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Abstract

In Bayesian Statistics, the modeling of data with complex dependence structures is often obtained by a com-

position of simple dependence assumptions. Such representations facilitate the probabilistic assessment and

ease the derivation of analytical and computational results in complex models. In the present thesis, we de-

rive novel theoretical and computational results on Bayesian inference for probabilistic clustering and flexible

dependence models for complex data structures. We focus on models arising from hierarchical specifications in

both parametric and nonparametric frameworks.

More precisely, we derive novel conjugacy results for one of the most applied dynamic regression models

for binary time series: the dynamic probit model. Exploiting such theoretical results we derive new efficient

sampling schemes improving state-of-the-art approximate or sequential Monte Carlo inference. Motivated by an

issue of the well-known nested Dirichlet process, we also study a model, arising from the composition of Dirichlet

processes, to cluster populations and observations across populations simultaneously. We derive a closed form

expression for the induced distribution of the random partition which allows to gain a deeper understanding

of the theoretical properties and inferential implications of the model and we propose a conditional Markov

Chain Monte Carlo (MCMC) algorithm to effectively perform inference. Moreover, we generalize the previous

composition of discrete random probabilities defining a novel wide class of species sampling priors which allows

to predict future observations in different groups and test for homogeneity among sub-populations. Posterior

inference is feasible thanks to a marginal MCMC routine and urn schemes that allow to evaluate posterior and

predictive functionals of interest. Finally, we prove a surprising consistency result for the number of clusters in

the most famous nonparametric model for clustering, that is the Dirichlet process mixture model. In this way

we partially answer an open question in the methodological literature.
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Chapter 1

Introduction

Probability estimation is naturally approached and justified in the Bayesian nonparametric framework. Indeed,

when we judge an extendable sequence of observable variables exchangeable, a random probability measure

arises from de Finetti’s representation theorem and the observations can be seen as independent identically

distributed given such a random probability. If a subject wants to make inference and prediction using the

Bayes-Laplace paradigm they can interpret the law of the random probability measure as a prior. When the

support of the prior does not degenerate on a finite-dimensional parameter space, we are in the Bayesian

nonparametric framework.

In real world applications, the homogeneity assumption of exchangeability is often too restrictive when we

want to model complex data structures. To quote de Finetti (1938): “But the case of exchangeability can only

be considered as a limiting case: the case in which this ‘analogy’ is, in a certain sense, absolute for all events

under consideration. [..] To get from the case of exchangeability to other cases which are more general but still

tractable, we must take up the case where we still encounter ‘analogies’ among the events under consideration,

but without attaining the limiting case of exchangeability.” Indeed, exchangeability entails that the order of the

observations does not count in the inferential procedures. According to the specific application, the type of

data and the availability of covariates different dependence assumptions can be assessed more reasonably by a

subject. For instance, when modeling time series (Chapter 2) it is reasonable to exploit the time information

to perform inference and prediction. Likewise, when data are collected in different studies or populations

(Chapters 3 and 4), it is sound to perform inference effectively borrowing information across them without

degenerating to the exchangeable case. Though in such aforementioned cases we clearly need to go beyond the

assumption of exchangeability, exchangeability still remains the fundamental building block of a major part of

more flexible Bayesian models. More generally, the idea of combining simple conditional independent structures

to characterize complex dependence relationships in the data is ubiquitous in Bayesian Statistics. For instance,

in the time series setting introducing an hidden state process with a simple Markovian dependence allows to set

far more general dependence assumptions on the observable process. In the same spirit, thanks to de Finetti’s

representation Theorem for the partially exchangeable case, we can flexibly model partial exchangeable arrays by

assigning a distribution on the vectors of the underlying random probabilities, that is the de Finetti’s measure,

which takes the role of the prior. Note that such hierarchical compositions can, at least in principle, be extended

to an arbitrary level of depth. Such conditional independence assumptions have also several practical advantages.

1
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Indeed, they facilitate the elicitation of the subject’s prior opinion and also ease the derivation of analytical and

computational results in complex models. It is important to stress that the simpler prior elicitation on latent

quantities can be also made “coherent” to de Finetti’s idea of assessing just observable quantities if we derive

analytical results that allow to understand the model linking the assumptions on latent quantities to observable

ones. In the present thesis we derive novel theoretical and computational results on Bayesian inference for

probabilistic clustering and complex dependence models both in the parametric and nonparametric settings.

As said we focus on Bayesian models arising from the different hierarchical specifications of simple dependence

structures that combined together allow to characterize and flexibly model complex data structures preserving

mathematical and computational tractability.

More precisely, in Chapter 2 we analyze the dynamic probit model which allows to asses complex dependence

in binary time series by exploiting the conditional independence structure of hidden Markov models. We prove

that the filtering, predictive and smoothing distributions in dynamic probit models with Gaussian state variables

are, in fact, available and belong to a class of unified skew-normals (SUN) whose parameters can be updated

recursively in time via analytical expressions. Also the functionals of these distributions depend on known

functions, but their calculation requires intractable numerical integration. Leveraging the SUN properties, we

address this point via new Monte Carlo methods based on independent and identically distributed samples

from the smoothing distribution, which can naturally be adapted to the filtering and predictive case, thereby

improving state-of-the-art approximate or sequential Monte Carlo inference in small-to-moderate dimensional

studies. A scalable and optimal particle filter which exploits the SUN properties is also developed to deal with

online inference in high dimensions.

In Chapters 3 and 4, the core of the present thesis, we focus on the case where the data arises from different,

though related, populations or studies and can be naturally modeled in the partially exchangeable framework

to borrow information across them. Roughly speaking, partially exchangeable extendable arrays can be thought

of, thanks to de Finetti representation theorem, as decomposable into different conditionally independent ex-

changeable subpopulations. More precisely, in Chapter 3 we propose a Bayesian nonparametric prior arising

from the composition of Dirichlet processes that allows to perform inference in the partially exchangeable frame-

work when we are interested in clustering populations and observations simultaneously and/or perform density

estimation borrowing information across populations. A well-known Bayesian nonparametric prior to perform

such tasks is the nested Dirichlet process which is known to group distributions in a single cluster when there

are ties across populations. We study a hybrid nonparametric prior which solves the problem by hierarchically

combining two different Dirichlet processes structures. We derive a closed form expression for the induced dis-

tribution of the random partition which allows to gain a deeper understanding of the theoretical properties and

inferential implications of the model and, further, yields a MCMC algorithm for evaluating Bayesian inference

of interest. However, such an algorithm becomes infeasible when the number of populations is larger than two.

Therefore, we also propose a different MCMC algorithm to perform inference for a larger number of populations

and to test homogeneity between different populations as a by-product.

In Chapter 4 we generalize the previous composition of Dirichlet processes to a wider class of composition of

Gibbs type priors in order to face species sampling problems in heterogeneous populations while simultaneously

identifying sub-groups of populations and borrowing information across them. Indeed, our goal is two-fold:

predict future discrete observations in different groups and test for homogeneity among sub-populations. The
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former is usually the main focus in species-sampling problems, while the latter task is not feasible with the

state-of-the art methods available in the literature, since they generally consider all populations’ distributions

different almost surely. In order to do so, we extend what is arguably the most popular species sampling model in

Bayesian nonparametrics in this partially exchangeable framework, that is the hierarchical Pitman-Yor process.

Adding a latent structure on the distributions, we allow to have ties across the sub-populations distributions,

performing both the above-mentioned tasks at the same time. We show that the distribution of the induced

random partition admits a closed form expression and we derive the asymptotic behavior of the number of

species and homogeneous subpopulations, allowing to gain a deeper understanding of the theoretical properties

and inferential implications of the model. Moreover, we derive computational results to perform inference via a

marginal Gibbs sampler and predictive urn schemes.

In Chapter 5 we study the asymptotic behavior of the number of clusters under Dirichlet process mixture

models, arguably the most famous Bayesian nonparametric model to perform clustering and density estimation.

It has been recently shown that, when data are generated from a finite mixture, this posterior is inconsistent

as it does not concentrate around the “true” value of the number of components. We show that placing a prior

on the concentration parameter of the Dirichlet process drastically changes the asymptotics of the number of

clusters, possibly allowing to overcome the inconsistency issue.



Chapter 2

A closed–form filter for binary time

series

2.1 Introduction

Despite the availability of several alternative approaches for dynamic inference and prediction of binary time

series (MacDonald and Zucchini, 1997), state-space models are a source of constant interest due to their flexibility

in accommodating a variety of representations and dependence structures via an interpretable formulation (West

and Harrison, 2006; Petris et al., 2009; Durbin and Koopman, 2012). Let yt = (y1t, . . . , ymt)
ᵀ ∈ {0; 1}m be a

vector of binary event data observed at time t, and denote with θt = (θ1t, . . . , θpt)
ᵀ ∈ Rp the corresponding

vector of state variables. Adapting the notation in, e.g., Petris et al. (2009) to our setting, we aim to provide

closed-form expressions for the filtering, predictive and smoothing distributions in the general multivariate

dynamic probit model

p(yt | θt) = Φm(BtFtθt; BtVtBt), (2.1)

θt = Gtθt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, (2.2)

with θ0 ∼ Np(a0,P0), and dependence structure as defined by the directed acyclic graph displayed in Fig. 2.1.

In (2.1), Φm(BtFtθt; BtVtBt) is the cumulative distribution function of a Nm(0,BtVtBt) evaluated at BtFtθt,

with Bt = diag(2y1t − 1, . . . , 2ymt − 1) denoting the m ×m sign matrix associated with yt, which defines the

multivariate probit likelihood in (2.1).

Model (2.1)–(2.2) generalizes univariate dynamic probit models to multivariate settings, as we will clarify

in equations (2.3)–(2.5). The quantities Ft,Vt,Gt,Wt,a0 and P0 denote, instead, known matrices controlling

the location, scale and dependence structure in the state-space model (2.1)–(2.2). Estimation and inference

for these matrices is, itself, a relevant problem which can be addressed both from a frequentist and a Bayesian

perspective. Yet our focus is on providing exact results for inference on state variables and prediction of future

binary events under (2.1)–(2.2). Hence, consistent with the classical Kalman filter (Kalman, 1960), we rely on

known system matrices Ft,Vt,Gt,Wt,a0 and P0. Nonetheless, results on marginal likelihoods, which can be

4
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θ0 θ1 θ2 · · · θt · · · θn−1 θn

ε1 ε2 · · · εt · · · εn−1 εn

y1 y2 · · · yt · · · yn−1 yn

Figure 2.1: Graphical representation of model (2.1)–(2.2). The dashed circles, solid circles and grey squares
denote Gaussian errors, Gaussian states and observed binary data, respectively.

θ0 θ1 θ2 · · · θt · · · θn−1 θn

ε1 ε2 · · · εt · · · εn−1 εn

z1 z2 · · · zt · · · zn−1 zn

y1 y2 · · · yt · · · yn−1 yn

Figure 2.2: Graphical representation of model (2.3)–(2.5). Dashed circles, solid circles, white squares and grey
squares denote Gaussian errors, Gaussian states, latent Gaussian data and observed binary data, respectively.

used in parameter estimation, are provided in Section 2.3.2.

Model (2.1)–(2.2) provides a general representation encompassing a variety of formulations. For example,

setting Vt = Im in (2.1) for each t yields a set of standard dynamic probit regressions, which include the classical

univariate dynamic probit model when m = 1. These representations have appeared in several applications,

especially within the econometrics literature, due to a direct connection between (2.1)–(2.2) and dynamic

discrete choice models (Keane and Wolpin, 2009). This is due to the fact that representation (2.1)–(2.2) can be

alternatively obtained via the dichotomization of an underlying state-space model for the m-variate Gaussian

time series zt = (z1t, . . . , zmt)
ᵀ ∈ Rm, t = 1, . . . , n, which is regarded, in econometric applications, as a set of

time-varying utilities. Indeed, adapting classical results from static probit regression (Albert and Chib, 1993;

Chib and Greenberg, 1998), model (2.1)–(2.2) is equivalent to

yt = (y1t, . . . , ymt)
ᵀ = 1(zt > 0) = [1(z1t > 0), . . . ,1(zmt > 0)]ᵀ, t = 1, . . . , n, (2.3)
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with z1, . . . , zn evolving in time according to the Gaussian state-space model

p(zt | θt) = φm(zt − Ftθt; Vt), (2.4)

θt = Gtθt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, (2.5)

having θ0 ∼ Np(a0,P0) and dependence structure as defined by the directed acyclic graph displayed in Fig. 2.2.

In (2.4), φm(zt − Ftθt; Vt) denotes the density function of the Gaussian Nm(Ftθt,Vt) evaluated at zt ∈ Rm.

To clarify the connection between (2.1)–(2.2) and (2.3)–(2.5), note that if z̃t is a generic Gaussian random

variable with density (2.4), then it holds p(yt | θt) = pr(Btz̃t > 0) = pr[−Bt(z̃t − Ftθt) < BtFtθt] =

Φm(BtFtθt;BtVtBt), given that −Bt(z̃t − Ftθt) ∼ Nm(0,BtVtBt) under (2.4).

As is clear from model (2.4)–(2.5), if z1:t = (zᵀ1 , . . . , z
ᵀ
t )ᵀ were observed, dynamic inference on the states θt,

for t = 1, . . . , n, would be possible via direct application of the Kalman filter (Kalman, 1960). Indeed, exploiting

Gaussian-Gaussian conjugacy and the conditional independence properties that are represented in Fig. 2.2, the

filtering p(θt | z1:t) and predictive p(θt | z1:t−1) densities are also Gaussian and have parameters which can be

computed recursively via simple expressions relying on the previous updates. Moreover, the smoothing density

p(θ1:n | z1:n) and its marginals p(θt | z1:n), t ≤ n, can also be obtained in closed form leveraging Gaussian-

Gaussian conjugacy. However, in (2.3)–(2.5) only a dichotomized version yt of zt is available. Therefore, the

filtering, predictive and smoothing densities of interest are p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n), respec-

tively. Recalling model (2.1)–(2.2) and Bayes’ rule, the calculation of these quantities proceeds by updating the

Gaussian distribution for the states in (2.2) with the probit likelihood in (2.1), thereby providing conditional

distributions which do not have an obvious closed form (Albert and Chib, 1993; Chib and Greenberg, 1998).

When the focus is on online inference for filtering and prediction, one solution to the above issue is to rely on

approximations of model (2.1)–(2.2) which allow the implementation of standard Kalman filter updates, thus

leading to approximate dynamic inference on the states via extended (Uhlmann, 1992) or unscented (Julier and

Uhlmann, 1997) Kalman filters, among others. However, these approximations may lead to unreliable inference

in various settings (Andrieu and Doucet, 2002). Markov chain Monte Carlo (mcmc) strategies (e.g., Carlin

et al., 1992; Shephard, 1994; Soyer and Sung, 2013) address this problem but, unlike the Kalman filter, these

methods are only suitable for batch learning of smoothing distributions, and tend to face mixing or scalability

issues in binary settings (Johndrow et al., 2019).

Sequential Monte Carlo methods (e.g., Doucet et al., 2001) partially solve mcmc issues, and are specifically

developed for online inference via particle-based representations of the states’ conditional distributions, which

are then propagated in time for dynamic filtering and prediction (Gordon et al., 1993; Kitagawa, 1996; Liu and

Chen, 1998; Pitt and Shephard, 1999; Doucet et al., 2000; Andrieu and Doucet, 2002). These strategies provide

state-of-the-art solutions in non-Gaussian state-space models, and can be also adapted to perform batch learning

of the smoothing distribution; see Doucet and Johansen (2009) for a discussion on particles’ degeneracy issues

that may arise in such a setting. Nonetheless, sequential Monte Carlo is clearly still sub-optimal compared to

the case in which p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n) are available in closed form and belong to a

tractable class of known densities whose parameters can be sequentially updated via analytical expressions.

In Section 2.3, we prove that, for the dynamic multivariate probit model in (2.1)–(2.2), the quantities

p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n) are unified skew-normal (sun) densities (Arellano-Valle and
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Azzalini, 2006) having tractable expressions for the recursive computation of the corresponding parameters. To

the best of our knowledge, such a result provides the first closed-form filter and smoother for binary time series,

and facilitates improvements both in online and batch inference. As we will highlight in Section 2.2, the sun

distribution has several closure properties (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014) in

addition to explicit formulas — involving the cumulative distribution function of multivariate Gaussians — for

the moments (Azzalini and Bacchieri, 2010; Gupta et al., 2013) and the normalizing constant (Arellano-Valle

and Azzalini, 2006). In Section 2.3, we exploit these properties to derive closed-form expressions for functionals

of p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n), including, in particular, the observations’ predictive density

p(yt | y1:t−1) and the marginal likelihood p(y1:n). In Section 2.4.1, we also derive an exact Monte Carlo scheme

to compute generic functionals of the smoothing distribution. This routine relies on a generative representation

of the sun via linear combinations of multivariate Gaussians and truncated normals (Arellano-Valle and Azzalini,

2006), and can be also applied effectively to evaluate the functionals of filtering and predictive densities in small-

to-moderate dimensions where mt is of the order of few hundreds, a common situation in routine applications.

As clarified in Section 2.4.2, the above strategies face computational bottlenecks in higher dimensions (Botev,

2017), due to challenges in computing cumulative distribution functions of multivariate Gaussians, and in

sampling from multivariate truncated normals. In these contexts, we develop new sequential Monte Carlo

methods that exploit sun properties. In particular, we first prove in Section 2.4.2 that an optimal particle

filter, in the sense of Doucet et al. (2000), can be derived analytically, thus covering a gap in the literature.

This strategy is further improved in Section 2.4.2 via a class of partially collapsed sequential Monte Carlo

methods that recursively update via lookahead strategies (Lin et al., 2013) the multivariate truncated normal

component in the sun generative additive representation, while keeping the Gaussian part exact. As outlined

in an illustrative financial application in Section 2.5, this class improves approximation accuracy relative to

competing methods, and includes, as a special case, the Rao–Blackwellized particle filter proposed by Andrieu

and Doucet (2002).

2.2 The unified skew-normal distribution

Before deriving filtering, predictive and smoothing distributions under model (2.1)–(2.2), let us first briefly

review the sun family. Arellano-Valle and Azzalini (2006) proposed this broad class to unify different extensions

(e.g., Arnold and Beaver, 2000; Arnold et al., 2002; Gupta et al., 2004; González-Faŕıas et al., 2004) of the original

multivariate skew-normal (Azzalini and Dalla Valle, 1996), whose density is obtained as the product between a

multivariate Gaussian density and the cumulative distribution function of a standard normal evaluated at a value

which depends on a skewness-inducing vector of parameters. Motivated by the success of this formulation and

of its generalizations (Azzalini and Capitanio, 1999), Arellano-Valle and Azzalini (2006) developed a unifying

representation, namely the sun distribution. A random vector θ ∈ Rq has unified skew-normal distribution,

θ ∼ sunq,h(ξ,Ω,∆,γ,Γ), if its density function p(θ) can be expressed as

φq(θ − ξ; Ω)
Φh[γ + ∆ᵀΩ̄−1ω−1(θ − ξ);Γ−∆ᵀΩ̄−1∆]

Φh(γ; Γ)
, (2.6)
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where the covariance matrix Ω of the Gaussian density φq(θ − ξ; Ω) can be decomposed as Ω = ωΩ̄ω, that

is by re-scaling the q × q correlation matrix Ω̄ via the positive diagonal scale matrix ω = (Ω � Iq)
1/2, with

� denoting the element-wise Hadamard product. In (2.6), the skewness-inducing mechanism is driven by the

cumulative distribution function of the Nh(0,Γ −∆ᵀΩ̄ −1∆) computed at γ + ∆ᵀΩ̄ −1ω−1(θ − ξ), whereas

Φh(γ; Γ) denotes the normalizing constant obtained by evaluating the cumulative distribution function of a

Nh(0,Γ) at γ. Arellano-Valle and Azzalini (2006) added a further identifiability condition which restricts the

matrix Ω∗, with blocks Ω∗[11] = Γ, Ω∗[22] = Ω̄ and Ω∗[21] = Ω∗ᵀ[12] = ∆, to be a full–rank correlation matrix. Note

that in (2.6) the quantities q and h define the dimensions of the Gaussian density and cumulative distribution

function, respectively. As clarified by our closed-form sun results in Section 2.3, q defines the dimension of the

states’ vector, and coincides with p in the sun filtering and predictive distributions, while it is equal to pn in

the sun smoothing distribution. On the other hand, h increases linearly with time in all the distributions of

interest.

To clarify the role of the parameters in (2.6), we first discuss a stochastic representation of the sun. Let

z̃ ∈ Rh and θ̃ ∈ Rq characterize two random vectors jointly distributed as a Nh+q(0,Ω
∗), then (ξ + ωθ̃ |

z̃ + γ > 0) ∼ sunq,h(ξ,Ω,∆,γ,Γ) (Arellano-Valle and Azzalini, 2006). Hence, ξ and ω control location and

scale, respectively, while Γ, Ω̄ and ∆ define the dependence within z̃ ∈ Rh, θ̃ ∈ Rq and between these two

vectors, respectively. Finally, γ controls the truncation in the partially observed Gaussian vector z̃ ∈ Rh. The

above result provides also relevant insights on our closed-form filter for the dynamic probit model (2.1)–(2.2),

which will be further clarified in Section 2.3. Indeed, according to (2.3)–(2.5), the filtering, predictive and

smoothing densities induced by model (2.1)–(2.2) can be also defined as p(θt | y1:t) = p[θt | 1(z1:t > 0)],

p(θt | y1:t−1) = p[θt | 1(z1:t−1 > 0)] and p(θ1:n | y1:n) = p[θ1:n | 1(z1:n > 0)], respectively, with (zt,θt) from

the Gaussian state-space model (2.4)–(2.5) for t = 1, . . . , n, thus highlighting the direct connection between

these densities and the stochastic representation of the sun.

An additional generative additive representation of the sun relies on linear combinations of Gaussian and

truncated normal random variables, thereby facilitating sampling from the sun. In particular, recalling Azzalini

and Capitanio (2014, Section 7.1.2) and Arellano-Valle and Azzalini (2006), if θ ∼ sunq,h(ξ,Ω,∆,γ,Γ), then

θ
d
= ξ + ω(U0 + ∆Γ−1U1), U0 ⊥ U1, (2.7)

with U0 ∼ Nq(0,Ω̄ − ∆Γ−1∆ᵀ) and U1 from a Nh(0,Γ) truncated below −γ. As clarified in Section 2.4,

this result can facilitate efficient Monte Carlo inference on complex functionals of sun filtering, predictive and

smoothing distributions under model (2.1)–(2.2), leveraging independent and identically distributed samples

from such variables. Indeed, although key moments can be explicitly derived via the differentiation of the sun

moment generating function (Gupta et al., 2013; Arellano-Valle and Azzalini, 2006), such a strategy requires

tedious calculations when the focus is on complex functionals. Moreover, recalling Azzalini and Bacchieri (2010)

and Gupta et al. (2013), the first and second order moments further require the evaluation of h-variate Gaussian

cumulative distribution functions Φh(·), thus affecting computational tractability in large h settings (e.g., Botev,

2017). In these situations, Monte Carlo integration provides an effective solution, especially when independent

samples can be generated efficiently. Therefore, we mostly focus on improved Monte Carlo inference under

model (2.1)–(2.2) exploiting the sun properties, and refer to Azzalini and Bacchieri (2010) and Gupta et al.
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(2013) for a closed-form expression of the expectation, variance and cumulative distribution function of sun

variables.

Before concluding this general overview, we emphasize that sun variables are also closed under marginal-

ization, linear combinations and conditioning (Azzalini and Capitanio, 2014). These properties facilitate the

derivation of the sun filtering, predictive and smoothing distributions under model (2.1)–(2.2).

2.3 Filtering, prediction and smoothing

In Sections 2.3.1 and 2.3.2, we prove that all the distributions of direct interest admit a closed-form sun repre-

sentation. Specifically, in Section 2.3.1 we show that closed-form filters — meant here as exact updating schemes

for predictive and filtering distributions based on simple recursive expressions for the associated parameters —

can be obtained under model (2.1)–(2.2). Similarly, in Section 2.3.2 we derive the form of the sun smoothing

distribution and present important consequences. The associated computational methods are then discussed in

Section 2.4.

2.3.1 Filtering and predictive distributions

To obtain the exact form of the filtering and predictive distributions under (2.1)–(2.2), let us start from p(θ1 |
y1). This first quantity characterizes the initial step of the filter recursion, and its derivation within Lemma 1

provides the key intuitions to obtain the state predictive p(θt | y1:t−1) and filtering p(θt | y1:t) densities, for any

t ≥ 2. Lemma 1 states that p(θ1 | y1) is a sun density. In the following, consistent with the notation of Section

2.2, whenever Ω is a q × q covariance matrix, the associated matrices ω and Ω̄ are defined as ω = (Ω� Iq)
1/2

and Ω̄ = ω−1Ωω−1, respectively. All the proofs can be found in Appendix A.1, and leverage conjugacy

properties of the sun in probit models. The first result on this property has been derived by Durante (2019) for

static univariate Bayesian probit regression. Here, we take a substantially different perspective by focusing on

online inference in both multivariate and time-varying probit models that require novel and non-straightforward

extensions. As seen in Soyer and Sung (2013) and Chib and Greenberg (1998), the increased complexity of this

endeavor typically motivates a separate treatment relative to the static univariate case.

Lemma 1. Under the dynamic probit model in (2.1)–(2.2), the first-step filtering distribution is

(θ1 | y1) ∼ sunp,m(ξ1|1,Ω1|1,∆1|1,γ1|1,Γ1|1), (2.8)

with parameters defined by the recursive equations

ξ1|1 = G1a0, Ω1|1 = G1P0G
ᵀ
1 + W1, ∆1|1 = Ω̄1|1ω1|1F

ᵀ
1

B1s
−1
1 , γ1|1 = s−1

1 B1F1ξ1|1, Γ1|1 = s−1
1 B1(F1Ω1|1F

ᵀ
1 + V1)B1s

−1
1 ,

where s1 = [(F1Ω1|1F
ᵀ
1 + V1)� Im]1/2.

Hence p(θ1 | y1) is a sun density with parameters that can be obtained via tractable arithmetic expressions

applied to the quantities defining model (2.1)–(2.2). Exploiting the results in Lemma 1, the general filter
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updates for the multivariate dynamic probit model can be obtained by induction for t ≥ 2 and are presented in

Theorem 1.

Theorem 1. Let (θt−1|y1:t−1) ∼ sunp,m(t−1)(ξt−1|t−1,Ωt−1|t−1,∆t−1|t−1,γt−1|t−1,Γt−1|t−1) be the filtering

distribution at time t− 1 under model (2.1)–(2.2). Then, the one-step-ahead state predictive distribution at t is

(θt | y1:t−1)∼ sunp,m(t−1)(ξt|t−1,Ωt|t−1,∆t|t−1,γt|t−1,Γt|t−1), (2.9)

with parameters defined by the recursive equations

ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
ᵀ
t + Wt, ∆t|t−1 = ω−1

t|t−1Gtωt−1|t−1∆t−1|t−1,

γt|t−1 = γt−1|t−1, Γt|t−1 = Γt−1|t−1.

Moreover, the filtering distribution at time t is

(θt | y1:t) ∼ sunp,mt(ξt|t,Ωt|t,∆t|t,γt|t,Γt|t), (2.10)

with parameters defined by the recursive equations

ξt|t = ξt|t−1, Ωt|t = Ωt|t−1, ∆t|t = [∆t|t−1, Ω̄t|tωt|tF
ᵀ
tBts

−1
t ], γt|t = [γᵀ

t|t−1, ξ
ᵀ
t|tF

ᵀ
tBts

−1
t ]ᵀ,

and Γt|t is a full-rank correlation matrix having blocks Γt|t[11] = Γt|t−1, Γt|t[22] = s−1
t Bt(FtΩt|tF

ᵀ
t+Vt)Bts

−1
t

and Γt|t[21] = Γᵀ
t|t[12] = s−1

t BtFtωt|t∆t|t−1, where st is defined as st = [(FtΩt|tF
ᵀ
t + Vt)� Im]1/2.

As shown in Theorem 1, online prediction and filtering in the multivariate dynamic probit model (2.1)–(2.2)

proceeds by iterating between equations (2.9) and (2.10) as new observations stream in with time t. Both

steps are based on closed-form distributions and rely on analytical expressions for recursive updating of the

corresponding parameters as a function of the previous ones, thus providing an analog of the classical Kalman

filter.

We also provide closed-form expressions for the predictive density of the multivariate binary response data

yt. Indeed, the prediction of yt ∈ {0; 1}m given the data y1:t−1, is a primary goal in applications of dynamic

probit models. In our setting, this task requires the derivation of the predictive density p(yt | y1:t−1) which

coincides, under (2.1)–(2.2), with
∫

Φm(BtFtθt; BtVtBt)p(θt | y1:t−1)dθt, where p(θt | y1:t−1) is the state

predictive density from (2.9). Corollary 1 shows that p(yt | y1:t−1) has an explicit form.

Corollary 1. Under model (2.1)–(2.2), the observation predictive density p(yt | y1:t−1) is

p(yt | y1:t−1) =
Φmt(γt|t; Γt|t)

Φm(t−1)(γt|t−1; Γt|t−1)
, (2.11)

for every time t, with parameters γt|t, Γt|t, γt|t−1 and Γt|t−1, defined as in Theorem 1.

Hence, the evaluation of probabilities of future events is possible via explicit calculations after marginalizing

out analytically the states with respect to their predictive density. As is clear from (2.11), this requires the

calculation of Gaussian cumulative distribution functions whose dimension increases with t and m. Efficient
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evaluation of such integrals is possible for small-to-moderate t and m via recent methods (Botev, 2017), but

this solution is impractical for large t and m, as seen in Table 2.1. In Section 2.4, we develop novel Monte

Carlo strategies to address this issue and enhance scalability. This is done by exploiting Theorem 1 to improve

current solutions.

2.3.2 Smoothing distribution

We now consider smoothing distributions. In this case, the focus is on the distribution of the entire states’

sequence θ1:n, or a subset of it, given all data y1:n. Theorem 2 shows that also the smoothing density p(θ1:n |
y1:n) belongs to the sun family. Direct consequences of this result, involving marginal smoothing and marginal

likelihoods are reported in Corollaries 2 and 3.

Before stating the result, let us first introduce the two block-diagonal matrices, D and Λ, with dimensions

(mn)× (pn) and (mn)× (mn) respectively, and diagonal blocks D[ss] = BsFs ∈ Rm×p and Λ[ss] = BsVsBs ∈
Rm×m, for every time point s = 1, . . . , n. Moreover, let ξ and Ω denote the mean and covariance matrix of

the multivariate Gaussian distribution for θ1:n induced by the state equations. Under (2.2), ξ is a pn × 1

column vector obtained by stacking the p-dimensional blocks ξ[s] = E(θs) = Gs
1a0 ∈ Rp for every s = 1, . . . , n,

with Gs
1 = Gs · · ·G1. Similarly, letting Gs

l = Gs · · ·Gl, also the (pn) × (pn) covariance matrix Ω has a

block structure with (p × p)-dimensional blocks Ω[ss] = var(θs) = Gs
1P0G

sᵀ
1 +

∑s
l=2 Gs

lWl−1G
sᵀ
l + Ws, for

s = 1, . . . , n, and Ω[sl] = Ωᵀ
[ls] = cov(θs,θl) = Gs

l+1Ω[ll], for s > l.

Theorem 2. Under model (2.1)–(2.2), the joint smoothing distribution is

(θ1:n | y1:n) ∼ sunpn,mn(ξ1:n|n,Ω1:n|n,∆1:n|n,γ1:n|n,Γ1:n|n), (2.12)

with parameters defined as

ξ1:n|n = ξ, Ω1:n|n = Ω, ∆1:n|n = Ω̄ωDᵀs−1, γ1:n|n = s−1Dξ, Γ1:n|n = s−1(DΩDᵀ + Λ)s−1,

where s = [(DΩDᵀ + Λ)� Imn]1/2.

Since the sun is closed under marginalization and linear combinations, it follows from Theorem 2 that the

smoothing distribution for any combination of states is still a sun. In particular, direct application of the

results in Azzalini and Capitanio (2014, Section 7.1.2) yields the marginal smoothing distribution for any state

θt reported in Corollary 2.

Corollary 2. Under the model in (2.1)–(2.2), the marginal smoothing distribution at any time t ≤ n is

(θt | y1:n) ∼ sunp,mn(ξt|n,Ωt|n,∆t|n,γt|n,Γt|n), (2.13)

with parameters defined as

ξt|n = ξ[t], Ωt|n = Ω[tt], ∆t|n = ∆1:n|n[t], γt|n = γ1:n|n, Γt|n = Γ1:n|n,

where ∆1:n|n[t] defines the t-th block of p rows in ∆1:n|n. When t = n, (2.13) gives the filtering distribution at n.
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Algorithm 1: Independent and identically distributed sampling from p(θ1:n | y1:n)

[1] Sample U
(1)
0 1:n|n, . . . ,U

(R)
0 1:n|n independently from a Npn(0, Ω̄1:n|n −∆1:n|nΓ−1

1:n|n∆ᵀ
1:n|n).

[2] Sample U
(1)
1 1:n|n, . . . ,U

(R)
1 1:n|n independently from a tnmn(0,Γ1:n|n;Aγ1:n|n).

[3] Compute θ
(1)
1:n|n, . . . ,θ

(R)
1:n|n via θ

(r)
1:n|n = ξ1:n|n + ω1:n|n(U

(r)
0 1:n|n + ∆1:n|nΓ−1

1:n|nU
(r)
1 1:n|n), for r = 1, . . . , R.

Another important consequence of Theorem 2 is the availability of a closed-form expression for the marginal

likelihood p(y1:n), which is provided in Corollary 3.

Corollary 3. Under model (2.1)–(2.2), the marginal likelihood is

p(y1:n) = Φmn(γ1:n|n; Γ1:n|n),

with γ1:n|n and Γ1:n|n defined as in Theorem 2.

This closed-form result is useful in several contexts, including estimation of unknown system parameters via

marginal likelihood maximization, and full Bayesian inference through mcmc or variational inference methods.

2.4 Inference via Monte Carlo methods

As discussed in Sections 2.2 and 2.3, inference without sampling from (2.9), (2.10) or (2.12) is, theoretically,

possible. Indeed, since the sun densities of the filtering, predictive and smoothing distributions can be obtained

from Theorems 1–2, the main functionals of interest can be computed via closed-form expressions (Arellano-

Valle and Azzalini, 2006; Azzalini and Bacchieri, 2010; Gupta et al., 2013; Azzalini and Capitanio, 2014) or

by relying on numerical integration. However, these strategies require evaluations of multivariate Gaussian

cumulative distribution functions, which tend to be impractical as t grows or when the focus is on complex

functionals.

