-additive
(κ-)perfect, fSCκ-space of size λ. Thus, Theorem 1.2.6 fails for the class of fSCκ-
spaces.

The previous theorem can be turned into the following characterization: a topo-
logical space contains a closed homeomorphic copy of 2κ if and only if it contains a
nonempty closed (κ-)perfect κ-additive SCκ- subspace.

Finally, we briefly discuss κ-Lindelöf and Kκ-sets. The Alexandrov-Urysohn
characterization of the Baire space (Theorem 1.2.1(2)) implicitly deals with Baire
category. In fact, compact sets are closed, thus requiring that they have empty interior
is equivalent to requiring that they are nowhere dense. The latter notion makes sense
also in the generalized setting, but the notion of meagerness needs to be replaced with
κ-meagerness, where a subset A ⊆ X is called κ-meager if it can be written as a
union of κ-many nowhere dense sets. A topological space is κ-Baire if no non-empty
open subset of X is κ-meager. It is not difficult to see that if κ is regular then κκ is
κ-Baire (see e.g. [65, 6]), so the next lemma applies to it.

Lemma 1.2.8. Suppose that X is a κ-additive κ-Baire space. Then the following are
equivalent:

(a) all κ-Lindelöf subsets of X have empty interior;

(b) all Kκ subsets of X have empty interior.

Proof. The nontrivial implication (a) ⇒ (b) follows from the fact that if we have
A =

⋃
α<κAα ⊆ X with all Aα’s κ-Lindelöf, then A is κ-meager because in a

κ-additive space all κ-Lindelöf sets are necessarily closed and thus, by (a), the Aα’s
are nowhere dense; thus the interior of A, being κ-meager as well, must be the empty
set.
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Finally, observe that if a space X can be partitioned into κ-many nonempty
clopen sets, then it is certainly not κ-Lindelöf. The next lemma shows that the con-
verse holds as well if X is κ-additive and of weight at most κ.

Lemma 1.2.9. Let X be a nonempty κ-additive space of weight ≤ κ. If X is not
κ-Lindelöf, then it can be partitioned into κ-many nonempty clopen subsets.

Proof. Since X is zero-dimensional and not κ-Lindelöf, there is a clopen covering
{Uα | α < κ} of it which does not admit a <κ-sized subcover. Without loss of
generality, we may assume that Uα 6⊆

⋃
β<α Uβ . Then the sets Vα = Uα \

⋃
β<α Uβ

form a κ-sized partition of X . Since by κ-additivity the Vα’s are clopen, we are
done.

We are now ready to characterize the generalized Baire space κκ in the class of
SCκ-spaces (compare it with Theorem 1.2.1(2)).

Theorem 1.2.10. Up to homeomorphism, the generalized Baire space κκ is the
unique nonempty κ-additive SCκ-space for which all κ-Lindelöf subsets (equiva-
lently: all Kκ-subsets) have empty interior.

Proof. Clearly, κκ is a κ-additive SCκ-space. Moreover, every κ-Lindelöf subset of
κκ has empty interior as otherwise for some s ∈ κ<κ the basic clopen set Ns would

be κ-Lindelöf as well, which is clearly false because {Nsa α | α < κ} is a κ-sized
clopen partition of Ns. By Lemma 1.2.8 and the fact that κκ is κ-Baire we get that
also the Kκ-subsets of κκ have empty interior.

Conversely, letX be any nonempty κ-additive SCκ-space all of whose κ-Lindelöf
subsets have empty interior. By Theorem 1.1.17 we may assume that X = [T ] for
some superclosed tree T ⊆ κ<κ : our aim is to define a homeomorphism between
κκ and [T ]. We recursively define a map ϕ : κ<κ → T by setting ϕ(∅) = ∅ and
ϕ(t) =

⋃
α<lh(t) ϕ(t � α) if lh(t) is limit (this is still a sequence in T because

the latter is <κ-closed). For the successor step, assume that ϕ(t) has already been
defined. Notice that Nϕ(t) ∩ [T ] is open and nonempty (because T is superclosed),
hence it is not κ-Lindelöf by assumption. By Lemma 1.2.9 there is a κ-sized partition
of Nϕ(t) ∩ [T ] into clopen sets, which can then be refined to a partition of the form
{Ntα ∩ [T ] | α < κ}: set ϕ(ta α) = tα. It is now easy to see that the function

fϕ : κκ → X, x 7→
⋃

α<κ
ϕ(x � α)

induced by ϕ is a homeomorphism between κκ and X .

Theorem 1.2.10 can be used to get an easy proof of the fact that 2κ is homeo-
morphic to κκ when κ is not weakly compact, i.e. when 2κ is not κ-Lindelöf itself.
Indeed, 2κ is clearly a nonempty κ-additive SCκ-space, so it is enough to check that
all its κ-Lindelöf subsets have empty interior. But for zero-dimensional spaces this
is equivalent to the fact that every nonempty open subspace is not κ-Lindelöf, which
in this case is true because all basic open subsets of 2κ are homeomorphic to it, and
thus they are not κ-Lindelöf.

We next move to the characterization(s) of 2κ . When κ is not weakly compact,
Theorem 1.2.10 already does the job, but we are anyway seeking a generalization
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along the lines of Brouwer’s characterization of 2ω from Theorem 1.2.1(1) (thus
involving perfectness and suitable compactness properties). Since 2κ is κ-Lindelöf if
and only if κ is weakly compact, we distinguish between the corresponding two cases
and first concentrate on the case when κ is not weakly compact. In this situation, there
is no space at all sharing all (natural generalizations of) the conditions appearing in
Theorem 1.2.1(1).

Proposition 1.2.11. Let κ be a non weakly compact cardinal. Then there is no
nonempty κ-additive (κ-)perfect κ-Lindelöf SCκ-space.

Proof. Suppose towards a contradiction that there is such a space X . By Theo-
rem 1.2.6, we could then find a homeomorphic copy C ⊆ X of 2κ with C closed in
X . But then C, and hence also 2κ , would be κ-Lindelöf, contradicting the fact that κ
is not weakly compact.

Proposition 1.2.11 seems to suggest the we already reached a dead end in our at-
tempt to generalize Brouwer’s theorem for non-weakly compact cardinals. However,
this is quite not true: we are now going to show that relaxing even just one of the
conditions on the space give a compatible set of requirements. For example, if we
restrict the attention to κ-Lindelöf SCκ-spaces, then κ-additivity and κ-perfectness
cannot coexists by Proposition 1.2.11, but they can be satisfied separately. Indeed,
the space

X = {x ∈ 2κ | x(α) = 0 for at most one α < κ}
is a κ-additive κ-Lindelöf SCκ-space, while endowing 2κ with the product topology
(rather than the bounded topology) we get a κ-perfect κ-Lindelöf (in fact, compact)
SCκ-space. If instead we weaken the Choquet-like condition to being just a fSCκ-
space, then we have the following example.

Proposition 1.2.12. There exists a nonempty κ-additive (κ-)perfect κ-Lindelöf fSCκ-
space.

Proof. Consider the tree T0 = {s ∈ 2<κ | |{α | s(α) = 0}| < ω} and the space
X0 = [T0] from equation (1.1.3), which is clearly a κ-additive (κ-)perfect fSCκ-
space. Suppose towards a contradiction that X0 is not κ-Lindelöf, and let F be a
clopen partition of X0 of size κ (which exists by Lemma 1.2.9). Without loss of
generality, we may assume that each set in F is of the form Ns ∩ [T0] for some
s ∈ T0. Set F = {s ∈ T0 | Ns ∩ [T0] ∈ F}: then F is a maximal antichain in T0,
i.e. distinct s, t ∈ F are incomparable and for each x ∈ [T0] there is s ∈ F such that
s ⊆ x. By definition, each sequence s ∈ F has only a finite number of coordinates
with value 0: for each n ∈ ω, let Fn be the set of those s ∈ F that have exactly
n-many zeros. Since |F | = κ and {Fn | n ∈ ω} is a partition of F , there exists some
n such that |Fn| = κ: let ` be the smallest natural number with this property, and set
F<` =

⋃
n<` Fn. Then |F<`| < κ and γ = sup{lh(s) | s ∈ F<`} < κ by regularity

of κ.
We claim that there is s ∈ F` such that s(β) = 0 for some γ ≤ β < lh(s). If

not, the map s 7→ {α < lh(s) | s(α) = 0} would be an injection (because F is an
antichain) from F` to {A ⊆ γ | |A| = `}, contradicting |F`| = κ. Given now s as
above, let x = (s � γ)a 1(κ). Then x ∈ X0 and |{α < κ | x(α) = 0}| < `, thus
there is t ∈ F<` such that x ∈ Nt ∩ [T0]. Since t ∈ F<` implies lh(t) ≤ γ, this
means that t ⊆ x � γ = s � γ ⊆ s, contradicting the fact that F is an antichain.
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The remaining option is to drop the condition of being κ-Lindelöf. In a sense,
this is the most promising move, as we are assuming that κ is not weakly compact
and thus 2κ , the space we are trying to characterize, thus not satisfy such a prop-
erty. Indeed, we are now going to show that dropping such (wrong) requirement, we
already get the desired characterization.

Lemma 1.2.13. Suppose that κ is not weakly compact and X is a κ-additive SCκ-
space. Then X is (κ-)perfect if and only if every κ-Lindelöf subsets of X has empty
interior.

Proof. It is clear that if all κ-Lindelöf subsets of X have empty interior, then X
has no isolated point because if x ∈ X is isolated then {x} is open and trivially κ-
Lindelöf. Suppose now that X is perfect but has a κ-Lindelöf subset with nonempty
interior. By zero-dimensionality, it would follow that there is a nonempty clopen set
O ⊆ X which is κ-Lindelöf. But then O would be a nonempty κ-additive perfect
κ-Lindelöf SCκ-space, contradicting Proposition 1.2.11.

Lemma 1.2.13 allows us to replace the last condition in the characterization of κκ

from Theorem 1.2.10 with (κ-)perfectness. Together with the fact that κκ is homeo-
morphic to 2κ when κ is not weakly compact, this leads us to the following analogue
of Theorem 1.2.1(1) (which of course can also be viewed as an alternative character-
ization of κκ ).

Theorem 1.2.14. Let κ be a non weakly compact cardinal. Up to homeomorphism,
the generalized Cantor space 2κ (and hence also κκ ) is the unique nonempty κ-
additive (κ-)perfect SCκ-space.

We now move to the case when κ is weakly compact. In contrast to the pre-
vious situation, the condition of being κ-Lindelöf obviously becomes relevant (and
necessary) because 2κ now has such property—this is the only difference between
Theorem 1.2.14 and Theorem 1.2.15.

Theorem 1.2.15. Let κ be a weakly compact cardinal. Up to homeomorphism,
the generalized Cantor space 2κ is the unique nonempty κ-additive (κ-)perfect κ-
Lindelöf SCκ-space.

Proof. For the nontrivial direction, let X be any nonempty perfect κ-additive κ-
Lindelöf SCκ-space. By Lemma 1.2.4(e) we may assume that X = [T ] for some
splitting superclosed tree T ⊆ κκ . Notice that the fact that X is κ-Lindelöf entails
that |Levα(T )| < κ for all α < κ: this will be used in combination with the strong
form of the splitting condition from equation (1.2.1) in Remark 1.2.5 to prove the
following claim.

Claim 1.2.15.1. For every α < κ there is β < κ such that |Levα+β(Tt)| = | 2β | for
all t ∈ Levα(T ).

Proof. Recursively define a sequence of ordinals (γn)n∈ω, as follows. Set γ0 = 0.
Suppose now that the γi have been defined for all i ≤ n, and set γ̄n =

∑
i≤n γi. Then

choose γn+1 < κ large enough to ensure

(1) γn+1 ≥ max
{

2|γn|, |Levα+γ̄n(T )|
}

;
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(2) |Levα+γ̄n+γn+1(Ts)| ≥ |γn| for all s ∈ Levα+γ̄n(T ).

Such a γn+1 exists because |Levα+γ̄n(T )| < κ (becauseX is κ-Lindelöf) and 2|γn| <
κ (because κ is inaccessible). Set β =

∑
n∈ω γn = supn∈ω γ̄n. By construction,

| 2β | =
∏
n∈ω 2|γn| =

∏
n∈ω |γn|. On the other hand for every t ∈ Levα(T ) we have∏

n∈ω
|γn| ≤ |Levα+β(Tt)| ≤ |Levα+β(T )| ≤

∏
n∈ω
|γn|,

where the first inequality follows from (2) while the last one follows from (1).

Using Claim 1.2.15.1 we can easily construct a club 0 ∈ C ⊆ κ such that if
(αi)i<κ is the increasing enumeration of C and βi is such that αi+1 = αi + βi, then
there is a bijection ϕt : Levαi+1(Tt)→ 2βi for every i < κ and t ∈ Levαi(T ).

Define ϕ : T → 2<κ by recursion on lh(s) as follows. Set ϕ(∅) = ∅. For an
arbitrary s ∈ T \ {∅}, let j < κ be largest such that αj ≤ lh(s) (here we use that
C is a club). If αj < lh(s), set ϕ(s) = ϕ(s � αj). If instead αj = lh(s), then we
distinguish two cases. If j = i + 1 we set ϕ(s) = ϕ(s � αi)a ϕs�αi(s); if j is limit
(whence also lh(s) is limit), we set ϕ(s) =

⋃
β<lh(s) ϕ(s � β).

It is clear that ϕ is⊆-monotone and for all α ∈ C the restriction of ϕ to Levα(T )
is a bijection with 2α . It easily follows that

fϕ : [T ]→ 2κ , x 7→
⋃

α<κ
ϕ(x � α)

is a homeomorphism, as required.

The proof of the nontrivial direction in Theorem 1.2.15 requires κ to be just
inaccessible (and not necessarily weakly compact). The stronger hypothesis on κ in
the statement is indeed due to the other direction: if κ is not weakly compact, then
2κ is not κ-Lindelöf and, indeed, by Proposition 1.2.11 there are no spaces at all as

in the statement.

Remark 1.2.16. It is easy to check that the function fϕ constructed in the previous
proof preserves superclosed sets, that is, it is such that C ⊆ [T ] is superclosed if
and only if fϕ(C) ⊆ 2κ is superclosed. This follows from the fact that if S is a
superclosed subtree of T , then the ⊆-downward closure of ϕ(S) is a superclosed
subtree S′ of 2κ ; conversely, if S′ ⊆ 2<κ is a superclosed tree, then S = {t ∈ T |
ϕ(t) ∈ S′} is a superclosed subtree of T .

In view of Theorem 1.1.32, most of the characterizations provided so far can
equivalently be rephrased in the context of G-Polish spaces. For example, the fol-
lowing is the characterization of the generalized Cantor and Baire spaces in terms of
G-metrics.

Theorem 1.2.17.

(1) Up to homeomorphism, the generalized Cantor space 2κ is the unique nonempty
(κ-)perfect (κ-Lindelöf, if κ is weakly compact) spherically complete G-Polish
space.

(2) Up to homeomorphism, the generalized Baire space κκ is the unique nonempty
spherically complete G-Polish space for which all κ-Lindelöf subsets (equiva-
lently: all Kκ-subsets) have empty interior.
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In this section we studied in detail the κ-Lindelöf property in relation with the
generalized Cantor space: it turns out that this property has important consequences
for other spaces as well. For example, as it happens in the classical case, compactness
always bring with itself a form of completeness.

Proposition 1.2.18. Let X be a space of weight ≤ κ. If X is κ-Lindelöf, then it is an
fSCκ-space.

Proof. Define a strategy σ for II such that when I plays a relatively open set U and
a point x ∈ U , then σ answers with any relatively open set V satisfying x ∈ V and
cl(V ) ⊆ U (such a V exists by regularity). Now suppose 〈(Uα, xα), Vα | α < κ〉 is
a run of the strong fair κ-Choquet game played accordingly to σ. If

⋂
α<κ Vα = ∅,

then the family {X \ cl(Vα) | α < κ} is an open cover of X because
⋂
α<κ cl(Vα) =⋂

α<κ Uα =
⋂
α<κ Vα = ∅, and thus it has a subcover of size < κ because X is

κ-Lindelöf. But then there is δ < κ such that
⋂
α<δ′ cl(Vα) = ∅ for all δ ≤ δ′ < κ.

Considering any limit ordinal δ′ ≥ δ, we then get
⋂
α<δ′ Vα =

⋂
α<δ′ cl(Vα) = ∅, so

that player II won the run of fGs
κ(X) anyway.

A similar argument explains the relation between compactness and SCκ-spaces.

Proposition 1.2.19. Let X be a space of weight ≤ κ. If X is compact, then it is an
SCκ-space.

The following is the analogue in our context of the standard fact that compact
metrizable spaces are automatically Polish.

Corollary 1.2.20. Every κ-Lindelöf G-metrizable space is G-Polish.

Proof. Choose a strictly decreasing sequence (εα)α<κ that is coinitial in G+. By
κ-Lindelöfness, for each α < κ there is a covering Bα of X of size < κ consisting
of open balls of radius εα. It follows that B =

⋃
α<κ Bα is a basis for X of size ≤ κ.

By Proposition 1.2.18 the space X is then strongly fair κ-Choquet, and since G-
metrizability implies κ-additivity we get that X is G-Polish by Theorem 1.1.21.

Using Proposition 1.2.18, many statements of Section 1.1 can be reformulated for
the special case of weakly compact cardinals and κ-Lindelöf spaces. For example,
the next proposition is a reformulation of Proposition 1.1.13 in this special case.

Proposition 1.2.21. Let X be a κ-additive κ-Lindelöf space of weight ≤ κ (in which
case X is automatically an fSCκ-space by Proposition 1.2.18). Then X is homeo-
morphic to a closed set C ⊆ 2κ . If furthermore X is an SCκ-space, then C can be
taken to be superclosed.

Proof. First notice that if κ is not weakly compact, then the result trivially holds by
Proposition 1.1.13 since in this case 2κ and κκ are homeomorphic (via a homeo-
morphism which preserves superclosed sets). Thus we may assume that κ is weakly
compact. By Theorems 1.1.16 and 1.1.17 again we can further assume that X = [T ]
for some (superclosed, in the case of an SCκ-space) tree T ⊆ κ<κ . Since X is κ-
Lindelöf, by [104, Lemma 2.6(1)] the set [T ] is bounded, i.e. there is y ∈ κκ such that
x(α) ≤ y(α) for all x ∈ [T ] and α < κ. Consider the space Z = {z ∈ κκ | ∀α <
κ (z(α) ≤ y(α))}. It is clearly a nonempty κ-additive κ-perfect SCκ-space. More-
over, since by definition it is bounded by y and κ is weakly compact, by [104, Lemma
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2.6(1)] and the fact that Z is closed in κκ it follows that Z is also κ-Lindelöf. By
Theorem 1.2.15 there is a homeomorphism h : Z → 2κ , which moreover preserves
superclosed subsets of Z by Remark 1.2.16. Since by definition X ⊆ Z, it follows
that h(X) is a (super)closed subset of 2κ homeomorphic to X , as required.

Using Proposition 1.2.21, we can restate Theorems 1.1.21 and 1.1.32 for the spe-
cial case of κ-Lindelöf spaces, further refining the picture given in Figure 1 with one
more dividing line, namely κ-Lindelöfness.

Theorem 1.2.22. For any space X the following are equivalent:

(a) X is a κ-Lindelöf and κ-additive space of weight ≤ κ;

(b) X is a κ-Lindelöf G-metrizable space;

(c) X is a κ-Lindelöf G-Polish space;

(d) X is a κ-Lindelöf κ-additive fSCκ-space.

If κ is weakly compact, the above conditions are also equivalent to:

(e) X is homeomorphic to a closed subset of 2κ .

Theorem 1.2.23. For any space X the following are equivalent:

(a) X is a κ-Lindelöf κ-additive SCκ-space;

(b) X is a κ-Lindelöf spherically <κ-complete G-metrizable space;

(c) X is a κ-Lindelöf spherically complete G-Polish space.

If κ is weakly compact, the above conditions are also equivalent to:

(d) X is homeomorphic to a superclosed subset of 2κ .

1.3 Characterizations of standard κ-Borel spaces

In this section we deal with the κ-Borel structure of topological spaces, and show how
standard κ-Borel spaces (Definition 1.1.1) are exactly the κ-Borel spaces obtained
from Polish-like spaces in any of the classes considered so far by forgetting their
topology. For the sake of definiteness, throughout the section we work with fSCκ-
spaces and SCκ-spaces, but all results can be reformulated in terms of G-Polish and
spherically complete G-Polish spaces—see Section 1.1.

We start by proving some results about changes of topology, which might be of
independent interest. The next proposition shows how to change the topology of an
fSCκ-space while preserving its κ-Borel structure. This generalizes [93, Theorem
13.1] to our setup.

Proposition 1.3.1. Let (Bα)α<κ be a family of κ-Borel subsets of an fSCκ-space
(X, τ). Then there is a topology τ ′ on X such that:

(1) τ ′ refines τ ;
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(2) each Bα is τ ′-clopen,

(3) Borκ(X, τ ′) = Borκ(X, τ), and

(4) (X, τ ′) is a κ-additive fSCκ-space.

Proof. Let A be the collection of those A ⊆ X for which there is a topology τ ′

which satisfies (1)–(4) above (where in (2) the set Bα is replaced by A). Notice
that A is trivially closed under complementation. We first show that A contains all
closed subsets of X .

Claim 1.3.1.1. Let C be a closed subset of an fSCκ-space (X, τ). Then there is a
topology τ ′ which satisfies (1)–(4) above (where in (2) the set Bα is replaced by C).

Proof of the Claim. Let τ̄ be the smallest topology generated by τ ∪ {C}. Then (1)–
(3) are trivially satisfied. Furthermore, (X, τ̄) is homeomorphic to the sum of the
spaces C and X \ C (endowed with the relative topologies inherited from X). Since
both C and X \C are fSCκ-spaces by Theorem 1.1.16, and since the class of fSCκ-
spaces is trivially closed under (≤ κ-sized) sums, then X is an fSCκ-space as well.
Applying Proposition 1.1.35 to (X, τ̄) we then get a topology τ ′ ⊇ τ̄ ⊇ τ which
satisfies all of (1)–(4).

Claim 1.3.1.2. Let (Aα)α<κ be a family of sets in A . Then there is a topology τ ′∞
simultaneously witnessing Aα ∈ A for all α < κ.

Proof of the Claim. For each α < κ let τ ′α be a topology witnessing Aα ∈ A . De-
fine τ ′∞ as the smallest κ-additive topology containing

⋃
α<κ τ

′
α. Then (1)–(3) are

obvious, since τ ′∞ refines each τ ′α ⊇ τ and τ ′∞ ⊆ Borκ(X, τ). To prove (4), for
each α < κ fix a closed Cα ⊆ κκ and a homeomorphism hα : Cα → (X, τ ′α) as
given by Theorem 1.1.16. Endow κ( κκ ) with the κ-supported product topology, i.e.
the topology generated by the sets

∏
α<κ Uα, where each Uα is open in the bounded

topology of κκ , and only <κ-many of them differ from κκ . Then
∏
α<κCα is closed

in κ( κκ ), and since the maps hα are continuous, the set

∆ =

{
(xα)α<κ ∈

∏
α<κ

Cα

∣∣∣ ∀α, β < κ
(
hα(xα) = hβ(xβ)

)}

is closed as well. It is then easy to check that the map h : ∆ → (X, τ ′∞) sending
(xα)α<κ ∈ ∆ to h0(x0) is a homeomorphism. Therefore the desired result follows
from Theorem 1.1.16 and the fact that the spaces κ( κκ ) and κκ are clearly homeo-
morphic.

Claim 1.3.1.2 in particular reduces our task of proving the theorem for a whole
family (Bα)α<κ to showing that B ∈ A for every single κ-Borel set B ⊆ X . To this
aim, by Claim 1.3.1.1 and closure of A under complementation it is enough to show
that A is closed under intersections of length≤ κ. So letA =

⋂
α<κAα be such that

Aα ∈ A for every α < κ. By Claim 1.3.1.2, there is a topology τ ′∞ simultaneously
witnessing Aα ∈ A for all α < κ. Then A is closed in the κ-additive fSCκ-space
(X, τ ′∞). Therefore Claim 1.3.1.1 applied toA, viewed as a subset of (X, τ ′∞), yields
the desired topology τ ′ ⊇ τ ′∞ ⊇ τ .



CHAPTER 1. GDST AT REGULAR CARDINALS 64

Proposition 1.3.1 provides an alternative proof of [105, Lemma 1.11]: Every κ-
Borel subset of κκ equals a continuous injective image of a closed subset of κκ . To
see this, let B ⊆ κκ be κ-Borel, and let τ ′ be the topology obtained by applying
Proposition 1.3.1 with Bα = B for all α < κ. Let D be a closed subset of κκ and
h : (D, τb) → ( κκ , τ ′) be a homeomorphism as given by Proposition 1.1.13. Then
C = h−1(B) is closed in D and hence in κκ . Moreover, the map h′ : (D, τb) →
( κκ , τb) obtained by composing h with the identity function ( κκ , τ ′) → ( κκ , τb) is
still a continuous bijection because τ ′ ⊇ τb. Therefore, h′ � C is a continuous in-
jection from the closed set C ⊆ κκ onto B. Notice also that, by construction, h′ is
actually a κ-Borel isomorphism because Borκ( κκ , τ ′) = Borκ( κκ , τb). More gener-
ally, the same argument shows that [105, Lemma 1.11] can be extended to arbitrary
fSCκ-spaces.

Corollary 1.3.2. For every κ-Borel subsetB of an fSCκ-space there is a continuous
κ-Borel isomorphism from a closed C ⊆ κκ to B.

The space C in the previous corollary is an fSCκ-space by Theorem 1.1.16,
hence applying Theorem 1.1.40 we further get

Corollary 1.3.3. Each κ-Borel subset B of an fSCκ-space is κ-Borel isomorphic to
a κ-additive SCκ-space.

The following is the counterpart of Proposition 1.3.1 in terms of functions and
can be proved by applying it to the preimages of the open sets in any ≤ κ-sized basis
for the topology of Y .

Corollary 1.3.4. Let (X, τ) be an fSCκ-space and Y be any space of weight ≤ κ.
Then for every κ-Borel function f : X → Y there is a topology τ ′ on X such that:

(1) τ ′ refines τ ;

(2) f : (X, τ ′)→ Y is continuous,

(3) Borκ(X, τ ′) = Borκ(X, τ), and

(4) (X, τ ′) is a κ-additive fSCκ-space.

Finally, combining the results obtained so far we get that all the proposed gen-
eralizations of (St.Bor. 1) and (St.Bor. 2) give rise to the same class of spaces. In
particular, up to κ-Borel isomorphism such class coincide with any of the classes
of Polish-like spaces we analyzed in the previous sections. (Notice also that Theo-
rem 1.3.5 substantially strengthens [42, Corollary 3.4].)

Theorem 1.3.5. A κ-Borel space (X,B) is standard if and only if there is a topology
τ on X such that

(1) (X, τ) is an fSCκ-space, and

(2) Borκ(X, τ) = B.

Moreover, condition (1) can equivalently be replaced by

(1′) (X, τ) is a κ-additive SCκ-space.
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Remark 1.3.6. Since κ-additive SCκ-spaces and fSCκ-spaces form, respectively, the
smallest and largest class of Polish-like spaces considered in this chapter, in Theo-
rem 1.3.5 we can further replace those classes with any of the other ones: κ-additive
fSCκ-spaces, SCκ-spaces, G-Polish spaces, spherically complete G-Polish spaces,
and so on.

A natural question is to ask whether Proposition 1.3.1 can be extended in at least
some direction. As in the classical case, the answer is mostly negative and thus
Proposition 1.3.1 is essentially optimal. In fact:

(a) We cannot in general consider more than κ-many (even closed, or open) subsets,
since this could force τ ′ to have weight greater than κ—think about turning into
clopen sets more than κ-many singletons.

(b) We obviously cannot turn a set which is not κ-Borel into a clopen (or even just
κ-Borel) one pretending to maintain the same κ-Borel structure. Notice how-
ever that, in contrast to the classical case, one can consistently have that there
are non-κ-Borel sets B ⊆ κκ for which there is a κ-additive fSCκ topology
τ ′ ⊇ τb turningB into a τ ′-clopen set, so that all conditions in Proposition 1.3.1
except for (3) are satisfied with respect to suchB (see Corollary 1.4.10 for more
details and limitations).

(c) By Example 1.1.37, we cannot require that the topology τ ′ be SCκ (instead
of just fSCκ). The same remains true if we consider a single κ-Borel set B
(instead of a whole family (Bα)α<κ), we start from the stronger hypothesis that
(X, τ) is already a κ-additive SCκ-space, and we weaken the conclusions by
dropping condition (3) and relaxing condition (2) to “B is τ ′-open” (or “B is
τ ′-closed”).

As it is clear from the discussion, in the last item the problem arises from the
fact that there is a tension between condition (1) and our desire to strengthen condi-
tion (4) from fSCκ to SCκ. However, we are now going to show that if we drop the
problematic condition (1), then it is possible to obtain the desired strengthening, at
least when we just consider a few κ-Borel sets at a time.

Proposition 1.3.7. For every κ-Borel subset B of an fSCκ-space (X, τ) there is a
topology τ ′′ on X such that:

(1) B is τ ′′-clopen,

(2) Borκ(X, τ ′′) = Borκ(X, τ), and

(3) (X, τ ′′) is a κ-additive SCκ-space (hence so are its subspaces B and X \ B
because they are τ ′′-open).

Proof. By Corollary 1.3.3, there are κ-additive SCκ topologies τ1 and τ2 on, respec-
tively,B andX \B such that Borκ(B, τ1) = Borκ(X, τ) � B and Borκ(X \B, τ2) =
Borκ(X, τ) � (X \B). Let τ ′′ be the topology on X construed as the sum of (B, τ1)
and (X \B, τ2): then τ ′′ is as required.

The proof of Proposition 1.3.7 can easily be adapted to work with κ-many pair-
wise disjoint κ-Borel subsets of X . This in turn implies that the proposition can e.g.
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be extended to deal with <κ-many κ-Borel sets simultaneously, even when such sets
are not pairwise disjoint. Indeed, if (Bα)α<ν with ν < κ is such a family, then for
each s ∈ 2ν we can set

Cs = {x ∈ X | ∀α < ν (x ∈ Bα ⇐⇒ s(α) = 1)}.

Since 2ν ≤ κ<κ = κ, the family (Cs)s∈ 2ν is a partition of X into ≤ κ-many κ-Borel
sets, and any topology τ ′′ working simultaneously for all the Cs will work for all
sets in the family (Bα)α<ν as well. In contrast, Proposition 1.3.7 cannot be extended
to arbitrary κ-sized families of κ-Borel sets, even when we restrict to X = κκ .
Indeed, let C ⊆ κκ be as in Example 1.1.37 and let (Bα)α<κ be an enumeration of
{C} ∪ {Ns ∩ C | s ∈ κ<κ }. Then (Bα)α<κ is a family of Borel subsets of κκ such
that there is no SCκ topology τ ′′ on κκ making each Bα a τ ′′-open subset of κκ ,
since otherwise τ ′′ � C would be an SCκ topology on C refining τb � C.

From a different perspective, it might be interesting to understand which sub-
spaces of a Polish-like space inherit a standard κ-Borel structure form their super-
space. Of course this includes all κ-Borel sets, as standard κ-Borel spaces are closed
under κ-Borel subspaces, and we are now going to show that no other set has such
property. We begin with a preliminary result which is of independent interest, as it
shows that if a (regular Hausdorff) topology of weight ≤ κ induces a standard κ-
Borel structure, then it can be refined to a Polish-like topology with the same κ-Borel
sets.

Proposition 1.3.8. Let (X, τ) be a space of weight≤ κ. We have that (X,Borκ(X, τ))
is a standard κ-Borel space if and only if there is a topology τ ′ ⊇ τ such that (X, τ ′)
is a κ-additive fSCκ-space and Borκ(X, τ) = Borκ(X, τ ′).

Proof. The backward implication follows from Theorem 1.3.5. For the forward im-
plication, suppose that (X,Borκ(X, τ)) is standard κ-Borel. By Theorem 1.3.5, there
is a topology τ̂ such that (X, τ̂) is an fSCκ-space, and Borκ(X, τ̂) = Borκ(X, τ).
Then the identity function i : (X, τ̂) → (X, τ) satisfies the hypothesis of Corol-
lary 1.3.4, hence there is a κ-additive fSCκ topology τ ′ such that i : (X, τ ′) →
(X, τ) is continuous and Borκ(X, τ ′) = Borκ(X, τ̂) = Borκ(X, τ), which implies
τ ⊆ τ ′.

Finally, we anticipate a result that will be proven in next chapter (see Theo-
rem 2.4.15).

Theorem 1.3.9. Let (X,B) be a standard κ-Borel space, and let A ⊆ X . Then
(A,B � A) is a standard κ-Borel space if and only if A ∈ B.

Corollary 1.3.10. Let X,Y be standard κ-Borel spaces. If A ⊆ X is κ-Borel and
f : A→ Y is a κ-Borel embedding, then f(A) is κ-Borel in Y .

Corollary 1.3.10 is the analogue of the classical fact that an injective Borel image
of a Borel set is still Borel (see [93, Section 15.A]). Notice however that in the gener-
alized version the hypothesis on f is stronger: we need it to be a κ-Borel embedding,
and not just an injective κ-Borel map. This is mainly due to the fact that in the gener-
alized context we lack the analogue of Luzin’s separation theorem. Indeed, one can
even prove [105, Corollary 1.9] that there are non-κ-Borel sets which are continuous
injective images of the whole κκ , hence our stronger requirement cannot be dropped.
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We finally come to the problem of characterizing which topologies induce a stan-
dard κ-Borel structure. Of course this class is larger than the collection of all fSCκ

topologies, even when restricting to the κ-additive case. Indeed, the relative topology
on any κ-Borel non-Gκδ subspace B ⊆ κκ generates a standard κ-Borel structure, yet
it is not fSCκ itself because of Theorems 1.1.21 and 1.1.28. On the other hand, if
a space (X, τ) is homeomorphic to a κ-Borel subset of κκ , then it clearly generates
a standard κ-Borel structure by definition. Theorems 1.1.12 and 2.4.15 allow us to
reverse the implication, yielding the desired characterization in the case of κ-additive
topologies. (For the nontrivial direction, use the fact that by Theorem 1.1.12 every
κ-additive space of weight ≤ κ is, up to homeomorphism, a subspace of κκ .)

Corollary 1.3.11. Let (X, τ) be a κ-additive space of weight≤ κ. Then (X,Borκ(X, τ))
is a standard κ-Borel space if and only if (X, τ) is homeomorphic to a κ-Borel subset
of κκ (or, equivalently, of 2κ ).

In [118, Definition 3.6], the author considered topological spaces (X, τ) with
weight ≤ κ such that the induced κ-Borel structure is κ-Borel isomorphic to a κ-
Borel subset of κκ . By Corollary 1.3.11 it turns out that when τ is regular Hausdorff
and κ-additive, a space (X, τ) satisfies [118, Definition 3.6] if and only if it is home-
omorphic (and not just κ-Borel isomorphic) to a κ-Borel subset of κκ .

1.4 Final remarks and open questions

In the classical setup, Polish spaces are closed under countable sums, countable prod-
ucts, and Gδ subspaces. Moving to the generalized context, all classes considered so
far are trivially closed under sums of size≤ κ. However, by Theorem 1.1.32 the class
of SCκ-spaces is already lacking closure with respect to closed subspaces (even when
restricting the attention to κ-additive spaces or, equivalently, to spherically complete
G-Polish spaces). In view of Proposition 1.1.10, the class of fSCκ-spaces is a more
promising option. Indeed, since such class is also straightforwardly closed under
≤ κ-products, where the product is naturally endowed by the < κ-supported product
topology, we easily get:

Theorem 1.4.1. The class of fSCκ-spaces is closed under Gκδ subspaces and ≤ κ-
sized sums and products.

Moving to G-Polish spaces, by Theorem 1.1.28 we still have closure under Gκδ
subspaces. However, it is then not transparent how to achieve closure under ≤ κ-
sized products. The naı̈ve attempt of mimicking what is done in the classical case
would require to first develop a theory of convergent κ-indexed series in some suit-
able group G, and then use it to try to define the complete G-metric on the product.
Theorem 1.1.21 provides an elegant bypass to these difficulties and directly leads us
the the following theorem.

Theorem 1.4.2. The class of G-Polish spaces (equivalently: κ-additive fSCκ-spaces)
is closed under Gκδ -subspaces and ≤ κ-sized sums and products.

Proof. For ≤ κ-sized products, just notice that both the property of being κ-additive
and the property of being strongly fair κ-Choquet are straightforwardly preserved by
such operation.
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Moreover, we also get the analogue of Sierpiński’s theorem [93, Theorem 8.19]:
the classes of G-Polish spaces and fSCκ-spaces are both closed under continuous
open images. (Notice that a similar result holds for SCκ-spaces, as observed in [42,
Proposition 2.7].)

Theorem 1.4.3. Let X be G-Polish, and Y be a space of weight ≤ κ. If there is a
continuous open surjection f from X onto Y , then Y is G-Polish.

The same is true is we replace G-Polishness by the (weaker) property of being an
fSCκ-space.

Proof. By Theorem 1.1.21, it is enough to show that the properties of being strongly
fair κ-Choquet and being κ-additive are preserved by f . The former is straightfor-
ward. For the latter, let (Uα)α<ν be a sequence of open subsets of Y , for some ν < κ.
If
⋂
α<ν Uα 6= ∅, let y be arbitrary in

⋂
α<ν Uα and, using surjectivity of f , let x ∈ X

be such that f(x) = y. Since x ∈
⋂
α<ν f

−1(Uα) and the latter set is open by κ-
additivity of X , there is V ⊆ X open such that x ∈ V ⊆

⋂
α<ν f

−1(Uα). It follows
that f(V ) is an open neighborhood of y such that f(V ) ⊆

⋂
α<ν Uα, as desired.

There is still one interesting open question related to fSCκ-subspaces of a given
space of weight ≤ κ. By Corollary 1.1.27, if X is also κ-additive and Y ⊆ X is
an fSCκ-subspace of it, then Y is Gκδ in X . We do not know if the same remains
true if we drop κ-additivity. The following corollary is the best result we have in
this direction: it follows from Theorem 1.1.12 and the fact that by κ<κ = κ and the
proof of Proposition 1.1.35, every (regular Hausdorff) topology of weight ≤ κ can
be naturally refined to a κ-additive one in such a way that the new open sets are F κσ
(i.e. a ≤ κ-sized union of closed sets or, equivalently, the complement of a Gκδ set) in
the old topology.

Corollary 1.4.4. LetX be a space of weight≤ κ, and Y ⊆ X be an fSCκ-subspace
of it. Then Y is a ≤ κ-sized intersection of F κσ subsets of X .

It is then natural to ask whether the above computation can be improved.

Question 1.4.5. In the same hypotheses of Corollary 1.4.4, is Y a Gκδ subset of X?
What if we assume that X be fSCκ?

In the literature on generalized descriptive set theory, the notion of an analytic set
is usually generalized as follows.

Definition 1.4.6. A subset of a space14 of weight≤ κ is κ-analytic if and only if it is
a continuous image of a closed subset of κκ . A set is κ-coanalytic if its complement
is κ-analytic, and it is κ-bianalytic if it is both κ-analytic and κ-coanalytic.

Although the definition works for a larger class of spaces, in this chapter we will
concentrate on subsets of fSCκ-spaces. Analogously to what happens in the classical
case, one can then prove that Definition 1.4.6 is equivalent to several other variants:
for example, a set A ⊆ κκ is κ-analytic if and only if it is the projection of a closed

14Since fSCκ-spaces have been introduced in the present work, the definition of κ-analytic sets
given in the literature is of course usually restricted to the spaces κκ and 2κ and their powers. The
only exception is [118], where it is given for all≤ κ-weighted topologies generating a standard κ-Borel
structure (see [118, Definitions 3.6 and 3.8]).
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C ⊆ ( κκ )2, if and only if15 it is a κ-Borel image of some set B ∈ Borκ( κκ ) (see
[6, Corollary 7.3] and [118, Proposition 3.11]). As explained in [105, Theorem 1.5],
a major difference from the classical setup is instead that we cannot add among the
equivalent reformulations of κ-analyticity that of being a continuous image of the
whole κκ —this condition defines a properly smaller class when κ is uncountable
(and, as usual, κ<κ = κ).

The reason for using Definition 1.4.6 instead of directly generalizing [93, Defini-
tion 14.1] is precisely that we were still lacking an appropriate notion of generalized
Polish-like space. We can now fill this gap.

Proposition 1.4.7. Let X be an fSCκ-space. For any A ⊆ X , the following are
equivalent:

(a) A is κ-analytic (i.e. a continuous image of a closed subset of κκ );

(b) A is a continuous image of a G-Polish space;

(c) A is a continuous image of an fSCκ-space.

Proof. The implications (a)⇒ (b) and (b)⇒ (c) follow from Theorem 1.1.21. For the
remaining implication (c)⇒ (a), suppose that Y is an fSCκ-space and that g : Y →
X is continuous and onto A. Use Proposition 1.1.35 to refine the topology τ of Y
to a topology τ ′ such that (Y, τ ′) is κ-additive and still fSCκ. Use Theorem 1.1.21
again to find a closed set C ⊆ κκ and a homeomorphism f : C → (Y, τ ′): then g ◦ f
is a continuous surjection from C onto A.

Clearly, in Proposition 1.4.7(c) we can equivalently consider κ-additive fSCκ-
spaces. We instead cannot restrict ourselves to SCκ-spaces, even when further re-
quiring κ-additivity. Indeed, by Theorem 1.1.32 and [105, Proposition 1.3] every
such space is a continuous image of the whole κκ : it follows that the collection of all
continuous images of κ-additive SCκ-spaces coincides with the collection of contin-
uous images of κκ , and it is thus strictly smaller than the class of all κ-analytic sets
by the mentioned [105, Theorem 1.5].

A variant of Definition 1.4.6 considered in [105] is the class Iκcl of continuous
injective images of closed subsets of κκ (clearly, all such sets are in particular κ-
analytic). When κ = ω the class Iκcl coincides with Borel sets, but when κ > ω
the class Iκcl is strictly larger than Borκ( κκ ) by [105, Corollary 1.9]. Moreover, if
V = L[x] with x ⊆ κ, then by [105, Corollary 1.14] all κ-analytic subsets of κκ

belong to Iκcl. This result can be extended to κ-analytic subsets of arbitrary fSCκ-
spaces.

Corollary 1.4.8. Assume that V = L[x] with x ⊆ κ, and let X be an arbitrary
fSCκ-space. Then every κ-analytic A ⊆ X is a continuous injective image of a
closed subset of κκ .

Proof. By Corollary 1.1.36 there is a closed C ⊆ κκ and a continuous bijection
f : C → X . Notice that f−1(A) is κ-analytic in C because the class of κ-analytic

15This reformulation involves only κ-Borel sets and functions, thus the notion of a κ-analytic set
is independent on the actual topology. This allows us to naturally extend this concept to subsets of
arbitrary (standard) κ-Borel spaces.
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sets is easily seen to be closed under continuous preimages, hence it is κ-analytic in
κκ as well. By [105, Corollary 1.14] there is a continuous injection from some closed
D ⊆ κκ onto f−1(A), which composed with f gives the desired result.

We are now going to show that the class Iκcl can be characterized through changes
of topology.

Theorem 1.4.9. Let (X, τ) be an fSCκ-space and A ⊆ X . Then the following are
equivalent:

(a) A ∈ Iκcl;

(b) there is an fSCκ topology τ ′ on A such that τ ′ ⊇ τ � A.

Proof. Suppose first that C ⊆ κκ is closed and f : C → X is a continuous injection
with range A. Let τ ′ be obtained by pushing forward along f the (relative) topology
of C, so that (A, τ ′) and C are homeomorphic. Then (A, τ ′) is an fSCκ-space by
Theorem 1.1.21, and τ ′ refines τ � A because f was continuous.

Conversely, if (A, τ ′) is an fSCκ-space then by Theorem 1.1.21 again there is a
closed C ⊆ κκ and a homeomorphism f : C → (A, τ ′). Since τ ′ ⊇ τ � A, it follows
that C and f witness A ∈ Iκcl.

This also allows us to precisely determine to what extent the technique of change
of topology discussed in Section 1.3 can be applied to non-κ-Borel sets.

Corollary 1.4.10. Let (X, τ) be an fSCκ-space.

(1) Let A ⊆ X . If there is an fSCκ topology τ ′ ⊇ τ on X such that A is τ ′-clopen
(or even just A ∈ Borκ(X, τ ′)), then A is κ-bianalytic.

(2) If V = L[x] with x ⊆ κ, then for all κ-bianalytic A ⊆ X there is a κ-additive
fSCκ topology τ ′ ⊇ τ on X such that A is τ ′-clopen.

Proof. For part (1) observe that since A is τ ′-clopen, then by Proposition 1.1.10 both
A and X \A are fSCκ-spaces when endowed with the relativization of τ ′. Therefore
by Theorem 1.4.9 they are in Iκcl, and thus κ-analytic. If instead of A being τ ′-clopen
we just have A ∈ Borκ(X, τ ′), use Proposition 1.3.1 to further refine τ ′ to a suitable
τ ′′ turningA into a τ ′′-clopen set, and then apply the previous argument to τ ′′ instead
of τ ′.

We now move to part (2). By Corollary 1.4.8, under our assumption all κ-analytic
subsets of X are in Iκcl. It follows that for every κ-bianalytic set B ⊆ X there is a
continuous bijection f : C → X with C ⊆ κκ closed and f−1(B) clopen relatively
to C: just fix f0 : C0 → B and f1 : C1 → X \B witnessingB ∈ Iκcl andX \B ∈ Iκcl,
respectively, let C be the sum of C0 and C1, and set f = f0 ∪ f1. Pushing forward
the topology of C along f we then get the desired τ ′ (the fact that τ ′ ⊇ τb follows
again from the continuity of f ).

Corollary 1.4.10 justifies our claim that there might be non-κ-Borel sets that can
be turned into clopen sets via a nice change of topology (see item (b) on page 65).
Indeed, when κ is uncountable there are κ-bianalytic subsets of κκ which are not
κ-Borel (see e.g. [65, Theorem 18]), and Corollary 1.4.10(2) applies to them.
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Having extended the notion of a κ-analytic set to arbitrary fSCκ-spaces, it is
natural to ask whether the deep analysis carried out in [105] can be transferred to
such wider context. Some of the results have already been explicitly extended in this
work, see e.g. Corollaries 1.1.15, 1.3.2, and 1.4.8, which extend, respectively, [105,
Proposition 1.3, Lemma 1.11, and Corollary 1.14]. Other results naturally transfer to
our general setup using the ideas developed so far.

Question 1.4.11. Which other results from [105] hold for κ-analytic subsets of arbi-
trary fSCκ-spaces? For example, for which fSCκ-spacesX is there a closedC ⊆ X
which is not a continuous image of the whole κκ , or a non-κ-Borel set A ⊆ X which
is an injective continuous image of κκ ?

Similar questions can be raised about the analogue of the Hurewicz dichotomy
for κ-analytic subsets of κκ studied in [104].

We now move to generalizations of the perfect set property.

Definition 1.4.12. LetX be a space. A setA has the κ-perfect set property (κ-PSP
for short) if either |A| ≤ κ or A contains a closed set homeomorphic to 2κ .

The κ-Borel version of the κ-PSP would then read as follows: either |A| ≤ κ
or A contains a κ-Borel set which is κ-Borel isomorphic to 2κ . However, for most
applications it is convenient to consider a slightly stronger reformulation.

Definition 1.4.13. Let X be a space. A set A has the Borel κ-perfect set property
(Borκ-PSP for short) if either |A| ≤ κ or there is a continuous κ-Borel embedding
f : 2κ → A with f( 2κ ) ∈ Borκ(X).

By Corollary 1.3.10, if the κ-Borel structure of X is standard then the fact that
f( 2κ ) ∈ Borκ(X) follows from the other conditions. Notice also that the Borκ-PSP
is in general strictly weaker than the κ-PSP. For example, consider the spaceX = 2κ

equipped with the product topology. It is a κ-perfect SCκ-space, hence X itself and
all its open subsets have the Borκ-PSP (see Corollary 1.4.14 below). However, X is
compact: thus its clopen subsets cannot contain a closed homeomorphic copy of the
generalized Cantor space, which clearly is not compact, and thus they do not have
the κ-PSP.

In Definitions 1.4.12 and 1.4.13 we are of course allowing the special case A =
X . With this terminology, Theorem 1.2.6 asserts that the κ-PSP holds for all κ-
additive κ-perfect SCκ-spaces. From this and Proposition 1.1.35, we can easily infer
the following fact, which is just a more precise formulation of [42, Proposition 3.1].
(Of course here we are also using that if τ is κ-perfect, then the topology from the
proof of Proposition 1.1.35 is still κ-perfect.)

Corollary 1.4.14. IfX is a nonempty κ-perfect SCκ-space, then there is a continuous
κ-Borel embedding from 2κ intoX (with a κ-Borel range, necessarily). In particular,
the Borκ-PSP holds for κ-perfect SCκ-spaces.

It is instead independent of ZFC whether the (Borel) κ-perfect set property holds
for (κ-additive) fSCκ-spaces. Indeed, if there is a κ-Kurepa tree T with < 2κ-
many branches, then no κ-PSP-like property can hold for [T ] because of cardinality
reasons. On the other hand, in [132] the third author constructed a model of ZFC
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where all “definable” subsets of κκ (including e.g. all κ-analytic sets and way more)
have the Borκ-PSP: combining Proposition 1.1.35 with Theorem 1.1.21 we then
get that such property holds for arbitrary fSCκ-spaces and their “definable” subsets.
Indeed, the same reasoning combined with Proposition 1.3.8 can be used to show
that if the Borκ-PSP holds for all closed subsets of, say, κκ , then it automatically
propagates to all κ-Borel subsets of all fSCκ-spaces. Moreover, we can even just
start from superclosed sets (equivalently, up to homeomorphism, from κ-additive
SCκ-spaces). Indeed, if C = [T ] ⊆ κκ is closed, then arguing as in the proof of
Lemma 1.1.38 we can construct a superclosed set C ′ = [T ′] such that C ⊆ C ′,
|C ′| ≤ max{|C|, κ}, and all points in C ′ \ C are isolated in C ′. It follows that if
the Borκ-PSP holds for C ′ then it holds also for C because if f : 2κ → C ′ is a
continuous injection then f( 2κ ) ⊆ C (use the fact that 2κ is perfect). Summing up
we thus have:

Theorem 1.4.15. The following are equivalent:

(a) the Borκ-PSP holds for superclosed subsets of κκ ;

(b) the Borκ-PSP holds for closed subsets of κκ ;

(c) the Borκ-PSP holds for all (κ-additive) fSCκ-spaces;

(d) the Borκ-PSP holds for all κ-Borel subsets of all fSCκ-spaces.

The Borel κ-perfect set property for fSCκ-spaces has important consequences
for their classification up to κ-Borel isomorphisms.

Corollary 1.4.16. Suppose that the Borκ-PSP holds for (super)closed subsets of
κκ . If X is an fSCκ-space with |X| > κ, then X is κ-Borel isomorphic to 2κ . In

particular, any two fSCκ-spaces X,Y are κ-Borel isomorphic if and only if |X| =
|Y |.

In particular, if the Borκ-PSP holds for (super)closed subsets of κκ then up to
κ-Borel isomorphism the generalized Cantor space 2κ is the unique fSCκ-space of
size > κ.

Proof. By our assumption and Theorem 1.4.15, 2κ is κ-Borel isomorphic to a κ-
Borel subsets of X . Conversely, X is κ-Borel isomorphic to a κ-Borel subset of
2κ by Theorem 1.3.5 and the fact that 2κ and κκ are κ-Borel isomorphic. Thus

the result follows from the natural κ-Borel version of the usual Cantor-Schröder-
Bernstein argument.

Using the same argument and Corollary 1.4.14 we also get that when restricting
to κ-perfect SCκ-spaces the conclusions of Corollary 1.4.16 hold unconditionally—
see [42, Corollary 3.7].

When dealing with topological game theory, one often wonders about what kind
of winning strategies the players have at disposal in the given game. In this context,
one can differentiate between perfect information strategies, that need to know all
previous moves in order to be able to give an answer, and tactics, that instead rely only
on the last move to determine the answer. The two notions do not coincide in general:
there are games where a player has a winning strategy, but not a winning tactic. For
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example, [46] describes a topological space where player II has a winning strategy
but no winning tactic in the classical strong Choquet game (see also [109]). Debs’
example can easily be adapted to show that there exists a (non-κ-additive) topological
space of weight κ where player II has a winning strategy but not a winning tactic in
fGs

κ(X) (or in Gs
κ(X)), or that there is a κ-additive topological space of weight > κ

with the same property. In contrast, Proposition 1.1.13 implies that for κ-additive
spaces of weight ≤ κ the two notions of winning tactic and winning strategy can be
used interchangeably.

Corollary 1.4.17. Let X be a κ-additive space of weight≤ κ. Then II has a winning
strategy in fGs

κ(X) (resp. Gs
κ(X)) if and only if she has a winning tactic.

Proof. For the nontrivial direction, by Proposition 1.1.13 we can restrict the attention
to (super)closed subsets of κκ , so let X = [T ] for some pruned tree T ⊆ κ<κ . Then
any function σ : τ → τ that associate to every nonempty open set U ⊆ [T ] a basic
open set Ns ∩ [T ] ⊆ U for some s ∈ T is a winning tactic for II in fGs

κ([T ]).
Indeed, the answers Nsα ∩ [T ] of σ at every round α are such that sα ⊆ sβ for any
α < β < κ. Hence, if the game does not stop before κ-many rounds, then the final
intersection

⋂
α<κ Nsα ∩ [T ] is nonempty, since it contains s =

⋃
α<κ sα (or any

sequence extendeding s, if s has length < κ). A similar argument shows that if T is
superclosed, than the tactic described above is winning also for Gs

κ([T ]).

For more details about perfect information strategies and tactics, and for some
interesting problems in the field, see for example [131].

In this chapter we generalized metrics by allowing values in structures different
from R. Another possible generalization of metric spaces is given by uniform spaces.
In this context we have a notion of completeness as well, which is however strictly
weaker than the notions we considered so far. Indeed, all G-metrizable spaces of
weight ≤ κ (that is, by Theorem 1.1.12, all subspaces of κκ ) are paracompact and
Hausdorff, and this entails that they are completely uniformizable. It follows that
any non-Gκδ subset of κκ is a completely uniformizable space of weight ≤ κ which
is not fSCκ and, more generally, that the class of completely uniformizable spaces
of weight ≤ κ properly extends the class of all κ-additive spaces with weight ≤ κ
(recall that we are tacitly restricting to regular Hausdorff spaces). Thus by Theo-
rem 2.4.15 such class contains spaces which are not even κ-Borel isomorphic to an
fSCκ-space (that is, they are not standard κ-Borel): this seems to rule out the possi-
bility of developing a decent (generalized) descriptive set theory in such a generality.
Nevertheless, from the topological perspective it would still be interesting to know
whether this property also extends the class of non-κ-additive fSCκ-spaces or at least
SCκ-spaces.

Question 1.4.18. Is every fSCκ-space completely uniformizable?



Chapter 2

Generalized Polish spaces at
singular cardinals

2.1 Preliminaries

Throughout the chapter, we work in ZFC. If not specified otherwise, µ and κ will
always denote regular infinite cardinals, and λ an arbitrary infinite cardinal. In gen-
eralized descriptive set theory, usually one furthermore assume that λ is a cardinal
of cofinality µ and satisfies 2<λ = λ. This assumption implies that λ<µ = λ, and
if λ is singular, it also implies that λ is strong limit (the converse is trivial). While
we will often use (some, or all) these further assumptions, we (try to) specify each
time if we need to require something more from λ and µ (other then being infinite
cardinals, and µ being regular). We do not assume a priori that λ is singular, but
singular cardinals will be our main focus, as for regular cardinals most results just
follow from Chapter 1.

2.1.1 Topology

All topological spaces in this work are assumed to be regular and Hausdorff, unless
otherwise specified.

Recall that a topology on a set X is a subset τ ⊆ P(X) that contains both ∅
and X and that is closed under arbitrary unions and finite intersections. Sets from τ
are called open, while sets of the form X \ O for O ∈ τ are called closed. A set
is called clopen if it is both closed and open. A topology is Hausdorff if every two
distinct points x, y ∈ X can be separated by open sets, i.e. there are U, V ∈ τ such
that x ∈ U , y ∈ V and U ∩ V = ∅. A topology is called regular if for every x ∈ X
and U ∈ τ open neighborhood of x there is V ∈ τ such that x ∈ V ⊆ cl(V ) ⊆ U ,
where cl(V ) =

⋂
{X \ O | O ∈ τ,O ∩ V = ∅} denotes the closure of V . A

local basis of a point x ∈ X is a family B ⊆ τ such that for every U ∈ τ open
neighborhood of x there is B ∈ B such that x ∈ B ⊆ U . Usually, we tacitly assume
that x ∈ B for every B ∈ B when we say that B is a local basis for x. A basis
for the topology is a family B ⊆ τ such that for every x ∈ U and for every U ∈ τ
open neighborhood of x there is B ∈ B such that x ∈ B ⊆ U . The weight w(X)
a topological space (X, τ) is the smallest size of a basis for τ . A subset Y ⊆ X
is called dense (in X) if cl(Y ) = X . The density d(X) of (X, τ) is the smallest
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size of a dense subset Y ⊆ X . A topology τ is called zero-dimensional if it admits
a basis made of clopen sets. It is called µ-additive if it is closed under < µ-sized
intersections. Given two families A and B of subsets of X , we say that A refines B
if for every A ∈ A there is B ∈ B such that A ⊆ B. A family U of subsets of X is
called a cover of X if

⋃
U = X . U is called locally finite if for every x ∈ X there

is U ∈ τ such that U intersect finitely many elements of U . A topology is called
paracompact if every open cover U can be refined into a locally finite open cover. A
topology is called Lebesgue zero-dimensional1 if every open cover U can be refined
into a clopen partition of X . Clearly, if a space is Lebesgue zero-dimensional, it is
also paracompact.

The following notable lemma will frequently be used without giving an explicit
reference to it.

Lemma 2.1.1 ([87, Lemma 2.1]). Suppose X and Y are T1 topological spaces with
bases A and B, respectively, and there is a bijection f : A → B such that

⋂
F = ∅

if and only if
⋂
f [F ] = ∅ for every F ⊆ A. Then X and Y are homeomorphic.

