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Abstract

Pre-mRNA alternative splicing (AS) is a fundamental step in the maturation of transcripts. It

affects the majority of human genes and is mainly regulated by RNA-binding proteins

(RBPs). By profiling thousands of samples, genomic studies have shown that dysregulation

of RBP expression and RBPs-mRNA interactions can lead to a variety of diseases including

different cancer types. However, disentangling the heterogeneity of cancer transcriptomes to

identify defective transcriptional programs reshaping AS remains challenging.

During my Ph.D., I analyzed transcriptomic, epigenomics, chromosome conformation, and

protein-mRNA interaction data in 15 distinct tissue types to evaluate the transcriptional

regulation of RBPs in cancer. Starting from the gene expression information level, I

developed an algorithm, namely GSECA, to identify altered biological processes in

RNA-sequencing (RNA-seq) data accounting for their intrinsic heterogeneity. Applied to

8,464 samples from 19 different cancer types, GSECA outperformed conventional algorithms

and revealed that AS is the most altered gene set across cancer types as compared to normal

tissues. Combining RNA-seq data with information about transcription factor (TF) binding

sites and regions of active transcription, I developed a statistical framework to identify

candidate TFs that control RBP expression. While each tissue presents specific transcriptional

regulation programs, a set of TFs, including the oncogenic MYC, MAX, and FOXA1

emerged as frequently related to RBP expression. To assess these findings, I focused on

prostate cancer (PC) which is driven by somatic alterations of MYC and FOXA1. Analyses

of 409 primary and 118 castration-resistant PC RNA-seq data confirmed that FOXA1 is the

primary manager of AS regulation. To gain mechanistic insights into FOXA1 transcriptional

regulation of RBPs, I integrated the statistical framework with 3D chromatin conformation

data in PC cell lines. I showed that FOXA1 controls the RBP expression by actively binding

to their promoters or interacting enhancer regions. By combining results of RNA-seq and

ENCODE experiments, such as assessment of RBP cross-linking sites by eCLIP and splicing

changes upon RBP depletion, I found that FOXA1 orchestrates exon usage by modulating the

expression of a set of RBPs. Furthermore, FOXA1-mediated AS regulation targets highly

evolutionary conserved exons that are functionally relevant for the cell, as

nonsense-mediated-determinant exons. Overall, with this work, I revealed that RBP

expression is generally altered in tumors and identified the candidate TFs responsible for this
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phenomenon. Furthermore, I demonstrated that the pioneer factor FOXA1 directly controls

RBP expression in PC, orchestrating the AS of functionally relevant exons.
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Organization of the thesis
This thesis describes a study that addresses open questions concerning splicing, its

deregulation in cancer and the actors, i.e. the transcription factors, that are responsible for the

expression of splicing regulators in a tissue-specific manner. Since different aspects, from

biological to computational ones, were deeply analyzed I decided to describe each work in a

chapter. Each chapter is fully self-consistent and motivates the following study in a unique

flow. Each chapter ends with a specific discussion of the findings. The chapter “1” serves as

an introduction to immerse the reader in the context of the study, while the Appendices part is

meant to aid the curious reader to satisfy the desire to know more about certain topics. A

broader conclusion and discussion are given in the final chapter.

Writing style
Research can be now considered mostly a team work and consequently rather ʼweʼ instead of

ʼIʼ. This work was done in collaboration with other researchers who contributed with ideas,

knowledge, and support. Therefore, I decided to use the ʻweʼ style in writing this thesis.
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1. The transcriptional control of alternative splicing

The beginning is the most important part of the work.

Plato
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The “central dogma” of biology

Cell is a complex system, in which processes of regulation, transport, construction,

transformation of chemical bonds in energy and vice versa take place. In this work we

focused on the regulation of gene expression, particularly on the interplay between

transcription and splicing factors.

The process of gene expression comprises different molecules: from DNA, to RNA, and to

proteins. In 1953, the hypothesis that chromosomal DNA functioned as a mold for RNA

molecules that suddenly were transported in the cytoplasm, where they determined the order

of amino acids within proteins, was formulated. In 1956, Francis Crick defined this flux of

genetic information as the “central dogma” (Figure 1).

Figure 1. From (Alberts et al. 2002), the pathway from DNA to protein.
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DNA is a nucleic acid containing genetic information. It is made up of nucleotides. Each

nucleotide comprises a nitrogen base (i.e. cytosine (C), adenine (A), thymine (T) or guanine

(G)), a sugar (deoxyribose), and a phosphate group. Bases associate to each other in a strictly

complementary way: cytosine with guanine and thymine with adenine. DNA forms a double

helix, robust thanks to hydrogen bonds and partially wrapped around histones; it is organized

in chromosomes.

RNA, like DNA, is a nucleic acid. The only differences are that RNA contains a different

sugar, ribose, and uracil instead of thymine. It is generally single stranded, nevertheless it can

form secondary structures. There are three principal types of RNA, namely messenger RNA

(mRNA), which encodes DNA information for the creation of proteins, ribosomal RNA

(rRNA) which encodes for ribosome components and transfer RNA (tRNA), which helps

decode a mRNAsequence into a protein.

Proteins are polymers made up of twenty amino acids. Each amino acid includes an amino

group, a carboxylic acid group and a specific side chain; it is encoded in DNA by a triplet of

bases, called codon. Thanks to different side chain characteristics they reach specific shapes

that are fundamental for cell good health. Proteins cover a lot of different tasks within the

cell, from structural function to regulation of transcription. Also histones, DNA supports, are

a composition of proteins.

When the cell needs a particular protein, the nucleotide sequence of the appropriate portion of

the immensely long DNA molecule in a chromosome is first copied into RNA (a process

called transcription). These RNAs are used as templates to direct the synthesis of the protein

(a process called translation).

Over time the central dogma has been expanded and several other mechanisms were

discovered. We focused on transcription factors’ regulation and splicing.

Transcriptional regulation of gene expression

Transcription factors (TFs) are conserved proteins that bind on specific binding sites on the

genome (Lambert et al. 2018) and are divided into enhancers and silencers on their function.

The former have the role of recruiting RNA polymerase II, who is responsible for

transcription; conversely, the others avoid it. TFs can bind both in proximity of the target

gene (on the promoters) or thousands of base pairs upstream or downstream (on the

enhancers). Promoters are specific sequences of nucleotides indicating the starting point for
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RNA synthesis. Several TFs can interact between them thanks to the formation of handles in

the DNA (Figure 2).

Figure 2. From (Mobley 2019), Scheme of transcriptional regulation.

Some TFs act as pioneer factors binding to nucleosomal target sites and reorganizing local

chromatin to increase their accessibility (Donaghey et al. 2018).

TFs that present different types of domain: DNA-binding domains (DBDs) and activation

domains (ADs). While the binding ones have been widely studied and contribute to the

specificity of TF action by recognising specific motifs on the genome (Rot et al. 2017; Z.

Chen et al. 2015), it is not clear how the activation domains influence gene expression.

Recently, it has been shown that some TF’s ADs form phase-separated condensates with

Mediator and this mechanism could explain gene activation (Boija et al. 2018) (Figure 3). In

particular, Mediator is a coactivator factor that is required for stabilizing other TF on the

promoter for allowing transcription initiation. Bojia et al. have shown that the ability to phase

separate with Mediator, which would employ the features of high valency and low affinity

characteristic of liquid-liquid phase-separated condensates, operates alongside an ability of

some TFs to form high affinity interactions with Mediator. According to the authors, this

mechanism can explain the involvement of several TFs in the transcription initiation of genes.
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Figure 3. From (Boija et al. 2018), Phase-separated transcriptional condensate.

The number of expressed transcription factors varies between tissue types, while the

proportion of expressed TFs with respect to all genes is almost constant (Figure 4). The

number of TFs shared between tissues, instead, follows a U shape, so they tend to be

expressed in few tissues or in the majority of them (Vaquerizas et al. 2009) (Figure 4).
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Figure 4. From (Vaquerizas et al. 2009), b. Tissue-specific number of expressed transcription factors. C. Number

of shared expressed transcription factors by different tissues.

Nevertheless, once transcribed, pre-mRNA molecules are processed to obtain the final

mRNA that can potentially be translated.

Splicing of the pre-mRNA

Among co-transcriptional processes, splicing is a fundamental step in the production of

mature mRNA where non-coding sequences (introns) are removed and protein coding

sequences (exons) are joined together to form mature RNA.

