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ABSTRACT
Computing is evolving rapidly to cater to the increasing demand
for sophisticated services, and Cloud computing lays a solid foun-
dation for flexible on-demand provisioning. However, as the size of
applications grows, the centralised client-server approach used by
Cloud computing increasingly limits the applications’ scalability.
To achieve ultra-scalability, cloud/edge/fog computing converges
into the compute continuum, completely decentralising the infras-
tructure to encompass universal, pervasive resources. The com-
pute continuum makes devising applications benefitting from this
complex environment a challenging research problem. We put the
opportunities the compute continuum offers to the test through a
real-world multi-view detection model (MvDet) implemented with
the FastFL C/C++ high-performance edge inference framework.
Computational performance is discussed considering many experi-
mental scenarios, encompassing different edge computational capa-
bilities and network bandwidths. We obtain up to 1.92x speedup in
inference time over a centralised solution using the same devices.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Distributed
computing methodologies; Distributed artificial intelligence;
Scene understanding; • Networks→ Network experimentation.

KEYWORDS
Edge Inference, Edge Computing, Computing Continuum, Compu-
tational Performance, Network Performance

1 INTRODUCTION
Recent machine learning techniques advancements lead to models
reaching (and even surpassing) human capabilities on many tasks,
fuelling a proliferation of AI-based applications. These applications
mainly leverage the flexible computing and network resources cloud
computing provides to achieve their scalability goals [34]. However,
as the number of users and the complexity of deep neural network
(DNN) models grows, the centralised approach taken by cloud com-
puting is quickly reaching its limit. Especially AI-based applications
with high resource costs per user request, such as transformer-based
large language models, e.g. ChatGPT [27], and generative diffusion
models, e.g. DallE [26], put increasing strains on the cloud data-
centers. New approaches try to alleviate this scalability bottleneck

by gradually decentralising the infrastructure via “walking-size”
cloud-connected server rooms pervasively distributed in the envi-
ronment (edge computing) and the resources along the network
paths (fog computing) up to a fully decentralised infrastructure
(compute continuum) [16]. The complexity stemming from such
an environment’s sheer size and heterogeneity makes designing
applications able to take full benefits extremely challenging.

Traditionally, most “smart” applications leverage the classic
client-server model where the user interacts with an app or a web
API to send requests processed by (possibly clustered) servers in the
cloud. On the one hand, the cloud can offer performance unreach-
able by smaller devices available in server rooms or even more at
the edge. On the other hand, an increasing number of existing edge
devices, like Raspberry Pi[23] and most smart home devices [37],
still offer enough computing power to handle inference of deep
models, either unmodified or distilled [11]. However, most edge
inference-related art considers either the single-device scenario,
trying to optimise the execution of one or multiple DNNs on con-
strained devices, or the client-server scenario, which offloads heavy
computations to the cloud. Few broaden the view to the possibilities
offered by more decentralised infrastructures. We aim to fill this gap
via an initial case study applied to a multiview detection system.

In this work, we propose a real-world implementation of a mul-
tiview detection system based on the MVDet state-of-the-art detec-
tion model [14]. We port the model to C++ using the libtorch [24]
and opencv [6] libraries and integrate it into a framework for dis-
tributed inference. We experiment with it under different compu-
tational and networking hypotheses, comparing the traditional
client-server approach to a distributed approach, which splits the
model execution across multiple devices to test the real benefits of
a decentralised infrastructure. Our contributions are:

• an open-source implementation of a real-world edge-based
system for multiview detection. While our implementa-
tion is based on the MVdet model, the methodology can be
applied to different models;

• extensive experimentation of the proposed system under
different computational and network conditions;

• a critical discussion on the potentiality of decentralised
infrastructure.
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The paper is structured as follows: Section 1 briefly introduces
the research context, Section 2 introduces the basics for understand-
ing the subsequent sections, Section 3 details the multiview detec-
tion use-case, the implementation methodology and the research
choices, Section 4 discusses in detail the experimental contribution
of this work, and Section 5 wraps up the exposition, summarising
the findings and future research directions.