Recall that given topological spaces (Xα, τα) for α < δ, the space
⊔
α<δXα is

the disjoint sum of theXα’s equipped with the smallest topology that makes eachXα

clopen: a set U ⊆
⊔
α<δXα is open if and only if U ∩Xα ∈ τα for all α < δ. Given

a cardinal δ′ ≤ δ, the δ′-supported topology on
∏
α<δXα is the topology generated

by the sets of the form
∏
α<δ Uα where each Uα is open in Xα and Uα = Xα for all

but < δ′-many α < δ.

2.1.2 λ-Borel spaces

Given an infinite cardinal η and a nonempty set X , an η-algebra on X is a collection
B of subsets of X which is closed under complements and unions (hence also inter-
sections) of size < η. A basis for B is a collection A of subsets of X such that B is
the smallest η-algebra containing A ; equivalently, B is obtained from A by closing
it under complements and unions of length < η. The η-algebra B separates points
if for all distinct x, y ∈ X there is B ∈ B such that x ∈ B and y /∈ B.

Call a pair (X,B) a λ-Borel space if B is a λ+-algebra on X which separates
points and admits a basis of size λ. The elements of B are then called λ-Borel sets
of X . If (X,B) is a λ-Borel space and Y ⊆ X , then setting B � Y = {B ∩ Y |
B ∈ B} we get that (Y,B � Y ) is again a λ-Borel space. If (X,B) and (X ′,B′)
are λ-Borel spaces, we say that a function f : X → X ′ is λ-Borel (measurable)
if f−1(B) ∈ B for all B ∈ B′. A λ-Borel isomorphism between (X,B) and
(X ′,B′) is a bijection f such that both f and f−1 are λ-Borel; two λ-Borel spaces
are then λ-Borel isomorphic if there is a λ-Borel isomorphism between them. Fi-
nally, a λ-Borel embedding f : X → X ′ is an injective function which is a λ-Borel
isomorphism between (X,B) and (f(X),B′ � f(X)).

Notice that every T0 topological space (X, τ) of weight λ can be seen as a λ-
Borel space in a canonical way by pairing it with the collection

Borλ(X, τ)

1This notation differs from part of the literature, where a space is called Lebesgue zero-dimensional
if every finite open cover of X can be refined to a clopen partition of X . There, spaces where every
open cover of any size can be refined to a clopen partition are usually called ultraparacompact spaces.
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of all its λ-Borel subsets, i.e. with the smallest λ+-algebra generated by its topology.
(We sometimes remove τ from this notation if clear from the context.) If not specified
otherwise, we are always tacitly referring to such λ+-Borel structure when dealing
with λ-Borel isomorphisms and λ-Borel embeddings between topological spaces.

The set Borλ(X, τ) of λ-Borel subsets of (X, τ) can be stratified as follows. Set
λ-Σ0

1(X, τ) = τ and for 1 < α < λ+ set

λ-Σ0
α(X, τ) =

{⋃
i<λ

Ai

∣∣∣ X \Ai ∈ ⋃
β<α

λ-Σ0
β(X, τ) for all i < λ

}
.

Set also λ-Π0
α(X, τ) = {X\A | A ∈ λ-Σ0

α(X, τ)} and λ-∆0
α(X, τ) = λ-Σ0

α(X, τ)∩
λ-Π0

α(X, τ). As usual, the reference to X or to τ (or both) might be omitted if they
are clear from the context. An easy computation shows that if (X, τ) is regular and
has weight ≤ λ for all 1 ≤ α < β < λ+

λ-Σ0
α(X, τ), λ-Π0

α(X, τ) ⊆ λ-∆0
β(X, τ) ⊆ λ-Σ0

β(X, τ), λ-Π0
β(X, τ)

and

Borλ(X, τ) =
⋃

1≤α<λ+
λ-Σ0

α(X, τ) =
⋃

1≤α<λ+
λ-Π0

α(X, τ)
⋃

1≤α<λ+
λ-∆0

α(X, τ).

Given a set A ∈ Borλ(X, τ), its (λ-Borel) rank is the smallest 1 ≤ α < λ+ such
that A ∈ λ-Σ0

α(X, τ) ∪ λ-Π0
α(X, τ), and is denoted by rank(A) or rank(X,τ)(A) if

we want to specify the ambient space we are working in. Notice that if Y ⊆ X is
endowed with the relative topology τ � Y , then for all 1 ≤ α < λ+

λ-Σ0
α(Y, τ � Y ) = {A ∩ Y | A ∈ λ-Σ0

α(X, τ)}

and
λ-Π0

α(Y, τ � Y ) = {A ∩ Y | A ∈ λ-Π0
α(X, τ)}.

In particular, for every A ⊆ X we have rank(Y,τ�Y )(A ∩ Y ) ≤ rank(X,τ)(A).
When λ = ω, it is customary to just speak of Borel spaces, Borel sets, Borel

functions, and so on, removing λ from all the notation and terminology.

2.1.3 Trees

We recall here some of the basic notions about trees and partial orders from previous
chapter and from the literature.

Let (T,≤T) be a partial order, and denote by <T the strict part of ≤T. Two
elements s and t of T are comparable if s ≤T t or t ≥T s, and incomparable
otherwise. A chain is a linear suborder of T, and a branch is a maximal chain.
We denote by Br(T) the set of all branches of T. For every q ∈ T, we denote by
succT(q) = {p ∈ T | q <T p} and predT(q) = {p ∈ T | p <T q} the set of
successors and predecessors of q in T, respectively. We say (T,≤T) is wellfounded
if every subset A ⊆ T has a minimal element, i.e. an element t ∈ A such that
predA(t) = ∅. Given a well-founded partial order T, recursively define Levα(T)
to be the set of minimal elements of T \

⋃
β<α Levβ(T). The height htT(q) of an

element q in T is the unique α such that q ∈ Levα(T). The height of T is defined
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as the smallest ordinal α such that Levα(T) = ∅, and it is denoted by ht(T). Given
a branch b ∈ Br(T), we can define the height of b as htT(b) = sup{htT(q) + 1 |
q ∈ b}, and denote by Brα(T) the set of branches of T of height α. Notice that
ht(T) = sup{htT(b) | b ∈ Br(T)}.

We say that (T,≤T) is a tree if (pred(q),≤T � pred(q)) is a well-order for every
q ∈ T. In particular, this implies that (T,≤T) is wellfounded. Notice also that every
sub-order of a tree is a tree as well. The elements of a tree are usually called nodes.
Given s ∈ T, the localization of T at s is the subtree Ts ⊆ T with domain

Ts = {t ∈ T | t is comparable with s}.

Given q ∈ T, we denote by immsucc(q) the set of immediate successors of q, i.e. the
set of≤T-minimal elements of succ(q). An note q ∈ T is called a leaf if succ(q) = ∅.
We say that T is δ-closed if it has no branch of height δ. We say T is<δ-closed (resp.,
≤δ-closed) if it is α-closed for any α < δ (resp., α ≤ δ). We say that T is weakly
pruned if it has no leaf (or, equivalently, if it has no branch of successor height).
We say that T is splitting if | immsucc(q)| 6= 1 for every q ∈ T, that is, for every
node q ∈ T either it is a leaf or it has at least two distinct immediate successors;
given a cardinal δ > 1 we also say that T is δ-splitting if | immsucc(q)| = δ or
| immsucc(q)| = 0 (i.e. q is a leaf) for every q ∈ T. We say that a tree T is normal
if pred(q) = pred(p) implies p = q for every p, q ∈ T whose length is not a
successor. (This includes the case in which the length is 0 and implies that Lev0(T)
is a singleton.) We say that T is balanced if all branches have the same height;
necessarily, such height coincides with ht(T), thus being balanced is equivalent to
being <δ-closed for δ = ht(T ). We say that T is pruned if it is weakly pruned
and every node of T belongs to a branch of height ht(T). Finally, we say that T is
superclosed if it is (weakly) pruned and <δ-closed for δ = ht(T ); equivalently, a
tree is superclosed if and only if it is <δ-closed for δ = ht(T ) and it has limit height.

When T is a tree, the set of branches Br(T) of T is also called complete body of
T and denoted by [[T]]c. The body [[T]] ⊆ [[T]]c of T is the set

[[T]] = {b ∈ [[T]]c | htT(b) = ht(T)}.

Notice that while [[T]]c 6= ∅ for all nonempty trees T, if ht(T) is limit we might
have [[T]] = ∅ even if T 6= ∅. Notice also that a tree T is superclosed if and only if
[[T]] = [[T]]c and ht(T) is limit.

Of particular interest are the so-called trees of sequences. Given an ordinal γ and
a nonempty set A, we denote by Aγ the set of all sequences of length γ and values
in A, and we also set A<γ =

⋃
α<γ Aα . Given s ∈ A<γ , the length lh(s) of s is

the unique ordinal α < γ such that s ∈ Aα . We write s ⊆ t to say that s is an
initial segment of t, that is, lh(s) ≤ lh(t) and s(β) = t(β) for every β < lh(s).
For every t ∈ T and α ≤ lh(t), we denote by t � α the unique s ⊆ t of length α.
The concatenation between two sequences s, t is denoted by sa t, and to simplify
the notation we write sa a and aa s instead of sa t and ta s, respectively, when
t = 〈a〉 is a sequence of length 1. By definition, every subset of T ⊆ A<γ is a
tree when equipped with the initial segment (or inclusion) relation ⊆: such trees are
called tree of sequences. We do not require in general that T is closed under initial
segments, thus length lh(s), which is independent of T , and height htT (s), which
instead heavily depends on T , need not to coincide for a node s ∈ T .



CHAPTER 2. GDST AT SINGULAR CARDINALS 78

Fix an ordinal γ and a nonempty set A. Given a tree of sequences T ⊆ A<γ ,
define the boundary δ(T ) of T as the set of all those sequences s ∈ A≤γ such that
t /∈ T for every s ⊆ t ∈ A<γ and T is cofinal in the set of⊆-predecessors of s, i.e. for
every α < lh(s) there is p ∈ T with s � α ⊆ p. The complete body [[T ]]c = Br(T )
of T may be canonically identified with the set

{s ∈ δ(T ) | lh(s) is a limit ordinal, or lh(s) = α+ 1 and s(α) = ā}, (2.1.1)

where ā is a fixed element of A. (When A is an ordinal as well, we canonically set
ā = 0.) More precisely, each branch b ∈ Br(T ) can be identified with

⋃
b if htT (b) is

limit, and with (
⋃
b)a ā otherwise. With a small abuse of terminology and notation,

the set in (2.1.1) will again be called complete body of T and denoted by [[T ]]c. Also
the notion of body [[T ]] of T can be adapted accordingly, the advantage being that
in this way both [[T ]]c and [[T ]] consist of sequences of elements of A instead of
sequences of sequences. Notice however that for arbitrary trees of sequences T ⊆
A<γ the body [[T ]] needs not to be a subset of Aγ , and might consist of sequences of

different length (but same height with respect to the tree T ).
A descriptive set-theoretic (DST for short) tree is a tree of sequences T ⊆ A<γ

which moreover is downward closed under ⊆, i.e. s � α ∈ T for every s ∈ T
and α ≤ lh(s). Equivalently, a tree of a sequences T is a DST tree if and only if
lh(s) = htT (s) for every s ∈ T . In the case of DST trees, when writing T ⊆ A<γ

we often tacitly assume that T has height γ. Notice that by such convention, if
T ⊆ A<γ is a DST tree with γ limit its body is a subset of Aγ (in contrast to what
happens for an arbitrary tree of sequences) and can be described as

[[T ]] = {x ∈ Aγ | ∀α < γ (x � α ∈ T )}.

Thus we recover the classical notion of body for DST trees considered e.g. in [93] for
γ = ω and in [6] for γ an arbitrary infinite cardinal. For this reason, when T is a DST
tree we simply write [T ] instead of [[T ]], as customary in the literature; accordingly,
we also set [T ]c = [[T ]]c.

The following are well-known facts showing how trees, trees of sequences and
DST are closely related to each other. In particular, trees and trees of sequences are
one and the same, up to isomorphism, while DST trees correspond to normal trees.

Proposition 2.1.2. Let (T,≤T) be a tree, let γ = ht(T), and set ϑ = |T|.

(1) If T is normal, then it is isomorphic to a DST tree T ⊆ ϑ<γ with ht(T ) =
ht(T).

(2) If T is not normal and γ is limit, then T is isomorphic to the subtree T ′ =⋃
α<γ Levα+1(T ) of a DST tree T ⊆ ϑ<γ with ht(T ) = ht(T). If γ is succes-

sor, then a similar result holds with T ⊆ ϑ<γ+1 and ht(T ) ≤ ht(T) + 1.

Proposition 2.1.3. Let γ be a limit ordinal. For every tree of sequences T ⊆ A<γ

there is a normal tree of sequences T ′ ⊆ A<γ such that ht(T ′) ≤ ht(T ) + 1 and
ht(T ′) = ht(T ) if the latter is limit, T ⊆ T ′, T and T ′ are ⊆-cofinal in each other
(hence [[T ]]c = [[T ′]]c and [[T ]] = [[T ′]]), and T and T ′ share the same properties
in the following list: being δ-closed for δ < γ, being weakly pruned, being balanced,
being splitting, being pruned (if ht(T ) is limit), being superclosed.
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2.1.4 Trees and topology

The (complete) body [[T]]c = Br(T) of a tree T can be given a natural topology,
namely, the one generated by sets of the form

NT
q = {b ∈ [[T]]c | q ∈ b}

for q ∈ T. Subspaces X of [[T]]c, including the notable case X = [[T]], are endowed
with the relative topology, which is generated by the sets NX

q = NT
q ∩ X . When

T ⊆ A<γ is a tree of sequences, using our identification of [[T ]]c as a subset of A≤γ

the sets in the above basis can be construed as NT
s = {t ∈ [[T ]]c | s ⊆ t} for s ∈ T ,

and similarly for NX
s with X ⊆ [[T ]]c. The above topology will be called bounded

topology. This is because taking γ = κ with κ > ω regular and either A = κ
and T = κ<κ , or A = 2 = {0, 1} and T = 2<κ we recover the usual generalized
Baire space κκ and generalized Cantor space 2κ , whose topology is usually called
“bounded topology”, which so far played a central role in the literature on generalized
descriptive set theory (for regular cardinals).

When λ is any cardinal of cofinality cof(λ) = µ, the rightful generalizations of
the Cantor and Baire spaces become respectively:

(a) the generalized Baire space

λµ = {x | x : µ→ λ},

with its bounded topology;

(b) the generalized Cantor space

2λ = {x | x : λ→ 2},

with its bounded topology;

The assumption 2<λ = λ ensures then that 2λ has weight λ and (since it implies also
the weaker assumption λ<µ = λ) that the space λµ has weight λ.

These spaces are particular instances of spaces of the form Aγ with γ a cardinal,
again tacitly endowed with the bounded topology: such spaces will in general be
dubbed spaces of sequences, and they are crucially involved in the current chapter.
In these particular cases we often write Ns instead of N

A<γ

s .
The following is a well-known fact (see e.g. [87] or Theorem 3.8 of [121] and

the preceding paragraphs).

Fact 2.1.4. The following are equivalent:

1. λ is weakly compact.

2. 2λ is λ-Lindelöf.

3. 2<λ = λ and 2λ is not homeomorphic to λµ .

In particular, for all singular cardinals satisfying 2<λ = λ the generalized Cantor
space and the generalized Baire space are homeomorphic.

A simple but crucial fact which easily follows from the definitions of (complete)
body and bounded topology is the following.
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Fact 2.1.5. Let T1,T2 be trees, and suppose that f : T1 → T2 be an isomorphism.
Then the map sending each branch of T1 to the corresponding branch of T2 through
f is a homeomorphism between the (complete) bodies of T1 and T2.

Notice that Fact 2.1.5 passes to subtrees: if f : T1 → T2 and T′1 is a subtree of
T1, then f � T′1 is an isomorphism between T′1 and the corresponding subtree of T2,
so it canonically induces a homeomorphism between the (complete) bodies of such
subtrees.

Every set X ⊆ A≤γ canonically induces a DST tree

TX = {x � α | x ∈ X ∧ α < lh(x)}. (2.1.2)

Notice that for every DST tree T ⊆ A<γ we have T[T ]c = T , while T[T ] = T if
and only if T is pruned. Conversely, for every X ⊆ Aγ we have that [TX ] ⊆ Aγ is
the closure of X in Aγ (where the latter, being the body of A<γ , is equipped with
the bounded topology described above), and TX is the unique pruned DST tree such
that X is dense in [TX ]. In particular, for any tree T ⊆ A<γ and X ⊆ Aγ set
BXT =

{
NX
s | s ∈ T

}
. Then BXT ⊆ BXT∩TX ∪ {∅}, and thus BXT is a basis for X if

and only if BXT∩TX is as well.
We also notice that following key fact.

Fact 2.1.6. Let γ be limit, X ⊆ Aγ , and let T ⊆ TX be a (non necessarily DST)
pruned tree. Then BT =

{
NX
s | s ∈ T

}
is a basis for X if and only if X ⊆ [[T ]].

If we instead consider non-pruned trees T ⊆ TX , then the equivalence becomes:
BT =

{
NX
s | s ∈ T

}
is a basis for X if and only if

(i) X ′ ⊆ [[T ]], where X ′ is the Cantor-Bendixson derivative of X consisting of all
its accumulation points, and

(ii) for every isolated point x ∈ X there is s ∈ T with NX
s = {x}.

If γ > ω is limit, not every (pruned) DST tree is < δ-closed. It follows that there
are closed sets X ⊆ Aγ such that TX is not superclosed. A concrete example when
γ is an uncountable cardinal and A = 2 is the following:

Xγ
0 = {x ∈ 2γ | |{α < γ | x(α) = 0}| < ℵ0}. (2.1.3)

The above discussion shows that it makes sense to call a closed subset C ⊆ Aγ

superclosed (in the bounded topology on Aγ ) if C = [T ′] for some superclosed DST
tree T ′ ⊆ A<γ .

2.1.5 Games

A game G of length µ played by two players I and II is a tuple (A,R,W ) where A
is the set of possible moves for the two players, R ⊆ A<µ is a weakly pruned DST
tree called set of legal positions (meant to be the set of positions that can be reached
if both players respect the rules of the game), and W ⊆ δ(R) is the payoff set, i.e.
the set of positions which assign the victory to I. The two players alternatively pick
elements ofA, with I moving first at the beginning and at all limit stages. Thus during
a run of the game the players will increasingly construct sequences p ∈ A<µ , called
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positions; a position is legal if p ∈ R. If p = 〈pβ | β < 2γ〉 ∈ A<µ is a position
of even length, we will sometimes write it as p = 〈xα, yα | α < γ〉 where xα is I’s
move at round α (i.e. xα = p2α) and yα is II’s reply on that round (i.e. yα = p2α+1).
Both players are required to respect the rules, i.e. if a position p is reached after
his/her last move (in which case lh(p) is a successor ordinal), then p ∈ R whenever
p � lh(s) − 1 ∈ R. A run of the game ends when a position p ∈ δ(R) is reached:
then I wins if and only if p ∈ W . A strategy for II is a function σ : A<µ → A
which tells him/her what to play next. More precisely, given such a σ and a sequence
r = 〈rα | α < γ〉 ∈ A<µ (to be interpreted as a sequence of moves of I), we
canonically get a position of length 2γ setting

r ∗ σ = 〈rα, σ(r � α+ 1) | α < γ〉.

We say that r is compatible with σ if (r∗σ) � β ∈ R for all β < 2γ; the strategy σ is
legal if moreover r∗σ ∈ Rwhenever γ is a successor ordinal and r is compatible with
σ. Notice that in order to define a legal strategy σ for II, it is enough to define it on all
sequences r which are compatible with σ. (The other values of σ are totally irrelevant,
as they will never be reached in an actual run of the game where both players are
following the rules and II is following σ.) This will be tacitly used throughout the
rest of the chapter. A strategy σ for player II is called tactic if its value on a sequence
r = 〈rα | α < γ + 1〉 ∈ A<µ only depends on γ and rγ (i.e. the round and the
last move of I). Each tactic σ can be thus canonically identified with a function
σ′ : A×µ→ A obtained by setting σ′(a, γ) = b if and only if σ(r) = b for some/any
r ∈ Aγ+1 with rγ = a. A strategy (or tactic) for II is winning if r ∗ σ /∈ W for all
r ∈ A<µ compatible with σ such that r ∗ σ ∈ δ(R). We say that II wins the given
game G if (s)he has a winning strategy in it. Strategies and tactics for I are defined
similarly.

2.1.6 Generalized metrics

Consider a totally ordered2 Abelian group

G = 〈G,+G, 0G,≤G〉,

and let <G denote the strict part of ≤G. Given a set X , a G-metric is a function
d : X2 → G satisfying the usual rules of a distance function, i.e. for all x, y, z ∈ X

• 0G ≤G d(x, y) and d(x, y) = 0G if and only if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤G d(x, y) +G d(y, z).

A G-ultrametric (or non-Archimedean G-metric) is a G-metric where the triangle
inequality holds in the following stronger form:

• d(x, z) ≤G max≤G{d(x, y), d(y, z)}.
2This means that the order ≤G is linear and translation-invariant (on both sides).
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Notice that G-ultrametrics do not depend on the operation +G of G, and thus could
be defined also for structures G = 〈G, 0G,≤G〉 without an operation +G or, equiv-
alently, replacing the operation +G with max≤G (which does not result in a totally
ordered group, though: we will elaborate on this later on).

Every G-metric space (X, d) is naturally equipped with the (d-)topology gener-
ated by its open balls

Bd(x, ε) = {y ∈ X | d(x, y) <G ε},

where x ∈ X and ε ∈ G+ = {g ∈ G | 0 <G g}. If X is already a topological
space, we say that the G-metric d is compatible with the topology of X if the latter
coincides with the d-topology. A topological space is called G-(ultra)metrizable if
it admits a compatible G-(ultra)metric.

Call degree of G the coinitiality Deg(G) of the positive cone G+ with respect
to ≤G. By definition, Deg(G) is a regular cardinal µ. Canonical examples of totally
ordered Abelian groups Gµ of degree µ ≥ ω are the real line R if µ = ω, and
the group

∏
i<µ Z (with pointwise sum and lexicographic order) if µ > ω. The

degree of G determines many topological properties of a G-metrizable space. For
example, every point of a G-metrizable space over a totally ordered Abelian group
G of degree µ is either isolated, or it has a local basis of size ≤ µ well-ordered by
reverse inclusion. In particular, this implies that G-metrizable spaces are divided into
classes depending on the degree of G, with discrete spaces being the only spaces
that can be metrizable over structures of different degrees. It also implies that every
G-metrizable space is Deg(G)-additive (see also Lemma 1.1.19). For this reason, a
topological space is called µ-metrizable if it admits a compatible G-metric for some
totally ordered Abelian group G of degree Deg(G) = µ. Similarly, a topological
space is called µ-ultrametrizable if it admits a compatible G-ultrametric for some
totally ordered Abelian group G of degree Deg(G) = µ.

While the definition of G-metric could be stated for any structure G with a binary
operation +G, a constant 0G, and a binary relation ≤G, not every possible choice
would give a class of topological spaces that is suitable for our purpose. For example,
if we allow G to vary among all totally ordered Abelian monoid, we get the class of
semimetrizable spaces, that is too wide for us. The problem lies in the fact that there
exist totally ordered monoids G where the set {x+G y | x, y ∈ G} is bounded away
from 0G, making trivial the triangle inequality. Nevertheless, if we avoid this problem
we can extend the definition of metrizability even further.

Let G = 〈G,+G, 0G,≤G〉 be a totally ordered pointed semigroup, i.e. +G is a
binary associative (but not necessarily commutative) operation, 0G is a singled out
element of G (but, despite the notation, not necessarily the neutral element of +G,
which might not exist), and ≤G is linear and translation invariant. For example
we can take any linear order 〈G,≤G〉, pick any element 0G ∈ G, and then equip
the resulting structure it with the binary operation max≤G . This setup allows us
to formally define G-(ultra)metrics and G-(ultra)metrizable spaces as before, and
also the degree Deg(G) of G can be defined accordingly. A totally ordered pointed
semigroup G is said 0G-continuous if for all sequences 〈rα | α < γ〉 coinitial in
G+ = {g ∈ G | 0G <G g}, we have that 〈rα + rα | α < γ〉 is still coinitial in
G+. A canonical example of 0G-continuous totally ordered pointed semigroup with
degree µ is given by 〈{0G} ∪ µ,max≤G , 0G,≤G〉, where for all α, β ∈ µ we set
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0G <G α and α ≤G β if and only if α ≥ β; such a semigroup will be denoted by Sµ.
Notice also that if G is actually an Abelian group with 0G as neutral element, then it
is automatically 0G-continuous, hence we are strictly enlarging the class of structures
used to define generalized metrics.

Recall that we have set Gω = R and Gµ =
∏
i<µ Z (for µ > ω) as canonical

examples of totally ordered Abelian groups of degree µ, and that µ is always assumed
to be a regular cardinal.

Theorem 2.1.7 ([126, Theorem 2]). LetX be a topological space. The following are
equivalent:

(1) X is µ-metrizable, i.e. X is G-metrizable over some totally ordered Abelian
group G of degree µ;

(2) X is G-metrizable over some 0G-continuous totally ordered pointed semigroup
G of degree µ;

(3) X is Gµ-metrizable.

This shows that once the regular cardinal µ is fixed, there is some flexibility
in choosing the structure G to define a corresponding (generalized) metric. In par-
ticular, if needed we can always restrict the attention to totally ordered Abelian
groups (which simplifies some computations), or even just to the canonical groups
Gµ. Notice however that sometimes it is useful to consider structures that are not
necessarily groups, e.g. when considering G-ultrametrics. Indeed, in this case it is
more natural to look for semigroups: even if G = 〈G,+G, 0G,≤G〉 were a group,
a G-ultrametric is precisely a G′-metric for the 0G-continuous pointed semigroup
G′ = 〈G,max≤G , 0G,≤G〉, and viceversa. The use of semigroups also allows us to
distinguish µ-ultrametrizable spaces inside the class of µ-metrizable spaces as those
spaces that are G-metrizable for every 0G-continuous totally ordered pointed semi-
group of the right degree (Corollary 2.2.55). This must be contrasted with item (2) in
Theorem 2.1.7, where the quantification over semigroups is only existential. Never-
theless, it must be pointed out that this distinction is relevant only in the case µ = ω,
where e.g. the space R space is (ω-)metrizable but not Q-metrizable and hence not
(ω-)ultrametrizable; in all other cases µ-metrizability and µ-ultrametrizability actu-
ally coincide (Theorem 2.2.1).

A canonical example of µ-(ultra)metrizable space is the following.

Example 2.1.8. Let µ be an infinite regular cardinal, G be any 0G-continuous totally
ordered pointed semigroup of degree µ, and let 〈rα | α < µ〉 be coinitial in G+.
Consider the space λµ . Then the function

d(x, y) =

{
0G if x = y

rα if x(α) 6= y(α) and x � α = y � α
(2.1.4)

is a G-ultrametric compatible with the bounded topology on λµ .
Similarly, if cof(λ) = µ and (λα)α<µ is a strictly increasing sequence of ordinals

cofinal in λ, then the function

d(x, y) =

{
0G if x = y

rα if x � λα 6= y � λα and x � λβ = y � λβ for all β < α
(2.1.5)
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is a G-ultrametric compatible with the bounded topology on Aλ for any set A (and
in particular, on 2λ ).

2.2 Characterizations of µ-metrizable spaces

In this section we provide various characterizations of (µ-)metrizability. The litera-
ture about µ-metrizability is wide, and several notions have been proven equivalent to
it. We collect here the most relevant to us, like Nagata-Smirnov bases and tree bases,
and introduce some new ones, most notably the one originating from the µ-uniform
local basis game.

The ultimate goal of this section is to prove the following theorem, where as usual
µ is an infinite regular cardinal (countable or uncountable).

Theorem 2.2.1. Let X be a (regular Hausdorff) topological space.

(1) The following are equivalent:

(a) X is µ-metrizable;

(b) X is a µ-additive NS2
µ-space;

(c) X is a µ-additive NSµ-space;

(d) X is a µ-additive, paracompact, µ-uniformly based space.

(2) The following are equivalent:

(a) X is µ-metrizable (and Lebesgue zero-dimensional, if µ = ω);

(b) X is µ-ultrametrizable;

(c) X is a µ-additive space with a clopen NS
(2)
µ -basis;

(d) X is µ-additive and µ-tree-based;

(e) X is µ-additive, µ-uniformly based and Lebesgue zero-dimensional.

If moreover X has weight ≤ λ for some cardinal λ, then the above conditions
are equivalent to

(f) X is homeomorphic to a subspace of λµ ;

and if µ = cof(λ) also to

(g) X is homeomorphic to a subspace of 2λ .

In particular, when µ > ω then all the above items (a)–(d) from part (1) and (a)–(g)
from part (2) (under the appropriate assumptions on λ) are equivalent to each other.

The proof will be given in Section 2.2.5. The symbol NS stands for Nagata-
Smirnov: NS

(2)
µ -bases and NS

(2)
µ -spaces are studied in Section 2.2.1. Tree bases are

instead studied in Section 2.2.2. Finally, the property of being µ-uniformly based,
which to the best of our knowledge is new, is introduced in Section 2.2.3 through
a corresponding topological game. These properties are all automatically present in
every space of weight ≤ µ (under the additional assumption of µ-additivity for µ-
metrizability, and of µ-additivity plus Lebesgue zero-dimensionality for µ-tree-basis,
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unconditionally for all the other notions). Thus their presence becomes relevant only
when we look at spaces of weight > µ like we do in generalized descriptive set
theory on a singular cardinal λ > cof(λ) = µ, but they become trivial, for example,
in descriptive set theory on a regular cardinal.

It is worth noticing that on the way of proving Theorem 2.2.1, we also provide
a new characterization of (classical) metrizability, namely: A (regular Hausdorff)
space X is metrizable if and only if it is paracompact and ω-uniformly based (Theo-
rem 2.2.39). The relevance of this result, in comparison with the existing metrization
theorems, is briefly discussed at the beginning of Section 2.2.3.

Some of the results of this section already appeared in literature, although in a
very sparse way and sometimes in weaker or substantially different forms. To give
some examples:

• the equivalence among items (a), (b) and (c) in Theorem 2.2.1(1) is proved
in [119, 141, 21] for µ = ω and [137, 84] for µ > ω, but in the latter case
item (c) involves only NSωµ-spaces rather than NSµµ-spaces;

• the equivalence among items (a), (b) and (c) in Theorem 2.2.1(2) is proved
in [44] for µ = ω and [137] for µ > ω, but again item (c) is limited to NSωµ-
bases rather than NS2

µ-bases;

• [121, Theorem 3.3] essentially proves the equivalence among items (a), (b), (d)
and (f) in Theorem 2.2.1(2), but although a posteriori this shows that if µ > ω
item (c) of Theorem 2.2.1(1) is equivalent to item (d) of Theorem 2.2.1(2), the
known proofs always artificially pass through µ-metrizability: in contrast, in
Proposition 2.2.29 we provide a direct link between the two concepts for µ-
metrizable spaces.

While proving the new results, namely the addition of item (d) in Theorem 2.2.1(1),
of items (e) and (g) in Theorem 2.2.1(2), and the various strengthenings of the known
results mentioned above, we will provide a complete self-contained presentation of
the subject in a way that should be accessible to readers without a deep knowledge in
general topology. In particular, we will reprove (with a few exceptions) in a simpler
and more direct way the known statements from the literature that we actually need,
and track back definitions and results in the literature with the appropriate references
when possible.

2.2.1 Nagata-Smirnov bases

In classical descriptive set theory, one restricts the attention to second-countable topo-
logical space. For these spaces, metrizability can be characterized as follows:

Theorem 2.2.2 (Urysohn metrization theorem). Let X be a second countable topo-
logical space. Then, the following are equivalent:

(a) X is regular Hausdorff.

(b) X is metrizable.
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Analogously, in generalized descriptive set theory for uncountable regular cardi-
nals µ the main focus is on topological spaces of weight ≤ µ (see Chapter 1). In this
context, the following Sikorski’s Metrization Theorem 2.2.3 can be seen as an ana-
logue of the Urysohn Metrization Theorem 2.2.2 for this class of spaces. Recall that
by convention µ is a regular3 cardinal, and notice that the requirement on µ-additivity
is implicit in Urysohn’s theorem, as in that case µ = ω and ω-addivity holds for all
topological spaces.

Theorem 2.2.3 ([139, Theorem (viii)-(x)]). Let X be a topological space of weight
≤ µ. Then, the following are equivalent:

(a) X is regular Hausdorff and µ-additive;

(b) X is µ-metrizable;

These theorems do not extend to µ-metrizable spaces of weight greater than µ, as
there are regular Hausdorff spaces of uncountable weight that are not metrizable, and
regular Hausdorff µ-additive spaces of weight > µ that are not µ-metrizable.

The most famous characterization of metrizable spaces holding unconditionally
is Nagata-Smirnov metrization theorem (see [119, 141] and its variant by Bing [21]),
and its generalization to µ-metrizable spaces is given by [137]. In those theorems, the
crucial condition is the existence of a particular basis for the topology. A family F of
subsets of a topological space X is said locally <δ-small if every point x ∈ X has a
neighborhood U that intersects less than δ-many elements of F . This way, a locally
<ω-small family is precisely a locally finite family. A locally <2-small family is
usually called discrete family.

Let B be a basis of a topological space X , and δ, γ be cardinals. We say that B is
a (δ, γ)-Nagata-Smirnov basis (or NSδγ-basis) if it can be written as B =

⋃
i<γ Bi

where each Bi is locally<δ-small. The family {Bi | i ∈ γ} is called a (δ, γ)-Nagata-
Smirnov cover (or NSδγ-cover) for B. Notice that if B is a NSδγ-basis with NSδγ-cover
{Bi | i ∈ γ} and B′ ⊆ B is a another basis, then B′ is still a NSδγ-basis as witnessed
by the NSδγ-cover {Bi∩B′ | i ∈ γ}. Thus if B is a NSδγ-basis for a spaceX of weight
≤ λ, without loss of generality we can assume that |B| ≤ λ.

Definition 2.2.4. Let δ, γ be cardinals. A (regular Hausdorff) topological space is
called a (δ, γ)-Nagata-Smirnov space (briefly, NSδγ-space) if it has a NSδγ-basis.

For ease of notation and terminology, when δ = γ we simply speak of γ-Nagata-
Smirnov spaces (or NSγ-spaces), NSγ-bases, and NSγ-covers. Notice that if γ′ ≥ γ

and δ′ ≥ δ, then every NSδγ-space is also a NSδ
′
γ′-space. We are now ready to state

the Bing-Nagata-Smirnov Metrization Theorem.

Theorem 2.2.5 ([119, 141, 21]). For any topological space X the following are
equivalent:

(a) X is a regular Hausdorff NS2
ω-space;

(b) X is a regular Hausdorff NSωω-space;

3The restriction to regular cardinals is due to the fact that if η is a singular cardinal, then η-additivity
coincides with η+-additivity, and thus the only η-additive spaces of weight ≤ η are the discrete ones.
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(c) X is metrizable.

This result was later generalized to µ-metrizability: again, the key ingredient to
be added when µ > ω is µ-additivity. (Again, the case µ = ω is already covered by
Theorem 2.2.5 because ω-additivity comes for free: the genuinely new result is about
the case when µ is uncountable.)

Theorem 2.2.6 ([137, Theorem 6] and [84, Theorem 2.2]). For any topological space
X the following are equivalent:

(a) X is a regular Hausdorff µ-additive NS2
µ-space;

(b) X is a regular Hausdorff µ-additive NSωµ-space;

(c) X is µ-metrizable.

Notice that every basis B = {Bα | α < µ} of size µ trivially admits {{Bα} |
α < µ} as a NS2

µ-cover. Thus, all spaces of weight≤ µ are in particular NS2
µ-spaces.

Remark 2.2.7. Every (regular Hausdorff) space of weight ≤ µ is a NS2
µ-space.

In particular, Theorems 2.2.5 and 2.2.6 extend Theorems 2.2.2 and 2.2.3, respec-
tively, to spaces of weight > µ.

In classical descriptive set theory, an important dividing line in the class of Polish
spaces is given by zero-dimensionality (in the sense of small inductive dimension).
Recall that a topological space X is zero-dimensional if it admits a basis consisting
of clopen sets. Since Polish spaces are second-countable, this is equivalent to requir-
ing thatX be Lebesgue zero-dimensional, i.e. every open cover ofX can be refined4

to a clopen partition of X . However, when we move to spaces of uncountable weight
the two concepts are no longer equivalent: Lebesgue zero-dimensionality implies
zero-dimensionality, but the converse, in general, is not true, as there are even com-
plete metric spaces that are zero-dimensional but have Lebesgue covering dimension
1 (see Roy’s space [129]). As observed e.g. in [52], in order to have a decent (gener-
alized) descriptive set theory the correct notion to be considered is the stronger one,
namely Lebesgue zero-dimensionality. This is due to the following phenomenon. In
view of Theorem 2.2.5, a zero-dimensional metrizable space has a NSωω-basis as well
as a clopen basis: it is thus natural to ask if one can have a single basis which is both
(ω, ω)-Nagata-Smirnov and consists of clopen sets. It turns out that this precisely
corresponds to being Lebesgue zero-dimensional.

Theorem 2.2.8 ([44]). Let X be a topological space. The following are equivalent:

(1) X is metrizable and Lebesgue zero-dimensional.

(2) X is ultrametrizable.

(3) X has a NS
(2)
ω -basis consisting of clopen sets.

In particular, Roy’s space [129] is an example of an (ω-additive) zero-dimensional
NSωω-space which does not admit a NSωω-basis of clopen sets (since it has Lebesgue
covering dimension 1).

4Recall that a family A refines a family B if for every A ∈ A there is B ∈ B such that A ⊆ B.
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Moving to µ-metrizability for an uncountable µ, the situation radically changes.
Since µ-metrizable spaces are µ-additive and the latter implies zero-dimensionality
when cof(µ) > ω, every µ-metrizable space is zero-dimensional; but actually this
can be improved to Lebesgue zero-dimensionality using the following notion and
results.

Definition 2.2.9. Let δ, γ be cardinals. A topological spaceX is (δ, γ)-paracompact
if every open cover of X can be refined into a subcover which is the union of γ-many
locally <δ-small families. As a shortcut, we use the term γ-paracompact for (γ, 1)-
paracompact.

Thus ω-paracompactness is just the usual notion of paracompactness, which is a
notable conseguence of metrizability. Clearly, every NSδγ-space is (δ, γ)-paracompact.
Notice also that ifX is (δ, γ)-paracompact and δ′ ≥ δ, γ′ ≥ γ, thenX is also (δ′, γ′)-
paracompact.

It is well known that a space is (ω, ω)-paracompact if and only if it is paracom-
pact. In the uncountable case, even more is true.

Proposition 2.2.10 ([10, Theorem 3.4]). Let δ be a regular uncountable cardinal,
and let X be a δ-additive space. The following are equivalent:

(1) X is (δ, δ)-paracompact.

(2) X is paracompact.

(3) X is Lebesgue zero-dimensional.

Proposition 2.2.11. Let µ > ω. Every µ-metrizable space is Lebesgue zero-dimensional.

Proof. Let X be µ-metrizable. By Theorem 2.2.6, X is a (µ-additive) NSωµ-space,
hence it is (ω, µ)-paracompact, and thus also (µ, µ)-paracompact. Setting δ = µ in
Proposition 2.2.10 we are done.

As for the possibility of having a basis that is simultaneously Nagata-Smirnov
(for the appropriate parameters) and made of clopen sets, Shu-Tang [137] showed
that if µ > ω then every µ-metrizable space has a NSωµ-basis consisting of clopen
sets. In what follows, we are going to prove in a very direct way a slightly improved
version of this statement. We will use the following simple observations.

Fact 2.2.12. Let δ and γ be cardinals.

(1) The union of finitely many locally <δ-small families of (open) subsets of X is
again locally <δ-small. Similarly, if γ ≤ cof(δ) and X is a γ-additive topo-
logical space, then the union of <γ-many locally <δ-small families of (open)
subsets of X is again locally <δ-small.

(2) Every NSδγ-basis B admits a NSδγ-cover {Bα | α < γ}with the property that for
every finite subset F ⊆ γ there exists j < γ such that

⋃
i∈F Bi ⊆ Bj . Indeed,

let {Fα | α < γ} be an enumeration of all finite subsets of γ, and fix any NSδγ-
cover {B′α | α < γ} of B. Then each

⋃
i∈Fα B

′
i is again locally <δ-small, so

that we can define a new NSδγ-cover of B with the desired property by setting
Bα =

⋃
i∈Fα B

′
i for each α < γ.
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(3) Similarly, if ρ < cof(δ) is a cardinal such that γρ = γ, and X is ρ+-additive,
we can assume that the same is true for all subsets of γ of size ρ, that is: Every
NSδγ-basis B ofX admits a NSδγ-cover {Bα | α < γ} such that for every F ⊆ γ
of size ρ we have

⋃
i∈F Bi ⊆ Bj for some j < γ.

(4) Finally, if δ = γ is regular and X is δ-additive, then every NSδδ-basis of X
admits a NSδδ-cover {Bα | α < δ} such that Bα ⊆ Bβ for all α ≤ β < δ. (If
not, just replace each Bα with

⋃
i≤α Bi.)

Definition 2.2.13. Given a family A of open subsets of a topological space (X, τ)
and a point x ∈ X , define the set CN(A, x) of complemented A-neighborhoods of
x by setting

CN(A, x) = {A ∈ A | x ∈ A} ∪ {X \ cl(A) | A ∈ A ∧ x /∈ cl(A)}.

When needed, we write CNτ (A, x) to make explicit that closures in the definition of
CN(A, x) are computed relatively to the topology τ .

Lemma 2.2.14. Let δ be a cardinal. Let X be a δ-additive space, and let A be
a locally <δ-small family of open subsets of X . Then for every x ∈ X the set⋂

CN(A, x) is open.

Proof. Fix x ∈ X . Given y ∈
⋂

CN(A, x), we want to find some open set O
such that y ∈ O ⊆

⋂
CN(A, x). Let U be an open neighborhood of y such that

U = {A ∈ A | A ∩ U 6= ∅} has size < δ. Define

B = {A ∈ U | x ∈ A} ∪ {X \ cl(A) | A ∈ U ∧ x /∈ cl(A)} ⊆ CN(A, x).

We claim that O = U ∩
⋂
B works. Since |B| ≤ |U| < δ and X is δ-additive,

the set O is open, and clearly y ∈ U ∩
⋂
B because

⋂
CN(A, x) ⊆

⋂
B: thus

we only need to show that O ⊆
⋂

CN(A, x). Since y ∈
⋂

CN(A, x), for every
A ∈ A we have that either A ∈ U , or else x /∈ A and U ⊆ X \ cl(A). Given an
arbitrary C ∈ CN(A, x), we have two cases. Either C = A for some A ∈ A with
x ∈ A, in which case by the previous observation we can conclude A ∈ U and hence
O ⊆

⋂
B ⊆ C. Or else C = X \ cl(A) for some A ∈ A with x /∈ cl(A), and

hence by the previous observation either A ∈ U and O ⊆
⋂
B ⊆ C again, or else

O ⊆ U ⊆ X \ cl(A) = C.

Lemma 2.2.15. Let X be a topological space, and let A be a family of clopen sets.
Then {

⋂
CN(A, x) | x ∈ X} is a partition of X .

Proof. Observe that5 x ∈
⋂

CN(A, x) for every x ∈ X , hence such sets form a cover
of X consisting of nonempty sets. If for some x, y ∈ X we have

⋂
CN(A, x) 6=⋂

CN(A, y), then CN(A, x) 6= CN(A, y), and in turn {A ∈ A | x ∈ A} 6= {A ∈
A | y ∈ A} because A consists of clopen sets. Suppose without loss of generality
that there is A ∈ A such that x ∈ A and y /∈ A: since A is clopen, X \ cl(A) =
X \A ∈ CN(A, y), and so

⋂
CN(A, x) ∩

⋂
CN(A, y) = ∅.

Lemma 2.2.16. Let δ, γ ≥ 2 be cardinals and let X be a δ-additive NSδγ-space. The
following are equivalent:

5When A = ∅ we have CN(A, x) = ∅ as well, hence
⋂

CN(A, x) =
⋂
∅ = X by convention.
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(a) X has a NSδγ-basis consisting of clopen sets.

(b) X has a NS2
γ-basis consisting of clopen sets.

(c) X has a basis which is a γ-sized union of clopen partitions {Bα | α < γ}.

Furthermore, if δ = γ is regular, then the above conditions are also equivalent to the
following:

(d) X has a basis which is a union of clopen partitions {Bα | α < γ} such that Bβ
refines Bα for every α ≤ β < γ.

Proof. The implications (d)⇒ (c), (c)⇒ (b), and (b)⇒ (a) are obvious. We simul-
taneously prove (a)⇒ (c) and (a)⇒ (d) (under the extra cardinal assumption). Let
B′ be a NSδγ-basis of clopen sets with cover {B′α | α < γ}. If δ = γ is regular,
we may further assume that B′α ⊆ B′β for every α ≤ β < γ by Fact 2.2.12, which
implies that

⋂
CN(B′β, x) ⊆

⋂
CN(B′α, x) for every x ∈ X . By Lemmas 2.2.14

and 2.2.15, setting Bα = {
⋂

CN(B′α, x) | x ∈ X} and B =
⋃
α<γ Bα we get the

desired basis.

Proposition 2.2.17. Let δ, γ be a uncountable cardinals with δ regular. Suppose that
at least one of δ = γ and γω = γ holds. Let X be a δ-additive NSδγ-space. Then X
has a NS2

γ-basis D consisting of clopen sets.

Proof. Let B be a NSδγ-basis for X with NSδγ-cover {Bα | α < γ}. By Fact 2.2.12
and our assumptions on δ and γ, without loss of generality we may assume that for
every family A ⊆ B of size ω there is α < γ such that A ⊆ Bα. Let

Cα =

{⋂
A
∣∣∣ A ⊆ Bα ∧ |A| = ω ∧

⋂
A =

⋂
A∈A

cl(A)

}
,

and set Dα = {
⋂

CN(Cα, x) | x ∈ X} and D =
⋃
α<γ Dα. We claim that each Dα

is a clopen partition of X and that D is a (NS2
γ-)basis.

Since X is at least ω1-additive, by definition each set in Cα is clopen, hence by
Lemma 2.2.15 each Dα is a partition of X and its elements are closed: we want to
show that they are open as well.6 Since each Bα is locally <δ-small, for every α < γ
and x ∈ X the set

⋂
CN(Bα, x) is open by Lemma 2.2.14.

Claim 2.2.17.1.
⋂

CN(Bα, x) ⊆
⋂

CN(Cα, x).

Proof of the claim. Indeed, fix any B ∈ Cα and a countable family A ⊆ Bα witness-
ing this, and recall that B is clopen. We distinguish two cases, according to the defi-
nition of CN(Cα, x). If x ∈ B =

⋂
A, then we have x ∈ A for every A ∈ A and so⋂

CN(Bα, x) ⊆
⋂
A = B by construction. If instead x /∈ cl(B) = B, then there is

A ∈ A such that x /∈ cl(A) becauseB =
⋂
A∈A cl(A), henceX\cl(A) ∈ CN(Bα, x)

for such A and⋂
CN(Bα, x) ⊆

⋃
A∈A

(X \ cl(A)) = X \
⋂
A∈A

cl(A) = X \B.

This finishes the proof of the claim.
6Notice that we cannot directly apply Lemma 2.2.14 because the family Cα might not be locally

<δ-small if there is ρ < δ such that ρω ≥ δ.



CHAPTER 2. GDST AT SINGULAR CARDINALS 91

Fix any
⋂

CN(Cα, x) and a point y in it. Since y ∈
⋂

CN(Cα, y) and Dα is a
partition of X , it follows that

⋂
CN(Cα, x) =

⋂
CN(Cα, y). By the claim, the open

set O =
⋂

CN(Bα, y) is such that y ∈ O ⊆
⋂

CN(Cα, y) = CN(Cα, x). Since y
was arbitrary, this shows that

⋂
CN(Cα, x) is an open set, as desired.

So it remains to prove that D is a basis for X (and hence, in particular, a NS2
µ-

basis for X). Consider any nonempty open set O ⊆ X and an arbitrary point x ∈ O.
We want to find α < γ such that x ∈

⋂
CN(Cα, x) ⊆ O. Using the regularity of

the space X , define a family A = {Ui | i < ω} ⊆ B of basic open sets such that
x ∈ cl(Ui+1) ⊆ Ui ⊆ O for every i ∈ ω. By assumption, since |A| = ω there is
α < γ such that A ⊆ Bα, and furthermore

⋂
A =

⋂
A∈A cl(A) by construction.

Hence,
⋂
A ∈ Cα, and since x ∈

⋂
A ⊆ O then x ∈

⋂
CN(Cα, x) ⊆ O as well and

we are done.

In general, if δ < δ′ ≤ µ then being a NSδ
′
µ -space is (strictly) weaker than being

a NSδµ-space. In particular, considering NSµ-spaces is more general than considering
just NSωµ or NS2

µ-spaces. In contrast, the previous result shows that if µ > ω is
regular, then for µ-additive spaces all these notions coincide and we can thus get rid
of the parameter δ.

Corollary 2.2.18. Let X be a µ-additive topological space. Then X is a NSµ-space
if and only if it is a NSδµ-space for some/any 2 ≤ δ ≤ µ.

This slightly improves Theorem 2.2.6, where the parameter δ was allowed to vary
only between 2 and ω, and thus provides a better analogue of Theorem 2.2.5 for an
uncountable µ. Another interesting consequence is that when µ > ω we always
have a NS2

µ-basis consisting of clopen sets as soon as the space is µ-metrizable,
which gives the desired strengthening of another theorem of Shu-Tang from [137],
the difference being that now we can get a clopen NS2

µ-basis instead of a clopen
NSωµ-basis. This should be contrasted with the case µ = ω, where a (ω-)metrizable
space has a NSω-basis of clopen sets if and only if it is Lebesgue zero-dimensional
(Theorem 2.2.8), which in such setup is a nontrivial requirement.

Corollary 2.2.19. Let µ > ω and X be a µ-metrizable space. Then X has a NS
(2)
µ -

basis consisting of clopen sets.

Notice that Proposition 2.2.17 strengthens the mentioned Shu-Tangs’s theorem [137]
also in the direction of requiring potentially less additivity. For example, suppose that
µω = µ and that the space X is at least ω1-additive: then X has a clopen NS2

µ-basis
as soon as it has a NSωµ-basis. (Notice that together with µ-additivity the latter yields
to µ-metrizability, the original Shu-Tang’s hypothesis, by Theorem 2.2.6: however,
here the space needs not to be µ-additive if µ > ω1.)

Finally, using Lemma 2.2.16 we further get the following strengthening of Corol-
lary 2.2.19.

Corollary 2.2.20. Let µ > ω and letX be a µ-metrizable space. ThenX has a basis
which is a µ-sized union of clopen partitions {Bα | α < µ} such that Bβ refines Bα
for every α ≤ β < µ.

Of course, a similar result hold for µ = ω if we further require that X be
Lebesgue zero-dimensional.
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2.2.2 Tree bases

Topological spaces admitting a basis that form a tree under the reverse inclusion
relation ⊇ have been introduced and studied for the first time by Kurepa [99, 100].
Later, this notion has been recovered and studied thanks to its deep connections with
non-Archimedean spaces and ultrametrics (see e.g. [121]).

Definition 2.2.21. A tree basis for a topological spaceX is a basis B such that ∅ /∈ B
and (B,⊇) is a tree; the height of B is the height of (B,⊇) as a tree. We say that X
is tree-based if (it is regular Hausdorff and) it admits a tree basis. Moreover, if γ is
an ordinal we say that X is γ-tree-based if it admits a tree basis of height ≤ γ.

Notice that a basis contained in a tree basis is still a tree basis. It follows that ifX
has a tree basis B and has weight ≤ λ, then there is tree basis B′ ⊆ B with |B′| ≤ λ.
With a little abuse of notation, we often denote the tree (B,⊇) by B because in this
context the tree-relation is fixed and there is no danger of confusion.

Proposition 2.2.22. Let X be a Hausdorff topological space, and let B be a tree
basis for X . Then

(1) the tree B is splitting;

(2) if U, V ∈ B are ⊇-incomparable, then U ∩ V = ∅;

(3) every U ∈ B is clopen, hence X is regular;

(4) for every x ∈ X the family B(x) = {B ∈ B | x ∈ B} is a branch through B
and is a local basis of x, hence

⋂
B(x) = {x};

(5) conversely, if A ⊆ B is a branch through B and
⋂
A 6= ∅, then A = B(x) for

a (necessarily unique) x ∈ X .

Proof. (1) Pick any U ∈ B. If U is a singleton, then it is obviously a leaf in the
tree B. If instead |U | > 1, then it must have at least one⊇-immediate successor
∅ 6= V ∈ B because otherwise X would not even be T0. Pick y ∈ U \ V .
Consider a ⊇-minimal element in {W ∈ B | W ) U ∧ y ∈ W}, which is
nonempty becauseX is Hausdorff: it is a⊇-immediate successor of U different
from V , hence we are done.

(2) Suppose that U ∩ V 6= ∅. Since B is a basis and U ∩ V is open, there is W ∈ B
such that W ⊆ U ∩ V , hence both U and V belong to pred(W ) in the tree B:
it follows that they must be ⊇-comparable by definition of tree.

(3) If U ∈ B is a singleton, then it is trivially closed because X is Hausdorff and
we are done. Assume now that |U | > 1, and pick any x ∈ cl(U): we want
to show that x ∈ U . By case assumption, there is y ∈ U with y 6= x. Fix
V ∈ B such that x ∈ V but y /∈ V . Since x is a closure point of U , it follows
that V ∩ U 6= ∅ and hence either U ⊆ V or V ⊆ U by item (2). But the first
alternative is violated by y, hence we get x ∈ V ⊆ U , as desired.

(4) The fact that B(x) is a chain follows from item (2). Maximality follows instead
from item (3). Indeed, let V ∈ B\B(X). Since V is clopen, by regularity there
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is U ∈ B such that x ∈ U and U ∩ V = ∅, so that U ∈ B(x) and U and V are
⊇-incomparable. This means that V cannot be added to B(x) in order to build
a larger chain. The fact that B(x) is a local basis of x trivially follows from its
definition.

(5) Let x ∈
⋂
A. Then by definition A ⊆ B(x), and since A is a maximal chain

then A = B(x).

It turns out that the converse to Proposition 2.2.22(2) is true as well. By [121,
Theorem 2.9], X is a tree-based topological space if and only if X has a basis where
every two basic open sets are either disjoint or comparable with respect to inclusion
(i.e. B is a so-called non-Archimedean basis). Furthermore, Proposition 2.2.22 easily
allows us to relate µ-metrizability and tree bases.

Proposition 2.2.23. A spaceX is µ-ultrametrizable if and only if it is µ-additive and
µ-tree-based.

Proof. If d is a G-ultrametric on X , then all points in an open ball Bd(x, ε) are
centers of it, and hence any two given open balls that do not intersect have to be
comparable with respect to inclusion. It follows that if Deg(G) = µ as witnessed by
a strictly decreasing sequence 〈rα | α < µ〉, then B = {Bd(x, rα) | x ∈ X ∧α < µ}
is a tree basis for X of height ≤ µ. Moreover, as already observed in Section 2.1.6,
µ-additivity follows from µ-(ultra)metrizability.

Conversely, assume that X is µ-additive and that B is a tree basis of height ≤ µ.
Given α < µ and x ∈ X , let Bα(x) be the unique B ∈ Levα(B) such that x ∈ B if
such a B exists, otherwise Bα(x) is undefined. By µ-additivity, a point x is isolated
in X if and only if some Bα(x) is undefined, and in this case there is a maximal
α < µ such that Bα(x) is defined. Let G be any totally ordered Abelian group with
Deg(G) = µ, and let 〈rα | α < µ〉 be strictly decreasing and cofinal in G+. Given
distinct x, y ∈ X , set d(x, y) = rα if and only if α < µ is smallest such that both
Bα(x) and Bα(y) are defined and Bα(x) 6= Bα(y). Using Proposition 2.2.22 and
the observation above, it is easy to verify that d is a well-defined G-ultrametric on
X . Moreover Bd(x, rα) = Bα(x) if the latter is defined, while if Bα(x) is undefined
then x is isolated and Bd(x, rα) = {x}.

Proposition 2.2.22(3) also implies that a tree-based space is zero-dimensional.
This can be strengthened as follows.

Proposition 2.2.24. Let X be a Hausdorff space with a tree basis B. Then X is
Lebesgue zero-dimensional in the following strong sense: Every open cover A of X
can be refined to a clopen partition C consisting of basic open sets (i.e. C ⊆ B).

Proof. Without loss of generality, we may assume A ⊆ B, so that its elements are
clopen by Proposition 2.2.22(3). Let x ∈ X . Let Ax ∈ A be the ⊇-minimum ele-
ment of A such that x ∈ Ax: we claim that C = {Ax | x ∈ X} ⊆ A works. The
only nontrivial part is showing that the elements of C are pairwise disjoint. But if
Ax, Ay ∈ C are such that Ax ∩ Ay 6= ∅, then Ax ⊆ Ay or Ay ⊆ Ax by Propo-
sition 2.2.22(2). Suppose the former: if the inclusion were proper, then Ay would
contradict the minimality of Ax because x ∈ Ax ( Ay ∈ A. The other case is
similar.
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Proposition 2.2.22(4) easily yields to the following useful lemma from [121],
which may be viewed as a very weak form of additivity within the tree bases.

Lemma 2.2.25 ([121, Theorem 2.3]). Let B be a tree basis for a Hausdorff space X ,
and letA ⊆ B be arbitrary. Then either

⋂
A is open, or

⋂
A = {x} for some x ∈ X

and A is a local basis of x (i.e. B is an ortho-base).

Proof. If
⋂
A = ∅ we are done, so suppose this is not the case. By definition, for

every x ∈
⋂
Awe haveA ⊆ B(x). IfA is⊇-cofinal in B(x), then

⋂
A =

⋂
B(x) =

{x} by Proposition 2.2.22(4) and we are done. The remaining case is when A is not
⊇-cofinal in B(x) for every x ∈

⋂
A. But then by linearity of B(x) for every such x

there is U ∈ B(x) such that U ( V for every V ∈ A, hence
⋂
A is open.