More than 95% of genes present different isoforms that encode for different proteins, thus

amplifying protein diversity (Su et al. 2006) (Figure 5).
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Figure 5. From (Su et al. 2006), A.B. Overviews of the number of isoforms belong to a single gene.

Different isoforms are characterized by different splice sites, namely the boundaries of an

exon and an intron. Given the exon-intron structure of a gene, constitutive splice sites can be

distinguished from alternative ones. A constitutive splice site is always included into the

mature transcript, while an alternative one can be omitted sometimes. Likewise, the terms

constitutive and alternative are applied to exons and to the splicing process. As shown in

Figure 6, most alternative splice events can be classified into the following basic types:

• the inclusion or exclusion of one (or more) exons, giving rise to a cassette exon,

• the usage of alternative 5ʼss or 3ʻss,

• the mutual exclusion of exons, involves the selection of an exon from an array of two or

more exon variants,

• the retention of an intron (Z. Wang and Burge 2008; El Marabti and Younis 2018), also

known as intron retention (IR)
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Figure 6. From (Z. Wang and Burge 2008), A. Overview of splicing event types. B. Splicing mechanism.

This process, called alternative splicing, explains the great quantity of proteins present in the

cell with respect to the number of genes that code for them. Splicing is finely regulated by

RNA binding proteins (RBPs), also known as trans-acting factors, that bind on different sites

on the transcript, the cis-regulatory elements: intron splicing silencers (ISS), intron splicing

enhancers (ISE), exon splicing silencers (ESS) and exon splicing enhancers (ESE), and, as

these names point, show to the spliceosome machinery (a great complex of proteins that

make the action of cut and paste) if sequences they are bound on are to be retained or

skipped away (Pozzoli and Sironi 2005; Ule and Blencowe 2019; Z. Wang and Burge 2008).

There are also other regulatory sequences necessary for splicing: 5’ and 3’ splice sites, which

are located at intron-exon junctions, and the branch point region near the 3’ splice site, where

a small spliceosome ribonucleoprotein binds.
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RBPs regulate splicing according to position-dependent principles and bind on clusters of

short and degenerate sequences (Cereda et al. 2014; Ray et al. 2013).

Often, RBPs work in complexes, to maintain the perfect balance of isoforms into the cell

(Papasaikas et al. 2015).

Alternative Splicing is tissue-specific and is influenced by cell health state, phase of life and

external conditions and is one of the finest regulated mechanisms of the gene's expression

chain. Moreover, splicing is highly interconnected with other cellular processes, like

transcription, DNA and RNA modifications (Gehring and Roignant 2021; Ule and Darnell

2006) .

Genetic alterations of transcription factors, RNA binding proteins, and

their interactions promotes cancer

Deregulations in both transcription tuning and co-transcriptional processes can lead to several

diseases, including cancer.

Mutations in both TFs and their binding sites can bring to aberrant regulation of their targets.

Mutations can also disrupt or modify their interaction network (Lambert et al. 2018). Also,

their aberrant expression has frequently been linked to tumor progression and invasion

(Kajita, McClinic, and Wade 2004; M. Qiu et al. 2014; Robinson et al. 2014; Pelengaris,

Khan, and Evan 2002; Xu et al. 2017).

For what concerns alternative splicing, instead, recent studies have revealed multiple ways by

which splicing is pathologically altered to promote the initiation and/or maintenance of

cancer (Ghigna, Valacca, and Biamonti 2008; Shiraishi et al. 2018; Paschalis et al. 2018; Y.

Zhang et al. 2021). Alterations in alternative splicing lead to the creation of aberrant isoforms

that could promote several pro-tumorigenic mechanisms, including proliferation, apoptosis,

invasion, metabolism boosting, angiogenesis, DNA damage, and also, drug resistance and

immune response (Anczuków and Krainer 2016) (Figure 7).
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Figure 7. From (Anczuków and Krainer 2016), Splicing-factor alterations in cancer.

Basic mechanisms for normal splicing require cis-regulatory elements (splicing enhancers

and silencers) and trans-acting factors that bind to these elements to promote splicing and/or

recruitment of spliceosome (Z. Wang and Burge 2008). Each of these elements may be

subjected to various forms of dysregulation during the course of tumorigenesis.

First of all there are mutations within exons and/or introns of the target gene or in genes that

code for spliceosome parts or RBPs (Anna and Monika 2018). Mutations in exons or introns

can disrupt or create de novo splicing silencers and enhancers (rendering the site

unrecognizable by the sequence-specific RNA binding protein that is required for splicing

and, for instance, recruiting other RBPs) or create cryptic splice sites (splice sites that are

created by mutations). Moreover, they can also disrupt a RNA secondary structure that has a

regulatory function.

Other disruptions are copy number variations that can cause a differential expression of genes

(S. C. Lee and Abdel-Wahab 2016). Other causes of aberrant constitutive or alternative

14

https://paperpile.com/c/3nThs6/mkRs
https://paperpile.com/c/3nThs6/TSmi
https://paperpile.com/c/3nThs6/4Qhr
https://paperpile.com/c/3nThs6/meNd


splicing are quantitative changes of proteins that regulate splicing. Several RBPs have been

shown to be over-or under-expressed in cancer (S. C. Lee and Abdel-Wahab 2016). This

deregulation can be due either to disrupted signaling pathways or to the aberrant expression

regulation by transcription factors. Recently, a genomic study on the aberrant expression of

the MYC transcription factor in Eμ-myc transgenic mice lymphomagenesis showed that

splicing factors are among those genes upregulated by MYC (Koh et al. 2015). In particular,

MYC promotes transcription of the core small nuclear ribonucleoprotein particle (SNRNP)

assembly genes, including the RBP Prmt5 that is essential for cell survival and proliferation.

Another work enlightened the role of MYC in controlling RBP expression in human glioma

(David et al. 2010). Similarly, MYC has been related to RBP expression in triple negative

breast cancer (Cieśla et al. 2021) and prostate cancer (Phillips et al. 2020), leading to aberrant

splicing. As the direct targeting of MYC has been clinically unsuccessful, targeting its

downstream effector pathways seems a valid opportunity. Given the strict relation between

MYC and splicing in promoting cancer invasiveness, it has been recently proposed that

methods targeting RBPs or their downstream splicing targets may be a potential avenue for

treatment (Urbanski et al. 2021).
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Aim of the thesis

Although there is much evidence of TF aberrant regulation on splicing factors in cancer, a

comprehensive analysis of AS transcriptional regulation is still missing. The project aims at

assessing the AS deregulation in cancer, focusing on the regulation of RBP expression by

TFs. Our goal is to elucidate the transcriptomic regulation of AS and gain functional insights

into the defective AS in cancer. Furthermore, the project will evaluate whether the

mechanisms that regulate cancer-promoting AS events are common to different cancer types.
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2. Alteration of RBP expression across cancer types

Inequality is the cause of all local movements. There is no rest without equality.

Leonardo da Vinci
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To evaluate whether RBP expression is deregulated across all cancer types, processed

RNA-seq expression data were retrieved from RNAseqDB (Q. Wang et al. 2018) for both

normal and cancer tissues.

RNAseqDB has been developed to integrate RNA-seq data generated from two different

sequencing studies while accounting for batch effects. In particular, transcriptomic data from

The Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga) and Genotype Tissue

Expression project (GTEx) (“The Genotype-Tissue Expression (GTEx) Project” 2013) were

realigned to the human genome reference, corrected for batch artifacts, and quantified in

terms of gene and isoform expression levels (Figure 8).

Figure 8. From (Q. Wang et al. 2018), Upper panel. RNAseqDB pipeline for uniforming TCGA and GTEx data.

Bottom panel. PCAs comparing data from TCGA and GTEx before uniforming procedure (a), after uniforming

procedure (b) and after uniforming procedure and batch correction (c).

Overall, the RNAseqDB dataset comprises 6,142 tumors of 19 cancer types and 2,322 normal

samples from 15 tissues (Figure 9).
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Figure 9. Barplots representing the number of samples available for each tumor type (red) and for the

associated normal tissues (light blue).

Gene expression profiles presented a high degree of heterogeneity, especially between

samples of the same tumor (Figure 10). Therefore, dissecting the contribution of

heterogeneity to gene expression levels is of central relevance to obtain genes that are

commonly deregulated in tumors.
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Figure 10. From (Lauria et al. 2020), Histogram showing the distributions of mean Pearson’s Correlation of

pairwise comparisons, for all PC samples.