In such situations, Monte Carlo integration provides an accurate solution to evaluate the generic functionals

E[g(θt) | y1:t], E[g(θt) | y1:t−1] and E[g(θ1:n) | y1:n] for the filtering, predictive and smoothing distribution via

1

R

R∑
r=1

g(θ
(r)
t|t ),

1

R

R∑
r=1

g(θ
(r)
t|t−1),

1

R

R∑
r=1

g(θ
(r)
1:n|n),

with θ
(r)
t|t , θ

(r)
t|t−1 and θ

(r)
1:n|n sampled from p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n), respectively. For

example, if the evaluation of (2.11) is demanding, the observations predictive density can be easily computed

as
∑R
r=1 Φm(BtFtθ

(r)
t|t−1; BtVtBt)/R.

To be implemented, the above approach requires an efficient strategy to sample from (2.9), (2.10) and

(2.12). Exploiting the sun properties and recent results in Botev (2017), an algorithm to draw independent

and identically distributed samples from the exact sun distributions in (2.9), (2.10) and (2.12) is developed

within Section 2.4.1. As illustrated in Section 2.5, such a technique is more accurate than state-of-the-art

methods and can be efficiently implemented in small-to-moderate dimensional time series. In Section 2.4.2 we
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develop, instead, novel sequential Monte Carlo schemes that allow scalable online learning in high dimensional

settings and have optimality properties (Doucet et al., 2000) which shed new light also on existing strategies

(e.g, Andrieu and Doucet, 2002).

2.4.1 Independent identically distributed sampling

As discussed in Section 2.1, mcmc and sequential Monte Carlo methods to sample from p(θt | y1:t), p(θt | y1:t−1)

and p(θ1:n | y1:n) are available. However, the commonly recommended practice, if feasible, is to rely on

independent and identically distributed (i.i.d.) samples. Here, we derive a Monte Carlo algorithm to address

this goal with a main focus on the smoothing distribution, and discuss direct modifications to allow sampling

also in the filtering and predictive case. Indeed, Monte Carlo inference is particularly suitable for batch settings,

although, as discussed later, the proposed routine is practically useful also when the focus is on filtering and

predictive distributions, since i.i.d. samples are simulated rapidly, for each t, in small-to-moderate dimensions.

Exploiting the closed-form expression of the smoothing distribution in Theorem 2, and the additive rep-

resentation (2.7) of the sun, i.i.d. samples for θ1:n|n from the smoothing distribution (2.12) can be obtained

via a linear combination between independent samples from (pn)-variate Gaussians and (mn)-variate truncated

normals. Algorithm 1 provides the detailed pseudo-code for this novel strategy, whose outputs are i.i.d. samples

from the joint smoothing density p(θ1:n | y1:n). Here, the most computationally intensive step is the sampling

from tnmn(0,Γ1:n|n;Aγ1:n|n), which denotes the multivariate Gaussian distribution Nmn(0,Γ1:n|n) truncated to

the region Aγ1:n|n = {u1 ∈ Rmn : u1 +γ1:n|n > 0}. In fact, although efficient Hamiltonian Monte Carlo solutions

are available (Pakman and Paninski, 2014), these strategies do not provide independent samples. More recently,

an accept-reject method based on minimax tilting has been proposed by Botev (2017) to improve the accep-

tance rate of classical rejection sampling, while avoiding mixing issues of mcmc. This routine is available in the

R library TruncatedNormal and allows efficient sampling from multivariate truncated normals with a dimen-

sion of few hundreds, thereby providing effective Monte Carlo inference via Algorithm 1 in small-to-moderate

dimensional time series where mn is of the order of few hundreds.

Clearly, the availability of an i.i.d. sampling scheme from the smoothing distribution overcomes the need

of mcmc methods and particle smoothers. The first set of strategies usually faces mixing or time-inefficiency

issues, especially in imbalanced binary settings (Johndrow et al., 2019), whereas the second class of routines

tends to be computationally intensive and subject to particles degeneracy (Doucet and Johansen, 2009).

When the focus is on Monte Carlo inference for the marginal smoothing density p(θt | y1:n) at a specific time

t, Algorithm 1 requires minor adaptations relying again on the additive representation of the sun in (2.13),

under similar arguments considered for the joint smoothing setting. This latter routine can be also used to

sample from the filtering distribution in (2.10) by applying such a scheme with n = t to obtain i.i.d. samples

for θt|t from p(θt | y1:t). Leveraging realizations from the filtering distribution at time t − 1, i.i.d. samples

for θt|t−1 from the predictive density p(θt | y1:t−1), can be simply obtained via the direct application of (2.2)

which provides samples for θt|t−1 from Np(Gtθt−1|t−1,Wt). As a result, efficient Monte Carlo inference in

small-to-moderate dimensional dynamic probit models is possible also for filtering and predictive distributions.
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2.4.2 Sequential Monte Carlo sampling

When the dimension of the dynamic probit model (2.1)–(2.2) grows, sampling from multivariate truncated

Gaussians in Algorithm 1 might yield computational bottlenecks (Botev, 2017). This is particularly likely to

occur in series monitored on a fine time grid. Indeed, in several applications, the number of time series m is

typically small, whereas the length of the time window can be large. To address this issue and allow scalable

online filtering and prediction also in large t settings, we first derive in Section 2.4.2 a particle filter which

exploits the sun results to obtain optimality properties, in the sense of Doucet et al. (2000). Despite covering

a gap in the literature on dynamic probit models, as clarified in Sections 2.4.2 and 2.4.2, such a strategy is

amenable to further improvements since it induces unnecessary autocorrelation in the Gaussian part of the sun

generative representation. Motivated by this consideration and by the additive structure of the sun filtering

distribution, we further develop in Section 2.4.2 a partially collapsed sequential Monte Carlo procedure which

recursively samples via lookahead methods (Lin et al., 2013) only the multivariate truncated normal term in the

sun additive representation, while keeping the Gaussian component exact. As outlined in Section 2.4.2, such a

broad class of partially collapsed lookahead particle filters comprises, as a special case, the Rao–Blackwellized

particle filter developed by Andrieu and Doucet (2002). This provides novel theoretical support to the notable

performance of such a strategy, which was originally motivated, in the context of dynamic probit models, also

by the lack of a closed-form optimal particle filter for the states.

“Optimal” particle filter

The first proposed strategy belongs to the class of sequential importance sampling-resampling (sisr) algorithms

which provide default strategies in particle filtering (e.g., Doucet et al., 2000, 2001; Durbin and Koopman,

2012). For each time t, these routines sample R trajectories for θ1:t|t from p(θ1:t | y1:t), known as particles,

conditioned on those produced at t− 1, by iterating, in time, between the two steps summarized below.

1. Sampling. Let θ
(1)
1:t−1|t−1, . . . ,θ

(R)
1:t−1|t−1 be the trajectories of the particles at time t − 1, and denote with

π(θt | θ1:t−1,y1:t) the proposal. Then, for r = 1, . . . , R

[1.a] Sample θ̄
(r)
t|t from π(θt | θ(r)

1:t−1|t−1,y1:t) and set

θ̄
(r)
1:t|t = (θ

(r)ᵀ
1:t−1|t−1, θ̄

(r)ᵀ
t|t )ᵀ.

[1.b] Set w
(r)
t = wt(θ̄

(r)
1:t|t), with

wt(θ̄
(r)
1:t|t) ∝

p(yt | θ̄(r)
t|t )p(θ̄

(r)
t|t | θ

(r)
t−1|t−1)

π(θ̄
(r)
t|t | θ

(r)
1:t−1|t−1,y1:t)

,

and normalize the weights, so that their sum is 1.

2. Resampling. For r = 1, . . . , R, sample updated particles’ trajectories θ
(1)
1:t|t, . . . ,θ

(R)
1:t|t from

∑R
r=1 w

(r)
t δ

θ̄
(r)

1:t|t
.

From these particles, functionals of the filtering density p(θt | y1:t) can be computed using the terminal values

θt|t of each particles’ trajectory for θ1:t|t. Note that in point [1.a] we have presented the general formulation of
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Algorithm 2: “Optimal” particle filter to sample from p(θt | y1:t), for t = 1, . . . , n [auf version]

for t from 1 to n do

[1] Compute the weights w
(r)
t = p(yt | θt−1 = θ

(r)
t−1|t−1) for r = 1, . . . , R, by applying (2.15).

[2] Resample updated particles θ̄
(1)
t−1|t−1, . . . , θ̄

(R)
t−1|t−1 from

∑R
r=1 w

(r)
t δ

θ
(r)

t−1|t−1

.

for r from 1 to R do

[3] Set ξ
(r)
t|t,t−1 = Gtθ̄

(r)
t−1|t−1 and γ

(r)
t|t,t−1 = c−1

t BtFtξ
(r)
t|t,t−1. Then, simulate θ

(r)
t|t from (2.14), as

follows:

[3.1] Sample U
(r)
0 t|t from a Np(0, Ω̄t|t,t−1 −∆t|t,t−1Γ

−1
t|t,t−1∆

ᵀ
t|t,t−1).

[3.2] Sample U
(r)
1 t|t from a tnm(0,Γt|t,t−1;A

γ
(r)

t|t,t−1

).

[3.3] Compute θ
(r)
t|t = ξ

(r)
t|t,t−1 + ωt|t,t−1(U

(r)
0 t|t + ∆t|t,t−1Γ

−1
t|t,t−1U

(r)
1 t|t).

sisr, where the importance density π(θt | θ1:t−1,y1:t) can, in principle, depend on the whole trajectory θ1:t−1

(Durbin and Koopman, 2012, Sect. 12.3).

As is clear from the above steps, the performance of sisr relies on the choice of π(θt | θ1:t−1,y1:t). Such a

density should allow tractable sampling along with efficient evaluation of the importance weights, and should

be also carefully specified to propose effective candidate samples. Recalling Doucet et al. (2000), the optimal

proposal is π(θt | θ1:t−1,y1:t) = p(θt | θt−1,yt), with importance weights wt ∝ p(yt | θt−1). Indeed, conditioned

on θ1:t−1|t−1 and y1:t, this choice minimizes the variance of the weights, thus limiting degeneracy issues and

improving mixing. Unfortunately, in several dynamic models, tractable sampling from p(θt | θt−1,yt) and the

direct evaluation of p(yt | θt−1) is not possible (Doucet et al., 2000). As outlined in Corollary 4, this is not the

case for dynamic probit models. In particular, by leveraging the proof of Theorem 1 and the closure properties

of the sun, sampling from p(θt | θt−1,yt) is straightforward and p(yt | θt−1) has a simple form.

Corollary 4. For every time t = 1, . . . , n, the optimal importance distribution under model (2.1)–(2.2) is

(θt | θt−1,yt) ∼ sunp,m(ξt|t,t−1,Ωt|t,t−1,∆t|t,t−1,γt|t,t−1,Γt|t,t−1), (2.14)

whereas the importance weights are

p(yt | θt−1) = Φm(γt|t,t−1; Γt|t,t−1), (2.15)

with parameters defined by the recursive equations

ξt|t,t−1 = Gtθt−1, Ωt|t,t−1 = Wt, ∆t|t,t−1 = Ω̄t|t,t−1ωt|t,t−1F
ᵀ
tBtc

−1
t ,

γt|t,t−1 = c−1
t BtFtξt|t,t−1, Γt|t,t−1 = c−1

t Bt

(
FtΩt|t,t−1F

ᵀ
t+Vt

)
Btc

−1
t ,

where ct =
[
(FtΩt|t,t−1F

ᵀ
t + Vt)� Im

]1/2
.

As clarified in Corollary 4, the weights p(yt | θt−1) for the generated trajectories are available analytically

in (2.15) and do not depend on the sampled values of the particle at time t. This allows the implementation of

the more efficient auxiliary particle filter (auf) (Pitt and Shephard, 1999) by simply reversing the order of the
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sampling and resampling steps, thereby obtaining a performance gain (Andrieu and Doucet, 2002). Algorithm 2

illustrates the pseudo-code of the proposed “optimal” auxiliary filter, which exploits the additive representation

of the sun and Corollary 4. Note that, unlike for Algorithm 1, such a sequential sampling strategy requires to

sample at each step from a truncated normal whose dimension does not depend on t, thus facilitating scalable

sequential inference in large t studies. Samples from the predictive distribution can be obtained from those of

the filtering as discussed in Section 2.4.1.

Despite having optimality properties, a close inspection of Algorithm 2 shows that the states’ particles at

t− 1 affect both the Gaussian component, via ξt|t,t−1, and the truncated normal term, via γt|t,t−1, in the sun

additive representation of (θt | y1:t). Although the autocorrelation in the multivariate truncated normal samples

is justified by the computational intractability of this variable in high dimensions, inducing serial dependence

also in the Gaussian terms seems unnecessary, as these quantities are tractable and their dimension does not

depend on t; see Theorem 1. This suggests that a strategy which sequentially updates only the truncated normal

term, while maintaining the Gaussian part exact, could further improve the performance of Algorithm 2. This

new particle filter is derived in Section 2.4.2, inheriting also lookahead ideas (Lin et al., 2013).

Partially collapsed lookahead particle filter

As anticipated within Section 2.4.2, the most computationally intensive step to draw i.i.d. samples from the

filtering distribution is sampling from the multivariate truncated normal U1 1:t|t ∼ tnmt(0,Γ1:t|t;Aγ1:t|t) in

Algorithm 1. Here, we present a class of procedures to sequentially generate these samples, which are then com-

bined with realizations from the exact Gaussian component in the sun additive representation, thus producing

samples from the filtering distribution. With this goal in mind, define the region Ays:t = {z ∈ Rm(t−s+1) :

(2ys:t − 1)� z > 0} for every s = 1, . . . , t, and let V1:t be the (mt)× (mt) block-diagonal matrix having blocks

V[ss] = Vs, for s = 1, . . . , t. Moreover, denote with Bs:t and Fs:t two block-diagonal matrices of dimension

[m(t−s+1)]× [m(t−s+1)] and [m(t−s+1)]× [p(t−s+1)], respectively, and diagonal blocks Bs:t[ll] = Bs+l−1

and Fs:t[ll] = Fs+l−1 for l = 1, . . . , t − s + 1. Exploiting this notation and adapting results in Section 2.3.2 to

the case n = t, it follows from standard properties of multivariate truncated normals (Horrace, 2005) that

U1 1:t|t
d
= −γ1:t|t + s−1

1:t|tB1:tz1:t|t, (2.16)

with z1:t|t ∼ tnmt(F1:tξ1:t|t,F1:tΩ1:t|tF
ᵀ
1:t + V1:t;Ay1:t

) and s1:t|t = [(DΩ1:t|tD
ᵀ + Λ) � Imt]

1/2, where D

and Λ are defined as in Section 2.3.2, setting n = t. Note that the multivariate truncated normal distribu-

tion for z1:t|t actually coincides with the conditional distribution of z1:t given y1:t under model (2.3)–(2.5).

Indeed, by marginalizing out θ1:t in p(z1:t | θ1:t) =
∏t
s=1 φm(zs − Fsθs; Vs) = φmt(z1:t − F1:tθ1:t; V1:t)

with respect to its multivariate normal distribution derived in the proof of Theorem 2, we have p(z1:t) =

φmt(z1:t − F1:tξ1:t|t; F1:tΩ1:t|tF
ᵀ
1:t + V1:t) and, as a direct consequence, we obtain

p(z1:t | y1:t) ∝ p(z1:t)p(y1:t | z1:t) ∝ p(z1:t)1[(2y1:t − 1)� z1:t > 0],

which is the kernel of a tnmt(F1:tξ1:t|t,F1:tΩ1:t|tF
ᵀ
1:t + V1:t;Ay1:t

) density.

The above analytical derivations clarify that in order to sample recursively from U1 1:t|t it is sufficient

to apply equation (2.16) to sequential realizations of z1:t|t from the joint conditional density p(z1:t | y1:t),
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induced by model (2.3)–(2.5), after collapsing out θ1:t. While basic sisr algorithms for p(z1:t | y1:t), combined

with the exact sampling from the Gaussian component U0 t|t, are expected to yield an improved performance

relative to the particle filter developed in Section 2.4.2, here we adapt an even broader class of lookahead

particle filters (Lin et al., 2013) — which includes the basic sisr as a special case. To introduce the general

lookahead idea note that p(z1:t | y1:t) = p(zt−k+1:t | z1:t−k,y1:t)p(z1:t−k | y1:t), where k is a pre-specified

delay offset. Moreover, as a direct consequence of the dependence structure displayed in Fig. 2.2, we also have

that p(zt−k+1:t | z1:t−k,y1:t) = p(zt−k+1:t | z1:t−k,yt−k+1:t) for any generic k. Hence, to sequentially generate

realizations of z1:t|t from p(z1:t | y1:t), we can first sample z1:t−k|t from p(z1:t−k | y1:t) by extending, via sisr,

the trajectory z1:t−k−1|t−1 with optimal proposal p(zt−k | z1:t−k−1 = z1:t−k−1|t−1,yt−k:t), and then draw the

last k terms in z1:t|t from p(zt−k+1:t | z1:t−k = z1:t−k|t,yt−k+1:t). Note that when k = 0 this final operation is

not necessary, and the particles’ updating in the first step reduces to basic sisr. Values of k in {1; . . . ;n − 1}
induce, instead, a lookahead structure in which at the current time t the optimal proposal for the delayed

particles leverages information of response data yt−k:t that are not only contemporaneous to zt−k, i.e., yt−k,

but also future, namely yt−k+1, . . . ,yt. In this way, the samples from the sub-trajectory z1:t−k|t of z1:t|t at

time t are more compatible with the sampling density p(z1:t | y1:t) of interest and hence, when completed with

the last k terms drawn from p(zt−k+1:t | z1:t−k = z1:t−k|t,yt−k+1:t), produce a sequential sampling scheme

from p(z1:t | y1:t) with improved mixing and reduced degeneracy issues relative to basic sisr. Although the

magnitude of such gains clearly grows with k, as illustrated in Section 2.5, setting k = 1 already provides

empirical evidence of improved performance relative to basic sisr, without major computational costs.

To implement the aforementioned strategy it is first necessary to ensure that the lookahead proposal belongs

to a class of random variables which allow efficient sampling, while having a tractable closed-form expression

for the associated importance weights. Proposition 1 shows that this is the case under model (2.3)–(2.5).

Proposition 1. Under the augmented model in (2.3)–(2.5), the lookahead proposal mentioned above has the

form

p(zt−k | z1:t−k−1,yt−k:t) =

∫
p(zt−k:t | z1:t−k−1,yt−k:t)dzt−k+1:t, (2.17)

where p(zt−k:t | z1:t−k−1,yt−k:t) is the density of a truncated normal tnm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1;Ayt−k:t)

with parameters rt−k:t|t−k−1 = E(zt−k:t | z1:t−k−1) and St−k:t|t−k−1 = var(zt−k:t | z1:t−k−1). The importance

weights wt = w(z1:t−k) are, instead, proportional to

p(yt−k:t | z1:t−k−1)

p(yt−k:t−1 | z1:t−k−1)
=

Φm(k+1)(µt; Σt)

Φmk(µ̄t; Σ̄t)
, (2.18)

where the mean vectors are µt = Bt−k:trt−k:t|t−k−1 and µ̄t = Bt−k:t−1rt−k:t−1|t−k−1, whereas the covariance

matrices are defined as Σt = Bt−k:tSt−k:t|t−k−1Bt−k:t and Σ̄t = Bt−k:t−1St−k:t−1|t−k−1Bt−k:t−1.

To complete the procedure for sampling from p(z1:t | y1:t) we further require p(zt−k+1:t | z1:t−k,yt−k+1:t).

As clarified in Proposition 2, also such a quantity is the density of a multivariate truncated normal.

Proposition 2. Under model (2.3)–(2.5), it holds

(zt−k+1:t | z1:t−k,yt−k+1:t) ∼ tnmk(rt−k+1:t|t−k,St−k+1:t|t−k;Ayt−k+1:t
), (2.19)
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Algorithm 3: Lookahead particle filter to draw from p(θt | y1:t), for t = 1, . . . , n [auf version with
kf steps]

Set k, and initialize a
(r)
0|0 = a0 for r = 1, . . . , R and P0|0 = P0.

for t from 1 to k do

[1] Sample θ
(1)
t|t , . . . ,θ

(R)
t|t from Algorithm 1 [this can be done efficiently in an exact manner since k

is usually small].

for t from k + 1 to n do

[2] Define the vectors and matrices that are required to perform steps [3] and [4].

[2.1] Set Pt−k|t−k−1 = Gt−kPt−k−1|t−k−1G
ᵀ
t−k + Wt−k [kf] and compute St−k:t|t−k−1 as in Sect. 2.4.2.

[2.2] Set Pt−k|t−k = Pt−k|t−k−1 −Pt−k|t−k−1F
ᵀ
t−kS

−1
t−k|t−k−1Ft−kPt−k|t−k−1 [kf] .

[2.3] For r = 1, . . . , R, set a
(r)
t−k|t−k−1 = Gt−ka

(r)
t−k−1|t−k−1 [kf] and compute r

(r)
t−k:t|t−k−1 as in Sect. 2.4.2.

[3] Implement the resampling step under the auf version.

[3.1] For r = 1, . . . , R, calculate the importance weight w
(r)
t via (2.18).

[3.2] Sample (ā
(1)
t−k|t−k−1, r̄

(1)
t−k:t|t−k−1), . . . , (ā

(R)
t−k|t−k−1, r̄

(R)
t−k:t|t−k−1) from

∑R
r=1 w

(r)
t δ

(a
(r)

t−k|t−k−1
,r

(r)

t−k:t|t−k−1
)
.

for r from 1 to R do

[4] Update the delayed particle z
(r)
t−k|t and sample θ

(r)
t|t .

[4.1] Sample (z
(r)ᵀ
t−k|t, z̄

(r)ᵀ
t−k+1:t|t)

ᵀ from a tnm(k+1)(r̄t−k:t|t−k−1,St−k:t|t−k−1;Ayt−k:t).

[4.2] Set a
(r)
t−k|t−k = ā

(r)
t−k|t−k−1 + Pt−k|t−k−1F

ᵀ
t−kS

−1
t−k|t−k−1(z

(r)
t−k|t − r̄

(r)
t−k|t−k−1) [kf].

[4.3] Compute a
∗(r)
t|t and P

∗(r)
t|t by performing k recursions of the kf updates applied to (2.4)–(2.5) from

t− k + 1 to t with observations zt−k+1:t = z̄
(r)
t−k+1:t|t and starting moments a

(r)
t−k|t−k and Pt−k|t−k.

[4.4] Sample θ
(r)
t|t from the Np(a

∗(r)
t|t ,P

∗(r)
t|t ).

with parameters rt−k+1:t|t−k = E(zt−k+1:t | z1:t−k) and St−k+1:t|t−k = var(zt−k+1:t | z1:t−k).

Note that the expression of the importance weights in equation (2.18) does not depend on zt−k, and, hence,

also in this case the resampling step can be performed before sampling from (2.17), thus leading to an auf

routine. Besides improving efficiency, such a strategy allows to combine the particle generation in (2.17) and the

completion of the last k terms of z1:t|t in (2.19) within a single sampling step from the joint [m(k + 1)]-variate

truncated normal distribution for (zt−k:t | z1:t−k−1,yt−k:t) reported in Proposition 1. The first m-dimensional

component of this vector yields the new delayed particle for zt−k|t from (2.17), whereas the whole sub-trajectory

provides the desired sample from p(zt−k:t | z1:t−k−1,yt−k:t) which is joined to the previously resampled particles

for z1:t−k−1|t to form a realization of z1:t|t from p(z1:t | y1:t). Once this sample is available, one can obtain

a draw of θt|t from the filtering density p(θt | y1:t) of interest by exploiting the additive representation of the

sun and the analogy between U1 1:t|t and z1:t|t in (2.16). In practice, as clarified in Algorithm 3, the updating

of U1 1:t|t via lookahead recursion on z1:t|t and the exact sampling from the Gaussian component of the sun

filtering distribution for θt can be effectively combined in a single online routine based on Kalman filter steps.

To clarify Algorithm 3, note that p(θt | z1:t) is the filtering density of the Gaussian dynamic linear model

defined in (2.4)–(2.5), for which the Kalman filter can be directly implemented, once the trajectory z1:t|t has been



2.4. INFERENCE VIA MONTE CARLO METHODS 19

generated from p(z1:t | y1:t) via the lookahead filter. Let at−k−1|t−k−1 = E(θt−k−1 | z1:t−k−1), Pt−k−1|t−k−1 =

var(θt−k−1|z1:t−k−1) and at−k|t−k−1= E(θt−k|z1:t−k−1), Pt−k|t−k−1 = var(θt−k | z1:t−k−1) be the mean vector

and covariance matrices for the Gaussian filtering and predictive distributions produced by the standard Kalman

filter recursions at time t − k − 1 under model (2.4)–(2.5). Besides being necessary to draw values from the

states’ filtering and predictive distributions, conditioned on the trajectories of z1:t|t sampled from p(z1:t | y1:t),

such quantities are also sufficient to update online the lookahead parameters rt−k:t|t−k−1 and St−k:t|t−k−1 that

are required to compute the importance weights in Proposition 1, and to sample from the [m(k + 1)]-variate

truncated normal density p(zt−k:t | z1:t−k−1,yt−k:t) under the auxiliary filter. In particular, the formulation of

the dynamic model in (2.4)–(2.5) implies that rt−k:t|t−k−1 = E(zt−k:t | z1:t−k−1) = E(Ft−k:tθt−k:t | z1:t−k−1),

and, therefore, rt−k:t|t−k−1 can be expressed as a function of at−k|t−k−1 via the direct application of the law of

the iterated expectations by stacking the m-dimensional vectors Ft−kat−k|t−k−1, Ft−k+1Gt−k+1at−k|t−k−1, . . . ,

FtG
t
t−k+1at−k|t−k−1, with Gs

l defined as in Section 2.3.2.

A similar reasoning can be applied to write the covariance matrix St−k:t|t−k−1 = var(zt−k:t | z1:t−k−1) as a

function of Pt−k|t−k−1. In particular letting l− = l− 1, the m×m diagonal blocks of St−k:t|t−k−1 can obtained

sequentially after noticing that

St−k:t|t−k−1[ll] = var(zt−k+l− | z1:t−k−1) = Ft−k+l−Pt−k+l−|t−k−1F
ᵀ
t−k+l−

+ Vt−k+l− ,

for every l = 1, . . . , k+ 1, where the states’ covariance matrix Pt−k+l−|t−k−1 at time t−k+ l− can be expressed

as a function of Pt−k|t−k−1 via the recursive equations Pt−k+l−|t−k−1 = Gt−k+l−Pt−k+l−−1|t−k−1G
ᵀ
t−k+l−

+

Wt−k+l− , for every l = 2, . . . , k + 1. Moreover, letting l− = l − 1 and s− = s − 1, also the off-diagonal blocks

can be obtained in a related manner, after noticing that the generic block of St−k:t|t−k−1 is defined as

St−k:t|t−k−1[sl] = Sᵀ
t−k:t|t−k−1[ls] = cov(Ft−k+s−θt−k+s− ,Ft−k+l−θt−k+l− | z1:t−k−1)

= Ft−k+s−G
t−k+s−
t−k+l Pt−k+l−|t−k−1F

ᵀ
t−k+l−

,

for every s = 2, . . . , k + 1 and l = 1, . . . , s− 1, where the matrix Pt−k+l−|t−k−1 can be expressed as a function

of Pt−k|t−k−1 via the recursive equations reported above.

According to these results, the partially collapsed lookahead particle filter for sampling recursively from p(θt |
y1:t) simply requires to store and update, for each particle trajectory, the sufficient statistics at−k|t−k−1 and

Pt−k|t−k−1 via Kalman filter recursions applied to the model (2.4)–(2.5), with every zt replaced by the particles

generated under the lookahead routine. As previously discussed, also this updating requires only the moments

at−k|t−k−1 and Pt−k|t−k−1 computed recursively as a function of the delayed particles’ trajectories. This yields

to a computational complexity per iteration that is constant with time, as it does not require to compute

quantities whose dimension grows with t. In addition, as discussed in Remark 1, such a dual interpretation

combined with our sun closed-form results, provides novel theoretical support to the Rao–Blackwellized particle

filter introduced by Andrieu and Doucet (2002).

Remark 1. The Rao–Blackwellized particle filter by Andrieu and Doucet (2002) for p(θt | y1:t) can be directly

obtained as a special case of Algorithm 3, setting k = 0.

Consistent with Remark 1, the Rao–Blackwellized idea (Andrieu and Doucet, 2002) actually coincides with
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a partially collapsed filter which only updates, without lookahead strategies, the truncated normal component

in the sun additive representation of the states’ filtering distribution, while maintaining the Gaussian term

exact. Hence, although this method was originally motivated, in the context of dynamic probit models, also

by the apparent lack of an “optimal” closed-form sisr for the states’ filtering distribution, our results actually

show that such a strategy is expected to yield improved performance relative to the “optimal” particle filter for

sampling directly from p(θt | y1:t). In fact, unlike this filter, which is actually available according to Section

2.4.2, the Rao–Blackwellized idea avoids the unnecessary autocorrelation in the Gaussian component of the sun

representation, and relies on an optimal particle filter for the multivariate truncated normal part. In addition,

Remark 1 and the derivation of the whole class of partially collapsed lookahead filters suggest that setting k > 0

is expected to yield further gains relative to the Rao–Blackwellized particle filter; see Section 2.5 for quantitative

evidence supporting these results.

2.5 Illustration on financial time series

Recalling Sections 2.1–2.4, our core contribution in this thesis is not on developing innovative dynamic models

for binary data with improved ability in recovering some ground-truth generative process, but on providing

novel closed-form expressions for the filtering, predictive and smoothing distributions under a broad class of

routine-use dynamic probit models, along with new Monte Carlo and sequential Monte Carlo strategies for

accurate learning of such distributions and the associated functionals in practical applications.

Consistent with the above discussion, we illustrate the practical utility of the closed-form results for the

filtering, predictive and smoothing distributions derived in Section 2.3 directly on a realistic real-world dataset,

and assess the performance gains of the Monte Carlo strategies developed in Section 2.4. The focus will be on

the accuracy in recovering the whole exact sun distributions of interest, and not just pre-selected functionals. In

fact, accurate learning of the entire exact distribution is more challenging and implies, as a direct consequence,

accuracy in approximating the associated exact functionals. These assessments are illustrated with a focus on

a realistic financial application considering a dynamic probit regression for the daily opening directions of the

French cac40 stock market index from January 4th, 2018 to March 29th, 2019. In this study, the variable

yt is defined on a binary scale, with yt = 1 if the opening value of the cac40 on day t is greater than the

corresponding closing value in the previous day, and yt = 0 otherwise. Financial applications of this type have

been a source of particular interest in past and recent years (e.g., Kim and Han, 2000; Kara et al., 2011; Atkins

et al., 2018), with common approaches combining a wide variety of technical indicators and news information to

forecast stock markets directions via complex machine learning methods. Here, we show how a similar predictive

performance can be obtained via a simple and interpretable dynamic probit regression for yt, which combines

past information on the opening directions of cac40 with those of the nikkei225, regarded as binary covariates

xt with dynamic coefficients. Since the Japanese market opens before the French one, xt is available prior to yt

and, hence, provides a valid predictor for each day t.

Recalling the above discussion and leveraging the default model specifications in these settings (e.g., Soyer

and Sung, 2013), we rely on a dynamic probit regression for yt with two independent random walk processes

for the coefficients θt = (θ1t, θ2t)
ᵀ. Letting Ft = (1, xt) and pr(yt = 1 | θt) = Φ(θ1t + θ2txt; 1), such a model
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Figure 2.3: Pointwise median and interquartile range for the smoothing distributions of θ1t and θ2t in model
(2.20), for the time window from January 4th, 2018 to May 31st, 2018. The quartiles are computed from 105

samples produced by Algorithm 1.

can be expressed as in equations (2.1)–(2.2) via

p(yt | θt) = Φ[(2yt − 1)Ftθt; 1],

θt = θt−1 + εt, εt
i.i.d.∼ N2(0,W), t = 1, . . . n,

(2.20)

where θ0 ∼ N2(a0,P0), whereas W is a time-invariant diagonal matrix. In (2.20), the element θ1t of θt

measures the trend in the directions of the cac40 when the nikkei225 has a negative opening on day t, whereas

θ2t characterizes the shift in such a trend if the opening of the nikkei225 index is positive, thereby providing

an interpretable probit model with dynamic coefficients.

To evaluate performance in smoothing, filtering and prediction, we split the time window in two parts. Ob-

servations from January 4th, 2018 to May 31st, 2018 are used as batch data to study the smoothing distribution

and to compare the particle filters developed in Section 2.4.2 with other relevant competitors. In the subsequent

time window, spanning from June 1st, 2018 to March 29th, 2019, the focus is instead on illustrating performance

in online filtering and prediction for streaming data via the lookahead routine derived in Section 2.4.2 — which

yields the highest approximation accuracy among the online filters evaluated in the first time window.

Figure 2.3 shows the pointwise median and interquartile range of the smoothing distribution for θ1t and θ2t,

t = 1, . . . , 97, based on R = 105 samples from Algorithm 1. To implement this routine, we set a0 = (0, 0)ᵀ

and P0 = diag(3, 3) following the guidelines in Gelman et al. (2008) and Chopin and Ridgway (2017) for

probit regression. The errors’ variances in the diagonal matrix W are instead set equal to 0.01 as suggested

by a graphical search of the maximum for the marginal likelihood computed under different combinations of

(W11,W22) via the analytical formula in Corollary 3.

As shown in Fig. 2.3, the dynamic states θ1t and θ2t tend to concentrate around negative and positive

values, respectively, for the entire smoothing window, thus highlighting a general concordance between cac40

and nikkei225 opening patterns. However, the strength of this association varies in time, supporting our

proposed dynamic probit over static specifications. For example, it is possible to observe a decay in θ1t and

θ2t on April–May, 2018 which reduces the association among cac40 and nikkei225, while inducing a general

negative trend for the opening directions of the French market. This could be due to the overall instability in
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the Eurozone on April–May, 2018 caused by the uncertainty after the Italian and British elections during those

months.

To clarify the computational improvements of the methods developed in Sections 2.4.1 and 2.4.2, we also

compare, in Fig. 2.4 and in Table 2.1, their performance against the competing strategies mentioned in Section

2.1. Here, the focus is on the accuracy and computational cost in approximating the exact filtering distribution

at time t = 1, . . . , 97, thereby allowing the implementation of the filters discussed in Sect. 2.1. The competing

methods include the extended Kalman filter (Uhlmann, 1992) (ekf), the bootstrap particle filter (Gordon et al.,

1993) (boot), and the Rao–Blackwellized (rao-b) sequential Monte Carlo strategy by Andrieu and Doucet

(2002), which has been discussed in Section 2.4.2 and exploits the hierarchical representation (2.3)–(2.5) of model

(2.1)–(2.2). Although being a popular solution in routine implementations, the extended Kalman filter relies on

a quadratic approximation of the probit log-likelihood which leads to Gaussian filtering distributions, thereby

affecting the quality of online learning when imbalances in the data induce skewness. The bootstrap particle

filter (Gordon et al., 1993) provides, instead, a general sisr that relies on the importance density p(θt | θt−1),

thus failing to account effectively for information in yt, when proposing particles. Rao–Blackwellized sequential

Monte Carlo (Andrieu and Doucet, 2002) aims at providing an alternative particle filter, which also addresses

the apparent unavailability of an analytic form for the “optimal” particle filter (Doucet et al., 2000). The

authors overcome this issue by proposing a sequential Monte Carlo strategy for the Rao–Blackwellized density

p(z1:t | y1:t) of the partially observed Gaussian responses z1:t in model (2.3)–(2.5) and compute, for each

trajectory z1:t|t, relevant moments of (θt | z1:t|t) via classical Kalman filter updates — applied to model (2.4)–

(2.5) — which are then averaged across the particles to obtain Monte Carlo estimates for the moments of

(θt | y1:t). As specified in Remark 1, this solution, when adapted to draw samples from p(θt | y1:t), is a special

case of the sequential strategy in Section 2.4.2, with no lookahead, i.e., k = 0.