Among tree-based spaces, we find all spaces of the form Aγ and their subspaces.
Indeed, let X ⊆ Aγ and T ⊆ A<γ be a tree: if BT = {NX

s | s ∈ T} is a basis for X
and ∅ /∈ BT (see Fact 2.1.6 and previous paragraph), then is actually a tree basis of
height≤ γ. Moreover, in this case T is isomorphic to BT if and only if T is splitting.

Fact 2.2.26. For every tree T, the complete body [[T]]c is a tree-based space, while
the body [[T]] is a δ-additive δ-tree-based space for δ = cof(ht(T)).

In particular, for every (limit) ordinal γ and non-empty set A, the space Aγ with
bounded topology is a δ-additive, δ-tree-based for δ = cof(ht(T)).

Conversely, we are now going to observe that tree-based spaces can always be
construed as subspaces of [[T ]]c for some tree of sequences T ⊆ A<γ . First, notice
that Proposition 2.2.22(4)–(5) easily yields to the following.

Lemma 2.2.27. Let B be a tree basis for a Hausdorff space X . Then the map x 7→
B(x) is a homeomorphism between X and the subspace Y ⊆ [[B]]c given by

Y = {A ∈ [[B]]c |
⋂
A 6= ∅}.

Indeed, by definition of bounded topology the above homeomorphism maps each
B ∈ B to the basic open set NY

B and viceversa, so it is an isomorphism between B
and the canonical basis for the bounded topology on Y ⊆ [[B]]c (viewed as trees).
Further applying Proposition 2.1.2 to the tree (B,⊇) we then get:

Corollary 2.2.28. Let γ be a limit ordinal. Let X be a space with weight ≤ λ, and
assume that X is γ-tree-based. Then there is a tree T ⊆ λ<γ (isomorphic to (B,⊇))
such that X embeds into [[T ]]c.

When X is µ-additive for an uncountable µ, admitting a tree basis of height
≤ µ provides yet another reformulation of being a NSµ-space, and hence of µ-
metrizability.

Proposition 2.2.29. Let X be a µ-additive space with µ > ω. Then X is a NSµ-
space if and only if it is µ-tree-based.

Proof. One direction easily follows from Proposition 2.2.17 and Lemma 2.2.16. For
the other direction, let B be a tree basis of height ≤ µ. Setting Xα =

⋃
Levα(B),

every point x ∈ X \ Xα is isolated because the branch B(x) has length ≤ α < µ
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and hence
⋂
B(x) = {x} is open by µ-additivity. Thus by Proposition 2.2.22(2) the

family
Bα = {{x} | x ∈ X \Xα} ∪ Levα(B),

is a clopen partition of X , and {Bα | α < µ} is a NS
(2)
µ -cover of B.

Corollary 2.2.30. Let µ > ω and X be a topological space. Then X is µ-metrizable
if and only if it is µ-additive and µ-tree-based.

As usual, similar results hold if µ = ω and X is assumed to be Lebesgue zero-
dimensional. In particular, by Remark 2.2.7 we get also the following.

Corollary 2.2.31. Every regular Hausdorff (Lebesgue zero-dimensional if µ = ω)
µ-additive space of weight ≤ µ is µ-tree-based.

Remark 2.2.32. In the above results, both µ-additivity and the fact that the tree basis
has height ≤ µ are necessary: if µ<µ = µ, the lexicographic topology on 2µ gives
a zero-dimensional NSµ-space which is not tree-based (cf. Proposition 3.3.2), while
Propositions 2.5.1 and 2.5.2 show tree-based spaces (either not µ-additive or with
tree bases of height > µ) that are not NSµ-spaces.

Proposition 2.2.33. Let X be a µ-additive µ-tree-based space of weight ≤ λ. Then
X is homeomorphic to a subspace Y of λµ .

Proof. By Corollary 2.2.28 we can assume that X ⊆ [[T ]]c for some tree T ⊆ λ<µ .
By µ-additivity, all elements of X ∩ λ<µ are isolated in X . Given s ∈ λ<µ , let
sa 0(µ) denote the unique sequence x ∈ λµ such that s ⊆ x and x(α) = 0 for all
α ≥ lh(s). Then Y = (X ∩ λµ ) ∪ {sa 0(µ) | s ∈ X ∩ λ<µ }, viewed as a subspace
of λµ , is homeomorphic to X .

By regularity of µ, Proposition 2.2.33 can obviously be reversed: every subspace
of λµ is µ-additive, µ-tree-based, and has weight ≤ λ<µ.

2.2.3 Games and µ-uniformly based spaces

Two of the most important consequences of metrizability (besides regularity and be-
ing Hausdorff) are paracompactness and first-countability. Many theorems true for
metrizable spaces need only these two conditions (or even just one of them). How-
ever, these two conditions alone are not enough to grant full metrizability, as shown
e.g. by the Sorgenfrey line. We are going to show that what is missing is just a
uniform version of first-countability (Definition 2.2.34), a condition defined through
a suitable topological game that is hidden in metrizability and its equivalent refor-
mulations considered so far (existence of NSω-bases or of tree bases). Interestingly
enough, all definitions and results work well also for µ-metrizable spaces, so we will
not distinguish between the cases µ = ω and µ > ω in the discussion below.

Let X be a topological space. The µ-uniform local basis game is a game of
length µ (see Section 2.1.5) of the form

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...
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At each round α < µ, player I picks a point xα ∈ X , and player II replies with an
open set Vα containing xα. At the end of the run, player II wins if either

⋂
α<µ Vα =

∅, or {Vα | α < µ} is a local basis of a point of X; otherwise I wins. Notice that
when X is at least T1, if II has won the run of the game and

⋂
α<µ Vα 6= ∅, then⋂

α<µ Vα = {x} for the (necessarily unique) x ∈ X of which {Vα | α < µ} is a
local basis. Notice also that if at some round α < µ player I plays xα /∈ cl(

⋂
β<α Vβ),

then II can easily wins by playing X \ cl(
⋂
β<α Vβ).

Definition 2.2.34. A topological space is µ-uniformly based if player II has a win-
ning strategy in the corresponding µ-uniform local basis game.

The following easy observation shows that we can always assume that the strat-
egy for II in the µ-uniform local basis game only picks basic open sets from any
prescribed basis.

Lemma 2.2.35. Let X be µ-uniformly based and B be any basis for X . Then player
II has a winning strategy σ in the µ-uniform local basis game G on X such that
ran(σ) ⊆ B.

Proof. Let σ′ be a winning strategy for II in G. For every r ∈ X<µ of successor
length with last element x ∈ X , pick any B ∈ B such that x ∈ B ⊆ σ′(r) and set
σ(r) = B. We claim that σ is still winning. Pick any b ∈ Xµ . If the intersection⋂
α<µ σ(b � (α+ 1)) 6= ∅ is non-empty, then also

⋂
α<µ σ

′(b � (α+ 1)) 6= ∅ because
σ(b � (α+1)) ⊆ σ′(b � (α+1)). Since σ′ is winning, then {σ′(b � (α+1)) | α < µ}
is a neighborhood basis of some point x ∈ X , and

⋂
α<µ σ

′(b � (α + 1)) = {x}. It
follows that

⋂
α<µ σ(b � (α+ 1)) = {x} too, and that {σ(b � (α+ 1)) | α < µ} is a

local basis of x as well.

It is clear that If X is µ-uniformly based, then every point of X has a local
basis of size at most µ. But the µ-uniform local basis game is introduced to mimic
a stronger property that is common to all µ-metrizable space, namely, the fact that
every µ-sequence of open sets with vanishing diameter is a local basis of some point
of the space, if its intersection is not empty. (In particular, all µ-metrizable spaces are
µ-uniformly based.) The latter property is strictly stronger than just having a local
basis of size µ at every point, see for example Proposition 2.5.1.

We first show that the existence of NSµ-bases or of tree bases is enough to ensure
that the space is µ-uniformly based.

Proposition 2.2.36. Suppose that X has a NSµ-basis B. Then X is µ-uniformly
based and (µ, µ)-paracompact.

Proof. The fact that the NSµ-space X is (µ, µ)-paracompact follows from the com-
ment after Definition 2.2.9, so let us prove that it is also µ-uniformly based. Let
{Bα | α < µ} be a NSµ-cover for B, and for every x ∈ X and α < µ fix a canonical
neighborhood U(x, α) of x such that {B ∈ Bα | B ∩ U(x, α) 6= ∅} has size < µ.
By Fact 2.2.12(4), without loss of generality we may assume that Bα ⊆ Bβ for every
α < β < µ. For ease of notation, for every B ∈ B set B0 = B and B1 = X \ cl(B).

We want to define a strategy σ for player II. Let 〈Vα | α < γ〉 be the sets played
by II up to a certain round γ, and suppose that I just played a point xγ . Without
loss of generality, we can assume that xα ∈ cl(

⋂
α<γ Vα), as otherwise II would win
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by playing X \ cl(
⋂
α<γ Vα) on round γ. In particular, we can assume that V 6= ∅.

Moreover, if {Vα | α < γ} is already a local basis for xγ ∈ X , then II could just
play X from that point on and win the run, so we can assume that this is not the case.
This means that there is B ∈ B such that xγ ∈ B and Vα * B for every α < γ.
Let δ(γ) < µ be the smallest ordinal for which there are iγ ∈ {0, 1} and Bγ ∈ Bδ(γ)

satisfying xγ ∈ B
iγ
γ and Vα * B

iγ
γ for every α < γ (this is well defined by case

assumption), and let II reply with Vγ = B
iγ
γ ∩ Uγ where Uγ = U(xγ , δ(γ)). This

concludes the definition of σ.
We claim that σ is a winning strategy for II. Let 〈xα, Vα | α < µ〉 be a run in the

µ-uniform local basis game where II followed σ. Suppose towards a contradiction
that 〈Vα | α < µ〉 is not winning for II, so that in particular V =

⋂
α<µ Vα 6= ∅.

Then, by definition of σ we must have xγ ∈ cl(
⋂
α<γ Vα) and {Vα | α < γ} is not a

local basis for xγ , for every γ < µ. So let δ(γ), iγ ∈ {0, 1}, Bγ ∈ Bδ(γ), and Uγ be
as in the definition of σ, and recall that Vγ = B

iγ
γ ∩ Uγ .

Claim 2.2.36.1. Bβ 6= Bγ and Bγ ∩ Uβ 6= ∅ for all β < γ < µ.

Proof of the claim. First assume, towards a contradiction, that Bβ = Bγ . If iβ = iγ ,
then Biβ

β = B
iγ
γ , and thus Vβ = B

iβ
β ∩ Uβ ⊆ B

iγ
γ , contradicting the choice of Biγ

γ

in defining σ. If instead iβ 6= iγ , then Biβ
β ∩ B

iγ
γ = ∅, and thus also Vβ ∩ Vγ = ∅,

contradicting V 6= ∅. This shows that Bβ 6= Bγ .
Now suppose towards a contradiction that Bγ ∩Uβ = ∅, so that cl(Bγ)∩Uβ = ∅

because Uβ is open, and hence Uβ ⊆ X \ cl(Bγ). If iγ = 1, then we would again
have Vβ = B

iβ
β ∩ Uβ ⊆ B

iγ
γ , in contrast with the definition of σ. If instead iγ = 0

then Uβ ∩ B
iγ
γ = ∅, hence we have again Vβ ∩ Vγ = ∅, contradicting V 6= ∅. Thus

Bγ ∩ Uβ 6= ∅, as desired.

Pick any x ∈ V =
⋂
α<µ Vα. Since σ is not winning, there is a basic open

neighborhood O ∈ B of x such that Vα * O for every α < µ. Since the space is
regular, we may find a basic O′ ∈ B such that x ∈ O′ ⊆ cl(O′) ⊆ O. Let ᾱ be such
that both O and O′ belong to Bᾱ.

Claim 2.2.36.2. δ(γ) ≤ ᾱ for every γ < µ.

Proof of the claim. The sets O and X \ cl(O′) form a (open) cover of X , and thus
xγ belongs to one of the two sets. Furthermore, for every α < µ we have that
Vα * X \ cl(O′) (since x ∈ Vα while x /∈ X \ cl(O′)) and Vα * O (by the choice
of O). Therefore, independently of I’s choice of xγ at round γ, by definition of δ(γ)
we must have δ(γ) ≤ ᾱ.

For every β ≤ ᾱ, let Iβ = {γ < µ | δ(γ) = β}. By Claim 2.2.36.2, µ =⋃
β≤ᾱ Iβ . Since µ is regular and ᾱ < µ, there is β̄ ≤ ᾱ such that |Iβ̄| = µ: let γ̄ be

the smallest ordinal in Iβ̄ . By Claim 2.2.36.1 and the fact that Uγ̄ = U(xγ̄ , δ(γ̄)) =
U(xγ̄ , β̄) intersects less than µ elements of Bβ̄ , we have

µ = |Iβ̄| = |{Bγ | γ ∈ Iβ̄}| ≤ 1 + |{B ∈ Bβ̄ | B ∩ Uγ̄ 6= ∅}| < µ,

a contradiction.



CHAPTER 2. GDST AT SINGULAR CARDINALS 98

As a corollary, by Remark 2.2.7 we get the following.

Corollary 2.2.37. Every (regular Hausdorff) space of weight ≤ µ is µ-uniformly
based and (µ, µ)-paracompact.

Proposition 2.2.38. Let X be a space with a tree basis B of height ≤ µ. Then X is
µ-uniformly based and ((µ, µ)-)paracompact.

Proof. By Proposition 2.2.24 the tree-based space X is Lebesgue zero-dimensional,
hence paracompact; let us prove that it is also µ-uniformly based. Without loss of
generality, we may assume that X ∈ B. We define a strategy σ for II as follows. Let
〈xα, Vα | α < γ〉 be a partial play in the µ-uniform local basis game on X such that
Vα ∈ B for every α < γ (this will be granted by our definition of σ), and suppose that
player I has played a point xγ on the next round. Notice that the set V =

⋂
α<γ Vγ is

closed because each set in B is clopen by Proposition 2.2.22(3), thus we can assume
that xγ ∈ V (otherwise II wins by playing X \ V ). We distinguish two cases.

Case 1 if there is B ∈ B such that xγ ∈ B ( V , set σ(〈xα | α ≤ γ〉) = B;

Case 2 otherwise set σ(〈xα | α ≤ γ〉) = X .

This concludes the definition of σ.
We claim that σ is a winning strategy for player II. Indeed, assume that we have⋂

α<µ Vα 6= ∅, where the Vα’s are II’s moves at the end of a run in which (s)he
followed σ. If Case 2 never occurred along the run, then by definition of σ the Vα’s
form a strictly ⊆-decreasing chain of basic open sets in B, and by definition they all
belong to B(x) for some/any x ∈

⋂
α<µ Vα. By regularity of µ and the fact that B has

height≤ µ, this implies that B(x), which by Proposition 2.2.22(4) is a local basis for
x, has length µ, and that the Vα’s are⊇-cofinal in B(x). It follows that {Vα | α < µ}
is a local basis for x, as desired. Suppose now that γ < µ is least such that Case 2
occurs, and let V =

⋂
α<γ Vα: recall that V is non-empty by assumption. First, if

V = {x} is open of size 1, then there is β < γ such that Vβ = {x} (since we are in
Case 2), and so {Vβ} and thus {Vα | α < µ} are already a local basis of the point
x. If this is not the case, then V can not be open, as otherwise, we could find U ∈ B
with xγ ∈ U ( V because X is Hausdorff, contradicting the fact that we are in Case
2. Thus, by Lemma 2.2.25 applied to A = {Vα | α < γ} we can conclude that A is
already a local basis of xγ , and hence so is {Vα | α < µ}.

Notice that in tree-based spaces, player II need not to have a winning tactic in the
µ-uniform local basis game: see Proposition 2.5.2 and the ensuing corollary.

We are now ready to prove our new metrization theorem. Because of its rele-
vance, we single out the classical case µ = ω, and deal with the uncountable case
µ > ω in a separate theorem.

Theorem 2.2.39. A topological space X is metrizable if and only if it is regular
Hausdorff, paracompact and ω-uniformly based.

Proof. It is well known that every metrizable space is (regular Hausdorff) paracom-
pact, and it is ω-uniformly based by Theorem 2.2.5 and Proposition 2.2.36 (or di-
rectly by letting II play open balls of vanishing diameter with respect to a compatible
metric).
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For the reverse implication, in view of Theorem 2.2.5 it is enough to show that
if X is (regular Hausdorff) paracompact and ω-uniformly based, then it has a NSω-
basis. Suppose σ is a winning strategy for player II in the ω-uniform local basis game
G on X . We recursively define locally finite open covers {Bn | n < ω} of X , a DST
tree T ⊆ X<ω (all of whose branches are to be intended as sequences of moves of
player I in a run of G), and a surjection

f :
⋃
n<ω

Bn → T \ ∅, B 7→ rB

satisfying the following properties (for all n < ω):

(1) f [Bn] = T ∩ Xn+1 = Levn+1(T );

(2) for every B ∈ Bn, the sequence rB ∈ T ∩ Xn+1 is such that B ⊆ A ∩ σ(rB)
for some A ∈ Bn−1 with f(A) = rB � n, where if n = 0 we set B−1 = {X}
and f(X) = ∅.

Notice that the last condition implies that for every B ∈ Bn and for every i < n+ 1
there is A ∈ Bi−1 such that f(A) = rB � i and B ⊆ A.

Start with n = 0. The family B′0 = {σ(〈x〉) | x ∈ X} covers X because
x ∈ σ(〈x〉) by the rules of G and x ∈ X is arbitrary. Using paracompacteness, find
a locally finite open refinement B0 of B′0. For every B ∈ B0, choose some xB such
that B ⊆ σ(〈xB〉), and set rB = 〈xB〉. Finally, let Lev1(T ) = {rB | B ∈ B0}.

Given now an arbitrary n < ω, suppose that Bi, Levi+1(T ), and f � Bi : Bi →
Levi+1(T ) have been defined for every i ≤ n in accordance with our constraints. Let

B′n+1 = {A ∩ σ(rA
a x) | A ∈ Bn ∧ x ∈ A}.

It is a cover of X because Bn is a cover of X , and for every x ∈ X and A ∈ Bn such
that x ∈ A we have x ∈ A ∩ σ(rA

a x) by the rules of G. As before, let Bn+1 be
a locally finite open refinement of B′n+1. For each B ∈ Bn+1 choose A ∈ Bn and
x ∈ A such that B ⊆ A ∩ σ(rA

a x), set rB = rA
a x, and let Levn+2(T ) = {rB |

B ∈ Bn+1}. All desired conditions are trivially met by the previous construction.
We claim that B =

⋃
n∈ω Bn is a basis forX (and hence a NSω-basis, as desired).

Given any x ∈ X and an open neighborhood V of it, define

T (x) = {∅} ∪ {r ∈ T \ {∅} | x ∈ B for some B ∈ Blh(r)−1 with f(B) = r}.

The set T (x) is actually a DST subtree of T , since if r ∈ Levn+1(T (x)) and
B ∈ Bn witness this (so that in particular x ∈ B), then by the comment after con-
dition (2) we have that B ⊆ A for some A ∈ Bi−1 with rA = r � i, hence x ∈ A
and A itself witnesses that r � i ∈ T (x). Every level of T (x) is finite because
f−1[Levn+1(T (x))] = {B ∈ Bn | x ∈ B}, which is finite because Bn is locally
finite. Moreover, ht(T (x)) = ω because each Bn covers of X . By König’s lemma
there is an infinite branch b = 〈xn | n < ω〉 ∈ [T (x)]. By construction and condi-
tion (2), x ∈

⋂
n<ω Bn ⊆

⋂
n<ω σ(b � (n+ 1)), where each Bn ∈ Bn is a witness of

b � (n+ 1) ∈ T (x). Since σ is winning in G , the family {σ(b � (n+ 1)) | n < ω} is
a local basis for a point, which necessarily is x itself. Thus so is {Bn | n < ω} ⊆ B,
which means that x ∈ Bn ⊆ V for some n < ω and we are done.
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As a simple consequence of Theorem 2.2.39, it might be worth noticing that being
ω-uniformly bases is enough (together with being regular Hausdorff) to characterize
metrizability within the class of Lebesgue zero-dimensional spaces.

Corollary 2.2.40. Let X be a (regular Haudorff) Lebesgue zero-dimensional space.
Then X is metrizable if and only if it is ω-uniformly based.

We now move to the generalized case and prove an analogous result when µ is
uncountable. In this setup, the proof can be slightly simplified because for µ-additive
spaces the notion of (µ, µ)-paracompacteness is equivalent to the apparently stronger
conditions of being paracompact, or even being Lebesgue zero-dimensional.

Theorem 2.2.41. Let X be a topological space and µ > ω. Then the following are
equivalent:

(1) X is µ-metrizable;

(2) X is (regular Hausdorff) µ-additive, µ-uniformly based and (µ, µ)-paracompact.

Moreover, in item (2) we can equivalently replace (µ, µ)-paracompactness with para-
compactness or with Lebesgue zero-dimensionality.

Proof. Recall that a µ-metrizable space is always µ-additive, and since we assumed
µ > ω it is also Lebesgue zero-dimensional (Proposition 2.2.11), and hence para-
compact and (µ, µ)-paracompact. Moreover, it is µ-uniformly based: this can easily
be seen directly, or by passing through Theorem 2.2.6 and Proposition 2.2.36.

We now show that (2) implies (1). By Proposition 2.2.10 we can assume that
X is Lebesgue zero-dimensional. (Indeed, the same proposition also justifies the
additional statement in the theorem.) Let σ be a winning strategy for player II in
the µ-uniform local basis game G on X . By Corollary 2.2.30 and the fact that we
already have µ-additivity by hypothesis, it is enough to show that X has a tree basis
B of height ≤ µ. The basis B will be defined by recursively constructing clopen
partitions Bα of X , for α < µ, so that Bβ refines Bα for every α ≤ β < µ: then,
once we ensure that B =

⋃
α<µ Bα is a basis forX one can see that it is actually a tree

basis with respect to the relation⊇. The Bα’s are defined recursively, simultaneously
constructing a function f : B → X such that for every γ < µ and B ∈ Bγ

B ⊆ σ(〈f(Bα) | α ≤ γ〉), (2.2.1)

where Bγ = B and Bα is the unique set in Bα satisfying B ⊆ Bα.
First define B′0 = {σ(〈x〉) | x ∈ X}, and let B0 be a clopen partition refining B′0

given by Lebesgue zero-dimensionality. For every B ∈ B0, choose x ∈ X such that
B ⊆ σ(〈x〉), and set f(B) = x.

Now suppose we have defined Bα and f � Bα for all α < γ so that (2.2.1)
is satisfied up to that point. For every x ∈ X , let Bα(x) be the unique element
of Bα containing x, and let rx = 〈f(Bα(x)) | α < γ〉a x. Let B′γ = {σ(rx) ∩⋂
α<γ Bα(x) | x ∈ X}: it is an open cover of X by µ-additivity. Let Bα be a clopen

partition refining B′α given by Lebesgue zero-dimensionality. For every B ∈ Bα,
choose x ∈ X such thatB ⊆ σ(rx)∩

⋂
α<γ Bα(x) and set f(B) = x. This concludes

the construction of B =
⋃
α<µ Bα and f .
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It remains to show that B is a basis for X . Pick an arbitrary x ∈ X , and set
~rx = 〈f(Bγ(x)) | γ < µ〉, whereBγ(x) is again the unique element of Bγ containing
x. Since Bγ(x) ⊆ σ(~rx � (γ + 1)) by construction and since σ was winning in G,
from x ∈

⋂
γ<µBγ(x) ⊆

⋂
γ<µ σ(~rx � (γ + 1)) 6= ∅ we conclude that the family

{σ(~rx � (γ + 1)) | γ < µ} is a local basis of x, and hence so is {Bγ(x) | γ < µ},
proving that the entire B is a basis.

Remark 2.2.42. The proof of Theorem 2.2.41 works also in the case µ = ω, in which
case µ-additivity comes from free and can be dropped, if we restrict the attention to
Lebesgue zero-dimensional spaces. Thus it provides an alternative and direct way to
prove Corollary 2.2.40.

Theorem 2.2.41 crucially requires the space to be µ-additive. Nevertheless, for
spaces that lack µ-additivity related results can be obtained if we require that player
II has a winning tactic instead of just a strategy. (Notice that when dropping µ-
additivity, some strengthening of the other conditions is in order because there are
non-µ-additive spaces with a strategy in the µ-uniformly basis game that are not NSµ-
spaces: see Proposition 2.5.2 and the ensuing corollary.) Our analysis reveals that in
µ-metrizable spaces player II always has a winning tactic (Proposition 2.2.44), and
that the existence of such a tactic is indeed equivalent, modulo some form of a para-
compactness, to the existence of a suitable Nagata-Smirnov basis (Theorem 2.2.45).
These results hold both in the countable and uncountable case, i.e. we can indiffer-
ently take µ = ω or µ > ω.

Proposition 2.2.43. Let X be (δ, µ)-paracompact space such that player II has a
winning tactic σ in the µ-uniform local basis game G on X . Then X is a NSδµ-space.

Proof. For every α < µ, let Uα = {σ(x, α) | x ∈ X}: it is an open cover of X by
the rules of G. Using (δ, µ)-paracompactness, let Aα be an open cover of X refining
Uα such that Aα =

⋃
β<µ B

β
α for suitable locally <δ-small families Bβα. We claim

that B =
⋃
α,β<µ B

β
α is a basis for X , and hence an NSδµ-basis (as witnessed by the

NSδµ-cover {Bβα | α, β < µ}).
Let x ∈ X . Since each Aα is an open cover of X , for every α < µ there is

βα < µ and Bα ∈ Bβαα such that x ∈ Bα. Let xα ∈ X be such that Bα ⊆ σ(xα, α).
Then 〈xα, σ(xα, α) | α < µ〉 is a run in the µ-uniform local basis game on X in
which II followed σ. Since x ∈

⋂
α<µBα ⊆

⋂
α<µ σ(xα, α) 6= ∅, it follows that

{σ(xα, α) | α < µ} is a local basis for a point of X , which necessarily is x itself
Hence the same is true of {Bα | α < µ} and we are done.

Proposition 2.2.44. Let X be a δ-additive NSδµ-space. Then player II has a winning
tactic σ in the µ-uniform local basis game G on X .

Proof. Let B be a NSδµ-basis for X with NSδµ-cover {Bα | α < µ}. Without loss of
generality, by Fact 2.2.12(2) we may assume that for every α, β < µ there is γ < µ
such that Bα ∪ Bβ ⊆ Bγ . Define σ by setting, for x ∈ X and α < µ,

σ(x, α) =
⋂

CN(Bα, x),

where CN(Bα, x) is as in Definition 2.2.13. Since Bα is locally <δ-small and X is
δ-additive, the set σ(x, α) is open by Lemma 2.2.14, and thus if player II follows σ
his/her moves are legal.
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We claim that the tactic σ is winning. Indeed, suppose that 〈xα, Vα | α < µ〉
is a run of G in which Vα = σ(xα, α), i.e. II followed σ. If

⋂
α<µ Vα = ∅ then II

won the run, so let us assume that there is x ∈
⋂
α<µ Vα: we are going to show that

{Vα | α < µ} is a local basis for x, so that II has won again. Let B ∈ B be any
basic open neighborhood of x, and use regularity of X to find some basic open set
B′ ∈ B such that x ∈ B′ ⊆ cl(B′) ⊆ B. By the assumptions on {Bα | α < µ}, there
is γ < µ such that B′ and B are both in Bγ . Notice that xγ ∈ B, as otherwise we
would have xγ ∈ X \ B ⊆ X \ cl(B′), and hence Vγ = σ(xα, γ) ⊆ X \ cl(B′) by
definition of σ: but this would contradict the fact that x ∈ Vγ ∩ B′. Since xγ ∈ B,
by definition of σ we have x ∈ Vγ = σ(xγ , γ) ⊆ B and we are done.

In particular, it turns out that spaces with a winning tactic for II in the µ-uniform
local basis game on X (and the right degree of paracompactness), precisely charac-
terize the NSωµ-spaces, which in view of Theorem 2.2.6 is a very natural class: in a
sense, it is the one obtained by dropping µ-addivity from µ-metrizability (if µ > ω).

Theorem 2.2.45. A (regular Hausdorff) space is a NSωµ-space if and only if it is
(ω, µ)-paracompact and player II has a winning tactic in the µ-uniform local basis
game on X .

When µ = ω, Theorem 2.2.45 and Theorem 2.2.5 together show that we can
require a stronger form of winning strategy for II in the relevant game.

Corollary 2.2.46. A topological space X is metrizable if and only if it is regular
Hausdorff, paracompact, and player II has a winning tactic in the µ-uniform local
basis game on X .

2.2.4 Gµ
δ sets

In this section we briefly consider spaces of sequences like λµ and 2λ , and the com-
plexity of their subsets in relation to (complete) bodies of trees.

Definition 2.2.47. Let X be a topological space and η be an infinite cardinal. A
subset A ⊆ X is called Gηδ if it can be written as η-sized intersection of open subsets
of X .

Notice that when η = ω we recover the classical notion of a Gδ set. If the space
X is sufficiently well behaved, and in particular if it is µ-metrizable, one can easily
show that the collection of Gµδ sets includes all open and closed sets.

Lemma 2.2.48. Let X be a δ-additive NSδµ-space. Then every closed C ⊆ X is a
Gµδ set.

Proof. Let B be a NSδµ-basis for X with NSδµ-cover {Bα | α < µ}. For every α < µ,
define Uα = {U ∈ Bα | cl(U) ∩ C = ∅} and consider the open set Uα =

⋃
Uα.

Since each Bα is locally <δ-small and X is δ-additive, by e.g. [10, Lemma 3.1]
we have cl(Uα) =

⋃
{cl(U) | U ∈ Uα}, hence cl(Uα) ∩ C = ∅. This means that

X \
⋃
α<µ cl(Uα) ⊆ C. Conversely, by regularity of X for every x ∈ X \ C there

is U ∈ B such that x ∈ U and cl(U) ∩ C = ∅, hence U ∈ Uα for some α < µ and
x ∈ Uα ⊆ cl(Uα) ⊆

⋃
α<µ cl(Uα). Thus X \ C =

⋃
α<µ cl(Uα) and so C is Gµδ

because C =
⋂
α<µ(X \ cl(Uα)).
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We now move to the space X = λµ . Recall that a set C ⊆ λµ is closed if and
only if there is a (pruned) DST tree T ⊆ λ<µ such that C = [T ]: indeed, the tree T
can be canonically defined as the tree T = TC from (2.1.2). Dropping all hypothesis
on T , we get a characterization of Gµδ sets of λµ .

Lemma 2.2.49. Let γ be a limit ordinal and A be nonempty. Let B ⊆ Aγ be such
that7 B = [[T ]] for some tree T ⊆ A<γ of height η = |ht(T )|. Then B is Gηδ in Aγ .

Proof. The condition [[T ]] = B ⊆ Aγ entails that the branches of T of height
ht(T ), when viewed as sequences in A≤γ , have length γ, which in turn implies that
ht(T ) is limit. For every α < ht(T ) define Uα =

⋃
s∈Levα(T ) N

Aγ

s . We now claim
that

⋂
α<η Uα = [[T ]] = B. Using [[T ]] ⊆ Aγ , the inclusion [[T ]] ⊆

⋂
α<η Uα

is obvious. Conversely, if x ∈
⋂
α<η Uα then for each α < η = ht(T ) there is

iα < γ such that x � iα ∈ Levα(T ). It follows that b =
⋃
α<ht(T ) x � iα = x �

supα<ht(T ) iα ∈ [[T ]]. But since [[T ]] ⊆ Aγ , it follows that supα<ht(T ) iα = γ and
x = b ∈ [[T ]].

Proposition 2.2.50. A setB ⊆ λµ isGµδ in λµ if and only if there is a (not necessarily
DST) tree T ⊆ λ<µ such that B = [[T ]].

Proof. We may assume B 6= ∅, as otherwise the statement is trivial.
Assume first that B = [[T ]] for some tree T ⊆ λ<µ . Notice that this implies that

ht(T ) = µ because µ is regular. Hence B is Gµδ by Lemma 2.2.49.
Conversely, assume that B is Gµδ in λµ , and let {Uα | α < µ} be a family of

open subsets of λµ such that B =
⋂
α<µ Uα. Without loss of generality, we may

assume that B 6= ∅ and that Uβ ⊆ Uα for every α ≤ β < µ because the space λµ is
µ-additive by regularity of µ. For every α < µ, let

A′α = {s ∈ λ<µ | lh(s) ≥ α ∧Ns ⊆ Uα},

and let Aα be the set of minimal elements of A′α. This implies that the sequences
in Aα are pairwise incomparable and Uα =

⋃
s∈Aα Ns. Consider the tree T =⋃

α<µAα: we claim that [[T ]] = B.
Suppose first that x ∈ B =

⋂
α<µ Uα, and let I = {i < µ | s � i ∈ T}. Then

I is unbounded in µ: for every α < µ we have that x ∈ Uα+1, which means that
x � i ∈ Aα+1 for some i > α and hence i ∈ I . Since µ is regular, it follows that
bx = {x � i | i ∈ I} is a chain of length µ. This implies that ht(T ) = µ and that
bx, by its definition and its length, is a branch of T . Thus x =

⋃
bx ∈ [[T ]], and this

proves B ⊆ [[T ]].
Conversely, let us prove that [[T ]] ⊆

⋂
α<µ Uα = B. Since we showed that

ht(T ) = µ, each x ∈ [[T ]] is an element of λµ . Moreover, for every x ∈ [[T ]] there
is an unbounded set I ⊆ µ such that x � i ∈ T for every i ∈ I . For every i ∈ I , let
αi be smallest ordinal such that x � i ∈ Aαi : by minimality of the elements in the
Aα’s, it follows that the αi’s are all distinct, hence {αi | i ∈ I} is still unbounded in
µ. Since the sequence of the Uα’s is decreasing with respect to inclusion, it follows
that x ∈

⋂
i∈I Uαi =

⋂
α<µ Uα, and we are done.

7Recall that, as discussed in Section 2.1.3, since T is a tree of sequences we canonically identify
its body with a subset of A≤γ (see equation (2.1.1)), and in particular branches b of limit height are
identified with

⋃
b.
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Remark 2.2.51. Let B ⊆ λµ be Gµδ and T be such that B = [[T ]], as in the propo-
sition above. Then T ′ = T ∩ TB still satisfies B = [[T ′]]. This shows that without
loss of generality, when picking a tree T such that B = [[T ]] we may assume that
T ⊆ TB . Notice also that from B = [[T ]] and T ⊆ TB we can conclude that T is
necessarily pruned.

Notice that by Propositions 2.2.29 and 2.2.33, the above Proposition 2.2.50 pro-
vides an alternative proof of Lemma 2.2.48 when δ = µ. Moreover, it easily gener-
alizes the following fact, which is well-known if µ = λ = ω.

Corollary 2.2.52. Every Gµδ subset of λµ is homeomorphic to a closed subset of λµ .
In particular, in λµ the classes of closed sets and Gµδ sets coincide up to homeomor-
phism.

Proof. Given a Gµδ set B ⊆ λµ , let T ⊆ λ<µ be a tree such that B = [[T ]] (Propo-
sition 2.2.50), so that in particular ht(T ) = µ is limit. By Proposition 2.1.3, we may
assume that T is a normal tree. By Proposition 2.1.2(1), there is an isomorphism be-
tween T and a DST tree T ′ ⊆ λ<µ (of height µ). Then B = [[T ]] is homeomorphic
to [[T ′]] = [T ′] by Fact 2.1.5. Since [T ′] is closed, we are done.

To complete the proof of Theorem 2.2.1 we need one last ingredient, namely,
that λµ can be embedded in 2λ if cof(λ) = µ. The following result can easily be
proved with ad hoc constructions, but using Lemma 2.2.49 we can use a very short
and elegant argument.

Proposition 2.2.53. Assume that cof(λ) = µ. Then 2λ contains aGµδ homeomorphic
copy of λµ .

Proof. Let 〈λα | α < µ〉 be an increasing sequence of ordinals cofinal in λ. For an
ordinal β, let 0(β) be the constant sequence of length β with value 0. Recursively
define the function φ : λ<µ → 2<λ by setting φ(∅) = ∅,

φ(sa γ) = φ(s)a 0(λlh(s)) a 0(γ) a 1,

and φ(s) =
⋃
α<lh(s) φ(s � α) for s of limit length. It is easy to see that φ is

an isomorphism between the whole λ<µ and the tree T ′ = φ[ λ<µ ] ⊆ 2<λ , which
has height µ by construction: hence λµ = [[ λ<µ ]] is homeomorphic to [[T ′]] by
Fact 2.1.5. Notice that φ maps branches of λ<µ into elements of 2λ , since we have
lh(φ(s)) ≥ λlh(s)−1 for every s ∈ λ<µ of successor length. It follows that [[T ′]] ⊆
2λ . Then, [[T ′]] is Gµδ in 2λ by Lemma 2.2.49 and we are done.

For the sake of completeness, we also observe that under further assumptions on
λ the space 2λ can be embedded into λµ , this time even as a superclosed set.

Proposition 2.2.54. Suppose that cof(λ) = µ and that 2<λ = λ. Then λµ contains
a superclosed set homeomorphic to 2λ .

Proof. Let 〈λα | α < µ〉 be an increasing sequence of ordinals cofinal in λ. For
every α < µ, let δα = | 2λα |, so that δα ≤ λ by 2<λ = λ. Then 2λ is obviously
homeomorphic to the superclosed set

∏
α<µ δα ⊆ λµ .
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2.2.5 Proof of Theorem 2.2.1

Combining together the results obtained in the previous sections, we finally get the
proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. We start with part (1). If µ = ω, then (a) ⇐⇒ (b) ⇐⇒ (c)
by the classical Theorem 2.2.5. If instead µ > ω, then (a) ⇐⇒ (b) are equivalent
by the well-known Theorem 2.2.6, and obviously (b)⇒ (c). But (c)⇒ (b) by Corol-
lary 2.2.18, hence we get again the equivalence among the first three items. Finally,
(a) ⇐⇒ (d) by Theorem 2.2.39 (if µ = ω) or by Theorem 2.2.41 (if µ > ω).

Let us move to part (2). Assume first that µ = ω. Then (a) ⇐⇒ (b) ⇐⇒
(c) by the well-known Theorem 2.2.8. Also, (a) ⇐⇒ (e) by Corollary 2.2.40,
while (b) ⇐⇒ (d) by Proposition 2.2.23. If X has weight ≤ λ, then (d)⇒ (f) by
Proposition 2.2.33, and if moreover µ = cof(λ) then (f)⇒ (g) by Proposition 2.2.53.
Finally, both (f)⇒ (b) and (g)⇒ (b) by Example 2.1.8. This concludes the proof of
the countable case.

We now move to the case µ > ω. Now (a) ⇒ (c) by Corollary 2.2.19 (recall-
ing that µ-additivity readily follows from µ-metrizability), (c) ⇒ (d) by Proposi-
tion 2.2.29, (d) ⇐⇒ (a) by Corollary 2.2.30, while (a) ⇐⇒ (e) by Theorem 2.2.41.
All remaining (bi-)implications (b) ⇐⇒ (d), (d) ⇒ (f), (f) ⇒ (g), (f) ⇒ (b), and
(g) ⇒ (b) (under the appropriate hypotheses on λ) are proved as in the countable
case, hence we are done.

In view of the fact that λµ is G-ultrametrizable for every 0G-continuous to-
tally ordered (Abelian) semigroup (Example 2.1.8), and that if G is of the form
G = (G,max≤G , 0G,≤G) with Deg(G) = µ then every G-metric is actually a G-
ultrametric by definition, the equivalence between (b) and (f) in Theorem 2.2.1(2)
yields to the following. (Recall the definition of Sµ from page 83.)

Corollary 2.2.55 (cf. Theorem 2.1.7). For any topological space X , the following
are equivalent:

(1) X is µ-ultrametrizable, i.e. X admits a compatible G-ultrametric for some to-
tally ordered Abelian group G of degree µ;

(2) X is G-metrizable over every 0G-continuous totally ordered pointed semigroup
G of degree µ;

(3) X is Sµ-(ultra)metrizable.

2.3 Variations on completeness

In this section, we investigate various notions of (generalized) completeness for our
classes of topological spaces. The first two, strictly related to each other, are based
on Choquet-like games and mirror what has been done in Chapter 1 for regular car-
dinals κ (Section 2.3.1). They are motivated by the fact that in classical descriptive
set theory, by a theorem of Choquet a (regular Hausdorff) space is Polish if and only
if it is second-countable and strong Choquet [93, Theorem 8.18]. On a different ap-
proach, if we are already dealing with a (µ-)metrizable space, then it is natural to
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introduce completeness as convergence of (long) Cauchy sequences, as in the classi-
cal definition of a Polish space (Section 2.3.2). For regular cardinals, this possibility
was already exploited in Chapter 1 together with a stronger completeness notion,
still based on the presence of a (µ-)metric, called spherically completeness. Besides
adapting the above concepts to embrace singular cardinals as well, in this section
we introduce two other completeness notions leading to compact-based spaces and
µ-Lindelöf-based spaces (Section 2.3.3). They show that, just as µ-metrizability can
be characterized through the existence of particular bases like Nagata-Smirnov-basis
and tree-bases, also completeness can be characterized through the existence of bases
having certain compactness-like properties. Besides being interesting on their own,
these new notions also allow us to better clarify the relationships among the previous
ones, and in a sense simplify some of the proofs from Chapter 1.

In each of the three groups of definitions above (Choquet-like completeness,
metric-related completeness, and completeness given by certain bases), we always
have a weaker version and a stronger one. In this section, we are going to show that
for µ-metrizable spaces8 all the three weak notions coincide with each other, and the
same for the three stronger notions.

Theorem 2.3.1. LetX be a (regular Hausdorff) space of weight≤ λ, and further as-
sume9 that X be Lebesgue zero-dimensional if µ = ω. The following are equivalent:

(1) X is (λ, µ)-Polish;

(2) X is a spherically µ-complete µ-metrizable space;

(3) X is a µ-metrizable fSCλ
µ-space;

(4) X is a µ-Lindelöf-based µ-metrizable space;

(5) X is homeomorphic to a closed subset of λµ ;

(6) X is homeomorphic to a Gµδ subset of λµ ;

If furthermore µ = cof(λ), then they are also equivalent to the following:

(7) X is homeomorphic to a Gµδ subset of 2λ .

Theorem 2.3.2. Let X be a (regular Hausdorff) space of weight ≤ λ, and further
assume thatX be Lebesgue zero-dimensional if µ = ω. The following are equivalent:

(1) X is a spherically <µ-complete (λ, µ)-Polish space;

(2) X is a spherically complete µ-metrizable space;

(3) X is a µ-metrizable SCλ
µ-space;

(4) X is a compact-based µ-metrizable space;

8Given that (generalized) Cauchy-completeness, which is arguably the most natural one, can be
defined only in presence of a µ-metric, this setup appears quite natural for this analysis.

9Formally, this additional requirement must be made explicit only in the countable case. However,
recall that when µ > ω all µ-metrizable spaces are Lebesgue zero-dimensional by Proposition 2.2.11,
so this condition is always implicitly present.



CHAPTER 2. GDST AT SINGULAR CARDINALS 107

(5) X is homeomorphic to a superclosed subset of λµ .

In particular, when µ = ω then all the above items (1)–(7) from Theorem 2.3.1
and (1)–(5) from Theorem 2.3.2 (under the appropriate assumptions on λ) are equiv-
alent to each other, because, for example, in this case the classes of fSCλ

ω and SCλ
ω-

spaces coincide (Fact 2.3.8).
The proof of the theorem will be given in Subsection 2.3.4.
Obviously, in Theorems 2.3.1 and 2.3.2 we could systematically replace µ-me-

trizability with any of the equivalent conditions from Theorem 2.2.1. Moreover, by
Corollary 2.3.33 we get that if X is a (λ, µ)-Polish space (or a space satisfying any
of the conditions in Theorem 2.3.1) and Y ⊆ X is a closed subspace satisfying
some/any of the stronger completeness notions from Theorem 2.3.2, then Y is a re-
tract ofX . (This is relevant because when µ > ω it is no longer true that every closed
subset of λµ is a retract of it.)

Corollary 2.3.3. Let X be a (Lebesgue zero-dimensional, if µ = ω) (λ, µ)-Polish
space. Then every spherically complete closed subspace Y ⊆ X is a retract of X .

If we drop µ-metrizability (and we restrict ourselves to spaces of weight ≤ λ),
the largest class of spaces among all the possibilities considered here is the one of
strong fair µ-Choquet spaces. Theorem 2.2.1 shows that a first important dividing line
within such class is given by µ-metrizability (and its equivalent characterizations).
Theorem 2.3.2 shows instead that a second important dividing line is given by the
stronger forms of completeness, in particular strong µ-Choquetness or equivalently,
if we are in the class of µ-metrizable spaces, spherically completeness. Dropping µ-
metrizability, the largest class of spaces among those from Theorem 2.3.2 is given by
strong µ-Choquet spaces. When developing generalized descriptive set-theory for
regular cardinals as in Chapter 1, this neat picture is quite exhaustive and gives us a
well-delimited setup to work with. (Recall that when µ equals the weight of the space,
properties like having a NS2

µ-basis are automatic: hence µ-metrizability amounts to
being µ-additive and there are no other distinctions to be made in that respect.) When
moving to singular cardinals, the situation is more graded because we already have
various non-equivalent possibilities to extend (weak forms of) µ-metrizability beyond
the realm of µ-additive spaces: being a NSµ-space, having a tree-basis of height≤ µ,
being (µ, µ)-paracompact and µ-uniformly based, and so on. Moreover, the addition
of concepts like being µ-Lindelöf-based and compact-based opens up the possibility
of exploring different classes of “complete” spaces.

2.3.1 Choquet-like games

Let δ be an infinite cardinal. Recall from Chapter 1 that the strong δ-Choquet game
Gs
δ(X) on a topological space X is the game played by two players I and II, where

for every round α < δ, player I pick a set Uα and a point xα, and player II replies
with a set Vα

I (U0, x0) (U1, x1) . . . (Uα, xα) . . .

II V0 V1 . . . Vα . . .

so that
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(1) Uα+1 ⊆ Vα ⊆ Uα;

(2) Uα and Vα are open relatively to the intersection of all previous moves;

(3) if possible, i.e. if
⋂
β<α Vβ 6= ∅, the sets Uα and Vα are non-empty and xα ∈

Vα ⊆ Uα.

Player II wins the run of Gs
δ(X) if the set

⋂
α<δ Uα =

⋂
α<δ Vα is nonempty.

Definition 2.3.4. A (regular Hausdorff) space X is called strong µ-Choquet (or
SCµ-space) if player II has a winning strategy in Gs

µ(X).
The spaceX is called strong (λ, µ)-Choquet (or SCλ

µ-space) if it is a SCµ-space
and it has10 weight ≤ λ.

The strong fair µ-Choquet game fGs
δ(X) is the variant of Gs

δ(X) where the rules
are the same, but the winning condition for II is modified so that (s)he wins if either
the set

⋂
α<δ Uα =

⋂
α<δ Vα is nonempty (as before), or else there is a (necessarily

limit) ordinal γ < δ such that the set
⋂
α<γ Uα =

⋂
α<γ Vα is empty.

Definition 2.3.5. A (regular Hausdorff) spaceX is called strong fair µ-Choquet (or
fSCµ-space) if player II has a winning strategy in fGs

µ(X).
The space X is called strong fair (λ, µ)-Choquet (or fSCλ

µ-space) if it a fSCµ

space and has weight ≤ λ.

Of course these variants are relevant only if µ > ω, as otherwise the two games
Gs
µ(X) and fGs

µ(X) coincide and we have a unique class of topological spaces.
Moreover, in Corollary 2.3.37 we will show that for (Lebesgue zero-dimensional)
µ-metrizable spaces there is no difference between having a winning strategy for II
or having a winning tactic for the same player in both Gs

µ and fGs
µ.

By (the proof of) Proposition 1.1.10, we get that strong fair µ-Choquet spaces are
closed under Gµδ spaces.

Proposition 2.3.6. Let X be an fSCµ-space and Y ⊆ X be Gµδ in X . Then Y is an
fSCµ-space as well.

The class of spaces of strong (fair) µ-Choquet spaces is also closed under prod-
ucts and sums of any size.

Fact 2.3.7. Let {Xα | α < δ} be a family of SCµ-spaces (respectively, fSCµ-
spaces). Then both

⊔
α<δXα and, for any cardinal δ′ ≤ δ, the product

∏
α<δXα en-

dowed with the δ′-supported topology are SCµ-spaces (respectively, fSCµ-spaces).

This is obvious for sums. For products
∏
α<δXα, it is enough to pick for each

α < δ a winning strategy σα in the strong (fair) µ-Choquet game on Xα with the
additional property that for every γ < µ

σα(〈(Uβ, xβ) | β < γ〉) = Xα

10Notice that we are deliberately allowing our spaces to have weight strictly smaller than λ. Although
this might sound unnatural at first glance, it allows us to state some of our results in a more elegant form
and is perfectly coherent with what is done in the classical setting, where one includes among Polish
spaces also those of finite weight.
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for every sequence of moves (Uβ, xβ) of player I in which Uβ = Xα for all β < γ.
(This is to ensure that moves of II in the strategy below are legal, i.e. they are open
in the relevant product topology.) Then it is not difficult to show that the coordinate-
wise product function

∏
α<δ σα is a winning strategy for player II in the strong (fair)

µ-Choquet on the space
∏
α<δXα, no matter which δ′ was chosen as support for the

product topology.
Finally, notice when λ has countable cofinality, the two classes of fSCλ

ω-spaces
and SCλ

ω-spaces coincide. If we add any of the metrizability conditions from Sec-
tion 2.2, these classes coincide also with the one of λ-Polish spaces.

Fact 2.3.8. Suppose λ is a cardinal of countable cofinality. Then, a space is fSCλ
ω if

and only if it is SCλ
ω. Furthermore, the following classes coincide:

(a) fSCλ
ω paracompact ω-uniformly based-spaces.

(b) fSCλ
ω NSωω-spaces.

(c) fSCλ
ω NS2

ω-spaces.

(d) λ-Polish spaces, i.e. completely metrizable spaces of weight ≤ λ.

Proof. By Theorem 1.1.12 all these spaces are metrizable. The result then follows
from [36] (or replacing second countability with paracompactness in [93, Theo-
rem 8.17] - see also [52, 53]).

2.3.2 Generalized Cauchy-completeness

Recall that a µ-metric is a G-metric d for some totally ordered Abelian group G =
〈G,+G, 0G,≤G〉 of degree Deg(G) = µ, and µ-metric space is a G-metric space
(X, d) for some some totally ordered Abelian group G of degree Deg(G) = µ. A
sequence (xi)i<µ of points from a µ-metric space (X, d) is (d-)Cauchy if

∀ε ∈ G+ ∃α < µ ∀β, γ ≥ α (d(xβ, xγ) <G ε).

The space (X, d) (or the G-metric d) is Cauchy-complete if every Cauchy sequence
(xi)i<µ converges to some (necessarily unique) x ∈ X , that is,

∀ε ∈ G+ ∃α < µ ∀β ≥ α (d(xβ, x) <G ε).

Definition 2.3.9. A (Hausdorff regular) space is called (λ, µ)-Polish if it has weight
≤ λ and admits a compatible Cauchy-complete µ-metric.

Notice that if µ ≤ λ and X is µ-metrizable, then having weight≤ λ is equivalent
to having density character ≤ λ.

Definition 2.3.9 generalizes both the notion of λ-Polish space as introduced in [52],
which corresponds to the case µ = ω, and the notion of a G-Polish space from Chap-
ter 1, which instead corresponds to the case where λ = µ is regular (see Fact 2.3.16).

The proof of Proposition 1.1.26 shows that the following holds.

Proposition 2.3.10. Let X be a µ-metrizable space, and (Y, d) be Cauchy-complete
µ-metric space. Let A ⊆ X and f : A → Y be continuous. Then, there is a Gµδ
set B ⊆ X and a continuous function g : B → Y such that A ⊆ B ⊆ cl(A) and g
extends f , i.e. g � A = f .
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Corollary 2.3.11. Let X be a µ-metrizable space and let Y be a (λ, µ)-Polish sub-
space of X , where λ is the weight of X . Then Y is Gµδ in X .

Moreover, arguing as in Lemma 1.1.20 and recalling that µ-metrizable spaces are
µ-additive, we also get:

Proposition 2.3.12. If X is (λ, µ)-Polish, then it is also a µ-additive fSCλ
µ-space.

We are now going to show that requiring a stronger form of completeness for
G-metrics, we obtain a special class of (λ, µ)-Polish spaces which is related to µ-
additive SCλ

µ-spaces.
Recall that a µ-metric d is called spherically complete if the intersection of every

decreasing (with respect to inclusion) sequence of open balls of X is nonempty11. If
we instead consider only sequences of order type µ (respectively, <µ) we say that d
is spherically µ-complete (respectively, spherically <µ-complete).

Definition 2.3.13. A µ-metrizable space X is said to me spherically complete if
it admits a compatible spherically complete µ-metric d. Spherically (<)µ-complete
µ-metrizable spaces are defined analogously.

First, the same argument of Cantor’s intersection theorem shows that weak forms
of spherical completeness imply the usual Cauchy-completeness.

Proposition 2.3.14. Every spherically µ-complete µ-metric is Cauchy-complete.

The following is the analogue of Proposition 2.3.12.

Proposition 2.3.15. Every spherically <µ-complete (λ, µ)-Polish space X is a µ-
additive SCλ

µ-space.

Proof. Let d1 be a compatible spherically <µ-complete µ-metric on X , and fix a
compatible Cauchy-complete G-metric d2 onX , where G is a totally ordered Abelian
group with Deg(G) = µ. Let 〈rα | α < µ〉 be a coinitial sequence in G+. Con-
sider the following tactic σ for II in Gs

µ(X). Suppose I has played an open set U
and a point x ∈ U at round α. Choose β > α such that Wα = Bd2(x, rβ) satis-
fies cl(Wα) ⊆ U , and then choose an d1-open ball Vα such that x ∈ Vα ⊆ Wα:
set σ((U, x), α) = Vα. We claim that σ is winning. Indeed, for any (partial) run
〈(Uα, xα), Vα | α < γ〉 in Gs

µ(X) in which II followed σ, we have that
⋂
Vα 6= ∅: if

γ < µ, this is due to the spherically < µ-completeness of d1, since all the Vα’s are
open balls of d1; if instead γ = µ, this is due to the Cauchy-completeness of d2, since⋂
α<µ Vα =

⋂
α<µWα =

⋂
α<µ cl(Wα) and theWα’s have vanishing diameters with

respect to d2.

When λ has countable cofinality, we recover complete (classical) metrizability.
For uncountable cofinality instead, we recover the notion of G-Polish spaces.

Fact 2.3.16. Let X be a topological space, and let λ be a cardinal of cofinality µ.

(a) If µ = ω is countable, thenX is (λ, ω)-Polish if and only if it is λ-Polish spaces,
i.e. completely metrizable spaces of weight ≤ λ.

11Once again: different definitions are possible, see Definition 1.1.29.
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(b) If λ = µ > ω is regular and uncountable, then X is (resp., spherically com-
plete) (µ, µ)-Polish if and only if it is (resp., spherically complete) G-Polish for
some/every totally ordered Abelian group G of degree µ.

Proof. By [126] every G-metrizable space is also metrizable when Deg(G) = ω, and
thus point (a) follows from Proposition 2.3.12 and Fact 2.3.8. Point (b) follows from
Corollary 1.1.22.

Fact 2.3.16(a) hold for spherically complete (λ, µ)-Polish spaces as well if we as-
sume furthermore that X is Lebesgue zero-dimensional, but this is already contained
in Theorem 2.3.2.

Finally, it is easy to show that all closed subsets of λµ have a natural G-

Proposition 2.3.17. Every closed subset X ⊆ λµ admit a compatible spherically
µ-complete µ-metric.

If X is furthermore superclosed, the µ-metric can be taken spherically complete.

Proof. Let X = [T ] be the body of a DST tree T ⊆ λ<µ . Let G be a totally ordered
Abelian group of degree µ, and let 〈rα | α < µ〉 be coinitial in G+. Recall the metric
from Example 2.1.8

d(x, y) =

{
0G if x = y

rα if x(α) 6= y(α) and x � α = y � α

It is easy to see then that d � X is a spherically µ-complete G-ultrametric compatible
with the topology of X , and that if furthermore T is superclosed, then d � X is also
spherically complete.

2.3.3 Completeness via bases

Recall that given a regular cardinal δ, a space is said δ-Lindelöf if every open cover
of the space has a subcover of size < δ. With this terminology, a space X is compact
if and only if it is ω-Lindelöf. Every form of compactness brings with itself a form
of completeness: for example, it is well-known that every compact metrizable space
is completely metrizable, and analogous statements hold for compact (respectively,
µ-Lindelöf) spaces and SCλ

µ-spaces (respectively, fSCλ
µ-spaces) when µ > ω is reg-

ular (see Chapter 1). Compactness and δ-Lindelöfness can be restated to make this
connection more explicit.

Definition 2.3.18. Let δ be an infinite cardinal, X be a topological space, and D be
a family of closed subsets of X . We say that D is a δ-Lindelöf family if for every
C ⊆ D we have

⋂
C 6= ∅ whenever

⋂
A 6= ∅ for every A ⊆ C of size < δ.

Then, a topological space is δ-Lindelöf if and only if every family of closed
subsets of it is δ-Lindelöf. Notice that if D is a δ-Lindelöf family, C ⊆ D, and
δ′ ≥ δ, then C is a δ′-Lindelöf family.

Being fully µ-Lindelöf is a very restrictive condition. In fact, even the generalized
Baire space µµ is not µ-Lindelöf, while the generalized Cantor space 2µ is µ-Lindelöf
if and only if µ = ω or µ is weakly compact. Thus it makes sense to weaken such
requirements as follows.
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Definition 2.3.19. Let δ be an infinite cardinal. A topological space X is called
δ-Lindelöf-based if it is regular Hausdorff and it admits a δ-Lindelöf basis B, i.e. a
basis B for the topology such that cl[B] = {cl(B) | B ∈ B} is a δ-Lindelöf family in
X; when δ = ω, we simply speak of compact-based spaces and compact basis.

Remark 2.3.20. The idea to define a notion of completeness by looking at intersec-
tions of families of subsets of a basis for the topology has been considered before
— see e.g. the notion of B-compactness from [87] and of B-completeness from [7]
(which correspond to B being a compact basis in our terminology), or the theory of
s-complete spaces and d-closed subsets in [9].