In this sense the concept of “pathway” instead of “single gene” alteration has been exploited

(A. Subramanian et al. 2005; Lauria et al. 2020). In recent years, several gene set analysis

algorithms have been developed (A. Subramanian et al. 2005; Barbie et al. 2009;

Hänzelmann, Castelo, and Guinney 2013; E. Lee et al. 2008; Tomfohr, Lu, and Kepler 2005).

They can be divided into two groups, the “self-contained” and the “competitive” ones,

depending on whether they identify altered gene sets while ignoring or not genes that are

outside the gene sets of interest, with the first more powerful than the latter (A. Subramanian

et al. 2005; Lauria et al. 2020). Nevertheless, all the available methods were developed to

handle microarray data and, also, do not consider inter-sample heterogeneity, so we

developed a new method that could handle both RNA-seq data and heterogeneity.

For what concerns RNA-seq distribution, we know from literature that they are characterized

by a bimodal behavior, reflecting the presence of two major subpopulations of genes in cells

(i.e. lowly and highly expressed genes) (Hebenstreit et al. 2011). Moreover, several works

exploiting machine learning approaches applied on Big Data, had recently shown that the

division of numerical features into a limited number of non-overlapping intervals (i.e.

discretization) improved the accuracy of the algorithms (Liu et al. 2002; “Machine Learning

on Big Data: Opportunities and Challenges” 2017). Discretization had been used in

computational biology to explore gene regulatory networks (Demichelis et al. 2006), and, as a

20

https://paperpile.com/c/3nThs6/HutB
https://paperpile.com/c/3nThs6/clW4+HutB
https://paperpile.com/c/3nThs6/clW4+fRyC+8hus+Zmgs+zaHi
https://paperpile.com/c/3nThs6/clW4+fRyC+8hus+Zmgs+zaHi
https://paperpile.com/c/3nThs6/clW4+HutB
https://paperpile.com/c/3nThs6/clW4+HutB
https://paperpile.com/c/3nThs6/0RmC
https://paperpile.com/c/3nThs6/T6Ma+d87O
https://paperpile.com/c/3nThs6/T6Ma+d87O
https://paperpile.com/c/3nThs6/aSKD


pre-processing step, to improve classification accuracy using microarray data (Helman et al.

2004).

On this basis we developed a Gene Set Enrichment Class Analysis (GSECA) (Lauria et al.

2020) algorithm to identify altered gene sets between two cohorts of samples in

heterogeneous data. In a few words GSECA implements a finite mixture modeling approach

to identify the bimodal distribution of each RNA-seq profile and then applies a discretization

on the obtained curve to increase the signal-to noise ratio. Discretized data are then evaluated

through a statistical framework to identify altered gene sets.

Gene Set Enrichment Class Analysis (GSECA)

GSECA models the distributions of protein coding gene expression levels of each sample i as

a mixture of two Gaussian probability density functions (Hebenstreit et al. 2011) (Figure 11):

𝑓 𝑥
𝑖( ) = λ

1
ϕ 𝑥

1
; µ

1
, σ

1( ) + λ
2
ϕ 𝑥

1
; µ

2
, σ

2( )

where is the mixing proportion, and are the mean and the standard deviation,λ µ σ

respectively . This choice is based on the biological evidence that cells express two major

populations of genes at high and low levels (McLachlan and Peel 2000). To estimate the

parameters of the two components the Expectation-Maximization algorithm is used

(McLachlan and Peel 2000; “Royal Statistical Society Publications” n.d.). The algorithm runs

iteratively until the maximum likelihood is reached. The mean of the first component (i.e.

highly expressed genes) is required to be greater than the one of the second component (i.e.

lowly expressed genes). After the fitting step, GSECA evaluated the probabilities and ofτ
1

τ
2

each gene to belong to the two distributions defined by the two components.

A data discretization approach is then applied, fulfilling a biological and a statistical

requirement. First, lowly and highly expressed genes must be divided. Second, the

discretization of the bimodal distribution of gene expression levels of a sample should

provide an adequate distribution of genes among expression classes (ECs) to ensure a similar

statistical power for the subsequent tests performed for each class. In particular, for each

sample genes are considered as not expressed (NE) or not detected if their expression level in

FPKM is lower than 0.01; lowly expressed (LE) if the probability of belonging to theτ
2
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second component of the mixture is greater than 0.9; highly expressed (HE) if the probability

of belonging to the first component is greater than 0.9; or medium expressed (ME) if bothτ
1

the probabilities and are <0.9. To ensure an adequate distribution of genes amongτ
1

τ
2

expression classes and retain as much information from the original continuous attribute, HE

genes are, in turn, divided into four classes according to the percentiles of the expression

level distribution. Then, a statistical framework is applied in order to identify altered gene

sets between the two cohorts. For each gene in each expression class (EC) the number of𝑔 𝑐

samples in which it is or not assigned to the class, and respectively, is calculated in the𝑛 𝑟

two cohorts:

and ,∀𝑔 𝑐 𝑛
𝑔,𝑐

=
𝑖

∑ 𝑔 ∈ 𝑐; 𝑟
𝑔,𝑐

=
𝑖

∑ 𝑔 ∉ 𝑐;

where are the samples in the cohorts and (Figure 11).𝑖 𝐴 𝐵

For each gene set the total number of samples with genes of that are and are not in each𝐺 𝐺

expression class across samples and , and , respectively, are calculated as:𝐴 𝐵 𝑁 𝑅

and ,∀𝐺 𝑐 𝑁
𝐺,𝑐

=
𝑔∈𝐺
∑ 𝑛

𝑔,𝑐
; 𝑅

𝐺,𝑐
=

𝑔∈𝐺
∑ 𝑟

𝑔,𝑐
;

Then, a Fisher’s Exact test is implemented to evaluate the enrichment or depletion of genes of

a gene set in an EC in as compared to cohort . In particular, GSECA tests the null𝐺 𝑐 𝐴 𝐵

hypothesis that the cumulative proportions of genes of a gene set in each EC across samples

are not different between and :𝐴 𝐵

and ,∀𝐺 𝑐 𝐻
0
:  𝑁

𝐺,𝑐
; 𝑅

𝐺,𝑐
 ( )

𝐴
= 𝑁

𝐺,𝑐
; 𝑅

𝐺,𝑐
 ( )

𝐵
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Each of the seven classes are, at this point, characterized by a P-value representative of the

expression alterations in gene sets. Given the contingency table defined by and for the𝑁 𝑅

two cohorts, the algorithm simulates the table under two independent binomial distributions

and performs a two-tailed Fisher’s Exact Test. All genes of the gene set that are not in the EC

under testing are considered, regardless of their class membership. In this way tests are not

interdependent. If more than one gene set is considered, Benjamini-Hockberg method is used

to correct p-values for multiple testing.

As each class is tested independently from the others, for each gene set a comprehensive

P-value that summarizes the alterations across ECs is also evaluated through the Fisher’s

method. The final Association Score (AS) (Littell and Folks 1971) is obtained as:

Ψ =− 2
𝑐
∑ 𝑙𝑜𝑔 𝑝 𝑐( )( )

𝐴𝑆 𝐺( ) = 𝑃
𝑐𝑜𝑚𝑏

= 1. 0 − 𝑃χ
2𝑘
2 Ψ( )

where is the combined test statistic and is a Chi-squared distribution with degrees ofΨ χ
2𝑘
2 2𝑘

freedom ( =number of ECs), is the P-value and is the expression class.𝑘 𝑝 𝑐

Also, the significance level of the AS is evaluated by performing a bootstrapping procedure

(random sampling with replacement) (Cereda et al. 2014): for 1,000 times sample labels are

shuffled and the AS is evaluated for each gene set. At the end the empirical P-value is

calculated as:

𝑝
𝑒𝑚𝑝

𝐴𝑆
𝐺( ) =

1+
𝑖

∑𝐴𝑆
𝐺,𝑖

<𝐴𝑆
𝐺( )

1+#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

To take into consideration possible sample size differences between the two cohorts, we also

implemented a procedure to evaluate the success rate (SR). The algorithm performs a

bootstrapping procedure downsampling for 1,000 times the bigger cohort to the dimension of

the other and repeating the analysis at each iteration. At the end of these iterations, for each
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AS, the SR, or the proportion of significant enrichments (P-value < 0.01, two-tailed Fisher’s

Exact Test) over the total number of comparisons is calculated as previously described

(Gambardella et al. 2017).