Although the above methods yield state-of-the-art solutions, the proposed strategies are motivated by the

apparent absence of a closed-form filter for (2.1)–(2.2), that is, in fact, available according to our findings in

Section 2.3. Consistent with this argument, we evaluate the accuracy of efk, boot and rao-b in approximating

the exact filtering distribution obtained, for each t = 1, . . . , 97, via direct evaluation of the density from (2.10).

These performances are also compared with those of the new methods proposed in Section 2.4. These include

the filtering version of the i.i.d. sampler (i.i.d.) in Section 2.4.1, along with the “optimal” particle filter (opt)

presented in Section 2.4.2, and the lookahead sequential Monte Carlo routine derived in Section 2.4.2, setting

k = 1 (la-1).

For the two dynamic state variables θ1t and θ2t, the accuracy of each sampling scheme is measured via

the Wasserstein distance (e.g., Villani, 2008) between the empirical filtering distribution computed, for every

time t = 1, . . . , 97, from R = 103, R = 104 and R = 105 particles produced by that specific scheme and the

one obtained via the direct evaluation of the associated exact density from (2.10) on two grids of 2000 equally

spaced values for θ1t and θ2t. For the sake of clarity, with a little abuse of terminology, the term particle refers

both to the samples of the sequential Monte Carlo methods and to those obtained under i.i.d. sampling from

the sun. The Wasserstein distance is computed via the R function wasserstein1d. Note also that, although

ekf and rao-b focus, mostly, on moments of (θt | y1:t), such strategies can be adapted to sample from an

approximation of the filtering distribution. Figure 2.4 displays, for the two states and for varying number of

particles, the frequencies of the global rankings of the different schemes, out of the 97 time instants. Such
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Figure 2.4: For the states θ1t and θ2t, barplots representing the relative frequencies of global rankings for the
six sampling schemes, in terms of accuracy in approximating the exact sun filtering distributions over the time
window analyzed. For each scheme and time t = 1, . . . , 97, the accuracy is measured via the median Wasserstein
distance (over 100 replicated experiments) between the empirical filtering distribution computed from 103, 104

and 105 particles, respectively, and the one obtained by direct evaluation of the associated exact density from
(2.10) on two grids of 2000 equally spaced values for θ1t and θ2t. This allows to compute, for every t = 1, . . . , 97,
the ranking of each sampling scheme in terms of accuracy in approximating the exact filtering density at time
t, and to derive the associated barplot summarizing the distribution of the rankings over the whole window.

rankings are computed according to the median Wasserstein distance obtained, for each t = 1, . . . , 97, from 100

replicated experiments. The overall averages across time of these median Wasserstein distances are reported

in Table 2.1, along with computational costs for obtaining R samples from the filtering at time t under each

scheme; see Appendix A.2 for detailed derivations of such costs.

Figure 2.4 and Table 2.1 confirm that the i.i.d. sampler in Section 2.4.1 over-performs the competitors in

accuracy, since the averaged median Wasserstein distances from the exact filtering distribution are lower than

those of the other schemes under all settings, and the ranking of the i.i.d. is 1 in almost all the 97 times. This

improved performance comes, however, with a higher computational complexity, especially in the sampling from

(mt)-variate truncated normals in the sun additive representation, which yields a cost depending on C(mt), i.e.,

the average number of proposed draws required to accept one sample. While the improved accuracy of i.i.d.

justifies such a cost in small-to-moderate dimensions, as t increases the i.i.d. becomes progressively impractical,

thus motivating scalable particle filters with linear cost in t, such as boot, rao-b, opt and la-1. In our basic

R implementation, we found that the proposed i.i.d. sampler has reasonable runtimes (of a couple of minutes)

also for larger series with mt ≈ 300. However, in much higher dimensions the particle filters become orders of

magnitude faster and still practically effective.

As expected, the opt filter in Section 2.4.2 tends to improve the performance of boot, since this strategy

is optimal within the class where boot is defined. However, as discussed in Sections 2.4.2 and 2.4.2, both

methods induce unnecessary autocorrelation in the Gaussian part of the sun filtering distribution, thus yielding

suboptimal solutions relative to particle filters that perform sequential Monte Carlo only on the multivariate

truncated normal component. The accuracy gains of rao-b and la-1 relative to boot and opt in Fig. 2.4

and Table 2.1 provide empirical evidence in support of this argument, while displaying additional improvements

of the lookahead strategy derived in Section 2.4.2 over rao-b, even when k is set just to 1, i.e., la-1. As

shown in Table 2.1, the complexities of la-1 and rao-b are of the same order, except for sampling from

bivariate truncated normals under la-1 instead of univariate ones as in rao-b. This holds for any fixed k,
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accuracy

θ1t [R = 103] θ2t [R = 103] θ1t [R = 104] θ2t [R = 104] θ1t [R = 105] θ2t [R = 105]

i.i.d. 0.01917 [1] 0.02362 [1] 0.00606 [1] 0.00748 [1] 0.00199 [1] 0.00245 [1]

la–1 0.02558 [2] 0.03588 [2] 0.00838 [2] 0.01133 [2] 0.00273 [2] 0.00379 [2]

rao–b 0.02700 [3] 0.03700 [3] 0.00885 [3] 0.01201 [3] 0.00278 [3] 0.00383 [3]

opt 0.06642 [5] 0.09063 [4] 0.02196 [4] 0.03077 [4] 0.00687 [4] 0.00958 [4]

boot 0.07237 [6] 0.10021 [5] 0.02325 [5] 0.03225 [5] 0.00728 [5] 0.00992 [5]

ekf 0.06108 [4] 0.10036 [6] 0.05853 [6] 0.09824 [6] 0.05829 [6] 0.09802 [6]

computational cost

i.i.d. O(tp3 + t3m3 +R[p2 + t2m2C(mt)])

la–1 O(t(p3 +m3) + tR[p2 + pm+m2C(2m)] + tM [m2 +Rm])

rao–b O(t(p3 +m3) + tR[p2 + pm+m2C(m)] + tM [m2 +Rm])

opt O(t(p3 +m3) + tR[p2 + pm+m2C(m)] + tM [m2 +Rm])

boot O(t(p3 +m3) + tR(p2 + pm) + tM [m2 +Rm])

ekf O(t[p3 +m3 +Mm2])

Table 2.1: For the states θ1t and θ2t, averaged accuracy in approximating the exact sun filtering distribution at
t = 1, . . . , 97, and computational cost for obtaining a sample of dimension R from such a filtering distribution at
time t. For each scheme, the accuracy is measured via the Wasserstein distance between the empirical filtering
distribution computed from 103, 104 and 105 particles, respectively, and the one obtained via direct evaluation
of the associated exact sun density from (2.10) on two grids of 2000 equally spaced values for θ1t and θ2t. For
each t, we first compute the median Wasserstein distance from 100 replicated experiments, and then average
such quantities across time. Numbers in square brackets denote the ranking in each column. The costs are
derived for the case in which the importance weights are evaluated via Monte Carlo based on M samples. For
the ekf, we provide the cost of the kf recursions, when the probit likelihood is evaluated via M Monte Carlo
samples.

with the additional sampling cost being C(m[k + 1]). However, consistent with the results in Fig. 2.4 and

Table 2.1 it suffices to set k quite small to already obtain some accuracy gains, thus making such increments

in computational cost affordable in practice. The ekf is, overall, the less accurate solution since, unlike the

other methods, it relies on a Gaussian approximation of the sun filtering distribution. This is only beneficial

relative to boot and opt when the number of particles is small, due to the reduced mixing of such strategies

induced by the autocorrelation in the Gaussian component of the sun additive representation. All these results

remained consistent also when comparing other quantiles of the Wasserstein distance across experiments and

when studying the accuracy in approximating pre-selected functionals of interest.

Motivated by the accurate performance of the novel lookahead strategy in Section 2.4.2, we apply la-

1 to provide scalable online filtering and prediction for model (2.20) from June 1st, 2018 to March 29th,

2019. Following the idea of sequential inference, the particles are initialized exploiting the marginal smoothing

distribution of May 31, 2018 from the batch analysis. Figure 2.5 outlines median and interquartile range for

the filtering and predictive distribution of the probability that cac40 has a positive opening in each day of the

window considered for online inference. These two distributions can be easily obtained by applying the function

Φ(θ1t+xtθ2t; 1) to the particles of the states filtering and predictive distribution. In line with Fig. 2.3, a positive

opening of the nikkei225 provides, in general, a high estimate for the probability that yt = 1, whereas a negative

opening tends to favor the event yt = 0. However, the strength of this result evolves over time with some periods

showing less evident shifts in the probabilities process when xt changes from 1 to 0. One-step-ahead prediction,

leveraging the samples of the predictive distribution for the probability process, led to a correct classification
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Figure 2.5: Median and interquartile range of the filtering and predictive distributions for Φ(θ1t + xtθ2t; 1)
computed from 105 particles produced by the lookahead particle filter in Algorithm 3 for the second time
window. Black and grey segments denote days in which xt = 1 and xt = 0, respectively.

rate of 66.34% which is comparable to those obtained under more complex procedures combining a wide variety

of inputs to predict stock markets directions via state-of-the-art machine learning methods (e.g., Kim and Han,

2000; Kara et al., 2011; Atkins et al., 2018).

2.6 Discussion

This chapter shows that filtering, predictive and smoothing densities in multivariate dynamic probit models

have a sun kernel and the associated parameters can be computed via tractable expressions. As discussed in

Sections 2.3–2.5, this result provides advances in online inference and facilitates the implementation of tractable

methods to draw i.i.d. samples from the exact filtering, predictive and smoothing distributions, thereby allowing

improved Monte Carlo inference in small-to-moderate settings. Filtering in higher dimensions can be, instead,

implemented via scalable sequential Monte Carlo which exploits sun properties to provide novel particle filters.

Such advances motivate future research. For example, a relevant direction is to extend the results in Section

2.3 to dynamic tobit, binomial and multinomial probit models, for which closed-form filters are unavailable. In

the multinomial setting a viable solution is to exploit the results in Fasano and Durante (2020) for the static

case. Joint filtering and prediction of continuous and binary time series is also of interest (Liu et al., 2009). A

natural state-space model for these data can be obtained by allowing only the sub-vector of Gaussian variables

associated with the binary data to be partially observed in (2.3)–(2.5). However, also in this case, closed-form

filters are unavailable. By combining our results in Section 2.3 with classical Kalman filter, this gap may now

be covered.

As mentioned in Sections 2.1 and 2.3.2, estimation of possible unknown parameters characterizing the state-

space model in (2.1)–(2.2) is another relevant problem, that can be addressed by maximizing the marginal

likelihood derived in Section 2.3.2. This quantity can be explicitly evaluated as in Corollary 3 for any small-

to-moderate n. A more scalable option in large n settings is to rely on equations (62) and (66) in Doucet

et al. (2000) which allow to evaluate the marginal likelihood leveraging samples from particle filters. In this

respect, the improved lookahead filter developed in Section 2.4.2 is expected to yield accuracy gains also in

parameter estimation, when used as a scalable strategy to evaluate marginal likelihoods. This routine can be
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also adapted to sample from the joint smoothing distribution via a backward recursion. However, unlike the

i.i.d. sampler in Algorithm 1, this approach yields an additional computational cost which is quadratic in the

total number of particles R (e.g., Doucet et al., 2000). Since R is much higher than n in most applications, the

i.i.d. sampler developed in Algorithm 1 is preferable over particle smoothers in routine studies having small-

to-moderate dimension, since it also yields improved accuracy by avoiding sequential Monte Carlo. Finally,

additional quantitative studies beyond those in Section 2.5 can be useful for obtaining further insights on

the performance of our proposed algorithms relative to state-of-the-art strategies, including recent ensemble

sampling (Deligiannidis et al., 2020).
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Appendix A

A.1. Proofs of the main results

Proof of Lemma 1. To prove Lemma 1, note that, by applying the Bayes’ rule, we obtain

p(θ1 | y1) ∝ p(θ1)p(y1 | θ1),

where p(θ1) = φp(θ1 − G1a0; G1P0G
ᵀ
1 + W1) and p(y1 | θ1) = Φm(B1F1θ1; B1V1B1). The expression for

p(θ1) can be easily obtained by noting that θ1 = G1θ0 +ε1 in (2.2), with θ0 ∼ Np(a0,P0) and ε1 ∼ Np(0,W1).

The form for the probability mass function of (y1 | θ1) is instead a direct consequence of equation (2.1). Hence,

combining these expressions and recalling (2.6), it is clear that p(θ1 | y1) is proportional to the density of a

sun with suitably–specified parameters, such that the kernel of (2.6) coincides with φp(θ1 −G1a0; G1P0G
ᵀ
1 +

W1)Φm(B1F1θ1; B1V1B1). In particular, letting

ξ1|1 = G1a0, Ω1|1 = G1P0G
ᵀ
1 + W1, ∆1|1 = Ω̄1|1ω1|1F

ᵀ
1B1s

−1
1 ,

γ1|1 = s−1
1 B1F1ξ1|1, Γ1|1 = s−1

1 B1(F1Ω1|1F
ᵀ
1 + V1)B1s

−1
1 ,

we have that

γ1|1 + ∆ᵀ
1|1Ω̄

−1
1|1ω

−1
1|1(θ1 − ξ1|1) = s−1

1 B1F1ξ1|1 + s−1
1 B1F1(θ1 − ξ1|1) = s−1

1 B1F1θ1,

Γ1|1−∆ᵀ
1|1Ω̄

−1
1|1∆1|1 = s−1

1 [B1(F1Ω1|1F
ᵀ
1+V1)B1 −B1(F1Ω1|1F

ᵀ
1)B1]s−1

1 = s−1
1 B1V1B1s

−1
1 .

with s−1
1 as in Lemma 1. Note that this term is introduced to make Γ1|1 a correlation matrix, as required in

the sun parametrization (Arellano-Valle and Azzalini, 2006). Recalling Durante (2019), and substituting these

quantities in the kernel of the sun density (2.6), we have

φp(θ1 −G1a0; G1P0G
ᵀ
1 + W1) · Φm(s−1

1 B1F1θ1; s−1
1 B1V1B1s

−1
1 )

= φp(θ1−G1a0; G1P0G
ᵀ
1+W1)Φm(B1F1θ1; B1V1B1)

= p(θ1)p(y1 | θ1) ∝ p(θ1 | y1),

thus proving Lemma 1. To prove that Ω∗1|1 is a correlation matrix, replace the indentity Im with B1V1B1 in

the proof of Theorem 1 by Durante (2019).

Proof of Theorem 1. Recalling equation (2.2), the proof for p(θt | y1:t−1) in (2.9) requires studying the

variable Gtθt−1 + εt, given y1:t−1, where

(θt−1 | y1:t−1) ∼ sunp,m(t−1)(ξt−1|t−1,Ωt−1|t−1,∆t−1|t−1,γt−1|t−1,Γt−1|t−1),

and εt ∼ Np(0,Wt), with εt ⊥ y1:t−1. To address this goal, first note that, by the closure properties of the sun

under linear transformations (Azzalini and Capitanio, 2014, Section 7.1.2), we have that (Gtθt−1 | y1:t−1) is

still a sun with parameters Gtξt−1|t−1, GtΩt−1|t−1G
ᵀ
t , [(GtΩt−1|t−1G

ᵀ
t )� Ip]

− 1
2 Gtωt−1|t−1∆t−1|t−1, γt−1|t−1
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and Γt−1|t−1. Hence, to conclude the proof of equation (2.9), we only need to obtain the distribution of

the sum among this variable and the noise εt ∼ Np(0,Wt). This can be accomplished by considering the

moment generating function of such a sum — as done by Azzalini and Capitanio (2014, Section 7.1.2) to prove

closure under convolution. Indeed, it is straightforward to note that the product of the moment generating

functions for εt and (Gtθt−1 | y1:t−1) leads to the moment generating function of a sun having parameters

ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
ᵀ
t + Wt, ∆t|t−1 = ω−1

t|t−1Gtωt−1|t−1∆t−1|t−1, γt|t−1 = γt−1|t−1 and

Γt|t−1 = Γt−1|t−1. To prove (2.10) note that

p(θt | y1:t) ∝ Φm(BtFtθt; BtVtBt)p(θt | y1:t−1)

coincides with the posterior density in the probit model having likelihood Φm(BtFtθt; BtVtBt), and sun prior

p(θt | y1:t−1) from (2.9). Hence, (2.10) can be derived from Corollary 4 in Durante (2019), replacing matrix Im

in the classical probit likelihood with BtVtBt.

Proof of Corollary 1. To prove Corollary 1, re-write
∫

Φm(BtFtθt; BtVtBt)p(θt | y1:t−1)dθt as∫
Φm(BtFtθt; BtVtBt)K(θt | y1:t−1)dθt

Φm(t−1)(γt|t−1; Γt|t−1)
,

with K(θt|y1:t−1) = p(θt|y1:t−1)Φm(t−1)(γt|t−1;Γt|t−1) denoting the kernel of the predictive density from (2.9).

Consistent with this result, Corollary 1 follows by noting that Φm(BtFtθt; BtVtBt)K(θt | y1:t−1) is the kernel

of the filtering density from (2.10), whose normalizing constant
∫

Φm(BtFtθt; BtVtBt)K(θt | y1:t−1)dθt is

equal to Φmt(γt|t; Γt|t).

Proof of Theorem 2. First notice that p(θ1:n | y1:n) ∝ p(θ1:n)p(y1:n | θ1:n). Therefore, p(θ1:n | y1:n)

can be seen as the posterior density in the Bayesian model with likelihood p(y1:n | θ1:n) and prior p(θ1:n) for

the vector θ1:n = (θᵀ1 , . . . ,θ
ᵀ
n)ᵀ. As pointed out in Section 2.3.2, it follows from (2.2) that θ1:n ∼ Npn(ξ,Ω),

with ξ and Ω defined in Section 2.3.2. The form of p(y1:n | θ1:n) can be obtained from (2.1), by noticing

that y1, . . . ,yn are conditionally independent given θ1:n, thus providing the joint likelihood p(y1:n | θ1:n) =∏n
s=1 Φm(BsFsθs; BsVsBs). This quantity can be re-written as Φmn(Dθ1:n; Λ) with D and Λ as in Section

2.3.2. Combining these results and recalling the proof of Lemma 1, if follows that p(θ1:n | y1:n) ∝ φpn(θ1:n −
ξ; Ω)Φmn(Dθ1:n; Λ), which coincides with the kernel of the sun in Theorem 2.

Proof of Corollary 3. The expression for the marginal likelihood follows by noting that p(y1:n) is the nor-

malizing constant of the smoothing density. Indeed, p(y1:n) =
∫
p(y1:n|θ1:n)p(θ1:n)dθ1:n. Hence, the integrand

coincides with the kernel of the smoothing density, so that the whole integral is equal to Φmn(γ1:n|n; Γ1:n|n).

Proof of Corollary 4. The proof of Corollary 4 is similar to that of Lemma 1. Indeed, the proposal

p(θt | θt−1,yt) is proportional to the product between the likelihood p(yt | θt) = Φm(BtFtθt; BtVtBt) and the

prior p(θt | θt−1) = φp(θt −Gtθt−1; Wt). To derive the importance weights in (2.15), it suffices to notice that

the marginal likelihood p(yt | θt−1) coincides with the normalizing constant of the sun in (2.14).

Proof of Proposition 1. To derive the form of the proposal, first notice that p(zt−k:t | z1:t−k−1,yt−k:t) ∝
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p(zt−k:t | z1:t−k−1)p(yt−k:t | z1:t). Recalling model (2.3)–(2.5) and Section 2.4.2, we have that (zt−k:t |
z1:t−k−1) ∼ Nm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1) and p(yt−k:t|z1:t) = 1(zt−k:t ∈ Ayt−k:t). Hence, p(zt−k:t |
z1:t−k−1)p(yt−k:t | z1:t) is the kernel of the [m(k + 1)]-variate truncated normal in Proposition 1. The form

of the weights in (2.18) follows from their general expression (e.g., Andrieu and Doucet, 2002, Section 2.2.1),

combined with the sequential formulation of the model. Note also that, when written as a function of zs from

the proposal, p(ys | zs) = 1, for any s = 1, . . . , t − k. Therefore, with the convention that p(z1 | z0) = p(z1),

the weights are proportional to

p(z1:t−k | y1:t)

p(z1:t−k−1 | y1:t−1)p(zt−k | z1:t−k−1,yt−k:t)
∝ p(y1:t | z1:t−k)p(z1:t−k)/p(z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(zt−k | z1:t−k−1,yt−k:t)

=
p(y1:t | z1:t−k)p(zt−k | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(zt−k | z1:t−k−1,yt−k:t)
=

p(y1:t | z1:t−k)p(yt−k:t | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(yt−k:t | z1:t−k)

=
p(yt−k:t | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)
=

p(yt−k:t | z1:t−k−1)

p(yt−k:t−1 | z1:t−k−1)
,

where the last equality follows from the fact that p(y1:t | z1:t−k) = p(yt−k:t | z1:t−k). To obtain the final form

of equation (2.18) if suffices to notice that p(yt−k:t | z1:t−k−1) = pr(Bt−k:tz̃ > 0) = Φm(k+1)(µt; Σt), where

z̃∼Nm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1), with rt−k:t|t−k−1, St−k:t|t−k−1, and Bt−k:t defined as in Section 2.4.2. A

similar argument holds for the denominator of (2.18).

A.2 Derivation of computational costs

In this section we derive the computational costs of the algorithms discussed in Sections 2.4 and 2.5. Let us

first consider Algorithm 1 with an initial focus on the smoothing distribution. For this routine, the matrix

computations to obtain the parameters of interest require O(n3[p3 +m3]) operations. Regarding the sampling

cost to obtain R draws, step [1] requires O(p3n3+Rp2n2) operations since we have to first compute the Cholesky

decomposition of Ω̄1:n|n −∆1:n|nΓ−1
1:n|n∆ᵀ

1:n|n in O(p3n3), and then multiply each independent sample for the

resulting lower triangular matrix, at O(Rp2n2) total cost. Step [2] requires, instead, to obtain a minimax

exponentially-tilted estimate at O(m3n3) cost (Botev, 2017) and then perform O(n2m2C(mn)) operations

for each independent sample, where C(d) denotes the average number of proposed draws required per accepted

sample in Botev (2017), when the dimension of the truncated normal is d. Hence, the overall cost of Algorithm 1

is O(n3(p3 + m3) + Rn2[p2 + m2C(mn)]). If the interest is in the filtering distribution, which coincides with

the marginal smoothing at n = t, it is sufficient to sample U0 n|n instead of U0 1:n|n. Hence, the overall cost

for R samples reduces to O(tp3 + t3m3 +R[p2 + t2m2C(mt)]).

We now consider the computational costs of the particle filters considered in Section 2.4 and 2.5. For each t,

the cost is due to computation of parameters, sampling and evaluation of the importance weights. Starting with

the “optimal” particle filter in Section 2.4.2, the matrix operations for computing the quantities in steps [3.1]–

[3.3] of Algorithm 2 have an overall cost for the R samples of O(m3+pm2+p2m+Rpm+Rp2). The sampling costs

are, instead, O(p3+Rp2) and O(m3+Rm2C(m)) for the Gaussian and truncated normal terms, respectively. To

conclude the derivation of the computational costs, it is necessary to derive those associated with the evaluation

of the importance weights. For all the particle filters analyzed, such weights are obtained by evaluating in R

different points the cumulative distribution function of a zero mean multivariate normal with fixed covariance
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matrix. To facilitate comparison, we assume that this evaluation relies on a Monte Carlo estimate based on M

samples in all the particle filters. For the “optimal” particle filter, this step requires O(m3 +Mm2) operations

to obtain the samples, plus O(MRm) for computing the Monte Carlo estimate. Combining these results, the

overall cost for the “optimal” particle filter at time t is O(t(p3 +m3) + tR[p2 +pm+m2C(m)] + tM [m2 +Rm]).

Let us now derive the cost of the Rao–Blackwellized algorithm by Andrieu and Doucet (2002). In this case,

adapting the notation of the original paper to the one of Section 2.4.2, it can be noticed that one kf step

requires O(p3 +Rp2 +Rpm+m3) operations for the computation of Pt|t−1,at|t−1,St|t−1, rt|t−1, Pt|t and at|t,

at any t. As for the sampling part, it first requires R draws from an m-variate truncated normal. Exploiting the

same arguments considered for the previous algorithms, this step has an O(m3 +Rm2C(m)) cost. The sampling

from the final Gaussian filtering distribution p(θt | z1:t = z1:t|t) of direct interest requires instead O(p3 +Rp2)

operations. Leveraging again the derivations for the previous algorithms, the computation of the importance

weights has cost O(m3 + Mm2 + RMm). Therefore, the overall cost of the sequential filtering procedure at

time t is O(t(p3 +m3) + tR[p2 + pm+m2C(m)] + tM [m2 +Rm]).

The above derivations for the Rao–Blackwellized algorithm directly extend to the partially collapsed looka-

head particle filter shown in Algorithm 3. In fact, while at each t the Rao–Blackwellized solution requires one kf

recursion combined with sampling from m-variate truncated normals and evaluation of cumulative distribution

functions of m-variate Gaussians, the lookahead routine relies on samples from [m(k+1)]-variate truncated nor-

mals along with k+1 kf steps, and computation of cumulative distribution functions for [m(k+1)]-dimensional

Gaussians. Hence, adapting the cost of the Rao–Blackwellized algorithm to this broader setting, we have that

the overall cost of Algorithm 3 at time t is O(t(k+p
3 +k3

+m
3)+ tR[k+p

2 +k+pm+k2
+m

2C(k+m)]+ tM [k2
+m

2 +

Rk+m]), where k+ = k+1. Note that, in practice, k is set equal to a pre-specified small constant and, therefore,

the actual implementation cost reduces to O(t(p3 +m3) + tR[p2 + pm+m2C(k+m)] + tM [m2 + Rm]), where

k+ only enters in C(k+m).

The bootstrap particle filter leverages the proposal p(θt | θt−1), with importance weights given by the

likelihood in equation (2.1). Hence, exploiting similar arguments considered for the previous routines yields a

cost O(t(p3 +m3) + tR(p2 + pm) + tM [m2 +Rm]).

Finally, note that the cost of the extended Kalman filter (Uhlmann, 1992) is lower than the one of the

particle filters since no sampling is involved, except for the Monte Carlo evaluation of the multivariate probit

likelihood. In particular, at each t, one has to invert a p×p and an m×m matrix, plus computing the likelihood,

which yields a total cost at t of O(t[p3 +m3 +Mm2]).



Chapter 3

Hidden hierarchical Dirichlet

process for clustering

3.1 Introduction

Dirichlet process (DP) mixtures are well-established and highly successful Bayesian nonparametric models for

density estimation and clustering, which also enjoy appealing frequentist asymptotic properties (Lo, 1984;

Escobar, 1994; Escobar and West, 1995; Ghosal and Van Der Vaart, 2017). However, they are not suitable to

model data {(Xj,1, . . . , Xj,Ij ) : j = 1, . . . , J} that are recorded under J different, though related, experimental

conditions. This is due to exchangeability implying a common underlying distribution across populations, a

homogeneity assumption which is clearly too restrictive. To make things concrete we consider the Collaborative

Perinatal Project, which is a large prospective epidemiologic study conducted from 1959 to 1974 (analyzed in

Section 3.5.3), where pregnant women were enrolled in 12 hospitals and followed over time. Using a standard

DP mixture on the patients enrolled across all 12 hospitals would correspond to ignoring the information on the

specific center j where the data are collected and, thus, the heterogeneity across samples. The opposite, also

unrealistic, extreme case corresponds to modeling data from each hospital independently, thus ignoring possible

similarities among them.

A natural compromise between the aforementioned extreme cases is partial exchangeability (de Finetti, 1938),

which entails exchangeability within each experimental condition (but not across) and dependent population–

specific distributions (thus allowing borrowing of information). See Kallenberg (2005) for a detailed account

of the topic. In this framework the proposal of dependent versions of the DP date back to the seminal papers

of Cifarelli and Regazzini (1978) and MacEachern (1999, 2000). Dependent DPs can be readily used within

mixtures leading to several success stories in topic modeling, biostatistics, speaker diarization, genetics, fMRI

analysis, and so forth. See Dunson (2010); Teh and Jordan (2010); Foti and Williamson (2015); Quintana et al.

(2020) and references therein.

Two hugely popular dependent nonparametric priors, which will also represent the key ingredients of the

present contribution, are the hierarchical Dirichlet process (HDP) (Teh et al., 2006) and the nested Dirichlet

process (NDP) (Rodŕıguez et al., 2008). The HDP clusters observations within and across populations. The

31
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NDP aims to cluster both population distributions and observations, but as shown in Camerlenghi et al. (2019),

does not achieve this goal. In fact, if there is a cluster of observations shared by different samples, the model

degenerates to exchangeability across samples. This issue is successfully overcome in Camerlenghi et al. (2019)

by introducing latent nested nonparametric priors. However, while this proposal has the merit of being the first

to solve the degeneracy problem, it suffers from other limitations in terms of implementation and modeling: (a)

with data from more than two populations the analytical and computational burden implied by the additive

structure becomes overwhelming; (b) the model lacks the flexibility needed to capture different weights that

common clusters may feature across different populations. More details can be found in the discussion to

Camerlenghi et al. (2019).

The goal of this chapter is thus to devise a principled Bayesian nonparametric approach, which allows

to cluster simultaneously distributions and observations (within and across populations). We achieve this by

blending peculiar features of both the NDP and the HDP into a model, which we term Hidden Hierarchical

Dirichlet Process (HHDP). Importantly, the HHDP overcomes the above-mentioned theoretical, modeling, and

computational limitations since it, respectively, does not suffer from the degeneracy flaw, is able to effectively

capture different weights of shared clusters and allows to handle several populations as showcased in the real

data application. Note that the idea of the model was first hinted at in James (2008) and, later, considered

in Agrawal et al. (2013) from a mere computational point of view without providing results on distributional

properties that are relevant for Bayesian inference. Hence, as a by-product, our theoretical results shed also

some light on the topic modeling applications of Agrawal et al. (2013).

Section 3.2 concisely reviews the HDP and the NDP with a focus on the random partitions they induce.

In Section 3.3 we define the HHDP and investigate its properties, foremost its clustering structure (induced

by a partially exchangeable array of observations). These findings lead to the development of marginal and

conditional Gibbs sampling schemes in Section 3.4. In Section 3.5 we draw a comparison between HHDP and

NDP on synthetic data and present a real data application for our model. Finally, Section 3.6 is devoted to

some concluding remarks about the HHDP model and possible future research.

3.2 Bayesian nonparametric priors for clustering

The assumption of exchangeability that characterizes widely used Bayesian inferential procedures is equivalent to

assuming data homogeneity. This is not realistic in many applied contexts, for instance, for data recorded under

J different experimental conditions inducing heterogeneity. A natural assumption that relaxes exchangeability

and is suited for arrays of random variables {(Xj,i)i≥1 : j = 1, . . . , J} is partial exchangeability, which amounts

to assuming homogeneity within each population, though not across different populations. This is characterized

by

{(Xj,i)i≥1 : j = 1, . . . , J} d
= {(Xj,σj(i))i≥1 : j = 1, . . . , J},

for every finitary permutation {σj : j = 1, . . . , J} with
d
= henceforth denoting equality in distribution. Thanks

to de Finetti’s representation theorem for partially exchangeable arrays, the dependence structure is effectively
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represented through the following hierarchical formulation

Xj,i | (G1, . . . , GJ)
ind∼ Gj , (i = 1, . . . , Ij , j = 1, . . . , J)

(G1, . . . , GJ) ∼ L.
(3.1)

Here we focus on priors L defined as compositions of discrete random structures and including, as special cases,

both the HDP and the NDP. More specifically, we consider L in (3.1) that is defined as follows

Gj |Q
iid∼ L(Gj |Q) (j = 1, . . . , J); Q |G0 ∼ L(Q|G0); G0 ∼ L(G0), (3.2)

with discrete random probability measures Gj (j = 1, . . . , J), Q and G0. The data are denoted by X =

{X1, . . . ,XJ} with Xj = (Xj,1, . . . , Xj,Ij ) and Ij the size of the jth sample. Discreteness of these random

structures entails that with positive probability there are ties within each sample Xj and also across samples

j = 1, . . . , J , i.e. pr(Xj,i = Xj,`) > 0 for any i 6= `, and pr(Xj,i = Xκ,`) > 0 for any j 6= κ. Hence, X induces

a random partition of the integers {1, 2, . . . , n} with n = I1 + · · · + IJ , whose distribution encapsulates the

whole probabilistic clustering of the model and is, therefore, the key quantity to study. Importantly, the random

partition can be characterized in terms of the partially exchangeable partition probability function (pEPPF) as

defined in Camerlenghi et al. (2019). The pEPPF is the natural generalization of the concept of exchangeable

partition probability function (EPPF) for the exchangeable case (see e.g. Pitman, 2006). More precisely, D is

the number of distinct values among the n =
∑J
j=1 Ij observations in the overall sample X. The vector of

frequency counts is denoted by nj = (nj,1, . . . , nj,D) with nj,d indicating the number of elements in the jth

sample that coincide with the dth distinct value in order of arrival. Clearly, nj,d ≥ 0 and
∑J
i=1 ni,d ≥ 1. One

may well have nj,d = 0, which implies that the dth distinct value is not recorded in the jth sample, though by

virtue of
∑J
i=1 ni,d ≥ 1 it must be recorded at least in one of the samples. The dth distinct value is shared by any

two samples j and j′ if and only if nj,d nj′,d ≥ 1. The probability law of the random partition is characterized

by the pEPPF defined as

Π
(n)
D (n1, . . . ,nJ) = E

∫
XD∗

D∏
d=1

{G1(dxd)}n1,d . . . {GJ(dxd)}nJ,d , (3.3)

with the constraint
∑D
d=1 nj,d = Ij , for each j = 1, . . . , J and where X is the space in which the Xj,i’s take

values and XD∗ is the collection of vectors in XD whose entries are all distinct. We stress that the expected

value in (3.3) is computed with respect to the joint law of the vector of random probabilities (G1, . . . , GJ), that

is the de Finetti measure L in (3.1). Hence, the pEPPF may also be interpreted as a marginal likelihood when

(G1, . . . , GJ) directly model the observations according to (3.1). Obviously, for a single population, that is

J = 1, the standard EPPF is recovered and (3.3) is further interpretable as an extension of a product partition

model to a multiple samples framework. As such, it provides an alternative approach to popular covariate–

dependent product partition models. See, e.g., Müller et al. (2011), Page and Quintana (2016) and Page and

Quintana (2018).