If B is a tree basis for a space X , properties like being δ-Lindelöf-based have a
strong effect on the tree-structure of B. This is because by Fact 2.2.22 the elements
of B are clopen, hence B is a δ-Lindelöf basis if and only if B itself is a δ-Lindelöf
family. Moreover, given C ⊆ B we have that if

⋂
C = ∅, then either C is not a chain,

or else it is cofinal in a branch of B. In the former case, taking ⊆-incomparable
elements C0, C1 ∈ C we get that C′ = {C0, C1} is such that

⋂
C′ = ∅. So in order

to have that B is a δ-Lindelöf basis it is enough to consider the branches of it. This
yields the following criterion:

Fact 2.3.21. Let δ be an infinite cardinal. A tree basis B for a space X is δ-Lindelöf
if and only if every branch of B of cofinality ≥ δ has nonempty intersection.

In particular, this shows that the complete body of every tree (and thus in partic-
ular every space of the form Aγ ) with the bounded topology is compact-based. This
extends further Fact 2.2.26.

Fact 2.3.22. For every tree T, the complete body [[T]]c is a compact-based (tree-
based) space, while the body [[T]] is a δ-additive, δ-Lindelöf-based and δ-tree-based
space for δ = cof(ht(T)).

In particular, for every (limit) ordinal γ and non-empty set A, the space Aγ with
bounded topology is a δ-additive, compact-based δ-tree-based for δ = cof(ht(T)).

Specializing this more to the case where X ⊆ λµ and B = BT for some tree
T ⊆ TX , we get a tight connection between Linedlöf-like properties of BT and the
behaviour of the (complete) body of T . (Compare with Fact 2.1.6.)

Fact 2.3.23. Let λ be any cardinal. If X ⊆ λµ and T ⊆ TX is pruned, then the
family BT = {NX

s | s ∈ T} is a µ-Lindelöf basis for X if and only if X = [[T ]].
Similarly, BT it is a compact basis for X if and only if X = [[T ]]c, in which case
[[T ]]c ⊆ λµ , and hence [[T ]] = [[T ]]c and T is superclosed (since µ is a limit ordinal).

Remark 2.3.24. Setting T = TX in Fact 2.3.23, we get that the canonical basis

{NX
s | s ∈ λ<µ ∧NX

s 6= ∅}

of a space X ⊆ λµ is µ-Lindelöf if and only if X is closed, and it is a compact basis
if and only if X is superclosed.

Proposition 2.3.25. Let δ be an infinite cardinal. Let X be a δ-Lindelöf-based tree-
based space. Then every tree basis B contains a δ-Lindelöf tree basis B′ ⊆ B.
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Proof. Let B be a tree basis for X and let A be a δ-Lindelöf basis. We are going to
build a basis B′ ⊆ B such that if Bα ∈ Levα(B′) and Bα+1 ∈ Levα+1(B′) are such
that Bα+1 ⊆ Bα, then there is Aα ∈ A with Bα+1 ⊆ cl(Aα) ⊆ Bα. In this way,
if 〈Bα | α < γ〉 ∈ Br(B′) and cof(γ) ≥ δ we get

⋂
α<γ Bα =

⋂
α<γ cl(Aα) 6= ∅

(because A was a δ-Lindelöf basis), hence B′ ⊆ B is a δ-Lindelöf basis too by
Fact 2.3.21.

Given an open set U with at least two points, let

B′U = {B ∈ B | ∃A ∈ A (B ⊆ cl(A) ( U)}.

and let BU ⊆ B be the set of minimal elements of B′U (with respect to the order of
the tree B, i.e. the superset relation ⊇). Since X is regular Hausdorff, then

⋃
B′U =⋃

BU = U . Moreover, by Proposition 2.2.22(2) the sets in BU are pairwise disjoint,
hence BU is a clopen partition of U . Furthermore, B ( U for every B ∈ BU . If U is
open and contains just one point, set instead BU = {U}.

We construct B′ by induction on its levels. Let Lev0(B′) = Lev0(B). Suppose
that γ > 0 and that Levα(B′) has been defined for every α < γ. If γ = β + 1 is a
successor ordinal, set

Levγ(B′) =
⋃
{BU | U ∈ Levβ(B′) ∧ |U | > 1}.

If instead γ is limit, let Xγ = {x ∈ X | ∀α < γ (x ∈
⋃

Levα(B′))}. For each x ∈
Xγ and α < γ, let Bα(x) be the (unique, by Proposition 2.2.22(2)) B ∈ Levα(B′)
such that x ∈ B. By Lemma 2.2.25, either {Bα(x) | α < γ} is a local basis for
x ∈ Xγ , or else

⋂
α<γ Bα(x) is a nonempty open set. Let

Uγ =

{ ⋂
α<γ

Bα(x)
∣∣∣ x ∈ X ∧ ⋂

α<γ

Bα(x) is open
}

and
Levγ(B′) =

⋃
{BU | U ∈ Uγ}.

It is easy to verify that B′ is a basis with the desired property.

Corollary 2.3.26. Let δ be an infinite cardinal. If X ⊆ λµ is δ-Lindelöf-based, then
there is a pruned tree T ⊆ TX such that BT = {NX

s | s ∈ T} is a δ-Lindelöf basis
for X .

Proof. Consider the tree TX , so that BTX = {NX
s | s ∈ TX} is a tree basis for X .

By Proposition 2.3.25 there is B′ ⊆ BTX such that B′ is a µ-Lindelöf basis for X .
For each B ∈ B′ let sB ∈ TX be the shortest sequence satisfying B = NX

sB
and let

T ′ = {sB | B ∈ B′}, so that BT ′ = B′. The tree T ′ might fail to be pruned, but this
can be fixed as follows. If s ∈ T ′ is such that NX

s = {x} for some x ∈ X , add to
T ′ all sequences of the form x � (lh(s) + α) for α < µ: the resulting tree T is then
pruned and BT = BT ′ = B′. Hence T is as required.

Together with the equivalence between (a) and (d) in Theorem 2.2.1(2), Propo-
sition 2.3.25 and Corollary 2.3.26 are the key ingredients which allow us to prove
analogues of Theorem 1.1.28, Propositions 1.1.13 and 1.1.14, and Corollary 1.1.15
in the context of µ-Lindelöf-based and compact-based µ-metrizable spaces.

The following theorem characterizes the concept of being µ-Lindelöf-based in
terms of descriptive set-theoretical complexity.
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Theorem 2.3.27. Let X be a (Lebesgue zero-dimensional, if µ = ω) µ-Lindelöf-
based µ-metrizable space. Then a subspace Y ⊆ X is µ-Lindelöf-based if and only
if it is Gµδ in X .

Proof. By Theorem 2.2.1 we can assume that X ⊆ λµ , where λ is the weight of X .
Assume first that Y ⊆ X ⊆ λµ is µ-Lindelöf-based. Setting δ = µ in Corol-

lary 2.3.26, we get a pruned tree T ⊆ TY such that BT is a µ-Lindelöf basis for Y .
Then Y = [[T ]] by Fact 2.3.23, hence Y is Gµδ in λµ by Proposition 2.2.50, and thus
it is also Gµδ in X .

Setting Y = X in the previous argument, we actually get that X is Gµδ in the
whole λµ . Since the class of Gµδ is closed under (≤ µ-sized) intersections by defini-
tion, if Y is Gµδ in X then it is also Gµδ in λµ . By Proposition 2.2.50 there is a tree
T ⊆ λ<µ such that Y = [[T ]]. By Remark 2.2.51 we can assume that T ⊆ TY and
thus that T is pruned. By Fact 2.3.23, this means that BT is a µ-Lindelöf basis for Y ,
witnessing that Y is µ-Lindelöf-based.

Thanks to Example 2.1.8 and Fact 2.3.22, every space of the form Aλ is both
µ-metrizable and compact-based (so also µ-Lindelöf-based). Thus, applying Theo-
rem 2.3.27 to it we get the following.

Corollary 2.3.28. Assume µ = cof(λ) and let A be non-empty. A subset X ⊆ Aλ is
µ-Lindelöf-based if and only if it is Gµδ in Aλ .

Combining Theorem 2.3.27 with Corollary 2.2.52, we also get another kind of
characterization of being µ-Lindelöf-based.

Corollary 2.3.29. A (Lebesgue zero-dimensional, if µ = ω) µ-metrizable space of
weight ≤ λ is µ-Lindelöf-based if and only if it is homeomorphic to a closed subset
of λµ .

We now move to compact-based spaces. Unfortunately, we cannot have a charac-
terization of this notion just in terms of complexity, since we do not have an analogue
of Proposition 2.2.50 for the bodies of superclosed trees. However, we can still obtain
a characterization along the lines of Corollary 2.3.29 (see Proposition 2.3.31). First a
useful lemma.

Lemma 2.3.30. A subspace X ⊆ λµ is compact-based if and only if X = [[T ]] for
some superclosed tree T ⊆ λ<µ .

Proof. If T ⊆ λµ is superclosed then [[T ]] = [[T ]]c. Hence if X = [[T ]], then
BT = {NX

s | s ∈ T} is compact by Fact 2.3.23.
Conversely, assume that X is compact-based. By Corollary 2.3.26 applied with

δ = ω there exists a pruned tree T ⊆ TX such that BT is a compact basis for X .
By Fact 2.3.23 this implies that X = [[T ]]c = [[T ]] and hence that T superclosed, as
desired.

A simple corollary of Lemma 2.3.30 is that a (Lebesgue zero-dimensional, if
µ = ω) µ-metrizable space of weight ≤ λ is compact-based if and only if it is
homeomorphic to [[T ]] for some superclosed tree T ⊆ λ<µ . This can be slightly
improved by requiring that T be a DST tree, so that [[T ]] is a superclosed subset of
λµ .
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Proposition 2.3.31. A (Lebesgue zero-dimensional, if µ = ω) µ-metrizable space
of weight ≤ λ is compact-based if and only if it is homeomorphic to a superclosed
subset of λµ .

Proof. As usual, we can assume to work inside a subspace X ⊆ λµ . Every super-
closed set in λµ is compact-based by Lemma 2.3.30, hence so is X if it is homeo-
morphic to a superclosed set.

Conversely, suppose that X is compact-based. By Lemma 2.3.30 again, there is
a superclosed (not necessarily DST) tree T ′ such that X = [[T ′]], and by Proposi-
tion 2.1.3 we may assume that T ′ is normal. Then by Proposition 2.1.2 there exists
a DST tree T ⊆ λ<µ isomorphic to T ′, which is superclosed because the latter
is a property which is clearly preserved under isomorphisms. By Fact 2.1.5, [[T ′]]
is homeomorphic to [[T ]] = [T ], thus X is homeomorphic to the superclosed set
C = [T ].

If we are in the situation where X is µ-Lindelöf-based and Y ⊆ X is compact-
based, we would like to simultaneously realize Corollary 2.3.29 (applied to X) and
Proposition 2.3.31 (applied to Y ) so that the corresponding superclosed set is a subset
of the closed subset of λµ coming from X . The following result, which is the ana-
logue of Proposition 1.1.14 for µ-Lindelöf-based and compact-based spaces, shows
that this is possible.

Proposition 2.3.32. Suppose that X is a (Lebesgue zero-dimensional, if µ = ω)
µ-Lindelöf-based µ-metrizable space of weight ≤ λ, and let Y be a compact-based
closed subspace of X . Then there exist a closed C ⊆ λµ and a homeomorphism
φ : X → C which maps Y into a superclosed C ′ ⊆ C.

Proof. By Corollary 2.3.29, we may assume thatX ⊆ λµ is closed. Since Y is closed
in X (and hence in λµ ), we have X = [TX ] and Y = [TY ]. Notice that TY ⊆ TX
and they are both pruned and that BTX = {NX

s | s ∈ TX} is a µ-Lindelöf basis for
X by Fact 2.3.23. By the proof of Lemma 2.3.30, there exists a pruned superclosed
(not necessarily DST) subtree T ′Y ⊆ TY such that Y = [[T ′Y ]]. By Proposition 2.1.3
we can assume that T ′Y is normal. Define T ′X = (TX \ TY ) ∪ T ′Y : since TY was
a DST tree and both TX and T ′Y are pruned, then T ′X is pruned and X = [[T ′X ]],
so that BT ′X = {NX

s | s ∈ T ′X} is still a µ-Lindelöf basis for X by Fact 2.3.23.
Furthermore, the fact that TY was a DST tree entails that TX \ TY is upward closed
in TX , hence T ′Y ⊆ TY is a downward closed subset of T ′X . By Proposition 2.1.2
there exists a tree isomorphism f : T ′X → T mapping T ′X to a DST tree T ⊆ λ<µ ,
and by Fact 2.1.5 and the comment following it this isomorphism canonically induces
a homeomorphism φf betweenX = [[T ′X ]] and the closed set [[T ]] = [T ]. Moreover,
the restriction of φf to Y = [[T ′Y ]] is a homeomoprhism between Y and the bodyC of
the tree f [T ′Y ]. But since f was a tree isomorphism, f [T ′1] is superclosed, pruned, and
downward closed in T , thus in particular it is also a DST tree and C is superclosed.
Setting φ = φf we are done.

Besides its technical content, Proposition 2.3.32 is useful in that it shows, to-
gether with [105, Proposition 1.3], that compact-based subspaces of µ-Lindelöf-
based µ-metrizable spaces are always a retract of the ambient space (see also [9,
Theorem 4.6]).
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Corollary 2.3.33. Let X be a (Lebesgue zero-dimensional, if µ = ω) µ-Lindelöf-
based µ-metrizable space. Then every compact-based closed subspace Y ⊆ X is a
retract of X .

The notions of being µ-Lindelöf-based and compact-based are closely related to
the other completeness notions that we considered in the previous sections. For ex-
ample, by Proposition 2.3.6 and Theorem 2.3.27 every (Lebesgue zero-dimensional,
if µ = ω) µ-Lindelöf-based µ-metrizable space of weight ≤ λ (which by Theo-
rem 2.2.1(2) might be conceived as a subspace of the µ-Lindelöf-based µ-metrizable
fSCλ

µ-space λµ ) is an fSCλ
µ-space. More generally:

Proposition 2.3.34. If X is µ-Lindelöf-based, then player II has a winning strategy
(and even a winning tactic, if X is µ-additive) in fGs

µ(X).
Moreover, if X is compact-based then player II has a winning strategy (and even

a winning tactic, if X is µ-additive) in Gs
δ(X) for every infinite cardinal δ.

Proof. Let B be a µ-Lindelöf basis (or a compact basis, if X is compact-based).
We define a winning strategy σ for II in the relevant game as follows. If player I
just played (Uα, xα) at round α, let II pick any open set U ′α ⊆ X such that Uα =
U ′α ∩

⋂
β<α Vβ , and then reply by playing Vα = V ′α ∩ Uα for some V ′α ∈ B such that

x ∈ V ′α ⊆ cl(V ′α) ⊆ U ′α. Notice that if X is µ-additive then we can set U ′α = Uα and
hence σ is actually a tactic.

Suppose first we are in the case of a µ-Lindelöf-based space, and let 〈(Uα, xα), Vα |
α < µ〉 be a run of the game in which II followed σ. Using the notation from the
previous paragraph and arguing by induction on γ, for any γ ≤ µ limit we have⋂
β<γ Uβ =

⋂
β<γ U

′
β =

⋂
β<γ cl(V ′β): hence if such sets are nonempty for every

γ < µ, then also the intersection corresponding to γ = µ is nonempty because the
V ′β’s belong to the µ-Lindelöf basis B. Similarly, if X were compact-based and µ
is replaced by any infinite cardinal δ, then all intersections

⋂
β<γ Uβ =

⋂
β<γ U

′
β =⋂

β<γ cl(V ′β) are nonempty because the V ′β’s belong to the compact basis B.

Corollary 2.3.35. Every µ-Lindelöf-based space of weight ≤ λ is an fSCλ
µ-space,

and every compact-based space of weight ≤ λ is an SCλ
µ-space.

For µ-tree-based spaces, the converse is true as well.

Proposition 2.3.36. Suppose that X is µ-tree-based and has weight ≤ λ. Then X is
fSCλ

µ if and only if it is µ-Lindelöf-based, and X is SCλ
µ if and only if it is compact-

based.

Proof. One direction is given by Corollary 2.3.35, so let us simultaneously prove
the two forward implications. Let B be a tree basis for X of height ≤ µ, and let
σ be a winning strategy for II in the strong (fair) µ-Choquet game. Without loss of
generality, we may assume that σ has range contained in B. We want to define a
new tree basis A ⊆ B together with a function f :

⋃
α<µ Levα+1(A) → X such

that for every branch 〈Aα | α < γ〉 of A of limit height, the sequence of moves
〈(Aα, f(Aα+1)) | α < γ〉 of player I is compatible with σ. Since elements of B, and
hence of A, are clopen by Proposition 2.2.22, this last condition ensures that A is a
µ-Lindelöf tree basis (if σ was winning in fGs

µ(X)) or a compact tree basis (if σ was
winning in Gs

µ(X)) by Fact 2.3.21.
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We recursively define the levels of A and corresponding restrictions of f . More
precisely, for every γ < µ we define a family Aγ ⊆ B and, if γ is successor, a
function fγ : Aγ → X such that lettingA≤γ =

⋃
α≤γ Aα and f<γ =

⋃
α<γ fα+1 we

have:

(1) Levγ(A≤γ) = Aγ .

(2) For every B ∈ Levγ(B) and x ∈ B there is A ∈ A≤γ such that x ∈ A ⊆ B.

(3) For every branch 〈Aα | α ≤ γ〉 of A≤γ of length γ + 1 and every x ∈ Aγ , the
sequence of moves 〈(Aα, f<γ(Aα+1)) | α < γ〉a(Aγ , x) is compatible with σ
.

Then A =
⋃
α<µAα ⊆ B is a (tree) basis by item (2), and by item (3) it satisfies the

additional requirement discussed above.
Start by setting A0 = Lev0(B). This trivially satisfies items (1)–(3), so we can

move to the inductive step. Given 0 < γ < µ, suppose that fα+1 and Aβ have been
defined for every α < β < γ. Let A<γ =

⋃
α<γ Aα. Define Xγ to be the set

of those x ∈ X such that {A ∈ A<γ | x ∈ A} is a local basis for x, and notice
that if γ′ ≤ γ then Xγ′ ⊆ Xγ . For elements of Xγ we have nothing more to add
to A<γ to make it a local basis for x, so we will concentrate on X \ Xγ : indeed,
our construction will ensure that Aγ is a clopen partition of X \ Xγ . For every
x ∈ X \ Xγ ⊆

⋂
γ′<γ(X \ Xγ′), the set Aγ(x) =

⋂
{A ∈ A<γ | x ∈ A} is open

by Lemma 2.2.25 and x /∈ Xγ . Moreover, Aγ(x) ⊆ X \Xγ because if y ∈ Aγ(x)
then y ∈

⋂
γ′<γ(X \ Xγ′) and {A ∈ A<γ | y ∈ A} = {A ∈ A<γ | x ∈ A} by

the fact that Aγ′ is a partition of X \Xγ′ ; hence if y 6= x then {A ∈ A<γ | y ∈ A}
does not separate y from x and thus cannot be a local basis for y. This shows that
{Aγ(x) | x ∈ X \Xγ} is an open cover of X \Xγ . For every x ∈ X \Xγ , let Bγ(x)
be the minimum (with respect to the tree order ⊇) B ∈ B such that x ∈ B ( A
for every A ∈ A<γ with x ∈ A, so that in particular Bγ(x) ⊆ Aγ(x). The family
{Bγ(x) | x ∈ X \ Xγ} is a clopen partition of X \ Xγ by Aγ(x) ⊆ X \ Xγ ,
Proposition 2.2.22(2) and minimality of the Bγ(x)’s.

Assume first that γ is limit, so that f<γ is already entirely defined, and set Aγ =
{Bγ(x) | x ∈ X \ Xγ}. Since X \ Xγ ⊆

⋂
γ′<γ(X \ Xγ′) and we are ensuring

that each Aγ′ is a clopen partition of X \ Xγ′ , for every x ∈ X \ Xγ and γ′ < γ
there is A ∈ Aγ′ with x ∈ A: by item (1) applied to such ordinals γ′ < γ and the
choice of Bγ(x) we then have that Bγ(x) ∈ Levγ(A≤γ) and item (1) is satisfied. As
for item (2), pick any x ∈ B ∈ Levγ(B). Notice that every predecessor B′ of B
in B belongs to Levα(B) for some α < γ, and thus by induction hypothesis there is
A ∈ A<γ such that x ∈ A ⊆ B′. In particular, if there is no A ∈ A<γ such that
x ∈ A ⊆ B (so that in particular x ∈ X \ Xγ), then by Proposition 2.2.22(2) B is
minimal such that x ∈ B ( A for all A ∈ A<γ with x ∈ A, and thus Bγ(x) = B by
definition of Bγ(x). Finally, item (3) is satisfied by induction and Bγ(x) ⊆ Aγ(x).

Assume now that γ = β + 1 is successor. In this case Aγ will be a partition
refining {Bγ(x) | x ∈ X\Xγ}. Granting this, the argument in the previous paragraph
shows that items (1) and (2) will be satisfied by such an Aγ . As for item (3), we first
need to define fγ . For x ∈ X \Xγ and α ≤ β, let Aα ∈ Aα be (the unique set) such
that x ∈ Aα. Define

rx = 〈(Aα, f<γ(Aα+1)) | α < β〉a〈(Aβ, x)〉.
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Then rx is compatible with σ by item (3) applied to β. Let

Cγ = {σ(rx) ∩Bγ(x) | x ∈ X \Xγ},

and notice that it covers X \ Xγ . Since both σ(rx) ∈ B and Bγ(x) ∈ B and they
have nonempty intersection, as witnessed by x itself, we must have that they are
comparable with respect to inclusion by Proposition 2.2.22(2), hence either σ(rx) ∩
Bγ(x) = σ(rx) or σ(rx) ∩ Bγ(x) = Bγ(x). It follows that Cγ ⊆ B. Let Aγ be
the set of minimal elements of Cγ (with respect to the tree relation ⊇ of B): then Aγ
is a partition of X \Xγ by Proposition 2.2.22(2) again. For every A ∈ Aγ , choose
x ∈ X \Xγ such that A = σ(rx) ∩ Bγ(x), and set fγ(A) = x. It is easy to check
that item (3) is then satisfied by construction.

This means that for µ-additive µ-tree-based spaces, having a winning strategy
in the relevant Choquet-like games is the same as having a winning tactic in those
games. In particular, since every (Lebesgue zero-dimensional) µ-metrizable space is
µ-additive and µ-tree-based, we have the following:

Corollary 2.3.37. Let X be a (Lebesgue zero-dimensional, if µ = ω) µ-metrizable
space. Then player II has a winning strategy in the strong fair µ-Choquet game
fGs

µ(X) if and only if it has a winning tactic in it, and the same is true for the strong
µ-Choquet game Gs

µ(X).

2.3.4 Proof of Theorems 2.3.1 and 2.3.2

Combining together all the results obtained, we can prove the two theorems an-
nounced at the beginning of the section.

Proof of Theorem 2.3.1. First, every (λ, µ)-Polish space is µ-metrizable, thus (1)⇒
(3) by Proposition 2.3.12. Also, (2)⇒ (1) by Proposition 2.3.14. Every µ-metrizable
space is µ-tree-based by Theorem 2.2.1, thus (3) ⇐⇒ (4) by Proposition 2.3.36.
The equivalence (4) ⇐⇒ (5) is Corollary 2.3.29, while (5) ⇐⇒ (6) is given by
Corollary 2.2.52. The implication (6)⇒ (7) follows from Proposition 2.2.53, while
(7)⇒ (4) by Corollary 2.3.28. Finally, (5)⇒ (2) by Proposition 2.3.17.

Proof of Theorem 2.3.2. First, (2) is a strict strengthening of (1), so (2)⇒ (1). Every
spherically-complete (λ, µ)-Polish space is µ-metrizable, thus (1)⇒ (3) by Proposi-
tion 2.3.15. Every µ-metrizable space is µ-tree-based by Theorem 2.2.1, thus (3)
⇐⇒ (4) by Proposition 2.3.36, and the equivalence (4) ⇐⇒ (5) is Proposi-
tion 2.3.31. Finally, (5)⇒ (2) by Proposition 2.3.17.

2.4 Standard λ-Borel spaces

Sections 2.2 and 2.3 provide a large number of classes of spaces which could claim
to be the “right” generalization of Polish spaces. To determine which are the bet-
ter classes to work with if we aim at developing a decent (generalized) descriptive
set theory is a quite challenging task and certainly requires a deeper analysis. It
might well happen that we will have to accept a blurry situation, in which differ-
ent results will rely on different classes, or that we will instead have to restrict to
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the class of µ-metrizable spaces, where all the notions collapse into a simple and
well-delimited setup (although this would then show that when µ > ω, generalized
descriptive set theory would just be a theory of Lebesgue zero-dimensional Polish-
like spaces). Whatever the answer to this question will be, we are now going to
show that also in the generalized context there is a unique notion of standard λ-Borel
space (Theorem 2.4.13), thus providing a solid ground for the development of de-
scriptive set theory from λ-Borel sets onward. Moreover, all the different classes of
topological spaces considered so far are the same up to λ-Borel isomorphism (Theo-
rem 2.4.12), and actually in most cases the only differences concern the finite levels
of their λ-Borel hierarchy (even though λ might be very large in the cardinal hier-
archy). This shows that even if the situation might be chaotic from the topological
viewpoint, there is a chance that a better picture can be obtained from the point of
view of (generalized) descriptive set theory.

2.4.1 Standard λ-Borel spaces

Recall from Section 2.1.2 the notion of (λ-)Borel space and related concepts. A
well-known fact in classical descriptive set theory concerning Borel spaces is the
following.

Theorem 2.4.1 ([93]). Let (X,B) be a Borel space. Then the following are equiva-
lent:

(1) there is a Polish topology τ on X such that B = Bor(X, τ);

(2) there is a (Lebesgue) zero-dimensional Polish topology on X such that B =
Bor(X, τ);

(3) there is a Borel set A ⊆ ωω such that (X,B) is Borel isomorphic to A, where
the latter is equipped with the Borel structure Bor( ωω ) � A inherited from ωω .

A Borel space is called standard if it satisfies the equivalent conditions above.
Theorem 2.4.1 conveys two distinct (although related) pieces of information, namely,
that the class of Polish spaces and the class of (Lebesgue) zero-dimensional Polish
spaces are the same up to Borel isomorphism, and that it is equivalent to saying that
the Borel structure of a Borel space X is generated by a nice (i.e. Polish, or zero-
dimensional Polish) topology and that, up to Borel isomorphism, X is a Borel subset
of the Baire space ωω (or any other uncountable Polish space, including the Cantor
space 2ω ). These results were extended in Chapter 1 to the context of κ-Borel spaces
for regular cardinals κ satisfying 2<κ = κ. In this section we further extend this
to all cardinals λ, including the case where λ is singular, still under the assumption
2<λ = λ. Except for Proposition 2.4.3, in the rest of the section we assume this
hypothesis and that cof(λ) = µ and (λi)i<µ is a strictly increasing sequence of limit
ordinals cofinal in λ.

When standard λ-Borel spaces (for λ > ω) were first introduced in [118], no
reasonable notion of a Polish-like space for generalized descriptive set theory was
known, hence the following definition was adopted12 (compare it with Theorem 2.4.1(1)).

12To be precise, the definition in [118] is slightly different, yet equivalent, to the present one—see
Chapter 1 for more on this.
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Definition 2.4.2. A λ-Borel space (X,B) is standard if it is λ-Borel isomorphic to
a λ-Borel subset of λµ .

As a first result, we show that for various important classes of topological spaces
considered in this chapter, we can enrich their topology (in a minimal way) to make
them µ-additive without destroying their relevant properties and without altering their
λ-Borel structure. (Here we are not requiring that µ = cof(λ), although the assump-
tion λ<µ = λ implies that µ ≤ cof(λ).)

Proposition 2.4.3. Assume that λ<µ = λ. For any (regular Hausdorff) space (X, τ)
of weight ≤ λ, the smallest µ-additive topology τ ′ ⊇ τ is still regular Hausdorff and
of weight ≤ λ, it is such that Borλ(X, τ ′) = Borλ(X, τ), and moreover:

(1) if (X, τ) is a NSµ-space, then so is (X, τ ′);

(2) if (X, τ) is a µ-tree-based space, then so is (X, τ ′);

(3) if (X, τ) is a µ-uniformly based space, then so is (X, τ ′);

(4) if (X, τ) is an fSCλ
µ-space, then so is (X, τ ′);

(5) if (X, τ) is an SCλ
µ-space, then so is (X, τ ′).

Proof. If µ = ω we have τ ′ = τ and there is nothing to prove, so let us assume that
µ is uncountable. Let B be a basis for (X, τ) of size ≤ λ, and let τ ′ be the smallest
µ-additive topology refining τ . Notice that B̃ = {

⋂
A | A ⊆ B ∧ |A| < µ} is a

basis for (X, τ ′) of size λ<µ = λ. Since B̃ ⊆ Borλ(X, τ) and B̃ has size λ, we
have that τ ⊆ τ ′ ⊆ Borλ(X, τ), and thus Borλ(X, τ ′) = Borλ(X, τ). Also, notice
that since (X, τ) is Hausdorff, then (X, τ ′) is Hausdorff as well, and since (X, τ) is
ω1-additive, then it is in particular zero-dimensional and thus regular.

We now prove item (1). Assume that B is a NSµ-basis for (X, τ) with a NSµ-
cover {Bα | α < µ}. By Fact 2.2.12(4) we can assume that Bα ⊆ Bβ for every
α ≤ β < µ. Analogously to what we did in the proof of Proposition 2.2.17 (but
using families A of size < µ instead of countable families), we set

Cα =

{⋂
A
∣∣∣ A ⊆ Bα ∧ |A| < µ ∧

⋂
A =

⋂
A∈A

cl(A)

}
,

Dα = {
⋂

CN(Cα, x) | x ∈ X}, and D =
⋃
α<γ Dα. Arguing as in Proposi-

tion 2.2.17 and using the fact that τ ′ is µ-additive, we get that each Dα is a τ ′-clopen
partition of X . We need to prove that D is a basis for (X, τ ′) (and so in particu-
lar a NSµ-basis for it, since {Dα | α < µ} is a NS2

µ-cover of D). Consider any
O ∈ B̃ and x ∈ O. Let A ⊆ B be such that |A| < µ and O =

⋂
A. We want

to find α < µ such that x ∈
⋂

CN(Cα, x) ⊆ O. For every A ∈ A, using the
regularity of X find a family {UAi | i < ω} ⊆ B of basic τ -open sets such that
x ∈ clτ (UAi+1) ⊆ UAi ⊆ A for every i ∈ ω, where clτ denotes closure with respect
to τ . Define A′ = {UAi | i < ω,A ∈ A}. Then |A′| < µ, and since we assumed
that

⋃
β<α Bβ ⊆ Bα for every α < µ, there exists α < µ such that A′ ⊆ Bα.

Furthermore,⋂
A′ =

⋂
A∈A

(⋂
i∈ω

UAi

)
=
⋂
A∈A

(⋂
i∈ω

cl(UAi )

)
=

⋂
A′∈A′

cl(A′).
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Hence
⋂
A′ ∈ Cα, and since x ∈

⋂
A′ then x ∈

⋂
CN(Cα, x) ⊆

⋂
A′ ⊆

⋂
A = O

and we are done.
Next we move to item (2). Assume that (X, τ) has a tree basis B of height µ.

Define
B′ =

{⋂
A
∣∣ A ⊆ B ∧ |A| < µ ∧

⋂
A 6= ∅

}
.

Then B′ ⊇ B is by definition a basis for τ ′, and it is a tree basis of height≤ µ because
by Proposition 2.2.22 the condition

⋂
A 6= ∅ implies thatA is contained in some (not

necessarily unique) branch of B.
As for item (3), assume that σ is a winning strategy for player II in the µ-uniform

local basis game on (X, τ). Recall that in such a game there are no restrictions on
the possible moves of player I, so there is no distinction between (legal) sequences
of moves for I in the game on (X, τ) and (legal) sequences of moves for the same
player in the game on (X, τ ′). We define a strategy σ′ for II in the µ-uniform local
basis game on (X, τ ′) as follows, ensuring in particular that each move of player II
is actually a τ ′-clopen set. Consider any sequence of moves r = 〈xα | α ≤ γ〉 for
player I of successor length. We distinguish two cases. If xγ ∈ σ′(r � (γ′ + 1)) for
all γ′ < γ, then let σ′(r) be any τ ′-clopen set such that

xγ ∈ σ′(r) ⊆ σ(r) ∩
⋂
γ′<γ

σ′(r � (γ′ + 1)).

Such a set exists because xγ ∈ σ(r) (since σ was legal) and τ ′ is µ-additive, hence
also zero-dimensional because we are in the case µ > ω. If instead xγ /∈ σ′(r �
(γ′ + 1)) for some γ′ < γ, then set σ′(r) = X \ σ′(r � (γ′ + 1)). It is clear that in
all cases σ′(r) is a τ ′-clopen set which contains xγ , hence it is in particular a legal
move for II in the game on (X, τ ′) and σ′ is a legal strategy: we claim that is also
winning. Let 〈xα, V ′α | α < µ〉 be a run of the game on (X, τ ′) in which II followed
σ′, and set Vα = σ(〈xβ | β ≤ α〉) for all α < µ. If the second case above occurred at
some round γ, then

⋂
α<µ V

′
α = ∅ because V ′γ = X \V ′γ′ for some γ′ < γ, so without

loss of generality we can assume that only the first case occurred along the run. Then
for every α < µ we have V ′α ⊆ Vα by construction. If x ∈

⋂
α<µ V

′
α 6= ∅, then

x ∈
⋂
α<µ Vα 6= ∅ as well, and hence {Vα | α < µ} is a local basis of x with respect

to τ because σ was winning. Let O be a τ ′-open neighborhood of x: without loss of
generality, O =

⋂
β<γ Uβ for some γ < µ and τ -open sets Uβ . For each β < γ there

is αβ < µ such that x ∈ Vαβ ⊆ Uβ . Let δ = sup{αβ + 1 | β < γ}. Then δ < µ
because µ is regular, and by construction and case assumption

x ∈ V ′δ ⊆
⋂
γ′<δ

V ′γ′ ⊆
⋂
γ′<δ

Vγ′ ⊆
⋂
β<γ

Vαβ ⊆
⋂
β<γ

Uβ = O.

This shows that {V ′α | α < µ} is a local basis for x with respect to τ ′, as desired.
Finally, if player II has a winning strategy in fGs

µ(X, τ) (respectively, Gs
µ(X, τ)),

then the same argument from [42, Proposition 4.3 and Lemma 4.4] shows that II also
has a winning strategy in fGs

µ(X, τ ′) (respectively, Gs
µ(X, τ ′)). This proves items (4)

and (5) and concludes the proof.

Items (5) and (4) in Proposition 2.4.3 cannot be reversed. For SCλ
µ spaces, this

is easy to see, as for example, the space of rational numbers Q is not strong Cho-
quet, but the smallest µ-additive topology refining it is SCλ

µ when µ > ω (since it is
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discrete). See also [42] for more examples. As for fSCλ
µ-spaces, Proposition 2.5.4

shows that there are spaces (X, τ) that are not fSCλ
µ, yet the smallest µ-additive

topology generated by τ is fSCλ
µ.

2.4.2 Changes of topology

A fundamental technique to prove Theorem 2.4.1 is the possibility of changing the
topology of a given Polish space to turn a given Borel set into a clopen set, without
losing Polishness and without modifying the Borel structure of the space. In Chap-
ter 1 this technique was extended to the generalized setting for regular cardinals: by
adapting that argument to the singular context, we are now going to prove the same
result in full generality.

Theorem 2.4.4. Assume that 2<λ = λ has cofinality µ and let (X, τ) be an fSCλ
µ-

space. Let B′ ⊆ Borλ(X, τ) be of size ≤ λ. Then there is a topology τ ′ on X such
that:

(1) τ ′ refines τ ;

(2) each B ∈ B′ is τ ′-clopen,

(3) Borλ(X, τ ′) = Borλ(X, τ), and

(4) (X, τ ′) is a µ-additive fSCλ
µ-space with a NS2

µ-basis of clopens (hence it is
also Lebesgue zero-dimensional and (λ, µ)-Polish).

We split the proof of Theorem 2.4.4 into three technical lemmas that will also
be used to prove Theorem 2.4.15. To simplify the terminology, say that a collection
B ⊆ Borλ(X, τ) of λ-Borel sets is downward closed if for every 1 < α < λ+

and B ∈ B with rank(B) = α there is F ⊆ B such that |F| ≤ λ, each element
of F has λ-Borel rank < α, and B =

⋃
F (if B ∈ λ-Σ0

α(X, τ)) or B =
⋂
F (if

B ∈ λ-Π0
α(X, τ)). In other words, B is downward closed if every time that a set

B ∈ B has rank ≤ α for some 1 < α < λ+, this is witnessed within the family B
itself.

Lemma 2.4.5. Assume that 2<λ = λ has cofinality µ and let (X, τ) be an fSCλ
µ-

space. Let B′ ⊆ Borλ(X, τ) be of size ≤ λ. Then there is a family B = (Bα)α<λ of
λ-Borel sets with B ⊇ B′ satisfying the following conditions:

(a) B contains a basis for the topology τ .

(b) Bi = {Bα | α < λi} is closed under complements for every i < µ.

(c) B is downward closed.

Proof. We recursively define families Bn, n ∈ ω, of size at most λ as follows. Given
a ≤ λ-sized basis A for τ , let B0 be the closure under complements of B′ ∪ A. In
the inductive step, for every B ∈ Bn of rank > 1 choose a family FB ⊆ Borλ(X, τ)
witnessing this. More precisely, if rank(B) = α > 1 and B ∈ λ-Σ0

α(X, τ) (re-
spectively, B ∈ λ-Π0

α(X, τ)) pick FB ⊆
⋃

1≤β<α λ-Π0
β(X, τ) (respectively, FB ⊆⋃

1≤β<α λ-Σ0
β(X, τ)) of size ≤ λ such that B =

⋃
FB (respectively, B =

⋃
FB).
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Then let Bn+1 be the closure under complement of Bn∪
⋃
B∈Bn FB . By construction,

B =
⋃
n∈ω Bn has size≤ λ, satisfies (a) and (c), and is closed under complements. To

get (b) it is enough to enumerate B as (Bα)α<λ in such a way that B2β+1 = X \B2β

for every β < λ: since the λi’s are limit ordinals, this works.

Lemma 2.4.6. Assume that 2<λ = λ has cofinality µ and let (X, τ) be an fSCλ
µ-

space. Let B ⊆ Borλ(X, τ) be a family of size ≤ λ which contains a basis A for
τ and it is both closed under complements and downward closed. Then the smallest
µ-additive topology τ̄ ⊇ B on X is such that:

(1) τ̄ refines τ ;

(2) each B ∈ B is τ̄ -clopen,

(3) Borλ(X, τ̄) = Borλ(X, τ), and

(4) (X, τ̄) is a µ-additive fSCλ
µ-space.

Proof. By definition, the topology τ̄ refines τ and is zero-dimensional by A ⊆ B
and closure of B under complements. For the same reason, each B ∈ B is τ̄ -clopen.
It is easy to check that (X, τ̄) is Hausdorff and regular since τ̄ ⊇ τ and τ̄ is zero-
dimensional. A basis for τ̄ is given by the family of all intersections of size < µ of
elements of B, and since λ<µ = λ (because we assumed 2<λ = λ) the space (X, τ̄)
has weight ≤ λ. Moreover, Borλ(X, τ̄) = Borλ(X, τ) because B has size λ and
A ⊆ B ⊆ Borλ(X, τ).

It remains to show that (X, τ̄) is also fSCλ
µ, and for this we proceed similarly to

Proposition 1.3.1. For every A ∈ B, let

B � A = {A,X \A} ∪ {B ∈ B | rank(B) < rank(A)}.

Let A be the collection of those A ∈ B for which the smallest µ-additive topology
generated by B � A is fSCλ

µ. Notice that A is trivially closed under complementa-
tion.

Claim 2.4.6.1. Let (Ai)i<λ be a family of sets in A . Let τ̄∞ be the smallest µ-
additive topology generated by

⋃
i<λ(B � Ai). Then (X, τ̄∞) is an fSCλ

µ-space.

Proof of the Claim. Let τ̄i be the smallest µ-additive topology generated by B � Ai,
and let X̃ =

∏
i<λ(X, τ̄i) be endowed with the µ-supported product topology. Since

Ai ∈ A the space (X, τ̄i) is Hausdorff for every i < λ, hence the diagonal

∆ =
{

(xi)i<λ ∈ X̃
∣∣∣ ∀i, j < λ

(
xi = xj

)}
is closed in X̃ . It is then easy to check that the map h : ∆ → (X, τ̄∞) sending
(xi)i<λ ∈ ∆ to x0 is a homeomorphism. By Fact 2.3.7, player II has a winning
strategy in the strong fair µ-Choquet game on X̃ . Since ∆ is closed in X̃ , we get that
∆ (and thus (X, τ̄∞)) is an fSCλ

µ-space by Proposition 2.3.6.

Notice that if (Ai)i<λ is an enumeration of B, then the corresponding τ̄∞ from
Claim 2.4.6.1 coincides with τ̄ because

⋃
i<λ(B � Ai) = B, hence to complete our

proof it is enough to show that A ∈ A for every A ∈ B. This is done by induction
on rank(A), using the following two claims and the fact that A is closed under
complements.
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Claim 2.4.6.2. Let C be an open or closed set of an fSCλ
µ-space (Y, τY ), and let τ̄Y

be the smallest µ-additive topology generated by τY ∪ {C, Y \ C}. Then (Y, τ̄Y ) is
an fSCλ

µ-space.

Proof of the Claim. Let ¯̄τ be the smallest topology generated by τY ∪ {C, Y \ C}.
Then (Y, ¯̄τ) is homeomorphic to the sum of the spaces C and Y \ C (endowed with
the relative topologies inherited from Y ). Since both C and Y \ C are fSCλ

µ-spaces
by Theorem 2.3.6, and since the class of fSCλ

µ-spaces is trivially closed under ≤ λ-
sized sums, then (Y, ¯̄τ) is an fSCλ

µ-space as well. By Proposition 2.4.3 applied to
(Y, ¯̄τ), the smallest µ-additive topology generated by ¯̄τ is strongly fair µ-Choquet,
and since such topology coincides with the smallest µ-additive topology generated
by τY ∪ {C, Y \ C} we are done.

In particular, setting (Y, τY ) = (X, τ) we get that if C ∈ B is closed or open,
then C ∈ A , i.e. that all sets in B of λ-Borel rank 1 belong to A .

Claim 2.4.6.3. Let 1 < α < λ+ be such that B<α = {B ∈ B | rank(B) < α} ⊆ A .
Let A ∈ B be such that A =

⋂
i<λAi with Ai ∈ B<α for all i < λ. Then A ∈ A .

Proof. By Claim 2.4.6.1, the smallest µ-additive topology τ̄∞ generated by
⋃
B∈B<α B �

B is strongly fair µ-Choquet, and since
⋃
B∈B<α B � B is closed under complements

then each Ai is τ̄∞-clopen and A =
⋂
i<λAi is τ̄∞-closed. The smallest µ-additive

topology generated by τ̄∞ ∪ {A,X \A} coincide with the smallest µ-additive topol-
ogy generated by B � A. Therefore setting (Y, τY ) = (X, τ̄∞) and C = A in
Claim 2.4.6.2 we get the desired result.

Since B is downward closed, Claim 2.4.6.3 can be used to show that if B<α ⊆ A ,
then every set inB∩λ-Π0

α(X, τ), and hence also every set inB∩λ-Σ0
α(X, τ), belongs

to A . This concludes the proof of Lemma 2.4.6.

Lemma 2.4.7. Assume that 2<λ = λ has cofinality µ and let (X, τ) be an fSCλ
µ-

space. Let B = (Bα)α<λ be a family of λ-Borel subsets of X satisfying condi-
tions (a)–(c) in the conclusion of Lemma 2.4.5. For i < µ set

B̃i = Bi ∪
{⋃

F
∣∣∣ F ⊆ Bi} ∪{⋂F ∣∣∣ F ⊆ Bi},

where as in Lemma 2.4.5 the family Bi is defined by Bi = {Bα | α < λi}. Let
B̃ =

⋃
i<µ B̃i.

Then the smallest µ-additive topology τ ′ generated by B̃ on X is such that:

(1) τ ′ refines τ ;

(2) each B ∈ B̃, and hence in particular each B ∈ B, is τ ′-clopen,

(3) Borλ(X, τ ′) = Borλ(X, τ), and

(4) (X, τ ′) is a µ-additive fSCλ
µ-space with a NS2

µ-basis of clopens (hence it is
also Lebesgue zero-dimensional and (λ, µ)-Polish).
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Proof. The smallest µ-additive topology τ̄ ⊇ B satisfies the conclusion of Lemma 2.4.6.
Since 2<λ = λ, we have that |B̃| ≤ λ: indeed, |B̃i| ≤ |P(Bi)| ≤ 2λi ≤ λ for every
i < µ. Moreover, since each set in B is τ̄ -clopen, then every element of B̃ is either
open or closed in τ̄ , and since Bi is closed under complements then so is each B̃i
and the entire B̃. Furthermore, B̃ is downward closed by definition and the fact that
B was downward closed. Thus we can apply once again Lemma 2.4.6 to the space
(X, τ̄) and the family B̃: we claim that the smallest µ-additive topology containing
B̃ from that lemma is the desired τ ′. Indeed, τ ′ ⊇ τ̄ ⊇ τ , each B ∈ B̃ is τ ′-clopen,
Borλ(X, τ ′) = Borλ(X, τ̄) = Borλ(X, τ), and (X, τ ′) is a µ-additive fSCλ

µ-space.
Fix any i < µ. Since each element of Bi is clopen in τ̄ ⊆ τ ′ and Bi is closed

under complements, we have that

CNτ ′(Bi, x) = CNτ̄ (Bi, x) = {B ∈ Bi | x ∈ B}

Set Di = {
⋂

CNτ ′(Bi, x) | x ∈ X} and D =
⋃
i<µDi. Each Di is a partition

by Lemma 2.2.15, and it consists of τ ′-clopen sets because by definition B̃ contains
every intersection of sets from Bi and elements of B̃ are τ ′-clopen. In particular, this
shows that {Di | i < µ} is a NS2

µ-cover of D consisting of τ ′-clopen sets.
It remains to show that D is a basis for τ ′. For every O ∈ τ ′ and x ∈ O let

A ⊆ B̃ be a family of size < µ such that x ∈
⋂
A ⊆ O: we may find A since τ ′

is the smallest µ-additive topology containing B̃. Then by definition of B̃ for every
A ∈ A we may find iA and FA ⊆ BiA such that A =

⋃
FA or A =

⋂
FA. (Notice

that this includes the case in which A ∈ BiA , as then A =
⋃
FA =

⋂
FA for

FA = {A}.) In the first case, set F ′A = {F} for some F ∈ FA such that x ∈ F ,
otherwise set F ′A = FA. Let A′ =

⋃
A∈AF ′A and let i = supA∈A iA. Then i < µ

because |A| < µ and µ is regular, and thus A′ ⊆ Bi. Then we have

x ∈
⋂

CNτ ′(Bi, x) = {B ∈ Bi | x ∈ B} ⊆
⋂
A′ ⊆

⋂
A ⊆ O,

and since
⋂

CNτ ′(Bi, x) ∈ Di ⊆ D we are done.

To prove Theorem 2.4.4, it is now enough to apply Lemma 2.4.5 and Lemma 2.4.7
one after the other.

Once the change-of-topology technique is available, we can derive a number of
interesting and useful consequences. Naturally adapting the arguments in Corol-
lary 1.3.2 we get the following corollaries of Theorem 2.4.4.

Corollary 2.4.8. Assume that 2<λ = λ has cofinality µ. For every λ-Borel subset B
of an fSCλ

µ-space there is a continuous λ-Borel isomorphism from a closed C ⊆ λµ

to B.

Corollary 2.4.9. Assume that 2<λ = λ has cofinality µ. Each λ-Borel subset B of
an fSCλ

µ-space is λ-Borel isomorphic to a superclosed subset of λµ (and thus to a
µ-additive SCλ

µ-space with a NS2
µ-basis of clopens).

Proof. By Corollary 2.4.8 the set B is λ-Borel isomorphic to a a closed C ⊆ λµ .
Then the same argument of Lemma 1.1.38 gives the desired result.

Corollary 2.4.8 gives in particular that every fSCλ
µ-space is a continuous injective

image of a closed subset of λµ . In the case of SCλ
µ-spaces, by Corollary 2.3.33 we

can also obtain the following related result.
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Corollary 2.4.10. Assume that 2<λ = λ has cofinality µ. Every SCλ
µ-space is a

continuous image of λµ .

The following is the counterpart of Theorem 2.4.4 in terms of functions and can
be proved by applying it to the preimages of the basic open sets in any ≤ λ-sized
basis for the topology of Y .

Corollary 2.4.11. Assume that 2<λ = λ has cofinality µ. Let (X, τ) be an fSCλ
µ-

space and Y be any space of weight≤ λ. Then for every λ-Borel function f : (X, τ)→
Y there is a topology τ ′ on X such that:

(1) τ ′ refines τ ;

(2) f : (X, τ ′)→ Y is continuous; each Bα is τ ′-clopen,

(3) Borλ(X, τ ′) = Borλ(X, τ), and

(4) (X, τ ′) is a µ-additive fSCλ
µ-space with a NS2

µ-basis of clopens (hence it is
also Lebesgue zero-dimensional and (λ, µ)-Polish).

2.4.3 Main results

We are now ready to prove the analogue of Theorem 2.4.1 in our generalized context.
First of all, Theorem 2.4.4 and Corollary 2.4.9 show that all classes of Polish-like
spaces naturally arisen in this chapter coincide up to λ-Borel isomorphism: once
we have the weakest notion of completeness, i.e. being an fSCλ

µ-space, all the rest
comes for free if we are interested in results depending just on the λ-Borel structure
of the space (and not on its actual topology). The classes of spaces listed in the next
theorem are just a sample of the variations on the theme that might be considered.

Theorem 2.4.12. Assume that 2<λ = λ has cofinality µ. Up to λ-Borel isomorphism,
the following classes of (regular Hausdorff) topological spaces coincide:

(1) fSCλ
µ-spaces;

(2) SCλ
µ-spaces;

(3) (λ, µ)-Polish spaces;

(4) (Lebesgue zero-dimensional) spherically complete (λ, µ)-Polish spaces;

(5) µ-Lindelöf-based spaces;

(6) compact-based spaces.

Moreover, items (3) and (4) can be replaced by any of their reformulations from
Theorems 2.3.1 and 2.3.2.

Using the same results, we can also show that standard λ-Borel spaces can equiv-
alently be defined in terms of Polish-like topologies generating them.

Theorem 2.4.13. Assume that 2<λ = λ has cofinality µ. A λ-Borel space (X,B) is
standard if and only if there is a topology τ ′ on X such that Borλ(X, τ ′) = B and
the following condition holds:
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(1) (X, τ ′) is a fSCλ
µ-space.

Moreover, condition (1) might be replaced by any of the following ones:

(2) (X, τ ′) is a µ-additive fSCλ
µ-space with a NS2

µ-basis of clopens (hence it is
also Lebesgue zero-dimensional (λ, µ)-Polish).

(3) (X, τ ′) is a µ-additive SCλ
µ-space with a NS2

µ-basis of clopens (hence it is also
Lebesgue zero-dimensional and spherically complete (λ, µ)-Polish).

Furthermore, if B = Borλ(X, τ) for some topology τ of weight ≤ λ, in condi-
tions (1) and (2) we can additionally require that τ ⊆ τ ′.

Remark 2.4.14. Since µ-additive SCλ
µ-space with a NSµ-basis of clopens and fSCλ

µ-
spaces form, respectively, the smallest and largest class of Polish-like spaces consid-
ered in this chapter, in Theorem 2.4.13 we can further replace those classes with any
of the other ones like µ-additive fSCλ

µ-spaces or µ-tree-based SCλ
µ-spaces, and so

on.

We conclude this section by solving two natural problems concerning standard
λ-Borel spaces. All results below again extend corresponding theorems in Chapter 1
(which deals only with regular cardinals) to arbitrary λ’s satisfying 2<λ = λ; we
refer to that paper for a more thorough discussion on their relevance, in particular in
relation to what happens in the classical case λ = ω.

First, we want to characterize those subspaces of a Polish-like space that inherit
a standard λ-Borel structure from it.

Theorem 2.4.15. Assume that 2<λ = λ has cofinality µ. Let (X,B) be a standard
λ-Borel space, and let A ⊆ X . Then (A,B � A) is a standard λ-Borel space if and
only if A ∈ B.

Proof. Since (X,B) is standard λ-Borel, by definition we can find someB ∈ Borλ( λµ )
which is λ-Borel isomorphic to (X,B).

If A ∈ B, then the subspace (A,B � A) is λ-Borel isomorphic to a set in
Borλ(B) ⊆ Borλ( λµ ), hence (A,B � A) is standard λ-Borel by definition.

Conversely, assume that (A,B � A) is standard λ-Borel. Let τX be a µ-additive
fSCλ

µ topology on X with B = Borλ(X, τX), whose existence is granted by Theo-
rem 2.4.13. Using the same theorem, together with the fact that the topology induced
by τX on A has weight ≤ λ and generates B � A, find a µ-additive fSCλ

µ topology
τA on A such that τX � A ⊆ τA and B � A = Borλ(A, τA).

Claim 2.4.15.1. There are families CX = (Bα)α<λ and CA = (Cα)α<λ of λ-Borel
subsets of, respectively, (X, τX) and (A, τA) which simultaneously satisfy (the ana-
logues of) items (a)–(c) from Lemma 2.4.5 (with respect to the corresponding ambi-
ent spaces), and moreover Cα = Bα ∩A for all α < λ.

Proof of the Claim. Let DA be a basis for (A, τA) of size ≤ λ, and let C0
A be the

family obtained by applying Lemma 2.4.5 to B′ = DA (with respect to the space
(A, τA)). Since C0

A ⊆ Borλ(A, τA) = Borλ(X, τ) � A, for every C ∈ C0
A we can find

BC ∈ Borλ(X, τ) such that C = BC ∩A: let C0
X = {BC | C ∈ C0

A}. Now let C1
X be

the family of λ-Borel sets given by Lemma 2.4.5 applied to B′ = C0
X (with respect

to the space (X, τX)), and let C1
A = {B ∩ A | B ∈ C1

X}. Recursively proceed in the
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same fashion for ω-many steps, that is: at even stages n > 0 let CnA be the family of
λ-Borel sets of (A, τA) given by Lemma 2.4.5 applied to B′ = Cn−1

A , and let CnX be
a family of λ-Borel sets in (X, τX) whose traces are exactly the elements of CnA; at
odd stages, apply Lemma 2.4.5 to Cn−1

X to get CnX , and let CnA = {B ∩A | B ∈ CnX}.
Finally, set CX =

⋃
n∈ω CnX and CA =

⋃
n∈ω CnA, and notice that CA = {B ∩A | B ∈

CX} by construction.
The family C0

A ⊆ CA contains the basis DA for τA, while C1
X ⊆ CX contains a

basis for τX because we applied Lemma 2.4.5. Moreover, for all even n ∈ ω the
family CnA is closed under complements and downward closed in (A, τA) because we
applied Lemma 2.4.5, and since if n > 0 then Cn−1

A ⊆ CnA by construction it follows
that CA is closed under complements and downward closed as well. Similarly, for
any odd n ∈ ω the family CnX is closed under complements and downward closed in
(X, τX), and since Cn−1

X ⊆ CnX also CX is closed under complements and downward
closed. Enumerate CX = (Bα)α<λ so that B2β+1 = X \ B2β for all β < λ, and set
Cα = Bα ∩A for all α < λ. By construction CA = (Cα)α<λ, and

C2β+1 = B2β+1 ∩A = (X \B2β) ∩A = A \ (B2β ∩A) = A \ C2β,

hence the families CX = (Bα)α<λ and CA = (Cα)α<λ are as required.

Let τ ′X be the topology on X constructed as in Lemma 2.4.7 starting from B =
CX and, similarly, let τ ′A be the topology on A constructed in the same way but
starting from B = CA. By Lemma 2.4.7 both (X, τ ′X) and (A, τ ′A) are Lebesgue zero-
dimensional (λ, µ)-Polish spaces, and Borλ(X, τ ′X) = Borλ(X, τX) Moreover, since
Cα = Bα∩A for all α < λ we have that τ ′A = τ ′X � A by construction, i.e. (A, τ ′A) is
a subspace of (X, τ ′X). Therefore by Corollary 2.3.11 we have that A is a Gµδ subset
of (X, τ ′X), and so in particular A ∈ Borλ(X, τ ′X) = Borλ(X, τX) = B.

Corollary 2.4.16. Assume that 2<λ = λ has cofinality µ. Let X,Y be standard λ-
Borel spaces. If A ⊆ X is λ-Borel and f : A → Y is a λ-Borel embedding, then
f(A) is λ-Borel in Y .

We finally come to the problem of understanding which topologies generate a
standard λ-Borel structure. Using the results of this chapter, it can be shown that this
class is larger than the collection of e.g. all (λ, µ)-Polish spaces (see also Chapter 1
for more details). On the other hand, if a space (X, τ) is homeomorphic to a λ-Borel
subset of λµ , then it clearly generates a standard λ-Borel structure by definition.
Theorems 2.2.1(2) and 2.3.6 together with Corollary 2.4.16 allow us to reverse the
implication, yielding the desired characterization in the case of µ-metrizable topolo-
gies.

Corollary 2.4.17. Assume that 2<λ = λ has cofinality µ. Let (X, τ) be a µ-
metrizable space of weight ≤ λ, and if µ = ω further assume that X be Lebesgue
zero-dimensional. Then (X,Borλ(X, τ)) is a standard λ-Borel space if and only if
(X, τ) is homeomorphic to a λ-Borel subset of λµ (or, equivalently, of 2λ ).

2.5 Examples and counterexamples

In this section, we analyze some spaces that share some but not all of the proper-
ties described in the chapter, and thus serve as a counterexample for many possible
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conjectures about how much the hypothesis of the theorems stated can be weakened.

Proposition 2.5.1. Suppose 2<λ = λ > cof(λ) = µ. There is a (regular Hausdorff)
µ-additive, (paracompact, Lebesgue zero-dimensional,) tree-based, compact-based
(and thus SCλ

µ) space X of weight λ such that every point x ∈ X has a local basis
of size µ, but X is not µ-uniformly based (thus, not µ-metrizable nor a NSµ-space).