Figure 11. From (Lauria et al. 2020), Schematic representation of GSECA algorithm. GSECA requires as input

normalized gene expression data of two groups of samples and , and a list of gene sets . The algorithm

proceeds through three sequential steps: (i) the sample-specific finite mixture modeling of gene expression

distribution; (ii) the sample-specific discretization of expression values into seven categorical expression

classes; and (iii) the statistical identification of altered gene sets (AGSs) obtained by comparing the cumulative

proportion of genes of a gene set in each EC between the two cohorts using a Fisher’s exact test. The

expression perturbation is summarized into an association score (AS), corrected with two bootstrapping

procedures for false discoveries (empirical p-value) and different sample sizes of the cohorts (success rate, SR).

The AGSs are visualized as EC maps. The EC maps display the difference of the cumulative proportion of the

genes of a gene set in the seven ECs between the two cohorts as triangles, whose sizes are proportional to

such difference. The upper and the lower vertex of the triangles represent enrichment and depletion in cohort

A as compared to B, respectively. EC maps depict the proportion N of genes in the gene set in each EC as gray

24

https://paperpile.com/c/3nThs6/T4Dq
https://paperpile.com/c/3nThs6/HutB


bars. GSECA orders AGSs according to their AS, thus obtaining the list of the most altered processes associated

with the phenotype of interest.   

Detailed analysis and technical considerations about the algorithm are available in the

“Appendix A. Gene Set Enrichment Class Analysis”.

GSECA reveals a broad alteration of RBP expression across cancer types

GSECA was applied to the 19 tumor types using as controls their corresponding normal

tissues. The chosen gene sets were the 16 Genetic Information Processing (GIP) sets, as they

cover all fundamental steps of the cell manipulation of information embedded in the genome,

from DNA replication, through transcription, to protein degradation.

Figure 12. Heatmap showing results of pancancer GSECA analysis. For each tumor type gene sets are ranked

according to their combined p-value (from the most significant). Only significant (combined p-value≤10^-3,

empirical p-value≤0.3, AS=1 and rank≤10) are colored according to their rank, while not significant

associations are depicted in gray. Barplots on the top indicate the number of significant gene sets for a specific

tumor type, while barplots on the right represent the number of tumor types in which a gene set has been

identified as significant.
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Results were ranked according to combined p-value, empirical p-value and association rate

and then four different filters were applied to consider a result as significant (combined

p-value≤10^-3, empirical p-value≤0.3, AS=1 and rank≤10) (Figure 12). RBP gene set

resulted as significantly altered in 13 out of the remaining 15 tumors. Moreover, looking at

rankings, the RBP gene set was the second most deregulated pathway after DNA replication,

which was altered in 14 cancer types.

We next assess the changes of expression within the RBP gene set. In particular, we analyzed

the corresponding EC maps, which compares the fraction of RBPs in each expression class

between the tumor and normal condition (Figure 13). We found that the number of tumors

expressing splicing factors at the highest levels (i.e. HE4 class) was depleted in all cancer

types (lower vertex of the triangles). Conversely, tumors that express RBPs at intermediate

levels (i.e. from ME to H3 classes) were generally enriched across all cancer types. Major

changes (bigger triangles) were found in higher classes of expression, whereas the other

classes presented more heterogeneous patterns across tumors. These changes and their extent

in each cancer type were summarized by the GSECA association score. In particular, the AS

was the highest for Colon Adenocarcinoma (COAD) and lung cancers, namely Lung

Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). Changes in

expression of RBPs have been identified in both lung and colon cancers, as well as chances in

splicing patterns, suggesting splicing as a possible therapeutic target (Coomer et al. 2019; Y.

Chen et al. 2021).
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Figure 13. EC map displaying the difference of the cumulative proportion of the genes of RBP gene set in the

seven ECs across 15 cancer types. The EC map displays the difference of the cumulative proportion of the genes

of the RBP gene set in the seven ECs between the two cohorts as triangles, whose sizes are proportional to

such difference. The upper and the lower vertex of the triangles represent enrichment and depletion in cohort

A as compared to B, respectively. EC maps depict the proportion N of genes in the gene set in each EC as gray

bars. Barplots on the right represent the association score (AS) and the success rate (SR) values.

Overall, our results showed that RBP expression is deregulated in almost all cancer types.

Even if RBP expression has been frequently found as altered in cancer (Coomer et al. 2019;

Koedoot et al. 2019), a comprehensive and pan-cancer analysis of RBP expression

deregulation was still missing. The evaluation of deregulation seemed independent from the

number of patients available for a certain cancer type.
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3. Evaluation of transcription factors’ action on RBP

expression at a cancer specific level

The soul is the same in all living creatures, although the body of each is

different.

Hippocrates
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To evaluate whether some transcription factor is the major responsible for the expression of

RBPs two approaches were used, exploiting both direct binding level and the expression one.

Identification of active TF binding sites

To establish the features of transcriptional control of RBPs across cancer types, we integrated

data on chromatin immunoprecipitation sequencing (ChIP-seq) experiments with assay for

Transposase-Accessible Chromatin sequencing (ATAC-seq). In doing so, we defined TF

binding sites in regions that are recurrently actively-transcribed across tumors of the same

cancer type as “active” binding sites. We then developed a framework to assess the

over-representation of RBPs with active binding sites of distinct TFs within

cancer-cell-line-specific chromatin-accessible promoter regions.

Specifically, ChIP-Seq experiment significant peaks (i.e. p-value≤10-5) for 485 TFs in 207

cell lines in 31 tissues were retrieved from Remap 2018 (Chèneby et al. 2018) (read also

“Appendix B. Insights into literature”, A.). To select regulatory regions that are related to

sites of active transcription, accessible DNA elements that were defined as reproducible

across Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) experiments for

23 cancer types were retrieved from the Genomic Data Commons (GDC) Portal

(  https://gdc.cancer.gov/about-data/publications/ATACseq-AWG) (Corces et al. 2018) (read

also “Appendix B. Insights into literature”, B.). Coordinates of 20,298 protein-coding genes

were retrieved from GENCODE GRCh37 version 28 (Frankish et al. 2019) and promoter

regions were defined as 2,000 base pairs upstream and downstream the transcription start

sites of each gene.

Cancer cell lines were associated with the corresponding cancer type, resulting in 107 cell

lines associated with 17 tumor types (Figure 14).
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Figure 14.  Sankey plot showing associations between cell lines and tumors.
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In total, we collected data for 273 TFs. The number of TFs with ChIP-seq data available were

greatly variable among cancer types (Figure 15).

Figure 15.  Barplot showing the number of TFs for which we collected ChIP-seq data for each tumor type.

For each cancer type, cell line, and TF, ChIP-Seq peaks of the same TF in a fixed cell line

were merged and intersected with regions of corresponding open chromatin to identify the

corresponding active bindings. Only overlapping peaks were retained and called, hereafter,

TF active binding sites in a specific cell line. In the same manner promoter regions were

intersected with accessible elements of the nine tumor types, in order to define

cancer-specific transcribed genes. Next, genes with active TF binding sites in the cognate

open-chromatin promoter were retained. Finally, to identify TFs that control RBP expression

direct transcriptional control, we assessed the over-representation of our set of 148 RBPs with

active binding of TFs as compared to the rest of genes with evidence of the same regulation.

In particular, an upper-tailed Fisher’s Exact test was performed for each TF in each cell line

testing the proportion of RBPs with ative bindings as compared to the rest of human genes

with active bindings. For each cell line, p-values were corrected for multiple testing using

Benjamini-Hochberg method and only those with false discovery rate (FDR)≤0.1 were

considered as significant (Figure 16). We focused on TFs that were annotated as cancer

drivers according to the Network of Cancer Genes v.6 (Repana et al. 2019) (read also
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“Appendix B. Insights into literature”, C.) and cell lines belonging to tumor types for which

we had also RNAseqDB data.

Figure 16. Schematic representation of the pipeline used to assess the overrepresentation of RBPs with TFs

active binding sites within cell line-specific chromatin-accessible promoters.

Although each cell line presented its own pattern of regulation, some are the transcription

factors that emerged for their enriched association to RBPs  (Figure 17).
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Figure 17. Heatmap showing the log10(adjusted p-value, FDR) for each transcription factor in each cell line.

Squares are depicted in gray if FDR was not significant (FDR>0.1). Cream color squares represent the absence

of a TF in a specific cell line. Bottom stripe indicates the cell cancer type associated with the cell line. Barplots

on the right represent the cancer-specific P-value obtained using the Fisher’s Method (log10) and the number

of cell lines in which the TF is significant. TFs or cell lines that did not present any enrichment were excluded

from the graph.