If we specify L( · |Q) and Q such that they give rise to an NDP, then one may have ties also among the

population probability distributionsG1, . . . , GJ , i.e. pr(Gj = Gκ) > 0 for any j 6= κ. Therefore, in the framework

of (3.1) and (3.2), one may investigate two types of clustering: (i) distributional clustering, which is related
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to G1, . . . , GJ and (ii) observational clustering, which refers to X. The composition of these two clustering

structures is the main tool we rely on to devise a simple, yet effective, model that considerably improves over

existing alternatives.

3.2.1 Hierarchical Dirichlet process

Probably the most popular nonparametric prior for the partially exchangeable case is the HDP of Teh et al.

(2006), which can be nicely framed in the composition scheme (3.2) as

L(Gj |Q) = dp(Gj |β,Q), L(Q|G0) = δG0
(Q), L(G0) = dp(G0|β0;H), (3.4)

where dp( · |α, P ) denotes the law of a DP with concentration parameter α > 0 and baseline probability measure

P . Here we assume that H is a non–atomic probability measure on X and we refer to such prior as the J-

dimensional HDP denoted by (G1, . . . , GJ) ∼ hdp(β, β0;H). Hence, the Gj ’s share the atoms through G0 and

this leads to the creation of shared clusters of observations (or latent features) across the J groups. The pEPPF

induced by a partially exchangeable array in (3.1) with L = hdp(β, β0;H) has been determined in Camerlenghi

et al. (2019). It is important to stress that the model is not suited for comparing populations’ distributions since

pr(Gj = Gκ) = 0 for any j 6= κ (unless the Gj ’s are degenerate at G0, in which case all distributions are equal).

Similar compositions have been considered in Camerlenghi et al. (2019) and, later, in Argiento et al. (2020)

and Bassetti et al. (2020). Anyhow, the HDP and its variations cannot be used to cluster both populations and

observations. To achieve this, one has to rely on priors induced by nested structures, the most popular being

the NDP.

3.2.2 Nested Dirichlet process

The NDP, introduced by Rodŕıguez et al. (2008), is the most widely used nonparametric prior allowing to cluster

both observations and populations. However, as proved in Camerlenghi et al. (2019), it suffers from a degeneracy

issue, because even a single tie shared across samples is enough to group the J population distributions into a

single cluster.

Like the HDP, also the NDP can be framed in the composition structure (3.2) as

L(Gj |Q) = Q(Gj), L(Q|G0) = dp(Q|α;G0), L(G0) = δdp(β;H)(G0), (3.5)

where Q is a random probability measure on the space PX of probability measures on X and G0 is degenerate

at the atom dp(β;H), which is the law of a DP on the sample space X. As in (3.4), H is assumed to be a

non-atomic probability measure on X. Henceforth, we write (G1, . . . , GJ) ∼ ndp(α, β;H). By virtue of the

well–known stick–breaking representation of the DP (Sethuraman, 1994) one has

Q =
∑
k≥1

π∗kδG∗k , (π∗k)k≥1 ∼ gem(α), G∗k
iid∼ dp(β;H), (3.6)

where the weights (π∗k)k≥1 and the random distributions (G∗k)k≥1 are independent. Recall that gem stands for

the distribution of probability weights after Griffiths, Engen, and McCloskey, according to the well-established
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terminology of Ewens (1990). Given a sequence (Vi)i≥1 such that Vi
iid∼ Beta(1, α), this means that π∗1 = V1 and

π∗k = Vk
∏k−1
i=1 (1−Vi), for any k ≥ 2. Since pr(Gj = Gκ) = 1/(α+ 1) for any j 6= κ, Q generates ties among the

random distributions Gj ’s with positive probability and, thus, clusters populations. Furthermore, a structure

similar to the one displayed in (3.6) holds for each G∗k, i.e.

G∗k =
∑
l≥1

ωk,lδX∗k,l , (ωk,l)l≥1
iid∼ gem(β), X∗k,l

iid∼ H,

and, due to the non–atomicity of H, the X∗k,l are all distinct values.

The discrete structure of the G∗k’s generates ties across the samples {Xj : j = 1, . . . , J} with positive

probability. For example, pr(Xj,i = Xj′,i′) = 1/{(α + 1)(β + 1)} for any j 6= j′. Hence, the G∗k’s induce the

clustering of the observations X.

If the data X are modeled as in (3.1), with (G1, . . . , GJ) ∼ NDP(α, β;H), conditional on a partition of

the Gj ’s the observations from populations allocated to the same cluster are exchangeable and those from

populations allocated to distinct clusters are independent. This potentially appealing feature of the NDP is

however the one responsible for the above-mentioned degeneracy issue. For exposition clarity, consider the case

of J = 2 populations. If the two populations belong to different clusters, i.e. G1 6= G2, they cannot share even

a single atom X∗k,l due to the non–atomicity of H. Hence, pr(X1,l = X2,l′ |G1 6= G2) = 0 for any l and l′.

Therefore there is neither clustering of observations nor borrowing of information across different populations.

On the contrary, pr(X1,i = X2,i′ |G1 = G2) = 1/(β + 1) > 0. These two findings are quite intuitive. Indeed,

G1 6= G2 means they are independent realizations of a DP with atoms iid from the same non-atomic probability

distribution H and, thus, they are almost surely different. Instead, G1 = G2 corresponds to all observations

coming from the same population distribution, more precisely from the same DP, and ties occur with positive

probability. A less intuitive fact is that when a single atom, say X∗k,l, is shared between G1 and G2 the

model degenerates to the exchangeable case, namely pr(G1 = G2|X1,i = X2,i′) = 1 and the two populations

have (almost surely) equal distributions. Hence, the NDP is not an appropriate specification when aiming at

clustering both populations and observations across different populations. This was shown in Camerlenghi et al.

(2019) where, spurred by this anomaly of the NDP, a novel class of priors named latent nested processes (LNP)

designed to ensure that pr(G1 6= G2|X1,i = X2,i′) > 0 is proposed. However, while this formally solves the

problem, it has computational and modeling limitations. On the one hand, the implementation of LNPs with

more than two samples is not feasible due to severe computational hurdles. On the other hand, LNPs have

limited flexibility since the weights of the common clusters of observations across different populations are the

same. This feature is not suited to several applications and the discussion to Camerlenghi et al. (2019) provides

interesting examples. See also Soriano and Ma (2019); Christensen and Ma (2020); Denti et al. (2020); Beraha

et al. (2021) for further stimulating contributions to this literature.

Hence, within the composition structure framework (3.2), our goal is to obtain a prior distribution able to

infer the clustering structure of both populations and observations, which is highly flexible and implementable

for a large number of populations and associated samples.
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3.3 Hidden hierarchical Dirichlet process

Our proposal consists in blending the HDP and the NDP in a way to leverage on their strengths, namely

clustering data across multiple heterogeneous samples for the HDP and clustering different populations (or

probability distributions) for the NDP. More precisely we combine these two models in a structure (3.2) as

L(Gj |Q) = Q(Gj), L(Q|G0) = dp(Q|α;dp(β;G0)), L(G0) = dp(G0|β0;H).

This leads to the following definition.

Definition 1. The vector of random probability measures (G1, . . . , GJ) is a hidden hierarchical Dirichlet process

(HHDP) if

Gj | Q
iid∼ Q, Q =

∑
k≥1

π∗kδG∗k , (π∗k)k≥1 ∼ gem(α), (G∗k)k≥1 ∼ hdp(β, β0;H),

with (π∗k)k≥1 and (G∗k)k≥1 independent. In the sequel we write (G1, . . . , GJ) ∼ hhdp(α, β, β0;H).

In terms of a graphical model, the HHDP can be represented as in Figure 3.1.

Gj zj α

G∗k G0

β

H

β0

J

∞

Figure 3.1: Graphical model representing the dependencies for a hhdp(α, β, β0;H). Here the zj ’s are auxiliary
integer–valued random variables that assign each Gj to a specific atom G∗k of Q.

The sequence (G∗k)k≥1 acts as a hidden, or latent, component that is crucial to avoid the bug of the NDP,

namely clustering of populations when they share some observations. Moreover, by extending (3.4) to J =∞,

it can be more conveniently represented as

G∗k =
∑
l≥1

ωk,l δZk,l , Zk,l|G0
iid∼ G0, G0 =

∑
l≥1

ω0,l δX∗l , X∗`
iid∼ H,

(ωk,l)l≥1
iid∼ gem(β), (ω0,l)l≥1 ∼ gem(β0),

(3.7)

where independence holds true between the sequences (ωk,l)l≥1 and (Zk,l)l≥1 and between (ω0,l)l≥1 and (X∗l )l≥1.

Combining the stick-breaking representation and a closure property of the DP with respect to grouping, one

further has

G∗k =
∑
l≥1

ω∗k,lδX∗l , G0 =
∑
l≥1

ω0,lδX∗l ,

where ((ω∗k,l)l≥1 | ω0)
iid∼ dp(β;ω0), ω0 = (ω0,l)l≥1 ∼ gem(β0) and X∗l

iid∼ H, for l ≥ 1.
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Figure 3.2: Correlations as functions of the hyperparameters β and β0 with α = 1. The left plot represents
the correlation between random probabilities Gj(A), the middle one between observations collected in the same
population and the right one between observations from different populations.

In this scheme, the clustering of populations is governed, a priori, by the NDP layer Q through (π∗k)k≥1 ∼
gem(α). However, the aforementioned degeneracy issue of the NDP, a posteriori, is successfully avoided. The

intuition is quite straightforward: unlike for the NDP, the distinct distributions G∗k in the HHDP are dependent

and have a common random discrete base measure G0, which leads to shared atoms across the G∗k’s and thus

borrowing of information, similarly to the HDP case.

3.3.1 Some distributional properties

Given the discreteness of (G1, . . . , GJ) ∼ hhdp(α, β, β0;H), the key quantity to derive is the induced random

partition, which controls the clustering mechanism of the model. However, it is useful to start with a description

of pairwise dependence of the elements of the vector (G1, . . . , GJ), which allows a better understanding of the

model and intuitive parameter elicitation. To this end, as customary, we evaluate the correlation between Gj(A)

and Gj′(A): whenever it does not depend on the specific measurable set A ⊂ X, it is used as a measure of

overall dependence between Gj and Gj′ .

Proposition 3. If (G1, . . . , GJ) ∼ hhdp(α, β, β0;H) and A is a measurable subset of X, then

Var[Gj(A)] =
H(A)[1−H(A)](β0 + β + 1)

(β + 1)(β0 + 1)
(j = 1, . . . , J),

Corr[Gj(A), Gj′(A)] = 1− αβ0

(α+ 1)(β + β0 + 1)
(j 6= j′).

Arguments similar to those in the proof of Proposition 3 lead to determine the correlation between observa-

tions, either from the same or from different samples.

Proposition 4. If {Xj : j = 1, . . . , J} are from (G1, . . . , GJ) ∼ hhdp(α, β, β0;H) according to (3.1), then

Corr(Xj,i, Xj′,i′) = pr(Xj,i = Xj,i′) =


1

β0 + 1
+

β0

(1 + α)(1 + β)(1 + β0)
(j 6= j′)

β + β0 + 1

(β + 1)(β0 + 1)
(j = j′).

The correlation between observations of the same sample depends only on the parameters of the underlying
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HDP(β, β0;H) that governs the atoms G∗k: this is not surprising since, whatever the value of the parameter α at

the NDP layer, observations from the same sample are exchangeable. Moreover, an appealing feature is that such

a correlation is higher than for the case of observations from different samples, i.e. j 6= j′. As for the dependence

on the hyperparameters (α, β0, β), when α → ∞ the Gj ’s ar forced to equal different unique distributions G∗k,

similarly to the NDP case. However, unlike the NDP, this does not imply that the distributions are independent,

and the correlation is controlled by the hyperparameters β and β0 (increasing in β and decreasing in β0). In

Fig. 3.2 we report the aforementioned correlations as functions of β and β0 with α set equal 1. Finally, if α→ 0

the a priori probability to degenerate to the exchangeable case, i.e. all Gj ’s coincide a.s., tends to 1 and so does

also Cor[Gj(A), Gj′(A)].

We now investigate the random partition structure associated with a HHDP, namely the partition of

{1, . . . , n}, with n =
∑J
j=1 Ij , induced by a partially exchangeable sample X modeled as in (3.1). Since a

hhdp(α, β, β0;H) arises from the composition of two discrete random structures, it is clear that the partition

induced by X will depend on the partition, say Ψ(J), of the random probability measures G1, . . . , GJ . As for

the latter, the Gi’s are drawn from a discrete random probability measure on PX whose weights have a gem(α)

distribution and whose atoms are almost surely different since they are sampled from an HDP(β, β0;H). Then

the probability distribution of Ψ(J) is the well–known Ewens sampling formula, namely

pr[Ψ(J) = {B1, . . . , BR}] = φ
(J)
R (m1, . . . ,mR) =

αR

α(J)

R∏
r=1

(mr − 1)!,

where {B1, . . . , BR} is a partition of {1, . . . , J}, with 1 ≤ R ≤ J , the frequencies mr = card(Br) are such that∑R
r=1mr = J and α(J) = Γ(α + J)/Γ(α). This structure a priori implies, as in the NDP case, that pr(Gj =

Gκ) ∈ (0, 1) for any j 6= κ. However, unlike the NDP, a posteriori the HHDP yields pr(Gj = Gκ | X) < 1,

regardless of the shared clusters across the samples X. Moreover, let Φ
(n)
D,R( · · · ;β, β0) denote the pEPPF of a

hdp(β, β0;H), namely

Φ
(n)
D,R(n∗1, . . . ,n

∗
R;β, β0) = E

∫
XD∗

D∏
d=1

Ĝ1( dxd)
n∗1,d · · · ĜR( dxd)

n∗R,d ,

where (Ĝ1, . . . , ĜR) ∼ hdp(β, β0;H), D ∈ {1, . . . , n} and
∑R
r=1

∑D
d=1 n

∗
r,d = n. An explicit expression of Φ

(n)
D,R

has been established in Camerlenghi et al. (2019), even beyond the DP case. Now we can state the pEPPF

induced by {Xj : j = 1, . . . , J} in (3.1), where L is the law of a hhdp(α, β, β0;H).

Theorem 3. The random partition induced by the partially exchangeable array {Xj : j = 1, . . . , J} drawn from

(G1, . . . , GJ) ∼ hhdp(α, β, β0;H), according to (3.1), is characterized by the following pEPPF

Π
(n)
D (n1, . . . ,nJ) =

∑
φ

(J)
R (m1, . . . ,mR;α)Φ

(n)
D,R(n∗1, . . . ,n

∗
R;β, β0), (3.8)

where the sum runs over all partitions {B1, . . . , BR} of {1, . . . , J} and n∗r,d =
∑
j∈Br nj,d for each r ∈ {1, . . . , R},

d ∈ {1, . . . , D}.

Given the composition structure underlying the hhdp(α, β, β0;H), the pEPPF (3.8) unsurprisingly is a

mixture of pEPPF’s induced by different HDPs. For ease of interpretation consider the case of J = 2 populations
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and note that the pEPPF boils down to

Π
(n)
D (n1,n2) =

1

α+ 1
ΦD,1(n1 + n2) +

α

α+ 1
ΦD,2(n1,n2), (3.9)

where Φ
(n)
D,1 is the EPPF of a single hdp(β, β0;H), namely J = 1, while Φ

(n)
D,2 is the pEPPF of a hdp(β, β0;H)

with two samples, namely J = 2. Clearly (3.9) arises from mixing with respect to partitions of {G1, G2} in either

R = 1 and R = 2 groups, where the former corresponds to exchangeability across the two populations. Still

for the case J = 2, a straightforward application of the pEPPF leads to the posterior probability of gathering

the two probability curves, G1 and G2, in the same cluster thus making the two samples exchangeable, or

homogeneous.

Proposition 5. If the sample {Xj : j = 1, 2} is from (G1, G2) ∼ hhdp(α, β, β0;H), according to (3.1), the

posterior probability of degeneracy is

pr(G1 = G2 |X) =
Φ

(n)
D,1(n1 + n2)

Φ
(n)
D,1(n1 + n2) + αΦ

(n)
D,2(n1,n2)

, (3.10)

where Φ
(n)
D,1 and Φ

(n)
D,2 are the EPPF and the pEPPF induced by the hdp(β, β0;H) for a single exchangeable

sample and for two partially exchangeable samples, respectively.

The pEPPF is a fundamental tool in Bayesian calculus and it plays, in the partially exchangeable frame-

work, the same role of the EPPF in the exchangeable case. Indeed, the pEPPF governs the learning mechanism,

e.g. the strength of the borrowing information, clustering, and, in view of Proposition 5, it allows to perform

hypothesis testing for distributional homogeneity between populations. Finally, one can obtain a Pólya urn

scheme that is essential for inference and prediction, see Appendix B.5. In the next section, we provide a char-

acterization of the hhdp(α, β, β0;H) that is reminiscent of the popular Chinese restaurant franchise metaphor

for the HDP and allows us to devise a suitable sampling algorithm and further understand the model behavior.

3.3.2 The hidden Chinese restaurant franchise

The marginalization of the underlying random probability measures, as displayed in Theorem 3, can be charac-

terized in terms of a hidden Chinese restaurant franchise (HCRF) metaphor. This representation sheds further

light on the HHDP and clarifies the sense in which it generalizes the well-known Chinese restaurant (CRP) and

franchise (CRF) processes induced by the DP and the HDP, respectively. For simplicity we consider the case

J = 2.

As with simpler sampling schemes, all restaurants of the franchise share the same menu, which has an

infinite number of dishes generated by the non–atomic base measure H. However, unlike the standard CRF,

the restaurants of the franchise are merged into a single one if G1 = G2, while they differ if G1 6= G2. Moreover,

each Xj,i identifies the label of the dish that customer i from the j–th population chooses from the shared menu

(X∗d )d≥1, with the unique dishes X∗d
iid∼ H. If G1 6= G2, customers may be assigned to different restaurants

and when G1 = G2, they are all seated in the same restaurant. Given such a grouping of the restaurants,

the customers are, then, seated according to the CRF applied either to a single restaurant or to two distinct

restaurants (Teh et al., 2006; Camerlenghi et al., 2018). Furthermore, each restaurant has infinitely many
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tables. The first customer i who arrives at a previously unoccupied table chooses a dish that is shared by all

the customers who will join the table afterward. It is to be noted that distinct tables within each restaurant

and across restaurants may share the same dish. An additional distinctive feature, compared to the CRF, is

that tables can be shared across populations when they are assigned to the same restaurant, i.e. when G1 = G2.

Accordingly, the allocation of each customer Xj,i to a specific restaurant clearly depends on having either

G1 = G2 or G1 6= G2.

The sampling scheme simplifies if latent variables Tj,i’s, denoting the tables’ labels for customer i from

population j, are introduced. We stress that, if G1 6= G2, the number of shared tables across the two populations

is zero, given the populations j = 1, 2 are assigned to different restaurants, labeled r = 1, 2, respectively.

Conversely, if G1 = G2, one may have shared tables across populations, since they are assigned to the same

restaurant r = 1.

Now define qr,t,d as the frequencies of observations sitting at table t eating the dth dish, for a table specific to

restaurant r. Moreover, Dt is the dish label corresponding to table t and `r,d the frequency of tables serving dish

d in restaurant r. Marginal frequencies are represented with dots, e.g. `r,· is the number of tables in restaurant

r. Throughout the symbol x−i identifies either a set or a frequency obtained upon removing the element i from

x. Finally, ∆ stands for an indicator function such that ∆ = 1 if G1 = G2, while ∆ = 0 if G1 6= G2.

The stepwise structure of the sampling procedure reflects the composition of the three layers L(Gj |Q),

L(Q|G0) and L(G0) in (3.7) relying on a conditional CRF. First, one sample the populations’ clustering ∆

and, given the allocations of the populations to the restaurants, one has a CRF. Hence, the algorithm becomes

(1) Sample the population assignments to the restaurants from pr(∆ = 1) = 1/(α+ 1).

(2) Sequentially sample the table assignments Tj,i and corresponding dishes DTj,i from

p(Tj,i, DTj,i | T−(ji+),X−(ji+),∆) ∝


Tj,i = t

q
−(ji+)
r,t,·

q
−(ji+)
r,·,· +β

Tj,i = tnew, Dtnew = d β

q
−(ji+)
r,·,· +β

`
−(ji+)
·,d

`
−(ji+)
·,· +β0

Tj,i = tnew, Dtnew = dnew β

q
−(ji+)
r,·,· +β

β0

`
−(ji+)
·,· +β0

,

where (ji+) = {(ji′) : i′ ≥ i} ∪ {(j′i′) : j′ ≥ j} is the index set associated to the future random variables not

yet sampled.

3.4 Posterior inference for HHDP mixture models

Thanks to the results of Section 3.3, we now devise MCMC algorithms for drawing posterior inferences with

mixture models driven by a HHDP. Though the samplers are tailored to mixture models, they are easily adapted

to other inferential problems such as e.g. survival analysis and species sampling. Henceforth, K is a density
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kernel and we consider

Xj,i | θj,i
ind∼ K(·|θj,i), (i = 1, . . . , Ij j = 1, . . . , J),

θj,i | Gj
ind∼ Gj , (i = 1, . . . , Ij , j = 1, . . . , J),

(G1, . . . , GJ) ∼ hhdp(α, β, β0;H).

(3.11)

We develop two samplers: (i) a marginal algorithm that relies on the posterior degeneracy probability (Proposi-

tion 5) in Appendix B.5; (ii) a conditional blocked Gibbs sampler, in the same spirit of the sampler proposed for

the NDP by Rodŕıguez et al. (2008), in Section 3.4.1. As for (i), the underlying random probability measures

G0 and G∗k’s are integrated out leading to urn schemes that extend the class of Blackwell-MacQueen Pólya urn

processes. In such a way we generalize the a posteriori sampling scheme of the Chinese restaurant process for

the DP mixture Neal (2000) and the one of the Chinese restaurant franchise for the HDP mixture (Teh et al.,

2006). In the Appendix B, we describe the marginal sampler for the case of J = 2 populations. Even if in

principle it can be generalized in a straightforward way, it is computationally intractable for a larger number

of populations. Similarly to the hidden Chinese restaurant franchise situation, one has to evaluate the poste-

rior probability of all possible groupings of G1, . . . , GJ , which boils down to pr(G1 = G2|X) when J = 2 but

becomes involved for J > 2.

This shortcoming is overcome by the conditional algorithm we derive in Section 3.4.1, which relies on finite–

dimensional approximations of the trajectories of the underlying random probability measure. Its effectiveness

in dealing with J > 2 populations is further illustrated in the synthetic data example 3.5.2 and in the application

of Section 3.5.3.

3.4.1 A conditional blocked Gibbs sampler

A more effective algorithm is based on a simple blocked conditional procedure. To this end, we use a finite

approximation of the DP in the spirit of Muliere and Tardella (1998) and Ishwaran and James (2001). However,

instead of truncating the stick–breaking representation of the DP, we use a finite Dirichlet approximation. See

Ishwaran and Zarepour (2002). Therefore, we approximate π∗,ω∗0 , with a K– and an L–dimensional Dirichlet

distribution, respectively. More precisely, we consider the following approximation

π∗ ∼ dir(α/K, . . . , α/K), ω∗0 ∼ dir
(
β0/L, . . . , β0/L

)
(3.12)

implying that (ω∗k | ω∗0)
iid∼ dir(β ω∗0), for k ≥ 1.

Introduce the auxiliary variables zj and ζj,i which represent the distributional and observational cluster

memberships, respectively, such that zj = k and ζj,i = l if and only if Gj = G∗k and θj,i = θ∗l . Henceforth,

S = {(θ∗l )Ll=1,π
∗,ω∗0 , (ω

∗
k)Kk=1, (zj)

J
j=1, (ζj,i)j,i, (Xj,i)j,i} and, in order to identify the full conditionals of the

Gibbs sampler, we note that under the finite Dirichlet approximation (3.12)

p(S) = p(π∗)p(ω∗0)

[ L∏
l=1

p(θ∗l )

][ K∏
k=1

p(ω∗k | ω∗0)

]{ J∏
j=1

p(zj | π∗)
[ Ij∏
i=1

p(Xj,i | θ∗ζj,i)p(ζj,i | ω
∗
zj )

]}
.

This leads to the following
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(1) Sample the unique θ∗l from

p(θ∗l | S−θ
∗
l ) ∝ H(θ∗l )

∏
{j,i:ζj,i=l}

K(Xj,i | θ∗l ).

(2) Sample distributional cluster probabilities from

p(π∗ | S−π
∗
) = dir(π∗ | α/K +m1, . . . , α/K +mK),

with mk =
∑J
j=1 1{zj = k}.

(3) Sample probability weights of the base DP from

p(ω∗0 | S−ω
∗
0 ) ∝

L∏
l=1

[
(ω∗0,l)

β0/L−1ξ
βω∗0,l
l

Γ(β0ω∗0,l)
K

]
, (3.13)

with ξl =
∏K
k=1 ω

∗
k,l.

(4) Sample the observational cluster probabilities independently from

p(ω∗k | S−ω
∗
k) = dir(ω∗k | βω∗0 + nk),

with nk,l =
∑
{j:zj=k}

∑Ij
i=1 1{ζj,i = l}.

(5) Sample distributional and observational cluster membership from

p(zj = k | S−{zj ,ζj}) ∝ π∗k
Ij∏
i=1

L∑
l=1

ω∗k,lK(Xj,i | θ∗l ) (k = 1, . . . ,K),

p(ζj,i = l | S−ζj,i) ∝ ω∗zj lK(Xj,i | θ∗l ) (l = 1, . . . , L).

Importantly, all the full conditional distributions are available in simple closed forms, with the exception of

the distributions of ω∗0 and, possibly, of θ∗l . To update ω∗0 we perform a Metropolis-Hastings step, where we

work on the unconstrained space RL−1 after the transformation [log(ω0,1/ω0,L), . . . , log(ω0,L−1/ω0,L)] and we

adopt a component–wise adaptive random walk proposal following Roberts and Rosenthal (2009). The update

of the unique atoms θ∗l is standard, as with the DP mixture model in the exchangeable case.

In Section 3.5 we assume a Gaussian kernel K(·|θ) = N(·|µ, σ2) and a conjugate Normal-inverse-Gamma

base measure H(·) = nig(· | µ0, λ0, s0, S0) and obtain

p(θ∗l | S−θ
∗
l ) = nig(θ∗l | µl, λl, sl, Sl),

with µl =
nlȳl + λ0µ0

λ0 + nl
, Sl = S0 +

1

2

(
e2
l +

nlλ0(ȳl − µ0)2

λ0 + nl

)
, λl = λ0 + nl, and sl = nl/2 + s0, where nl =∑J

j=1

∑Ij
i=1 1{ζj,i = l}, ȳl =

∑
{j,i:ζj,i=l}Xj,i/nl, and e2

l =
∑
{j,i:ζj,i=l}(Xj,i − ȳl)2 are the observational cluster

sizes, means and deviances, respectively.
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3.5 Illustration

In this section, we compare the performance of our proposal (3.11) with the same model where the HHDP is

replaced by a NDP as in (3.5), on synthetic data involving J = 2 and J = 4 populations. Note that for the

latter, the implementation of the latent nested prior process mixture of Camerlenghi et al. (2019) is not feasible,

while the proposed HHDP mixture model can easily handle that level of complexity. The inferential results that

we display are obtained by relying on the blocked Gibbs sampler of Section 3.4.

3.5.1 Inference with two populations

The data are simulated from the same scenarios considered in Camerlenghi et al. (2019). More precisely, we

consider two populations and the data in each population are iid from a mixture of two normals:

Scen 1. We simulate the data from the two populations independently from the same density

X1,i
d
= X2,i′

iid∼ 0.5N(0, 1) + 0.5N(0, 1).

Scen 2. We simulate the data in the two populations independently from mixtures of two normals with one shared

component

X1,i
iid∼ 0.9N(5, 0.6) + 0.1N(10, 0.6) X2,i′

iid∼ 0.1N(5, 0.6) + 0.9N(0, 0.6).

Scen 3. We simulate the data in the two populations independently from mixtures of two normals having the same

components, though with different weights

X1,i
iid∼ 0.8N(5, 1) + 0.2N(0, 1) X2,i′

iid∼ 0.2N(5, 1) + 0.8N(0, 1).

In all these scenarios we consider balanced sample sizes I1 = I2 = 100 and an HHDP mixture model (3.11),

with α = 1, β = 1, β0 = 1 and H(·) = nig(· | µ0, λ0, s0, S0). We set standard values of the hyperparameters in

terms of the mean ȳ and variance Var(y) of the data, i.e. µ0 = ȳ, λ0 = 1/(3 Var(y)), s0 = 1 and S0 = 4. In

drawing the comparison between (3.11) and the ndp(α, β;H), we further set α = β = 1. Furthermore, we set

the concentration parameters all equal to 1. In Appendix B.6 we perform a sensitivity analysis with respect

to hyperparameters’ specifications as done, for instance, by Zuanetti et al. (2018) for the NDP. The mean

measure of the marginal underlying random distributions E[Gj(A)] = H(A) is the same for all populations.

Also variances are comparable (see Proposition 3) since Var[Gj(A)] equals H(A)[1 − H(A)]/2 for the NDP

and 3H(A)[1 − H(A)]/4 for the HHDP. The sensitivity analysis leads, for all the considered settings, to the

same conclusions in terms of comparison of the two models. Moreover, we fix the dimensions of the finite

approximations L = K = 50 in (3.12) and we do the same for the truncation levels in the algorithm of

Rodŕıguez et al. (2008). In the Appendix, we perform an empirical analysis trying different levels of L and K

which corroborates the fact that the approximation error is negligible in terms of inferential results.

Inference is based on 10 000 iterations with the first half discarded as burn-in. As for the output, besides

obtaining density estimates for the two populations we also determine the point estimate of the clustering of

observations that minimizes the variation of information (VI) loss function. See Meilǎ (2007) and Wade and
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Ghahramani (2018) for detailed discussions on VI and point summaries of probabilistic clustering. Additionally,

we estimate the probability that observations co-cluster, namely pr(ζj,i = ζj′,i′ | X) through the average over

MCMC draws ∑B
b=1 1{ζbj,i = ζbj′,i′}

B
,

where B is the number of MCMC iterations. These are visualized through heatmaps as in Fig. 3.4, with colors

ranging from white, if the probability is 0, to dark red, if the probability is 1. Our analysis is completed by

reporting the estimated distributions of the numbers of mixture components in each scenario.

As expected, both models yield accurate estimates of the true densities in all scenarios. In Fig. 3.3 we

report the true and estimated models under the third scenario. In terms of clustering, in the first scenario

both models correctly cluster together the two populations, thus degenerating to the exchangeable case as they

should. However, in the second and third scenarios the NDP makes the two samples X1 and X2 independent,

therefore preventing borrowing of information across the two populations. As the distributions have a shared

component, the only way for the NDP to recover correctly the true densities is by missing such a component.

Had it been detected, the density estimates of the two populations would have been equal and, thus, far from

the truth. The point estimate of the observations’ clustering in Table 3.2, the heatmaps of the posterior co-

clustering probabilities in Fig. 3.4 and the posterior distributions of the overall number of occupied components

in Table 3.1 showcase the theoretical findings, namely that the NDP in the second and third scenarios cannot

learn the shared components. Hence, it overestimates the total number of occupied components and does not

cluster observations across populations. In contrast, the HHDP model is able to cluster observations across

populations, learns the shared components and borrows information also when the model does not degenerate

to the exchangeable case.

NDP HHDP
Pop 1 Pop 2 Pop 1 Pop 2

S
ce

n
II

I

Figure 3.3: True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior credible
intervals (shaded gray) estimated under the third scenario.

3.5.2 Inference with more than two populations

Here we consider J = 4 populations and deal with the same scenario discussed in Beraha et al. (2021). More

precisely, we simulate independently across populations Ij = 100 (for j = 1, . . . , 4) observations as follows

X1,i
d
= X2,i

iid∼ 0.5N(0, 1) + 0.5N(5, 1) X3,i
iid∼ 0.5N(0, 1) + 0.5N(−5, 1) X4,i

iid∼ 0.5N(−5, 1) + 0.5N(5, 1)

Our prior corresponds to a Gaussian mixture model with the same specification for the HHDP used in the

previous Section with J = 2 population. Fig. 3.5 shows that the HHDP mixture model is able to recover the
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Overall number of components

Scen Model 1 2 3 4 5 6 7 8 9 ≥10

I
NDP 0 0.4090 0.3615 0.1647 0.0492 0.0136 0.0020 0 0 0

HHDP 0 0.5374 0.3743 0.0788 0.0080 0.0016 0 0 0 0

II
NDP 0 0 0 0.2959 0.3906 0.2151 0.0700 0.0256 0.0024 0.0004

HHDP 0 0 0.5742 0.3339 0.0796 0.0116 0.0008 0 0 0

III
NDP 0 0 0 0.1331 0.3055 0.2947 0.1743 0.0608 0.0232 0.0084

HHDP 0 0.5010 0.3966 0.0856 0.0164 0.0004 0 0 0 0

Table 3.1: Posterior distributions of the number of overall occupied components estimated with the two models
under different scenarios.

Scenario I Scenario II Scenario III

NDP HHDP NDP HHDP NDP HHDP

Population 1 2 1 2 1 2 3 4 1 2 3 1 2 3 4 1 2

1 56 44 56 44 87 13 0 0 87 13 0 85 15 0 0 85 15

2 48 52 48 52 0 0 88 12 12 0 88 0 0 80 20 21 79

Table 3.2: Frequencies of observations in the two populations allocated to the point estimate of the clustering
that minimizes the VI loss with the two models under different scenarios.
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Figure 3.4: Heatmaps of the true and estimated posterior probability of co-clustering of observations, ordered by
population memberships, under the HHDP and the NDP models, for the three different scenarios in Section 3.5.1.

data generating densities also in this scenario. In terms of clustering of populations the point estimate that

minimizes the VI loss coincides with the data generating truth. Fig. 3.6 reports the heatmaps of the posterior

co-clustering probabilities of the four populations that show little uncertainty around the correct point estimate,
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Pop 1 Pop 2 Pop 3 Pop 4

Figure 3.5: True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior credible
intervals (shaded gray) estimated under the fourth scenario.

e.g. the estimated probability that populations 1 and 2 are correctly clustered together is 0.9858.

Figure 3.6: Heatmap of the estimated posterior probabilities of co-clustering of the population estimated with
the HHDP mixture model under the fourth scenario in Section 3.5.2.

Finally, the point estimate of the observations’ clustering in Table 3.3 shows the HHDP model is able to

cluster observations across populations, learns the shared components and borrows information also when there

are more than two populations.

observational cluster 1 2 3

Pop 1 53 47 0

Pop 2 56 44 0

Pop 3 48 0 52

Pop 4 0 52 48

Table 3.3: Frequencies of observations in the four populations allocated to the point estimate of the clustering
that minimizes the VI loss with HHDP under the fourth scenario.