Proof. Consider the set A = {s ∈ 2µ | s(α) = 0 for < µ many α}, and define the
DST tree T = {s ∈ 2<λ | s � µ /∈ A}, where s � µ = s if lh(s) ≤ µ. Let X = [T ]c
with the usual bounded topology: we claim X is as wanted.

First,X has weight 2<λ = λ, and by Fact 2.3.22X is a compact-based tree-based
(regular, Hausdorff) space. This implies that X is also Lebesgue zero-dimensional
(by Proposition 2.2.24, and this implies also paracompact) and an SCλ

µ-space (by
Corollary 2.3.35). Finally, X is µ-additive and every point x ∈ X has a local basis
of size µ because every branch of T has cofinality µ.

Finally, we show that I has a winning strategy in the µ-uniform local basis on
X , and hence X is not µ-metrizable (nor a NSµ-space) by Theorem 2.2.1(1). By
Lemma 2.2.35 we may assume that player II plays only open sets in the canonical
base BT = {Ns | s ∈ T}. Let r = 〈Nsγ | γ < δ〉 be a sequence of moves of
player II, and let tr =

⋃
γ<δ sγ , where we set

⋃
∅ = ∅. Define σ(r) = tr

a 0a 1(µ)

if lh(tr) < µ, and define σ(r) = x for a fixed point x ∈ X otherwise. First, notice
that σ(r) ∈ [T ]c = X for any r, so σ is well-defined. We claim this σ is a winning
strategy for I. Indeed, suppose that 〈xα,Nsα | α < µ〉 is a run of the µ-uniformly
based game on X played by I accordingly to σ. Then, an easy induction on r � α
shows that lh(sα) < µ for every α < µ, and furthermore

|{α < lh(sβ) | sβ(α) = 0}| < |{α < lh(sγ) | sγ(α) = 0}|

for every β < γ < µ. Hence, if s = sup{sα | α < µ}, then we have lh(s) = µ
and s /∈ A, thus s ∈ T and Ns =

⋂
α<µ Nsα 6= ∅ (as for example sa 1(λ) ∈ Ns).

Furthermore, for every x ∈ Ns and for every α < µ we have x ∈ Ns ( Nsα , so
particular {Nsα | α < µ} is not a local basis of any point.

Proposition 2.5.2. Suppose λ<µ = λ > cof(λ) = µ > ω, and there is γ < µ such
that λγ contains a subset which is not Gµδ in it.

Then there is a (regular, Hausdorff, paracompact, Lebesgue zero-dimensional,)
µ-uniformly based µ-tree-based compact-based (and thus SCλ

µ) space X of weight λ
that is not a NSµ-space.

Proof. Let γ and A ⊆ λγ be such that A is not Gµδ in λγ . Define

T = {s ∈ λ<µ | s � γ /∈ A},

where s � γ = s if lh(s) ≤ γ. Let X = [T ]c with the usual bounded topology. We
claim X is as wanted.

First,X has weight λ<µ = λ, and by Fact 2.3.22X is a compact-based tree-based
(regular, Hausdorff) space. This implies that X is also Lebesgue zero-dimensional
(by Proposition 2.2.24, and this implies also paracompact), that X is µ-uniformly
based (by Proposition 2.2.38), and that X is SCλ

µ (by Corollary 2.3.35).



CHAPTER 2. GDST AT SINGULAR CARDINALS 130

It remains to prove that X is not NSµ. Notice that X can be partitioned into two
sets X1 = X ∩ λγ = A and X2 = X ∩ λµ = [T ]. Suppose by contradiction that X
is also a NSµ-space, and let B =

⋃
α<µ Bα be a NSµ-basis with Bα locally <µ-small

for every α < µ. For every x ∈ X1 and α < µ, let s(α, x) ∈ λ<γ be given by
definition of NSµ-cover (and by the fact that {NX

s | s ∈ T} is a basis for X) such
that

|{B ∈ Bα | B ∩NX
s(α,x) 6= ∅}| < µ.

Let Y = λγ , and define also Uα =
⋃
x∈A NY

s(α,x). Then, every Uα is an open set
in λγ , and A ⊆ Uα. Since A is not Gµδ in λγ , there is s ∈

⋂
α<µ Uα \ A. Since

s /∈ A, in particular we have that N
λµ

s = NX
s ⊆ X is non-empty. For every α < µ,

let xα ∈ X1 be such that s ∈ NY
s(α,xα), i.e. s(α, xα) ⊆ s. Notice that the family

B′ = {B ∩NX
s | B ∈ B, B ∩NX

s 6= ∅} is a basis for the subspace NX
s ⊆ X , and

furthermore {B ∈ Bα | B ∩NX
s 6= ∅} ⊆ {B ∈ Bα | B ∩NX

s(α,xα) 6= ∅} for every
α < µ. Hence, we have

w(NX
s ) ≤ |B′| ≤ |

⋃
α<µ

{B ∈ Bα | B ∩NX
s(α,xα) 6= ∅}| ≤

∑
α<µ

µ = µ.

However, the subspace NX
s is homeomorphic to λµ , and in particular it has weight

λ<µ = λ > µ.

Corollary 2.5.3. Suppose λ<µ = λ > cof(λ) = µ > ω, and there is γ < µ such
that λγ contains a subset which is not Gµδ in it.

Then there is a (regular, Hausdorff, paracompact, Lebesgue zero-dimensional,)
µ-tree-based compact-based (and thus SCλ

µ) space X of weight λ where player II
has a winning strategy but not a winning tactic in the µ-uniform local basis game.

Proposition 2.5.4. Suppose µ > ω and 2<µ ≤ λ. There is a µ-tree-based space
(X, τ) of size and weight 2<µ such that (X, τ) is not fSCλ

µ, but (X, τ ′) is fSCλ
µ, for

τ ′ be the smallest µ-additive topology generated by τ .
In particular, if 2<µ = µ, then (X, τ) is also a NSµ-space.

Proof. Let f, g : 2<µ → µ be two functions defined respectively by

f(s) = ot({α ∈ lh(s) | s(α) = 0}), g(s) = ot({α ∈ lh(s) | s(α) = 1})

for every s ∈ 2<µ .
Let T be the tree of those s ∈ 2<µ such that f(s � β) ≤ g(s � β) for every limit

ordinal β < lh(s). Then T is trivial closed under initial segment (and thus it is a
DST tree). Define X = [T ]c \ [T ], with τ being the bounded topology inherited from
[T ]c. First, X is µ-tree-based, by Fact 2.2.26, and it has weight and size 2<µ since
X ⊆ 2<µ .

We claim that player I has a winning strategy in the strong fair µ-Choquet game
on X . Without loss of generality, by Remark 1.1.4 we may assume player II plays
only open sets in the canonical basis {Ns | s ∈ T}. Let 〈Vα | α < γ〉 be the
sequence of moves of player II of a partial run of the game up to round γ < µ. If⋂
α<γ Vα has size ≤ 1, then player I has only one forced move to do. Otherwise,

we have
⋂
α<γ Vα = Ns for some s ∈ T , by Lemma 2.2.25 (and since T is closed
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under initial segment). Let α be the minimum ordinal such that sa 1(ω) a 0(α) /∈ T .
Define σ(Ns) = (Nsa 1(ω) , s

a 1(ω) a 0(α)). Then, given a partial run of the game
〈(Nsα , xα), Vα | α < γ〉, we have f(sα) ≤ g(sα) for every α < γ by construction,
and so f(s) ≤ g(s) as well for s = (

⋃
α<γ sα). Then,

⋂
α<γ Nsα is empty if and

only if γ = µ, and thus σ is winning for I. However, player II has a winning strategy
in (X, τ ′), since this space is discrete.



Chapter 3

Examples and classification

In this section, we are going to study some examples of fSCκ or SCκ-spaces and
show that these classes are rich, as they contain as many distinct spaces as possible
up to homeomorphism.

For sake of simplicity, we work with a regular uncountable cardinal κ satisfying
2<κ = κ. However, it is not difficult to see that many constructions can be adapted
to the singular case as well.

3.1 LOTS, GO-spaces and their relation with the Choquet
games

One of the greatest sources of examples of non κ-additive fSCκ or SCκ-spaces
comes from linearly ordered sets. First, we recall some basic facts about these spaces
that we are going to use throughout all other sections, and we prove some more that
show their relationship with the Choquet games. We refer to [120] for notation and
for a good introduction to the topic.

Given a linear order (L, <), we usually denote with 0 the minimum and with 1
the maximum of L, if L has any of the two. An extreme point or endpoint of L is
a point that is either the minimum or the maximum. An open interval of L is a set
of the form (s, t) = {x ∈ L | s < x < t} for some a, b ∈ L ∪ {−∞,+∞}, where
+∞ (resp.,−∞) is an element outside L that is assumed greater (resp., smaller) than
any element of L. Similarly we define intervals of other forms (a, b] = (a, b) ∪ {b},
and [a, b) = (a, b) ∪ {a}, and [a, b] = (a, b) ∪ {a, b}. The order topology τL< on L
is the smallest topology generated by the open intervals of the order. A topological
space with a linear order (L, <L, τ) is called a linearly ordered topological space,
or LOTS if the topology coincide with the order topology τ = τL<. A topological
space with a linear order (X,<X , τ) is called a GO-space or generalized ordered
space1 if there is a LOTS (L, <L, τL) such that X is both a subspace and a suborder
of L. Given two GO-spaces (X,<X , τX) and (Y,<Y , τY ), we say that X and Y are
isomorphic if there is a function f : X → Y that is both an isomorphism of orders
and a homeomorphism of topological spaces. When dealing with more ordered sets

1An interval that is open in the topology of a GO-space may not be an open interval of the form
(a, b): for this reason, we try to stick to the term τ -open interval or interval open in X to denote
intervals that are open in the topology of X , and leave the term open interval for sets of the form (a, b).

132
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L1 ⊆ L2 at the same time, we use the notation (x, y)Li to specify in which set an
interval is calculated (and similarly for other types of intervals). Given a linear order
(L, <), a subset A ⊆ L is called convex if and only if [a, b] ⊆ A for every a, b ∈ A.
Every convex set A can be written as union of intervals A =

⋃
i<α,j<β[ai, bj ] for

a decreasing sequence (ai)i∈α and an increasing sequence (bi)i∈β , and A is open in
the order topology if and only if we may choose the sequences (ai)i∈α and (bi)i∈β
so that A =

⋃
i<α,j<β(ai, bj). Notice that any convex GO-subspace X of a LOTS

(L, <, τ) is again a LOTS with topology and order inherited from L.
GO-spaces can be characterized in terms of the relationship between the order

and the topology.

Proposition 3.1.1 ([120, Proposition VIII.A]). Let (X,<, τ) be a linear order with
a topology. Then X is a GO-space if and only if:

• τ refines the order topology τX< of (X,<).

• τ has a basis made of convex subsets of (X,<).

Notice that if (X,<, τ) is a GO-space and A is τ -open convex set, then for every
x ∈ A we may find a τ -open interval I of one of the forms [x, x], [x, b), (a, x] or
(a, b) such that x ∈ I ⊆ A. Indeed, if A = {x} we are done. Otherwise, if x is
the minimum of A and there is b ∈ A with b > x, then [x, b) = A ∩ (−∞, b) is
τ -open, since τ refines the order topology and (−∞, b) is open in the order topology.
Furthermore, x ∈ [x, b) ⊆ [x, b] ⊆ A by definition of convex set. Similarly if x is
the maximum of A. And if x is neither the maximum nor the minimum of A, then it
means that there are a, b ∈ A such that a < x < b, and thus x ∈ (a, b) ⊆ [a, b] ⊆ A.

Thus, we can always work with intervals instead of convex sets, if needed.

Corollary 3.1.2. A topological space with a linear order (X,<, τ) is a GO-space
if and only if τ refines the order topology and it admits a basis made of intervals of
(X,<).

Notice that the intersection of convex sets is again a convex set. Thus, we get the
following.

Corollary 3.1.3. Let (X,<, τ) be a GO-space, and let τκ be smallest κ-additive
topology refining τ . Then, (X,<, τκ) is again a GO-space.

For a topological space X , the density d(X) (i.e. the smallest size of a dense
subspace) is always less than or equal to the weight w(X) (i.e. the smallest size of
a basis for the topology). In general it is possible that d(X) < w(X). For LOTS,
however, these two cardinals are always equal.

Remark 3.1.4. Let (L, <) be a complete linear order. Then the order topology has
weight κ if and only if L contains a dense subset of size κ.

The same is not true for GO-spaces, as, for example, the Sorgenfrey line has
density ω but weight continuum c.

Given a linear order (L, <L), a cut is a convex partition (C,D) of L. We call a
cut (C,D): a jump or a trivial cut if both C has a maximum and D has a minimum;
left-cut, if C has no maximum; right-cut, if D has no minimum. A cut (C,D) is
called a gap if it is both a left and right cut. A cut (or gap) (C,D) is called an end cut
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(or end gap) if C = ∅ or D = ∅. Notice that if (L, <L, τ
L
<) is furthermore a LOTS,

then a non-trivial cut (C,D) is a gap if and only if {C,D} is a clopen partition in
the order topology. For a GO-space (X,<X , τ) instead, we may have convex clopen
partitions that are not gaps. Since these partitions play a key role in many topological
properties, we define a further notion. A (right or left) pseudo-gap in a GO-space
(X,<X , τ) is a cut where C has a maximum if and only if D has no minimum and
where additionally C and D are both clopen and non-empty in X . In other words, a
pseudo-gap is a clopen right or left cut that is not a gap. Notice that while the concept
of gap depends only on the order, the concept of pseudo-gap depends strongly from
the topology. Also, LOTS have no pseudo-gaps.

Given a subset of a linear order C ⊆ (L, <), the downward closure of C is the
set ↓C = {x ∈ L | ∃c ∈ C[x ≤ c]}. Similarly, the upward closure of C is the set
↑C = {x ∈ L | ∃c ∈ C[x ≥ c]}. The cofinality of L is the smallest size of a subset
C ⊆ L such that ↓C = L, and the coinitiality of L is the smallest size of a subset
C ⊆ L such that ↑C = L. Notice that we may define the cofinality also on any subset
X ⊆ L using the order inherited from L, and the cofinality of X is always either 0
if X is empty, 1 if X has a maximum or an infinite regular cardinal otherwise. The
same holds for the coinitiality2.

A (µ, ν)-cut is a cut (C,D) such that the cofinality of (C,<) is µ and the coini-
tiality of (D,<) is ν. We call (µ, ν) the type of the cut. We define (µ, ν)-gaps and
(µ, ν)-pseudo-gaps as (µ, ν)-cuts which are, respectively, also gaps or pseudo-gaps.
Notice then that a (µ, ν)-cut is an end gap if and only if one between µ and ν is 0
and the other is an infinite regular cardinal. It is a gap if and only if µ and ν are both
infinite regular cardinals; it is a pseudo-gap (and not a gap) if and only if C and D
are open and one between µ and ν is 1 and the other is an infinite regular cardinal.

With abuse of notation, given two subsets C,D ⊆ L and x ∈ L, we write C < D
to denote c < d for every c ∈ C and d ∈ D, and similarly we use the notationsC < x
and x < C. Notice that if C, D are two subsets of L such that C < D and there
is no x ∈ L such that C < x < D, then (C,D) uniquely identifies a cut (↓C, ↑D).
In this case, we say that (C,D) form a cut (or a gap/pseudo-gap, if (↓C, ↑D) is a
gap/pseudo-gap). With abuse of notation, we often confuse a gap (C,D) with two
sets that generate it.

Given a linear order (L, <), a subset C ⊆ L is called upward bounded if there
is x ∈ L such that C ≤ x. It is called downward bounded if there is x ∈ L such that
C ≥ x. The order L is called boundedly complete if every upward bounded subset
has a supremum and every downward bounded subset has an infimum. Equivalently,
L is boundedly complete if and only if it has no gaps other than end gaps, or if
and only if every convex set is an interval. L is called complete3 if it is boundedly
complete and it has both maximum and minimum. The order (L, <) is called (order)
dense if between any two points there is a third distinct point. We say that L′ ⊆ L
is a dense suborder of L if for every a, b ∈ L with a < b, either a, b ∈ L′ or there
is c ∈ L′ such that a < c < b. If L is an infinite linear order, this implies that L′ is
dense in the order topology of L. If L furthermore is order dense, then the converse

2This differs from part of the literature where, for example, the cofinality and coinitiality of linear
orders with endpoints are set to∞.

3In literature often the term complete linear order is used to refer to what we call here boundedly
complete linear order. For this reason, in order to avoid confusion in this chapter, we always try to avoid
using the term complete alone and write instead complete with endpoints as a reminder.
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is true as well.

Remark 3.1.5 (Completion through Dedekind cuts). For any linear order (L, <) there
is a complete order with endpoints (L̂, <) that contains L as a dense suborder.
This is given by the set of all trivial and left cuts of L, ordered by the relation
(A,B) ≤L (C,D) if and only if A ⊆ C, identifying each x ∈ L with the cut
((−∞, x), [x,+∞)).

Lemma 3.1.6 ([120, VIII.C]). Every open set U of a LOTS (L, <, τ) has a convex
open partition.

Proof. Let U be open. Define an equivalence relation ∼ on U by setting x ∼ y if
and only if there is an open interval I ⊆ U such that x, y ∈ I . Then, it is immediate
to verify that ∼ is an equivalence relation and that the equivalence classes [x]∼ are
convex and open for every x ∈ U . Thus, {[x]∼ | x ∈ U} is as wanted.

Remark 3.1.7. Let (L, <, τ) be a linearly ordered topological space. An interval (s, t)
is clopen if and only if s has a successor and t has a predecessor. Let 〈si | i < α〉 and
〈ti | i < β〉 be respectively a strictly increasing and a strictly decreasing family of
distinct elements of L, for α, β limit ordinals. The open set U =

⋃
i<α,j<β(si, ti) is

clopen if and only if {si | i < α} has no infimum and {ti | i < β} has no supremum.
A similar argument can be used for intervals and the union of intervals of other forms.

The previous remark has the following corollaries. Recall that a topological space
is called connected if it contains no proper clopen subset.

Proposition 3.1.8. Let (L, <, τ) be a linearly order space. Then, the order topology
is connected if and only if the order is boundedly complete and dense.

Proof. First, if L has a (non-end) gap or two consecutive points, then it contains a
proper clopen set by Remark 3.1.7.

Conversely, assume there is a clopen set U . Then, by Lemma 3.1.6 we may find
a convex clopen partition P of X refining {U,X \ U}, and then the result follows
from Remark 3.1.7.

Notice that GO-topologies instead are never connected.

Remark 3.1.9. Given a linear order (X,<), any GO-topology other than the order
topology on X is not connected.

In fact, any interval of the form (−∞, b], [a,+∞) or [a, b] that is open in a GO-
topology is clopen, and by Corollary 3.1.2 any GO-topology either coincide with the
order topology or contains an interval of one of the form above.

Recall that space is said zero-dimensional if it has a basis of clopen sets.

Corollary 3.1.10. Let (L, <) be a linear order. Then the order topology is not zero-
dimensional if and only if there is an open interval I such that (I,<) is a dense
boundedly complete linear order with at least two points.

Proof. (⇐) Let I = (a, b) be an open interval such that (I,<) is dense and bound-
edly complete. Then it is connected by Proposition 3.1.8, and for every point x ∈
(a, b) there is no clopen set U such that x ∈ U ( (a, b).
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(⇒) Assume every interval is not dense or not boundedly complete. Consider
x ∈ (−∞, t), we want to find U ⊆ (−∞, t) clopen such that x ∈ U . First, if
(x, t) = ∅ then t is a successor of x and thus (−∞, x] is clopen. Otherwise, the
interval (x, t) is non-empty, and thus it is either not dense or not boundedly complete.
In the first case, if y < z are two consecutive points, then we are done since (−∞, z)
would be clopen. Suppose conversely (x, t) is dense but not boundedly complete, and
we may find 〈yα | α < γ〉 ⊆ (x, t) bounded in (x, t) that has no supremum. Then
U =

⋃
α<γ(−∞, yα) is clopen and U ⊆ (−∞, t) as required. The same argument

can be used for intervals of the form (s,+∞), and so also for intervals of the form
(s, t) = (−∞, t) ∩ (s,+∞).

The compactness properties of a GO-space can be described in terms of existence
or non-existence of certain types of gaps.

Proposition 3.1.11 ([120, Theorem VIII.2]). A GO-space (L, <, τ) is compact if and
only if it has no gaps nor pseudo-gaps.

In particular, for LOTS it is enough to check the completeness of the order (since
they do not contains pseudo-gaps).

Corollary 3.1.12. A LOTS (L, <, τ) is compact if and only if (L, <) is a complete
linear order (with endpoints).

[120, Theorem VIII.2] can be extended to κ-Lindelöf spaces (this may be folk-
lore, but we give an explicit proof for the reader’s convenience).

Proposition 3.1.13. Let κ be a regular cardinal. A GO-space (X,<, τ) is κ-Lindelöf
if and only if it has no (µ, ν)-gaps nor (µ, ν)-pseudo-gaps with max(µ, ν) ≥ κ, nor
clopen convex partition of size ≥ κ.

Proof. First, it is clear that if (C,D) is a convex clopen partition and C contains a
cofinal strictly increasing sequence 〈yi | i < µ〉 of length µ ≥ κ, then the family
{D} ∪ {(−∞, yi) | i < µ} is a cover of size µ without smaller refinement, and thus
X is not κ-Lindelöf. The same argument works for the coinitiality of D. Finally, it is
clear that if X is κ-Lindelöf then it can not contain a clopen convex partition of size
≥ κ.

Conversely, suppose X has no gaps nor pseugo-gaps of type (µ, ν) or (ν, µ) with
κ ≤ µ <∞ and no clopen convex partition of size ≥ κ.

Let U be an open cover of X . Define an equivalence relation on X by saying that
x ∼ y if there is a family U ′ of convex open sets refining U and of size |U ′| < κ such
that

⋃
U ′ is a convex open neighborhood of both x and y. Notice that∼ is symmetric,

and it is reflexive by Lemma 3.1.6, and it is transitive since if U ′ witness x ∼ y and
U ′′ witness y ∼ z, then U ′ ∪ U ′′ witness x ∼ z. Hence, ∼ is an equivalence relation.
Furthermore, if U ′ witness x ∼ y, then it witness also that x ∼ z for any z ∈

⋃
U ′:

thus each equivalence class is convex and open. Then, P = {[x]∼ | x ∈ X} is
a clopen convex partition of X . By assumption, P has size |P| < κ. Also, every
convex set C ∈ P is clopen, and thus ↑ C and ↓ C are clopen as well. In particular,
(X \ (↑ C), ↑ C) and (↓ C,X \ (↓ C)) are gaps or pseudo-gaps, which means that
C must have coinitiality and cofinality < κ (by assumption on the types of gap or
pseudo-gap ofX). For every C ∈ P , fix a decreasing sequence 〈yi | i < α〉 of length
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α < κ coinitial in C and an increasing sequence 〈zi | i < β〉 of length β < κ cofinal
in C. Choose a point p ∈ C and letAi witness that yi ∼ p for every i < α and letA′i
witness that zi ∼ p for every i < β. Then AC =

⋃
i<αAi ∪

⋃
i<β A′i is a refinement

of U of size < κ that covers C. Thus, A =
⋃
C∈P AC is a refinement of U of size

< κ that covers X , as wanted.

Notice that, unlike the countable case, here we need to require explicitly that X
contains no clopen convex partition of size ≥ κ. This is due mostly to one fact: ω
is a weakly compact cardinal, while κ, in general, is not. When κ is not weakly
compact, in fact, we can not remove this additional requirement, as for examples the
κ-Cantor set 2κ with lexicographic order and bounded topology is a GO-space that
has no gaps nor pseudo-gaps of type (µ, ν) or (ν, µ) with κ ≤ µ < ∞, and yet it is
not κ-Lindelöf (see Fact 2.1.4). The same remains true if we restrict the attention to
LOTS, as ( 2κ , τb) is homeomorphic to ( Zκ , τb), which together with lexicographic
order is a LOTS (Proposition 3.2.2).

However, for weakly compact cardinals we can reestablish the previous stronger
version of the theorem.

Proposition 3.1.14. Let κ be weakly compact. A GO-space (X,<, τ) is κ-Lindelöf
if and only if it has no (µ, ν)-gaps nor (µ, ν)-pseudo-gaps with max(µ, ν) ≥ κ.

Proof. By Proposition 3.1.13, it is enough to show that if X has no gaps nor pseudo-
gaps of type (µ, ν) or (ν, µ) with κ ≥ µ, than it has no clopen convex partition of
size ≥ κ either.

Suppose not, and let P be a convex clopen partition of X of size |P| = µ ≥ κ.
Let P = {Pi | i < µ} be an enumeration of P .

Notice that for every P,Q ∈ P , since P and Q are convex and disjoint, then
either P < Q (i.e. p < q for every p ∈ P and q ∈ Q) or Q < P . Color each set
{i, j} ∈ [k]2 by red when Pi < Pj holds if and only if i < j holds, otherwise color
{i, j} by blue. Since κ is weakly compact, there is a set H ⊆ κ of size |H| = κ such
that [H]2 is monochromatic. Then, picking pi ∈ Pi for every i ∈ H we get an infinite
increasing or decreasing sequence of length κ (suppose increasing, and the other case
is similar). Let C =

⋃
i∈H(−∞, pi): then C =

⋃
{P ∈ P | P < pi for some i ∈

H} is clopen, and thus (C,D) is a gap or a pseudo-gap with type (µ, ν) with µ ≥ κ,
contradiction.

We now study the relation between strong Choquet games and GO-spaces. We
start by proving a very general result that allows us to obtain some interesting corol-
laries.

Theorem 3.1.15. Let (X,<, τ) be a GO-space of weight≤ κ. ThenX is SCκ (resp.,
fSCκ) if and only if player II has a strategy winning every match of the strong (resp.,
fair) κ-Choquet game on (X, τ) where player I plays only open intervals4.

Proof. We prove the statement here for the strong κ-Choquet game. The proof for
strong fair κ-Choquet games follows similarly.

4Notice that we are not allowing to play the intersection of an open interval with all previous moves,
but we allow to play only open intervals that are already fully contained in the intersection of all previous
moves. Notice also that II is allowed to play any τ -open set instead.
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First, it is clear that if II has a winning strategy σ that wins every match of the
strong κ-Choquet game, then this strategy wins in particular those matches where
player I use only open intervals (recall that open intervals are τ -open sets by Propo-
sition 3.1.1).

Conversely, suppose II has a strategy σ in the strong κ-Choquet game that wins
the matches where player I use only open intervals.

We want to define a winning strategy σ̃ for player II that is suitable for every
match of the strong κ-Choquet game on (X,<, τ ′).

First, by Corollary 3.1.2 (and preceding paragraph), for every convex set U and
for every x ∈ U we may find a interval Ĩ such that x ∈ Ĩ ⊆ U , and furthermore

1. Ĩ = [x, x] if and only if U = {x};

2. Ĩ = [x, b) if and only if x is the minimum of U ;

3. Ĩ = (a, x] if and only if x is the minimum of U ;

4. otherwise Ĩ = (a, b) is an open interval.

Given a convex set U , a point x ∈ U , and an open interval I = (a, b), we call I an
approximation of (U, x) if Ĩ = I ∪ {x} is defined as above (and x ∈ Ĩ ⊆ U ).

Notice in particular that an interval I approximate (I ∪ {x}, x) if and only if
x ∈ cl(I).

Notice that for every convex Y ⊆ X , for every convex U ⊆ Y that is τ -open in
Y , for every x ∈ U and for every approximation I of (U, x), then the set {x} ∪ I
is τ -open in Y . Indeed, if I is empty we are done since in this case U = {x} by
definition, and if I = (a, b) is an open interval we are done since every GO-topology
refines the order topology. Otherwise, I is the intersection of U with an open interval
(−∞, b) or (a,+∞), and thus τ -open once again (in Y ).

Now (X,<, τ ′) has a basis made of convex sets, by Proposition 3.1.1. Since the
intersection of convex sets is again convex, by Remark 1.1.4 we may assume that
player I always plays only convex sets. Then, by previous argument we may assume
that player I plays only couples of the form (I ∪ {x}, x) for I an open interval with
x ∈ cl(I): if not, replace the move (U, x) of player I with (I ∪ {x}, x) for I an
approximation of (U, x).

Let r = 〈Iα ∪{xα}, xα | α ≤ δ〉 be a sequence of moves played by player I until
a certain round δ, where Iα is an open interval and xα ∈ cl(Iα). We say that r is:

• good if xδ ∈ Iδ.

• ok if xδ /∈ Iδ and there is β < δ such that xβ /∈ Iβ and xβ = xγ 6= xδ for
every γ with β ≤ γ < δ.

• bad otherwise.

Define also Gr, Or and Br to be, respectively, the sets of all α ≤ δ for which
r � (α+ 1) is, respectively, good, ok or bad.

If r is good, define σ̃(r) = σ(r � Gr), where r � Gr = 〈Iα, xα | α ∈ Gr〉.
If r is bad, we let II just copy the last move of I, i.e. we set σ̃(r) = Iδ ∪ {xδ}.
If finally r is ok, we associate to r a sequence r′ with only open intervals as sets.

Let Ar = {α ∈ Or ∪ Br | xβ 6= xα for cofinally many β < α}. (Recall that we
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say that {β} is cofinal in α = β + 1.) Let γ = ot(Ar) and let Ar = {α(ε)}ε<γ
be an increasing enumeration of Ar. Notice that by construction γ = γ′ + 2 and
α(γ′ + 1) = δ since r is ok. Define

r′ = 〈Iα(ε), xα(ε+1) | ε ≤ γ′〉.

Notice that if r ⊆ s are two partial matches that are ok, then the associated sequences
r′, s′ also satisfies r′ ⊆ s′. Also, r′ is a legal sequence of moves of player I using
only open intervals, since if xα(ε+1) 6= xα(ε) and xα(ε+1) ∈ {xα(ε)} ∪ Iα(ε), then
xα(ε+1) ∈ Iα(ε). Define σ̃(r) = (Iδ ∪ {xδ}) ∩ σ(r′): it is a legal answer, since
xδ = xα(γ′+1) ∈ σ(r′).

Now let r = 〈Iα, xα, Vα | α < δ〉 be a match of the strong κ-Choquet game up
to a limit round δ ≤ κ played by II accordingly to σ̃. Assume that

⋂
α<β Iα 6= ∅ for

every β < δ. We claim
⋂
α<δ Iα 6= ∅.

First, if there are cofinally many rounds α such that r � (α+ 1) is good, then we
are done since σ̃ = σ on those rounds, and σ is winning for II.

Second, suppose there is α < δ such that xβ = xα for every α ≤ β < δ. we are
done since xα ∈

⋂
γ<δ Iγ .

Hence, suppose we are not in those cases: then there are cofinally many α such
that r � (α + 1) is ok. Indeed, there can not be cofianlly many α < δ such that
r � (α + 1) is good (as otherwise we would be in the first case); and if there is
α < δ such that r � (β + 1) is bad for every for every α ≤ β < δ, this would imply
xβ = xα for every α ≤ β < δ, and we should be in the second case. Define as before
Ar = {α ∈ Or ∪Br | xβ 6= xα for cofinally many β < α}. Let also γ = ot(A) and
let A = {α(ε)}ε<γ be an increasing enumeration of A. Notice that γ is limit, since
we assumed that there is no α < δ such that xβ = xα for every α ≤ β < δ. Also,
given ε < γ we have α(ε) ∈ Br if and only if ε is limit. Thus, for every ε < γ we
have that r � (α(ε+1)+1) is ok and we may define r′ε+1 = 〈Iα(ε′), xα(ε′+1) | ε′ ≤ ε〉
as in the definition of the strategy σ̃ on ok sequences.

Then, by construction we have that Iα(ε+2) ∪ {xα(ε+2)} ⊆ σ(r′ε+1) ⊆ Iα(ε) for
every ε < γ, and r′ =

⋃
ε<γ r

′
ε+1 is a legal sequence of moves in the strong κ-

Choquet game where player I plays only open intervals and II replies accordingly to
σ. Therefore,

⋂
α<δ Iα =

⋂
ε<γ σ(r′ε+1) 6= ∅ since σ is winning.

An interesting consequence is that in order to check whether a GO-space is strong
(fair) κ-Choquet it is enough to check whether any weaker GO-topology is strong
(fair) κ-Choquet. In particular this applies to the order topology, which is coarser
than any GO-topology (Proposition 3.1.1).

Corollary 3.1.16. Given a linear order (L, <), if a GO-topology τ is fSCκ (resp.,
SCκ), then any other GO-topology of weight ≤ κ refining τ is fSCκ (resp., SCκ).

In particular, if the order topology is fSCκ (resp., SCκ), then any GO-topology
of weight ≤ κ is fSCκ (resp., SCκ).

We can not expect to obtain the reverse implication in general, as for example
for every linear order (L, <) (of size ≤ κ), the discrete topology is a GO-topology
that makes the space SCκ, but there are linear orders (like Q) for which the order
topology is not SCκ.
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In Remark 1.1.4, we said that in the Choquet games we can always assume that
the two players play only basic open sets intersected with all previous moves. Theo-
rem 3.1.15 implies that for linearly ordered spaces and GO-spaces we may even ask
that the sets played are not intersected with previous moves.

Corollary 3.1.17. Let (X,<, τ) be a GO-space of weight ≤ κ with a basis B. Then
X is fSCκ (resp., SCκ) if and only if player II has a strategy in the strong (fair)
κ-Choquet game where she plays only sets in B and that is winning for every match
where I plays only sets in B.

Theorem 3.1.15 gives a nice characterization of Choquet games in term of gaps.
Let us define the following game.

Definition 3.1.18. Given a non-empty set Ωκ ⊆ κ+, the Ωκ-gap game on a linear
order (L, <) is the game played by two players

I x0, y0, z0 x1, y1, z1 . . . xα, yα, zα . . .

II x′0, z
′
0 x′0, z

′
0 . . . x′α, z

′
α . . .

where at each round α < κ, player I chooses points xα, yα, zα in L that satisfies
x′ε ≤ xα < yα < zα ≤ z′ε for every ε < α, and then player II chooses x′α, z

′
α ∈ L

such that xα ≤ x′α < yα < z′α ≤ zα. The game stops after κ-many rounds or when
it is not possible anymore to play accordingly to the rules. Then, player I wins if the
two sequences obtained 〈(xα, zα) | α < δ〉 form a gap of type (δ, δ) for some δ ∈ Ωκ

(and player II otherwise).

Proposition 3.1.19. A LOTS (L, <, τ) is fSCκ (resp., SCκ) if and only if player II
has a winning strategy in the Ωκ-gap game for Ωκ = {κ} (resp., Ωκ = κ+) and L
has weight ≤ κ.

Proof. Every open interval (s, t) (and every point x ∈ (s, t)) identify a couple s < t
(resp., a triple s < x < t) that is a legal move of player II (resp., I) in the Ωκ-gap
game, and vice-versa. Then, the result follows from Corollary 3.1.17.

Combining this result and Corollary 3.1.16, we get the following.

Corollary 3.1.20. Let (X,<, τ) be a GO-space of weight ≤ κ. If (X,<) has no
(κ, κ)-gaps, then (X,<, τ) is strong fair κ-Choquet. If furthermore (X,<) has no
(δ, δ)-gap for any δ < κ, then (X,<, τ) is also strong κ-Choquet.

In particular, every boundedly complete linear order with any GO-topology is an
SCκ-space.

LOTS have nice separation properties.
First, every GO-space is normal (and even collectionwise normal, see [120, The-

orem VIII.1]), and thus in particular Hausdorff and regular.
However, paracompactness of GO-spaces is a more difficult subject, since not

every LOTS is paracompact (see e.g. ω1 with order topology). The following is a
characterization of the GO-spaces which have this property.

Proposition 3.1.21 ([120, Theorem VIII.4]). A GO-space (X,<, τ) is paracompact
if and only if every gap or pseudo-gap (C,D) has a closed discrete subspace C ′ ⊆ C
cofinal in C and a closed discrete subspace D′ ⊆ D cofinal in D.
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3.2 Lexicographic topologies and their properties

In this section, we study a particular class of LOTS that is closely related to the
κ-Cantor and κ-Baire spaces with bounded topology.

Given a linear order (L, <) and given a pair of sequences s, t ∈ Lκ of length κ,
define d(x, y) = min{α < κ | x(α) 6= y(α)}. The lexicographic order on Lκ is the
linear order defined by x <lex y if x(d(x, y)) <L y(d(x, y)). We call lexicographic
topology the order topology induced by the lexicographic order.

Remark 3.2.1. The bounded topology on Lκ is finer than the smallest κ-additive
topology refining the lexicographic topology on Lκ .

Indeed, the bounded topology is κ-additive, and for every x, y, z ∈ Lκ such that
y ∈ (x, z), if α = max(d(x, y), d(y, z)), then y ∈ Ny�(α+1) ⊆ (x, z).

In particular, if the bounded topology on Lκ is κ-perfect, then also the lexico-
graphic topology on Lκ is.

Depending on the order, it may happen both that the bounded topology is exactly
the smallest κ-additive topology refining the lexicographic topology on Lκ , or that
it is strictly finer. Similarly to gaps, we say that a point l ∈ L has type (µ, ν) if
(−∞, l) has cofinality µ and (l,+∞) has coinitiality ν. A (µ, ν)-point is a point of
type (µ, ν).

Proposition 3.2.2. Let (L, <) be a linear order with at least two points. Then:

1. Suppose L has no maximum nor minimum. Then the lexicographic topology on
( Lκ , <lex) is κ-additive and coincide with the bounded topology.

2. Suppose L is dense, and if L has a minimum, then it has no (µ, ν)-point with
µ ≥ κ, and if L has a maximum, then it has no (µ, ν)-point with ν ≥ κ. Then,
the bounded topology on ( Lκ , <lex) is the smallest κ-additive topology refining
the lexicographic one.

3. Suppose L is not dense, and it has coinitiality and cofinality< κ. Suppose also
that if L has a minimum, then it has no (µ, ν)-point with µ ≥ κ, and if L has a
maximum, then it has no (µ, ν)-point with ν ≥ κ. Then, the bounded topology
on ( Lκ , <lex) is the smallest κ-additive topology refining the lexicographic
one.

4. Otherwise, the bounded topology on ( Lκ , <lex) is strictly finer than the small-
est κ-additive topology refining the lexicographic one.

Proof. Recall that we denote with 0 and 1 respectively the minimum and maximum
of L, if L has any of the two.

Suppose first that L has no maximum nor minimum. Then, for every s ∈ L<κ

and x ∈ Ns there are points y, z ∈ Ns such that x ∈ (y, z)lex ⊆ Ns, thus Ns is
open in the lexicographic topology. Since the lexicographic topology is coarser than
the bounded topology, then 1 follows.

Next, we want to prove 2 and 3 together, showing that if either 2 or 3 holds then
for every s ∈ L<κ and x ∈ Ns we may find a set U such that x ∈ U ⊆ Ns and U is
open in the smallest κ-additive topology refining the lexicographic one.

If x 6= sa 0κ and x 6= sa 1κ, then as before we may find y, z ∈ Ns such that
x ∈ (y, z)lex ⊆ Ns and we are done.



CHAPTER 3. EXAMPLES AND CLASSIFICATION 142

Thus, assume L has a minimum 0 and x = sa 0κ. The case where L has a
maximum and x = sa 1κ follows symmetrically.

Let z ∈ Ns be such that x <lex z and let α be the smallest ordinal such that
x(β) = 0 for every β ≥ α.

If α is limit, then there is a cofinal set I ⊆ α such that x(β) 6= 0 for every β ∈ I .
Then, we have x ∈

⋂
β∈I(x � β

a 0(κ), z)lex ⊆ Ns, as wanted.
If instead α = β + 1, let l = x(β) > 0. If either 2 or 3 holds, then (−∞, l)

has cofinality < κ. If there is an infinite cofinal sequence (pi)i<γ of size γ < κ

in (−∞, l)L, then x ∈
⋂
i<γ(x � β a p(κ)

i , z)lex ⊆ Ns as wanted. This is the only
possible case if L is dense, thus this proves 2.

Otherwise, l must have a predecessor l′. If 3 holds, then L has cofinality < κ and
we may find a set D ⊆ L cofinal in L of size < κ (possibly D = {1} if L has a
maximum). Then, x ∈

⋂
d∈D(x � β a l′ a d(κ), z)lex ⊆ Ns as wanted.

In order to prove 4, suppose first L has minimum 0 and a (µ, ν)-point l with
µ ≥ κ. Then, given s = 〈l〉 and x = l a 0(κ), for every family of lexicographic-open
intervals A of size |A| < κ, if x ∈

⋂
A then

⋂
A * Ns. Similarly, if L has a

maximum and a (µ, ν)-point l with ν ≥ κ. Finally, suppose L is not dense and it
has a minimum and cofinality ≥ κ. Let l′ < l be two consecutive points. Then,
s = 〈l〉 and x = l a 0(κ) once again proves that for every family of lexicographic-
open intervals A of size |A| < κ, if x ∈

⋂
A then

⋂
A * Ns. Similarly if L is not

dense and it has a maximum and coinitiality ≥ κ.

Since the bounded topology on the space of sequences Xκ on a set X with at
least two points is always κ-perfect, we get the following.

Corollary 3.2.3. If (L, <) is a linear order with at least two points, then the lexico-
graphic space ( Lκ , <lex, τlex) is κ-perfect.

A topological space (X, τ) is called orderable if it is homeomorphic to a LOTS,
and suborderable if it is homeomorphic to a GO-space. Equivalently: X is orderable
if and only if (X,<, τ) is a LOTS for some linear order < on X , and suborderable if
(X,<, τ) is a GO-space for some linear order < on X .

Corollary 3.2.4. For every X , the space Xκ with bounded topology is orderable.
If furthermore X is infinite, then there is an order < on X such that the space

( Xκ , <lex, τb) with lexicographic order and bounded topology is a LOTS.

Proof. First, ifX is infinite, then let< be any linear order onX such that (X,<) has
no minimum and no maximum. Then the result follows from Proposition 3.2.2. If X
is finite, then Xκ is (homeomorphic to) the κ-Cantor space, which is homeomorphic
to ωκ , and the result follows again by the previous case.

When L has a maximum or a minimum, the lexicographic topology has fewer
properties than the bounded one.

Proposition 3.2.5. Suppose L has a maximum or a minimum and contains at least
two points. Then the lexicographic topology on Lκ is not ω1-additive.

Proof. Without loss of generality, suppose L has a minimum 0 and let l > 0 be
another element of L. Consider the increasing sequence 〈xn | n ≤ ω〉 where xn =
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l(n) a 0(κ) for every n ≤ ω, and let x = l(ω) a 0(κ). Then
⋂
n<ω(xn,∞) = [x,+∞),

but [x,+∞) can not be expressed as union of intervals, since if x ∈ (y, z), then there
is xn ∈ (y, x) = (y, z) \ [x,+∞) and so (y, x) * [x,+∞).

However, every lexicographic space contains a dense subset where the lexico-
graphic topology coincides with the bounded topology. This is the analogue of what
happens in the classical case for the Baire space and the irrational numbers of R.
Given a linear order (L, <) and a subset X ⊆ Lκ , define the rationals of X as the
set

Q(X) = {sa l(κ) ∈ X | s ∈ L<κ , l is an endpoint of L},

and let the irrationals of X be the set I(X) = X \Q(X).
It is easy to see that for every linear order (L, <) of size ≤ κ and with at least

two points and an endpoint, the rationals Q( Lκ ) are a dense Fσ subspace of Lκ of
size κ (we assumed κ<κ = κ). As in the classical case, the irrationals instead are
homeomorphic to the κ-Baire space.

Proposition 3.2.6. Suppose (L, <) is a linear order of size 2 ≤ |L| ≤ κ with at
least one end point. Then, the order topology on the irrationals (I( Lκ ), <lex, τlex)
coincide with the topology inherited from Lκ , and this space is a Gκδ subspace of Lκ
homeomorphic to the κ-Baire space with bounded topology ( κκ , τb).

Proof. First, we prove that the topology of I( Lκ ) inherited from ( Lκ , <lex, τlex) co-
incide with both the bounded topology on I( Lκ ) and with the order topology induced
by the lexicographic order on it. Indeed, the order topology is coarser than the topol-
ogy inherited from Lκ , by Proposition 3.1.1, and this GO-topology is coarser than
the bounded topology by Remark 3.2.1. Thus we just need to prove that for every
s ∈ L<κ , the set Ns ∩ I( Lκ ) is open in the order topology. Let 〈pα | α < γ〉 be
coinitial in L, and let 〈qβ | β < δ〉 be cofinal in L. Choose also y ∈ I( Lκ ). Then, we
have

Ns∩I( Lκ ) =
⋃
{(sa(pα)(µ) a y, sa(qβ)(ν) a y)∩I( Lκ ) | α < γ, β < δ, µ, ν < κ}.

Thus, I( Lκ ) is κ-additive. Also, it is easy to see that I( Lκ ) is SCκ. In fact, the
set Ns ∩ I( Lκ ) 6= ∅ is non-empty for every s ∈ L<κ . Thus, it is enough that at
each round α, if player I plays a couple (U, x), then player II choose an s ∈ L<κ

such that x ∈ Ns ∩ I( Lκ ) ⊆ U and plays Nsa〈l1,l2〉 ∩ I( Lκ ) for l1, l2 two distinct
points of L to ensure that the sequence created is not constant. Finally, given a
subset X ⊆ I( Lκ ) with non-empty interior, then we may find s ∈ L<κ such that
Ns ∩ I( Lκ ) ⊆ X . Then, if 0 is the minimum of L and a is another point of L, the
cover U = {(−∞, sa 0(κ)) ∩ X} ∪ {(sa 0(α) a a(κ),+∞) ∩ X | α < κ} has no
subcover of size < κ. An analogue construction can be done if L has a maximum
1. Thus, every κ-Lindelöf subset of I( Lκ ) has empty interior, and the result follows
from Theorem 1.2.10.

Among all GO-topologies, some play a special role as they appear naturally
in many situations. The lower-limit topology on a linear order (L, <) is the GO-
topology generated by the intervals of the form [a, b) for a ∈ L and b ∈ L ∪ {+∞}.
The upper-limit topology is the GO-topology generated by the intervals of the form
(a, b] for a ∈ L ∪ {−∞} and b ∈ L.
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Proposition 3.2.7. Let (L, <) be a linear order (of size ≤ κ).

• Suppose L has no maximum nor minimum. Then, every GO-topology of weight
≤ κ on ( Lκ , <lex) is SCκ.

• Suppose L has a maximum but no minimum. Then, every GO-topology of
weight ≤ κ on ( Lκ , <lex) is fSCκ (resp., SCκ) if and only if the lower-limit
topology on (L, <) is fSCκ (resp., SCκ).

• Suppose L has a minimum but no maximum. Then, every GO-topology of
weight ≤ κ on ( Lκ , <lex) is fSCκ (resp., SCκ) if and only if the upper-limit
topology on (L, <) is fSCκ (resp., SCκ).

• Suppose L has both maximum and minimum. Then, every GO-topology of
weight ≤ κ on ( Lκ , <lex) is fSCκ (resp., SCκ) if and only if both the upper-
limit and lower-limit topologies on (L, <) are fSCκ (resp., SCκ).

Proof. First, by Corollary 3.1.16 we may work using only the lexicographic topology
on ( Lκ , <lex).

If L has size 1 then the result is trivial, so assume L has size at least 2. Also,
if L has no maximum nor minimum, then the result follows already from Proposi-
tion 3.2.2 since the bounded topology is always SCκ.

So suppose L has a minimum 0 but no maximum. The other cases follow simi-
larly.

Assume first that ( Lκ , <lex) is fSCκ, and let σ be a winning strategy for player
II in this game. By Remark 1.1.4, we may assume that σ answers only with open
intervals of ( Lκ , <lex). We want to find a winning strategy σ̃ for the strong fair κ-
Choquet game on L with upper-limit topology. By Theorem 3.1.15, it is enough if
σ̃ wins every game where player I plays only open intervals of the form (a, b). So
let r = 〈(ai, bi), ci | i ≤ γ〉 be a legal sequence of moves for player I on the strong
κ-Choquet game on L. For every i ≤ γ, define xi = ci

a 0(κ) and yi = ai
a 0(κ) and

zi = bi
a 0(κ). Then, we have xi ∈ (yi, zi) in Lκ , and r′ = 〈(yi, zi), xi | i ≤ γ〉 is

a legal sequence of moves of player I in the strong κ-Choquet game on Lκ . So let
(y′, z′) = σ(r′). Let a′ = y′(0) and let b′ = z′(0). Notice that by definition of xi we
must have a′ < cγ ≤ b′. Thus, (a′, b′] is a legal answer for II on the strong κ-Choquet
game on L and we may define σ̃(r) = (a′, b′]. Then, it is easy to see that for every
sequence of moves r = 〈(ai, bi), ci | i < δ〉 of player I played accordingly to σ̃, we
have that

⋂
α<δ σ̃(r � α) is empty if and only if

⋂
α<δ σ(r′ � α) is empty, and thus

σ̃ is winning in the strong fair κ-Choquet game on L with upper-limit topology. The
same argument shows that if σ is winning also in the strong κ-Choquet game on Lκ ,
then σ̃ is winning in the strong κ-Choquet game on L with upper-limit topology.

Conversely, assume player II has a strategy σ̃ that is winning in the strong fair κ-
Choquet game on L with upper-limit topology. We may assume σ̃ answer only with
intervals of the form (a, b] for some a, b ∈ L, by Remark 1.1.4 and Corollary 3.1.2.
By Theorem 3.1.15, it is enough to show that II has a strategy in the strong fair κ-
Choquet game on Lκ that wins every match where player I plays only open intervals.
Suppose r = 〈(yi, zi), xi | i ≤ γ〉 is a legal sequences of moves of player I in the
strong fair κ-Choquet game on Lκ up to a certain round γ < κ with xi ∈ (yi, zi) for
every i ≤ γ. Let ν > max(d(xγ , zγ), γ) and choose l2 ∈ L such that l2 > xγ(ν).
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Let α be the minimum ordinal such that xγ(β) = 0 for every β with α ≤ β < κ,
where min(∅) =∞. Notice that d(xγ , yγ) < α. First, if α 6= d(xγ , yγ)+1, choose β
such that d(xγ , yγ) < β < α and xγ(β) 6= 0 and define σ(r) = (xγ � β a 0(κ), xγ �

ν a l
(κ)
1 ). Otherwise, let d(xγ , yγ) = δ = α − 1 and A = {β ≤ γ | d(yβ, xγ) = δ}.

Notice that A is a final segment of γ. For every β ∈ A, define aβ = yβ(δ), and
let bβ = xβ(δ). Then, r′ = 〈(aβ, bβ], bβ | β ∈ A〉 is a legal sequence of moves of
player I in the strong fair κ-Choquet game on L. Let (c, d] = σ̃(r′) be the answer of
the strategy σ̃ to r′. Let also l1 ∈ L be such that yγ <lex xγ � δ a ca l

(κ)
2 . Define

σ(r) = (xγ � δ a ca l
(κ)
2 , xγ � ν a l

(κ)
1 ).

Now suppose r = 〈(yi, zi), xi | i < γ〉 is a legal sequences of moves of player
I in the in the strong fair κ-Choquet game on Lκ up to a certain limit round γ with
xi ∈ (yi, zi) for every i ≤ γ. First, suppose there is a cofinal subset I ⊆ γ such that
d(xα, yα) < d(xβ, yβ) for every α, β ∈ I with α < β. Let sα = xα � d(xα, yα), and
let s =

⋃
α∈I sα. Let alsow = sa 0(κ) if lh(s) < κ, orw = s if lh(s) = κ. Then, we

must have yα <lex w ≤lex xα <lex zα for every α ∈ I , and thus
⋂
i<γ(yi, zi) 6= ∅.

Otherwise, let ε < γ be the minimum ordinal such that d(xα, yα) = d(xβ, yβ) = δ
for every α < β < γ with ε ≤ α. This implies xα = xε � (δ + 1)a 0κ for every
α ≥ ε, by definition of σ. Define as above A = [ε, γ) = {β ≤ γ | d(xβ, yγ) = δ}
and aβ = yβ(δ) and bβ = xβ(δ) for every β ∈ A: then, r′ = 〈(aβ, bβ], bβ | β ∈ A〉
is compatible with σ̃ by definition of σ. If γ = κ, then r′ also has length κ and thus⋂
β∈A(aβ, bβ] 6= ∅ and we may find c ∈

⋂
β∈A(aβ, bβ]. Then, we have yα <lex xε �

εa ca 0(κ) ≤lex xα <lex zα and thus
⋂
i<γ(yi, zi) 6= ∅. The same proof gives the

wanted result for the strong κ-Choquet game.

Thanks to Corollary 3.1.16, instead of checking the upper-limit and lower-limit
topologies we can check only that the order topology is fSCκ or SCκ.

Corollary 3.2.8. If a LOTS (L, <, τ) is fSCκ (resp., SCκ), then every GO-space on
the lexicographic order ( Lκ , <lex, τ

′) is fSCκ (resp., SCκ).

Finally, we collect some properties of the lexicographic orders. These facts are
probably folklore, but we reprove them here for the reader’s convenience.

Lemma 3.2.9. Let (L, <) be a linear order. Then, the lexicographic order Lκ is
dense if and only if L is dense or L has no maximum or no minimum.

Proof. Assume L is dense or it has no minimum or it has no maximum. Choose any
pair of sequences x, y ∈ Lκ . First, if L is dense, then there is an element l ∈ L
such that x(d(x, y)) < l < y(d(x, y)), and thus x <lex (x � d(x, y))a l(κ) <lex y.
Otherwise, let α = d(x, y) + 1. Suppose L has no maximum. Then, we have for
example x <lex (x � α)a l(κ) <lex y for some l > x(α). Similarly, if L has no
minimum we have for example x <lex (y � α)a l(κ) <lex y for some l < y(α).

Conversely, if L has minimum 0 and maximum 1 and two consecutive points
l1 < l2, then there is no z ∈ Lκ such that l1 a 1(κ) <lex z <lex l2

a 0(κ).

For GO-spaces and LOTS, we have a homogeneous property similar to the one
obtained for the bounded topology. Indeed, given a linear order L, for every s ∈ L<κ

the set Ns with order and topology inherited from ( Lκ , <lex, τlex) is isomorphic to
the whole ( Lκ , <lex, τlex). Since the bounded topology refines the lexicographic one,
we may find sets of the form Ns in every non-empty open set.
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Remark 3.2.10. Let (L, <) be a linear order. Then, every non-empty open set U of
the lexicographic space ( Lκ , <lex, τlex) contains a subspace and suborder V ⊆ U
isomorphic to the whole space ( Lκ , <lex, τlex).

The gaps in the lexicographic topology depend strongly on the gaps and cofinality
of the starting order.

Lemma 3.2.11. Let L be a linear order and let I ⊆ Lκ be a non-empty open interval
in the lexicographic order. Then, I contains a (γ, δ)-gap for some cardinals δ and γ
if and only if one of the following conditions hold:

1. L has a (γ, δ)-gap.

2. L has cofinality γ and δ < κ.

3. L has coinitiality δ and γ < κ.

We prove this result in a more technical lemma that helps us also in other situa-
tions.

Lemma 3.2.12. Let L be a linear order, let also 〈pi | i < µ〉 be an increasing
sequence and 〈qi | i < ν〉 be a decreasing sequences in L such that pα < qβ for
every α < µ and β < ν. Let s ∈ L<κ and for every α < lh(s) choose lα ∈ L.

1. If 〈pi | i < µ〉 and 〈qi | i < ν〉 form a gaps in L, then C = 〈sa(pi)
(κ) | i < µ〉

and D = 〈sa(qi)
(κ) | i < ν〉 form a (µ, ν)-gap in Lκ .

2. If 〈pi | i < µ〉 is cofinal in L, lh(s) is limit and s(α) < lα for every α < lh(s),
then C = 〈sa(pi)

(κ) | i < µ〉 and D = 〈s � αa(lα)(κ) | α < lh(s)〉 form a
(µ, cof(lh(s)))-gap in Lκ .

3. If 〈qi | i < ν〉 is coinitial in L, lh(s) is limit and s(α) > lα for every α < lh(s),
then C = 〈s � αa(lα)(κ) | α < lh(s)〉 and D = 〈sa(qi)

(κ) | i < ν〉 form a
(cof(lh(s)), ν)-gap in Lκ .

Furthermore, every gap of L<κ is generated this way for some choices of 〈pi | i < µ〉,
〈qi | i < ν〉, s and 〈lα | α < lh(s)〉.

Proof. LetC = 〈sa(pi)
(κ) | i < µ〉 andD = 〈sa(qi)

(κ) | i < ν〉. If there is x ∈ Lκ
such that c ≤ x ≤ d for every c ∈ C and d ∈ D, then pα < x(lh(s)) ≤ qβ for every
α < µ and β < ν.

Let instead C = 〈sa(pi)
(κ) | i < µ〉 and D = 〈s � αa(lα)(κ) | α < lh(s)〉.

Consider x ∈ Lκ such that c ≤ x ≤ d for every c ∈ C and d ∈ D. Then, s ⊆ x, as
otherwise s � (d(s, x) + 1)a(lα)(κ) < x. But then pα < x(lh(s)) for every α < µ
and thus 〈pi | i < µ〉 is not cofinal. The last case follows symmetrically.

Conversely, let 〈yα | α < γ〉 and 〈zβ | β < δ〉 be respectively an increasing
and a decreasing sequence in Lκ that form a gap (possibly an end gap) for some
(regular) cardinals γ, δ. Let µ = sup{d(yα, zβ) | α < γ, β < δ} (where we assume
sup(∅) = 0). If µ = 0 let s = ∅, and otherwise let s =

⋃
α<µ sα, where the

element sα = yβ � α = zβ′ � α witness that there are β < γ and β′ < δ such that
d(yβ, zβ′) > α (since 〈yα | α < γ〉 is increasing and 〈zβ | β < δ〉 is decreasing, sα
is well-defined and does not depend on the choice of β and β′). Notice that µ < κ, as
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otherwise s ∈ Lκ and we would have yα <lex s <lex zβ for every α < γ and β < δ.
Let

Y = {yβ(µ) | s ⊆ yβ, β < γ}, Z = {zβ(µ) | s ⊆ zβ, β < δ}

Then, (Y,Z) must form a gap in L, as otherwise if Y < l < Z we would have
yα <lex s

a l(κ) <lex zβ for every α < γ and β < δ. Then, it is easy to see that there
are choices of sequences 〈pi | i < µ〉 and 〈qi | i < ν〉 and 〈lα | α < lh(s)〉 in L
such that the couple of sets (C,D) defined as in point 1 (if (Y,Z) is not an end gap),
point 2 (if Z = ∅) or point 3 (if Y = ∅) form the same gap of 〈yα | α < γ〉 and
〈zβ | β < δ〉.