We found that MYC, MAX and FOXA1 were enriched in many cell lines with generally low

FDR. MYC and MAX were enriched in almost the same cell lines, supporting the evidence

showing that these TFs works together in a heterodimer (Arsura et al. 1995; Bissonnette et al.

1994; Walhout et al. 1997; Nair and Burley 2003; Grandori et al. 1996). Interestingly, in cell

lines where they are both present (coloured squares), MYC and FOXA1 were always

significant, suggesting a possible relation between the two.
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Identification of cancer-specific TF regulators of RPB expression

To define the cancer type specific RBP major regulators for each cancer type and TF, we

combine cell-line specific TF p-values using the following procedure. A cumulative

enrichment score, named hereafter as “Score”, was also calculated combining cancer-type

specific p-values with the Fisher Method (FM, (Fisher 1992)). The “Score” was then rescaled

as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔
10

𝑆𝑐𝑜𝑟𝑒( ) * 𝑁
𝑐𝑎𝑛𝑐𝑒𝑟

where is the number of cancers in which TF resulted as significantly associated with𝑁
𝑐𝑎𝑛𝑐𝑒𝑟

RBPs.

We found that MYC and MAX were the most significant ones, followed by FOXA1, TCF7L2

and CREB1 (Figure 18). Interestingly, MYC, MAX and FOXA1 were not only enriched in

several cell lines but also that these cell lines belonged to different tumors.
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Figure 18. Heatmap showing the log10(combined P-Value (Fisher’s Method)) for each transcription factor in

each tumor type. Squares are depicted in cream color if the combined P-Value (Fisher’s Method, FM) was not

significant (FM>0.05) or if the TF is absent in a specific tumor type. Barplots on the right represent the

TF-specific P-value obtained using the Fisher’s Method, FM, (log10), the number of tumor types in which the TF

is significant and the “Score”, obtained by multiplying quantities of the two previous barplots.
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Modeling RBP expression as a function of TF profiles

We next assessed the putative TF regulation of RBP expression emplying an orthogonal

approach. In particular, rather than considering evidence at DNA-level, we exploited

RNA-sequencing data looking for proofs of regulation at RNA-level.

Processed RNA-seq expression data were retrieved from RNAseqDB (Q. Wang et al. 2018)

for 8,464 samples, divided into 6,142 cancer and 2,322 normal ones. Nineteen tumor types

were covered (Figure 9).

To identify transcription factors whose expression has the highest association with RBP

expression a generalized linear model (GLM) approach was used. For each cancer type, GLM

was fitted to the cumulative expression of RBPs using TFs as regressors. For each tumor type

were selected the cancer-related TFs for which we retrieved ChIP-seq data. To increase the

statistical power of prediction, corresponding normal tissues were also included. In particular,

there were only selected tumor types and TFs for which the analysis of direct bindings were

performed. The relative importance (RI) of each TF in the GLM was calculated using the

averaging over ordering method (“Introduction to Bivariate and Multivariate Analysis” n.d.)

and a TF was considered as putative regulator of RBP expression if its RI was positive

(indication of positive regulation) and the associated p-value significant (p-value≤0.05).
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Figure 19. Heatmap showing the log10(P-Value) from the GLM model for each transcription factor in each

tumor type. Squares are depicted in cream color if the P-Value was not significant (P-Value>0.05 or negative

coefficient). Barplots on the right represent the TF-specific P-value obtained using the Fisher’s Method, FM,

(log10), the number of tumor types in which the TF is significant and the “Score”, obtained by multiplying

quantities of the two previous barplots.

We found that MYC and FOXA1 were the TF with both high numbers of cancer types with

enrichment and generally low p-values (Figure 19). On the contrary, TP63 presented the

lowest p-value but was only enriched in esophageal carcinoma, while CTCF presented a wide

number of significant cell lines, but relatively high p-values.

Double-hits of regulations at DNA and RNA levels reveal MYC and

FOXA1 as master regulators of RBP expression

For each cancer type, we labeled as putative RBP regulators the TFs that were selected both

from the active binding and the expression analyses (Figure 20).
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Figure 20.  Sankey plot showing candidate TFs for each tumor type.

Although each cancer type presented its own pattern, MYC and FOXA1 were the most

powerful candidates for RBP regulation across cancer types showing enrichments at both

DNA and RNA levels (Figure 21) .

Figure 21. Heatmaps showing the focus on FOXA1 and MYC results at a DNA and RNA level.

Overall, combining ChIP-seq, ATAC-seq and RNA-seq data we showed that some

transcription factors harbor both an enrichment of direct bindings on promoters of RBPs and
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a positive and significant correlation with their expression. In particular, MYC and FOXA1

emerged from both analyses as RBP regulators across cancer types.
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4. FOXA1 regulation on RBP expression in prostate cancer

Great empires are not maintained by timidity.

Tacitus
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The pioneer transcription factor FOXA1

Since the relation between MYC and splicing in cancer has been widely studied, as we

explained in Chapter 1, we focused on FOXA1 as a regulator of RBP expression.

FOXA1 is a pioneer transcription factor and epigenetic modifier (Lupien et al. 2008),

primarily involved in developmental processes (Bernardo and Keri 2012; Gasser et al. 2016).

In cancer, FOXA1 has been widely studied for its recurrent somatic mutations and variants of

its cis-regulatory elements (Parolia et al. 2019; N. Shah and Brown 2019; Teng et al. 2021). It

is particularly known for its tumorigenic effect in hormone-related cancers, like endometrium

(M. Qiu et al. 2014), breast (Fu et al. 2019; Seachrist, Anstine, and Keri 2021), and prostate

cancer (Robinson and Carroll 2012; Teng et al. 2021; Gerhardt et al. 2012; Rhie et al. 2019).

It has been shown that FOXA1 binds on AR in promoting AR target transcription (Robinson

et al. 2014; Sahu et al. 2011; Jin et al. 2014; Teng et al. 2021; Jones et al. 2015).

Nevertheless, in neuroendocrine prostate cancer, where AR is not expressed, FOXA1

promotes proliferation (Baca et al. 2021). The link between FOXA1 expression and cancer

proliferation has often been reaffirmed (Imamura et al. 2012; M. Qiu et al. 2014). Moreover,

overexpression of the pioneer transcription factor FOXA1 is a frequent event in primary and

metastatic prostate  cancer (Parolia et al. 2019; Jin et al. 2013) (Figure 22).

Figure 22. From (Parolia et al. 2019), Boxplot showing FOXA1 expression in normal prostate, pri-PC tissue and

metastatic prostate cancer.
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As FOXA1 is a known oncogene of prostate cancer, we sougth to investigate its role of RBP

regulator in this cancer type, where aberrant AS has recently been related to its progression.

AS dysregulation leads to prostate cancer aggressiveness

Recently, it has been shown that the dysregulation of expression of splicing-related genes is

related to prostate cancer aggressiveness and to the increased resistance towards drugs

(Jiménez-Vacas et al. 2020). Also, the overexpression of some RBPs has been related to

worst survival (Jiménez-Vacas et al. 2020) (Figure 23).

Figure 23. Association between SNRNP200, SRRM1 and SRSF3 expression levels and biochemical PCa

recurrence in 67 samples from FFPE cohort (samples from patients who underwent adjuvant radiotherapy

were not included), calculated by Log Rank analysis (LR). Extracted from (Jiménez-Vacas et al. 2020)

Moreover, dysregulation in intron retention patterns has been proposed as an hallmark of

cancer (D. Zhang et al. 2020).