2 BACKGROUND
Edge inference is a research field undergoing strong experimental
efforts due to the convergence of many phenomena. The abun-
dance of pervasive computational devices [20] offers lots of spare
computational power exactly where data are harvested. Many ap-
proaches exploit this latent computing power to process data timely,
especially for medical purposes [12, 25]. However, as ML models be-
came increasingly complex and computationally power-consuming,
edge devices adapted like in a co-evolution schema [33]. Thus, AI-
specialised edge devices have flourished, like TPUs [28], NPUs [31],
FPGAs [10], and many others based on innovative computing
paradigms, like in-memory computing [15]. All this hardware-
related research effort is devoted to increment the efficiency of
AI-related computations, trying to mitigate as much as possible
the natural computing and battery life limitation of such devices,
but many real-world still incorporate only CPUs as compute due
to cost, thermal and power constraints [4]. On the other hand, ML
practitioners devised new algorithms to exploit edge opportuni-
ties. Some efforts, like model compression [29], pruning [36], and
distillation [19], focus on reducing as much as possible the model
size to improve both its memory and energy impact. Conversely,
model partitioning aims at dividing models into manageable chunks
to optimise scheduling on single devices [8] or to offload parts of
computation across multiple computing devices according to the
capabilities of each one [5, 22, 35], improving inference latency.
Still, another strategy is to completely avoid using DNNs in favour
of simpler, less computationally intensive models such as classical,
non-deep ML models. Despite, the feasibility of this approach in an
edge environment [17], not all tasks are suited to these models.

ML-based detection systems can be modelled in many ways,
but reliance on DNNs is one constant. Single-view detection [13,
21, 38, 39] addresses the case in which just a single image of a
scenario is available for inference at a time. Such methods can be
anchor-based or not and can handle occlusion issues by exploit-
ing techniques such as part-recognition, non-maximal suppression,
and repulsion loss. Additional information exploited by the infer-
ence can be domain-specific, like the detection of heads and feet
when searching for people, or can be obtained through the use
of particular image acquisition tools, such as RGB-D cameras and
LIDAR detectors, to obtain single images correlated with more
spacial information. Multiview detection exploits multiple sources
of image acquisition to produce a single inference [9, 14, 30] to
overcome occlusion problems. The principal research focus in this
scenario is aggregating the information retrieved from multiple
data sources. Popular approaches target combining multiple single-
view detection, aggregating the features extracted from each image,
and applying geometrical transformation to the camera outputs.

3 METHODOLOGY
The MVDet is a state-of-the-art multiview detector that identifies
persons standing and moving across an open public area. The main
idea is to use a trained base model, e.g. ResNet18 or VGG11, to
extract the features from each camera frame and transform it via
a homography, i.e. perspective warp, projecting it to the bird eye
view of the area. The results are then fed into an aggregation model,
which detects the position of all the persons in the area.

Bringing the MVDet model to a real-world edge environment re-
quires methodological and implementational choices. Starting from
the original MVDet code, we identify two different computational
stages: a parallelisable one that comprehends the frame acquisition,
feature extraction, and perspective warping, and, conversely, a se-
quential one that is the multiview aggregation. Since the system
is synchronous at the frame level, the multiview aggregation is
data-dependant from the previous processing steps: the aggrega-
tion can not start until all the camera frames from the current time
step have been acquired and processed. Given this computational
scenario, we propose two different edge implementations of the
MVDet system: a more distributed one and a more centralised one.
The distributed implementation is depicted in Figure 1. It takes full
advantage of the model partitioning technique, allocating part of
the ML models on the edge devices while trying to parallelise the
execution as much as possible by assigning all the parallelisable
code to a different camera. Conversely, the centralised implemen-
tation takes full advantage of model offloading, allocating all the
computational burden on the server while requiring the Camera to
acquire the frames. A more technical discussion on the differences
between these two approaches is presented in Section 4.1.