Notice that Lemma 3.2.11, we have that the lexicographic order ( Lκ , <lex) is
complete if and only if it is boundedly complete if and only if the starting linear
order (L, <) is complete and has endpoints. Thus, thanks to Corollary 3.1.12 we get
the following.

Corollary 3.2.13. Let L be a linear order. Then, ( Lκ , <lex, τ) is compact if and only
if L is a complete linear order (with endpoints).

Similarly, thanks to Proposition 3.1.13, we get the following. Recall that a linear
order has endpoints if and only if it has no (γ, 0)-gap and no (0, γ)-gap for some
infinite γ, and ω is weakly compact, so for κ = ω we recover the previous statement.

Corollary 3.2.14. Let L be a linear order and let ν be a regular cardinal.

• If ν < κ and L has not both endpoints, then ( Lκ , <lex, τlex) is not ν-Lindelöf.

• If there are cardinals γ and δ with max(γ, δ) ≥ ν such that L contains a
(δ, γ)-gap, then ( Lκ , <lex, τlex) is not ν-Lindelöf.

• If κ is weakly compact and L contains no (δ, γ)-gap with max(γ, δ) ≥ κ, then
( Lκ , <lex, τlex) is κ-Lindelöf.

Proof. First, if ν < κ and L has no maximum or no minimum, then Lκ contains a
(γ, δ)-gap or (δ, γ)-gap for any regular cardinal δ < κ by Lemma 3.2.11, thus it can
not be ν-Lindelöf by Proposition 3.1.13.

Similarly, if there are cardinals γ and δ with max(γ, δ) ≥ ν such that L contains
a (δ, γ)-gap, the result follows from Lemma 3.2.11 and Proposition 3.1.13.

If instead κ is weakly compact and L contains no (δ, γ)-gap nor (γ, δ)-gap for
(regular) cardinals γ and δ with δ ≥ κ, then the result follows from Proposition 3.1.14
and Lemma 3.2.11.

Thanks to Proposition 3.1.8 and Corollary 3.1.10, if we additional require that L
is also dense, we can characterize when a lexicographic space is connected.

Corollary 3.2.15. Let (L, <) be a linear order. Then, the following are equivalent:

1. (L, <) is a complete dense linear order with endpoints.

2. ( Lκ , <lex, τ) is compact and (L, <) is dense.

3. ( Lκ , <lex, τ) is connected.
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4. ( Lκ , <lex, τ) is not zero-dimensional.

Finally, we characterize when lexicographic spaces are paracompact.

Proposition 3.2.16. Given a linear order (L, <), the space ( Lκ , <lex, τlex) is para-
compact if and only if one of the following holds:

1. L has no endpoint.

2. L has (a minimum but) no maximum and for every gap (C,D) there is a cofinal
closed discrete subset C ′ ⊆ C.

3. L has (a maximum but) no minimum and for every gap (C,D) there is a coini-
tial closed discrete subset D′ ⊆ D.

4. L (has both endpoints, but it) is paracompact.

Proof. We prove the statement for the case where L has a minimum 0 but no maxi-
mum, and the other cases follow from a similar argument.

Assume first that for every gap (X,Y ) of L there is a discrete closed cofinal
subset X ′ ⊆ X . We want to show that for every gap (C,D) of Lκ there are a closed
discrete subspace C ′ ⊆ C cofinal in C, and a closed discrete subspace D′ ⊆ D
cofinal in D: then Lκ is paracompact by Proposition 3.1.21.

By Lemma 3.2.12, every gap of Lκ is generated by a gap of L. Let 〈pi | i < µ〉
and 〈qi | i < ν〉 form a gap in L. Then, 〈pi | i < µ〉 is non-empty (since L has a
minimum) and we may assume that 〈pi | i < µ〉 is closed and discrete by assumption
on L.

First, suppose 〈qi | i < ν〉 is non-empty and C = 〈sa(pi)
(κ) | i < µ〉 and

D = 〈sa(qi)
(κ) | i < ν〉 be a gap of Lκ for some s ∈ L<κ . For every l ∈ L, let

(al, bl) be an interval in L that contains at most one point of 〈pi | i < µ〉. Then,
the intervals (sa(al)

(κ), sa(bl)
(κ)) forms an open covering of Lκ and each of them

contains at most one point of C, proving that C is closed and discrete. For every
i < ν, let instead li ∈ L be such that qi < l: we can find such an element since
L has no maximum. Then, the intervals (sa(qi+1)(κ), sa qi

a(li)
(κ)) form an open

covering of the clopen set ↑D = {x ∈ Lκ | sa(qi)
(κ) ≤ x for some i < µ} and each

of them contains at most one element of D, proving that D is closed and discrete.
Second, suppose instead 〈qi | i < ν〉 = ∅ and 〈pi | i < µ〉 is cofinal in L. Let

C = 〈sa(pi)
(κ) | i < µ〉 and D = 〈s � αa(lα)(κ) | α < lh(s)〉 be a gap of Lκ for

some s ∈ L<κ of limit length and 〈lα | α < lh(s)〉 such that s(α) < lα for every
α < lh(s). Then, the same proof of the previous case shows that C is closed and
discrete. For every α < lh(s), let l′α ∈ L be such that lα < l′α. Then, the intervals
(s � (α+ 1)a(lα+1)(κ), s � αa(l′α)(κ)) shows that D is closed and discrete.

To prove the converse, suppose that L has a gap (C,D) for which there are no
closed discrete subsets C ′ ⊆ C. Let 〈pi | i < µ〉 and 〈qi | i < ν〉 be two sequences
identifying (C,D). We claim that the associated gap (C̃, D̃) generated by the pair
〈(pi)(κ) | i < µ〉 and 〈(qi)(κ) | i < ν〉 of Lκ proves that Lκ is not paracompact as
well (using Proposition 3.2.16). So let A ⊆ C̃ be cofinal, we want to prove that A
is not closed or not discrete. Let X = {x(0) | x ∈ A}. Without loss of generality
(passing to a subset ofA andX if necessary) we may assume thatX is a well-ordered
subset of L. Also, X is cofinal in C, hence it can not be closed and discrete. This
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implies that there is z ∈ L such that for every a ∈ L the set (a, z] ∩ X is infinite.
But then every open interval (y, w) in Lκ containing z a 0(κ) must contain infinitely
many elements of A, proving that A is either not closed or not discrete.

3.3 Examples of LOTS and GO-spaces

We now apply all the results obtained so far to provide concrete examples of SCκ-
spaces with different properties. We start studying the properties of spaces of the
form ακ for an ordinal α.

Proposition 3.3.1. For every ordinal 1 < α < κ+, the space ( ακ , <lex, τlex) is a
κ-perfect, zero-dimensional, not ω1-additive, SCκ-space. Furthermore:

1. If α is successor, then ( ακ , <lex, τlex) is compact.

2. If cof(α) = ω, then ( ακ , <lex, τlex) is paracompact. If furthermore κ is weakly
compact, then ( ακ , <lex, τlex) is κ-Lindelöf.

3. If ω < cof(α) < κ, then ( ακ , <lex, τlex) is not paracompact. If furthermore κ
is weakly compact, then ( ακ , <lex, τlex) is κ-Lindelöf.

4. If α is limit of cofinality cof(α) ≥ κ, then ( ακ , <lex, τlex) is not paracompact
nor κ-Lindelöf.

Proof. First, the bounded topology on ακ is κ-perfect, thus the lexicographic topol-
ogy is as well (see Remark 3.2.1). Also, if α > 1 then the order on α is not dense, thus
ακ is zero-dimensional by Corollary 3.2.15. Now: every ordinal α has no gaps other

than end gaps, thus the order topology on α is SCκ by Corollary 3.1.20. Hence, the
lexicographic topology on ακ is also SCκ by Proposition 3.2.7. Also, ( ακ , <lex, τlex)
is not ω1-additive by Proposition 3.2.5. The relations with compactness and para-
compactness follow from Corollary 3.2.13 and Proposition 3.2.16, noticing that if
cof(α) = δ > ω, then for any cofinal increasing sequence 〈αi | i < δ〉 in α, the
ordinal β = supi<ω{αi} proves that 〈αi | i < δ〉 is not closed or not discrete.

The previous proposition in particular applies to the κ-Cantor space and the κ-
Baire space.

Corollary 3.3.2. The κ-Cantor space 2κ with the lexicographic topology is a κ-
perfect, zero-dimensional, not ω1-additive, compact SCκ-space.

Corollary 3.3.3. The κ-Baire space κκ with the lexicographic topology is a κ-perfect,
zero-dimensional, not ω1-additive, not κ-Lindelöf SCκ-space.

Proposition 3.2.2 shows that if we refine the lexicographic topology on the Cantor
space, we recover directly the bounded topology. For the Baire space, we still get a
topology that is homeomorphic to the bounded one, although it is coarser than the
bounded topology.

Proposition 3.3.4. The smallest κ-additive topology that refines the lexicographic
topology on the κ-Baire space is strictly coarser than the bounded topology of the
Generalized Baire space, yet it is homeomorphic to it.
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Proof. Let τ be the smallest κ-additive topology refining the lexicographic topology
τlex on the κ-Baire space. First, by Proposition 3.2.2, τ is strictly coarser than the
bounded topology τb. By Corollary 3.3.3, ( κκ , τ) is a κ-additive, zero-dimensional,
κ-perfect, SCκ-space. Also, it is not κ-Lindelöf, and by Remark 3.2.10 every κ-
Lindelöf subset of it must have empty interior. Thus, the result follows from Theo-
rem 1.2.10.

When dealing with order topologies, one should be careful that when a linear
order L can be embedded into another one L′, usually the order topology on L is
different from the GO-topology it would inherit from L′. This is the case for example
of the Cantor set 2κ : the GO-topology it inherits from the κ-Baire set is slightly
different from its own lexicographic topology.

Proposition 3.3.5. The κ-Cantor set with GO-topology inherited from the lexico-
graphic order on the κ-Baire set is a κ-perfect, zero-dimensional, not ω1-additive,
κ-Lindelöf (but not δ-Lindelöf for δ < κ), SCκ-space.

Proof. Let ( κκ , <lex, τlex) be the κ-Baire set with lexicographic topology, and let τ
be the topology induced by the restriction of τlex on 2κ .

By Corollary 3.2.3 we have that ( 2κ , <lex, τ) is κ-perfect. Furthermore, it is zero-
dimensional since it is a subset of ( κκ , <lex, τlex). Also, τ refines the lexicographic
topology on 2κ (which is SCκ), and thus ( 2κ , <lex, τ) is SCκ by Corollary 3.1.16.
Also, the same argument of Proposition 3.2.5 shows that this space is not ω1-additive.
Finally, ( 2κ , <lex, τ) is not δ-Lindelöf for any regular cardinal δ < κ since the sets
{(−∞, 0(δ) a 1(κ) ]} ∪ {(0(α) a 1(κ) ,+∞) | α < δ} form a τ -open cover of size δ
without smaller refinements. Thus, it remains only to prove that ( 2κ , <lex, τ) is κ-
lindelöf.

First, notice that ( 2κ , <lex) has no gaps since it is a complete linear order (and
this property depends only on the order, not on the topology). Notice also that every
τ -open interval is either open also in the lexicographic topology on the Cantor set,
or it is of the form (x, sa 1(κ)] for some x ∈ 2κ and s ∈ 2<κ . In particular, for
every convex τ -open setA, either A is open also in the lexicographic topology on the
Cantor set, or A has a maximum that is not 1(κ) and A \ {max(A)} is open in the
lexicographic topology on the Cantor set.

Then, ( 2κ , <lex, τ) has also no pseudo-gaps of types (µ, ν) with max(µ, ν) ≥ κ:
indeed, let (C,D) be a non-trivial clopen cut. Then, (C,D) must be of the form
((−∞, x], (x,+∞)) for some x ∈ 2κ of the form x = sa 1(κ), since otherwise
(C,D) would be a gap, which is impossible since ( 2κ , <lex) is complete. Thus,
(C,D) has type (1, cof(lh(s))), and cof(lh(s)) < κ as wanted.

Then, it is enough that we check that ( 2κ , <lex, τ) has no clopen convex partition
of size ≥ κ: the result will follow from Proposition 3.1.13.

So let U be a clopen convex partition of ( 2κ , <lex, τ). Define A′ be the set of
those A ∈ A that are open also in the lexicographic topology on 2κ , and let A′′ =
A \ A′. Define also C = {max(A) | A ∈ A′′}.

Notice that C = 2κ \
⋃
{A \ sup(A) | A ∈ A} is a closed (and thus com-

pact) subspace of 2κ with the lexicographic topology. In particular, this implies that
the lexicographic order on it (C,<lex) is complete and with endpoints, by Proposi-
tion 3.1.11. Then, (C,<lex) is anti-well-ordered: suppose not and suppose there is a
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strictly increasing sequence 〈pi | i < ω〉 in C, and let p = sup 2κ {pi | i < ω}. Since
C is closed, we must have p ∈ C, and by definition of C there exist U ∈ A′′ such
that p = max(U) and U \ {p} open in the lexicographic topology on 2κ . Since A is
a partition of 2κ , then we must have pi /∈ U for every i < ω, contradiction.

Now notice that for every c ∈ C, the coinitiality of (c,+∞) is < κ, as there is
s ∈ 2<κ such that c = sa 1(κ). Since C is closed, this implies C must have size
< κ. Also, it must have a maximum. So let C = {ci | i ≤ α} be an enumeration of
C such that cj <lex ci for every i < j ≤ α < κ. Let also cα+1 = −∞ for simplicity,
and notice that c0 = 1(κ) by definition of C.

Notice that for every i ≤ α, the set (ci+1, ci] with the topology inherited from
( 2κ , τlex) is κ-Lindelöf. Furthermore, by definition of C each set A ∈ A is either
disjoint from (ci+1, ci] or it is contained in it and it is open in the topology that
(ci+1, ci] inherits from ( 2κ , τlex). Thus, A � (ci+1, ci] = {A ∈ A | A ⊆ (ci+1, ci]}
must have size < κ for each i ≤ α, and so A =

⋃
i≤αAi � (ci+1, ci] has size < κ as

well as wanted.

We now look at the order-completion (B̂, <lex) of the lexicographic order on the
generalized Baire set ( κκ , <lex) as given by Remark 3.1.5.

Proposition 3.3.6. The completion (B̂, <lex, τlex) of the κ-Baire space, with its order
topology, is a κ-perfect, connected, compact, (not ω1-additive,) SCκ-space.

Proof. First, notice that the κ-Baire set with lexicographic order has only (κ, δ)-gaps
by Lemma 3.2.11. Thus, no point in B̂ \ κκ is κ-isolated, and ( κκ , <lex, τlex) is κ-
perfect, thus (B̂, <lex, τlex) is κ-perfect as well. Second, the lexicographic order on
κκ is dense (by Lemma 3.2.9), and thus the order on the completion (B̂, <lex) is dense

as well. Then by Proposition 3.1.8 and Corollary 3.1.12, the topology is connected
and compact. The space is not ω1-additive since it is not zero-dimensional. Finally,
since the order is complete, the space is strong κ-Choquet by Corollary 3.1.20.

Other classical (and very useful) examples of Polish spaces in the classical case
come from manifolds. The arguably most important example in this sense is the
unit circle S1

1 . This space can be constructed starting from the unit interval [0, 1]
of the real line and identifying its endpoints. The same procedure can be used on
any linearly ordered topological space with endpoints, and the resulting space shares
many similarities with both the (classical) unit circle S1

1 and the starting linear order
used to define it.

Example 3.3.7. Given a linear order L with endpoints, define S1
1(L) to be the circle

made from L by joining the maximum and minimum.

Formally, if (L,≤) is the linear order and 0, 1 are respectively the maximum and
minimum, define S1

1(L) = L/∼ where∼ = {(x, x) | x ∈ L}∪{(0, 1), (1, 0)} is the
relation that identifies 0 and 1.

The set S1
1(L) can be made into a topological space passing the topology τL<

through the quotient. Since we are identifying only two points, it is straightforward
that most topological properties of (L, τL<) pass to S1

1(L).

Proposition 3.3.8. Let (L, <, τ) be a LOTS with endpoints.

1. If (L, τL<) is fSCκ, then S1
1(L) is fSCκ.
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2. If (L, τL<) is SCκ, then S1
1(L) is SCκ.

3. If (L, τL<) is zero-dimensional, then S1
1(L) is zero-dimensional.

4. If (L, τL<) is κ-perfect, then S1
1(L) is κ-perfect.

5. If (L, τL<) is κ-additive, then S1
1(L) is κ-additive.

6. For any cardinal λ, if (L, τL<) is λ-Lindelöf, then S1
1(L) is λ-Lindelöf.

7. If (L, <, τ) is connected, then S1
1(L) \ {x} is connected for every x ∈ S1

1(L).
In particular, if (L, <, τ) is connected there is no embedding from S1

1(L) into
(L, <, τ).

3.4 Classification up to homeomorphism

In this section, we study the size of homeomorphism types of certain classes of SCκ,
fSCκ and G-Polish. The basic proof idea is similar to that of [42, Proposition 6.5],
with some changes for each class: we report each case in detail for the reader’s
convenience.

First, we want to find κ-many spaces without homeomorphic open subsets.

Definition 3.4.1. Given a subset A of κ, let TA denote the tree of all t ∈ κ<κ such
that for all β ∈ A the set {α < β | t(α) = 0} is bounded below β. Let XA = [TA].

Then, eachXA is a κ-additive fSCκ space. Furthermore, eachXA is perfect, and
|XA| = 2κ for every A ⊆ κ.

Lemma 3.4.2. Suppose A and B are disjoint subsets of κ and A is stationary. Then
no nonempty open subset of XA is homeomorphic to an open subset of XB .

Proof. Suppose by contradiction φ : U → V is a homeomorphism with U open sub-
set ofXA and V open subset ofXB . Without loss of generality, passing to restrictions
of φ if needed, we may assume U = Ns for some s ∈ Ta.

Proceeding recursively, we construct two families 〈sα | α < κ〉 ⊆ TA and
〈tα | α < κ〉 ⊆ TB such that

(a) s0 = s and si a 0 ⊆ sj for any i < j < κ.

(b) ti ⊆ tj for any i < j < κ.

(c) lh(si) ≤ lh(ti) < lh(si+1) for every i < κ.

(d) φ[Nsi+1 ∩XA] ⊆ Nti ∩XB ⊆ φ[Nsi a 0 ∩XA] for every i < κ.

Given sα, we may find tα ∈ TB and sα+1 ∈ TA satisfying the requirement using the
fact that φ is a homeomorphism on an open subset of XB .

For limit steps, suppose sε, tε has been defined for every ε < α and define sα =⋃
ε<α sε. We claim that Nsα ∩XA 6= ∅ and s ∈ TA as required. Call γα = lh(sα):

then Nsα ∩XA may be empty only if γα ∈ A. So suppose γα ∈ A. Let t =
⋃
ε<α tε,

then by point (c) we have lh(t) = γα so lh(t) /∈ B and t ∈ TB since A ∩ B = ∅.
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Now φ[Nsα ∩XA] =
⋂
ε<α φ[Nsε ∩XA] =

⋂
ε<α Ntε ∩XB = Nt∩XB 6= ∅ hence

Nsα ∩XA 6= ∅ and we are done.
So consider 〈sα | α < κ〉 ⊆ TA constructed as above, and let x =

⋃
α<κ sα.

Define Limx to be the set of those α < κ such that {β < α | x(β) = 0} is unbounded
below α. Since {β < κ | x(β) = 0} is unbounded in κ, then Limx is a club of κ and
there is α ∈ Limx ∩A which contradicts the definition of A.

We are now ready to classify homeomorphism types of G-Polish and fSCκ

spaces.

Theorem 3.4.3. There are 2κ many pairwise not homeomorphic perfect G-Polish
spaces of size 2κ.

Proof. Fix a sequence ~S = 〈Sα | α < κ〉 of pairwise disjoint stationary subsets of
κ. For any subset A of κ, let XA =

⊔
i∈AXSi be the disjoint union of those XSi for

which i ∈ A. Since each XSi is a closed subset of κκ and hence a G-Polish space
and this class of spaces is closed under the disjoint union of size ≤ κ, then XA is
again a G-Polish space for each A ⊆ κ.

It suffices to show that XA and XB are not homeomorphic if A 6= B.
Assume that α ∈ A \ B and f : XA → XB is a homeomorphism: then for each

β ∈ B such that XSα ∩ f−1(XSβ ) is nonempty, the restriction of f to the open set
XSα ∩ f−1(XSβ ) would be an homeomorphism contradicting Lemma 3.4.2.

We now turn our attention to SCκ spaces.
If κ is not weakly compact, then there is only one homeomorphism type of perfect

κ-additive SCκ spaces by Theorem 1.2.10. Giving up on perfectness however we get
a result similar to Theorem 3.4.3.

Recall that for a tree T ⊆ κ<κ we denote with δ(T ) the boundary of the tree.

Definition 3.4.4. GivenA ⊆ κ, define T̂A = TA∪{sa 0(α) | s ∈ δ(TA) and α < κ}
and let YA = [T̂A].

Notice that T̂A is a superclosed subtree of κ<κ , hence YA is a κ-additive SCκ

space, XA is exactly YA minus its isolated points, and |YA| = |XA| = 2κ for every
A ⊆ κ.

We need the following corollary of Lemma 3.4.2

Corollary 3.4.5. Suppose A and B are disjoint subsets of κ and A is stationary.
Then there is no homeomorphism between open subsets of YA and YB of size 2κ.

Proof. Suppose φ : U → V is a homeomorphism with U open subset of YA of size
2κ and V open subset of YB . Since |YA \ XA| ≤ κ then U ∩ XA 6= ∅. Since a
homeomorphism sends isolated points in isolated points, we have φ[XA ∩ U ] ⊆ XB

and φ[(YA \XA)∩U ] ⊆ YB \XB , hence φ � (U ∩XA) : U ∩XA → XB contradicts
Lemma 3.4.2.

Theorem 3.4.6. There are 2κ many pairwise not homeomorphic κ-additive SCκ

spaces of size 2κ.
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Proof. Fix a sequence ~S = 〈Sα | α < κ〉 of pairwise disjoint stationary subsets of
κ. For any subset A of κ, let Y A =

⊔
i∈A YSi be the disjoint union of those YSi for

which i ∈ A: it is again an SCκ space.
It suffices to show that Y A and Y B are not homeomorphic if A 6= B.
Assume that α ∈ A \ B and f : Y A → Y B is a homeomorphism. Then there is

β ∈ B such that the set U = YSα ∩ f−1(YSβ ) is an open subset of Y A of size 2κ.
The restriction of f to U contradicts Corollary 3.4.5.

Assume now κ is weakly compact instead.

Definition 3.4.7. Given A ⊆ κ, define T̃A = TA ∪ {sa t | s ∈ δ(TA) and t ∈ 2<κ }
and let ZA = [T̃A].

Once again, T̃A is a superclosed splitting subtree of κ<κ , hence ZA is a perfect
κ-additive SCκ space. Furthermore, XA is equal to ZA minus its κ-Lindelöf open
subsets, hence every open set U ⊆ ZA \XA is Kκ, and |ZA| = 2κ for every A ⊆ κ.

Corollary 3.4.8. SupposeA andB are disjoint subsets of κ andA is stationary. Then
there is no homeomorphism between non-Kκ open subsets U ⊆ ZA and V ⊆ ZB .

Proof. Suppose φ : U → V is a homeomorphism with U open subset of ZA and
V open subset of ZB and U and V are not Kκ. Then U ∩ XA 6= ∅. Since φ is a
homeomorphism, then a point x ∈ U has a κ-Lindelöf neighborhood if and only if
φ(x) ∈ V has a κ-Lindelöf neighborhood. Since for every C ⊆ κ, XC is exactly
the set of points of ZC that does not have a κ-Lindelöf neighborhood, then we have
φ[XA ∩ U ] ⊆ XB and φ[(ZA \ XA) ∩ U ] ⊆ ZB \ XB . Then φ � (U ∩ XA) :
U ∩XA → XB contradicts Lemma 3.4.2.

Theorem 3.4.9. Suppose that κ is weakly compact. Then there are 2κ many pairwise
not homeomorphic perfect κ-additive SCκ spaces of size 2κ.

Proof. Fix a sequence ~S = 〈Sα | α < κ〉 of pairwise disjoint stationary subsets of
κ. For any subset A of κ, let ZA =

⊔
i∈A ZSi be the disjoint union of those ZSi for

which i ∈ A: it is again a SCκ space.
It suffices to show that ZA and ZB are not homeomorphic if A 6= B.
Assume that α ∈ A \ B and f : ZA → ZB is a homeomorphism. Since ZSα is

not Kκ then there is β ∈ B such that the set U = ZSα ∩ f−1(ZSβ ) is an open subset
of ZA which is not Kκ. The restriction of f to U contradicts Corollary 3.4.8.

Finally, we turn to κ-Lindelöf spaces.
If κ is weakly compact, then there is only one homeomorphism type of κ-Lindelöf

perfect κ-additive SCκ spaces by Theorem 1.2.15.
For fSCκ spaces, we have the following.

Definition 3.4.10. Given a subset A of κ, let T ′A = TA ∩ 3<κ . Let X ′A = [T ′A].

If κ is weakly compact, then X ′A is the κ-Lindelöf version of XA. The choice of
3<κ instead of 2<κ is to ensure that the space X ′A has size 2κ. We have for this class

as well a lemma similar to 3.4.2.

Lemma 3.4.11. Suppose A and B are disjoint subsets of κ and A is stationary. Then
no nonempty open subset of X ′A is homeomorphic to an open subset of X ′B .
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The proof is the same as Lemma 3.4.2.

Theorem 3.4.12. Suppose κ is weakly compact. There are 2κ many pairwise not
homeomorphic perfect, κ-Lindelöf, G-Polish spaces of size 2κ.

Giving up on perfectness instead we have the following.

Definition 3.4.13. Define T̂ ′A = T ′A ∪ {sa 0(α) | s ∈ δ(T ′A) and α < κ} and let
Y ′A = [T̂ ′A] for every A ⊆ κ.

Proposition 3.4.14. The space Y ′A is a κ-Lindelöf, SCκ-space of size 2κ.

Proof. It is an SCκ-space since T̂ ′A is a superclosed subset of 3<κ , and it has size 2κ.
To prove it is κ-Lindelöf, firse notice that 3κ is homeomorphic to 2κ , and so 3κ is
κ-Lindelöf if κ is weakly compact. Let A ⊆ B be an open cover of Y ′A. Without loss
of generality, we may assume that for every A ∈ A we have A = Ns ∩ Y ′A for some
s ∈ T ′A ∪ δ(T ′A). DefineA′ = {Ns | Ns ∩Y ′A ∈ A}, it is an open cover of 3κ . Since
this space is κ-Lindelöf we may find an open subcover F ⊆ A′ of size |F| < κ.
Then {A ∩ Y ′A | A ∈ F} is an open subcover of A of size < κ.

From the same arguments of Lemma 3.4.5 and Theorem 3.4.6 we get the follow-
ing.

Lemma 3.4.15. Suppose A and B are disjoint subsets of κ and A is stationary. Then
no nonempty open subset of Y ′A of size 2κ is homeomorphic to an open subset of Y ′B .

Theorem 3.4.16. Suppose κ is weakly compact. There are 2κ many pairwise not
homeomorphic κ-Lindelöf, κ-additive SCκ spaces of size 2κ.
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Chapter 4

Finite monoids in combinatorics

4.1 Introduction to Ramsey and Y-controllable monoids

First, we recall the main combinatorial notions that we use throughout this (and next)
chapter. Then, we try to give a better insight into these definitions by showing how
these concepts can be formulated in an equivalent way.

First, a semigroup (S, ·) is a set S with · a binary associative operation. A partial
semigroup (S, ·) is a set S with a binary associative operation · such that (a · b) · c is
defined if and only if a · (b · c) is defined. In particular, every partial semigroup (S, ·)
can be seen as a subset of a semigroup (S ∪ {⊥}, ·) for some element ⊥ /∈ S with
⊥ ·a = a · ⊥ = ⊥ for every a ∈ M (however, not every subset of a semigroup is a
partial semigroup). A monoid is a semigroup that has a (unique) identity element 1
such that a · 1 = 1 · a = a for every a ∈M .

Given a partial semigroup (S, ·), an endomorphism of S is a function f : S → S
such that if x · y is defined, then f(x) · f(y) is as well and f(x · y) = f(x) · f(y).
We say that a monoid M acts on a set X if for every m ∈ M there is a function
fm : X → X satisfying fa(fb(x)) = fa·b(x) and f1(x) = x for every x ∈ X and
a, b ∈ M and 1 the identity of the monoid. With abuse of notation, we always write
m(x) to denote fm(x). If X is a partial semigroup, we say that the action of M is by
endomorphism if every function is an endomorphism.

We need to introduce a few semigroups that we will use abundantly in the fol-
lowing sections.

Example 4.1.1. Let X be a set. The semigroup of words WX over the alphabet
X is the free semigroup generated by X . In other words, WX = (X<ω,a) is the
set of all finite sequences of elements of X with operation given by the concate-
nation of sequences (a0, . . . , an)a(b0, . . . , bm) = (a0, . . . , an, b0, . . . , bm) for any
(a0, . . . , an), (b0, . . . , bm) ∈ X<ω.

Example 4.1.2. Let X be a set, and let Y =
⋃
n∈ω{n}×X . The partial semigroup

of located words (FINX ,
a) on the alphabet X is the partial subsemigroup of WY

consisting of those words ((n0, a0), . . . , (ni, ai)) such that n0 < · · · < ni.

Notice that both the semigroup of words and the partial semigroup of located
words have an identity (the empty sequence), so they are (partial) monoids. Both
above examples can be seen just as instances of a more general situation.
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Example 4.1.3. Let (Xn)n∈ω be a family of sets, and let Y =
⋃
n∈ωXn. The partial

semigroup of located words 〈(Xn)n∈ω〉 on the family of alphabets (Xn)n∈ω is the
partial subsemigroup of WY consisting of all those sequences x1

a ...a xn ∈WY for
which there exists i1 < ... < in ∈ ω such that xk ∈ Xik .

We often omit the adjective located for words of FINX and 〈(Xn)n∈ω〉.
If a monoid M acts on X , we say that X is an M -set. Given a family of M -sets

(Xn)n∈ω, we say that the action of M on (Xn)n∈ω is uniform if for every k, n ∈ ω,
m ∈ M and x ∈ Xk ∩ Xn, if mkx and mnx are the results of the action of m on
x respectively in Xk and in Xn, then mkx = mnx. Notice that the action of M on
(Xn)n∈ω is uniform if and only if it extends to X =

⋃
n∈ωXn.

Notice that ifX is anM -set, thenM acts coordinate-wise also onWX and FINX .
If M acts uniformly on (Xn)n∈ω, then M acts coordinate-wise also on 〈(Xn)n∈ω〉.

A distinguished point or variable of an M -set X is an element x ∈ X such that
Mx = {mx | m ∈ M} = X . A pointed M -set is an M -set X together with a
fixed distinguished point x ∈ X . Given a pointed M -set (X,x), we say that a word
w ∈ WX is a variable word if w contains x. Similarly, we define variable located
words for FINX . If (Xn, xn)n∈ω is a sequence of pointed M -sets, we say that a
word w ∈ 〈(Xn)n∈ω〉 is a variable located word1 if it contains xn for some n ≤ ω.
Notice that variable words form a both-sided ideal of the semigroup WX , and the
same is true for variable located words in FINX or 〈(Xn)n∈ω〉.

Notice that if M is a monoid, then (M, 1) is a pointed M -set with identity as
the distinguished point. In this case, variable words and variable located words are
exactly the words containing the identity of the monoids 1.

Notice that all coordinate-wise actions of a monoid onWX , FINX and 〈(Xn)n∈ω〉
are by endomorphism.

Given a monoid M acting on a partial semigroup S, we say that an infinite se-
quence s̄ = (si)i<ω ∈ Sω is basic if the product m0si0

a . . .amnsin is defined for
every i0 < · · · < in and m0, ...,mn ∈M .

Given a monoid M acting by endomorphism on a partial semigroup S, for ev-
ery w = (ni, ai)i≤h ∈ FINM and for every basic sequence s̄ = (si)i<α ∈ S≤ω

with lh(s̄) > nh, we can define w(s̄) = a0sn0 · · · ahsnh . This operation satisfies
(w aw′)(s̄) = w(s̄)aw′(s̄) for every w,w′ ∈ FINM .

Definition 4.1.4. Let M be a monoid acting by endomorphisms on a partial semi-
group S, and let s̄ be an infinite sequence of elements of S. Given a family C ⊆
FINM , we define the (combinatorial) C-span of s̄ as the set

〈s̄〉C = Cs̄ =
{
m0 si0 · · ·mn sin | ((i0,m0), . . . , (in,mn)) ∈ C

}
.

For ease of notation, we define also the C-span for C ⊆ WM as the C ′-span
for C ′ = {(ni, ai)i<h ∈ FINM | (ai)i<h ∈ C}. We define also the M -span as
〈s̄〉M = 〈s̄〉VM for VM the set of variable words of FINM (i.e. those words of FINM

containing the identity). Since the identity ofM acts as the identity function on S, the
M -span is precisely the set of those elements obtained from s̄ where one coordinate
is not changed by the action of M . Among all possible C-spans, the M -span is

1This definition is tricky: see also the definition of strongly variable word and the following discus-
sion.
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special: it is the largest span granting that if all elements of s̄ belong to a both-sided
ideal I ⊆ S, then 〈s̄〉M ⊆ I as well.

Definition 4.1.5 ([142]). A monoidM is said Ramsey if for all sequences of pointed
M -sets (Xn)n∈ω on whichM acts uniformly and for all finite colorings of 〈(Xn)n∈ω〉
there is a basic sequence of variable words s̄ ∈ (〈(Xn)n∈ω〉)ω with monochromatic
M -span 〈s̄〉M .

The class of partial semigroups of the form 〈(Xn)n∈ω〉 is general enough to cover
most cases of interest, like WX and FINX for any X , and yet sufficiently well-
behaved to allow to talk about variable words (a concept that does not exist in every
semigroup). However, many other choices are possible, and in what follow we dis-
cuss briefly different choices that would bring to equivalent definitions.

First, notice that if M is a monoid acting by endomorphisms on a partial semi-
group S, if s̄ ∈ Sω is basic, then for every partial subsemigroup C ⊆ M<ω, the
C-span 〈s̄〉C of s̄ is a partial subsemigroup of S. In particular, semigroups of located
words can be seen just as the full span of a specific sequence.

Remark 4.1.6. Given a uniform family of pointed M -sets (Xn, xn)n∈ω, we have that
t̄ = (xn)n∈ω is basic and 〈(Xn)n∈ω〉 = 〈t̄〉FINM . Conversely, given any M -set X
and a basic sequence t̄ ∈ Xω, we have 〈t̄〉FINM = 〈(Xn)n∈ω〉 for Xn = Mtn.

Since in a semigroup in general we do not have a concept of variable words,
we need a different way to control that the sequence s̄ with monochromatic span is
“nice”. Given a partial semigroup S on which a monoid M is acting by endomor-
phism, and given two sequences s̄ and t̄ in Sω, we say that s̄ is extracted from t̄ by
M , or s̄ ≤M t̄, if there is an increasing sequence (in)n∈ω of natural numbers such
that sn ∈ 〈tin , . . . , t(in+1)−1〉M .

The notion of extraction of sequences allows us to get a very strong form of
control. For example, if I ⊆ S is a both-ideal and t̄ ∈ Iω is a sequences of el-
ements of S all inside the ideal I , then every sequence s̄ ≤M t̄ belongs to Iω as
well. Since variable (located) words form a both-sided ideal of WM (and of FINM

or 〈(Xn)n∈ω〉), then every sequence extracted from a sequence of variable words is
again of variable words. However, this kind of control allows us to get the same
result for other ideals as well. Even for variable words, asking that a sequence s̄ is
extracted from a given sequence t̄ allows getting something stronger than just s̄ be-
ing a sequence of variable words. Given a sequence of pointed M -sets (Xn, xn)n∈ω,
call a located word w = a0

a · · ·a an ∈ 〈(Xn)n∈ω〉 strongly variable if there ex-
ists i0 < · · · < in < ω such that aih ∈ Xih for every h < n and aik = xik
for some k < n. Not every variable word is a strongly variable word. For exam-
ple: if X0 = {x0, y} ⊆ Xi and x0 6= xi for every i ∈ ω \ {0}, the word (y, x0)
is a variable word (as it contains a distinguished point), but not a strongly variable
word since this distinguished point can not be obtained from the set in which it is
distinguished. And in some scenarios, the difference is even more evident. For
example: for every sequence of (finite) pointed M -sets (Xn, xn)n∈ω, adding the
pointed M -sets (My, y) for every y ∈

⋃
n∈ωXn to the starting sequence, we get an-

other sequence of pointed M sets (X ′n, x
′
n)n∈ω such that 〈(Xn)n∈ω〉 ⊆ 〈(X ′n)n∈ω〉,

and every word of 〈(X ′n)n∈ω〉 is a variable word (since every element of any X ′n is
the distinguished point of some other X ′m). If for example the original sets Xn were
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disjoint, every word w ∈ 〈(Xn)n∈ω〉 is a strongly variable word in 〈(X ′n)n∈ω〉 if and
only if it was already a strongly variable word in 〈(Xn)n∈ω〉.

Strongly variable words, however, has the disadvantage that they do not form a
both-sided ideal of 〈(Xn)n∈ω〉, as in general they are not even closed under concate-
nation (e.g. if X0 = {x0} and X1 = {x1} and x0 6= x1, and x0 ∈ Xi and x0 6= xi
for all i > 1, then (x0) is a strongly variable word while (x0, x0) is not).

Remark 4.1.7. Given a uniform family of pointed M -sets (Xn, xn)n∈ω, a sequence
s̄ ∈ 〈(Xn)n∈ω〉 is a basic sequence of strongly variable words if and only if s̄ ≤M t̄
for t̄ = (xn)n∈ω.

Notice, however, that it is possible (e.g. in FINX ) that every variable word is also
a strongly variable word.

The situation thus seems very complicated. Luckily, the next result shows that in
reality, things work in a much smoother way, as everything gives equivalent combina-
torial statements. Hence, in practice, we may work with any of the notions described
above without having to think too much about it.

Definition 4.1.8. Given a monoid M acting by endomorphism on a semigroup S,
a sequence t̄ ∈ Sω is a free sequence if for every x ∈ 〈t̄〉WM

there are unique
m0, . . . ,mn ∈M and i0, . . . , in ∈ ω such that x = m0si0 · ... ·mnsin .

The next remark is saying that if we consider the category of partial semigroups
of the form 〈s̄〉M with surjective homomorphism sending generating sequences into
generating sequences as arrows, then the elements generated by basic free sequences
are (weakly) initial in the category.

Remark 4.1.9. Suppose M is a monoid acting by endomorphism on partial semi-
groups S and S′, and let t̄ ∈ Sω and s̄ ∈ (S′)ω. If t̄ is basic and free, then the
function f(m0ti0 · ... · mntin) = m0si0 · ... · mnsin is a well-defined surjective
homomorphism from 〈t̄〉C to 〈s̄〉C for every choice of C ⊆WM .

Lemma 4.1.10. The following are equivalent for a monoid M and C ⊆ FINM :

1. There is a partial semigroup S and an action by endomorphism ofM on S and
a basic free sequence t̄ ∈ Sω such that for every finite coloring of S there is
s̄ ≤M t̄ with 〈s̄〉C monochromatic.

2. For every action by endomorphism ofM on any partial semigroup S, for every
sequence t̄ ∈ Sω and for every finite coloring of S there is s̄ ≤M t̄ with 〈s̄〉C
monochromatic.

Proof. Let f : 〈x̄〉C → 〈ȳ〉C be the surjective homomorphism given in Remark 4.1.9.
Then every coloring c of 〈ȳ〉C induces a coloring c′ = c ◦ f of 〈x̄〉C . Furthermore, it
is easy to see that if s̄ ≤M x̄ and f(s̄) = (f(sn))n∈ω, then we have f(s̄) ≤M ȳ and
f � 〈s̄〉C = 〈f(s̄)〉C , and the result follows.

Thus, we may define Ramsey monoids in many different possible ways.
Given a set X , an infinite sequence t̄ ∈ (WX)ω is said rapidly increasing if

|tn| >
∑n−1

i=0 |ti| for all n ∈ ω.

Proposition 4.1.11. A monoid M is Ramsey if and only if one of the following holds:
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(a) For every (partial) semigroup S on whichM acts by endomorphisms, for every
(basic) sequence t̄ ∈ Sω, for every finite coloring of S there is an infinite
sequence s̄ ≤M t̄ such that 〈s̄〉M is monochromatic.

(b) For everyM -setX , for every t̄ ∈ Xω and for every finite coloring ofWX there
is an infinite basic sequence s̄ ≤M t̄ in (WX)ω with monochromatic M -span.

(c) For all sequences of pointed M -sets (Xn)n∈ω on which M acts uniformly and
for all finite colorings of 〈(Xn)n∈ω〉 there is a basic sequence of strongly vari-
able words s̄ ∈ (〈(Xn)n∈ω〉)ω with monochromatic M -span 〈s̄〉M .

(d) For all finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉M is monochromatic.

(e) There is a rapidly increasing sequence of variable words t̄ ∈ (WM )ω such that
for all finite coloring of WM there is an infinite sequence s̄ ≤M t̄ with 〈s̄〉M
monochromatic.

Proof. It is easy to see that (a) (with or without parenthesis) implies (b), and the latter
is equivalent to (c) by Remarks 4.1.6 and 4.1.7. Point (c) is a strictly stronger version
of the definition of Ramsey monoid, and being Ramsey implies (d) and (e).

Finally, (d) and (e) each implies (a) by Lemma 4.1.10, since every rapidly in-
creasing sequence of variable words is (basic and) free in WM , while s̄ ∈ (FINM )ω

is a basic sequence of variable located words if and only if s̄ ≤M t̄ for t̄ = (n, 1)n∈ω,
which is a basic and free sequence in FINM .

Other choices of (classes of) partial semigroups are also possible, as long as they
admit at least one free basic sequence. Also, notice that other conditions are possible
as well, but for more complicated reasons: see e.g. Theorem 5.2.13.

We move to the next main definition we are going to work with.
Given a monoid M , define X(M)= {aM | a ∈ M}. It is a partial order un-

der inclusion. Define Y(M)⊆ P(X(M)) as the family of all non-empty chains of
(X(M),⊆), i.e. the subsets of X(M) which are linearly ordered by inclusion. Given
x, y ∈ Y(M), define x ≤Y y if x ⊆ y and all elements of y \ x are larger with
respect to ⊆ than all elements of x. If X(M) contains no infinite descending chains
(e.g. if it is finite), then Y(M) is a forest. Notice that M acts by endomorphism on
(X(M),⊆), and thus also on (Y(M),≤Y).

Given a preorder (P,≤P), let 〈P〉, with operation ∨, be the semigroup freely
generated by P modulo the relations

p ∨ q = q = q ∨ p for p ≤P q.

In other words, (〈P〉,≤) is the semigroup of words P<ω over the alphabet P modulo
the smallest congruence relation extending the relations above. In particular, 〈P〉 is a
monoid, with identity given by (the class of) the empty sequence.

We will be interested in the semigroup (〈Y(M)〉,∨), and in particular in its sub-
semigroups (〈My〉,∨) for y ∈ Y(M), where My = {my | m ∈ M} is the smallest
suborder of Y(M) generated by y under the action of M . Notice that an element
y ∈ Y(M) is maximal if and only if it contains 1M .

The following definition is also borrowed from [142], although there it does not
have an explicit name.
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Definition 4.1.12. We say thatM is Y-controllable if for every y maximal element in
Y(M), for every finite F ⊆ 〈Y(M)〉, for every sequence of pointedM -sets (Xn)n∈ω
on whichM acts uniformly and for every finite coloring of 〈(Xn)n∈ω〉 there is a basic
sequence s̄ ∈ (〈(Xn)n∈ω〉)ω such that sn has a distinguished point for every n ∈ ω
and such that for every m,n ∈ ω and for every ai, bj ∈ M if a0y ∨ · · · ∨ any ∈ F
and a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bmy, then a0si0 · . . . · ansin has the same color of
b0sj0 · . . . · bmsjm , for every i0 < · · · < in, j0 < · · · < jm.

Once again, there are several other ways to formulate this definition in an equiv-
alent way. Let us discuss for a moment some alternatives that might be useful to
better grasp the idea behind this notion and the similarities and differences with other
notions and theorems in combinatorics.

First, notice that we may always assume that F ⊆ 〈My〉, since the elements of F
that are not in 〈My〉 play no role in the definition. The monochromatic set obtained
in the definition can be described in another way that closely resembles the one used
for Ramsey monoids. Indeed, for every y ∈ Y(M), the order ≤Y on My induces
a preorder ≤y on M given by a ≤y b if ay ≤Y by. It is not difficult to see that the
monoid (〈M〉,∨) generated by (M,≤y) is isomorphic to the monoid 〈My〉 generated
by (My,≤Y). This gives us an advantage: every element f ∈ 〈My〉 can be seen as
a family (more precisely, an equivalence class) of located words of W<ω

M (and thus
of FINM , since WM is the quotient of FINM ). In other words: we may think of any
f ∈ F as the equivalence class f = {(ni,mi)i≤h ∈ FINM | m0y∨ · · · ∨mhy = f}.

Thus, if M acts by endomorphism on a semigroup S, given a sequence s̄ ∈ Sω
and an element f ∈ 〈My〉, we may denote with 〈s̄〉f the f -span (where f is seen as
an equivalence class of words of FINM ) of s̄, i.e. the set of all elements of the form
m0si0 · . . . · ansin for m0y ∨ · · · ∨mny = f .

This notation allows us to rewrite the previous definition.

Remark 4.1.13. A monoid M is Y-controllable if and only if for every y maximal
element in Y(M), for every finite F ⊆ 〈My〉, for every sequence of pointed M -
sets (Xn)n∈ω on which M acts uniformly and for every finite coloring of 〈(Xn)n∈ω〉
there is a basic sequence of variable words s̄ ∈ (〈(Xn)n∈ω〉)ω with monochromatic
f -span 〈s̄〉f for every f ∈ F .

Once again, thanks to Lemma 4.1.10, we can restate the definition of Y-controllable
monoid in many equivalent ways using different classes of partial semigroups.

Proposition 4.1.14. A monoidM is Y-controllable if and only if for every y maximal
element in Y(M) and for every finite F ⊆ 〈My〉, one of the following hold:

(a) For every (partial) semigroup S on whichM acts by endomorphisms, for every
(basic) sequence t̄ ∈ Sω, for every finite coloring of S there is an infinite
sequence s̄ ≤M t̄ such that 〈s̄〉f is monochromatic for every f ∈ F .

(b) For everyM -setX , for every t̄ ∈ Xω and for every finite coloring ofWX there
is s̄ ≤M t̄ infinite with monochromatic f -span 〈s̄〉f for every f ∈ F .

(c) For every uniform sequence of pointed M -sets (Xn)n∈ω, for every finite col-
oring of 〈(Xn)n∈ω〉 there is a basic sequence of strongly variable words s̄ in
(〈(Xn)n∈ω〉)ω with monochromatic f -span 〈s̄〉f for every f ∈ F .
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(d) For all finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉f is monochromatic for every f ∈ F .

(e) There is a rapidly increasing sequence of variable words t̄ ∈ (WM )ω such that
for all finite coloring of WM there is an infinite sequence s̄ ≤M t̄ with 〈s̄〉f
monochromatic for every f ∈ F .

4.2 Basic notions of semigroup and monoid theory

In this section, we introduce the basic algebraic notions and definitions we are going
to use throughout this and the next chapters.

A monoid is said aperiodic if for all a ∈ M there exists n ∈ ω such that
an = an+1. The class of finite aperiodic monoids has been widely studied, as it
is involved in one of the most important theorems in finite automata theory, due to
Schützenberger [134]. It states that star-free languages are exactly those languages
whose syntactic monoid is finite and aperiodic. By a result of McNaughton and Pa-
pert, these also correspond to the languages definable in FO[<], i.e. first-order logic
with signature < [112].

A warning: there is another notion that is closely related to aperiodic monoids
and goes by a similar name. A monoid is said periodic if for all a ∈ M there exist
distinct i, j ∈ ω such that ai = aj . Obviously, every aperiodic monoid is periodic.
This should not cause confusion, as here “aperiodic” does not mean “not periodic”,
but rather “cycle free”. In a similar way, we say that an element a ∈ M has finite
period k for k ∈ ω, k > 0 if ak+1 = a and ai 6= a for every 0 < i < k + 1. We say
that an element a ∈M has infinite period if ai 6= aj for every i < j < ω.

One of the best ways to describe monoids and semigroups is using Green’s re-
lations. They were first introduced by Green in his doctoral thesis and in [76].
The Green’s relations R, L and J on a monoid M are the equivalence relations
defined by, respectively, aR b if aM = bM , aL b if Ma = Mb and aJ b if
MaM = MbM . The Green’s relation H is the intersection of R and L, while
the Green’s relation D is the smallest equivalence relation containing both L and R.
In every finite monoid, we have D = J . The same is true for aperiodic monoids
(see e.g. [79]). The Green’s relations induce quasi-orders on the monoid. Given two
element a, b ∈ M , define a ≤R b if aM ⊆ bM , a ≤L b if Ma ⊆ Mb, a ≤J b
if MaM ⊆ MbM , and finally a ≤H b if both a ≤R b and a ≤L b hold. If K is
an equivalence relation, we say that an equivalence class [a]K is trivial if it contains
exactly one element, and we say that a monoid M is K-trivial if every K-class is
trivial. For more information about Green’s relations, see e.g. [37].

Among finite monoids, the class of aperiodic monoids can be characterized in
many ways. We report here some of the most famous options used in literature.
Among all possibilities, we isolate the notion of R-rigid monoid as the operative
definition we are going to use in the proofs of the next section.

Definition 4.2.1. A monoid is said R-rigid if for every a, b ∈ M , if abR b, then
ab = b.

Proposition 4.2.2. Let M be a monoid. Then, each statement implies the followings:

1. M is aperiodic.
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2. For every g, a, g′ ∈M , if gag′ = a, then ga = ag′ = a.

3. M isR-rigid.

4. M isH-trivial.

5. M contains no non-trivial subgroup.

6. Every element a ∈M of finite period is idempotent.

Furthermore, if M is periodic (i.e. for every a ∈M the set {an | n ∈ ω} is finite) all
above statements are equivalent.

For the ease of the reader, we report also a short proof of the equivalence.

Proof. First, assume 1, and let g, a, g′ ∈ M be such that gag′ = a. By induction
this implies gna(g′)n = a for every n ∈ ω. Choose n such that gn+1 = gn and
(g′)n+1 = (g′)n. Then, 2 holds since

ga = g(gna(g′)n) = gn+1a(g′)n = gna(g′)n = a

and thus also ag′ = (ga)g′ = a.
If abR b, then by definition of R there exists a′ ∈ M such that b = aba′, hence

2 implies 3.
Notice that if a, b ∈ M are such that aH b, then in particular aR b and there is

x ∈M such that xb = a. Thus xbR b, and 3 implies 4.
Now if G ⊆ M is a subgroup of M , then for every a, b ∈ G there are x, y such

that ax = ya = b, and symmetrically there are x′, y′ such that bx′ = y′b = a, hence
aH b and G is contained inside one singleH-class. Therefore, 4 implies 5.

If a ∈ M is an element of finite period k, then {a, a2, . . . , ak−1} is a cyclic
subgroup of M , and it is trivial if and only if k = 2 and a is idempotent, hence 5
implies 6.

Finally, if M is periodic, then for every a ∈ M there are minimal n, k ∈ ω such
that an+k = an. Hence an has finite period k + 1, and 6 implies k = 1 and thus 1
hold.

These conditions do not coincide in general for monoids that are not periodic.
For example, (N,+, 0) is not aperiodic, but satisfies all other conditions. Also, the
bicyclic monoid M = 〈p, q | pq = ∅〉 (i.e. the free monoid of words over {p, q}
quotient the relation pq ∼ ∅) isH-trivial, but for example a = qp2 and b = qp shows
that it is notR-rigid. Or again, (Z,+) shows that point 6 does not imply point 5.

However, we will work mostly with monoids that satisfies one condition that
implies periodicity: for these monoids, all statements are equivalent. We anticipate
this result, even if it uses

Remark 4.2.3. If {a′y | a′ ∈ M,a′y ≤ ay} is finite for every a ∈ M and for
every y ∈ Y(M), then M is periodic and thus all statements of Proposition 4.2.2 are
equivalent.

The class of aperiodic monoids is closed under most basic operations. For exam-
ple, the following holds:



CHAPTER 4. FINITE MONOIDS IN COMBINATORICS 165

Proposition 4.2.4. Let (S1, ∗1), . . . , (Sn, ∗n) be aperiodic semigroups. Then, the
following are aperiodic:

1. The product monoid S1 × · · · × Sn with coordinate-wise operation.

2. The disjoint union S1 t · · · t Sn with any operation ∗ such that a ∗ b = a ∗i b
when a, b ∈ Si.

For more information about aperiodic monoids and their relations with languages
and automata, see for example [102] or [125].

Let us move to the next class. Given a monoid M , recall that X(M) is the set of
all principal right ideals generated by M . Notice that X(M) is linearly ordered by
inclusion if and only if ≤R is a total quasi-order. The existence of a total quasi-order
on M affects the behaviour of Green’s relations, and having that≤R is total has even
stronger consequences. The next proposition collects some well-known properties of
monoids where ≤R is total (see [85, Proposition 3.18-3.20]).

Proposition 4.2.5. Let M be a finite monoid with linear X(M). Then, the following
hold:

1. For every a ∈M , the principal right ideal aM is a both-sided ideal.

2. J = D = R and L = H, while ≤R = ≤J and ≤L = ≤H.

3. R is a congruence relation.

4. ≤R is translation-invariant on both sides.

For more information about monoids with linear X(M), see for example [85].
Combining results about aperiodic monoids with results about monoids with lin-

ear X(M), one can obtain further properties and characterizations of the class of
finite aperiodic monoids with linear X(M). For example, a finite monoid with linear
X(M) is aperiodic if and only if it is L-trivial. Notice that in light of Theorem 4.4.7
(and later on, Theorem 5.2.11), every property of this class of monoids will give a
necessary condition for a monoid to be Ramsey.

Finally, let us introduce a seemingly new class of monoids, the class of aperiodic
monoids with linear XR(M).

Let XR(M) be the subset of X(M) of those aM such that [a]R is non-trivial. We
say that XR(M) is linear if it is linearly ordered by inclusion. Recall also that M
is called almost R-trivial if for every non-trivial R-class [a]R we have Ma = {a}
(see [142] and [96]).

Proposition 4.2.6. Every finite almost R-trivial monoid M is aperiodic and has
linear XR(M).

Proof. Let M be a finite almost R-trivial monoid. First, we want to show that
XR(M) has at most one element that is the minimum of X(M) (and so XR(M)
is in particular linearly ordered by inclusion). If [a]R is a non-trivial R-class then,
for every m ∈ M we have ma = a, that means a ∈ mM and aM ⊆ mM . Hence,
if [a]R and [b]R are non-trivial R-classes, then we have aM = bM . Now let us
prove that M is aperiodic. Since M almostR-trivial, then Mb = {b} holds for every
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non-trivialR-class. This in particular implies that (Mb)∩ [b]R = {b} holds for every
R-class, and this is just a rephrasing of theR-rigid condition. Then the claim follows
from Proposition 4.2.2.

Notice that the converse does not hold, as it is easy to show that there are ape-
riodic monoids with linear XR(M) that have more than one non-trivial R-class (for
example, by combining almost R-trivial monoids with point 2 of Proposition 4.2.4;
see also Example 4.2.7). Also, there are aperiodic monoids that have non-trivial
R-classes [a]R such that a is not idempotent (a minimal example is given by the
monoid in Table 4.1, see also Example 4.2.7). These conditions are impossible for
almost R-trivial monoids, as shown in the proof of Proposition 4.2.6. Finally, there
are examples of aperiodic monoids with linear XR(M) that do not have linear X(M)
(the easiest examples coming from R-trivial monoids). Thus, the class of aperi-
odic monoids with linear XR(M) properly extends both the class of almostR-trivial
monoids and the class of aperiodic monoids with linear X(M).

Example 4.2.7. Consider the Gowers’ monoid Gk = ({0, . . . , k− 1}, +̄) with oper-
ation i +̄ j = min(i+ j, k−1). Consider also the Carlson’s semigroup CA = (A, ∗),
i.e. a finite set A with operation a ∗ b = b for every a, b ∈ A. Let C1

A = CA ∪ {1C1
A
}

be the corresponding monoid. Then, for every k and A the monoid M = (Gk ×C1
A)

is aperiodic and has linear XR(M), while M̃ = (Gk×CA)∪{1M̃} is aperiodic, has
linear X(M̃) and all its R-classes other than [1M̃ ]R are non-trivial. If k ≥ 2, neither
of these monoids is almostR-trivial.

For those familiar with finite automata theory, Schützenberger’s Theorem pro-
vides a wonderful way to produce examples of aperiodic monoids. Starting from a
star-free language S, or from a formula in FO[<], we always generate a finite ape-
riodic syntactic monoid. For example, the monoid from Table 4.1 is the syntactic
monoid of the star-free language S in the alphabet A = {a, g, h} defined as

S = {g, h}∗h ∪ {g, h}∗a{g, h}∗g ∪A∗aA∗aA∗

or, equivalently, defined by the formula in FO[<] that says “the word is non-empty,
and if it does not contain the letter a, then the word ends with h, and if there is exactly
one letter a, then the word ends with g”.

1 0 a b g h

0 0 0 0 0 0
a 0 0 0 b a
b 0 0 0 b a
g 0 a b g h
h 0 a b g h

Table 4.1: Syntactic monoid of the language S.

4.3 Dynamic theory

In this section, we study the actions of aperiodic monoids with linear XR(M) on
compact right topological semigroups. The main objective is to prove Theorem 4.3.5.
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This result reveals the relation between aperiodic monoids and dynamic theory and
it will be the key point to sufficient conditions for a monoid to be Ramsey or Y-
controllable. The advantage to work with compact right topological semigroups is
that they are the common ground for many different techniques, either from logic or
ergodic theory (see e.g. [18], [68], [108], [142], [154]).