Evidences, both in literature and from our analyses, show that:

● FOXA1 is a major regulator of RBPs;

● FOXA1 expression is often deregulated in prostate cancer, particularly in metastatic

one;

● AS is deregulated in almost all cancer types;

● RBP expression has been related to survival in prostate cancer and altered AS has

been proposed as an hallmark;

Given that, we explored the splicing landscape in prostate cancer, with a particular focus on

FOXA1 transcriptional regulation over RBP expression.
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Transcriptional regulation of RBPs in primary and metastatic prostate

cancer by FOXA1, ERG, GATA2, and RUNX1

To assess the influence individually exerted by FOXA1, ERG, GATA2 and RUNX1 (Figure

20) to the dysregulation of AS in prostate cancer (PC), we measured the contribution of their

expression to the overall transcription of 148 RBPs. To do so, we used available RNA

sequencing (RNA-seq) repositories of 409 primary (Network, Cancer, 2015) and 118

metastatic castration-resistant (Robinson et al., 2015). Data were obtained from The Cancer

Genome Atlas (TCGA) Data Matrix portal (Level 3,

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) and cBioPortal (Cerami et al. 2012;

Y. Chen et al. 2013) websites for 409 primary PC (pri-PC) and 118 metastatic

castration-resistance PC (mCRPC) samples, respectively. The number of transcripts per

million reads (TPM) was measured starting from the scaled estimate expression values

provided for 20,531 genes (Cereda et al. 2016). For the mCRPC dataset, reads per kilobase of

transcript per million mapped reads (RPKM) values were converted into TPM. For our

quantitative analysis, we fitted RBP cumulative expression as a function of transcription

factor expression levels using a generalized linear regression and measured their relative

contribution in the model as described above.

We found that, out of the four TFs, FOXA1 was the strongest positive predictor of RBP

cumulative expression in primary and  metastatic PC (Figure 24).

Figure 24.  GLM coefficient of each TF by the GLM for pri-PC (left) and mCRPC (right) samples.
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FOXA1-regulated RBPs in primary and metastatic PC

We next sought to identify RBPs that were regulated by FOXA1. Since RBPs are highly

expressed in the cell (de la Grange et al., 2010; Sebestyén et al., 2016), canonical parametric

methods for differential expression analysis can fail to detect statistically significant changes

in presence of large gene counts and subtle differences between cohorts (Li and Tibshirani,

2013). Recent studies have shown that nonparametric differential expression analysis

approaches are more robust than parametric models to handle this scenario (Shi et al., 2015;

Zhu et al., 2019). In this view, we combined parametric and non-parametric analysis to

identify FOXA1-regulated RBPs in PC. To do so, we compare the transcriptional targets of

the 25% of tumors with the highest expression (HE) of FOXA1 against the remaining ones

(REST, Figure 25). In particular, differentially expressed RBPs were identified by comparing

their TPM distributions between FOXA1 HE and REST samples with a two-tailed

Kolmogorov-Smirnov test. P-values were corrected for multiple tests using the false

discovery rate (FDR) by Benjamini–Hochberg method. To estimate the empirical p-value of

each comparison, a Monte Carlo procedure was implemented. For 10,000 iterations, FOXA1

HE and REST samples were randomly selected and, for each RBP, the TPM distributions

were compared using a two-tailed Kolmogorov-Smirnov test. For each RBP, the empirical

p-value was measured as the proportion of tests with p-value smaller than the corresponding

observed one over the total number of iterations. Concomitantly, canonical parametric

differential expression was performed between FOXA1 HE and REST samples using the R

packages ‘DESeq2’ and ‘EdgeR’ (Love, Huber, and Anders 2014; Robinson, McCarthy, and

Smyth 2010) for the TCGA dataset, for which raw sequencing counts were available. Genes

with read count equal to zero across all samples were removed. RBPs with FDR≤0.01,

empirical p-value≤0.01, DESeq2 or EdgeR absolute log2 Fold Change (FC) ≥0.2 and adjusted

p-value≤0.01 were considered as differentially expressed in FOXA1 HE samples as

compared to REST. For the metastatic dataset, RBPs with FDR≤0.01, emp-pv≤0.01, and an

absolute log2(FC) of median TPM ≥0.2 were considered as altered.
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Counts are available?

Figure 25. Schematic representation of the pipeline used to detect RBPs that are differentially expressed in

primary and metastatic (mCRPC) PC upon FOXA1 high expression.

Overall, gene expression fold-changes (FCs) between FOXA1 highly expressing and

remaining tumors were significantly concordant between the parametric and non-parametric

approaches (average Pearson’s correlation coefficient = 0.95, p-value<10-16).

We identified 71 RBPs that were significantly regulated by FOXA1 in either primary or

metastatic tumors (Figure 26).
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Figure 26. Heatmaps of normalized gene expression levels (TPM) of differentially expressed RBPs between

FOXA1 HE and REST samples in pri-PC (left) and mCRPC (right). Barplots on the right indicate the corresponding

FC in TPMs between FOXA1 HE and REST samples.
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Figure 27. Differentially expressed RBPs between samples with HE of FOXA1 and REST in pri-PC and mCRPC

samples.

Of these FOXA1-regulated RBPs, 19 were significantly altered in both primary PC and

mCRPC (Figures 27,28).

Figure 28.   Heatmap of normalized gene expression levels (TPMs) of differentially expressed RBPs between

FOXA1 HE and REST samples in pri-PC and mCRPC. Bar plots on the right indicate the corresponding expression

fold change (FC) for pri-PC (black) and mCRPC (orange) samples.

To better explore FOXA1 regulation of RBPs in both presence and absence of AR, transient

silencing of FOXA1 was performed in AR-dependent (AR+) VCaP and AR-independent

(AR-) PC3 prostate cancer cell lines.
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In vitro validation of FOXA1 calibration of RBP expression

To validate the impact of FOXA1 on RBP expression, we performed deep RNA-seq (~100

million reads) on siRNA-treated (i.e. siFOXA1) and non-silenced control (i.e. NSI) samples

from AR+ VCaP and AR- PC3 cells, and compared NSI and siFOXA1 data to match the

contribution of FOXA1 overexpression in clinical PC  (Figure 29, A and B).

VCaP (CRL-2876, ATCC) and PC3 (CRL-1435, ATCC) cells were obtained from ATCC.

They were incubated at 37oC, 5% CO2 in a humidified incubator and maintained at

sub-confluency in RPMI-1640 medium (21875-034, Gibco) or DMEM (41966-029, Gibco)

containing 2 mM L-glutamine, supplemented with 10% fetal calf serum (FCS) (Gibco), 100

units/ml penicillin and 100 µg/ml streptomycin (15140-122, Gibco) and regularly tested for

the presence of mycoplasma. Transfections with plasmid DNA and siRNA duplexes were

carried out as detailed using ViaFect (E4981, Promega) and RNAiMax (13778-075, Thermo

Fisher Scientific), respectively, following manufacturers’ instructions. TriReagent (AM9738,

Invitrogen) was employed to lysate cells and RNA extracted by phase separation using

1-bromo-3-chloropropane. Total RNA was treated with DNAse to exclude genomic

contamination and cleared with RNA Clean and Concentration (Zymo Research). Quantity

and quality of the material were determined by Qubit Fluorometric Quantitation (Thermo

Fisher Scientific) and using the RNA 6000 Nano kit on a Bioanalyzer (Agilent Technologies),

respectively. Only samples with an RNA integrity number >7 were selected for library

preparation. RNA-seq libraries were generated from 1 µg of RNA using TruSeq total RNA

and TruSeq stranded mRNA (Illumina), respectively, following manufacturer’s indications.

VCaP libraries were sequenced in paired-end modality on Illumina NextSeq500 machine

with a read length of 75 nucleotides (nt), while PC3 libraries were sequenced on Illumina

NovaSeq6000 in 100nt-long paired-end read modality.

The alignment of raw sequencing reads was performed using STAR (Dobin et al. 2013) on

human genome reference GENCODE GRCh37 (Frankish et al. 2019) and gene expression

was estimated using featureCounts (Liao, Smyth, and Shi 2014). Hierarchical clustering and

principal component analyses of gene expression normalized data showed that samples were

appropriately separated upon silencing conditions (Figure 29, C and D).

Next, we performed canonical parametric differential expression analysis between NSI and

siFOXA1 samples to match the contribution of FOXA1 overexpression in clinical PC. On

average, 76% of the differentially-expressed RBPs in primary PC and/or mCRPC were

concordantly regulated by FOXA1 in the two cell lines (Figure 29, E).

48

https://paperpile.com/c/3nThs6/6Iue
https://paperpile.com/c/3nThs6/WPWJ
https://paperpile.com/c/3nThs6/KgGv


C.
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Figure 29. (A,B). Western blotting images of FOXA1 depletion in VCaP (A) and PC3 (B) cells used for RNA-seq

analysis by transfection with one siRNA duplex (si1 or si2, 40nM for 72 hours). Normalized (to ACTB) protein

expression compared to control (NSI) , calculated by densitometric band quantitation, is shown below FOXA1

blot images. C. Hierarchically clustered heatmaps of Euclidean distance between expression values for VCaP

and PC3. D. Scatter plot of the first two components of a principal component analysis for VCaP and PC3

RNA-seq datasets with the percentage of variance explained by each component reported on each axis. E. Bar

plots showing the fractions of FOXA1-regulated RBPs that changed expression levels between NSI and siFOXA1

samples in VCaP and PC3 cells with respect to their expression change in pri-PC and mCRPC.