3.5.3 Collaborative perinatal project data

A multi-center application is the focus of this section. We consider a data set from the Collaborative Perinatal

Project (CPP), a large prospective epidemiologic study conducted from 1959 to 1974. Pregnant women were

enrolled in 12 hospitals between 1959 and 1966 and were followed over time. Among several pre–pregnancy

measurements, we focus on the birth weight Xj,i for non-smoking woman i in center j. We assume the following
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Gaussian mixture model:

Xj,i | µj,i, σj,i
ind∼ N(µj,i, σj,i) (i = 1, . . . , Ij , j = 1; . . . , 12),

µj,i, σj,i | Gj
ind∼ Gj (i = 1, . . . , Ij , j = 1; . . . , 12).

The same HHDP prior used for the previous synthetic data is placed the vector of random distributions.

This model specification is coherent with what is suggested by Dunson (2010) for the CPP data. Indeed, it is

known that the pregnancy outcome can vary substantially for women from different ethnicity and socioeconomic

groups. Therefore, we specify a model allowing to capture differences between the centers since different groups

of hospitals can serve different women. Canale et al. (2019) provide further analysis of the CPP data.

The heatmap of the co-clustering posterior probability for the 12 hospitals is shown in Fig. 3.7. Such

probabilities imply that the clustering point estimate of the hospitals that minimizes the VI loss has two blocks

and, in the same figure, the mean posterior densities associated with the two clusters are reported. Given

the partition of the hospitals, the posterior mean densities are evaluated based on all patients belonging to

hospitals in each of the two partition groups. The heatmap shows the posterior distribution of the clustering

of the hospitals and can be used to perform uncertainty quantification. As expected, the lack of well-separated

data generating mixtures of Gaussians entails more uncertainty around the point estimate of the clustering of

the populations with respect to the numerical experiments. However, the heatmap shows that the point estimate

of the clustering of distributions is a reliable summary. More precisely, the point estimate that minimizes the

VI loss entails that the first cluster of hospitals includes the hospitals with (reordered) labels 1, 2, 3: these

are well-separated from the remaining hospitals according to the posterior probabilities of co-clustering in the

heatmap. The heatmap shows also that another meaningful point estimate of the clustering of the hospitals is

the finer partition {{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11, 12}}. However, the VI loss suggests a more parsimonious

clustering of the hospitals in two blocks, that is {{1, 2, 3}, {4, 5, 6, 7, 8, 9, 10, 11, 12}}. Note that in the second

cluster of hospitals (red dashed density in Fig. 3.7) the distribution of the birth weights is slightly shifted on

lower values and the two mean densities are similar in the two clusters of populations. Coherently the proposed

model allows to borrow information across clusters of hospitals for estimating the posterior mean densities of

the birth weights. Furthermore the model can be used to identify clusters of women shared in the two different

clusters of hospitals. Indeed, Table 3.4 shows that some clusters of observations are shared across different

clusters of hospitals, thus allowing the borrowing of information for estimating the densities of the birth weights

in the two groups.

Figure 3.7: Heatmap of the estimated posterior probability of co-clustering of hospitals and estimated population
cluster-specific posterior densities for the CPP data.
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number of observational clusters 0 1 2 3 4 5

only in the second cluster of hospitals 0.3530 0.3670 0.2040 0.0640 0.0100 0.0020

only in the first cluster of hospitals 0.7750 0.1850 0.0340 0.0060 0 0

shared across clusters of hospitals 0 0.1680 0.4800 0.2660 0.0780 0.0080

Table 3.4: Posterior distributions of the number of clusters shared and not shared across the two clusters of
hospitals.

3.6 Discussion

As highlighted in the recent literature, NDP mixture models are often not an appropriate tool for clustering

simultaneously population distributions and observations. In contrast, the HHDP, overcomes the issues plaguing

the NDP, while preserving tractability and clustering flexibility even when the number of populations J is larger

than 2. We have further devised sampling schemes allowing for efficient inference and prediction. This chapter

paves the way for future intriguing research directions that we plan to address in forthcoming work. First, it

is natural to move beyond DPs and consider models based on alternative discrete nonparametric priors, such

as the Pitman-Yor process (see the next chapter of this thesis) and normalized completely random measures,

while studying the induced clustering. Moreover, the general composition scheme, where we have embedded

the HHDP, seems a promising and effective approach for addressing other interesting inferential problems,

beyond density estimation and clustering. Finally, the general scheme that we have introduced in (3.2) seems

an appropriate specification for capturing the inherent complexity and heterogeneity of data that arise when

drawing predictions with multivariate species sampling models and when performing inferences in survival and

functional data analysis.
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Appendix B

B.1. Proof of Proposition 3

Note that G∗1(A) | G0 ∼ beta(βG0(A), β(1−G0(A))) and G0(A) ∼ beta(β0H(A), β0(1−H(A))). Hence,

EG0(A) = H(A), Var[G0(A)] =
H(A)[1−H(A)]

β0 + 1

and since Gj
d
= G∗1,

EGj(A) = EE[G∗1(A) | G0] = EG0(A) = H(A)

Var[Gj(A)] = EVar[G∗1(A) | G0] + Var[G0(A)] =
H(A)[1−H(A)](β0 + β + 1)

(β + 1)(β0 + 1)
.

Mixed moments are also easy to determine, as EG∗1(A)G∗2(A) = EE[G∗1(A) | G0]E[G∗2(A) | G0] = EG0(A)2 and

EGj(A)Gj′(A) = E[G1(A)G2(A) | G1 = G2] pr(G1 = G2) + E[G1(A)G2(A) | G1 6= G2] pr(G1 6= G2)

=
1

1 + α
E[G∗1(A)2] +

α

α+ 1
E[G∗1(A)G∗2(A)]

=
1

1 + α
E[G∗1(A)2] +

α

α+ 1
E[G0(A)2].

One, then, obtains

Cov[Gj(A), Gj′(A)] = E[Gj(A)Gj′(A)]−H(A)2 =
1

1 + α
Var[G∗1(A)] +

α

α+ 1
Var[G0(A)]

and

Cor[Gj(A), Gj′(A)] =
1

1 + α
+

α

α+ 1

Var[G0(A)]

Var[G∗1(A)]
=
β0 + β + 1 + αβ + α

(1 + α)(β0 + β + 1)

so that the conclusion follows.

B.2. Proof of Proposition 4

Note that Xj,i
d
= X∗d . Thus,

Cov(Xj,i, Xj′,i′) = pr(Xj,i = Xj′,i′) Var(X∗d )

Moreover, if j = j′, then

pr(Xj,i′ = Xj,i) = pr(Xj,i′ = Xj,i | Tj,i = Tj,i′ ] pr(Tj,i = Tj,i′) + pr(Xj,i′ = Xj,i | Tj,i 6= Tj,i′) pr(Tj,i 6= Tj,i′)

=
1

β + 1
+ pr(DTj,i′ = DTj,i | Tj,i 6= Tj,i′)

β

β + 1
=

β + β0 + 1

(β + 1)(β0 + 1)
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If j 6= j′, then

pr(Xj,i = Xj′,i′) = pr(Xj,i = Xj′,i′ | Gj = Gj′) pr(Gj = Gj′) + pr(Xj,i = Xj′,i′ | Gj 6= Gj′) pr(Gj 6= Gj′)

= pr(Xj,i′ = Xj,i)pr(Gj = Gj′) + pr(DTj′,i′ = DTj,i | Tj,i 6= Tj′,i′) pr(Gj 6= Gj′)

=
1

β0 + 1
+

β0

(1 + α)(1 + β)(1 + β0)

and the conclusion follows.

B.3. Proof of Theorem 3

In order to prove Theorem 3, we first state the following auxiliary result.

Lemma 2. The random partition induced by the samples {Xj : j = 1, . . . , J} drawn from (G1, . . . , GJ) ∼
hhdp (α, β, β0;H) given a particular partition of distributions Ψ(J) = {B1, . . . , BR} is characterized by the

pEPPF

Π
(n)
D

(
n1, . . . ,nJ ;α, β, β0 | Ψ(J) = {B1, . . . , BR}

)
= Φ

(n)
D,R (n∗1, . . . ,n

∗
R;β, β0) ,

where n∗r,d =
∑
j∈Br nj,d for each r = 1, . . . , R, d = 1, . . . , D, and Φ

(n)
D,R (n∗1, . . . ,n

∗
R;β, β0) is the pEPPF

associated to a R-dimensional hdp(β, β0;H).

Now we can write

Π
(n)
D (n1, . . . ,nJ ;α, β, β0 | Ψ(J) = {B1, . . . , BR}) =

= E
[ ∫

XD∗

D∏
d=1

G1(dxd)
n1,d . . . GJ(dxd)

nJ,d
∣∣ Ψ(J) = {B1, . . . , BR}

]
=

= E
[ ∫

XD∗

D∏
d=1

G∗1(dxd)
n∗1,d . . . G∗R(dxd)

n∗R,d

]
= Φ

(n)
D,R(n∗1, . . . ,n

∗
R;β, β0),

(3.14)

with XD∗ = XD \ {x : xi = xj for some i 6= j} and (G∗1, . . . , G
∗
R) ∼ hdp(β, β0;H). Moreover, note that the R

unique values among (G1, . . . , GJ) are not necessarily the first (G∗1, . . . , G
∗
R) but since (G∗k)k≥1 are exchangeable

the third equality holds.

Therefore, by applying Lemma 2

Π
(n)
D

(
n1, . . . ,nJ

)
=
∑

p
(
Ψ(J) = {B1, . . . , BR}

)
Π

(n)
D

(
n1, . . . ,nJ ;α, β, β0 | Ψ(J) = {B1, . . . , BR}

)
=

=
∑

φ
(J)
R

(
m1, . . . ,mR;α,

)
Φ

(n)
D,R

(
n∗1, . . . ,n

∗
R;β, β0

) (3.15)

B.4. Proof of Proposition 5

In order to derive the posterior probability of degeneracy, we write the marginal likelihood as

p(X) = Π
(n)
D (n1,n2)

D∏
d=1

H(dX∗d ),
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where {X∗1 , . . . , X∗D} are the D unique values among X and Π
(n)
D (n1,n2) is the pEPPF associated to the

proposed model (3.8), that is

Π
(n)
D (n1,n2) = pr(G1 = G2)Φ

(n)
D,1(n1 + n2) + pr(G1 6= G2)Φ

(n)
D,2(n1,n2),

Finally, we prove the proposition by applying Bayes theorem

pr(G1 = G2 |X) =
pr(G1 = G2)p(X | G1 = G2)

p(X)
=

Φ
(n)
D,1(n1 + n2)

Φ
(n)
D,1(n1 + n2) + αΦ

(n)
D,2(n1,n2)

,

where Φ
(n)
D,1 and Φ

(n)
D,2 are the pEPPF and the EPPF of a bivariate and univariate hdp(β, β0;H), respectively.

More precisely, following Camerlenghi et al. (2019, 2018) we can derive the pEPPF Φ
(n)
D,2 and the EPPF

Φ
(n)
D,1 of a bivariate and univariate hdp(β, β0;H), respectively. In particular

Φ
(n)
D,1(n∗) =

βD0
β(n)

∑
`∗

β|`
∗|

β
(|`∗|)
0

D∏
d=1

(`∗d − 1)!|s(n∗d, `∗d)|, (3.16)

where |s(n, `)| is the signless Stirling numbers of the first kind and the sum runs over all vectors `∗ = (`∗1, . . . , `
∗
D)

such that `∗d ∈ {1, . . . , n∗d}, |`∗| =
∑D
d=1 `

∗
d and

Φ
(n)
D,2(n1,n2) =

βD0∏J
j=1 β

(Ij)

∑
`

β|`|

β0
(|`|)

D∏
d=1

(`·l − 1)!

2∏
j=1

|s(nj,d, `j,d)|, (3.17)

where ` = (`1, `2), with each `j = (`j,1, . . . , `j,D) ∈ ×Dd=1{1, . . . , nj,d} and |`| =
∑2
j=1

∑D
d=1 `j,d.

B.5. A marginal Gibbs sampler

The marginal Gibbs sampler that updates ∆, the table dish assignments Tj,i, and Dt can be deduced from the

hidden Chinese restaurant franchise presented in Section 3.3.2. Let S = {∆, (Tj,i)j,i, (Dt)t, (Xj,i)j,i}. Hence,

the algorithm can be summarized as follows

(1) Sample the population assignments to the restaurants

pr(∆ = 1 |X) =
Φ

(n)
D,1(n1 + n2)

Φ
(n)
D,1(n1 + n2) + αΦ

(n)
D,2(n1 + n2)

,

where Φ
(n)
D,2, Φ

(n)
D,1 are the pEPPF and EPPF of a bivariate and univariate hdp(β, β0;H), respectively.

(2) Sample the table assignments Tj,i and corresponding dishes DTj,i from

p(Tj,i, DTj,i | S
−(Tj,i,DTj,i )) ∝


Tj,i = t

q
−(ji)
r,t,·

q
−(ji)
r,·,· +β

pDt({Xj,i})

Tj,i = tnew, Dtnew = d β

q
−(ji)
r,·,· +β

`
−(ji)
·,d

`
−(ji)
·,· +β0

pd({Xj,i})

Tj,i = tnew, Dtnew = dnew β

q
−(ji)
r,·,· +β

β0

`
−(ji)
·,· +β0

pdnew({Xj,i}),



3.6. APPENDIX B 52

where pd({Xj,i}) is defined by the following equation. For every index set I

pd({Xj,i}(j,i)∈I) =

∫ ∏
j′i′∈I∪Id K(Xj,i | θ)dH(θ)∫ ∏
j′i′∈Id\I K(Xj,i | θ)dH(θ)

,

where Id = {(j, i) : DTj,i = d}. For instance, pd({Xj,i}) is the marginal conditional probability of Xj,i in

cluster d given the other observation assigned to cluster d.

(3) Sample the dish assignments Dt from

p(Dt | S−t) ∝


d

`−t·,d
`−t·,· +β0

pd({xj,i : Tj,i = t})

dnew β0

`−t·,· +β0
pdnew({xj,i : Tj,i = t}).

B.6. Sensitivity analysis for the hyperparameters specification

Here we study the robustness with respect to the specification of hyperparameters in relation to the comparison

between the NDP and the HHDP mixture models presented in Section 3.5. The results are reported in terms

of density estimates in Fig. 3.8 and probabilities of co-clustering of the observations in Fig. 3.9 using the finite–

dimensional approximations of the dps with L = K = 50 and different hyperparameter specifications. The

sensitivity analysis is performed by selecting different values for the concentration parameters. This allows to

verify the robustness of the results comparing the two models. We report the results for the data simulated

according to scenario III, in which the two populations share both the Gaussian components, but with different

mixture weights.

We perform inference with the model as in Section 3.5 with the following specifications for the concentration

parameters:

� Parameters 1: all the concentration parameters are set equal to 1, that is

(G1, G2) ∼ ndp(α = 1, β = 1;H) and (G1, G2) ∼ hhdp(α = 1, β = 1, β0 = 1;H), respectively.

� Parameters 0.1: all the concentration parameters are set equal to 0.1, that is

(G1, G2) ∼ ndp(α = 0.1, β = 0.1;H) and (G1, G2) ∼ hhdp(α = 0.1, β = 0.1, β0 = 0.1;H), respectively.

� Parameters 3: all the concentration parameters are set equal to 3, that is

(G1, G2) ∼ ndp(α = 3, β = 3;H) and (G1, G2) ∼ hhdp(α = 3, β = 3, β0 = 3;H), respectively.

Importantly the density estimates are essentially the same under the different hyperparameters specifications.

Probabilities of co-clustering change under the different hyperparameter settings coherently with the theory

developed in Section 3.3.1. However, in all the scenarios both models do not degenerate to the exchangeable

case. This implies that the NDP cannot cluster observations across populations, while the HHDP overcomes this

issue. Therefore, the results of the comparison between the two models presented in Section 3.5 are essentially

the same.

B.7. Choice of the finite-dimensional approximations

We now present the inferential results in terms of density estimates in Fig. 3.8 and probabilities of co-clustering

of the observations in Fig. 3.9 for the two specifications in Section 3.5. We report the results for the data
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Figure 3.8: True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior credible
intervals (shaded gray) estimated under different hyperparameters specifications.

simulated according to scenario III with the following finite-dimensional approximations of the dps:

� L = K = 50;

� L = K = 30;

� L = K = 70.

Under all the different finite-dimensional approximations the inference is qualitatively the same, corroborat-

ing the idea that the finite-dimensional approximations L = K = 50 proposed for the comparison of the NDP

and HHDP in Section 3.5 induce a negligible error in our analysis.

B.8. Mixing of the MCMC algorithm

We now investigate the mixing for the number of clusters of both distributions and observations for the col-

laborative perinatal project application in Section 3.5.3. Figure 3.12 shows the trace plots of the number of

distributional and observational clusters sampled at each iteration (without discarding the burn-in and without

performing any thinning). Note that here we started the MCMC with the bad initial guess that both clusterings

feature only singletons and still the algorithm performed well. The traceplots in Figure 3.12 show a good mixing

for the number of clusters of both distributions and observations.
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Figure 3.9: Heat maps of the true and estimated posterior probability of co-clustering of observations, ordered
by population memberships, with the two models under different hyperparameters specifications.
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Figure 3.10: True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior credible
intervals (shaded gray) estimated under different truncation levels.
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Figure 3.11: Heat maps of the true and estimated posterior probability of co-clustering of observations, ordered
by population memberships, with the two models under different finite-dimensional approximations.

Figure 3.12: Traceplots of the number of distributional and observational clusters.



Chapter 4

Probabilistic discovery of new

species and homogeneous

subpopulations

4.1 Introduction

Species sampling models have been widely applied to face one of the most important problems in Statistics:

prediction. They owe their name to the seminal contributions by Good (1953) and Good and Toulmin (1956),

who focused, among other, on studying the number of new species one would observe if additional observations

are sampled. Such models find their natural fit in Ecology and Biology, where they were originally developed, but

an increasing number of applications is developing. Since the original formulation, the term ‘species sampling

model’ has been broadly used for a wide range of discrete distributions, not necessarily linked to biological

applications, while maintaining the original terminology and denoting as ‘species’ the unique values that the

observations can take (Pitman, 1996). In the single-sample or exchangeable setting, they allow to perform

inference on the values of the future observations given a sample from a discrete population. The focus is

typically on the prediction of the number of new species one would discover if one is allowed to sample additional

observations, or, similarly, on the assessment of the number of unobserved species in the original sample Efron

and Ronald (1976); Chao (1981); Chao and Lee (1992); Bunge and Fitzpatrick (1993); Mao (2004).

Lately, species sampling models faced a growing interest from both applied and theoretical perspective. In

addition to the original ecological applications (Bunge and Fitzpatrick, 1993; Stockwell and Peterson, 2002),

they have been applied in several fields such as genetics (Mao and Lindsay, 2002; Lijoi et al., 2007; Favaro

et al., 2009), machine learning and privacy data (Samuels, 1998) just to mention a few. See also De Blasi et al.

(2015) for an extensive overview and other possible applications. In a Bayesian setting, these constructions

have been further generalized to effectively tackle the problem of prediction when the data arise from different

related experiments or populations, i.e. when we are in the so-called partially-exchangeable framework. In such

a scenario, Bayesian hierarchical models can be successfully applied to naturally borrow information across the

different populations to improve the predictive performance of the model. This is the underlying idea of some

56
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of the most popular Bayesian nonparametrics constructions as the hierarchical and nested formulations for the

Dirichlet Process (DP) (Ferguson, 1973) and their generalizations to the Pitman-Yor process (PYP) and beyond

(Teh, 2006; Teh et al., 2006; Rodŕıguez et al., 2008; Camerlenghi et al., 2017, 2019).

Despite the availability of a large numbers of works in literature to face the species sampling problem

in a single population framework, just a few works treat the more challenging case of multiple populations.

Camerlenghi et al. (2017) exploits a hierarchical Pitman-Yor process (HPYP) construction to effectively face the

problem of prediction combining different populations. The choice of the HPYP arises naturally in the species-

sampling framework, as the random partition structure induced by the PYP is governed by two parameters

and is such that the probability of observing a new species in an additional observation depends on the number

of distinct species observed so far, while in the DP case there is only one parameter governing the clustering

structure and the above mentioned probability depends only on the global sample size.

This different behavior gives rise to different asymptotic distributions for the number of cluster observed as

the population size diverges, with the PYP showing a power-law behavior, which is observed in many empirical

studies, while the DP shows only a logarithmic growth, which appears too restrictive. However, the hierarchical

construction exploited in the two above-mentioned works does not allow to naturally test homogeneity of

subpopulations and cluster the populations with the same species distributions. We define a novel hierarchical

construction based on PYPs which allows to effectively face also the aforementioned task. This model is obtained

by adding a latent nonparametric discrete prior distribution on the population distributions, so that ties among

the different population distributions are allowed. In such a setting, testing for homogeneity of population

distributions arises naturally, as the model allows to perform probabilistic clustering of the distributions of the

groups.

4.2 Preliminaries

Before presenting the proposed model in Section 4.3, we shortly review the literature involved in such construc-

tion. Following Pitman (1996), a random probability P is said to be distributed according to a proper species

sampling process if it admits the series representation

P =
∑
i≥1

πiδX∗i , (X∗i )i≥1
iid∼ H ⊥ (πi)i≥1, (4.1)

with H non-atomic. The law of P is completely specified after one fixes the law of the vector of weights (πi)i≥1.

In particular, when the πi’s are such that πi = vi
∏i−1
l=1 vl, with vi ∼ Beta(1 − σ, θ + iσ), i ≥ 1, σ ∈ [0, 1)

and θ > −σ, then P is distributed according to a PYP with parameters (θ, σ,H), denoted P ∼ pyp(θ, σ;H).

This process is also called two-parameter Poisson-Dirichlet process, and its particular case σ = 0 boils down to

the DP. Observe that, although in species sampling processes the base measure H is nonatomic, in the general

PYP formulation this is not required. A vector of weights (πi)i≥1 constructed with the process just described

is said to be gem(σ, θ) distributed, after Griffiths, Engen, and McCloskey. A well-known urn scheme allows to

sequentially sample observations from P since if Un = (U1, . . . , Un) is a conditionally independent sample from
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P , i.e. Ui | P
iid∼ P , then a new observation Un+1 will have predictive distribution

Un+1 | Un ∼
Kn∑
i=1

ni − σ
θ + n

δU∗i (·) +
θ +Knσ

θ + n
H(·), (4.2)

where Kn is the number of distinct values (U∗1 , . . . , U
∗
Kn

) in the sample Un, and ni are their multiplicities, so

that
∑Kn
i=1 ni = n.

This single–sample scenario is well established in the literature (see De Blasi et al. (2015) for a review),

however in many applications the data are collected in J different, but related, experiments or populations.

In the following we denote with X = {(Xj,i)i≥1 : j = 1, . . . , J} the data matrix. In such a framework the

assumption of a common underlying distribution (exchangeability) is too restrictive since it does not take into

account the possible differences of the populations. On the other hand, the assumption of independence across

populations does not allow to borrow information across experiments in the Bayesian learning.

A natural compromise between the aforementioned extreme cases is partial exchangeability (de Finetti,

1938), that entails exchangeability within but not across the different groups. Thanks to de Finetti theorem,

we can characterize the array X as arising from a vector of J dependent random probabilities. More precisely,

for every vector of population sample sizes (I1, . . . , IJ), it holds

Xj,i | (P1, . . . , PJ)
ind∼ Pj (i = 1, . . . , Ij ; j = 1, . . . , J)

(P1, . . . , PJ) ∼ L,
(4.3)

where L takes the role of the prior in the Bayes-Laplace paradigm and controls the dependence, thus the

borrowing of information, across the different populations.

Many possible prior specifications for the vector (P1, . . . , PJ) are possible. When dealing with species

sampling problems, one of the most famous priors in a single–population framework is arguably the PYP. This

is due to the fact that, as apparent from equation (4.2), when sampling a new out-of-sample observation, the

probability to allocate it to a new cluster depends on the number of already created cluster, and not only on

the total number of observations, as happens instead in the case of a DP prior. For this reason, together with

the asymptotic power law shown by the number of clusters as n diverges, the PYP is usually the first choice in

species sampling problems, being the DP a valuable choice for density estimation under mixture models, but not

flexible enough for species sampling processes. Consistently, a common prior specification in multiple-sample

cases for (P1, . . . , PJ) is the HPYP (Teh, 2006; Teh et al., 2006; Camerlenghi et al., 2017). This construction is

shortly reviewed in Section 4.2.1: although being well-suited for multiple-sample prediction, it does not allow

to test for distribution homogeneity across different populations. This is one of the two tasks of interest in the

present work, and, to the best of the authors’ knowledge, its treatment in the species sampling framework is

lacking, aside from early attempts by Lijoi et al. (2008). In order to achieve this, a nested structure is added,

allowing for possible ties in the group distributions Pj . This is done exploiting a nested Pitman-Yor process

(NPYP), which is introduced in Section 4.2.2 and follows from the nested Dirichlet Process (NDP) (Rodŕıguez

et al., 2008), after replacing the DP with a PYP.
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4.2.1 Hierarchical Pitman-Yor process

A well-known Bayesian nonparametric prior for a vector of dependent discrete random probabilities (P1, . . . , PJ)

is the hierarchical Pitman-Yor process (HPYP) (Teh, 2006; Teh and Jordan, 2010), which extends the definition

of the hierarchical DP (Teh et al., 2006).

The idea is to introduce dependence across the random probabilities P1, . . . , PJ via a common random

discrete base measure P0. More precisely we say that (P1, . . . , PJ) follows a HPYP with parameter vector

(σ, θ, σ0, θ0, H), denoted (P1, . . . , PJ) ∼ hpyp(σ, θ, σ0, θ0;H) if

Pj | P0
iid∼ pyp(σ, θ;P0) j = 1, . . . , J, P0 ∼ pyp(σ0, θ0;H). (4.4)

Thanks to the discreteness of Pj we will observe ties with positive probability between the observations recorded

in each population Xj = {Xj,i : i = 1, . . . , Ij}. Furthermore, the discreteness of the common random base

measure P0 allows to share species (cluster observations) across the random probabilities. This feature is

essential to perform clustering with mixture models as well as species sampling under heterogeneous populations

(Teh et al., 2006; Camerlenghi et al., 2017).

This random partition structure induced by the ties is the core element of species sampling models and

from a statistical perspective it can be interpreted as a random clustering. The probability distribution of such

a random partition structure can be characterized via the partially exchangeable partition probability function

(pEPPF) marginalizing out the vector of random probabilities. The pEPPF is an essential object to understand

the model and perform inference. For instance, from the pEPPF we can derive closed form results for the joint

moments of the observations, both in the same or different populations. Moreover, it can also be used to derive

urn schemes that allow to develop marginal Monte Carlo Markov Chain routines which constitute the basis to

perform predictive inference. See Camerlenghi et al. (2019) for results on the pEPPF for a large class of models.

However, when the goal is to test population homogeneity, the HPYP has a huge drawback, as it does not

allow two groups to share the same distribution. Indeed, in the HPYP, pr(Pj = Pk) = 0 for any j 6= k. In order

to allow for homogeneous subgroups of populations we will rely on nested structures, extending the HPYP in

order to allow Pj = Pk, for j 6= k, with positive probability. Thus, before moving to the presentation of the

proposed model, we introduce the nested Pitman-Yor process (NPYP).

4.2.2 Nested Pitman-Yor process

The nested Dirichlet process (NDP) (Rodŕıguez et al., 2008) is arguably the most famous Bayesian nonpara-

metric prior to perform joint clustering of distributions and observations under mixture models. However, as

pointed out by Camerlenghi et al. (2019) it suffers from a degeneracy issue that makes it unsuitable to face our

species sampling problem. More precisely, it allows to naturally test for homogeneity of groups and to perform

probabilistic clustering of groups since, contrary to the HDP case, a priori we have pr(Pj 6= Pk) ∈ (0, 1), for

any j 6= k. However, given that a single species (cluster of observations) is shared across groups j and k, i.e.

Xj,i = Xk,l for some i, l ≥ 1, the species-populations Pj and Pk are almost surely equal. On the other hand,

given that the two species-populations are not exactly equal they are independent and cannot share any species.

In order to overcome the restrictions not suitable for species sampling problems due to a DP prior exposed in

Section 4.2, we first extend the hierarchical definition of the NDP to a composition of PYPs. However, also such
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nested Pitman-Yor process (NPYP) suffers from the same degeneracy issue of the NDP. This will be overcome

in Section 4.3, where we will introduce a novel prior for dependent species sampling processes that overcomes

the issue combining the NPY and the HDP, taking the advantage of the two.

We say that (P1, . . . , PJ) follows a NPYP distribution with vector of parameters (α, γ, σ, θ,H), denoted

(P1, . . . , PJ) ∼ npyp(α, γ, σ, θ,H), if

Pj | Q
iid∼ Q j = 1, . . . , J, Q ∼ pyp(α, γ;pyp(σ, θ;H)). (4.5)

In order to ease the understanding of the model we can rewrite the random distribution on the space of

distributions Q exploiting the well-known stick-breaking representation of the Pitman-Yor process, so that

Q =
∑
k≥1

ω∗kδP∗k ,

where the unique atoms P ∗k are random probabilities on the space of the observations and are i.i.d. samples from

pyp(σ, θ;H), independent of the weights (ω∗k)k≥1 ∼ gem(α, γ). The discreteness of Q induces a probabilistic

clustering of the groups since pr(Pj = Pk) = 1−α
γ+1 ∈ (0, 1). However, as for the NDP, given that a single atom

is shared between the two distribution, such probability to degenerate to the exchangeable case is 1. Indeed,

given that the two distributions Pj and Pk are different they are i.i.d. sampled from pyp(σ, θ;H) and thus their

random atoms are i.i.d. sampled from a non-atomic distribution H and are almost surely different.

To overcome such issue of the NDP in mixture models (Camerlenghi et al., 2019) introduce a novel class of

BNP priors named latent nested processes (LNPs). LNPs have the merit to be the first proposal to solve the

degeneracy issue of the NDP. However, they are not suited for the study at hand, since computations become

infeasible when there are more than two groups and in addition it forces the proportion of species, i.e. the

weights, to be the same across groups.

Other proposals are available in the literature, exploiting hidden hierarchical Dirichlet process (HHDP)

constructions for mixture models describe in Chapter 3. However, in addition to having a different focus, the

theoretical results in Chapter 3 as well the proposed algorithm are not suited for the scenario we are considering,

since they rely on the conjugacy and the finite dimensional approximations of the DP. See also Soriano and Ma

(2019), Christensen and Ma (2020) and Beraha et al. (2021) for stimulating contributions to this literature. Note

that, even if for practical reason we restrict ourselves to the case of composition of PYPs, the methodological

arguments together with the algorithms developed in the present work can be easily adapted to a more general

class of priors that arise from the composition of different Gibbs type priors, due to product form of their

exchangeable partition probability function (EPPF).

4.3 Hidden hierarchical Pitman-Yor process

After having addressed the limitations of the HPYP and NPYP for the scopes at hand, we introduce a novel

class of priors, called hidden hierarchical Pitman–Yor process (HHPYP), arising from composition of PYPs that

overcomes the above mentioned issues. In particular, this construction is obtained combining the HPYP with the

NPYP, as explained in Section 4.3.1, and allows for ties in the population distributions, without suffering from
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the aforementioned degeneracy issue of the NPYP, thus making homogeneity testing of sub-groups effective,

while simultaneously performing species sampling tasks borrowing information across populations.

4.3.1 Definition and basic properties

The HHPYP is obtained by taking a NPYP with discrete base measure distributed according to a PYP. This

hierarchical construction, combined with the NDP, allows different populations Pj and Pk, j 6= k, to possibly

share the same atoms, so that a tie in two observations in these groups does not imply Pj = Pk with probability

1.

In formulae, we say that (P1, . . . , PJ) ∼ hhpyp(α, γ, σ, θ, σ0, θ0;H) if

(P1, . . . , PJ) ∼ npyp(α, γ, σ, θ;P ∗0 )

P ∗0 ∼ pyp(σ0, θ0;H).
(4.6)

For now on we assume that the common probability on the sample space H is non-atomic and for notational

simplicity we just write (P1, . . . , PJ) ∼ hhpyp. Furthermore, we assume the hyperparameters to be fixed, but in

practice we can set a prior on them and all the results holds given the hyperparameters and it is straightforward

to adapt the Gibbs sampler in Section 4.4 as for the usual species sampling under PYP prior in the exchangeable

case.

It follows from (4.5) that we can alternatively characterize the Pj ’s to be i.i.d. sampled from

Q ∼ pyp(α, γ;pyp(σ, θ;P ∗0 )), given P ∗0 , which admits the representation

Q =
∑
k≥1

ω∗kδP∗k , (4.7)

where the weights (ω∗k)k ∼ gem(α; γ) are independent from the distribution atoms. The unique underlying

distributions (P ∗k )k≥1 follow an infinite dimensional HPYP, that is

P ∗k | P ∗0
iid∼ pyp(θ, σ;P ∗0 ) (k ≥ 1), P ∗0 ∼ pyp(θ0, σ0;H). (4.8)

The discreteness of Q allows to cluster the distributions. For instance, pr(Pj = Pk) = 1−α
γ+1 ∈ (0, 1), as for

the NPYP. However, thanks to the discreteness of the common random base measure P ∗0 the unique random

distributions P ∗k ’s are now dependent and share the same countable set of atoms allowing to share species across

populations which is essential to overcome the aforementioned degeneracy issue.

In order to better understand the model, the role of the hyperparameters and the borrowing of strength we

can derive the moments of the random probability measures (P1, . . . , PJ) ∼ hhpyp evaluated at an arbitrary

measurable set A of the sample space X. All the proofs are available in the Appendix. The expected value is

E[Pj(A)] = H(A), as usual in species sampling processes, while the variance can be derived leveraging results

on hierarchical models (Camerlenghi et al., 2019) and has the form

Var[Pj(A)] =
H(A)[1−H(A)]

θ0 + 1

[
(1− σ0) + (θ0 + σ0)

1− σ
θ + 1

]
. (4.9)

We can also derive the expression for the correlation between Pj and Pk, j 6= k, which does not depend on
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the specific set A, and thus it is often interpreted as a global measure of dependence between the random

probabilities in Bayesian nonparametrics. It holds

Cor[Pj(A), Pj′(A)] =
1− α
γ + 1

+
γ + α

γ + 1

1− σ0

(1− σ0) + (θ0 + σ0)
1− σ
θ + 1

. (4.10)

It is interesting to note the role played by the parameters α and γ, with the correlation decreasing as α → 1

or γ → ∞: this is indeed consistent with the fact that in such scenarios we are decreasing the probabilities

of homogeneity between the two populations. However, contrary to the NPYP (and its special case NDP), if

j 6= k, Pj and Pk are not independent, but follow a bi-dimensional HPYP and we can control their dependence

via the hyperparameters (σ, θ, σ0, θ0) as for the well-known HPYP.

Finally, if the focus is predict future observations it is better to study the dependence directly in term of the

observable random variables as de Finetti suggested. If the data matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp,

then

Cor(Xj,i, Xk,l) = pr(Xj,i = Xk,l) (4.11)

=


[(

1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1

)
(1− α) +

1− σ0

θ0 + 1
(γ + α)

]
(γ + 1)−1 if j 6= k[

1− σ +
1− σ0

θ0 + 1
(θ + σ)

]
(θ + 1)−1 if j = k.