Let us recall some notions. A semigroup (U, ·) with a topology τ is a right topo-
logical semigroup if the map x 7→ x · u is continuous from U to U for every u ∈ U .
It is called compact if τ is compact. A element u in a semigroup (U, ·) is called
idempotent if u · u = u. The set of idempotents of U is denoted by E(U). We define
a partial order ≤U in E(U) by

u ≤U v ⇐⇒ uv = u = vu.

Finally, let I(U) be the smallest compact both-sided ideal of U . It exists by compact-
ness of U .

We report some facts about idempotents, corresponding to [154, Lemma 2.1,
Lemma 2.3, Corollary 2.5].

Proposition 4.3.1. Let U be a compact right topological semigroup. Then,

1. E(U) is non-empty.

2. For every idempotent v there is a ≤U -minimal idempotent u such that u ≤U v.

3. Any both-sided ideal of U contains all the minimal idempotents of U .

Fact 4.3.2. Let M be a monoid, let U be any set, and fix a left action of M on U .
Then, for every a, b ∈M such that aM ⊆ bM we have a(U) ⊆ b(U).

Proof. In fact, if bm = a for some m ∈M , then a(U) = b(m(U)) ⊆ b(U).

In particular, if aR b, then a(U) = b(U).

Lemma 4.3.3. Let M be an aperiodic monoid such that XR(M) is linear. Then, for
every distinct a, b ∈M with aR b there are two distinct g, h ∈M such that ag = b,
bh = a and gh = h, hg = g. This in particular implies gM = hM .

Proof. Fix a non-trivialR-class [c]R and let a, b ∈ [c]R with a 6= b.
For every y, z ∈M , define

Gy,z = {gy,z ∈M : ygy,z = z}.

Notice that if yR z, then Gy,z is non-empty. Let g̃ ∈ Ga,b and h̃ ∈ Gb,a. Since M is
aperiodic, there is n ∈ ω such that (g̃h̃)n = (g̃h̃)n+1 and (h̃g̃)n = (h̃g̃)n+1. Define
g = (g̃h̃)ng̃ and h = (h̃g̃)nh̃. Then, we have

hgh = (h̃g̃)nh̃(g̃h̃)ng̃(h̃g̃)nh̃ = (h̃g̃)3n+1h̃ = (h̃g̃)nh̃ = h,

and similarly ghg = g.
Notice that h̃g̃ ∈ Gb,b, since bh̃g̃ = ag̃ = b, and so also (h̃g̃)n ∈ Gb,b. Thus,

h ∈ Gb,a, since bh = b(h̃g̃)nh̃ = bh̃ = a. Similarly, g ∈ Ga,b.
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Since hg ∈ Gb,b and Gb,a ∩ Gb,b = ∅, we have that h 6= hg. However, we
have hM = hghM ⊆ hgM ⊆ hM , thus hgRh and the class [h]R is non-trivial.
Similarly, gR gh and g 6= gh, so the class [g]R is non-trivial.

Since XR(M) is linear either gM ⊆ hM or hM ⊆ gM . Suppose for example
gM ⊆ hM = hgM . Then, g = hgm for some m ∈ M , which implies g = hg,
by Proposition 4.2.2. Hence, gM = hgM = hM , and gh = h by Proposition
4.2.2.

Lemma 4.3.4. Let M be an aperiodic monoid such that XR(M) is linear. Then, for
every a ∈ M , if there are b, c ∈ [a]R such that bc = c, then for every b, c ∈ [a]R we
have bc = c.

Proof. First, notice that if xy = y for some x, y ∈M , then xz = z for every z ∈ [y]R
since xzM = xyM = yM = zM and since M isR-rigid by Proposition 4.2.2.

Therefore, we just need to prove that given a non-trivial R-class [a]R such that
ax = x for every x ∈ [a]R, and given an element b ∈ [a]R with b 6= a, then we have
ba = a.

Let h be such that bh = a. Notice that haRhb since haM = hbM , and also
ha 6= hb since bha = a 6= b = bhb. Then haM ∈ XR(M) and so haM ⊆ aM or
aM ⊆ haM .

If haM ⊆ aM then

aM = aaM = bhaM ⊆ baM ⊆ bM = aM.

Hence, baR a and ba = a.
If aM ⊆ haM then a = ham for some m, and by Proposition 4.2.2, a = ha.

Hence, ba = bha = a.

Theorem 4.3.5. Let M be an aperiodic monoid. Let U be a compact right topo-
logical semigroup on which M acts by continuous endomorphisms. If XR(M) is
linear and finite, then there exists a minimal idempotent u ∈ E(U) ∩ I(U) such that
a(u) = b(u) for all couples a, b ∈M such that aR b.

Proof. Let a0M ( ... ( anM be an increasing enumeration of XR(M) and define
an+1 = 1. Every ai(U) is a semigroup, since ai(u1) · ai(u2) = ai(u1 · u2), and it
is compact because it is a continuous image of a compact space. Then, ai(U) is a
compact subsemigroup of the compact semigroup ai+1(U). We want to find a chain
of idempotents ui such that ui+1 ≤U ui and such that ui is minimal in E(ai(U))
with respect to ≤ai(U), for every i ≤ n+ 1.

First, by points 1 and 2 of Proposition 4.3.1, we can find u0 ∈ a0(U) sat-
isfying the requirement. Then, suppose we have ui ∈ ai(U) idempotent. Since
ai(U) ⊆ ai+1(U) we may apply point 2 of Proposition 4.3.1 to find ui+1 ∈ ai+1(U)
idempotent such that ui+1 ≤ai+1(U) ui and ui+1 is minimal in E(ai+1(U)), and this
concludes the construction. Since an+1 = 1 and E(an+1(U)) = E(U), by point 3
of Proposition 4.3.1 we also know that un+1 ∈ I(U).

We claim that u = un+1 satisfies the requirements of the thesis.
First, we want to show that for eachR-class [ai]R with aiai = ai we have

b(u) = ui for all b ∈ [ai]R.
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By Lemma 4.3.4, for every b ∈ [ai]R we have bai = ai, and this implies that
for every v ∈ ai(U), say v = ai(uv), we have b(v) = b(ai(uv)) = ai(uv) = v.
In particular for v = ui, we have b(ui) = ui. Notice that the action of M is order-
preserving on (U,≤U ) since it is by endomorphisms. Since u ≤U ui we get

b(u) ≤U b(ui) = ui.

Thus, b(u) ≤ai(U) ui, and since ui is minimal in ai(U), we get b(u) = ui.
Now consider a non trivial R-class [ai]R such that aiai /∈ [ai]R, and let a, b ∈

[ai]R. Let g, h be given as in Lemma 4.3.3 such that ag = b and bh = a and hg = g.
Notice that this implies bg = bhg = ag = b and also h(u) = g(u), since [g]R
belongs to the previous case. Then, a(u) = bh(u) = bg(u) = b(u).

Notice that the proof of Theorem 4.3.5 does not rely on M being aperiodic: this
hypothesis is used only to obtain the thesis of Lemmas 4.3.3 and 4.3.4. Also, it is
possible to obtain idempotents of this form even for (aperiodic) monoids that do not
satisfy the thesis of the two lemmas: see Example 5.4.8.

We take the opportunity to state a corollary of Lemma 4.3.3.

Corollary 4.3.6. Let M be a finite aperiodic monoid such that XR(M) is linear, let
U be a set and fix a left action of M on U . Then, for every a, b ∈ M with aR b and
for every u ∈ a(U) we have a(u) = b(u).

Proof. Let a, b ∈ M be such that aR b and a 6= b, and let g, h ∈ M be given by
Lemma 4.3.3 such that ag = b and bh = a, and gh = h and hg = g. This in
particular implies gg = ghg = hg = g, and bg = bhg = ag = b. Notice that by
linearity of XR(M) either a(M) ⊆ g(M) or g(M) ⊆ a(M) holds, since both [a]R
and [g]R are non-trivial. Then, we have a(M) ⊆ g(M), since |aM | = |bhM | ≤
|hM | = |gM |, and also a(U) ⊆ g(U), by Fact 4.3.2. Fix u ∈ a(U) and find v ∈ U
such that u = g(v). We have

a(u) = a(g(v)) = a((gg)(v))) = ag(g(v))) = b(g(v)) = b(u).

4.4 Coloring theorems and aperiodic monoids

In this section, we discuss how to obtain sufficient conditions for a monoid to be
Ramsey or Y-controllable starting from Theorem 4.3.5 and by following ideas from
Solecki’s paper.

Let us recall some relevant notions for this section. Given a monoid M , the set
Y(M)⊆ P(X(M)) consists of the non-empty subsets of X(M) which are linearly
ordered by inclusion. Define x ≤Y y, for x, y ∈ Y(M), if and only if x ⊆ y and all
elements of y \ x are larger with respect to ⊆ than all elements of x.

Notice that every partial order (P,≤) generates a semigroup 〈P〉, with operation
∨, defined as the semigroup freely generated by P modulo the relations

p ∨ q = q = q ∨ p for all p, q ∈ P with p ≤Y q

In particular, we will be interested in the semigroup (〈Y(M)〉,∨).
Notice that the action of M on itself by multiplication extends to a natural left

action of M on Y(M) defined as m(x) = {maM | aM ∈ x} for every m ∈M and
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x ∈ Y(M). It is easy to check that this action is order-preserving, thus it extends to
a left action by endomorphism of M on (〈Y(M)〉,∨) defined as

m(p0 ∨ · · · ∨ pn) = m(p0) ∨ · · · ∨m(pn).

Recall that an embedding of a semigroup (U, ·) into a semigroup (U ′, ∗) is a map
f : U → U ′ that is an isomorphism on the image, i.e. f is injective and for every
x, y ∈ U we have f(x · y) = f(x) ∗ f(y). Given two left actions of M on U and
U ′, a map f : U → U ′ is said M -equivariant if it preserves the action of M , i.e.
f(ma) = mf(a).

Definition 4.4.1. A monoid M is called good if for every left action of M by con-
tinuous endomorphisms on a compact right topological semigroup U there exists a
function h : Y(M)→ E(U) such that

(i) h is M -equivariant;

(ii) h is order reversing with respect to ≤Y and ≤U ;

(iii) h maps maximal elements of Y(M) to I(U).

In other words, a monoid M is good if whenever M is acting by continuous
endomorphisms on a compact right topological semigroup U , then there exists also
an M -equivariant embedding h : 〈Y(M)〉 → U such that

h[{p0 ∨ · · · ∨ pn ∈ 〈Y(M)〉 | pi maximal in Y(M) for some i ≤ n}] ⊆ I(U).

The notion of good monoids was first used by Solecki in [142]. We borrow here
three results that are contained or essentially proved therein.

The following useful lemma has the same function as two other lemmas by Lupini
[107, Lemma 2.2] and Barrett [13, Theorem 5.8], i.e. to get stronger conclusions from
results like Theorem 4.3.5.

Lemma 4.4.2 ([142, Lemma 2.5]). Let M be a finite monoid. Assume that for ev-
ery left action of M by continuous endomorphisms on a compact right topological
semigroup U there is a M -equivariant f from Y(M) to U such that f maps maximal
elements of Y(M) to I(U). Then, M is good.

We isolate the following lemma from the proof of [142, Theorem 2.4] since it
gives a sufficient condition for a monoid to be good.

Lemma 4.4.3. Let M be a finite monoid and assume that for every action by contin-
uous endomorphisms of M on a compact right topological semigroup U there exists
a minimal idempotent u ∈ E(U) ∩ I(U) such that a(u) = b(u) for all couples
a, b ∈M such that aR b. Then, M is good.

Proof. Let π : Y(M) → X(M) be the function that maps a set x ∈ Y(M) to
the maximal element in x with respect to ⊆. Let u ∈ E(U) ∩ I(U) be given by
hypothesis. The function f : X(M)→ E(U) that maps aM to a(u) is well-defined,
and maps 1M to u ∈ E(U) ∩ I(U). Also, notice that if y is a maximal element
of Y(M), then 1M ∈ y and so π ◦ f(y) = u ∈ E(U) ∩ I(U). Since both f and
π are M -equivariant the map f ◦ π : Y(M) → E(U) satisfies the assumptions of
Lemma 4.4.2, from which we get that M is good.
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Solecki in [142, Corollary 4.3] states that every finite almost R-trivial monoid is
Y-controllable, but in the proof, he shows something stronger. The hypothesis thatM
is almost R-trivial is used only to apply [142, Theorem 2.4], which states that every
finite almost R-trivial monoid is good. The remaining part of the proof never uses
this hypothesis again and relies instead on the fact that M is good. In other words,
from the proof of [142, Corollary 4.3] one can derive also the following result.

Theorem 4.4.4. Let M be a finite monoid. If M is good, then it is Y-controllable.

However, the reader can find a short model-theoretic proof of this result in Sec-
tion 4.5.

Finally, the following is a restatement of part of the proof of [142, Corollary 4.5
(i)].

Fact 4.4.5. If M is Y-controllable and X(M) is linear, then M is Ramsey.

Proof. Notice that X(M) is linear if and only if X(M) ∈ Y(M). We want to use the
definition of Y-controllable with y = X(M) and F = {y}. It is enough to notice that
for every a ∈M we have

aX(M) = {amM | mM ∈ X(M)} = {xM | xM ⊆ aM}.

Hence, if aM ⊆ bM , then ay∨ by = by = by∨ ay, and so a1y∨ · · · ∨ any = y ∈ F
for every a1, .., an ∈M with at least one i such that ai = 1.

Theorem 4.4.6. Let M be a finite monoid.

1. If M is aperiodic and has a linear XR(M), then it is Y-controllable.

2. If M is Y-controllable, then it is aperiodic.

Proof. First, let M be a finite aperiodic monoid with linear XR(M). By Theo-
rem 4.3.5 and Lemma 4.4.3, we get that M is good. Hence, Theorem 4.4.4 implies
that M is Y-controllable, and statement 1 holds.

In order to prove 2, let (M<ω,a) be the free semigroup overM , with coordinate-
wise action. Notice that (M<ω,a) can be seen as 〈(Xn)n<ω〉 setting all Xn = M ,
with 1 as distinguished point, and a word w has a distinguished point if and only if
1 ∈ ranw (in which case we call w a variable word).

Suppose M is not aperiodic, and let a ∈ M be such that an+1 6= an for every
n ∈ ω. Let A = {an | n ∈ ω}, and let C = {m ∈ M | anm ∈ A for some n ∈ ω}.
Then, we have ac 6= c for every c ∈ C, and ac ∈ C if and only if c ∈ C.

Let y = {anM | n ∈ ω}, where we set a0 = 1, and let F = {y}. Then, y is a
maximal element of Y(M), and y ∨ y = y = ay ∨ y.

Let C ∪ {⊥} be the set of colors. Given a word w ∈ M<ω, let m be the first
letter of w in C, if any. If there is such m, color w by m. Otherwise, color w by
⊥. Consider any sequence of variable words ȳ ∈ (M<ω)ω, and consider the words
y0
a y1 and a(y0)a y1 with colors c1 and c2 respectively. Then, c1 ∈ C, since y0

is a variable word and 1 ∈ ran(y0). Hence, by definition of C we have c2 = ac1.
Therefore, c2 = ac1 6= c1, contradicting the fact that M is Y-controllable.

Theorem 4.4.7. Let M be a finite monoid. The following are equivalent:
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1. M is Ramsey.

2. M is aperiodic and X(M) is linear.

Proof. Proof of point 2 of Theorem 4.4.6 also shows that if M is Ramsey then it is
aperiodic. If M is Ramsey, then X(M) is linear by [142, Corollary 4.5 (ii)]. Theo-
rem 4.4.6 and Fact 4.4.5 prove that 2 implies 1.

Corollary 4.4.8. Let M be a finite monoid. Then, M is Ramsey if and only if it is
Y-controllable and X(M) is linear.

4.5 A model-theoretic approach

In this section, we give a short explicit proof of Theorem 4.4.4 using model theory as
an alternative approach to ultrafilters.

First, let us recall some basic definitions and facts of model theory. From now
on, we consider a semigroup G on which M acts by endomorphisms. Let L = (·,≺)
be the first-order language with one single function (− · −) of ariety 2 denoting the
operation the partial semigroup, and a binary relation ≺. Let L+ = L ∪ {A | A ⊆
G} ∪ {m | m ∈M} be the expansion of L where we add one unary relation symbol
for each subset of G and one function of ariety 1 for each element of our monoid
(much of the language is redundant, but it is added for sake of simplicity). Then G
is a L+-structure, where each symbol A(x) for A ⊆ G is interpreted in G as x ∈ A,
every m ∈ M is interpreted as the unary function given by the action of m over G.
We denote with G a monster model for G in the language L+, i.e. G ⊃ G is an
elementary extension of G that is also a < κ-saturated and < κ-homogeneous for
some cardinal κ large enough. For our purpose, it is enough to take k > |P(G)|.

Given A ⊆ G, we denote with L+(A) the language L+ ∪ {a | a ∈ A} where we
added a constant symbol for each element of A. A partial 1-type over A is a set of
formulas in the language L+(A) with one free variable. A (complete) 1-type p(x)
over A is a maximal partial 1-type over A, i.e. a type such that for each formula φ(x)
with parameters inA, either φ(x) or ¬φ(x) belongs to p(x). Given an element a ∈ G,
we denote with tp(a/A) the complete 1-type over A generated by a, i.e. the set of
all formulas with one free variable and with parameters in A that are satisfied by a.
We write a � p(x) to say that every formula of p(a) holds in G. Given a, b ∈ G, we
write a ≡A b for tp(a/A) = tp(b/A). We say that a 1-type p(x) over A is finitely
satisfied in G if every finite conjunction of formulas in p(x) has a solution in G.

We define S(G) to be the space of all complete 1-types overG in the free variable
x that are finitely satisfied in G. Notice that since G is a model of the theory of G,
the type over G of every element of the monster G is finitely satisfiable in G. In
other words, we have S(G) = {tp(a/G) | a ∈ G}. Also, taking parameters in G is
redundant (since we can already refer to elements of G in the language L+ without
parameters), but we prefer to stick to this notation as a reminder of this.

It is easy to see that the space of types S(G) defined this way is just another
version of Stone–Čech compactification βG. Indeed, since we have a unary relation
A(x) for every A ⊆ G, a type p(x) ∈ S(G) identifies a unique ultrafilter {A ⊆
G | A(x) ∈ p(x)}, and conversely every ultrafilter U over G identifies a unique
type {φ(x) | [G � φ(x) ↔ A(x)] ∧ A ∈ U}. However, by using types we can
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benefit from the language and tools of logic and model theory, which allows us to
significantly simplify the notation and the proofs.

As it happens for example in βN, we can introduce an operation on S(G) that
turns it into a compact right topological semigroup. Given an element a ∈ G and
A ⊆ G, we write a^GA if tp(a/G ∪ A) is finitely satisfied in G2. In other words,
the relation a^GA is saying that the type of a over G ∪ A is uniquely determined
by the type of a over G: indeed, for every formula φ(x, y0, . . . , yn) in L+(G) and
for every tuple (a0, . . . , an) ∈ An+1, let R = {g ∈ G | G � φ(g, a0, . . . , an)}. Then
¬[φ(x, a0, . . . , an) ↔ R(x)] is not satisfiable in G, hence R(x) ∈ tp(a/G) if and
only if φ(x, a0, . . . , an) ∈ tp(a/G ∪ {b}).

When A = {b} is a singleton, we write a^G b. Given two types p, q ∈ S(G),
we define p ·G q as tp(a · b/G), for any a, b ∈ G such that a � p(x), b � q(x) and
a^G b.

As usual, we will consider the compact topology τ on S(G) generated by the
basic open sets {t ∈ S(G) | φ(x) ∈ t}, for φ(x) ∈ L+(G).

Notice that we can identify the semigroup (G, ·) with an open discrete subsemi-
group of (S(G), ·G, τ): indeed, for every g ∈ G, the atomic formula x = g defines a
unique type pg(x) that is finitely consistent in G (corresponding to a principal ultra-
filter), and thus G ∼= {pg(x) ∈ S(G) | g ∈ G}.

With this operation and topology,

Proposition 4.5.1. (S(G), ·G, τ) is a compact right topological semigroup on which
M acts by continuous endomorphisms by m(tp(a/G)) = tp(m(a)/G).

Proof. Most of the required properties follow immediately from [39] (see e.g. Re-
mark 2.7 and Propositions 4.4 and 6.3). However, for sake of completeness, we prefer
to give a complete and self-contained proof of the statement.

First, in order to prove that the operation is well defined it is enough to show that
for every formula φ(x, y) in L+(G) and for every a, a′, b, b′ ∈ G, if we have a^G b
and a′^G b

′ and a ≡G a′, and b ≡G b′, then φ(a, b) holds in G if and only if φ(a′, b′)
holds in G. Since b ≡G b′, for every g ∈ G we have that φ(g, b) holds in G if and
only if φ(g, b′) holds in G. Let

A = {g ∈ G | G � φ(g, b)} = {g ∈ G | G � φ(g, b′)}.

Then ¬[A(x) ↔ φ(x, b)] is not satisfiable in G, and since tp(a/G ∪ {b}) is finitely
satisfied inG, we have that φ(a, b) holds in G if and only ifA(a) hold in G. Similarly
φ(a′, b′) holds in G if and only if A(a′) hold in G. But a ≡G a′, hence A(a) holds in
G if and only if A(a′) and holds in G.

Next, we want to show the associativity of the operation. First, notice that for
every type p(x) ∈ S(G) and A ⊆ G of small size (i.e. less than the saturation degree
of the monster model), there is always an element a ∈ G such that a � p(x) and
a^GA: it is enough to extend p(x) to a complete type p′(x) over G ∪ A finitely
satisfiable in G. This type will be realized by some element a of the monster model
(by saturation), and a will have all the desired properties. Secondly, notice that for
every a, b ∈ G and A ⊆ G of small size (with a, b /∈ A), if a^G{b} ∪ A and
b^GA, then a · b^GA. In fact, let φ(x) be a formula in L+(G ∪ A) satisfied by

2In literature this relation is also denoted by a |̂
G
A.
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a · b. Then ψ1(x) = φ(x · b) is a formula in L+(G ∪ A ∪ {b}) satisfied by a, and
since a^GA ∪ {b} there is g ∈ G such that ψ1(g) = φ(g · b) hold in G. Now let
ψ2(x) = φ(g · x): since b^GA, there is g′ ∈ G such that ψ(g′) = φ(g · g′) hold in
G, as wanted.

Therefore, given p, q, r ∈ S(G), consider a, b, c ∈ G such that b^G c and
a^G{b, c, b · c}. Then we also have ab^G c, and thus

p ·G (q ·G r) = tp(a · (b · c)/G) = tp((a · b) · c/G) = (p ·G q) ·G r.

The action of M on S(G) is well-defined and continuous. Indeed, for every
formula φ(x) in L+(G), let ψ(x) = φ(m(x)): it is still a formula in L+(G). This
implies first that if a ≡G b then m(a) ≡G m(b), and thus action is well-defined, and
secondly that m−1[{p(x) ∈ S(G) | φ(x) ∈ p(x)}] = {p(x) ∈ S(G) | ψ(x) ∈ p(x)}
and thus m continuous. Furthermore, if a^G b then also m(a)^Gm(b), since for
every ψ(x) ∈ tp(m(a)/G ∪ {m(b)}) there is φ(x) ∈ tp(a/G ∪ {b}) such that
ψ(x) = φ(m(x)). Thus M acts by endomorphism, since

m(p·Gq) = m(tp(a·b/G)) = tp(m(a·b)/G) = tp(m(a)·m(b)/G) = m(p)·Gm(q).

Finally, we need to prove that for every r ∈ S(G), the map fr : S(G) → S(G),
fr(p) = p ·G r is continuous. Let φ(x) be a formula in L+(G). Choose an element
b ∈ G such that b � r(x), and define Ab = {g ∈ G | G � φ(g · b)}. Notice that for
every other b′ ∈ G satisfying b′ � r(x), we have b′ ≡G b and thus Ab′ = Ab. Then
¬[Ab(x)↔ φ(x · b)] is a formula in L+(G∪ {b}) that is not satisfiable in G. Hence,
for every type p(x) ∈ S(G), and for every a, b ∈ G with a � p(x) and b � r(x), if
a^G b we must have that Ab(a) holds in G if and only if φ(a · b) holds in G. This
implies that

f−1
r [{p(x) ∈ S(G) | φ(x) ∈ p(x)}] = {p(x) ∈ S(G) | Ab(x) ∈ p(x)}

and thus fr is continuous.

We say that the infinite tuple c̄ = (ci)i<ω is a coheir sequence of p(x) over G if
cn � p(x) and cn^G{ci | i < n} and cn+1 ≡G∪{c0,...,cn−1} cn for every n < ω. We
say that c̄ is indiscernible over G if for any formula φ(x0, . . . , xn) in L+(G) and for
any natural numbers i0 > · · · > in and k0 > · · · > kn we have that φ(ci0 , . . . , cin)
holds in G if and only if φ(ck0 , . . . , ckn) holds in G. The following is a well-known
fact but we prove it here for the reader’s convenience.

Fact 4.5.2. Every coheir sequence over G is also indiscernible over G.

Proof. Suppose not and let n be minimal such that there exist a formula φ(x0, . . . , xn)
in L+(G) and i0 > · · · > in and k0 > · · · > kn such that φ(ci0 , . . . , cin) and
¬φ(ck0 , . . . , ckn) hold in G. Assume without loss of generality that i0 ≥ k0. Since
ci0 ≡G∪{c0,...,ck0−1} ck0 , we have that also φ(ci0 , . . . , cin) ∧ ¬φ(ci0 , ck1 , . . . , ckn)

hold in G. But tp(ci0/G ∪ {c0, . . . , ci0−1}) is finitely satisfied in G, hence we may
find g ∈ G such that both φ(g, ci1 , . . . , cin) and ¬φ(g, ck1 , . . . , ckn) hold in G, con-
tradicting the minimality of n.

The following is an easy well-known fact.
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Fact 4.5.3. For every type p(x) ∈ S(G) there is a coheir sequence of p(x).

Proof. We proceed by induction. First, by saturation of G and since p(x) is finitely
satisfiable in G, we may find c0 ∈ G satisfying p(x). Now given (ci)i<n+1 coheir
sequence, let p′n(x) = tp(cn/G ∪ {c0, . . . , cn−1}), and then extend p′n(x) to a com-
plete type pn(x) over G ∪ {c0, . . . , cn} that is finitely satisfiable in G. Again, since
G∪{c0, . . . , cn} has small size and since pn(x) is finitely satisfiable in G, by satura-
tion we may find cn+1 ∈ G such that cn+1 � pn(x). Now: since pn(x) is a complete
type over G ∪ {c0, . . . , cn}, we have tp(cn+1/G ∪ {c0, . . . , cn}) = pn(x), which
is finitely satisfiable in G by construction, and thus cn+1^G{c0, . . . , cn}. Since
p(x) ⊆ pn(x), we have cn+1 � p(x). Finally, since tp(cn/G ∪ {c0, . . . , cn−1}) ⊆
pn(x), we have cn+1 ≡G∪{c0,...,cn−1} cn, as wanted.

We are ready to prove Theorem 4.4.4. Let us introduce the following auxiliary
definition to simplify the notation of the next proof.

Definition 4.5.4. Let F be a finite subset of the semigroup 〈Y(M)〉, let y be a max-
imal element in Y(M), and let c be a finite coloring of a semigroup S on which M
acts. We say that a sequence s̄ ∈ S≤ω is (F, y, c)-controllable if for everym,n ≤ |s̄|
and for every ai, bj ∈ M if a0y ∨ · · · ∨ any belongs to F and a0y ∨ · · · ∨ any =
b0y ∨ · · · ∨ bmy, then a0si0 · . . . · ansin has the same color of b0sj0 · . . . · bmsjm , for
every i0 < · · · < in, j0 < · · · < jm.

Notice that we can always assume that F ⊆ 〈My〉, since elements of F that are
not of the form a0y ∨ · · · ∨ any have no influence in the above definition.

Proof of Theorem 4.4.4. We want to prove that for every finite subset F of 〈Y(M)〉,
for every maximal element y in Y(M), for every sequence of pointedM -sets (Xn)n∈ω
on which M acts uniformly and for every c finite coloring of 〈(Xn)n∈ω〉 there is a
basic sequence s̄ ∈ (〈(Xn)n∈ω〉)ω that is (F, y, c)-controllable and such that sn has
a distinguished point for every n ∈ ω.

So let (Xn)n∈ω be a sequence of pointed M -sets on which M acts uniformly,
and let⊥ be not in

⋃
n∈ωXn. Define G = (〈(Xn)n∈ω〉∪{⊥}, ·) to be the semigroup

extending (〈(Xn)n∈ω〉,a) defining x · y = ⊥ if xa y is not defined in the partial
semigroup 〈(Xn)n∈ω〉, and x · y = xa y otherwise. In particular, we have x · ⊥ =
⊥ · x = ⊥. We write x≺ y if and only if x · y 6= ⊥. We may also extend the
coordinate-wise action of M over 〈(Xn)n∈ω〉 to the whole G by letting m(⊥) = ⊥
for every m ∈ M . By definition of endomorphism, m(a · b) is defined if and only if
m(a) ·m(b) is defined for every a, b ∈ 〈(Xn)n∈ω〉, so the action of M on G is still
well defined and by endomorphism.

Then (G, ·,≺) is a semigroup as wanted, and we can define the language L+, a
monster model G for G and the compact right topological semigroup (S(G), ·G, τ)
as described above.

Let e(x) = {“g≺x” | g ∈ G \ {⊥}}: it is a partial type. Notice that e(x) is
finitely satisfiable, since for every finite set A ⊆ G \ {⊥} there is a b ∈ G such that
a≺ b for every a ∈ A. Define

U = {p(x) ∈ S(G) | e(x) ⊆ p(x)}

to be the set of all complete types in S(G) extending e(x).
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Claim. U is a non-empty compact right topological subsemigroup of (S(G), ·G, τ)
closed under the action of M .

Proof. First, since e(x) is finitely satisfiable, then U is non-empty. It is also clear
that U is a closed (and thus compact) subset of S(G), since U is type definable
and thus it is the intersection of sets defined by a single formula, which are clopen
by definition. Next, notice that for every p(x) ∈ U , we have ⊥ 6� p(x), and thus
“x 6= ⊥” ∈ p(x) by completeness of the type. Given two elements p(x), q(x) ∈ U ,
let a, b ∈ G be such that a � p(x) and b � q(x) and a^G b. Then, we must have
that a≺ b and g · a≺ b for every g ∈ G \ {⊥}, since b � e(x) and the formulae
¬[x≺ b] ∧ [x 6= ⊥] and ¬[g · x≺ b] ∧ [g≺x] are not satisfiable in G. Hence, for
every g ∈ G \ {⊥} we have g · (a · b) = (g · a) · b 6= ⊥, which implies g≺(a · b)
and thus e(x) ⊆ p(x) ·G q(x) ∈ U , so U is closed under the operation of S(G).
Finally, notice that since M acts coordinate-wise on 〈(Xn)n∈ω〉 = G \ {⊥}, the
formula g≺x ∧ ¬[g≺m(x)] is not satisfiable in G. Hence, for every g ∈ G and
a ∈ G we have that g≺ a implies g≺m(a), and thus m(p) ∈ U for every p ∈ U and
m ∈M .

Now fix a maximal element y ∈ Y(M) and let u(x) = h(y) ∈ E(U) ∩ I(U),
where h : 〈Y(M)〉 → U is the M -equivariant embedding given by definition of
good monoid. Let DP ⊆ G be the set of elements of 〈(Xn)n∈ω〉 that have at least
one distinguished point. Notice that DP is a both-sided ideal in G. Since being an
ideal is expressible in L+(G) by the formula ∀x, y[DP(y)→ DP(x ·y)∧DP(y ·x)],
and since G models the theory ofG, then DP defines a both-sided ideal of the monster
model DP(G) = {a ∈ G | G � DP(a)}. Thus,

J = {p(x) ∈ U | “ DP(x)” ∈ p(x)}

is also a both-sided ideal of U . It is also non-empty, since e(x)∪ {DP(x)} is finitely
satisfiable in G. Since u(x) ∈ I(U) and I contains all non-empty both-sided ideals
of U , we have that u(x) is in J .

Fix also a finite coloring (i.e. partition) c′ = {Ci | i < r} of 〈(Xn)n∈ω〉. We can
extend c′ to a coloring c of the whole G by adding {⊥} to c′. Notice that since the
coloring c is finite and since L+(G) contains a relation symbol for every subset of G,
then c is definable in L+(G), and thus c extends to a finite coloring of G

c̃ = {{a ∈ G | G � Ci(a)} | i < r}.

Let (un)n∈ω be a coheir sequence of u(x). We write ~u�i for the tuple ui−1, . . . , u0.

Claim. For every i ∈ ω and F ⊆ 〈My〉, the sequence ~u�i is (F, y, c̃)-controllable.

Proof. Since the map h is an M -equivariant embedding of 〈Y(M)〉 into E(U), for
every a0, . . . , an, b0, . . . , bm ∈M we have

any∨· · ·∨a0y = bmy∨· · ·∨b0y if and only if anu ·G . . . ·Ga0u = bmu ·G . . . ·G b0u.

We just need to check that ak(uk)^G{aj(uj) | j < k} for every k ≤ n. Indeed,
since L+(G) contains a function symbol for every element of M , then for every
a ∈ G, for every A ⊆ G of small size we have

tp(a/G ∪A) = tp(a/G ∪ {m(b) | m ∈M, b ∈ A}).
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Furthermore, for every formula φ(x) there is a formula ψ(x) = φ(m(x)) such that
φ(m(a)) holds if and only if ψ(a) holds. Thus, if tp(a/G ∪ A) is finitely satisfiable
over G, then tp(m(a)/G ∪ {m(b) | m ∈M, b ∈ A}) is as well.

Therefore, anun · . . . ·a0u0 satisfies anu(x) ·G . . . ·G a0u(x) and bmum · . . . ·b0u0

satisfies bmu(x) ·G . . . ·G b0u(x). Since the color of an element of G is determined
by its type over G, this implies immediately that for every choice of F ⊆ 〈My〉 (not
even necessarily finite) and i ∈ ω, we have that ~u�i is (F, y, c̃)-controllable.

Now fix a finite subset F ⊆ 〈My〉. Every element f ∈ 〈Y(M)〉 has a (unique)
representation of minimal length f = p0 ∨ · · · ∨ pj for some p0, . . . , pj ∈ Y(M).
We write |f | the denote the length j ∈ ω of this minimal representation. Since y is a
linearly ordered subset of X(M), if f, f ′, f ′′ ∈ 〈My〉 are such that f ′ ∨ f ′′ = f , then
we must have |f ′| ≤ |f | and |f ′′| ≤ |f |.

Therefore, there exists k ∈ ω such that for every f ′ ∈ 〈My〉, if f ∨ f ′ ∈ F for
some f ∈ 〈My〉, then |f ′| < k.

Claim. For every l > k and for every sequence ḡ = (g0, . . . , gn) in G, the sequence
ḡ a ~u�l is (F, y, c̃)-controllable if and only if ḡ a ~u�k is (F, y, c̃)-controllable.

Proof. It is clear that if ḡ a ~u�l is (F, y, c̃)-controllable then so is ḡ a ~u�k.
Let fg = a0y∨ · · · ∨ ahy and fu = ah+1y∨ · · · ∨ amy, and f ′g = b0y∨ · · · ∨ bh′y

and f ′u = bh′+1y ∨ · · · ∨ bm′y. Suppose

fg ∨ fu = a0y ∨ · · · ∨ amy = b0y ∨ · · · ∨ bm′y = f ′g ∨ f ′u ∈ F

Let i0 < · · · < ih ≤ n, and im < · · · < ih+1 < l, and i′0 < · · · < i′h′ ≤ n, and
i′m′ < · · · < i′h′+1 < l, and let ag = a0gi0 ·...·ahgih , and au = ah+1uih+1

·. . .·amuim ,
and bg = b0gi′0 · ... · bh′gi′h′ and bu = bh′+1ui′

h′+1
· . . . · bm′ui′

m′
.

We want to show that
c̃(ag · au) = c̃(bg · bu).

First, since fg ∨ fu ∈ F , we have j = |fu| < k. Let d0, . . . , dj ∈ M be such
that fu = djy ∨ · · · ∨ d0y. Let ad = djuj · . . . · d0u0: then, as shown in previous
claim, au and ad satisfies the same type over G. In particular, for every color C ∈ c̃,
we have that C(ag · x) is in the type of au if and only if it is in the type of ad. Thus,
c̃(ag · au) = c̃(ag · ad).

In the same way, c̃(bg · bu) = c̃(bg · bd) for some bd = d′j′uj′ · . . . · d′0u0 such that
j′ < k and f ′u = d′j′y ∨ · · · ∨ d′0y.

However, since ḡ a ~u�k is (F, y, c̃)-controllable and since

fg∨fu = a0y∨· · ·∨ahy∨djy∨· · ·∨d0y = b0y∨· · ·∨bh′∨d′j′y∨· · ·∨d′0y = f ′g∨f ′u,

then we have c̃(ag · ad) = c̃(bg · bd).

Notice that up to now we never used the fact that M is finite.
Now, to conclude the proof, we want to pass from the sequence (un)n∈ω in the

monster model to a basic (F, y, c)-controllable sequence s̄ in 〈(Xn)n∈ω〉.
First, since F , M and c are finite and since we added all subsets of G to the lan-

guageL+, for every n ∈ ω there are a formula φn(x0, . . . , xn) saying that (x0, . . . , xn)
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is (F, y, c)-controllable, a formula ψn(x0, . . . , xn) saying that (x0, . . . , xn) is a ba-
sic sequence, and a formula

∧
i≤n DP(xi) saying that each word has a distinguished

point. (In this context, we say that a sequence (s0, . . . , sn) ∈ Gn is basic if si≺ sj
for every i < j ≤ n, i.e. if its n-type is satisfiable only by basic sequences of
〈(Xn)n∈ω〉.) Let

ξn(x0, . . . , xn) = φn(x0, . . . , xn) ∧ ψn(x0, . . . , xn) ∧
∧
i≤n

DP(xi).

We proceed recursively. Assume that we have a (possibly empty) basic se-
quence s̄�i ∈ DPi of words with a distinguished point such that s̄�i a ~u�k is (F, y, c)-
controllable (i.e., ξi+k(s̄�i, ~u�k) hold in G). The empty sequence satisfies this by the
previous claim, so the base case is ok. Our goal is to find si ∈ 〈(Xn)n∈ω〉 such that
the same properties hold for s̄�i+1.

By induction hypothesis s̄�i a ~u�k is (F, y, c)-controllable, and so by previous
claim s̄�i

a ~u�k+1 is as well. Notice that ~u�i is a basic sequence, since U is closed
under products and ⊥ /∈ U . Also, since e(x) ⊆ u(x) and uh � u(x) for every h ≤ k,
we have sj ≺ui for every j < i and h ≤ k. These and the fact that s̄�i is basic by
induction hypothesis imply that s̄�i, ~u�k+1 is basic as well. Finally, uk � u(x) and
u(x) ∈ J , thus uk � DP(x), and other coordinates satisfies DP(x) as well by induc-
tion hypothesis. Therefore, G � ξi+k+1(s̄�i, uk, ~u�k). Since uk^G{u0, . . . , uk−1},
the type tp(uk/G ∪ {u0, . . . , uk−1}) is finitely satisfiable in G, hence we may find
si ∈ G such that ξi+k+1(s̄�i, si, ~u�k) hold in G, and we are done.

Notice that ⊥ /∈ DP, thus (si)i∈ω ∈ 〈(Xn)n∈ω〉 as wanted.

4.6 Final remarks and open problems

We conclude with some open questions and remarks concerning the work done so
far.

In the definition ofM -span, we ask that at least one element of the basic sequence
is moved by 1. Thanks to 4.4.8 (and Proposition 5.1.3), we can relax this condition.

Proposition 4.6.1. Let M be a finite Ramsey monoid. Then, for any partial semi-
group S, for any finite coloring of S and for every sequence t̄ ∈ Sω there is s̄ ≤M t̄
such that for every a ∈M the set{

m0 si0 · · ·mn sin | i0 < · · · < in,mi ∈ aM,miR a for at least one i
}

is monochromatic.

Proof. By Corollary 4.4.8, M is Y-controllable. Then, the thesis follows from the
definition of Y-controllable monoid applied to the maximal element y = X(M) and
to F = {ay | a ∈M}, and by Proposition 5.1.3.

In the previous corollary, the action of M can be controlled with |X(M)|-many
colors. This is optimal, as in general, it is not possible to get less than |X(M)|-
many monochromatic sets. For example, choose X(M) as set of colors, and color
each word w ∈ M<ω by the minimum aM such that ran(w) ⊆ aM : then, if t̄ is a
sequence of variable words, for any s̄ ≤M t̄ each set defined above has a different
color.
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When instead M is Y-controllable but X(M) is not linear, it is not difficult to see
that for any k ∈ ω there are y and F ⊆ Y(M) and colorings of, say, M<ω such that
for every sequence of variable words s̄ there are more than k-many f ∈ F such that
the sets

〈s̄〉f = {a0si0 · . . . · ansim | ai ∈M, i0 < · · · < im, a0y ∨ · · · ∨ any = f}

have different colors.
The next theorem is a generalization of both Theorem 4.4.7 and Milliken-Taylor

theorem [115], [151]. It is a combination of Ramsey’s theorem and Theorem 4.4.7, in
the same way as the Milliken-Taylor Theorem is a combination of Ramsey’s theorem
and Hindman’s theorem. For a sequence s̄ ∈ Sω let s̄(n) be the collection of n-
subsets of {a ∈ S | a = si for some i ∈ ω}. Notice that for n = 1 the following is
the content of Theorem 4.4.7.

Theorem 4.6.2. Let M be a finite Ramsey monoid. Then, for any n ≥ 1, for all
sequences of pointed M -sets (Xn)n∈ω on which M acts uniformly, for any finite
coloring of n-subsets of 〈(Xn)n∈ω〉 there is a basic sequence s̄ ∈ (〈(Xn)n∈ω〉)ω

such that sn has a distinguished point for every n ∈ ω and such that
⋃
r̄≤M s̄

r̄(n) is

monochromatic.

Proof. The proof goes as in Theorem 4.4.4, in section 4.5. Let G and u = g(y) be
defined as in Theorem 4.4.4, with y = X(M), and let (un)n∈ω be a coheir sequence
of u. It is straightforward to check that all elements of the span of ~u�i satisfy the
type u for every i ∈ ω. Also, notice that with signature L+, for every a, a′, b ∈ G<ω
if a ≡G a′, a′^G b, and a^G b, then a ≡Mb a

′. Then, for any ~h ≤M ~u we have
~h ≡G ~u, by the remark above and the definition of coheir sequence. All the n-subsets

of an indiscernible sequence have the same color, for any n ∈ ω. The rest of the proof
is the same as in Theorem 4.4.4.

Notice that here as well, thanks to Lemmar 4.1.10 we can extend this result to
any partial semigroup.

It can be easily seen that if a monoid satisfies the conclusions of Proposition 4.6.1
or the conclusions of Theorem 4.6.2, then it is Ramsey. Conversely, Proposition 4.6.1
and Theorem 4.6.2 hold for all finite Ramsey monoids. Hence, their conclusions hold
for a finite monoid if and only if it is Ramsey.

Our main theorems suggest a possible connection between Ramsey theory and
automata theory, passing through Schützenberger’s Theorem. Any result in that di-
rection would be of the highest interest.

Limiting ourselves to Ramsey theory, there are still several challenging open
questions in the context of monoid actions on semigroups.

Theorem 4.4.6 provides a sufficient condition for a monoid to be Y-controllable.
This condition is not necessary, as there are Y-controllable monoids for which XR(M)
is not linear.

Proposition 4.6.3. Let M be a finite aperiodic monoid such that for every distinct
a, b ∈M with aR b, we have a2 = a and ax = bx for every x ∈M \ {1}. Then, M
is Y-controllable.
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Proof. To show that M is Y-controllable is enough to work with M<ω, thanks to
Proposition 5.1.3.

Consider the monoid M̃ = (M, ∗) where x ∗ y = y for all x, y 6= 1. It acts
coordinate-wise on M<ω, considered as M̃<ω.

Let G be M<ω with the signature L+ used in the proof of Theorem 4.4.4, plus an
unary function ã for any a ∈M , which is interpreted in G as the action of M̃ . Since
M̃ is Ramsey and since every element in M̃ different from 1 is in the same R-class,
one can find an idempotent u in the space of types S(G) such that ãu = b̃u for every
a, b 6= 1. Let v be an element of the monster model satisfying u. Then, if aR b, we
have

av = aãv ≡G ab̃v = bv,

where we use the fact that for every x ∈M<ω, and hence for every x in the monster
model, we have aãx = ax and ab̃x = bx, by hypothesis. Hence, we can conclude
that M is Y-controllable, by the arguments of Theorem 4.4.4.

An example of a monoid satisfying the hypothesis of Proposition 4.6.3 for which
XR(M) is not linear is given by the following Cayley table.

1 a b c d

a a b a b
b a b a b
c c d c d
d c d c d

Table 4.2: Example of (aperiodic) Y-controllable monoidM such that XR(M) is not
linear.

On the other hand, it seems possible that the necessary condition of Theorem
4.4.6 is also sufficient, and that a finite monoid is aperiodic if and only if it is Y -
controllable. If true, this would suggest an even stronger connection between Ramsey
theory and Schützenberger’s Theorem.

Open Problem 4.6.4. Find an algebraic characterization of Y-controllable monoids.

If M is a Ramsey monoid, then for every action of M on every partial semigroup
you have a monochromatic set as described in the definition. Lupini’s in [107] gave
examples of non-Ramsey monoids where the same statement holds for certain actions
on certain partial semigroups (actually, he proved a stronger statement that can be
seen as the analogue of Proposition 4.6.1).

Define Ik to be the set of functions f from k to k such that f(0) = 0 and such that
if f(i) = j then either f(i+ 1) = j or f(i+ 1) = j + 1. Then, Ik is a monoid with
composition of functions as operation, and k is an Ik-set with distinguished point
k − 1, where the action is defined by fi = f(i). This action induces a coordinate-
wise action on FINk = 〈({n} × k)n∈ω〉 (i.e. the set of all partial functions with
finite domain from N to k). Lupini in [107] showed that for every k ∈ ω and for
every finite coloring of FINk there is an infinite sequence of words in FINk each
containing k−1 such that its Ik-span is monochromatic. Notice that this result implies
that every R-trivial monoid is Ramsey. In fact, let N be a R-trivial monoid with
linear X(N). Without loss of generality, we may assume that N = {0, . . . , k − 1}
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and that 0N ⊆ · · · ⊆ (k − 1)N is an increasing enumeration of X(N). Then, the
coordinate-wise action ofN on FINk coincides with the action of a submonoid of Ik,
by Proposition 4.2.5, and Lupini’s theorem implies point (d) of Proposition 4.1.11.

All monoids Ik are R-trivial, but X(Ik) is linear if and only if k ≤ 3 (see [142,
Section 4 .4]). In particular, if k > 3 these monoids are not Ramsey, and Lupini’s
result does not follow from the theory of Ramsey monoids. It would be interesting to
see if a similar statement holds for other (non-Ramsey) monoids.

Open Problem 4.6.5. Classify the couples (M,k) such that k ∈ ω is a pointed M -
set and for every finite coloring of FINk there is a basic sequence s̄ in FINk such
that sn has a distinguished point for every n ∈ ω and such that the M -span of s̄ is
monochromatic.

In the same direction, the following seems a challenging problem.

Open Problem 4.6.6. Characterize the class of triples (S,M, t̄), where S is a partial
semigroup, M is a monoid acting on S by endomorphisms and t̄ is a basic sequence
in S, for which for every finite coloring of S there is a sequence s̄ ≤M t̄ in S such
that its M -span is monochromatic.

One can check that every finite Ramsey monoid generates examples of Ramsey
spaces. However, an even nicer property might be true: there are topological Ramsey
spaces that induce a collection of projected spaces such that every metrically Baire
set has the Ramsey property. A sufficient condition for the latter has been found by
Dobrinen and Mijares in [54]. An example of a space of this form is Carlson-Simpson
space, see [32] and [154, section 5.6]). See also [54, section 4] for generalizations of
the latter.

Open Problem 4.6.7. Which topological Ramsey spaces given by finite Ramsey
monoids meet the sufficient conditions given in [54]?

Hales-Jewett theorem [77] is a corollary of Proposition 4.6.1 for the special case
of monoids M such that ab = b for every a, b ∈ M \ {1}. In Ramsey theory, two
of the strongest known results are a polynomial generalization [20] and a density
generalization [69] of Hales-Jewett theorem for these monoids.

Open Problem 4.6.8. Do polynomial or density results hold for other finite Ramsey
monoids?

Ojeda-Aristizabal in [123] obtained upper bounds for the finite version of Gow-
ers’ FINk theorem, giving a constructive proof. It would be interesting to know if
these upper bounds hold for other Ramsey monoids.

The work of Gowers on FINk and the related space FIN±k was the key to his
solution of an old problem in Banach spaces [74]. Also, the aforementioned example
of Bartošova and Kwiatkowska found applications in metric spaces. Finally, a discus-
sion about the connection between Ramsey spaces and Banach spaces can be found
in Todorcevic’s monograph. In this chapter, we found new Ramsey monoids, and
consequently new Ramsey spaces. Hence, it might be possible to find applications of
these new results to metric spaces.

Recently various papers have found different common generalizations of Carl-
son’s and Gowers’ theorems, see [13], [91], [108]. Of particular interest is the context
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of adequate layered semigroups, introduced by Farah, Hindman, and McLeod [61]
and recently studied by Lupini [108] and Barrett [13]. Barrett’s paper [13] describes
a framework which seems well suited for a connection between Ramsey monoids and
layered semigroups. His work and ours are independent from each other and were
written concurrently, so we did not investigate this research line. Nevertheless, in
Example 4.6.9 and in the following paragraph we show a possible connection.

Example 4.6.9. Let M be a monoid with linear X(M), and let a0M ⊆ · · · ⊆ anM
be an increasing enumeration of X(M). Define ` : FINM → n+ 1 by

`(w) = min{i | ran(w) ⊆ aiM}.

Then, (FINM , `) is an adequate partial layered semigroup as defined in [13, Defini-
tion 3.7]. Furthermore, the canonical action Fcw of M on FINM is made of regres-
sive maps, by Proposition 4.2.5.

This example shows that every monoid with linear X(M) generates an adequate
partial layered semigroup, FINM , and a family of regressive functions Fcw. On
the other hand, every family of regressive functions F on an adequate partial lay-
ered semigroup generates a monoid MF with composition, acting on S by endomor-
phisms.



Chapter 5

Infinite monoids in combinatorics

5.1 Introduction to locally Ramsey and locally Y-control-
lable monoids

In the previous chapter, we gave an algebraic characterization of finite Ramsey monoids
and provided necessary and sufficient conditions for a finite monoid to be Y-control-
lable. In this chapter, we extend this study to infinite monoids. What we aim to
achieve is a bit more general than this. We study two bigger classes of monoids, lo-
cally Ramsey and locally Y-controllable, which are more suited for infinite monoids,
and allow us to extend other theorems in combinatorics, like the infinite Carlson’s
Theorem for words on an infinite alphabet [31].

First, let us briefly introduce the main definitions we will use throughout the
chapter. Notice that for every set M and for every sequence (Mi)i∈ω of finite subsets
of M , we have that 〈({n}×Mn)n∈ω〉 is a partial subsemigroup of FINM . Let M be
a monoid acting by endomorphisms on a partial semigroup S, let s̄ be a sequence of
elements of S, and let (Mi)i∈ω be a sequence of finite subsets of M . Given a family
C ⊆ FIN<ω, defineC ′ = C∩〈({i}×Mi)i∈ω〉. Then, we define theC, (Mi)i∈ω-span
as 〈s̄〉C(Mi)i∈ω

= 〈s̄〉C′ . In other words:

〈s̄〉C(Mi)i∈ω
=
{
m0 si0 · · ·mn sin | mh ∈Mih , ((i0,m0), . . . , (in,mn)) ∈ C

}
.

Similarly to previous chapter, we define the (Mi)i∈ω-span 〈s̄〉(Mi)i∈ω of s̄ as the
set 〈s̄〉VM(Mi)i∈ω

for VM the set of variable words of WM . In other words, a word
m0 si0 · · ·mn sin is in 〈s̄〉(Mi)i∈ω if and only if i0 < · · · < in < ω and mh ∈ Mih

for every h < n and mh = 1 for at least one h ≤ n.
Once again, thanks to Lemma 4.1.10 we have that different combinatorial prop-

erties define the same class of monoids (see also the proof of Proposition 4.1.11).

Proposition 5.1.1. Let M be a monoid, and let (Mi)i∈ω be a family of finite subsets
of M . Then, the following are equivalent:

(a) For every (partial) semigroup S on whichM acts by endomorphisms, for every
(basic) sequence t̄ ∈ Sω, for every finite coloring of S there is a sequence
s̄ ≤M t̄ such that 〈s̄〉(Mi)i<ω is monochromatic.

(b) For everyM -setX , for every t̄ ∈ Xω and for every finite coloring ofWX there
is an infinite s̄ ≤M t̄ such that 〈s̄〉(Mi)i<ω is monochromatic.

183
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(c) For every uniform sequence of pointed M -sets (Xn)n∈ω, for every finite col-
oring of 〈(Xn)n∈ω〉 there is a basic sequence of (strongly) variable words s̄ in
(〈(Xn)n∈ω〉)ω such that 〈s̄〉(Mi)i<ω is monochromatic.

(d) For all finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉(Mi)i<ω is monochromatic.

(e) There is a rapidly increasing sequence of variable words t̄ ∈ (WM )ω such
that for all finite coloring of WM there is an infinite sequence s̄ ≤M t̄ with
〈s̄〉(Mi)i<ω monochromatic.

Definition 5.1.2. A monoid M is called locally Ramsey if it satisfies one of the
equivalent conditions of Proposition 5.1.1.

Similarly, we define a local version of Y-controllable monoids as well.

Proposition 5.1.3. Let M be a monoid, let y be a maximal element of Y(M), let
F ⊆ 〈My〉 be finite and let (Mi)i∈ω be a family of finite subsets of M . Then, the
following are equivalent:

(a) For every (partial) semigroup S on whichM acts by endomorphisms, for every
(basic) sequence t̄ ∈ Sω, for every finite coloring of S there is a sequence
s̄ ≤M t̄ such that 〈s̄〉f(Mi)i<ω

is monochromatic for every f ∈ F .

(b) For everyM -setX , for every t̄ ∈ Xω and for every finite coloring ofWX there
is an infinite s̄ ≤M t̄ such that 〈s̄〉f(Mi)i<ω

is monochromatic for every f ∈ F .

(c) For every uniform sequence of pointed M -sets (Xn)n∈ω, for every finite col-
oring of 〈(Xn)n∈ω〉 there is a basic sequence of (strongly) variable words s̄ in
(〈(Xn)n∈ω〉)ω such that 〈s̄〉f(Mi)i<ω

is monochromatic for every f ∈ F .

(d) For all finite coloring of FINM there is a basic sequence s̄ ∈ (FINM )ω of
variable words such that 〈s̄〉f(Mi)i<ω

is monochromatic for every f ∈ F .

(e) There is a rapidly increasing sequence of variable words t̄ ∈ (WM )ω such
that for all finite coloring of WM there is an infinite sequence s̄ ≤M t̄ with
〈s̄〉f(Mi)i<ω

monochromatic for every f ∈ F .

In order to give more precise results, we state the notion in a slightly different
way.

Definition 5.1.4. Let M be a monoid, let y be a maximal element in Y(M), let
F ⊆ 〈My〉 be finite, and let (Mi)i∈ω be a family of subsets of M . We say that
M is (F, y, (Mi)i∈ω)-controllable if it satisfies one of the equivalent conditions of
Proposition 5.1.3.

We say that M is (F, y)-controllable if it is (F, y, (Mi)i<ω)-controllable for ev-
ery family (Mi)i<ω of subsets of M (equivalently: for (Mi)i<ω = (M)i<ω). M
is locally (F, y)-controllable if it is (F, y, (Mi)i<ω)-controllable for every family
(Mi)i<ω of finite subsets of M .

Similarly, we say that M is (locally) y-controllable if it is (locally) (F, y)-
controllable for every finite F ⊆ 〈My〉. It is clear then that Y-controllable monoids
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are exactly y-controllable monoids for every maximal y ∈ 〈Y(M)〉. We define lo-
cally Y-controllable monoids as those are locally y-controllable for every maximal
y ∈ 〈Y(M)〉.

5.2 Necessary conditions for Ramsey classes

First, we start by studying which properties are necessary to be locally Ramsey or
locally Y-controllable.

The following is a straightforward generalization of [142, Corollary 4.5(ii)] to
locally Ramsey monoids.

Proposition 5.2.1. If M is locally Ramsey then X(M) is linear.

Proof. Suppose X(M) is not linear, and let aM and bM such that aM * bM and
bM * aM . By aM * bM we have a /∈ bM , and by bM * aM we have b /∈ aM .
Consider the semigroup of words (M<ω,a) and color each word w ∈M<ω with red
if the letter a is in w and it appears before the first appearance of b. Otherwise, color
w with blue. Then, any sequence (Mi)i∈ω of finite subsets of M each containing
{1, a, b} witness that for every sequence s̄ ∈ (M<ω)ω we have that a(s1)a s2 has
color red and b(s1)a s2 has color blue. Hence, the (Mi)-span of s̄ is not monochro-
matic and M is not locally Ramsey.

Notice that the definition of (locally) Ramsey monoids coincide exactly with the
definition of (locally) (F, y)-controllable for y = X(M) and F = {y}. The latter
definition requires that X(M) is linear. By the previous proposition, however, this is
always true, and hence we get the following.

Corollary 5.2.2. A monoid M is (locally) Ramsey if and only if it has has linear
X(M) and it is (locally) (F, y)-controllable for y = X(M) and F = {y}.

Next, we show that being aperiodic is necessary for this context as well.

Proposition 5.2.3. Let M be a locally Y-controllable or locally Ramsey monoid.
Then, M is aperiodic.

Proof. Suppose M is not aperiodic, and let a ∈M be such that an 6= an+1 for every
n ∈ ω. Let y be such that ay ≤Y y (e.g. y = {anM | n ∈ ω} if M is locally
Y-controllable, or y = X(M) if M is locally Ramsey) and let F = {y}. We want to
prove that M is not locally (F, y)-controllable.