Out of the 19 FOXA1-regulated RBPs that were altered in both primary PC and mCRPC,

HNRNPK, SNRNP200, WBP11, ESRP2, SF3B3 and NCBP1 were significantly differentially

expressed by FOXA1 in both cell lines (Figure 30).

Figure 30. Bar plots showing log2 FC in the expression between NSI and siFOXA1 from VCaP and PC3 RNA-seq

datasets for RBPs differentially expressed in pri-PC and mCRPC. Colors indicate whether the expression change

is significant and concordant with that observed in pri-PC and mCRPC analyses.

Overall, these results clearly demonstrate that FOXA1 directly drives the expression of a

subset of  splicing factors.

Systematic analysis of FOXA1 binding sites in prostate cancer cell lines

We next sought to systematically investigate the three-dimensional architectural features of

transcriptional control by FOXA1 in PC. FOXA1 is known for binding mainly on enhancer

regions. Moreover, 3D structure of VCaP and LNCaP prostate cancer cell lines has been
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recently studied (Ramanand et al. 2020), so a pipeline for integrating 3D structure

information and PC-specific open chromatin bindings was developed.

To define the prostate cancer-specific landscape of FOXA1 regulation, we combined 3D

structure information of two cell lines, VCaP and LNCaP, with FOXA1 ChIP-seq data and

ATAC-seq data from PC TCGA patients. RNA Pol II–associated enhancer-gene interactions

defined by Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) in

VCaP and LNCaP cell lines were obtained from Ramanand et al. (Ramanand et al. 2020).

Promoter regions were defined as explained in chapter 3. To select regulatory regions that are

related to sites of active transcription in PC, promoter and enhancer regions were intersected

with PC-specific accessible elements and only overlapping regions were retained. Candidate

enhancer-gene interactions were retained if associated with the related promoter and

enhancer-gene associations in which the enhancer overlapped with the promoter of the same

gene were discarded. Interaction of maximum one million base pairs were retained for further

analyses (Figure 31).
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Figure 31. Schematic representation of the filters applied on enhancer-gene associations.

To identify FOXA1 binding regions in LNCaP and VCaP cells, significant peak calls (i.e.

p-value≤10-5) of four and five FOXA1 ChIP-Seq experiments, respectively, were obtained

from ChIP-Atlas (Oki et al. 2018) (read also “Appendix B. Insights into literature”, A.). The

choice fell on this database as experiments can be chosen manually to retain only wild type

ones (e.g. discarding those in which cells are treated with drugs or transiently silenced for

other TFs). For each cell line, peaks were positionally sorted and merged and FOXA1

binding regions were intersected with PC-specific accessible elements as explained before.

Only overlapping regions were retained and considered as FOXA1 active binding sites

(Figure 32).
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Figure 32. Schematic representation of the pipeline used to identify FOXA1 active binding sites.

To identify genes putatively regulated by FOXA1, active binding sites were intersected with

promoter and enhancer regions.
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Figure 33. Schematic representation of the pipeline used to assess the overrepresented genes involved in

biologically-relevant processes with FOXA1 active binding sites within PC-specific chromatin-accessible

promoters and associated enhancers.
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Finally, for each regulatory element (i.e. promoters and enhancers), putatively

FOXA1-regulated genes were selected and over-representation analyses of genes in the GIP

gene sets were performed. Enrichment tests with false discovery rate (FDR)≤0.1 were

considered as significant (Figure 33).

Among the 16 GIP gene sets, RBPs showed the highest enrichment of genes with FOXA1

active binding sites in their regulatory regions both in VCaP- and LNCaP-based datasets

(Figure 34).

Figure 34. Over-representation analysis (ORA) results on genes with FOXA1 binding sites at promoters (circles)

and enhancers (triangles) in (Upper panel) VCaP and (Bottom panel) LNCaP cells.

Next, differentially expressed RBPs according to differential expression analysis on primary

and metastatic patients that harbor FOXA1 active binding sites on promoters and/or
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enhancers were identified. Out of the 71 RBPs, respectively 85% and 65% harbored FOXA1

active binding sites at their interacting regulatory regions in VCaP and LNCaP cells (Figure

35).

Figure 35. FOXA1-regulated RBPs in pri-PCs or mCRPCs with at least one FOXA1 binding site on gene promoter

(yellow) or enhancer (blue) regions in (Left panel) VCaP data or (Right panel) LNCaP data.

Through a two-tailed Test of Equal Proportions was shown that FOXA1 preferentially binds

enhancer over promoter regions of RBPs (p-value=9x10-8 and 6x10-4 for VCaP- and

LNCaP-based dataset, respectively), nevertheless seven FOXA1-regulated RBPs harbored

active binding sites in both promoter and enhancer regions in the two datasets (Figure 36).
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Figure 36. UpSetR plot showing the intersection between FOXA1-regulated RBPs with FOXA1-bound promoters

(yellow) and enhancers (blue) in VCaP and LNCaP cells. The seven RBPs with FOXA1 binding sites in both

promoters and enhancer regions in both VCaP and LNCaP cells are indicated as text.

An example can be seen in the two forthcoming figures (Figures 37,38). Inspecting the

transcriptional architecture of HNRNPK in the VCaP-based dataset, FOXA1 bindings are

found on the promoter and six associated active enhancers. Similarly, in the LNCaP-based

dataset, FOXA1 bound the HNRNPK promoter and a single interacting active enhancer at

~6.4kb, which was shared between the datasets.
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Figure 37. Genome view representing HNRNPK promoter and enhancer regions that are bound by FOXA1 in

VCaP cells. ChIP-seq density read tracks for H3K27ac, H3K4me3, CTCF (2 overlayed experiments) and FOXA1 in

VCaP cells are shown together with pri-PC-reproducible ATAC-seq peak calls, FOXA1 active binding sites (bs)

and RNA PolII ChIA-PET-derived FOXA1 bound enhancer-HNRNPK associations. The position of the considered

HNRNPK regulatory regions along chromosome 9 is shown at the top of the panel.
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Figure 38. Genome view representing HNRNPK promoter and enhancer regions that are bound by FOXA1 in

LNaP cells. ChIP-seq density read tracks for H3K27ac, H3K4me3, DNAse-Seq, CTCF and FOXA1 in LNCaP cells are

shown together with pri-PC-reproducible ATAC-seq peak calls, FOXA1 active binding sites (bs) and RNA PolII

ChIA-PET-derived FOXA1 bound enhancer-HNRNPK associations. The position of the considered HNRNPK

regulatory regions along chromosome 9 is shown at the top of the panel.
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Overall, these results clearly demonstrate that FOXA1 directly drives RBP expression, by

preferentially binding cognate chromatin-accessible active enhancers. The direct

transcriptional control of FOXA1 primarily impacts on splicing factors as compared to other

fundamental biological processes.

60



5. FOXA1-dependent AS in prostate cancer

One good way to understand a complex system is to disturb it and see what

happens.

Michael Pollan
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Identification FOXA1-regulated alternative splicing events

As we found that FOXA1 primarily controls splicing factors, we next sought to determine its

impact on the alternative splicing landscape of PC. To do this, we explored the level of

inclusion of 60,699 AS events in their corresponding transcripts across 384 primary tumors

(Kahles et al. 2018). The catalog of alternative splicing events was obtained from The GDC

portal (https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018). This atlas

included five categories of AS events: Cassette Exon (CE), Alternative 3’ (A3) and 5’ (A5),

Intron Retention (IR) and Mutually Exclusive exons (MEX). The percent of spliced in (Ψ)

value was used as a measure of splicing event inclusion in the mature mRNA (Schafer et al.