(4.12)

Note that a priori correlation between observations, i.e. the probability that the observations belong to the same

specie, arising from the same population is larger than the one between observations from different populations,

which is an appealing feature from a modeling perspective. The fact that correlation between two observations

coincides with the probability that they are equal is a very general result for species sampling models, both in

the exchangeable and partially exchangeable cases. See the proof in the Appendix for further insights.

This hierarchical representations of general dependent species sampling processes points out that the de-

pendence is controlled by the ties of the observations and the random partitions they induce. Thus, in order

to understand the model and develop sampling schemes, we now study the random partitions structures of the

distributions and populations induced by the ties.

A priori, the discreteness of Q induces a random partition Ψ(J) of [J ] = {1, . . . , J} and thus a clustering of

the distributions P1, . . . , PJ . More precisely, if (P1, . . . , PJ) ∼ hhpyp the probability law of Ψ(J) is characterized

by the following EPPF, arising from the PYP,

φ
(J)
R (m1, . . . ,mR;α, γ) =

∏R−1
r=1 (γ + r α)

(γ + 1)
(J−1)

R∏
r=1

(1− α)
(mr−1)

, (4.13)

where x(J) = x(x + 1) · · · (x + J − 1) is the Jth ascending factorial, R is the random number of blocks of the

partition of [J ] and mr is the cardinality of the rth block in order of arrival of the unique Pj . Equation (4.13)

immediately follows after recognizing that the underlying distributions P ∗1 , . . . , P
∗
R are almost surely different

under the HHPYP, although they can share the same atoms.

Denoting with S = (S1, . . . , SJ) the cluster membership indicator vector of the J populations in the Chinese
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restaurant process (CRP), the following Pölya urn scheme characterizes the distribution of S = (S1, . . . , SJ):

pr
(
Sj+1 = s | S−(j+)

)
=


m−(j+)
r −α

m
(−j+)
· +j

if s = S
∗−(j+)
r

γ+αR−(j+)

m
(−j+)
· +j

if s = “new”,
(4.14)

where we use the · symbol to indicate a summation over an index set, (j+) = (j + 1, . . . , J) is the set of

future populations not assigned to any restaurant yet, and a−(b) denotes the quantity a without considering the

elements in b. We call (S∗r : r = 1, . . . , R) the unique values of the restaurant assignment vector S.

In addition, the discreteness of the Pj ’s induces a random partition of the observations X within and across

populations. Calling D the overall number of unique values (number of species) in X and nj = (nj,d : d =

1, . . . , D) the vector of cardinalities of the species observed in population j, j = 1, . . . , J , the above mentioned

partition structure of X is characterized by the pEPPF Π
(n)
D (n1, . . . ,nJ). In order to have a tractable form

for it, in addition to the population assignment vector S, we also make use of a further data augmentation,

which corresponds to the usual table augmentation of the Chinese restaurant franchise (CRF) (see Teh (2006);

Teh and Jordan (2010)). More precisely, exploiting that culinary metaphor, we introduce the variables Tj,i,

j = 1, . . . , J , i = 1, . . . , Ji, representing the table at which observation i in population j sits and denote

T = {Tj,i : j = 1, . . . , J, i = 1, . . . , Ij}. Furthermore, we call qr,t,d the number of customers in restaurant r

sitting at table t eating dish d. Marginalizing out the previous latent variables we obtain the following form for

the pEPPF.

Theorem 4. If X is drawn from (P1, . . . , PJ) ∼ hhpyp(α, γ, σ, θ, σ0, θ0;H), then the random partition structure

induced by the samples is characterized by the following pEPPF

Π
(n)
D (n1, . . . ,nJ) =

∑
φ

(J)
R (m1, . . . ,mR;α, γ)Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0), (4.15)

where the sum runs over all partitions of [J ], φ
(J)
R as in (4.13), and Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0) is the

pEPPF associated to an R-dimensional hpyp(σ, θ, σ0, θ0;H).

Exploiting the aforementioned variable augmentation based on T and S, and calling X∗1 , . . . , X
∗
D the unique

values in the sample X, it follows from Bayes Theorem that the following urn scheme easily allows to sample

from (4.6) in two steps:

(1) Assign the population to the different restaurant recursive from equation (4.14).

(2) Given the assignment of the populations to the restaurants via S, sample the table assignments T and

the observations values X recursively adapting the CRF (Teh, 2006) from

pr(Xj,i = x, Tj,i = t | S,X−(j+i+),T−(j+i+)) =

=



θ0 +D−(j+i+)σ0

θ0 + l
−(j+i+)
·,·

θ + l
−(j+i+)
r,· σ

θ + q
−(j+i+)
r,·,·

if x = “new” and t = “new”

ω
−(j+i+)
d

θ0+l
−(j+i+)
·,·

θ+l
−(j+i+)
r,· σ

θ+q
−(j+i+)
r,·,·

if x = X∗d
−(j+i+) and t = “new”

q
−(j+i+)
r,t,d − σ

θ + q
−(j+i+)
r,·,·

if x = X∗d
−(j+i+) and t = T

∗−(j+i+)
r,d,l ,

where (j + i+) = {(jl) : l ≥ i} ∪ {(kl) : k ≥ j} is the index set associated to the future random variables not
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sampled yet, and T ∗r,d,l denotes the value of the lth table in restaurant r serving dish d. Finally, `r,d represents

the number of tables in restaurant r serving dish d. If we are interested not just in the clustering structure,

but also on the specific value of the observations, we can sample the “new” values of the observations from the

non-atomic base distribution H.

Notice that, contrary to the usual CRF characterizing the HPYP, a restaurant is not identified by a unique

population, but different populations can be assigned to the same restaurant, thus sharing tables. On the other

hand, if two populations are assigned to two different restaurants, they will not share any table. Since this urn

scheme naturally extends the well-known CRF metaphor, with the additional property that a restaurant can

be composed by more than one group, we call such a Pölya urn scheme hidden Chinese restaurant franchise

(HCRF). Populations are clustered together when assigned to the same restaurant. In testing the homogeneity

among different groups, one can then compute the posterior probability that two populations belong to the

same cluster as discussed in the next section.

4.3.2 Population homogeneity testing

One of the main goals of the present work is to introduce a valuable model that, among usual inferential species

sampling tasks, is able to assess which populations are homogeneous. Since the clustering is probabilistic, the

key quantity of interest is the posterior probability of co-clustering for each couple of distributions Pj , Pk, j 6= k,

namely pr(Pj = Pk | X). These probabilities can be interpreted in terms of posterior evidence of homogeneity

between the distributions Pj and Pk. Considering the case of J = 2 populations for ease of interpretation, and

denoting n1 and n2 the vectors of the counts of the overall distinct D values in each of the two populations,

the pEPPF characterizing the law of X can be written as

Π
(n)
D (n1,n2) =

1− α
γ + 1

Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) +

α+ γ

γ + 1
Φ

(n)
D (n1,n2;σ, θ, σ0, θ0), (4.16)

with Φ
(n)
D as in Theorem 4. As expected by the model specification (4.6), the pEPPF (4.16) can be seen as

a convex combination of the probability laws of the random partitions induced by different HPYPs, the first

composed by a single population with n1 + n2 vector of multiplicity, while the second formed by two distinct

populations having multiplicity vectors n1 and n2 respectively. From (4.16) one can easily derive the posterior

probability to degenerate to the exchangeable case, that is of the event {P1 = P2}.

Proposition 6. If J = 2 and X is sampled from (P1, P2) ∼ hhpyp, then the posterior probability of degeneracy

is

pr(P1 = P2 |X) =
(1− α)Φ

(n)
D (n1 + n2;σ, θ, σ0, θ0)

(1− α)Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) + (α+ γ) Φ

(n)
D (n1,n2;σ, θ, σ0, θ0)

.

Notice that the HHPYP overcomes the degeneracy issue of the NDP allowing for the presence of shared

species across populations, without implying to degenerate to exchangeability.

The above mentioned task is strictly related with hypothesis testing procedures. Indeed, assessing whether

P1 = P2, can be rephrased as a test where

H0 : S1 = S2 vs. H1 : S1 6= S2. (4.17)
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H0 and H1 specify two different models for the data matrix X. The corresponding Bayes factor is then readily

available and has the form

B01 =
p(X | H0)

p(X | H1)
=

Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0)

Φ
(n)
D (n1,n2;σ, θ, σ0, θ0)

.

For J > 2, the co-clustering posterior probabilities for each couple (j, k) can be easily computed via the

marginal Gibbs sampler described in Section 4.4. It will be sufficient to count how many times out of the B

Gibbs updates Sj = Sk to get an MCMC estimate of pr(Pj = Pk | X). Moreover, the testing procedure (4.17)

can be straightforwardly extended to the generic null hypothesis

H0 : Sj1 = Sk1 , . . . , SjC = SkC , for some {j1, . . . jC}, {k1, . . . kC} ⊆ [J ],

with complementary alternative hypothesis H1, with corresponding Bayes factor following from the specification

of the summation in (4.16) to the cases specified by the null hypothesis and the alternative.

4.3.3 Inference on the number of species

Consistently with the above, let D be the overall random number of species (dishes) in the sample X of size

n =
∑J
j=1 Ij , and define Dr the random number of species among the qr,·,· observations in the rth cluster of

populations (restaurant). Call R the number of heterogeneous populations among the J populations. To keep

the notation lighter, we suppress the dependence on n, J and qr,·,·. The probabilistic behavior of D and R

both on finite samples and when the overall numbers of observations n and populations J diverge is of utmost

importance to deeper understand key properties of the proposed species sampling model.

First, note that (Tj,i | Sj = r, P ∗r )
iid∼ P ∗r , with P ∗r

iid∼ pyp(σ, θ,H), where H is a non atomic probability

measure, so that, if we call Lr the number of distinct values in Tr = (Tj,i : Sj = r), r = 1, . . . , R, these quantities

are independent across restaurants.

We also denote by D0,` the random number of distinct values between ` exchangeable values generated from

P ∗0 . Notice that the distribution of R, Lr and D0,` can be derived via marginalization from the EPPF induced

by a PYP with non-atomic base measure. More precisely,

p(R) =
1

R!

∑
m∈FR(J)

(
J

m1, . . . ,mR

)
φ

(J)
R (m1, . . . ,mR;α, γ)

=

∏R−1
r=1 (γ + r α)

(γ + 1)
(J−1)

C (J,R;α)

αR
,

(4.18)

where FR(J) = {(m1, . . . ,mR) : mr ≥ 1,
∑R
r=1mR = J}. Here C (n, k;σ) represents the generalized factorial

coefficient defined by (σt)
(n)

=
∑n
k=1 C (n, k;σ)(t)k and computable as C (n, k;σ) =

1

k!

∑k
j=0(−1)j

(
k
j

)
(−σj)(n)

with the proviso C (0, 0;σ) = 1 and C (n, 0;σ) = 1 for any n > 0 and C (n, k;σ) = 0 for any k > n. For an

exhaustive review of the generalized factorial coefficients see Charalambides (2002).

Marginalizing out the corresponding EPPF we can also obtain:

p(D0,`) =

∏D0,`−1
d=1 (θ0 + d σ0)

(θ0 + 1)
(`−1)

C (`,D0,`;σ0)

σ
D0,`

0

, p(Lr) =

∏Lr−1
`=1 (θ + ` σ)

(θ0 + 1)
(`−1)

C (qr,·,·, Lr);σ)

σLr
.
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In the next Theorem we derive probability distribution of the overall number of species.

Theorem 5. If the data matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp, then

p(D) =
∑

B∈ρ(J)

φ
(J)
R (m1, . . . ,mR;α, γ)

n∑
L=D

pr(D0,L = D) pr

 J∑
j=1

Lr = L


=

∑
B∈ρ(J)

∏R−1
r=1 (γ + r α)

(γ + 1)
(J−1)

R∏
r=1

(1− α)
(mr−1)

×
n∑

L=D

∏D−1
d=1 (θ0 + d σ0)

(θ0 + 1)
(`−1)

C (`,D;σ0)

σD0

∏L−1
`=1 (θ + ` σ)

(θ0 + 1)
(`−1)

C (qr,·,·, L;σ)

σL
,

where ρ(J) is the space of the partitions of [J ].

The distribution of the overall number of species D in Theorem 5 is quite involved. However, from such

analytical formula we can derive a simple algorithm to sample from it after a variables augmentation.

From the composition structure points out in Theorem 5 we can also study the asymptotic behavior of the

number of species as the sample size n diverges, which boils down to a simple analytical form. From now on, for

an arbitrary function f(n), we write Yn � f(n) if the limit of Yn/f(n) as n diverges is almost surely a positive

and finite random variable.

Theorem 6. If the data matrix X is drawn from (P1, . . . , PJ) ∼ hhpyp and D is the overall number of distinct

species in J populations of sample sizes I1 = . . . = IJ = I = n/J . Then

D � nσσ0

as n→∞.

Notice that the HHPYP can be used also to discover the number of heterogeneous subpopulations R as the

number of populations J grows. From (4.18) we have

R � Jα,

as j →∞. That is the number of heterogeneous subpopulations follows a polynomial growth under model (4.6).

4.4 Marginal Gibbs sampler and predictive inference

Posterior inference can be efficiently performed thanks to the marginal Gibbs sampler described in the following

section. The full conditionals for the augmented variables Sj and Tj have indeed a nice ratio expression, which

is recovered exploiting Bayes theorem and the fact that, with such variable augmentation, the pEPPF admits a

product form that simplifies between the numerator and the denominator. This results allow for interpretable

and computationally tractable inference for all quantities of interest. These include the posterior distribution

of the tables T and, more importantly, the posterior distribution of the vector of cluster assignments S and the

predictive distribution of future observations. Such quantities can be used to perform population homogeneity
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testing, and, for instance, to estimate the number of new species that are expected to be observed in an additional

sample of m = (m1, . . . ,mJ) observations.

4.4.1 Gibbs sampler

The proposed Gibbs sampler follows by extending the marginal Gibbs sampler for NDP mixture models in

Zuanetti et al. (2018) to the species sampling framework presented in the present work. The main idea is that,

after having set an initial configuration for the augmented variables S and T , at each iteration one first updates

the table assessment Tji for each individual, and then updates the population cluster membership indicators Sj ,

j = 1, . . . , J , via a Metropolis-Hastings within Gibbs step. Due to the fact that Tj must be coherent with Sj , the

update of Sj is done jointly with an update of Tj . The proposal distribution of the Metropolis step is such that

it is easy to sample from and allows a fast evaluation of the acceptance probability. Performing homogeneity

testing will then be immediate, as it will be sufficient to count the fraction of times two populations are clustered

together out of the total number of iterations. In particular, the Gibbs sampler to perform posterior inference

on the latent variables S and T is reported below.

(0) At t = 0 start from an initial configuration S and T .

(1) At iteration t ≥ 1

(1.a) With Xji = X∗d sample latent variables Tji, for i = 1, . . . , Ij and j = 1, . . . , J from

pr(Tji = t | T−(ji),X,S) ∝


q
−(ji)
r,t,d − σ if t = T

∗−(ji)
r,d,l

ω
−(ji)
d

`
−(ji)
·,· +θ0

(θ + `
−(ji)
r,· σ) if t = “new”,

(4.19)

where ω
−(ji)
d = `

−(ji)
·,d − σ0 if `

−(ji)
·,d > 0 otherwise ω

−(ji)
d = 1.

(1.b) When updating Sj , we will have to update the Tj . This is done via the following efficient Metropolis-

Hastings within Gibbs step. Call Y = (Sj ,Tj) the vector of the current values for the jth population cluster

assignment and the table assignments in there, the proposed new values Y ′ = (S′j ,Tj
′) are sampled by the

proposal distribution q(· | ·), which is defined hierarchically exploiting the results for the importance sampling

density in (Maceachern et al., 1999):

q(Y ′ | Y ) = p(S′j | S−j)
Ij∏
i=1

p(T ′ji | T−j ,T
′−(ji+)
j ,X

−(ji+)
j , Xji, S

′
j) (4.20)

where (ji+) = {(jl) : l ≥ i} is the index set associated to the future random variables not yet sampled.

Moreover, p(S′j | S−j) is as in (4.14) with (j+) replaced by (j) and p(T ′ji | T−j ,T
′−(ji+)
j ,X

−(ji+)
j , Xji, S

′
j) can

be computed as in (4.19).

The proposed state Y ′ is accepted with probability min(1, A′), where A′ =
p(Y ′|T−j ,S−j ,X)q(Y |Y ′)
p(Y |T−j ,S−j ,X)q(Y ′|Y ) . The full

conditional of Y can be expressed as

p(Sj ,Tj |X,T−j ,S−j) =
p(Sj ,Tj ,Xj |X−j ,S−j ,T−j)

p(Xj |X−j ,T−j ,S−j)
∝

∝ p(Sj | S−j)p(Tj ,Xj |X−j ,T−j ,S−j , Sj),
(4.21)
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so that

A′ =
p(T ′j ,Xj |X−j ,T−j ,S−j , S′j)

∏IJ
i=1 p(Tji |X−(ji+), XjiT−j ,T

−(ji+)
j ,S−j , Sj)

p(Tj ,Xj |X−j ,T−j ,S−j , Sj)
∏IJ
i=1 p(T

′
ji |X−(ji+), XjiT−j ,T

′−(ji+)
j ,S−j , S′j)

,

where the conditional distribution for (Tj ,Xj) has the form p(Tj ,Xj | X−j ,T−j ,S) =
∏Ij
i=1 p(Tji, Xji |

X−(ji+),T−(ji+),S). Thus,

A′ =

Ij∏
i=1

p(Xji |X−(ji+),T−j ,T
′−(ji+)
j , T ′ji,S−j , S

′
j)

p(Xji |X−(ji+),T−j ,T
−(ji+)
j , Tji,S−j , Sj)

,

where

p(Xji = x |X−(ji+),T−(ji+), Tji = t,S) =


1 if t = T ∗r,d,l and x = X

∗−(ji+)
d ,

`
−(ji+)
·,d −σ0

θ0+`
−(ji+)
·,·

if t = “new” and x = X
∗−(ji+)
d ,

θ0+D−(ji+)σ0

θ0+l
−(ji+)
·,·

if t = “new” and x = “new”.

(4.22)

4.4.2 Predictive distribution

Consider now the case where we want to make inference about an additional sample of I“new” = (I“new”
1 , . . . , I“new”

J )

new observations, where mj is the number of new observations in population j, for j = 1, . . . , J . Le us denote

Xnew = {Xnew
j,i : j = 1, . . . , J, i = 1, . . . , I“new”

j } the values of such new observations and T new = {T new
j,i : j =

1, . . . , J, i = 1, . . . , I“new”
j } the latent tables allocations in the HCRF metaphor.

The following urn scheme allows obtain sample (Xnew,T new) exploiting the output of the Gibbs sam-

pler described in the previous section, since the sample can be obtained sequentially, exploiting the fact that

p(Xnew,T new | S,T ,X) =
∏J
j=1

∏mj
i=1 p(X

new
j,i , T

new
j,i | S,T ,X,Xnew−(j+i+),T new−(j+i+)), where pr(Xnew

j,i =

x, T new
j,i = t | S,T ,X,Xnew−(j+i+),T new−(j+i+)) =

=



θ0 +D−(j+i+)σ0

θ0 + l
−(j+i+)
·,·

θ + l
−(j+i+)
r,· σ

θ + q
−(j+i+)
r,·,·

if x = “new” and t = “new”

`
−(j+i+)
·,d −σ0

θ0+l
−(j+i+)
·,·

θ+l
−(j+i+)
r,· σ

θ+q
−(j+i+)
r,·,·

if x = X∗d
−(j+i+) and t = “new”

q
−(j+i+)
r,t,d − σ

θ + q
−(j+i+)
r,·,·

if x = X∗d
−(j+i+) and t = T

∗−(j+i+)
r,d,l ,

being (j + i+) = {(jl) : l ≥ i} ∪ {(kl) : k ≥ j} the index set associated to the future random variables not yet

sampled.

Thus, for each configuration (S,T ) generated in the Gibbs sampler presented in Section 4.4.1, one can obtain

a sample from p(Xnew,T new | S,T ,X), so that, after the burn-in period, samples from p(Xnew,T new |X) are

obtained.
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Appendix C

C.1. Proof of (4.9) and (4.10)

Proof. Note that Pj
d
= P ∗1 .

E[Pj(A)] = E[P ∗1 (A)] = H(A) since P ∗1 is a species sampling model

Var[Pj(A)] = Var[P ∗1 (A)]

Furthermore, we know that Var[P ∗0 (A)] = H(A)[1−H(A)]
1− σ0

θ0 + 1
and

Var[P ∗1 (A)] =
H(A)[1−H(A)]

θ0 + 1

[
(1− σ0) + (θ0 + σ0)

1− σ
θ + 1

]
, see Camerlenghi et al. (2019).

Moreover E[P ∗1 (A)P ∗2 (A)] = E[E[P ∗1 (A) | P ∗0 ]E[P ∗2 (A) | P ∗0 ]] = E[P ∗0 (A)2] and

pr(Pj = Pj′) =
1− α
γ + 1

for j 6= j′. Thus,

E[Pj(A)Pj′(A)] = E[P1(A)P2(A) | P1 = P2]pr(P1 = P2) + E[P1(A)P2(A) | P1 6= P2]pr(P1 6= P2) =

=
1− α
γ + 1

E[P ∗1 (A)2] +
γ + α

γ + 1
E[P ∗1 (A)P ∗2 (A)] =

1− α
γ + 1

E[P ∗1 (A)2] +
γ + α

γ + 1
E[P ∗0 (A)2].

From it we derive

Cov[Pj(A), Pj′(A)] = E[Pj(A)Pj′(A)]−H(A)2 =
1− α
γ + 1

Var[P ∗1 (A)2] +
γ + α

γ + 1
Var[P ∗0 (A)2]

and

Cor[Pj(A), Pj′(A)] =
Cov[Pj(A), Pj′(A)]

Var[P ∗1 (A)]
=

1− α
γ + 1

+
γ + α

γ + 1

Var[P ∗0 (A)]

Var[P ∗1 (A)]
=

=
1− α
γ + 1

+
γ + α

γ + 1

1− σ0

(1− σ0) + (θ0 + σ0)
1− σ
θ + 1

=

1− α+
(α+ γ)(−1 + σ0)(1 + θ)

−1 + (−1 + σ0)θ − θ0 + σ(σ0 + θ0)

1 + γ

C.2. Proof of (4.11)

Proof. Note that Xj,i
d
= X∗l . Thus,

Cov(Xj,i, Xj′,i′) = E[Cov(Xj,i = Xj′,i′ | 1(Xj,i = Xj′,i′))]pr(Xj,i = Xj′,i′) + 0 = pr(Xj,i = Xj′,i′)Var(X∗l )

Therefore Cor(Xj,i, Xj′,i′) = pr(Xj,i = Xj′,i′), where

pr(Xj,i′ = Xj,i) = pr(Xj,i′ = Xj,i | Tj,i = Tj,i′)pr(Tj,i = Tj,i′) + pr(Tj,i 6= Tj,i′)pr(Xj,i′ = Xj,i | Tj,i 6= Tj,i′) =

=
1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1
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and if j 6= j′

pr(Xj,i′ = Xj,i) = pr(Xj,i = Xj′,i′ | Pj = Pj′)pr(Pj = Pj′) + pr(Xj,i = Xj′,i′ | Pj 6= Pj′)pr(Pj 6= Pj′) =

=

{[
1− σ
θ + 1

+
1− σ0

θ0 + 1

θ + σ

θ + 1

]
(1− α) +

1− σ0

θ0 + 1
(γ + α)

}
(γ + 1)−1

C.3. Proof of Theorem 4

Proof. In order to prove Theorem 4 first note that

Lemma 3. The random partition structure induced by the samples X drawn from (P1, . . . , PJ) ∼ hhpyp given

a particular partition of distributions Ψ(J) = {B1, . . . , BR} is characterized by the pEPPF

Π
(n)
D

(
n1, . . . ,nJ | Ψ(J) = {B1, . . . , BR}

)
= Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0) , (4.23)

where Φ
(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0) is the pEPPF associated to a R-dimensional hpyp(σ, σ0, θ, θ0;H).

Indeed,

Π
(n)
D

(
n1, . . . ,nJ | Ψ(J) = {B1, . . . , BR}

)
=

= E
[ ∫

XD∗

D∏
d=1

P
n1,d

1 (dxd) . . . P
nJ,d
J (dxd)

∣∣ Ψ(J) = {B1, . . . , BR}
]

=

= E
[ ∫

XD∗

D∏
d=1

P ∗1
q1,·,d(dxd) . . . P

∗
R
qr,·,d(dxd)

]
= Φ

(n)
D (n∗1, . . . ,n

∗
R;σ, θ, σ0, θ0),

where XD∗ = XD \ {x : xi = xj for some i 6= j} and (P ∗1 , . . . , P
∗
R) ∼ hpyp(σ, σ0, θ, θ0;H). Moreover, note

that the R unique values between (P1, . . . , PJ) are not necessary the first (P ∗1 , . . . , P
∗
R) but since (P ∗k )k≥1 are

exchangeable the third equality holds.

Therefore, applying Lemma 3

Π
(n)
D (n1, . . . ,nJ) =

∑
pr(Ψ(J) = {B1, . . . , BD})Π(n)

D (n1, . . . ,nJ | Ψ(J) = {B1, . . . , BD}) =

=
∑

φ
(J)
R (m1, . . . ,mR;α, γ)Φ

(n)
D (q1,·,·, . . . , qR,·,·;σ, θ, σ0, θ0)

C.4. Proof Proposition 6

Proof. In order to derive the posterior probability of degeneracy we rewrite the marginal likelihood as

p(X) = Π
(n)
D (n1,n2)

D∏
d=1

H(dX∗d ),
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where {X∗1 , . . . ,X∗D} are the D unique values between X and Π
(n)
D (n1,n2) is the pEPPF associated to the

proposed model 4.16, that is

Π
(n)
D (n1,n2) = pr(P1 = P2)Φ

(n)
D (n1 + n2) + pr(P1 6= P2)Φ

(n)
D (n1,n2;σ, θ, σ0, θ0),

Finally we prove the proposition by applying Bayes theorem

pr(P1 = P2 |X) =
pr(P1 = P2)p(X | P1 = P2)

p(X)

=
(1− α)Φ

(n)
D (n1 + n2;σ, θ, σ0, θ0)

(1− α)Φ
(n)
D (n1 + n2;σ, θ, σ0, θ0) + (α+ γ) Φ

(n)
D (n1,n2;σ, θ, σ0, θ0)

.

C.5. Proof of Theorem 5

Proof. Note that applying Lemma 3 and Theorem 6 in (Camerlenghi et al., 2019) we have that

pr(Dn = D | Ψ(J) = {B1, . . . , BR}) =

n∑
L=D

pr(D0,L = D) pr

 J∑
j=1

Lr,qr,·,· = L

 .

Then marginalizing out the population partition Ψ(J) we have

pr(Dn = D) =
∑

B∈ρ(J)

φ
(J)
R (m1, . . . ,mR;α, γ)

n∑
L=D

pr(D0,L = D) pr

 J∑
j=1

Lr,qr,·,· = L

 .

C.6. Proof of Theorem 6

Proof. Let T (n)
d
=
∑R
r=1 Lr,qr,·,· ≤ Dn, representing the number of tables in the franchise. The conditional

independence arising from the hierarchical specification of the model (4.6) entails that Dn = D0,T (n) almost

surely. Moreover, by the asymptotic of the number of species in the exchangeable case under a Pitman–Yor

prior we have that for each mr = mr(Ψ
(J)) ∈ {0, . . . , J}:

D0,I

Iσ0

a.s.−→ C0,
Lr,mrI
Iσ

a.s.−→ Crm
σ
r ,

as I →∞, where C0 and Cr’s are positive and finite random variables. Since T (n) =
∑R
r Lr,mrI

T (n)

Iσ
a.s.−→

R∑
r=1

Crm
σ
r = η(Ψ(J)),
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where η = η(Ψ(J)) is a positive finite random variable. Thus,

D0,T (n)

D0,ηIσ
=
T (n)σ0

(ηIσ)σ0

D0,T (n)/T (n)σ0

D0,ηIσ/(ηIσ)σ0

a.s.−→ 1.

entailing

Dn

Iσσ0
=
D0,T (n)

D0,ηIσ

D0,ηIσ

(Iσ)σ0

a.s.−→ C0,

as I →∞.



Chapter 5

Clustering consistency with

Dirichlet process mixtures

5.1 Introduction

Bayesian nonparametric methods have experienced a huge development in the last two decades, often standing

out for their flexibility and coherent probabilistic foundations; see the monographs by Müller et al. (2018) and

Ghosal and Van Der Vaart (2017) for recent stimulating accounts. The cornerstone of Bayesian nonparametrics

is the model based on the Dirichlet process (Ferguson, 1973), which can be expressed as Xi | P̃
iid∼ P̃ and

P̃ ∼ DP(α,Q0), where α > 0 is the concentration parameter and Q0 is the baseline distribution over the sample

space (X,X). The success of the Dirichlet process in actual implementations of the Bayesian approach to

nonparametric problems is mostly due to its mathematical tractability, which is highlighted by conjugacy, and

flexibility, which is assessed in terms of its large topological support.

Since P̃ is almost surely discrete, if one wishes to model continuous data one may convolve it with a density

kernel k parametrized by a latent variable θ that is drawn from a Dirichlet process. This yields the popular

Dirichlet process mixture (Lo, 1984), which exhibits appealing asymptotic properties in the context of density

estimation: in several relevant cases, the posterior distribution concentrates at the true data-generating density

at the minimax-optimal rate, up to a logarithmic factor, as the sample size increases (Ghosal et al., 1999; Ghosal

and Van der Vaart, 2007). Such a model and many of its variants are widely used across scientific areas, thanks

also to the availability of a wide variety of efficient computational methods to perform inference, see for instance

Escobar and West (1995, 1998); Maceachern and Müller (1998); Neal (2000); Blei and Jordan (2006).

Thanks to the discreteness of the Dirichlet process, the latent parameters θi’s exhibit ties with positive

probability. Hence, the Dirichlet process mixture model is also routinely used to perform clustering since it

partitions observations into groups based on whether their corresponding latent parameters θi coincide or not.

The ubiquitous use of Dirichlet process mixtures for clustering motivates the interest in the asymptotic behaviour

of the posterior distribution of the underlying partition, and in particular in the inferred number of clusters (i.e.

subpopulations), as the number of observations increases. Nguyen (2013) showed posterior consistency of the

mixing distribution P̃ under general conditions. However, this does not imply consistency for the number of

73
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clusters, due to the use of the Wasserstein distance. Indeed, Miller and Harrison (2013) proved that Dirichlet

process mixtures are not consistent for the number of components when data are generated from a mixture

with a single standard normal component. See also Miller and Harrison (2014) for extensions. These results,

however, are derived under the assumption that the concentration parameter α is known and fixed. This is

crucial because the clustering behaviour of Dirichlet process mixtures is governed by the choice of α. Indeed,

under the Dirichlet process mixture model, the prior probability of observing ties is a function solely of α, since

pr(θi = θj) = 1/(α+ 1).

In order to have a more flexible distribution on the clustering of the data, in most implementations of the

Dirichlet process mixture a prior π for α is specified, leading to a mixing measure that is itself a mixture in the

sense of Antoniak (1974). Here we show that introducing such a prior has a major impact on the asymptotic

behaviour of the number of clusters, as Dirichlet process mixtures can be consistent for the number of clusters.

We provide consistency results under fairly general conditions on π and for a moderately large class of kernels

k, including uniform and truncated normal distributions. Following Miller and Harrison (2013), we focus on

data-generating mixtures with a single component. However, our results extend to the more general case of

finite mixtures with multiple components, when a suitable separation assumption between the elements of the

mixtures is fulfilled; moreover, we prove consistency for cases where using a non-random α yields inconsistency,

thus suggesting that a hyperprior may be beneficial even beyond the cases considered here. We stress that the

framework we study is arguably closer to the way Dirichlet process mixtures are used in practice, compared to

holding α fixed.

We note that studying an asymptotic regime where the data-generating truth is a mixture with a finite and

fixed number of components entails some degree of model misspecification. Indeed, Dirichlet process mixtures

are nonparametric models with an infinite number of components or, in other words, a number of clusters

growing with the size of the dataset. Thus, our results can be interpreted as a form of robustness of the prior:

if the number of components of the data-generating is finite, it can still be recovered by adapting appropriately

the value of α, despite the prior is concentrated on mixtures with infinitely many components. In particular we

show that, under all the data generation mechanisms we consider in the next sections, the posterior distribution

of α converges to a point mass at 0 at a specific rate, which is crucial to ensure consistency. See Section 5.6 for

more discussion and some related literature.

5.2 Dirichlet process mixtures and random partitions

Henceforth, we will be focusing on Dirichlet process mixture models with a prior on the concentration parameter,

namely

Xi|θi
ind∼ k(·|θi), θi | P̃

iid∼ P̃ , P̃ | α ∼ DP(α,Q0), α ∼ π, (5.1)

where k( · |θ) is some density function, for any θ. Since we are interested in the distribution of the number

of clusters, it is reasonable to rewrite (5.1) in terms of the distribution on partitions, related to the so-called

Chinese restaurant process. For every pair of natural numbers (n, s) such that s ≤ n, denote with τs(n) the set

of partitions of {1, . . . , n} into s non empty subsets. Conditionally on α, the sequence (θi)i≥1 induces a prior
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distribution on the space of partitions of N that, for any n ≥ 2, is characterized by

pr(A | α) =
αs

α(n)

s∏
j=1

(aj − 1)!, (A = {A1, . . . , As} ∈ τs(n), s ≤ n), (5.2)

where α(n) = α · · · (α + n − 1) is the ascending factorial and aj = |Aj | stands for the cardinality of set Aj .

Conditionally on the partition A, the probability distributions of the data X1:n = (X1, . . . , Xn) and of the

cluster-specific parameters θ̂1:s = (θ̂1, . . . , θ̂s) are

pr(X1:n | θ̂1:s, A) =

s∏
j=1

∏
i∈Aj

k(Xi | θ̂j), pr(θ̂1:s | A,α) = pr(θ̂1:s | A) =

s∏
j=1

q0(θ̂j). (5.3)

The number of clusters in a sample of size n is denoted by Kn and under (5.1) it has the following prior

distribution

pr(Kn = s) =

∫ ∑
A∈τs(n)

pr(A | α)π(dα).