Due to the targeted scenario, i.e. edge devices, we stumbled
upon the fact that no Distributed ML (DML) framework currently
available on the market is designed to be energy-efficient and com-
putationally lightweight. The commercial software is Python-based,
requiring computational and memory capabilities that not every
edge device can afford. Furthermore, popular DML software is be-
ing developed keeping into account mostly user-friendliness and
additional security features, such as Homomorphic Encryption
and Secure Multiparty Computation, rather than computational
performance. While this strategy comes in handy when dealing
with powerful computing devices, an edge-oriented DML frame-
work should care about the amount of resources it consumes (com-
putation, memory, energy), trying to be as efficient as possible.
Also, most commercial DML software are designed to handle in
a very solid way only one communication topology, the master-
worker one. Any other communication structure would require
heavy software modifications, resulting in a not-as-intended use
of the frameworks. The tree-based inference structure we envision
is thus not implementable straightforwardly in current DML soft-
ware. Due to these two motivations, efficiency and communication
topology malleability, we use an experimental DML framework
named FastFederatedLearning (FastFL) [18]. FastFL offers a high-
performance C/C++ implementation wrapped with a user-friendly
Python interface, allowing user-friendliness and computational per-
formance. The communication backend is handled by the FastFlow
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Figure 1: Distributed implementation of MVDet with FastFL. The workflow starts with each camera acquiring the current
time step frame; the frame features are then extracted by a ResNet18 and warped according to the camera perspective matrix
directly on the edge; then all the warped feature maps are collected by the aggregator, which aggregates them via the spatial
aggregation model, producing the position estimation map; this last result is then sent to the control room for operational
decision. This process is repeated iteratively.

C/C++ high-performance parallel programming library [2], allow-
ing the user to specify custom communication topologies, working
both in shared and distributed memory.

The application architecture is based on several building blocks,
i.e. specialisations of the ff_node class, the primary logical unit
exposed by FastFlow, connected in a tree-like structure. Building
blocks can be executed in a distributed manner and can commu-
nicate by exchanging messages through different backends, like
TCP and MPI [32]. At the leaves of the tree, we place multiple
ff_monode_t, named Camera, each representing a different cam-
era in the system. These building blocks are executed in parallel
independently. For the distributed implementation, a new frame is
read at each time step, its features extracted by a pre-trained base
model, i.e. ResNet18 in our case, and warped according to a perspec-
tive transformation to consider the camera view angle. Conversely,
for the centralised implementation, the Camera just acquires the
current time step frame. Each Camera sends the result to the next
level of the tree. This level consists of a ff_minode_t called Ag-
gregator, which takes multiple inputs and returns a single output.
In the distributed implementation, results collected from all chil-
dren Camera are aggregated by the spatial aggregation model into
the final position estimation map. Conversely, for the centralised
implementation, the Aggregator node also takes over the feature
extraction and perspective warping for each received camera frame.

Finally, the position estimation map is sent to the tree’s root, i.e.
ControlRoom node, where real-time decisions can be taken in a
real-world deployment. Figure 1 summarises the distributed imple-
mentation architecture. This procedure is synchronously repeated
using an additional Sync node connected to all Camera (not shown
in the figure for simplicity) used to trigger the next frame until all
frames are processed. In case of multiple open areas, the application
supports multiple subtrees, one for each area, each consisting of an
Aggregator with multiple Camera as children.

4 EXPERIMENTAL RESULTS
4.1 Setup
Dataset: We use the Wildtrack multiview dataset [7]. It comprises
7 static cameras capturing views of a public open area with dense
groups of pedestrians standing and walking. The dataset provides
each camera with the accurate position and view angle and 400
time-synchronised full-HD frames.