Let A = {an | n ∈ ω}, let C = {m ∈ M | anm ∈ A for some n ∈ ω}. We
convene that a0 = 1 is the identity of the monoid. Notice that c ∈ C if and only if
ac ∈ C, and furthermore, ac 6= c for every a ∈M and c ∈ C.

Let (Mi)i∈ω be a sequence of finite subsets of M such that {an | n ≤ i} ⊆ Mi

for every i ∈ ω. Notice that any ∨ y = y for every n ∈ ω.
Consider the semigroup of words (M<ω,a) , and suppose first A is finite. Let

A∪{⊥} be the set of colors, for ⊥ some element not in A. Given a word w ∈M<ω,
color w with ⊥ if w contains no letter in A. Otherwise, color w by m, for m be
the first letter of A that appears in w. Then, given a sequence of variable words
s̄ ∈ (M<ω)ω, let n ∈ ω be such that A ⊆ Mn, let c be the first letter of sn in C and
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let k ∈ ω be such that akc ∈ A: then ak+1c = a(akc) 6= akc. Then, ak(sn)a sn+1

has color akc while ak+1(sn)a sn+1 has color ak+1c.
If instead A is infinite, then ai 6= aj for every i 6= j. Given a word w ∈ M<ω,

color w with black if w contains no letter in C. Otherwise, let c be the first letter of
w in C. Let n = min{i ∈ ω | aic ∈ A} and let k be such that anc = ak. Color w
with red if n − k is odd, and with blue if n − k is even. Then, for every sequence
of variable words s̄ ∈ (M<ω)ω it is clear that s0

a s1 and a(s0)a s1 have different
colors.

In any case, M is not locally Y-controllable nor locally Ramsey.

When in the previous chapter we restricted our attention only to finite monoids,
the two conditions above (being aperiodic and having linear X(M)) were the only
necessary conditions we obtained. For infinite monoids, the situation is quite differ-
ent, and a key role in obtaining the desired combinatorial statements is often played
by the presence/absence of infinite chains in X(M). In this direction, we obtain the
following necessary conditions.

Proposition 5.2.4. Let M be a monoid, let y ∈ Y(M) be maximal and let F = {ay}
for some a ∈M . If M is locally (F, y)-controllable, then {a′y | a′y ≤Y ay} is finite.

Proof. Towards a contradiction, assume A = {a′y | a′ ∈ M,a′y ≤Y ay} is infinite.
Notice that if a′R a′′ and {a′y, a′′y} ⊆ A, then a′y = a′′y: in fact a′y and a′′y are
≤Y-comparable and a′M = a′′M is their top element. Hence,

A(M) = {cM | c ∈M, cy ∈ A}

is infinite. Also, A(M) = {cM | cy ∈ A} is linearly ordered by inclusion since it is
isomorphic as an order to a subset of A, which is linear.

We want to show that A(M) contains no infinite ascending chain. Suppose not,
and let {aiM} be ascending in A(M) with aiM ⊆ ai+1M and aiy ∈ A for every
i ∈ ω. For each word w ∈ M<ω, define i(w) to be the highest natural number
such that a letter of w is in [ai(w)]R, if there is such a letter in w. Color w with
black if it contains no such letter, otherwise color w with red if i(w) is odd and with
blue if i(w) is even. Let (Mi)i∈ω be the sequence of finite subsets of M defined by
Mi = {1, a, a0, . . . , ai}. Let s̄ = (sn)n∈ω be any sequence of variable words. If as0

has color black, then as0
a a1s1 has color blue or red, since s1 has at least a letter 1.

Otherwise, let k = i(as0). Then,

i(as0
a ak+1sk+1) = k + 1,

since as0
a ak+1sk+1 contains ak+1 as a letter, and each other letter of ak+1sk+1

belongs to ak+1M . This contradicts that M is locally (F, y)-controllable, since

ay ∨ a1y = ay ∨ ak+1y = ay.

Now we want to show thatA(M) contains no infinite descending chain. Suppose
not, and let {aiM} be an infinite descending chain in A(M), with aiM ) ai+1M
and aiy ∈ A for every i ∈ ω. Without loss of generality, assume also that a0 = a. For
each word w ∈M<ω, let Hw be the set of i ∈ ω such that there is a letter b in w such
that b ∈ [ai]R, there is no letter c inw such that c ∈ [ai+1]R, and there exist k ≥ 2 and
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a letter d in w such that d ∈ [ai+k]R. We can think of Hw as a set counting ”holes”.
Color w by red if Hw has even cardinality, by blue otherwise. Let (Mi)i∈ω be the
sequence of finite subsets of M defined by Mi = {1, a0, . . . , ai}. Let s̄ = (sn)n∈ω
be any sequence of variable words. Given a word w ∈ M<ω such that w has a
letter in

⋃
i∈ω[ai]R, let l(w) be the maximum i such that w has a letter in [ai]R. Let

i = l(as0) and let k = l(as0
a ai+1si+1). If as0 has the same color of as0

a ai+1si+1

then the cardinality of Hai+1si+1 is even. In this case, as0
a ai+1si+1

a ak+1sk+1

and as0
a ak+1sk+1 have different colors. This contradicts that M is locally (F, y)-

controllable, since

ay ∨ ai+1y = ay ∨ ai+1y ∨ ak+1y = ay ∨ ak+1y = ay.

Hence, A(M) must be finite, contradiction.

Notice that when y = X(M) is linear, then we have ay ≤Y y for every a ∈ M .
Hence,by Corollary 5.2.2, we get the following.

Corollary 5.2.5. . Let M be a locally Ramsey monoid. Then X(M) is finite.

Finally, we have one last necessary condition for infinite Y-controllable monoids.

Proposition 5.2.6. Suppose M is Y-controllable and X(M) is linear. Then [a]R is
finite for every a ∈M .

Proof. Suppose not. By Proposition 5.2.4, we have that X(M) is finite. Let [a]R be
the maximal infinite R-class. Let B = M \ aM : by maximality of [a]R, it is finite.
Hence, we may find a well-order ≤a of [a]R such that for infinitely many m ∈ [a]R
we have mB ≤a m (i.e. mb ≤a m for every b ∈ B). Let

C =
{
c ∈ [a]R | cB ≤ c

}
,

it is an infinite suborder of ([a]R,≤a), and thus is wellordered as well by ≤a. Let
α ≥ ω be its order type, and let {ci | i ∈ α} be an increasing enumeration of C. By
Proposition 5.2.3 and 4.2.2, M is R-rigid, and thus for every c ∈ C and for every
b ∈M \ {b ∈ [a]R | b > c} we have either cb /∈ [a]R or cb ≤ c.

Let y = X(M), let F = {y} ⊆ 〈Y(M)〉. Notice that y is a maximal in Y(M)
and ay ∨ y = y for every a ∈ M . Consider the semigroup of words (M<ω,a) and
color a word w ∈ M<ω by black if it has no letter in C. Otherwise, let i(w) be the
highest index among the letters of C that appear in w, and color w by red if i(w) is
odd, and by blue if it is even.

Let (yi)i∈ω be a sequence of variable words. If y0
a y1 has color black, then

c(y0)a y1 has color red or blue for any c ∈ C. Otherwise, let n be the maximal index
of a letter in C occurring in y0

a y1. Then, cn+1(y0)a y1 and y0
a y1 have different

colors. Either case, this shows that M is not Y-controllable.

Remark 5.2.7. The same proof actually shows something stronger: suppose M is a
monoid containing an infinite R-class [a]R and an infinite set I ⊆ [a]R such that for
every c ∈ I we have that c(M \ [a]R)∩ I = {cm ∈ I | m /∈ [a]R} is finite. Then M
is not Y-controllable.

By Proposition 5.2.4, if X(M) is linear than it must be finite. Thus, we get the
following.
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Corollary 5.2.8. If M is Y-controllable and X(M) is linear, then M is finite.

Since in locally Ramsey monoids X(M) is always linear (Proposition 5.2.1), we
get the following.

Corollary 5.2.9. If M is locally Ramsey and Y-controllable then it is finite.

Proposition 5.2.6 works also for Ramsey monoids, thanks to Corollary 5.2.2. This
together with Corollary 5.2.5 gives the following.

Corollary 5.2.10. If M is Ramsey, then it is finite.

These necessary conditions allow us to improve the algebraic characterization of
Ramsey monoids given in the previous chapter.

Theorem 5.2.11 (cf. Theorem 4.4.7). A monoid is Ramsey if and only if it is finite,
aperiodic, and X(M) is linear.

Hence, we may extend Corollary 4.4.8 also to infinite monoids.

Corollary 5.2.12. A monoid is Ramsey if and only if it is Y-controllable and X(M)
is linear.

Finally, the new characterization provided of Ramsey monoids allows us to show
that this notion is equivalent to another (apparently) weaker notion, that corresponds
roughly to Schur’s Lemma for monoids.

Theorem 5.2.13. A monoid M is Ramsey if and only if for every finite coloring of
WM there are variable words a, b ∈WM such that 〈(a, b)〉M is monochromatic.

Proof. It is clear that if M is Ramsey, then the first two elements of an infinite se-
quence of variable words are as wanted.

Conversely, assume that for every finite coloring of WM there are variable words
a, b ∈ WM such that Maa b = {maa b | m ∈ M} is monochromatic. We want to
show that M is finite and aperiodic and X(M) is linear. First, the proofs of Propo-
sitions 5.2.1, 5.2.3, 5.2.4 and 5.2.6 immediately shows that M is aperiodic, that it
contains no infiniteR-class and (X(M),⊇) is a well-order (linear and wellfounded).
It remains to prove that (X(M),⊆) is wellfounded as well using only two words.

Suppose X(M) is not finite, then (X(M),⊇) has order type α for some α ≥ ω.
Let D to be the set of the first ω elements of X(M). We claim that a2 = a for an
infinite number of aM ∈ D.

First, notice that for each a ∈ M with aM ∈ D we have aaM ∈ D. Suppose
not: then abM /∈ D for every b ∈ aM , since ab ∈ aaM . Also, axR ay whenever
xR y. Given a ∈ M , define X(aM) = {cM ∈ X(M) : cM ⊆ aM}. Then,
|D ∩X(aM)| ≤ |X(M) \X(aM)|, but the set X(M) \X(aM) is finite, while D and
so D ∩ X(aM) are infinite, contradiction.

Let C = {[a]R : aM ∈ D, [a]R · [a]R = [a]R}. Since M is aperiodic, for every
a ∈ M with aM ∈ D there is n ∈ ω such that an = an+1 and anM = a2nM ∈ D,
hence C has size ω. Let C = {[ci]R}i<ω be an enumeration of C such that for every
i < j we have cjM ⊆ ciM .

For every word w = (a0, . . . , ah) ∈ M<ω, define nw as the minimum i < ω
such that for every j ≤ h, either ciM ⊆ ajM or ajM /∈ D.
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First, notice that for every a, b ∈ M , if bM /∈ D, then abM /∈ D: if not, then
bM ⊆ abM and thus b = abx for some x ∈M and thus ab = b by Proposition 4.2.2,
contradiction.

Also, by Proposition 4.2.2 M is R-rigid, and thus for every [a]R ∈ C we have
aa = a. Hence, if aM ⊆ bM and aM ∈ C, then aM = aaM ⊆ abM .

These two conditions together implies that if w ∈ M<ω is a variable word and
i ≥ nw, then nci(w) = i.

Color each word w ∈M<ω by red if nw is odd, and by blue if nw is even. Then,
given two variable words y0, y1, if w = y0

a y1 and n = nw, the words cn+1(y0)a y1

and y0
a y1 have different colors.

5.3 Sufficient conditions for Ramsey classes

Next, we analyze some sufficient conditions for a monoid to be (locally) Ramsey or
(locally) Y-controllable.

We start by proving a technical lemma. In Proposition 5.2.4, we showed that if
M is locally Y-controllable, then for every a ∈ M and maximal y ∈ Y(M), the set
{a′y | a′y ≤Y ay} is finite. This property turns out to be crucial also in providing
sufficient conditions, but in an equivalent form.

For every F ⊆ Y(M), let

Gen(F ) = {x ∈ Y(M) | f ∨ x ∨ f ′ ∈ F for some f, f ′ ∈ 〈Y(M)〉}.

We also write Gen(f) for Gen({f}) when f is an element of 〈Y(M)〉.

Lemma 5.3.1. LetM be a monoid, let y ∈ Y(M) be maximal and letA ⊆M . Then,
the following are equivalent:

1. For every a ∈ A, the set {a′y | a′ ∈M,a′y ≤Y ay} is finite.

2. For every finite F ⊆ 〈Ay〉, the set Gen(F ) is finite.

Proof. First, assume that 1 does not hold and B = {a′y | a′ ∈ M,a′y ≤Y ay} is
infinite for some a ∈ A. It is enough to choose F = {ay} to show that 2 does not
hold, since in this case Gen(F ) = B.

Conversely, suppose Gen(F ) =
⋃
f∈F Gen(f) is infinite for some finite F ⊆

〈Ay〉. Then, by pigeonhole principle there is f ∈ F such that Gen(f) is infinite. Let
f = a0y∨ · · · ∨ any be the unique representation of f of minimal length. Notice that
since F ⊆ 〈Ay〉, we must have ai ∈ A for every i ≤ n. Then, for every bi ∈M such
that f = b0y ∨ · · · ∨ bky and for every j ≤ k there is i ≤ n such that bjy ≤Y aiy.
Therefore, applying the pigeonhole principle once again we may find i ≤ n such that
{a′y | a′ ∈M,a′y ≤Y aiy} is infinite.

Once again, we introduce a new notion to simplify the proof of the next theorem.

Definition 5.3.2. Let F be a finite subset of the semigroup 〈Y(M)〉, let y be a maxi-
mal element in Y(M), let (Mi)i∈ω be a sequence of finite subset of M , and let c be a
finite coloring of a semigroup S on which M acts. We say that a sequence s̄ ∈ S≤ω
is (F, y, (Mi)i∈ω, c)-controllable if for every m,n ≤ |s̄| and for every ai, bj ∈M if
a0y∨· · ·∨any belongs to F and a0y∨· · ·∨any = b0y∨· · ·∨bmy, then a0si0 ·. . .·ansin
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has the same color of b0sj0 · . . . · bmsjm , for every i0 < · · · < in, j0 < · · · < jm such
that ak ∈Mik and bk ∈Mjk .

In other words, a sequence s̄ ∈ S≤ω is (F, y, (Mi)i∈ω, c)-controllable if 〈s̄〉f(Mi)i∈ω
is monochromatic for every f ∈ F .

Theorem 5.3.3. Let M be a monoid, let y ∈ Y(M) be maximal and let A ⊆ M be
the set of those a ∈M such that the set {a′y | a′ ∈M,a′y ≤Y ay} is finite.

Suppose also that for every action of M by continuous endomorphisms on a
compact right topological semigroup U there exists an M -equivariant embedding
h : 〈My〉 → E(U) such that h(y) ∈ I(U).

Then, M is locally (F, y)-controllable for every finite F ⊆ 〈Ay〉.

Proof. The first part of the proof proceeds in the same way as the proof of Theo-
rem 4.4.4, so we report here only the main steps without all details.

We want to show that for every sequence of pointed M -sets (Xn)n∈ω on which
M acts uniformly, for every sequence (Mi)i∈ω of finite subset of M and for every
finite coloring c of 〈(Xn)n∈ω〉 there is a basic sequence s̄ ∈ (〈(Xn)n∈ω〉)ω that is
(F, y, (Mi)i∈ω, c)-controllable and such that sn has a distinguished point for every
n ∈ ω.

Given (Xn)n∈ω be a sequence of pointed M -sets on which M acts uniformly,
let G = (〈(Xn)n∈ω〉 ∪ {⊥}, ·) be the semigroup extending 〈(Xn)n∈ω〉, and let ≺ be
the binary relation on G such that x ≺ y if and only if x, y ∈ G \ {⊥} and xa y is
defined in 〈(Xn)n∈ω〉 (as in the proof of Theorem 4.4.4). Define in the same way the
language L+, a monster model G for G and the compact right topological semigroup
(S(G), ·G, τ).

Let e(x) = {“g≺x” | g ∈ G \ {⊥}}, and define

U = {p(x) ∈ S(G) | e(x) ⊆ p(x)}

to be the set of all complete types in S(G) extending e(x).
Then U is a non-empty compact right topological subsemigroup of (S(G), ·G, τ)

closed under the action of M (see again Theorem 4.4.4).
Let u(x) = h(y) ∈ E(U) ∩ I(U) be given by hypothesis. Let DP ⊆ G be the

set of elements of 〈(Xn)n∈ω〉 that have at least one distinguished point. Notice that
DP is a both-sided ideal in G, and thus,

J = {p(x) ∈ U | “ DP(x)” ∈ p(x)}

is also a both-sided ideal of U . It is also non-empty, since e(x)∪ {DP(x)} is finitely
satisfiable in G. Hence, u(x) ∈ I(U) implies u(x) ∈ J .

Fixed a finite coloring c′ = {Ci | i < r} of 〈(Xn)n∈ω〉, let c be the coloring of
the whole G obtained by adding {⊥} to c′. Since c is definable in L+(G), it extends
to a finite coloring of G

c̃ = {{a ∈ G | G � Ci(a)} | i < r}.

Let (un)n∈ω be a coheir sequence of u(x). We write ~u�i for the tuple ui−1, . . . , u0.
As shown in the proof of Theorem 4.4.4, we get that ~u is y-controllable.
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Claim. For every i ∈ ω and (Mj)j<ω (possibly infinite) subsets of M , the sequence
~u�i is (F, y, (Mj)j<ω, c̃)-controllable.

Proof. The proof is similar to the one of Theorem 4.4.4 provided in Section 4.5. Let
a0, . . . , an, b0, . . . , bm ∈M be such that any∨· · ·∨a0y = bmy∨· · ·∨b0y ∈ F . Then,
by definition of h we have also anu(x) ·G . . . ·G a0u(x) = bmu(x) ·G . . . ·G b0u(x).

Since uk^G{uj | j < k} implies ak(uk)^G{aj(uj) | j < k} for every k ≤ n,
we have that anun · . . . · a0u0 satisfies anu(x) ·G . . . ·G a0u(x) and bmum · . . . · b0u0

satisfies bmu(x) ·G . . . ·G b0u(x). Since the color of an element of G is determined
by its type over G, this implies immediately that for every choice of i ∈ ω, we have
that ~u�i is (F, y, (Mi)i<ω, c̃)-controllable.

Now fix a finite subset F ⊆ 〈Ay〉, and fix a natural number k ∈ ω such that for
every f, f ′ ∈ 〈My〉 with f ∨ f ′ ∈ F there are c0, . . . cj ∈ M with j < k such that
f ′ = c0y ∨ · · · ∨ cjy. We write |f | the denote the length j ∈ ω of this minimal
representation.

By Lemma 5.3.1, we have that Gen(F ) is finite. Notice that this implies also that
if f ′ = a0y ∨ · · · ∨ any and f ∨ f ′ ∈ F for some f ∈ 〈My〉, then aiy ∈ Gen(F ) for
every i ≤ n. For every x ∈ Gen(F ) fix an element ax ∈ M such that x = axy. Let
K = {ax | x ∈ Gen(F )}: it is finite.

Now fix a sequence (Mi)i<ω of finite subsets of M . Notice that if a sequence is
(F, y, (Mi∪K)i<ω, c̃)-controllable, then it is also (F, y, (Mi)i<ω, c̃)-controllable, so
without loss of generality we can assume K ⊆Mi for every i < ω.

Claim. Let g0, . . . , gn ∈ G. If the sequence (g0, . . . , gn)a ~u�k is (F, y, (Mi)i<ω, c̃)-
controllable, then for any l > k the sequence (g0, . . . , gn)a ~u�l is (F, y, (Mi)i<ω, c̃)-
controllable as well.

Proof. Let fg = a0y∨· · ·∨ahy and fu = ah+1y∨· · ·∨amy, and f ′g = b0y∨· · ·∨bh′y
and f ′u = bh′+1y ∨ · · · ∨ bm′y. Suppose

fg ∨ fu = a0y ∨ · · · ∨ amy = b0y ∨ · · · ∨ bm′y = f ′g ∨ f ′u ∈ F

Let i0 < · · · < ih ≤ n, and im < · · · < ih+1 < l, and i′0 < · · · < i′h′ ≤ n, and
i′m′ < · · · < i′h′+1 < l, and let ag = a0gi0 ·...·ahgih , and au = ah+1uih+1

·. . .·amuim ,
and bg = b0gi′0 · ... · bh′gi′h′ and bu = bh′+1ui′

h′+1
· . . . · bm′ui′

m′
.

Now assume ar ∈Mir for every r ≤ h and br ∈Mi′r for every r ≤ h′. We want
to show that

c̃(ag · au) = c̃(bg · bu).

First, since fg ∨ fu ∈ F , we have j = |fu| < k. Let d0, . . . , dj ∈ K be such
that fu = djy ∨ · · · ∨ d0y. Let ad = djuj · . . . · d0u0: then, as shown in previous
claim, au and ad satisfies the same type over G. In particular, for every color C ∈ c̃,
we have that C(ag · x) is in the type of au if and only if it is in the type of ad. Thus,
c̃(ag · au) = c̃(ag · ad).

In the same way, c̃(bg · bu) = c̃(bg · bd) for some bd = d′j′uj′ · . . . · d′0u0 such that
j′ < k and f ′u = d′j′y ∨ · · · ∨ d′0y and d′r ∈ K for every r ≤ j′.

However, since ḡ a ~u�k is (F, y, (Mi)i<ω, c̃)-controllable, since

fg∨fu = a0y∨· · ·∨ahy∨djy∨· · ·∨d0y = b0y∨· · ·∨bh′∨d′j′y∨· · ·∨d′0y = f ′g∨f ′u,
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and since each element of M acting on y in the above equation belongs to the right
piece Mi (recall K ⊆Mi for every i), then we have c̃(ag · ad) = c̃(bg · bd).

Finally, we want to pass from the sequence (un)n∈ω in the monster model to a
basic (F, y, (Mi)i<ω, c)-controllable sequence s̄ in 〈(Xn)n∈ω〉.

We say that a sequence (s0, . . . , sn) ∈ Gn is basic if si≺ sj for every i < j ≤ n.
Notice that since F and c and all Mi are finite, being (F, y, (Mi)i<ω, c)-controllable
is definable in L+(G). So let ξn(x0, . . . , xn) be a formula in L+(G) that says that
the sequence (x0, . . . , xn) is basic and (F, y, (Mi)i<ω, c)-controllable and that each
xi has a distinguished point.

We proceed recursively. Assume that we have a (possibly empty) basic sequence
s̄�i ∈ DPi such that s̄�i a ~u�k satisfies ξi+k(x0, . . . , xi+k) (i.e. s̄�i a ~u�k is basic and
(F, y, (Mj)j<ω, c)-controllable and each coordinate has a distinguished point). The
empty sequence satisfies this by previous claims, so the base case is fine. Our goal is
to find s̄i ∈ 〈(Xn)n∈ω〉 such that s̄�i+1

a ~u�k satisfies ξi+k+1(x0, . . . , xi+k+1).
By induction hypothesis s̄�i a ~u�k is (F, y, (Mj)j<ω, c)-controllable, and so by

previous claim s̄�i
a ~u�k+1 is as well. Then, G � ξi+k+1(s̄�i, uk, ~u�k). Furthermore,

since uk^G{u0, . . . , uk−1}, the type tp(uk/G ∪ {u0, . . . , uk−1}) is finitely satisfi-
able in G, hence we may find si ∈ G such that ξi+k+1(s̄�i, si, ~u�k) hold in G. Notice
that ⊥ /∈ DP, thus (si)i∈ω ∈ 〈(Xn)n∈ω〉 as wanted.

In Proposition 5.2.6, we proved that if M is a monoid with linear X(M), then
being Y-controllable implies that each R-class [a]R is finite. Here, we show that
this condition is sufficient to be Y-controllable if the monoid is already locally Y-
controllable.

Theorem 5.3.4. Let M be a monoid, let y ∈ Y(M) be maximal and let F,A be finite
sets such that A ⊆ My and A ⊆ F ⊆ 〈A〉. If M is locally (F, y)-controllable and
[a]R is finite for every a ∈ Gen(F ), then M is (F, y)-controllable.

Proof. Indeed, by Proposition 5.2.4 and Lemma 5.3.1 we have that Gen(F ) is finite.
Let K ′ = {a ∈M | ay ∈ Gen(F )}: it is finite, since Gen(F ) and [a]R are finite for
every a ∈ Gen(F ).

Furthermore, K ′ satisfies that for every a0y ∨ · · · ∨ any ∈ F , then ai ∈ K ′ for
every i ≤ n. Hence applying the definition of locally (F, y)-controllable monoid by
choosing Mi = K ′ for every i < ω shows that M is also (F, y)-controllable.

Notice that for every finite F ⊆ Y(M) there are finite sets A and F ′ such that
A ⊆ My and A ⊆ F ⊆ 〈A〉. Indeed, it is enough for every f ∈ F to choose
xfi ∈ Y(M) such that f = xf0 ∨ · · ·∨xfnf and define F ′ = F ∪{xfi | f ∈ F, i ≤ nf}.
Since being (F ′, y)-controllable implies being (F, y)-controllable for every F ⊆ F ′,
we get the following.

Corollary 5.3.5. LetM be a locally Y-controllable monoid, and assume [a]R is finite
for every a ∈M . Then M is Y-controllable.

By Theorem 5.3.3, we get also the following result.

Corollary 5.3.6. Let M be a monoid, let y ∈ Y(M) be maximal and let A ⊆ M be
the set of those a ∈M such that the set {a′ ∈M | a′y ≤Y ay} is finite.
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Suppose also that for every action of M by continuous endomorphisms on a
compact right topological semigroup U there exists an M -equivariant embedding
h : 〈My〉 → E(U) such that h(y) ∈ I(U).

Then, M is (F, y)-controllable for every finite F ⊆ 〈Ay〉 such that Gen(F ) ⊆ A.

Up to this moment, we have been able to work under almost optimal hypotheses.
The assumption on the finiteness of {a′ ∈ M | a′y ≤Y ay} is also a necessary con-
dition for being locally Y-controllable (by Proposition 5.2.4). The assumption that
every R-class [a]R is finite is sometimes necessary for Y-controllable monoids (by
Proposition 5.2.6), and it seems possible that it turns out to be a necessary condition
for every Y-controllable monoid.

To obtain the existence of the function h, however, we need to work under stronger
assumptions that are far from optimal. While proof of Theorem 5.3.3 could work un-
der weaker hypotheses than having such a function h, this would make it much more
complex.

Remark 5.3.7. Let M be a monoid, let y ∈ Y(M) be maximal and let A ⊆ M be
the set of those a ∈ M such that the set {a′y | a′ ∈ M,a′y ≤Y ay} is finite. Let
F ⊆ 〈Ay〉 be finite and such that f ∨ f ′ ∈ F implies f ′ ∈ F for every f ∈ Y(M).
Let S be a (partial) semigroup of reader’s choice with a free sequence t̄ ∈ Sω, and
let G = 〈t̄〉WM

(e.g. G = FINM ). Let (U, ·G) be the compact right topological
semigroup of types p(x) over G such that “g ≺ x” ∈ p(x) for every g ∈ G.

Suppose that for every finite clopen partition (coloring) c of U there exists an
idempotent u ∈ I(U) ∩ E(U) such that if a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bny ∈ F ,
then ĉ(a0u ·G . . . ·G anu) = ĉ(b0u ·G . . . ·G bmu), where ĉ is the closed partition of
U refining the clopen partition {{x ∈ U | g ·G x ∈ C} | C ∈ c} for every g ∈ G.

Then M is locally (F, y)-controllable (and the same proof of Theorem 5.3.3
proves it).

The authors do not know whether this weaker hypothesis can be achieved more
easily than the ones from Theorem 5.3.3.

Instead, we focus on finding algebraic sufficient conditions for obtaining a func-
tion h as described in Theorem 5.3.3.

Once again, [142, Lemma 2.5] (or Lupini’s [107, Lemma 2.2]) provides a won-
derful way to achieve this. Recall that a forest (P,≤) is a partial order such that for
every p ∈ P, the set of predecessors pred(p) = {x ≤ p} is a well-order. Recall also
that P has height ≤ ω if for every p ∈ P, the set of predecessors pred(p) = {x ≤ p}
is a finite linear order. We say that a partial order (P,≤) is a strong M -partial order
if M acts by endomorphism on P and furthermore pred(m(p)) = m[pred(p)] for
every m ∈M and p ∈ P. Although in [142] the author works with finite objects, the
proof of [142, Lemma 2.5] holds for every forest of height ≤ ω.

Lemma 5.3.8 ([142, Lemma 2.5]). Let M be a monoid acting by continuous endo-
morphisms on a compact right topological semigroup U . Let (P,≤) be a strong
M -partial order and a forest of height ≤ ω. For every M -equivariant function
f : P → U there exists an M -equivariant embedding h : 〈P〉 → E(U) such that
f−1(I(U)) ⊆ h−1(I(U)).

We apply this lemma in two distinct situations to give two different sufficient
algebraic conditions for a monoid to be locally Y-controllable.
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First, we want to work locally using My. Notice that in our cases of interest, this
set is always a forest of height ≤ ω.

Remark 5.3.9. Given a monoid M and a (maximal) element y ∈ Y(M), the suborder
(My,≤Y) of Y(M) is a forest of height≤ ω if and only if {a′y | a′y ≤Y ay} is finite
for every a ∈M .

It is not clear to the authors whether (My,≤Y) is always a strongM -partial order
too. However, in some situations, we can get the desired result.

Lemma 5.3.10. Let M be a monoid and let y ∈ Y(M) be maximal. Suppose that
for every aM ∈ y there is b ∈ [a]R such that by ≤Y y. Then (My,≤Y) is a strong
M -partial order.

Proof. Indeed, for every a,m ∈ M , since m acts by endomorphism on Y(M) we
have m[pred(ay)] ⊆ pred(may). Now consider a′, a ∈ M such that a′y ≤ ay.
Then, there is cM ∈ y such that if y′ = {xM ∈ y | xM ⊆ cM}, we have a′y = ay′.
By hypothesis there is b ∈ [c]R such that bM = cM and by ≤Y y. Then, we must
have by = y′, and thus a′y = aby as wanted.

Whenever we have that (My,≤Y) is a strong M -partial order and a forest of
height ≤ ω, we can apply Lemma 5.3.8 in order to obtain the desired M -equivariant
embedding h from any idempotent of U sufficiently regular under the action of M .

Lemma 5.3.11. Let M be a monoid acting by continuous endomorphisms on a com-
pact right topological semigroup U . Let y ∈ Y(M) be maximal such that (My,≤Y)
is a strong M -partial order that is also a forest of height ≤ ω.

Assume also that there exists a minimal idempotent u ∈ E(U) ∩ I(U) such that
a(u) = b(u) for all couples a, b ∈M such that ay = by.

Then, there exists an M -equivariant embedding h : 〈My〉 → E(U) such that
h(y) ∈ I(U).

Proof. First, notice that every element ay in My has a maximum aM , as y is maxi-
mal and M ∈ y. Let u ∈ E(U) ∩ I(U) be given by hypothesis and let f : My→ U
be the function that maps each ay ∈ My to a(u). Then, f is well-defined by as-
sumption on u) and M -equivariant and maps y to u ∈ E(U)∩ I(U). Thus, the result
follows from Lemma 5.3.8.

Notice that if y ∈ Y(M) is maximal, then ay = by implies aR b, as M ∈ y.
Thus, from Theorem 4.3.5, we get the following.

Theorem 5.3.12. Let M be an aperiodic monoid such that XR(M) is linear and
finite. Let y ∈ Y(M) be maximal and let A ⊆M be the set of those a ∈M such that
the set {a′y | a′ ∈M,a′y ≤Y ay} is finite and for every aM ∈ y there is b ∈M such
that bM = aM and by ≤Y y.

Then, M is locally (F, y)-controllable for every finite F ⊆ 〈Ay〉.

Thanks to Theorem 5.3.4, we get a similar theorem for Y-controllable monoids
as well.
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Theorem 5.3.13. Let M be an aperiodic monoid such that XR(M) is linear and
finite. Let y ∈ Y(M) be maximal such that for every aM ∈ y there is b ∈ M such
that bM = aM and by ≤Y y. Let A ⊆M be the set of those a ∈M such that the set
{a′ ∈M | a′y ≤Y ay} is finite.

Then, M is (F, y)-controllable for every finite F ⊆ 〈Ay〉 with Gen(F ) ⊆ A.

The next sufficient condition we are going to state is a global one. Working with
My we had the advantage that this partial order is always a forest of height ≤ ω
(for the monoid we consider), but we need to prove that it is also a strong M -partial
order. Now we work with Y(M), for which the situation is the opposite. Indeed,
it is easy to check that Y(M) is always a strong M partial order. Indeed, for every
x, z ∈ Y(M) and a ∈ M with x ≤Y az for some x, z ∈ Y(M) and a ∈ M , let
z = {m0M ⊆ . . . ⊆ mnM}. Then x = {am0M ⊆ . . . ⊆ amhM} for some h ≤ n,
and it is clear that x′ ≤ z and ax′ ≤ az for x′ = {m0M ⊆ . . . ⊆ mhM}.
Remark 5.3.14. Let M be a monoid, then (Y(M),≤Y) is a strong M partial order.

However, in general, Y(M) may not be a forest of height ≤ ω. This condition is
closely related however to the presence of infinite chains in X(M).

Lemma 5.3.15. Consider a monoid M . Then X(M) contains no infinite chain if and
only if (Y(M),≤Y) is a forest of height ≤ ω.

Proof. Indeed, if X(M) contains no infinite chain then every x ∈ Y(M) is finite
(since it is a linearly ordered subset of X(M)), and thus pred(x) is finite as well.

Conversely, the set pred(x) is a linear order for every x ∈ Y(M). Thus, if
(Y(M),≤Y) is not a forest of height ≤ ω this means that there is x ∈ Y(M) such
that pred(x) is infinite, and thus x ⊆ X(M) is an infinite chain.

When X(M) is linear, we have Y(M) = My for y = X(M) and all different
partial order we are considering collapses to one.

Corollary 5.3.16. Let M be a monoid with linear X(M). Then X(M) contains no
infinite chain if and only if (My,≤Y) is a forest of height ω for every y ∈ Y(M).

The above corollary would solve many problems if it holds without the assump-
tion of the linearity of X(M). It is immediate to check that if X(M) contains no
infinite chain, then for every maximal y ∈ Y(M), the set {a′y | a′ ∈M,a′y ≤Y ay}
is finite. Unfortunately, the authors do not know whether the converse is true as well
for every monoid.

Lemma 5.3.17. Let M be a monoid acting by continuous endomorphisms on a com-
pact right topological semigroup U . Suppose M is aperiodic, X(M) contains no
infinite chain and XR(M) is linear.

Then, there exists an M -equivariant embedding h : 〈Y(M)〉 → E(U) such that
h(y) ∈ I(U).

Proof. Since XR(M) is linear and X(M) contains no infinite linear order, then
XR(M) is finite as well. By Theorem 4.3.5, we can find an element u ∈ U such
that a(u) = b(u) for every a, b ∈ M with aR b. Since every element x ∈ Y(M) is
finite, it has a maximum axM : let f : Y(M) → U be the function that maps each
x ∈ Y(M) to ax(u). Then, f is well-defined, since axM = bM implies axR b and
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ax(u) = b(u), and it is M -equivariant by definition. Furthermore, for every maxi-
mal y ∈ Y(M) we have f(y) = u ∈ E(U) ∩ I(U). Thus, the result follows from
Lemma 5.3.8.

As a corollary, we get the following sufficient conditions for a monoid to be
locally Y-controllable.

Theorem 5.3.18. Let M be an aperiodic monoid such that XR(M) is linear and
X(M) contains no infinite chains.

Then, M is locally Y-controllable.

As a corollary, we obtain the following results.

Theorem 5.3.19. Let M be an aperiodic monoid such that XR(M) is linear, X(M)
contains no infinite chains and eachR-class is finite.

Then, M is Y-controllable.

Theorem 5.3.20. LetM be an aperiodic monoid such that X(M) is linear and finite.
Then, M is locally Ramsey (and the converse is true as well).

5.4 Conclusions: some final remarks and a synthesis

We conclude this chapter by making a bit of order and schematizing all the known
relationships between the four classes of monoids we worked with (Ramsey, locally
Ramsey, Y-controllable, locally Y-controllable).

First, we proved two characterizations of Ramsey and locally Ramsey monoids.

Theorem. A monoid M is Ramsey if and only if it is finite, aperiodic and X(M) is
linear.

Theorem. A monoid M is locally Ramsey if and only if it is aperiodic and X(M) is
finite and linear.

The two algebraic characterizations reveal also the connection between the two
classes of Ramsey and locally Ramsey monoids.

Corollary. A monoid M is Ramsey if and only if it is locally Ramsey and all R-
classes are finite.

About Y-controllable monoids, we proved the following.

Theorem. Let M be a monoid.

1. If M is Y-controllable, then it is aperiodic and (My,≤Y) is a forest of height
≤ ω for every y ∈ Y(M).

2. Conversely, if M is aperiodic, XR(M) is linear, all R-classes are finite and
(Y(M),≤Y) is a forest of height ≤ ω, then M is Y-controllable.

3. Also, if M is aperiodic, XR(M) is linear and finite, all R-classes are finite
and (My,≤Y) is a forest of height ≤ ω and a strong M -partial order for
every y ∈ Y(M), then M is Y-controllable.
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The following statement collects the known relationships between Y-controllable
monoids and the previous two classes of Ramsey and locally Ramsey monoids.

Proposition. Let M be a monoid. The following are equivalent:

(a) M is Y-controllable and X(M) is linear.

(b) M is Y-controllable and locally Ramsey.

(c) M is Ramsey.

Finally, regarding locally Y-controllable monoids, we have the following.

Theorem. Let M be a monoid.

1. If M is locally Y-controllable, then it is aperiodic and (My,≤Y) is a forest of
height ≤ ω for every y ∈ Y(M).

2. Conversely, if M is aperiodic, XR(M) is linear and (Y(M),≤Y) is a forest
of height ≤ ω, then M is locally Y-controllable.

3. Also, if M is aperiodic, XR(M) is linear and finite, and (My,≤Y) is a forest
of height ≤ ω and a strong M -partial order for every y ∈ Y(M), then M is
locally Y-controllable.

Recall also that one condition that grants that (Y(M),≤Y) is a strong M -partial
order is given by Lemma 5.3.10.

We have the following relations between locally Y-controllable monoids and pre-
vious classes.

First, thanks to the characterization of locally Ramsey monoids and the necessary
and sufficient conditions given above, we get the

Proposition. A monoidM is locally Ramsey if and only if it is locally Y-controllable
and X(M) is linear.

Although we do not have a characterization, the size ofR-classes plays a crucial
role in the relationship between Y-controllable and locally Y-controllable monoids,
thanks to Proposition 5.2.6 and Theorem 5.3.4.

Proposition. Let M be a monoid.

1. If M is Y-controllable, then it is locally Y-controllable.

2. Conversely, if M is locally Y-controllable and all R-classes are finite, then it
is Y-controllable.

In order to show that some classes are non-trivial and some hypotheses non-
optimal, we provide some examples of monoids.

Proposition 5.4.1. There exists an infinite Y-controllable monoid.
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Proof. Let α be an ordinal and let (Mi, ∗i)i∈α be a family of disjoint aperiodic finite
semigroups such that M0 has linear XR(M) and all other Mi are R-trivial. Let 1, 0
be two elements outside

⋃
i∈IMi and let M =

⋃
i∈IMi ∪ {1, 0}, with operation

defined by letting 1a = a1 = a for every a ∈M , ab = a∗i b if a, b ∈Mi and ab = 0
otherwise. Then, M is Y-controllable.

It is straightforward to check that if a ∈ Mi then aM = aMi ∪ {0}. Hence,
all R-classes are finite, XR(M) is linear (as it is isomorphic to XR(M0), since all
other Mi are R-trivial) and furthermore it is aperiodic by Proposition 4.2.4. Also, if
b ∈ Mj then {aM ∈ X(M) | aM ⊆ bM} ⊆ Mj ∪ {0}; Thus every chain of X(M)
must be contained in one single Mi and hence it must be finite.

Then the result follows from Theorem 5.3.19.

Recall also that by Proposition 4.6.3 there exist Y-controllable monoids such that
XR(M) is not linear.

The following example shows that the infinite Carlson’s monoid is locally Ram-
sey but not Y-controllable

Proposition 5.4.2. There exists a locally Ramsey monoid which is not Y-controllable.

Proof. Let X be an infinite set such that 1 /∈ X , and let M = (X ∪ {1}, ∗, 1) be the
monoid with operation ab = b for every a, b ∈M \1. It is enough to check that M is
aperiodic, thatM\{1} is an infiniteR-class and that X(M) = {M\{1},M} is linear
and finite. Then the result follows from Theorem 5.3.20 and Proposition 5.2.6.

Similarly, one can prove the following.

Proposition 5.4.3. There exist locally Y-controllable monoids which are not locally
Ramsey nor Y-controllable.

Proof. Let (Xi)i<n be a finite sequence of infinite sets such that 1 /∈
⋃
i∈αXi, and

let F ⊆ n be non-empty. Define an operation ∗i on every Xi by setting for every
a, b ∈ Xi either a ∗i b = b if i ∈ F or a ∗i b = a otherwise. Let (M, ∗, 1) be the
disjoint union of the Xis, i.e. M =

⋃
i∈I Xi ∪ {1} is the monoid with identity 1 and

operation defined a ∗ b = a ∗i b if a, b ∈ Xi, while a ∗ b = b ∗ a = a if a ∈ Xi

and b ∈ Xj with i < j. Then, the monoid is aperiodic, as a2 = a for every a ∈ M .
Furthermore, if a ∈ Xi then either aM =

⋃
j<iXj∪{a} if i /∈ F , or aM =

⋃
j≤iXj

if i ∈ F . In particular, aM = bM if and only if a = b or a, b ∈ Xi for i ∈ F , so
there are infinite R-classes and XR(M) = {

⋃
j≤iXj | i ∈ F} is finite and linear.

Also, aM ⊆ bM if and only if aM = bM or a ∈ Xj and b ∈ Xi for j < i, thus
X(M) = {

⋃
j≤iXj | i ∈ F} ∪ {

⋃
j<iXj ∪ {a} | a ∈ Xi, i /∈ F} ∪ {M} contains

only chain of size ≤ n, but it is not linear. Hence, M is locally Y-controllable by
Theorem 5.3.18, but it is not locally Ramsey by Proposition 5.2.1. Finally, it is easy
to see that for every i ∈ F and a ∈ Xi, then [a]R is an infinite R-class satisfying
that for every c ∈ [a]R we have {cm | m /∈ [a]R} ∩ [a]R = {c}, thus M is not
Y-controllable by Remark 5.2.7.

Notice that these monoids are a generalization of Furstenberg-Katznelson monoids
(which are the case of n = 2 and F = {0}), and they are almostR-trivial if and only
if F = {0}.
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In this work, we tried to do an in-depth study of (locally) Ramsey and (locally)
Y-controllable monoids. However, there are several other variants that we did not
consider and that could reveal to be very interesting for other aspects. So let us
provide some examples of other classes of monoids and show a few easy results that
follow from what we proved so far.

In [142], given a finite monoidM , the set Y(M) is defined as the forest generated
by X(M) by taking the set of all chains of X(M) ordered by initial segment. This
gave us two distinct possibilities on how to extend this notion to infinite monoids:
either as the forest generated by X(M), or as the set of all chains of X(M) ordered by
initial segment (which does need not to be a forest in this case). We decided to go for
the second option. However, one may be curious about the possibility we left behind.
Define W(M) be the forest generated by X(M). This set is usually constructed by
taking the set of all increasing sequences s̄ ∈ (X(M))<∞ of elements of (X(M),⊆)
with initial segment relation v as order. However, W(M) can be identified also as
the suborder of Y(M) of the wellordered subsets of X(M)

W(M) = {y ∈ Y(M) | y is a wellorder}

Then, we can define a monoid to be (locally) W-controllable if it is (locally)
y-controllable for every maximal y ∈W(M).

Some of the results we presented work for this class of monoids as well. For
example, Proposition 5.2.4 tell us already a necessary condition for locally W-con-
trollable monoids. Other results can be adapted with some changes. For example,
the proof of Proposition 5.2.3 can be split into two parts, the first proving that “If M
is locally Y-controllable, then every element of finite period is idempotent” and the
second proving that “If M is locally Y-controllable, then M is periodic”. It is easy to
see that the first part still works for locally W-controllable monoids, as it uses only
finite elements y ∈ Y(M) (which are also in W(M)).

Proposition 5.4.4. Let M be a locally W-controllable. Then, every element of finite
period is idempotent.

This condition corresponds to point 6 of Proposition 4.2.2, the weakest of all
statements listed there. This can be improved a bit. It is not difficult for example
to see that the same argument of Proposition 5.2.3 shows that M does not contains
non-trivial subgroups (using that if G is a non-trivial subgroup of M and a ∈ G is
not the identity of G, then a2 6= a and anM = amM for every n,m > 0. Then
applying the same argument of Proposition 5.2.3 to y = {aM,M} gives the wanted
result). However, we can not expect to obtain that M is aperiodic, as for example
the natural numbers are W-controllable (in a trivial way, since for every wellfounded
y ∈W(M) and a, b ∈ N we have ay ≤Y by if and only if a = b) but not aperiodic.

On the other side, from Theorem 5.3.3 and from the same arguments of Lem-
mas 5.3.15 and 5.3.17 applied to W(M) instead of Y(M), we can derive the follow-
ing sufficient conditions for being W-controllable.

Theorem 5.4.5. Let M be a monoid such that (X(M),⊆) contains no infinite in-
creasing chain (i.e. (X(M),⊇) is wellfounded). Suppose that for action by contin-
uous endomorphisms of M on a compact right topological semigroup U there is a
minimal idempotent u ∈ U such that for every a, b ∈M , if aR b then a(u) = b(u).

Then, M is locally W-controllable.
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Corollary 5.4.6. Let M be a monoid such that XR(M) is linear and finite, and
suppose M satisfies the thesis of Lemmas 4.3.3 and 4.3.4 (i.e., for every a, b ∈ M
there are g, h ∈ M such that ag = b, bh = a, hg = gg = g and gh = hh = h, and
ab = b and aR b implies ba = a for every a, b ∈M ). Suppose also that (X(M),⊆)
contains no infinite increasing chain (i.e. (X(M),⊇) is wellfounded).

Then, M is locally W-controllable.

Finally, locally Y-controllable monoids can be seen as just a particular case of a
more general notion.

Definition 5.4.7. Let (M, 0, ∗, τ) be a monoid with a topology1. Let y be a maximal
element in Y(M), let F ⊆ 〈My〉 be finite. We say that (M, τ) is topologically
(F, y)-controllable if it is (F, y, (Mi)i∈ω)-controllable for every family (Mi)i∈ω of
compact subsets of M .

This notion naturally extends both the one of locally Y-controllable and the one
of Y-controllable monoids, the first by giving for example the discrete topology to
M and the second by giving the indiscrete topology to it.

We conclude with a remark. While reading this chapter, a careful reader may
notice a section seems missing. He would be right. The study of finite monoids
(Chapter 4) had three main parts (roughly): one about conditions that are necessary to
be Ramsey/Y-controllable, one for finding idempotents in compact right topological
semigroups, and one for obtaining sufficient conditions to be Ramsey/Y-controllable
knowing the existence of these idempotents. In this chapter, we focused only on
the first and third part and said nothing about the second (while this work would
enjoy a new section with stronger results on idempotents in compact right topological
semigroups, since the ones provided in Theorem 4.3.5 are far from optimal). This is
partially due to time, as the work to do is a lot and the PhD lasts a fixed bounded
amount of time, but the plan for the future is to complete the work of this chapter
with one more section on topological dynamics.

However, we anticipate here a first easy result that hints how Theorem 4.3.5 could
be improved to obtain idempotents relying on weaker hypotheses. We do so by study-
ing an example of a monoid that does not satisfy most of the sufficient conditions we
provided, and yet is Y-controllable.

Example 5.4.8. Consider the monoidM freely generated by the set {0, g, h, 1}mod-
ulo the relations

• 0g = g0 = gg = 0 and 0h = h0 = hh = 0.

• 1x = x1 = x for every x ∈M .

• ghg = g and hgh = h.

In other words, M satisfies the Caley following table:
Then, X(M) = {{0}, {g, gh}, {h, hg},M} and XR(M) = {{g, gh}, {h, hg}}.

Thus XR(M) is not linear, and M does not satisfy the theses of Lemmas 4.3.3
and 4.3.4. Also, M does not satisfy the hypothesis of Proposition 4.6.3 either.

1The definition makes sense for every monoid with a topology, although in a further study of the
notion it would probably be the best to restrict the attention to topological monoids where the operation
is compatible with the topology.
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1 g gh h hg 0

g 0 0 gh g 0
gh g gh 0 0 0
h hg h 0 0 0
hg 0 0 h hg 0
0 0 0 0 0 0

However, M is Y-controllable. Indeed, let U be a compact right topological
semigroup on which M acts by continuous endomorphisms. We proceed as in Theo-
rem 4.3.5 to find a minimal idempotent u ∈ E(U) ∩ I(U) such that a(u) = b(u) for
all couples a, b ∈M such that aR b.

First, let u0 be a minimal idempotent in 0(U), and let u1 be a minimal idem-
potent in g(U) such that u1 ≤U u0 as given by Proposition 4.3.1. Notice that
(gh)2 = gh and (hg)2 = hg, hence the two functions g : h(U) → gh(U) = g(U)
and h : g(U) → hg(U) = h(U) are the inverse of each other and thus they are
homeomorphisms. Hence, h(u1) is minimal in h(U) and h(u1) ≤U u0 (as other-
wise, u0h(u1) 6= h(u1) would imply g(u0h(u1)) = u0u1 6= gh(u1) = u1, since
g injective). Notice that since u1 ∈ g(U), we have g(u1) ∈ gg(U) = 0(U), and
u1 ≤U u0 implies g(u1) ≤U g(u0) = u0, thus g(u1) = u0 by minimality of u0.
Similarly, h(h(u1)) = u0.

Let v = u1h(u1). Then, g(v) = g(u1)gh(u1) = u0u1 = u1, and similarly,
h(v) = h(u1). Thus, U ′ = g−1(u1) ∩ h−1(h(u1)) is a non-empty compact right
topological subsemigroup of U , and we may find an idempotent u2 ∈ U ′ and a
minimal idempotent u ∈ I(U) ∩ E(U) such that u ≤U u2 by Proposition 4.3.1.

We claim that u is as wanted. Indeed, g(u2) = u1 and h(u2) = h(u1) by
definition of U ′. Hence, by minimality g(u) ≤U g(u2) = u1 implies g(u) = u1, and
similarly h(u) = h(u1). Also, gh(u) = gh(u1) = u1 and hg(u) = h(u1). Thus, u
satisfies that a(u) = b(u) for every a, b ∈M with aR b, as wanted.

Then, M is Y-controllable by (for example) Lemma 5.3.11.
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diagram for uncountable cardinals. Israel J. Math., 225(2):959–1010, 2018.

[27] B. Brunet. On the dimension of ordered spaces. Collect. Math., 48(3):303–
314, 1997.

[28] J. P. Burgess. A reflection phenomenon in descriptive set theory. Fund. Math.,
104(2):127–139, 1979.

[29] F. Calderoni, H. Mildenberger, and L. Motto Ros. Uncountable structures
are not classifiable up to bi-embeddability. J. Math. Log., 20(1):2050001, 49,
2020.
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[125] J.-É. Pin. Mathematical foundations of automata theory. Lecture notes LIAFA,
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^G, 173
〈s̄〉C(Mi)i∈ω

, 29, 183
〈s̄〉C , 24, 158
〈s̄〉f , 27
≤M (extraction of sequences), 159
≤U (order on idempotents of U ), 167
≤Y (order on Y(M)), 27, 161, 169

ν-additive, 38, 75
ν-additives, 9
η-algebra, 75
almostR-trivial, 25, 165
κ-analytic, 68
aperiodic, 163

κ-Baire, 56
balanced, 77
base number, 35
basic (sequence), 24, 158
basis, 74, 75
κ-bianalytic, 68
body, 38, 77
Borκ-PSP, see Borel κ-perfect set prop-

erty
κ-Borel

embedding, 33, 75
isomorphism, 33, 75
measurable function, 33, 75
rank, 76
set, 33, 75
space, 75

Borel κ-perfect set property, 71
boundary, 78
bounded topology, 32, 79
boundedly complete, 134
branch, 76

Carlson’s monoid, 24
Cauchy sequence, 109
Cauchy-complete, 109

chain, 76
character, 35
Choquet game, 34
κ-Choquet game, 34
circle made from L, 151
clopen set, 74
closed set, 74
<δ-closed tree, 39, 77
closure, 74
κ-coanalytic, 68
cofinality, 134
coheir sequence, 174
coinitiality, 134
compact basis, 15, 112
comparable, 38, 76
compatible with σ, 81
complementedA-neighborhoods of x, 89
complete (linear order), 134
complete (metric), see Cauchy-complete
complete body, 77
connected, 135
0G-continuous semigroup, 82
controllable

(F, y, (Mi)i∈ω)-controllable (monoid),
184

(F, y)-controllable (monoid), 184
y-controllable (monoid), 184
(F, y, (Mi)i∈ω, c)-controllable (sequence),

189
(F, y, c)-controllable (sequence), 175
W-controllable (monoid), 199
Y-controllable (monoid), 29, 162

convex set, 133
cut, 134

D (Green’s relation), 163
Deg, see degree
degree, 6, 35, 82
dense (topology), 74
dense linear order, 134
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dense suborder, 134
density (topology), 74
descriptive set-theoretic tree, 78
distinguished point, 158
downward bounded, 134
downward closed, 122
downward closure, 134
DST tree, see descriptive set-theoretic tree

E(U), 167
endpoint, 132
M -equivariant, 170
extracted, 23, 24, 159
extreme point, 132

finite period, 163
finitely satisfied, 172
free sequence, 160
fSC, see strong fair Choquet
Furstenberg-Katznelson’s monoids, 28

Gηδ -set, 102
game, 80
(µ, ν)-gap, 134
Ωκ-gap game, 140
generalized Baire space, 32, 79
generalized Cantor space, 32, 79
generalized ordered space, 18, 132
GO-space, see generalized ordered space
good monoid, 170
Gower’s monoid, 25
Green’s relations, 163

H (Green’s relation), 163
Hausdorff topology, 74
height, 76

I(U), 167
immsucc(q), 77
inaccessible cardinal, 44
incomparable, 38, 76
indiscernible, 174
infinite period, 163
interval, 132
irrationals of X , 143
isolated, 54
κ-isolated, 54
isomorphism (of GO-spaces), 132

J (Green’s relation), 163
jump, 133

Kκ-set, 54

L (Green’s relation), 163
leaf, 77
Lebesgue zero-dimensional, 75, 87
left-cut, 133
legal positions, 80
legal strategy, 81
δ-Lindelöf

basis, 15, 112
family, 111
space, 44, 111

linearly ordered topological space, 18, 132
local basis, 74
localization of T at s, 77
locally controllable

locally (F, y)-controllable (monoid),
184

locally y-controllable (monoid), 184
locally W-controllable (monoid), 199
locally Y-controllable (monoid), 30,

185
locally finite, 75
locally Ramsey, 30, 184
locally <δ-small, 86
LOTS, see linearly ordered topological

space
lower-limit topology, 143

κ-meager, 56
G-metric, 6, 35, 81
µ-metric, 109
µ-metric space, 109
G-metrizable, 35
µ-metrizable, 82

(δ, γ)-Nagata-Smirnov
basis, 86
cover, 86
space, 12, 86

nodes, 77
normal (tree), 77
NSδγ , see (δ, γ)-Nagata-Smirnov

open interval, 132
open set, 74
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orderable, 142
ortho-base, 94

paracompact, 75
(δ, γ)-paracompact, 88
γ-paracompact, 88
partial semigroup of located words, 23,

25, 157
payoff, 80
perfect, 54
κ-perfect, 54
κ-perfect set property, 71
period (semigroup), 163
periodic, 163
(µ, ν)-point, 141
pointed M -set, 158
Polish space, 5
(λ, µ)-Polish space, 11, 109
λ-Polish space, 11
G-Polish space, 6, 36
positions, 81
product of types, 173
pruned, 38, 77
pseudo-gap, 134
(µ, ν)-pseudo-gap, 134
κ-PSP, see κ-perfect set property

R (Green’s relation), 163
R-rigid, 163
Ramsey, 27, 159
rapidly increasing, 160
rationals of X , 143
regular topology, 74
right-cut, 133

S(G), 172
SC, see strong Choquet
semigroup of words, 23, 157
separates points, 75
M -set, 158
spaces of sequences, 79
span, 22
(Mi)i∈ω-span, 183
C-span, 24, 158
C, (Mi)i∈ω-span, 183
M -span, 158
spherically complete, 6, 48, 110
spherically κ-complete, 48, 110

spherically <κ-complete, 48, 110
splitting, 54, 77
δ-splitting, 77
standard Borel space, 119
standard κ-Borel space, 10, 33, 120
strategy, 81
strong (λ, µ)-Choquet space, 12, 108
strong κ-Choquet space, 7, 34, 108
strong fair (λ, µ)-Choquet space, 12, 108
strong fair κ-Choquet space, 7, 35, 108
strongly variable word, 159
suborderable, 142
superclosed, 8, 39, 77, 80

tactic, 81
topologically (F, y)-controllable, 200
topology, 74
tree, 38, 77
tree basis, 92
tree of sequences, 77
tree-based, 13, 92
γ-tree-based, 13, 92
trivial (equivalence class), 163
K-trivial (set), 163
trivial cut, 133
1-type

complete, 172
partial, 172

type (of a cut or gap), 134
type of a point, 141

G-ultrametric, 81
µ-ultrametrizable, 82
ultraparacompact, 75
uniform (action of monoid), 158
µ-uniform local basis game, 13, 95
upper-limit topology, 143
upward bounded, 134
upward closure, 134

variable (of an M -set), 158
variable located words, 158
variable word, 24, 158

WY , 25, 158
W-controllable, see controllable
weakly compact cardinal, 44
weakly partition regular, 22
weakly pruned, 77
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weight, 74
winning strategy, 81

X(M), 25, 161

Y(M), 27, 161, 169
Y-controllable, see controllable

zero-dimensional, 87
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