Since we are concerned with the large sample properties of pr(Kn = s | X1:n), we focus on the joint distribution

of the vector (X1:n,Kn) which, for any x1:n = (x1, . . . , xn) ∈ Xn, is given by

pr(X1:n = x1:n,Kn = s) =
∑

A∈τs(n)

pr(A)

s∏
j=1

m(xAj ), (5.4)

where pr(A) =
∫

pr(A|α)π(dα) and m(xAj ) =
∫ ∏

i∈Aj k(xi | θ)q0(θ)dθ is the marginal likelihood for the subset

of observations identified by Aj , given that they are clustered together. We study the asymptotic behaviour of

the posterior induced by model (5.1) when the observations are independent and identically distributed samples

from a finite mixture, that is we assume the following data generation mechanism

Xi
iid∼ P =

t∑
j=1

pjRj , (i = 1, 2, . . . ), (5.5)

where, for any t ≥ 1, the Rj ’s are probability measures on X and the pj ’s are probability weights, i.e. pj ∈ (0, 1)

for any j and
∑
j pj = 1. We will let P (n) and P (∞) be the product probability measures induced on Xn and

X∞ respectively, and denote (5.5) by X1:∞ ∼ P (∞). In the following, we will consider each Rj to be dominated

by a suitable measure and denote the resulting density by fj(·) := f(· | θ∗j ). We say that model in (5.1) is

well-specified for P if k(·|θ) = f(· | θ), that is if the data-generating distribution is a mixture of kernels belonging

to the same parametric family that defines (5.1).

We say that posterior consistency for the number of clusters holds if pr(Kn = t | X1:n) → 1 as n → ∞ in

P (∞)-probability. Note that the conditional probability pr(Kn = t | X1:n) is defined with respect to the model

in (5.1), while the convergence in probability is with respect to the data-generating process X1:∞ ∼ P (∞). Since

pr(Kn = t | X1:n) lies between 0 and 1, convergence in P (∞)-probability is equivalent to convergence in L1 with

respect to P (∞) and thus we could equivalently define consistency in terms of L1 convergence.
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5.3 Main consistency results

The investigation of the asymptotics of the number of clusters Kn, induced by the model in (5.1), will rely on

the following assumptions on the prior π of α

A1. Absolute continuity : π is absolutely continuous with respect to the Lebesgue measure and its density is

still denoted as π;

A2. Polynomial behaviour around the origin: ∃ ε, δ, β such that ∀α ∈ (0, ε) it holds 1
δα

β ≤ π(α) ≤ δαβ ;

A3. Subfactorial moments: ∃D, ν > 0 such that
∫
αsπ(α) dα < Dρ−sΓ(ν + s + 1) for every s ≥ 1 and for

sufficiently large ρ.

The first two assumptions are sufficient to study the posterior moments of α, conditional to the number of groups

Kn, as will be clarified in Proposition 9. Assumption A3, instead, will be useful specifically for consistency

purposes: the minimum value of ρ required to achieve consistency depends on the problem at hand, that is on

the specific choice of P in (5.5) and k in (5.1), as will be stated in Theorems 7 and 8. Assumptions A1-A3 are

satisfied by common families of distributions, as displayed in the next lemma.

Lemma 4. The following choices of π satisfy assumptions A1, A2 and A3

(1) Any distribution with bounded support that satisfies assumptions A1 and A2, such as the uniform distri-

bution over (0, c), with c > 0;

(2) The Generalized Gamma distribution with density proportional to αd−1e−(αa )
p

, provided that p > 1;

(3) The Gamma distribution with shape ν and rate ρ, provided that ρ is large enough.

Notice that the rate parameter of the Gamma distribution corresponds to the quantity ρ in assumption A3.

5.3.1 Consistency on specific examples

We first focus on the case of uniform kernel and t = 1, that is

f = Unif(θ∗ − c, θ∗ + c), k(·|θ) = Unif(θ − c, θ + c), q0 = Unif(θ∗ − c, θ∗ + c), (5.6)

where θ∗ ∈ R is a fixed location parameter and c > 0. In this setting the marginal distribution is available and

with a suitable application of Hölder’s inequality it is possible to prove consistency for specific values of ρ.

Theorem 7. Consider f , k and q0 as in (5.6), and assume π satisfies assumptions A1, A2 and A3 with ρ ≥ 38.

Then

pr(Kn = 1 | X1:n)→ 1

as n→∞ in P (∞)-probability.

As a second example, we move beyond bounded kernels and consider a simple, yet interesting, case. Indeed,

we specialize model (5.1) to Gaussian kernels and assume constant data, equal to some fixed real number θ∗.

More precisely, set

f = δθ∗ , k(·|θ) = N(θ, 1), q0 = N(0, 1). (5.7)
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Unlike the other examples in this chapter, this case is not well-specified, as k(·|θ) 6= f(·) for every θ. This makes

the definition of true or data-generating number of clusters more delicate. Nonetheless, being an example with

constant data, one would hope the posterior of the number of clusters to concentrate on one cluster. However,

even in such a limiting case, Miller and Harrison (2013) show that under (5.1) with fixed concentration parameter

pr(Kn = 1|X1:n) does not converge to 1 as n diverges.

Once again, placing a prior on α impacts the posterior asymptotic behaviour of Kn and one achieves

consistency, as detailed in the next theorem.

Theorem 8. Consider (f, k, q0) as in (5.7) and assume π satisfies assumptions A1–A2 and A3 with ρ > 16.

Then,

pr(Kn = 1 | X1:n)→ 1

P (∞)-almost surely as n→∞.

5.3.2 General consistency result for location families with bounded

support

For our general result we consider kernels of the form

k(x | θ) = g(x− θ) (x ∈ R), (5.8)

where c > 0 and θ ∈ R is a location parameter. Here g is a density function on the real line satisfying the

following assumptions

B1. g is strictly positive on some interval [a, b] and 0 elsewhere;

B2. g is differentiable with bounded derivative in (a, b);

B3. The base measure Q0 is absolutely continuous with respect to the Lebesgue measure, and its density q0

is bounded.

The above assumptions essentially require that the kernel is a location-family distribution with positive density

on a bounded support. The class is fairly general and it includes, as relevant special cases, the uniform

distribution and the truncated Gaussian distribution, among others.

When considering a mixture of the kernels in (5.8) as data generation mechanism satisfying B1–B3, with

true parameters θ∗ = (θ∗1 , . . . , θ
∗
t ), we say that θ∗ is completely separated if |θ∗j − θ∗k| > b− a, with j 6= k. Under

such somewhat restrictive assumptions we have the following general consistency result.

Theorem 9. Suppose k and q0 satisfy assumptions B1-B3. If π satisfies assumptions A1–A3 then, for every

P as in (5.5) with t ∈ {1, 2, . . . }, fj = k(·|θ∗j ), θ∗ completely separated and θ∗j belonging to the interior support

of Q0 for every j, we have

pr(Kn = t | X1:n)→ 1

as n→∞ in P (∞)-probability. If π(α) = δα∗(α), with α∗ > 0, then as n→∞

lim sup pr(Kn = t | X1:n) < 1.
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Therefore, a prior on the concentration parameter yields consistency when the true data generating distribu-

tion meets a condition of complete separability, that informally amounts to having cluster locations sufficiently

distinct: notice that this condition is automatically satisfied when t = 1. We additionally show that, even under

such an assumption, the Dirichlet process mixture model with fixed α still fails to be consistent at the number

of clusters. Hence, a prior on α is crucial to overcome issues with learning the true number of clusters as the

sample size increases.

Moreover, the posterior mass on a smaller number of clusters than the truth vanishes, as explained in the next

proposition. The latter holds under mild assumptions on model (5.1), satisfied either by bounded distributions

as above or for instance by the Gaussian kernel.

Proposition 7. Let P be as in (5.5), with true parameters θ∗1 , . . . , θ
∗
t . Let θ∗j belong to the support of Q0 for

any j and let k satisfy assumptions B1−B3 above or H1−H3 in the Appendix. Then

pr(Kn < t | X1:n)→ 0 (5.9)

in P (∞)-probability as n→∞.

Finally, note that the previous consistency results are related to another property of general interest, namely

the posterior distribution of the concentration parameter converges to a point mass at 0 in the asymptotic regime

we are considering.

Proposition 8. Under any of the settings in Theorems 7, 8, and 9, we have

π(α | X1:n)→ δ0

weakly, as n→∞, in P (∞)-probability.

Hence, under the conditions that ensure consistency for the number of clusters, the posterior distribution

of the concentration parameter converges to a degenerate distribution at 0. This is not surprising since the

Dirichlet process mixture model is concentrated on mixtures with infinitely many components and one way to

achieve consistency is to let α tend to zero, which entails that the prior is swamped by the data.

5.4 Methodology and proof technique

Our proofs of consistency in Theorems 9, 7 and 8 rely on the following lemma.

Lemma 5. The convergence pr(Kn = t | X1:n)→ 1 as n→∞ in P (∞)-probability holds true if and only if one

has, in P (∞)-probability, ∑
s6=t

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
→ 0 as n→∞ . (5.10)

Working with the ratios of conditional probabilities in (5.10) is beneficial, as the marginal distribution of

X1:n involved in the definition of pr(Kn = t | X1:n) cancels. Also, it is convenient to write such ratios of
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probabilities as follows: first, recall from (5.2) and (5.4) that

pr(X1:n = x1:n,Kn = s) =

∫
αs

α(n)
π(α)dα

∑
A∈τs(n)

s∏
j=1

(aj − 1)!m(xAj )

for any s ≥ 1, which implies that

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
=

∫ αs

α(n)
π(α) dα∫ αt

α(n)
π(α) dα︸ ︷︷ ︸

C(n,t,s)

∑
A∈τs(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∑

B∈τt(n)

∏t
j=1(bj − 1)!

∏t
j=1m(XBj )︸ ︷︷ ︸

R(n,t,s)

. (5.11)

The decomposition of (5.11) into the factors C(n, t, s) and R(n, t, s) is useful to understand the role of the prior

distribution over α, and to compare our results with the one of Miller and Harrison (2013, 2014). In particular,

the term R(n, t, s) does not depend on α and, hence, on the choice of π. This is indeed the key term studied

in Miller and Harrison (2014), where it is shown that for t < s, under some assumptions, lim inf R(n, t, s) > 0

as n → ∞ in P (∞)-probability. On the contrary, C(n, t, s) incorporates information about α and its prior

distribution. In the fixed α case, which can be thought of as having a degenerate prior π = δα for some α > 0,

the term C(n, t, s) boils down to αs−t which is constant with respect to n. This is sufficient for Miller and

Harrison (2014) to deduce lack of consistency for fixed α, which means that

lim sup pr(Kn = t | X1:n, α) < 1 (5.12)

as n→∞ in P (∞)-probability for any α > 0.

However, once a non-degenerate prior π is employed, C(n, t, s) depends on n and, as we show in the next

section, converges to 0 as n → ∞ under mild assumptions on π. Thus, lim inf R(n, t, s) > 0 is not anymore

sufficient to establish whether consistency holds true or not. Instead, one needs to compare the rate at which

C(n, t, s) converges to 0 with the behaviour of R(n, t, s), as done in the following sections. Note that further lower

bounds for R(n, t, s) for general values of s are given in Miller and Harrison (2014); Yang et al. (2019). However,

once combined with C(n, t, s), these are too loose to deduce either consistency or lack thereof. Therefore, we

need to exploit different techniques to determine the rate of R(n, t, s). Since pr(Kn = t | X1:n) =
∫

pr(Kn = t |
X1:n, α)π(α | X1:n) dα, by (5.12) we deduce lim sup pr(Kn = t | X1:n, α) < 1 for any α > 0. This, however, does

not imply that lim sup pr(Kn = t | X1:n) < 1, as one first needs to ascertain whether limit and integral can be

interchanged. The main reason is that, in the asymptotic regime we are considering, the posterior distribution

π(α | X1:n) concentrates around 0 as n→∞, see Proposition 8 above.

5.5 Asymptotic behaviour of the concentration parameter

We are now concerned with studying C(n, t, s) in (5.11). We prove that for priors π satisfying assumptions

A1–A3 C(n, t, s) converges to 0 at a logarithmic rate in n. The asymptotic behaviour of C(n, t, s) is not specific

to some kernel k and data generating distribution f and thus can be useful to prove consistency, or lack thereof,

for arbitrary Dirichlet process mixture models with random concentration parameter. In order to facilitate the
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intuition, the term C(n, t, s) can be interpreted as a moment of α, conditional on the n observations being

clustered in t groups. Indeed, under (5.1) it holds

π(α | Kn = t) ∝ αt

α(n)
π(α)

and thus C(n, t, t + s) =
∫
αsπ(α | Kn = t) dα = E(αs | Kn = t). Next proposition shows its asymptotic

behaviour.

Proposition 9. Suppose π satisfies A1 and A2. Then there exist F,G > 0 such that for every 0 < s ≤ n− t

F
γ[t+ s+ β, ε log(n)]

[log(n) + 1]s
≤ C(n, t, t+ s) ≤ Gs

εs
E(αt+s−1)

γ[t+ s+ β, ε log(n)]

log[n/(1 + ε)]s
,

where γ(x, y) is the lower incomplete Gamma function and E(αs) =
∫
αsπ(α) dα.

Thus, for a fixed s that does not depend on n, C(n, t, t + s) decreases logarithmically as a function of n

since γ(x, y) ≤ γ(x) for any x and y. Thus, by looking at the ratios in (5.11), the addition of a prior favours a

smaller number of clusters.

The consistency results of the previous section are established by combining Proposition 9 with suitable

upper bounds on R(n, t, s) to prove the convergence in (5.10), so that

E

[
n−t∑
s=1

pr(Kn = t+ s | X1:n)

pr(Kn = t | X1:n)

]
≤ 1

log n

n−t∑
s=1

h(s),

where h(s) is a function that depends on the specific kernel k and is such that lim sup
∑n
s=1 h(s) <∞ for any s.

Indeed, instead of proving directly convergence in probability of (5.10), we show the stronger L1 convergence.

In this way we will avoid the study of the specific partition at hand. The following lemma shows how the

problem simplifies in this case, when t = 1.

Lemma 6. Assume (X1, X2, . . . ) is an exchangeable sequence. Then for any n

E

 ∑
A∈τs(n)

∏s
j=1(aj − 1)!

(n− 1)!

∏s
j=1m(XAj )

m(X1:n)

 =
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

E

[∏s
j=1m(XAa

j
)

m(X1:n)

]
,

where the sum runs over Fs(n) = {a ∈ {1, . . . , n}s :
∑s
j=1 aj = n} and Aa is an arbitrary partition in τs(n)

such that |Aaj | = aj for j = 1, . . . , s.

5.6 Discussion

There are many avenues to extend our results and some of the tools we introduced here may prove useful to

accomplish such tasks. First of all, the setting with a general number of components for the data-generating truth

could be addressed, beyond the separability assumption given in Theorem 9. The main issue is that R(n, t, s)

in (5.11) is harder to study, since it becomes the ratio of sums over the space of partitions: in particular Lemma

6 is not easy to generalize and this explains why the case t = 1 is simpler to address. Different mixture kernels

present similar difficulties, since they require to study R(n, t, s) for each specific case. Summarizing, the impact
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of the prior is fully understood, by Proposition 9 above, but a more general positive result would require finer

bounds on the likelihood component than the ones available here and in the literature.

Another interesting question worth studying is whether consistency can also be attained by estimating the

concentration parameter through maximization of the marginal likelihood, in an empirical Bayes fashion (Liu,

1996; McAuliffe et al., 2006). In this thesis we preferred to focus on the fully Bayesian approach because it is

arguably the one most commonly employed by practitioners using Dirichlet process mixtures. Moreover, the

empirical Bayes estimator of α may not be well defined on (0,∞) because the marginal likelihood can easily

have its maximum at both 0 or infinity, thus raising theoretical and practical issues.

It is also worth noticing that our consistency results require the kernel to be perfectly specified: even a small

amount of misspecification will probably lead the number of clusters to diverge. Indeed, recovering the true

density will require an increasing number of components. This phenomenon has been formally studied in Cai

et al. (2020) for finite mixture models, when a prior on the number of components is placed.

We note that the asymptotic analysis of the posterior distribution of the number of clusters for Dirichlet

process mixtures has recently attracted considerable theoretical interest (Yang et al., 2019; Ohn and Lin, 2020;

Cai et al., 2020), and has motivated various methodological developments (Miller and Harrison, 2018; Zeng

and Duan, 2020). Ohn and Lin (2020) showed that, if α is sent deterministically to 0 at appropriate rates

as n → ∞, the posterior distribution of the number of clusters concentrates on finite values when data are

generated from a finite mixture, which is a necessary condition for consistency. Such results are similar in spirit

to ours, although we consider the substantially different setting where α is learned through a prior, which is

arguably more natural in a Bayesian framework. Finally, our results also provide an answer, at least partially,

to the question of Yang et al. (2019): “there exists a natural way to correct the problem instead of truncating

the number of clusters?”, by showing that placing a prior on α can be sufficient to recover consistency.
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Appendix D

D.1. Proof of Lemma 5

Proof. By construction it holds

pr(Kn = t | X1:n) = 1−
∑
s 6=t

pr(Kn = s | X1:n).

Dividing by the left-hand side and rearranging we get

pr(Kn = t | X1:n) =

1 +
∑
s6=t

pr(Kn = s | X1:n)

pr(Kn = 1 | X1:n)

−1

.

The result follows immediately.

D.2. Proof of Proposition 9

By assumptions A1 and A2 there exist ε, δ, β > 0 such that

1

δ2

∫ ε
0
αt+s+β

α(n) dα∫ ε
0
αt+β

α(n) dα
≤
∫ ε

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≤ δ2

∫ ε
0
αt+s+β

α(n) dα∫ ε
0
αt+β

α(n) dα
. (5.13)

Notice that, if assumption A2 holds for ε′ ≥ 1, it holds automatically for ε < 1. Thus, without loss of generality,

we will assume ε < 1. Thus, the main object of interest will be

En(αs) =

∫ ε

0

αspn(α)dα,

where En denotes the expected value with respect to the probability distribution with density

pn(α) =
fn(α)∫ ε

0
fn(x) dx

, fn(x) =
xt+β

x(n)
1(0,ε)(x), (5.14)

where 1A stands for the indicator function of set A. We now provide some lemmas that will be useful to prove

Proposition 1.

Lemma 7. Let f and g be two pdf’s on R such that g(x)/f(x) is non-decreasing in x. Then
∫
h(x)f(x)dx ≤∫

h(x)g(x)dx for any non-decreasing h : R→ R.

Proof. Let X ∼ f and Y ∼ g. Since g(x)/f(x) is non-decreasing we have g(x0)f(x1) ≤ g(x1)f(x0) for any

x0 < x1. Thus we have

FY (x1)f(x1) =

∫ x1

−∞
g(x0)f(x1)dx0 ≤

∫ x1

−∞
g(x1)f(x0)dx0 = FX(x1)g(x1)

and

[1− FX(x0)]g(x0) =

∫ ∞
x0

g(x0)f(x1)dx1 ≤
∫ ∞
x0

g(x1)f(x0)dx1 = [1− FY (x0)]f(x0).
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It follows

FY (x)

FX(x)
≤ g(x)

f(x)
≤ 1− FY (x)

1− FX(x)
,

for every x ∈ R, which implies

FY (x)

1− FY (x)
≤ FX(x)

1− FX(x)
.

Thus, Y stochastically dominates X, i.e. the corresponding cdf’s satisfy FY (x) ≤ FX(x) for every x ∈ R,

which implies that E[h(X)] ≤ E[h(Y )] for any non-decreasing h.

Lemma 8. Under assumptions A1 and A2, for any n− t > s ≥ 1 it holds

γ{t+ s+ β, ε[log(n) + 1]}
δ2γ{t+ β, ε[log(n) + 1]}

[log(n) + 1]−s ≤
∫ ε

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≤ δ2γ[t+ s+ β, ε log(n)]

γ[t+ β, ε log(n)]
log[n/(1 + ε)]−s,

where γ(x, y) is the lower incomplete Gamma function and ε, δ, β > 0 are such that for every α ∈ (0, ε) it holds

1
δα

β ≤ π(α) ≤ δαβ.

Proof. By (5.13) it suffices to find suitable bounds of En(αs). For the upper inequality we apply Lemma 7

with f = pn, g(α) ∝ (cn)−ααt+β−1
1(α∈[0,ε]) with c = (1 + ε)−1 and h(α) = αs. To verify that g(α)/pn(α) is

non-decreasing for α ∈ (0, ε] we compute

d

dα
log

[
g(α)

pn(α)

]
=

d

dα

[
−α log(cn) +

n−1∑
i=1

log(α+ i)

]
= − log

(
n

1 + ε

)
+

n−1∑
i=1

1

α+ i

≥− log

(
n+ ε

1 + ε

)
+

n−1∑
i=1

1

i+ ε
≥ 0,

where the last inequality follows by a standard property of the harmonic series:
∫ k

1
1
x+ε dx <

∑k−1
i=1

1
i+ε for any

k > 1. Thus, since h(α) = αs is non-decreasing in α it follows by Lemma 7 that

En(αs) ≤
∫ ε

0
αt+s+β−1(cn)−αdα∫ ε

0
αt+β−1(cn)−α dα

=
log(cn)−s

∫ ε log(cn)

0
zt+s+β−1e−zdz∫ ε log(cn)

0
zt+β−1e−z dz

=

=
log(cn)−sγ[t+ s+ β, ε log(cn)]

γ[t+ β, ε log(cn)]
.

For the lower bound we apply Lemma 7 with f(α) ∝ (en)−ααt+β−1
1(α∈[0,ε]), g(α) = pn(α) and h(α) = αs. To

verify that pn(α)/f(α) is non-decreasing for α ∈ (0, ε] we compute

d

dα
log

[
pn(α)

f(α)

]
=

d

dα

[
−
n−1∑
i=1

log(α+ i) + α[log(n) + 1]

]
= −

n−1∑
i=1

1

α+ i
+ log(n) + 1

≥−
n−1∑
i=1

1

i
+ log(n) + 1 ≥ 0,

where the last inequality follows by a standard property of the harmonic series:
∑k
i=1

1
i ≤ log(k) + 1 for any
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k ≥ 1. Thus, since h(α) = αs is non-decreasing in α it follows by Lemma 7 that

En(αs) ≥
∫ ε

0
αt+s+β−1(en)−αdα∫ ε

0
αt+β−1(en)−α dα

=
log(en)−s

∫ ε log(en)

0
zt+s+β−1e−zdz∫ ε log(en)

0
zt+β−1e−z dz

=

=
log(en)−sγ[t+ s+ β, ε log(en)]

γ[t+ β, ε log(en)]
.

Combining the bounds with (5.13) we obtain the desired results.

Lemma 9. For any ε > 0, there exists M > 0 such that, for any n ≥ 1, it holds

M

∫ ε

0

αt

α(n)
π(α) dα ≥

∫ ∞
ε

αt

α(n)
π(α) dα .

Proof. Define p =
∫∞
ε
αtπ(α) dα∫ ε

2
0 αtπ(α) dα

. Then

∫ ε

0

αt

α(n)
π(α) dα−

∫ ∞
ε

αt

α(n)
π(α) dα =

∫ ε

0

αt

α(n)
π(α) dα−

∫ ε
2

0

p
αt

ε(n)
π(α) dα

≥
∫ ε

2

0

αt

α(n)
π(α) dα−

∫ ε
2

0

p
αt

ε(n)
π(α) dα.

Choose m such that
(
ε
2

)(m)
< ε(m)

p , which is always possible because
(
ε(m)

)−1 ( ε
2

)(m) → 0 as m→∞. Thus

∫ ε

0

αt

α(n)
π(α) dα ≥

∫ ∞
ε

αt

α(n)
π(α) dα, n ≥ m

and it suffices to set M = max [P, 1] with

P = max
1≤i≤m

[∫∞
ε

αt

α(i) π(α) dα∫ ε
0

αt

α(i) π(α) dα

]
.

of Proposition 9. We first prove the upper bound. We have

C(n, t, t+ s) ≤
∫∞

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
=

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
+

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα

∫∞
ε

αt+s

α(n) π(α) dα∫ ε
0
αt+s

α(n) π(α) dα
.

Moreover, it holds

∫∞
ε

αt+s

α(n) π(α) dα∫ ε
0
αt+s

α(n) π(α) dα
≤
∫∞
ε
αt+s−1π(α) dα∫ ε

0
αt+s−1π(α) dα

≤ δ
∫∞
ε
αt+s−1π(α) dα∫ ε

0
αt+s+β−1 dα

≤ δ E(αt+s−1)
t+ s+ β

εt+s+β
,

where the first inequality follows since α(n) ≥ ε(n) for α ∈ (ε,∞) and α(n) ≤ ε(n) for α ∈ (0, ε), while the second

one follows from assumption A2. Moreover, E stands for the expected value with respect to π. Thus from
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Lemma 8 it holds

C(n, t+ s, t) ≤
δ2
[
1 + E(αt+s−1) t+s+β

εt+s+β

]
γ[t+ s+ β, ε log(n)]

γ[t+ β, ε log(n)]
log[n/(1 + ε)]−s.

Then choose G = 4δ2

εt+βγ(t+β,ε log 2)
. For the lower bound, apply Lemma 8 and Lemma 9 to get

C(n, t, t+ s) ≥ 1

M + 1

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≥ 1

M + 1

γ{t+ s+ β, ε[log(n) + 1]}
δ2γ{t+ β, ε[log(n) + 1]}

[log(n) + 1]−s.

Then choose F = 1
(M+1)δ2γ(t+β) .

The following corollary of Proposition 1 will be useful.

Corollary 5. Suppose π satisfies assumptions A1 and A2. Then there exists G > 0 such that for any 0 < s < n

and n ≥ 4 it holds

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss

ε
E(αt+s−1) log[n/(1 + ε)]−1.

Proof. By Proposition 1 we have

C(n, t, t+ s) ≤ G(t+ s+ β)

εs
E(αs)

γ[t+ s+ β, ε log(n)]

log[n/(1 + ε)]s
.

Note that
γ[t+ s+ β, ε log(n)]

εs logs[n/(1 + ε)]
≤ Γ(t+ β + 1)

ε

{
log(n)

log[n/(1 + ε)]

}s−1

log[n/(1 + ε)]−1.

Moreover, since ε < 1, we have log[n/(1 + ε)] ≥ 1
2 log(n) for any n ≥ 4. Combining the inequalities above we

obtain the desired result.

D.3. Proof of Lemma 6

Proof. Consider R(n, 1, s) as in (5.11). Taking the expectation with respect to the data generating distribution

we have

E[R(n, 1, s)] =
∑

A∈τs(n)

∏s
j=1(aj − 1)!

(n− 1)!
E

[∏s
j=1m(XAj )

m(X1:n)

]

=
∑

a∈Fs(n)

(
n

a1 · · · aj

)∏s
j=1(aj − 1)!

s!(n− 1)!
E

[∏s
j=1m(XAa

j
)

m(X1:n)

]

=
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

E

[∏s
j=1m(XAa

j
)

m(X1:n)

]
.

D.4. Proof of Lemma 4

Proof. Assumptions A1 and A2 are immediately satisfied in all three cases discussed in the statement of the

lemma. We thus focus on proving that A3 is satisfied, considering each of the three cases separately. Suppose



5.6. APPENDIX D 86

first that the support of the density π is contained in [0, c] with c > 0. Then∫ ∞
0

αsπ(α) dα ≤ cs .

Thus in this case assumption A3 is satisfied for any ρ > 0 because cs < Dρ−sΓ(s+ 1) with D = max
s∈N

(cρ)s

Γ(s+1) for

any ρ > 0. Suppose now the prior is given by a Generalized Gamma distribution, so that∫ ∞
0

αsπ(α) dα =
p

adΓ
(
d
p

) ∫ ∞
0

αd+s−1e−(αa )
p

dα .

The condition p > 1 implies that, for every fixed ρ > 0 and a > 0, there exists k > 0 such that ρα ≤
(
α
a

)p
for

any α ≥ k. Thus

∫ ∞
0

αd+s−1e−(αa )
p

dα ≤
∫ k

0

αs+d−1e−(αa )
p

dα+

∫ ∞
k

αs+d−1e−ρα dα

≤ ks+d−1e−( ka )
p

+ ρ−d−sΓ(s+ d).

Also, ∫ ∞
0

αsπ(α) dα ≤ p

adΓ
(
d
p

)Γ(s+ d)

[
ks+d−1e−( ka )

p

Γ(s+ d)
+ ρ−d−s

]
≤

≤ Dρ−sΓ(s+ d),

with D = max
s∈N

p

adΓ( dp )

[
ks+d−1e

−( ka )
p
ρs

Γ(s+d) + ρ−d
]
, so that also in this case assumption A3 is satisfied for any ρ > 0.

Finally, in the case of Gamma distribution we get∫ ∞
0

αsπ(α) dα =
Γ(ν + s)

Γ(ν)
ρ−s

and assumption A3 holds with ρ high enough, as desired.

D.5. Proof of Theorem 9

Denote with f(x) =
∑t
j=1 pjk(x | θ∗j ) the density of the data generating P =

∑t
j=1 pjRj , with t ∈ N, pj ∈ (0, 1)

and
∑t
j=1 pj = 1. Since θ∗ = (θ∗1 , . . . , θ

∗
t ) is completed separated, each point x has non-null density for at most

one component of the mixture, i.e.

x ∈ [θ∗i + a, θ∗i + b] ⇒ f(x) = pik(x | θ∗i ) = pig(x− θ∗i ).

It means that it is possible to identify the component from which a precise observation has been sampled.

Therefore, if X1:n ∼ P (n), denote by nj the number of observations sampled from Rj , with
∑t
j=1 nj = n.

Finally, through a linear rescaling, without loss of generality we may assume [a, b] = [−c, c].
We rewrite the assumptions on g and Q0 as

T1. ∃m,M such that 0 < m ≤ g(x) ≤M <∞ for any x ∈ [−c, c];

T2. g is differentiable on (−c, c) and ∃R such that | g
′(x)
g(x) | ≤ R <∞ for any x ∈ (−c, c);
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T3. ∃U > 0 such that h(y) = q0(y) + q0(−y) ≤ U for any y ∈ [0, 2c];

T4. ∃L > 0 such that q0(θ) ≥ L for any θ in a neighborhood of θ∗j , for every j.

We start with a technical lemma.

Lemma 10. Let Ωn sequence of events and Zn be such that P (Ωn)→ 1 and

Zn1Ωn → 0

in P (∞)-probability as n→∞. Then Zn → 0 in P (∞)-probability as n→∞.

Proof. By assumption P (∞) (1ΩnZn > ε)→ 0 as n→∞. Thus, we have

P (∞) (Zn > ε) ≤ P (∞) [(Zn > ε) ∩ Ωn] + P (∞) (Ωcn)→ 0

as n→∞.

Consider the event

C(n) = [For any j = 1, . . . , t there exists i = 1, . . . , n such that Xi ∼ Rj ] = [nj > 0 for any j] .

Since θ∗ is completely separable, C(n) is measurable and P (n)(C(n)) → 1, as n → ∞. Thus by Lemma 10 it

suffices to study

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) =

∫ αs

α(n)
π(α) dα∫ αt

α(n)
π(α) dα

∑
A∈τs(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∑

B∈τt(n)

∏t
j=1(bj − 1)!

∏t
j=1m(XBj )

1C(n) . (5.15)

Since θ∗ is completely separated, for any x1:n ∈ C(n) it holds

∑
A∈τs(n)

s∏
j=1

(aj − 1)!

s∏
j=1

m(xAj ) = 0 for any s < t,

∑
B∈τt(n)

t∏
j=1

(bj − 1)!

t∏
j=1

m(xBj ) =

t∏
j=1

(nj − 1)!

t∏
j=1

m(xCj ),

(5.16)

where Cj contains the indices of all observations from the j-th component, that is

Cj =
{
i ∈ {1, . . . , n} : g(xi − θ∗j ) > 0

}
.

Thus Ci ∩ Cj = ∅ for any i 6= j and {1, . . . , n} =
⋃t
j=1 Cj . It immediately implies that

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) = 0

when s < t. Again by complete separability, A ∈ τs(n) yields positive marginal density only if each Ai regards
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one specific component, i.e. if

A ∈ τ̃s(n) = {A ∈ τs(n) : ∀ i = 1, . . . , s there exists j such that Ai ⊂ Cj} .

Therefore, A ∈ τ̃s(n) can be written as

A = A1 ∪A2 ∪ · · · ∪At,

where Aj is a partition over the nj elements from the j-th component, for every j. We will denote Aj =

(Aj1, . . . , A
j
sj ) with ajk = |Ajk|, so that

∑
A∈τ̃s(n)

s∏
j=1

(aj − 1)!

s∏
j=1

m(XAj ) =
∑
s

t∏
j=1

∑
Aj∈τsj (nj)

sj∏
k=1

(ajk − 1)!

sj∏
k=1

m(XAjk
),

where s =
{

(s1, . . . , st) : sj ≤ nj , ∀j, and
∑t
j=1 sj = s

}
. By the above and (5.16) we can rewrite (5.15) as

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) = C(n, t, s)

∑
A∈τ̃s(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∏t

j=1(nj − 1)!
∏t
j=1m(XCj )

1C(n)

= C(n, t, s)
∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1m(XAjk

)

m(ACj )
1C(n) .

(5.17)

for s > t. Moreover

m(ACj ) =

t∏
j=1

∫
R

∏
i∈Cj

k(Xi | θj)Q0(dθj) =

∫
R

∏
i∈Cj

g(Xi − θj)Q0(dθj)

and
sj∏
k=1

m(XAjk
) =

sj∏
k=1

∫
R

∏
i∈Ajk

k(Xi | θk)Q0(dθk) =

sj∏
k=1

∫
R

∏
i∈Ajk

g(Xi − θk)Q0(dθk).

We divide and multiply for

n∏
i=1

f(Xi) =

t∏
j=1

∏
i∈Cj

pjk(Xi | θ∗j ) =

t∏
j=1

sj∏
k=1

∏
i∈Ajk

pjk(Xi | θ∗j ),

so that we finally get

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1

∫
R
∏
i∈Ajk

g(Xi−θk)
pjg(Xi−θ∗j ) Q0(dθk)∫

R
∏
i∈Cj

g(Xi−θj)
pjg(Xi−θ∗j ) Q0(dθj)

1C(n) , for s > t. (5.18)

We start with the denominator: next lemma specifies the behaviour of the maximum for each group, where

Xj
(r) denotes the r-th order statistic of the group j.

Lemma 11. For any j = 1, . . . , t it holds

Y jnj = min
{

1, nj(log n)
1
2t [c+ θ∗j −X

j
(nj)

]
}
→ 1
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in P (∞)-probability as n→∞.

Proof. First of all, notice that nj →∞ P (∞)-almost surely, as n→∞. Then we have to prove that ∀ε > 0

pr
(
|1− Y jnj | > ε

)
→ 0

as nj → ∞, where pr is evaluated with respect to P (∞). Without loss of generality assume θ∗j = 0. Thus, by

definition we have

pr(1− Y jnj > ε) = pr
{
nj(log n)

1
2t [c−Xj

(n)] ≤ 1− ε
}

= pr

[
Xj

(n) ≥ c−
1− ε

nj(log n)
1
2t

]

= 1−

1−
∫ c

c− 1−ε

nj(logn)
1
2t

g(x) dx


n

.

Thus, by T1 we have that
∫ c
c− 1−ε

nj(logn)
1
2t

g(x) dx ≤ M(1−ε)
nj(logn)

1
2t

, so that

pr(1− Y jnj > ε) ≤ 1−

[
1− M(1− ε)

nj(log n)
1
2t

]n
= 1− e

− M(1−ε)

(logn)
1
2t

+nj o

(
1

nj(logn)
1
2t

)
→ 0,

by the Taylor expansion of the logarithmic function.