Testbed: All experiments were run on the HPC4AI cloud com-
puting facility [3] exploiting 10 virtual machines, each one equipped
with 8 64-bit vCPUs mapping to dedicated cores of an Intel Xeon
Gold-6230 @2.10GHz processor (Skylake, IBRS), 16GB RAM, 1 Gb/s
interconnection network, and running Ubuntu 22.04 as operating
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Figure 2: Computational performance of the proposed systems with varying computational power available. This plot compares
the computational performance of the distributed MVDet system, measured as seconds taken to process each frame +/- the 95%
confidence interval over 5 runs, in all possible combinations of computational power assigned to the server (4, 8 cores) and
cameras (1, 2, 4, 8 cores).

system. We chose to use CPU-only nodes to better model the capa-
bilities of edge devices, which often forgo GPUs for cost, energy,
and thermal constraints. In contrast, the single-core performance
of modern SoC can be in line with that of a vCPU. Each system
component (7 Camera, 1 Sync, 1 Aggregator and 1 ControlRoom
node) is deployed on a different virtual machine.

Performancemetric:We choose the time needed to process one
complete set of camera frames and produce the estimated positions
as a performance metric. Experiments are replicated 5 times, and
we report the mean plus 95% confidence interval (CI).

Deployment scenarios: We tested the proposed system under
various conditions to emulate different deployment scenarios. We
created two versions of the multiview detection application. The
first is a centralised version, which acts as a baseline representing
the traditional client-server approach where each Camera (client)
sends the acquired frame to the Aggregator (server). In this case,
the Aggregator node performs all the model computation, whilst
the Camera nodes limit themselves to acquiring the next frame
and sending it to the Aggregator. This implementation implies al-
most no computational power needed from the Camera but places
a heavy computational burden on the Aggregator instead; further-
more, the communications are lighter, since the acquired frames are
smaller tensors, size [3𝑥1920𝑥1080], i.e. 6.1 MB, than the extracted
feature tensors, size [512, 360, 120], i.e. 21.6MB. The second is the
distributed version, where we split the detection model according
to Figure 1 leveraging the computing power of each Camera for

feature extraction and perspective warping, while leaving to the
Aggregator spatial aggregation and final position estimation.

Resource modulation: We test the proposed multiview detec-
tion system under different combinations of computational power
assigned to the critical software components, i.e. Camera and Ag-
gregator, thus simulating how different edge devices with varying
performance impact the system.Wemodulate the computing power
by varying the number of cores available to the different compo-
nents using taskset and providing hints to the number of threads to
spawn to libtorch via the MKL_NUM_THREADS and OMP_NUM_THREADS
environment variables. Specifically, we tested the system assigning
to each Camera 1, 2, 4, or 8 cores, and to the Aggregator 4 or 8
cores, for 16 different computational power configurations. We also
emulate different network conditions by limiting the bandwidth
available to the different nodes to study how it affects the perfor-
mance of the proposed system. Indeed, edge devices typically need
to rely on slower networks, e.g. cellular connections. Kollaps is a
decentralised container-based network emulator, exploiting Docker
Swarm (or Kubernetes) to deploy and run distributed computations
with specific network topology made of bridges and links with spe-
cific upload/download bandwidth, latency, and jitter characteristics
enforced using the traffic control capability of the Linux ker-
nel. In the following experiments, we study the impact of varying
upload/download bandwidths of the Camera and Aggregator. We
test the system with 10/10 Mbps per Camera and 100/100 Mbps for
the Aggregator, representing a low bandwidth scenario. We then
increase the Camera bandwidth to 25/284 Mb/s, which represents
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Table 1: Computational performance of the proposed systems with varying computational power and network bandwidth. The
first two scenarios adopt a bandwidth comparable with current 5G performance in Italian cities, while the third simulates a
resource-constrained edge deployment.

Aggregator cores Camera bandwidth (up/down) Aggregator bandwidth (up/down) Centralised (s/set) Distributed (s/set)

4 cores 25/284 Mb/s 1/1 Gb/s 15.38 49.68
8 cores 25/284 Mb/s 1/1 Gb/s 11.98 46.89
8 cores 10/10 Mb/s 100/100 Mb/s 14.22 108.79

the average upload/download speeds achieved by the best 5G net-
work in Italy in 2022 [1], and consequently increase the network
bandwidth of the aggregator to 1/1 Gb/s to cope with the faster
aggregated bandwidth from the Cameras. The latter configuration
is tested assigning 4 or 8 cores to the Aggregator.

4.2 Results
Figure 2 presents the results across the 16 computational power
configurations. One can notice how the centralised implementation
performance is basically unaltered by the amount of computing
power given to the Camera, while doubling the number of cores
given to the Aggregator almost halves the amount of time required
to process a single frame, i.e. from 13.57 s to 7.66 s on average. Con-
versely, the distributed approach is more sensible to the computing
power given to both Camera and Aggregator, steadily increasing its
computational performance when the computing resources given
to the system (Camera and Aggregator nodes) increase from 12.97
s/set using a total of 7𝑥1 + 4 = 11 vCPUs to 4.23 s/set using a total
of 7𝑥8 + 8 = 64 vCPUs.

By comparing the two systems, it is clear that the distributed im-
plementation obtains globally lower computational times, achieving
better computational performance with respect to the centralised
approach thanks to exploiting the computational power spread
over the computing continuum. The higher the computing power
of the Camera, the more significant the performance gap, i.e. up
to 1.92x faster with 4 cores per Aggregator and 8 cores per Cam-
era. However, also the network plays a role. Indeed, in the 1 (8)
cores per Camera (Aggregator), the centralised approach beats the
decentralised approach by a small margin due to the increased com-
munication time to transmit the 3.5x larger feature maps instead of
the plain captured frames.

Looking at Table 1, it is possible to observe how both imple-
mented systems behave under different network bandwidth con-
ditions. To better simulate a low-power edge system, each camera
node is allocated 2 cores. As can be seen, the distributed imple-
mentation particularly suffers from bandwidth limits. As explained
before, the feature maps are way heavier than the plain frames;
hence, bandwidth limits have a particular impact on the system per-
formance, regardless of the amount of computing power allocated
to each component. This behaviour can be noted especially in the
last row of Table 1, in which the centralised system is 7.65x times
faster than the distributed one. In a 5G network, which has higher
bandwidths, this speedup decreases to 3.23x-3.91x, a reduction of
42.22%-51.11% with respect to the previous scenario. Instead, when
the network is not the bottleneck, the distributed approach is the
best in almost all scenarios, as shown in Figure 2. Please note that

here we ported the MVDet model as is without any optimisation
for communication not to alter the model performance. While pos-
sibly having a detrimental effect on the model performance, the
communication cost could be lowered by compressing the feature
maps or retraining the model with feature maps having a lower
number of channels.

This comparison clearly shows how the environment can in-
fluence the real-world deployment of an edge inference system.
Computational power and network bandwidth allocated to each
computing continuum element are crucial, but there is no one-
fits-all strategy to implement such systems. Workload distribution
across the continuum can often become disadvantageous if it lever-
ages critical resources that the centralised counterpart, instead, is
not so reliant on. Nevertheless, the same distributed deployment
can efficiently exploit all the available resources in an ideal sce-
nario, thus outperforming the more centralised approach. Since
environmental conditions change over time, future edge inference
systems should consider this variability and try to accommodate
and adapt to it, especially if they claim to be flexible, reliable, and
efficient.

5 CONCLUSIONS
This research work presented a real-world, edge-inference multi-
view detection system implemented with the FastFL framework.
We showed how to move from an offline ML model to a high-
performance, distributed inference system, measuring how different
computing and network conditions can affect a real-world imple-
mentation.We showed how the environmental setting can affect the
real-world performance of the computation implemented according
to two different strategies: the centralisation of the computation
on more powerful devices and the distribution of the computation
to exploit as much edge computing power as possible.

We demonstrated that no strategy is inherently better than the
other; however, they offer different properties that can offer bet-
ter performance in different scenarios, pushing for the need for
dynamic, adaptable edge inference systems. Implementing more so-
phisticated ML techniques in the proposed software, such as model
distillation, quantisation and compression, and the exploitation of
specialised hardware, such as TPUs or NPUs, could compensate for
some of the disadvantages of the distributed system and are thus
worth investigating as future work.
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