Lemma 12. For any j = 1, . . . , t it holds

∏
i∈Cj

g(xi − θ)
g(xi)

≥ e−R1[0, 1
nj

](|θj − θ∗j |)1[xj
(nj)
−c,xj

(1)
+c](θj − θ

∗
j ).

with R defined in T2.

Proof. Without loss of generality assume θ∗j = 0. Define p(x) := log g(x), with x ∈ [−c, c], so that p′(x) = g′(x)
g(x) .

By T2 and the Fundamental Theorem of Calculus

|p(y)− p(x)| =
∣∣∣∣∫ y

x

p′(t) dt

∣∣∣∣ ≤ ∫ y

x

∣∣∣∣g′(t)g(t)

∣∣∣∣dt ≤ R|y − x|, −c < x ≤ y < c.

Thus, we have
g(x− θ)
g(x)

= ep(x−θ)−p(x) = e−[p(x)−p(x−θ)] ≥ e−R|θ|, x ∈ [−c, c].

Finally, we get

∏
i∈Cj

g(xi − θj)
g(xi)

≥ e−Rnj |θj |1[xj
(nj)
−c,xj

(1)
+c](θj) ≥ e

−Rn|θj |1[0, 1
nj

](|θj |)1[xj
(nj)
−c,xj

(1)
+c](θj)

≥ e−R1[0, 1
nj

](|θj |)1[xj
(nj)
−c,xj

(1)
+c](θ).
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Lemma 13. For any j = 1, . . . , t there exists K > 0 and Nj ∈ N such that for all nj ≥ Nj it holds

∫
R

∏
i∈Cj

g(xi − θj)
g(xi − θ∗j )

Q0(θj) dθj ≥
K

1
t Y jnj

nj(log n)
1
2t

,

with Y jnj defined in Lemma 11.

Proof. Without loss of generality assume θ∗j = 0. Notice that, by T4, there exists Nj ∈ N such that q0(θ) ≥ L

for any θ ∈
[
− 1
Nj
, 0
]
. Thus, applying Lemma 12 and considering nj ≥ Nj , we get

∫
R

∏
i∈Cj

g(xi − θj)
g(xi)

q0(θj) dθj ≥ e−R
∫
R

1[0, 1
nj

](|θj |)1[xj
(nj)
−c,xj

(1)
+c](θj) q0(θj) dθj

≥ e−R
∫ 0

− 1
nj

1[xj
(nj)
≤θj+c] q0(θj) dθj ≥ Le−R min

[
1

nj
, c−Xj

(nj)

]
,

with L defined in T4. Thus, multiplying both the numerator and the denominator by nj(log n)
1
2t , with n ≥ N ,

we have ∫
R

∏
i∈Cj

g(xi − θj)
g(xi)

q0(θj) dθj ≥ 2Le−R min

[
1

nj
, c−Xj

(nj)

]

≥
K

1
t min

{
1, nj(log n)

1
2t [c−X(n)]

}
nj(log n)

1
2t

=
K

1
2tYn

nj(log n)
1
2t

,

with K = (2Le−R)t and Y jnj = min
{

1, nj(log n)
1
2t [c+−Xj

(nj)
]
}

.

Define the event

Ωn =
{

for any j = 1, . . . , t it holds: nj ≥ Nj , Y jnj ∈ [1/2, 1]
}
, (5.19)

such that P (n)(Ωn)→ 1 thanks to Lemma 11 and Lemma 13. Thus, an upper bound of (5.18) with Ωn in place

of C(n) is given by

T (n) :=
2t
√

log n

K

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

∏sj
k=1(ajk − 1)!

(nj − 1)!

sj∏
k=1

∫
R

∏
i∈Ajk

g(Xi − θk)

g(Xi − θ∗j )
Q0(dθk)1Ωn , (5.20)

for s > t. Now we apply the expected value with respect to the values of each group, as shown in the next

lemma.

Lemma 14. Under X1:∞ ∼ P (∞), we have

E

∫
R
sj

sj∏
k=1

∏
i∈Ajk

g(Xi − θk)

g(Xi − θ∗j )
Q0(θk) dθk

 ≤ (U
m

)sj sj∏
k=1

1

ajk + 1
,

with m and U defined in T1 and T3.
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Proof. Without loss of generality assume θ∗j = 0. Taking the expectation under P (∞) we have

E

∫
R
sj

sj∏
k=1

∏
i∈Ajk

g(Xi − θk)

g(Xi − θ∗j )
Q0(θk) dθk

 =

∫
Rs

∫
[−c,c]nj

sj∏
k=1

∏
i∈Ajk

g(xi − θk)q0(θk) dxi dθk, (5.21)

by Tonelli’s Theorem. By the change of variables z = x− θk, we have

∫ c

−c
g(x− θk)1[θk−c,θk+c](x) dx =

∫ c−θk

−c−θk
g(z)1[−c,c](z) dz.

If θk > 0, then

∫ c−θk

−c−θk
g(z)1[−c,c](z) dz = 1[0,2c](θk)

∫ c−θk

−c
g(z) dz

= 1[0,2c](θk)

(
1−

∫ c

c−θk
g(z) dz

)
≤ 1[0,2c](|θk|) (1−m|θk|) .

Similarly, if θk < 0 we get

∫ c−θk

−c−θk
g(z)1[−c,c](z) dz = 1[−2c,0](θk)

∫ c

−c−θk
g(z) dz

= 1[−2c,0](θk)

(
1−

∫ −c−θk
−c

g(z) dz

)
≤ 1[0,2c](|θk|) (1−m|θk|) .

Thus, we proved ∫ c

−c
g(x− θk)1[θk−c,θk+c](x) dx ≤ 1[0,2c](|θk|) (1−m|θk|) , k = 1, . . . , sj ,

that implies
sj∏
k=1

∏
i∈Ajk

∫ c

−c
g(x− θk)1[θk−c,θk+c](x) dx ≤

sj∏
k=1

1[0,2c](|θk|) (1−m|θk|) .

Considering h defined in T3, we have

∫
R

1[0,2c](|θk|) (1−m|θk|) q0(θk) dθk =

∫ 2c

0

(1−m|θk|)h(θk) dθk, k = 1, . . . , sj .

Directly from (5.21) we get

E

∫
R
sj

sj∏
k=1

∏
i∈Ajk

g(Xi − θk)

g(Xi − θ∗j )
Q0(θk) dθk

 =

∫
Rs

∫
[−c,c]n

sj∏
k=1

∏
i∈Ajk

g(xi − θk)q0(θk) dxi dθk

≤
sj∏
k=1

∫ 2c

0

(1−m|θk|)h(θk) dθj .

(5.22)
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With U as defined in T3, we have

∫ 2c

0

(1−my)a
j
kh(y) dy ≤ U

∫ 2c

0

(1−my)a
j
k dy.

Now consider the change of variables u = 1−my and compute

∫ 2c

0

(1−my)a
j
k dy =

1

m

∫ 1

1−2mc

ua
j
k du =

1− (1− 2mc)a
j
k+1

m(ajk + 1)
≤ 1

m(ajk + 1)
.

Finally, through (5.22), we have

E

∫
R
sj

sj∏
k=1

∏
i∈Ajk

g(Xi − θk)

g(Xi − θ∗j )
Q0(θk) dθk

 ≤ sj∏
k=1

∫ 2c

0

(1−m|θk|)h(θk) dθk

≤
(
U

m

)sj sj∏
k=1

1

ajk + 1
,

as desired.

D.6. Proof of Theorem 9

We have the next two technical lemmas.

Lemma 15. Let p∗ = minj pj ∈ (0, 1). It holds

∑
s

s!∏t
j=1 sj !

=
∑
s

(
s

s1, . . . , st

)
≤ (p∗)−s,

where s =
{

(s1, . . . , st) : sj ≤ nj and
∑t
j=1 sj = s

}
.

Proof. The result follows immediately from

∑
s

(
s

s1, . . . , st

)
≤ (p∗)−s

∑
s

(
s

s1, . . . , st

) t∏
j=1

p
sj
j ≤ (p∗)−s

∑
s∈R

(
s

s1, . . . , st

) t∏
j=1

p
sj
j ,

where R =
{

(s1, . . . , st) :
∑t
j=1 sj = s

}
, since the sum on the right-hand side is the sum of the probabilities

over all the possible values of a multinomial distribution with parameters (s, p1, . . . , pt).

Lemma 16. For any p > 1 and for any integers s ≥ 2 and n ≥ s it holds

∑
a∈Fs(n)

(
n∏s
j=1 aj

)p
< Cs−1

p ,

where the sum runs over Fs(n) = {a ∈ {1, . . . , n}s :
∑
ai = n} and Cp = 2pζ(p), with ζ(p) =

∑∞
a=1

1
ap <∞.

Proof. We prove the result by induction. Consider the base case s = 2. By the strict convexity of x 7→ xp for
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p > 1 we have

∑
a∈F2(n)

(
n

a1a2

)p
=

n−1∑
a=1

[
n

a(n− a)

]p
= 2p

n−1∑
a=1

(
1

2

1

a
+

1

2

1

n− a

)p
< 2p

n−1∑
a=1

1

ap
< Cp,

for any n ≥ 2. For the induction step, assume that for some s ≥ 3 we have

∑
a∈Fs−1(n)

(
n∏s−1
j=1 aj

)2

< Cs−2
p

for all n ≥ s− 1. Then

∑
a∈Fs(n)

(
n∏s
j=1 aj

)p
=

n−s+1∑
as=1

∑
(a1,...,as−1)∈Fs−1(n−as)

(
n∏s
j=1 aj

)p

=

n−s+1∑
as=1

[
n

(n− as)as

]p ∑
(a1,...,as−1)∈Fs−1(n−as)

(
n− as∏s−1
j=1 aj

)p

≤ Cs−2
p

n−s+1∑
as=1

[
n

(n− as)as

]p
< Cs−1

p

and thus the thesis follows by induction.

In the following we will drop the subscript in Cp when the value of p is clear from the context, thus denoting

C = Cp.

Lemma 17. Consider the setting of (5.1) with (f, k, q0) as in Theorem 9. Moreover, assume π(α) satisfies

assumptions A1, A2, and A3. Then, under X1:∞ ∼ P (∞) we have

E

[
1Ωn

n−1∑
s=1

pr(Kn = s+ 1 |X1:n)

pr(Kn = 1 |X1:n)

]
→ 0

as n→∞, with Ωn as in (5.19).

Proof. Applying Lemma 14 we can give an upper bound (5.20) as

E
[
T (n)

]
≤ 2t

√
log n

K

(
U

m

)s∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

(nj − 1)!
∏sj
k=1(ajk + 1)

≤ 2t
√

log n

K

(
U

m

)s∑
s

t∏
j=1

1

sj !

∑
aj∈Fsj (nj)

(
nj∏sj
k=1 a

j
k

)2

,

where the last inequality follows from Lemma 6. Moreover, from Lemma 16 we have

∑
aj∈Fsj (nj)

(
nj∏sj
k=1 a

j
k

)2

< Csj ,
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with constant C < 7. Thus

E
[
T (n)

]
≤ 2t

√
log n

K

(
UC

m

)s∑
s

t∏
j=1

1

sj !
. (5.23)

Moreover, from Corollary 5 and A3 we have

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss

ε
E(αt+s−) log[n/(1 + ε)]−1

≤ DGΓ(t+ β + 1)2ss

ε
ρ−(t+s−1)Γ(ν + t+ s) log[n/(1 + ε)]−1, n ≥ 4 .

(5.24)

By (5.23), combined with Lemma 15, and (5.24) we finally have

E

[
1Ωn

n−t∑
s=1

pr(Kn = s+ t|X1:n)

pr(Kn = t|X1:n)

]
=

n−t∑
s=1

C(n, t, t+ s)E[1ΩnR(n, t, t+ s)]

≤ 2tρ1−t(U/m)tDGΓ(t+ β + 1)
√

log n

Kε log[n/(1 + ε)]

n−1∑
s=1

s(2CUp∗/m)sρ−sΓ(ν + t+ s)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n→∞ ,

as n→∞, where finiteness follows by taking ρ sufficiently large.

of Theorem 9. First of all, assume π(·) satisfies A1−A3. By Lemma 17 it holds

1Ωn

n−1∑
s=1

pr(Kn = s+ 1 |X1:n)

pr(Kn = 1 |X1:n)
→ 0

in P (∞)–probability as n→∞. The desired result then follows from Lemma 10 with Zn =
∑n−1
s=1

pr(Kn=s+1 |X1:n)
pr(Kn=1 |X1:n)

and Ωn as in (5.19).

Assume instead π(α) = δα∗(α) with α∗ > 0. By (5.17) we have

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1m(XAjk

)

m(ACj )
.

Notice that, with n high enough, n1 > 1 almost surely. Then, denoting i ∈ C1, we consider the special case

s = (2, 1, . . . , 1), Aj =


{
i, ACj\i

}
j = 1

ACj j ≥ 2.

Thus we can write
p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗

∑
i∈C1

1

n1 − 1

m(Xi)m
(
XC1\i

)
m
(
XCj

) . (5.25)

By T1 we have

m
(
XCj

)
=

∫
R

∏
j∈C1

g(Xj − θ)q0(θ) dθ

≤M
∫
R

∏
j∈C1\i

g(Xj − θ)q0(θ) dθ = Mm
(
XC1\i

)
.
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Moreover, by T4 there exists ε > 0 such that

m(Xi) =

∫
R

g(Xi − θ)q0(θ)dθ ≥ m
∫ θ∗1+ε

θ∗1−ε
q0(θ)dθ ≥ 2mLε.

Therefore, (5.25) becomes

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ 2α∗mLε

M

∑
i∈C1

1

n1 − 1
=

2α∗mLε

M

n1

n1 − 1
.

Therefore

lim inf
∑
s6=t

p(Kn = s | X1:n)

p(Kn = t | X1:n)
≥ lim inf

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗mLε

M
> 0,

as desired.

D.7. Proof of Proposition 7

We adapt the proof of Theorem 2.1 in Cai et al. (2020). Denote by

Ψ = {k(· | θ) : θ ∈ Θ}

the family of kernels, dominated by a σ-finite measure µ and with common domain X, and let Gs be the set of

mixtures of exactly s elements in Ψ, that is

g ∈ Gs ⇔ g =

s∑
j=1

pjk(· | θj),

with pj > 0,
∑j
j=1 pj = 1 and θj 6= θk for any j 6= k. Therefore G =

⋃∞
s=1 Gs denotes the set of finite mixtures

of elements in Ψ. Finally, let F be a mapping from G such that

F (g) =

s∑
j=1

pjk(· | θj),

if g ∈ Gs. We will need the following technical definitions.

Definition 2 (µ-wide). A sequence of distributions (ψi)
∞
i=1 is µ-wide if for any closed set C such that µ(C) = 0

and any sequence of distributions (φi)
∞
i=1 such that the sequence of Prokhorov distances d(ψi, φi) −→ 0 as

i→∞, then

lim sup
i→∞

φi(C) = 0.

Definition 3 (degenerate limits). The family Ψ has degenerate limits if for any tight, µ-wide sequence (k(· |
θi))
∞
i=1, we have that (θi)

∞
i=1 is relatively compact.

Then we will make the following assumptions:

H1. The mapping θ → k(x | θ) is continuous for any x ∈ X and for any k ∈ Ψ;

H2. The mapping F (g) =
∫
k(· | θ)dg(θ) is a bijection;
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H3. The family Ψ has degenerate limits.

H2 guarantees that identifiability holds and it is a basic condition for clustering problems. H3 instead is

essentially a regularity condition. See Cai et al. (2020) for further discussion. Therefore, H1–H3 are mild

assumptions: for instance they can be proven to hold when Ψ is the family of multivariate Gaussian distributions

(Proposition 2.2 in Cai et al. (2020)). We first prove Proposition 7 under assumptions H1–H3.

D.7.1. Proof of Proposition 7 (case with assumptions H1–H3)

Proof. By assumption, the true generating distribution P belongs to Gt. Therefore, by H1 and the fact that

true parameters are supported by Q0, it is immediate to prove that P belongs to the Kullback-Leibler support

of the prior, denoted by Π, of model 5.1. By Schwartz Theorem, the posterior distribution is consistent at P ,

that is

Π(Uc | X1:n)→∞

as n → ∞ in P (∞)-probability, for any weak neighborhood U of P . Therefore, following Cai et al. (2020), we

want to show that there exists a weak neighborhood of P containing no mixture with at most t−1 components.

Assume (by contradiction) that there exists a sequence (Pi)
∞
i=1 such that Pi =

∑si
j=1 pj,ik(| θj,i), with si < t

(that is a sequence of finite mixture with less than t components from k) and Pi ⇒ P , where ⇒ denotes weak

convergence.

By mixture-identifiability, we have a sequence of mixing measures pi with at most s atoms such that F (pi) =

Pi.

(Case 1) there exists a compact set K̄ ⊂ Θ such that

pi(Θ \ K̄) −→ 0.

That is, the atoms of the sequence (pi) either are K̄ in or have weights converging to 0.

Rewrite each pi = pi,K̄ + pi,Θ\K̄ such that pi,K̄ is supported on K̄ and pi,Θ\K̄ is supported on Θ \ K̄.

Define the sequence of probability measures

p̂i,K̄ =
pi,K̄

pi,K̄(Θ)

for sufficiently large i such that the denominator is nonzero. Then,

F (p̂i,K̄)⇒ 0.

Since k is continuous and mixture-identifiable, the restriction of F to the domain P is continuous and invertible;

and since K̄ is compact, the elements of (p̂i,K̄) are contained in a compact set PK̄ ⊂ P by Prokhorov’s theorem.

Therefore F (PK̄) = FK̄ is also compact, and the map F restricted to the domain PK̄ is uniformly continuous

with a uniformly continuous inverse. Next since F (p̂i,K̄)⇒ P , the sequence F (p̂i,K̄) is Cauchy in FK̄ ; and since

F−1 is uniformly continuous on FK̄ , the sequence p̂i,K̄ must also be Cauchy in PK̄ . Since PK̄ is compact, p̂i,K̄

converges in PK̄ .

Lemma 4.1 in Cai et al. (2020) guarantees that the convergent limit pK̄ is also a mixing measure with at
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most t− 1 atoms; continuity of F implies that F (pK̄) = P , which is a contradiction, since by assumption P is

not representable as a finite mixture of k with less than t components.

(Case 2) for all compact sets K̄ ⊂ Θ, pi(Θ \ K̄) 6→ 0. Therefore there exists a sequence of parameters

(θi)
∞
i=1 that is not relatively compact such that lim supi→∞ pi({θi}) > 0. By assumption k is continuous,

mixture identifiable and has degenerate limits, the sequence (kθi) is either not tight or not µ-wide. If (kθi)

is not tight then Pi = F (pi) is not tight, and by Prokhorov’s theorem Pi cannot converge to a probability

measure, which contradicts Pi ⇒ P . If (ψθi) is not µ-wide then Pi = F (pi) is not µ-wide. Denote (φi) to be the

singular sequence associated with (Pi) and C to be the closed set such that lim supi→∞ φi(C) > 0, µ(C) = 0,

and limi d(φi, Pi) = 0 by definition µ-wide (where d denotes the Prokhorov distance characterizing the weak

convergence). Since P absolutely continuous with respect to µ, P (C) = 0. But Pi ⇒ P implies that φi ⇒ P ,

so lim supi→∞ φi(C) = P (C) = 0 by the Portmanteau theorem.

As regards the case satisfying assumptions B1 − B3, we start by proving weak consistency for densities in

the well-specified framework.

Proposition 10. Suppose observations X1:n are generated from P as in (5.5) with fj = g(· − θ∗j ). Let k(· |
θ) = g(· − θ) and q0 satisfy assumptions B1 − B3 in Theorem 9. Then the posterior distribution of model 5.1

is consistent for P under the weak topology, that is for any weak neighborhood U of P the sequence of posterior

distributions satisfies

Π(Uc | X1:n)→ 0, (5.26)

P (∞) − a.s. as n→∞.

Proof. We just need to prove that P is in the Kullback Leibler support of the prior, that is for any ε > 0 we

have pr(Kε(P )) > 0 under the model, where

Kε(P ) :=

{
(θj)

∞
j=1, (pj)

∞
j=1 :

∫ t∑
j=1

p∗jk(x | θ∗j ) log

[∑t
j=1 p

∗
jk(x | θ∗j )∑∞

j=1 pjk(x | θj)

]
dx < ε

}

The result follows by Schwartz theorem. We prove the case t = 1 and the general case follows very similarly.

Denote by [aj , bj ] = [a + θj , b + θj ] the support of k(· | θj). Similarly, the support of the data generating

density g(x− θ∗) is denoted by [a∗, b∗] = [a+ θ∗, b+ θ∗. Finally, let p =
∑∞
j=1 pjk(| θj).

Note that assumptions B1− B2 imply that 0 < m ≤ k(x | θ) ≤ M <∞ for any x in the support of k(| θ),
with suitable constants m and M . Fix ε > 0 and denote c = 1− exp(ε/4). Then, there exists δ > 0 such that

� |θ1 − θ∗| < δ and |θ2 − θ∗| < δ and {[a1, b1] ∪ [a′2, b
′
2]} ⊇ [a∗, b∗];

� p1 > 1− c and p2 > c/2;

� For any x ∈ S1 = [a1, b1] ∩ [a∗, b∗], log
[ g(x−θ∗)
p1g(x−θ1)

]
< ε/4. This is possible by choosing δ small enough by

assumption B2, since

log

[
g(x− θ∗)
p1g(x− θ1)

]
= − log(p1) + log

[
g(x− θ∗)
g(x− θ1)

]
< ε/4 + log

[
g(x− θ∗)
g(x− θ1)

]
.
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� Let S2 = [a∗, b∗] \ [a1, b1] ∫
S2

g(x− θ∗) log

[
g(x− θ∗)
p2g(x− θ2)

]
dx <

ε

2
.

This is possible since for any x in S2

g(x− θ∗) log

[
g(x− θ∗)
p2g(x− θ2)

]
< M log[2M/(mc)].

Thus the integral is bounded and S2 has length arbitrarily small if we choose δ small enough.

We call Cε(P ) the set of (θj)
∞
j=1, (pj)

∞
j=1 such that the previous constraints hold. For all {(θj)∞j=1, (pj)

∞
j=1} ∈

Cε(P ) ∫
g(x− θ∗) log

[
g(x− θ∗)∑∞

j=1 pjg(x− θj)

]
dx =∫

S1

g(x− θ∗) log

[
g(x− θ∗)∑∞

j=1 pjg(x− θj)

]
dx+

∫
S2

g(x− θ∗) log

[
g(x− θ∗)∑∞

j=1 pjg(x− θj)

]
dx ≤∫

S1

g(x− θ∗) log

[
g(x− θ∗)
p1g(x− θ1)

]
dx+

∫
S2

g(x− θ∗) log

[
g(x− θ∗)
p2g(x− θ2)

]
dx ≤ ε.

Thus, Cε(P ) ⊆ Kε(P ). Moreover, since our model implies full support on the simplex and on the space of the

atoms, pr[Cε(P )] > 0.

We are ready to prove Proposition 7 with assumptions B1–B3.

D.7.2. Proof of Proposition 7 (case with assumption B1–B3)

Proof. Let F be the cumulative density function associated with the data generating P and let CF be the set

of its continuity points. Denote

γ = min{F (x+)− F (x−) : x /∈ CF }

where γ > 0 by definition of g.

Similarly to the previous case, assume by contradiction that there exists a sequence (Pi)
∞
i=1 such that

Pi =
∑si
j=1 pj,ik(| θj,i), with si < t and Pi ⇒ P , where ⇒ denotes weak convergence. Then, denote Fi and CFi

the cumulative distribution functions and the continuity points associated with Pi.

By definition of g, F and Fi have 2t and 2si ≤ 2(t − 1) discontinuity points respectively. We denote with

{x∗1, . . . , x∗2t} the discontinuity points of F . Let M <∞ such that g(x) < M for any x and choose 0 < ε < γ
4M

small enough such that

(x∗k − ε, x∗k + ε) ∩ (x∗k′ − ε, x∗k′ + ε) = ∅ (5.27)

for any k 6= k′. By weak convergence, there exists I <∞ such that for any i ≥ I it holds

Fi(x
∗
k + ε)− Fi(x∗k − ε) >

γ

2
.

Moreover, since Fi has less than 2t discontinuity points, by (5.27) there exists k such that (x∗k− ε, x∗k+ ε) ⊂ CFi .
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For this k we can write

Fi(x
∗
k + ε)− Fi(x∗k − ε) =

∫ x∗k+ε

x∗k−ε

si∑
j=1

pjik(x | θji) dx < 2Mε <
γ

2
,

by definition of ε. Thus
γ

2
> Fi(x

∗
k + ε)− Fi(x∗k − ε) >

γ

2
,

which is a contradiction.

D.8. Proof of Theorem 7

The marginal distribution is available and given by the following lemma.

Lemma 18. Consider k and q0 as in (5.6). Then it holds

m(x1:n) =
2c− [max(x1:n, θ

∗)−min(x1:n, θ
∗)]

(2c)n+1
, (x1:n ∈ [θ∗ − c, θ∗ + c]n).

Proof. Note that xi ∈ (θ − c, θ + c) for all i ∈ {1, . . . , n} if and only if θ ∈ (max(x1:n)− c,min(x1:n) + c). Thus

m(x1:n) =
1

(2c)n+1

∫
Θ

n∏
i=1

1(θ−c,θ+c)(xi)1(θ∗−c,θ∗+c)(θ)dθ

=
1

(2c)n+1

∫
Θ

1(max(x1:n)−c,min(x1:n)+c)(θ)1(θ∗−c,θ∗+c)(θ)dθ

=
2c− [max(x1:n, θ

∗)−min(x1:n, θ
∗)]

(2c)n+1
.

Define Range(X1:n) = max (X1:n)−min (X1:n). Thus, Lemma 18 has an important corollary, that is stated

after a technical lemma.

Lemma 19. Let A ⊂ {1, . . . , n} such that |A| = a, Then it holds:

2c− [max(XA, θ
∗)−min(XA, θ

∗)]

(2c)a+1
≤ 2c− Range(XA)

(2c)a+1
.

Proof. The result follows immediately from max(XA, θ
∗) ≥ max(XA) and min(XA, θ

∗) ≤ min(XA).

Corollary 6. In the setting of (5.1) with (f, k, q0) as in (5.6), define Ωn = {x ∈ X∞ | max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗}.
Then ∏s+1

j=1 m(XAj )

m(X1:n)
1Ωn(X1:∞) ≤

∏s+1
j=1[2c− Range(XAj )]

(2c)s[2c− Range(X1:n)]
. (5.28)

Proof. As regards the numerator, apply firstly Lemma 18 and then Lemma 19 to get

m(XAj ) =
2c− [max(XAj , θ

∗)−min(XAj , θ
∗)]

(2c)aj+1
≤

2c− Range(XAj )

(2c)aj+1
, j = 1, . . . , s+ 1 .
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Apply Lemma 18 to m(x1:n) for any x ∈ Ωn, to get

m(X1:n)1Ωn(X1:∞) =
2c− [max(X1:n, θ

∗)−min(X1:n, θ
∗)]

(2c)n+1
1Ωn(X1:∞)

=
2c− [max(X1:n)−min(X1:n)]

(2c)n+1
1Ωn(X1:∞),

as desired.

The lemma below shows that, in order to prove Theorem 7, it is sufficient to show 1Ωn(X1:∞)
∑n−1
s=1

pr(Kn=s+1|X1:n)
pr(Kn=1|X1:n) →

0 in P (∞)-probability.

Lemma 20. Consider f as in (5.6) and define Ωn = [x ∈ X∞ | max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗]. Let [Yn]

be a sequence of positive random variables. Thus, Yn1Ωn(X1:∞) → 0 in P (∞)-probability implies Yn → 0 in

P (∞)-probability.

Proof. First of all, by definition of f we have

max(X1:n)→ θ∗ + c, min(X1:n)→ θ∗ − c

almost surely with respect to P (∞) as n→∞. Then P (∞)(Ωn)→ 1, as n→∞, by definition of Ωn. Thus, fix

ε > 0 and notice that

P (∞) (Yn > ε) = P (∞) [(Yn > ε) ∩ Ωn] + P (∞) [(Yn > ε) ∩ Ωcn] .

The first term on the right-hand side goes to 0, since Yn1Ωn(X1:∞)→ 0 in P (∞)-probability, while the second

vanishes because P (∞)(Ωcn)→ 0, both as n→∞.

Combining Corollary 6 and Lemma 20 we are ready to prove Theorem 7.

Proof of of Theorem 7.

Proof. From Corollary 6 we have

∏s+1
j=1 m(XAj )

m(X1:n)
1Ωn(X1:∞) ≤

∏s+1
j=1[2c− Range(XAj )]

(2c)s[2c− Range(X1:n)]
.

Note that [2c − Range(XAj )]/(2c) ∼ Beta(2, aj − 1) independently for j = 1, . . . , s. Moreover, recall that if

Z ∼ Beta(α, β) then for p > −α:

E(Zp) =
Γ(α+ p)Γ(α+ β)

Γ(α+ p+ β)Γ(α)
.

Thus, by Hölder’s inequality (with exponents 3 and 3/2) we get

E

[∏s
j=1m(XAj )

m(X1:n)

]
≤ E

 s∏
j=1

m(XAj )
3

1/3

E
[
m(X1:n)−3/2

]2/3
=

[
Γ(5)

Γ(2)

]s/3[
Γ(1/2)

Γ(2)

]2/3[ s∏
j=1

Γ(1 + aj)

Γ(aj + 4)

]1/3[
Γ(1 + n)

Γ(n− 1/2)

]2/3

.
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By the recursive definition of the Gamma function and recalling that Γ(1/2) = π1/2, the upper bound above

becomes

E

[∏s
j=1m(XAj )

m(X1:n)

]
≤ 24s/3π1/3

[ s∏
j=1

Γ(1 + aj)

Γ(aj + 4)

]1/3[
Γ(1 + n)

Γ(n− 1/2)

]2/3

= 24s/3π1/3

[ s∏
j=1

1

(aj + 3)(aj + 2)(aj + 1)

]1/3[
(n− 1/2)Γ(1 + n)

Γ(n+ 1/2)

]2/3

.

Moreover, exploiting again the recursive definition of the Gamma function, Gautschi’s Inequality, i.e. Γ(1+n)
Γ(n+1/2) ≤

(n+ 1)1/2, and (n+ 1)/(aj + 1) < n/aj , we have

E

[∏s
j=1m(XAj )

m(X1:n)

]
≤ 24s/3K

[ s∏
j=1

(n+ 1)3

(aj + 1)3

]1/3

≤ 24s/3K

(
n3∏s
j=1 a

3
i

)1/3

= 24s/3K
n∏s
j=1 aj

.

Thus, applying Lemma 16 with p = 2 and C = 4ζ(2) < 7 we get

E[R(n, 1, s)] ≤ 24s/3K

s!

∑
a∈Fs(n)

(
n∏s
j=1 aj

)2

<
Cs−124s/3K

s!
.

From Corollary 5 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss

ε
E(αs) log[n/(1 + ε)]−1, n ≥ 4 .

Thus, combining the inequalities above with (5.11) and assumption A3 we have

E

[
1Ωn(X1:∞)

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)

]
=

n−1∑
s=1

C(n, 1, s+ 1)E[1Ωn(X1:∞)R(n, 1, s+ 1)]

≤ 241/3DGKΓ(2 + β)

ε log[n/(1 + ε)]

n−1∑
s=1

s(2C241/3)sρ−sΓ(ν + s+ 1)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n→∞ ,

where finiteness follows from ρ ≥ 38 > 241/3 × 2C. This implies that

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)
→ 0

in L1 and thus in P (∞)-probability as n → ∞. Lemma 20 with Yn =
∑n−1
s=1

pr(Kn=s+1|X1:n)
pr(Kn=1|X1:n) concludes the

proof.

D.9. Proof of Theorem 8

We first need the following result.
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Lemma 21. Let k and q0 be as in (5.7) and x1 = · · · = xn = θ∗ for some θ∗ ∈ R. Then

∏s
j=1m(xAj )

m(x1:n)
=

[
n+ 1∏s

j=1(aj + 1)

]1/2

exp

[
θ∗2

2

(
− n2

n+ 1
+

s∑
j=1

a2
j

aj + 1

)]
<

(
n∏s
j=1 aj

)1/2

,

for any s = 1, . . . , n and any partition A = {A1, . . . , As} ∈ τs(n).

Proof. The equality follows after writing down the marginal likelihood of xAj as

m(xAj ) = (aj + 1)−1/2q0(θ∗)aj exp

[
θ∗2

2

a2
j

aj + 1

]
,

and then computing the resulting expression for m(x1:n)−1
∏s
j=1m(xAj ). The inequality follows from

n+ 1∏s
j=1(aj + 1)

≤ n∏s
j=1 aj

,

and

− n2

n+ 1
+

s∑
j=1

a2
j

aj + 1
= n− n2

n+ 1
+

s∑
j=1

(
a2
j

aj + 1
− aj

)
=

n

n+ 1
−

s∑
j=1

aj
aj + 1

=

=

s∑
j=1

aj

(
1

n+ 1
− 1

aj + 1

)
≤ 0.

of Theorem 8. First, we study R(n, 1, s) as defined in (5.11). Since all the observations are almost surely equal,

we have

R(n, 1, s) =
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

∏s
j=1m(XAa

j
)

m(X1:n)
.

Thus, applying Lemma 21 and then Lemma 16 with p = 3/2, the constant C = 2
3
2 ζ
(

3
2

)
< 8 is such that

R(n, 1, s) <
1

s!

∑
a∈Fs(n)

(
n∏s
j=1 aj

)3/2

<
Cs−1

s!
.

From Corollary 5 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss

ε
E(αs) log[n/(1 + ε)]−1, n ≥ 4 . (5.29)

Thus, combining the inequalities above with (5.11) and assumption A3 we have

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)
=

n−1∑
s=1

C(n, 1, s+ 1)R(n, 1, s+ 1)

≤ DGΓ(2 + β)

ε log[n/(1 + ε)]

n−1∑
s=1

s(2C)sρ−sΓ(ν + s+ 1)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n→∞ ,
(5.30)

where the finiteness follows from ρ > 16 > 2C. Then we conclude applying a variation of Lemma 5 with
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equalities and limits in probability replaced by almost sure equalities and limits (the proof of Lemma 5 extends

trivially to that case).

D.10. Proof of Proposition 8

Proof. Under (5.1), for any ε > 0 we have

pr(α < ε | X1, . . . , Xn) =

n∑
s=1

pr(α < ε | Kn = s) pr(Kn = s | X1, . . . , Xn) =

≥ pr(α < ε | Kn = t) pr(Kn = t | X1, . . . , Xn).

By the assumption of consistency, pr(Kn = t | X1, . . . , Xn) → 1 in P (∞)-probability as n → ∞. Moreover, by

Proposition 9 with s = 1 we get

E(α | Kn = t)→ 0,

as n→∞. It follows pr(α < ε | Kn = t)→ 1 in P (∞)-probability as n→∞, as desired.
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