2015). AS events with (i) available information in more than 75% of the samples (Schafer et

al. 2015), (ii) mean (μ) Ψ ranging from 0.01 and 0.99 (i.e. not constitutively excluded or

included, respectively), and (iii) in genes with less than 500 events were retained for further

analysis. For each selected AS event, missing values were replaced by the mean of the

corresponding Ψ distribution across samples (Li et al. 2017). For each AS event the μ and

standard deviation (σ) of Ψ levels in FOXA1 highly expressing and remaining samples were

calculated. The difference of μ and σ of Ψ levels (i.e. ∆μ(Ψ) and ∆σ(Ψ)) between the two

cohorts was then measured. To identify AS events associated with FOXA1 high expression,

events with negligible changes in ∆μ(Ψ) and ∆σ(Ψ) were discarded. In particular, variable AS

events were defined based on the quantile distributions of ∆μ(Ψ) and ∆σ(Ψ). An AS event

was defined as variable either (i) if ∆μ(Ψ) was lower or greater than the 15th or the 85th

percentile of ∆μ(Ψ) distribution, respectively, or (ii) if ∆σ(Ψ) was lower or greater than the

20th or the 80th percentile of ∆σ(Ψ) distribution (Attig et al. 2018; Agirre et al. 2021),

respectively. In total, we obtained 30,439 variable AS events.

Next, to select variable AS events that were significantly differentially included between

FOXA1 HE and REST samples, two non-parametric statistical tests were performed. For

each variable AS event, ∆μ(Ψ)s between FOXA1 HE and REST tumors were tested using a

two-tailed Wilcoxon Rank Sum test, whereas ∆σ(Ψ)s were compared using a two-tailed

Fligner-Killeen test (Saraiva-Agostinho and Barbosa-Morais 2019). P-values were corrected

for multiple testing using the Benjamini–Hochberg procedure. To calculate the emp-pv of

each comparison, sample labels were shuffled for 1,000 times and at each iteration the two

tests were performed. The empirical p-values of each test were calculated as the number of

times p-values were smaller than the observed ones. To account for the sample size difference

between FOXA1 HE and REST cohorts, the latter was randomly down-sampled to reach the
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size of the former for 1,000 times. At each iteration, tests were performed. The success rate

(SR) was then computed as the proportion of significant results (p-value<0.05) over the total

number of comparisons. Variable AS events with an FDR<0.05, emp-pv<0.05 and SR>0.7 of

at least one test were considered as significantly differentially included between FOXA1 HE

samples and REST and named as FOXA1-regulated AS events (Figure 39).

Figure 39. Schematic representation of the pipeline used to identify FOXA1-regulated events in primary PC.

Trajectories (represented as arrows) are defined by mean (μ) and standard deviation (σ) inclusion (Ψ) changes

(∆) of each AS event towards high FOXA1 expression.

We identified 7,121 FOXA1-regulated AS events showing significant μ(Ψ) and σ(Ψ) changes

between the two groups (1,181 CEs, 903 A3, 680 A5, 2,991 IR and 1,366 MEX) (Figure 40).
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Figure 40. Left panel. Barplot showing the number of FOXA1-regulated AS events selected for mean (μ),

increased or reduced, and standard deviation (σ), stable or dispersed. Right panel. Pie chart showing numbers

of FOXA1-regulated AS events by event type.

To characterize the impact of FOXA1-mediated AS regulation on fundamental biological

processes, we next performed over-representation analysis of genes harboring

FOXA1-regulated AS events in primary tumors.

Figure 41. Over representation analysis performed on genes harboring FOXA1-regulated AS events.

Out of 186 canonical KEGG pathways, we found that the spliceosome gene set was the

top-ranked affected process (Figure 41). This result was also confirmed when we stratified

AS events into categories corresponding to the major types of AS patterns. These results

implicate FOXA1 in a regulatory feedback loop involving splicing factors.
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Identification of cis-acting motifs that controls AS of FOXA1-regulated

cassette exons

RBPs regulate splicing according to position-dependent principles, which can be exploited

for analysis of regulatory motifs. To identify the principle governing AS of FOXA1-regulated

exons we then focused on CEs. To do so, we employed RNAmotifs (Cereda et al. 2014), a

method that evaluates the sequence around differentially regulated alternative exons to

identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs

(Figure 42). It has been shown that diverse RBPs share basic positional principles, but differ

in their propensity to enhance or repress exon inclusion.

Figure 42. A. Schematic representation of multivalent motifs (i.e. clusters of short degenerate motifs)

surrounding the alternative spliced exon. B. RNA splicing maps of multivalent RNA motifs enriched in the

'mixed' set of exons regulated by hnRNP C, PTBP1 and TIA. Sequences of the enriched tetramers are shown on

the left, followed by a color-coded panel showing the regions where tetramer enrichment reached the defined

threshold around silenced (blue) or enhanced (red) exons. The right panel depicts the nucleotide-resolution

RNA splicing map of each motif at the enhanced or silenced exons, and their flanking exons. The color key

indicates whether the position-specific contribution originates from enhanced (red),silenced (blue),or both

(yellow) sets. The maximum enrichment score (ES) value of the top tetramer is reported on the right.

RNAmotifs was used to identify the 512 degenerate and not-degerate multivalent RNA

motifs of 4nt length (i.e. tetramers) that occurred in a specific region more often in the 1,181

FOXA1-regulated CEs of interest compared with 2,929 constitutive exons (i.e. μPC(Ψ)>0.999
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and |∆μ(Ψ)|<2.5x10-5) defined as controls. The tool was run considering three enrichment

regions: (i) R1 [-205:-5] nucleotides of intronic sequence upstream of the 3′ splice site (ss);

(ii) R2 corresponding to the entire exonic sequence (or up to 200 nt from both ss in case of

exon was longer than 400 nt); and (iii) R3 [10:210] nucleotides of intronic sequence

downstream of the 5′ ss. RNAmotifs empirical p-values were calculated using 10,000

bootstrap iterations. Tetramers with RNAmotifs Fisher’s p-values and empirical p-values

smaller than 0.05 (or the 1st percentile of the p-value distribution in case of highly significant

results) and 0.0005, respectively, were retained for further analysis. To visualize the exact

positions in the pre-mRNA where clusters of RNA motifs are enriched, RNAmotifs was run

performing a position-specific enrichment analysis at exon/intron junctions of alternative CEs

and flanking exons extending 1,000 and 50 nucleotides into introns and exons, respectively.

We obtained 23 significantly enriched tetramers within FOXA1-regulated CEs and their

flanking introns, of which the majority (n=19) were associated with more-excluded exons,

corroborating the greater impact of FOXA1 on exon silencing (Figure 43). Clusters of T-rich

motifs were enriched at the 3’ splice sites (ss) of the upstream introns, matching the location

of the polypyrimidine (Py)-tract that is required for exon definition. Conversely, GAC-rich

tetramers characterized the 5’ss of FOXA1-regulated exons, supporting the involvement of

auxiliary splicing regulators in ss recognition.
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Figure 43. RNA splicing map of multivalent RNA motifs enriched at FOXA1-regulated exons relative to

constitutive ones (i.e. RNAmotifs Fisher’s test p-values cutoffs = 1.5x10-3, 5x10-2 and 1.2x10-2 for R1, R2 and R3,

respectively). Sequences of the enriched tetramers are shown on the left, followed by a color-coded panel

showing the regions where tetramer enrichment reached the defined threshold around inhibited (blue) or

enhanced (red) exons. The right panel depicts the nucleotide-resolution RNA splicing map of each motif at the

FOXA1-enhanced or FOXA1-inhibited exons, and their flanking exons. The color key indicates whether the

position-specific contribution originates from enhanced (E; red), inhibited (I; blue), or both (yellow) sets. The

maximum RNAmotifs enrichment score value of the top tetramer, which is used to plot all tetramers, is

reported on the right. Nt, nucleotides.
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Association of cis-acting elements to trans-acting factors

To assess the trans-acting regulation of CE inclusion, we associated cis-acting sequences to

cognate trans-acting factors. In particular, in light of the reproducibility of splicing factor

binding positions across cell types (Van Nostrand, Pratt, et al. 2020), we searched for RBP

cross-linking sites from eCLIP experiments in HepG2 cells at FOXA1-regulated exons with

tetramer instances. Then, we associated tetramers to cognate RBPs on similarity of (1) their

sequence with canonical RBP consensus motifs, and (2) position-dependent representation of

their occurences (i.e. splicing maps) with those of RBP cross-linking sites at exon-intron

junctions.

To do so, a list of 466 11-nt long position weight matrices (PWMs) derived from HepG2

eCLIP data for 62 RBPs was collected from the mCross database (Feng et al. 2019). For each

enriched tetramer, a PWM was computed on tetramer occurrences at regulated exons

extending both tetramer sides of two nucleotides. Similarities between tetramer and mCross

PWMs were calculated using the MACRO-APE tool (Vorontsov, Kulakovskiy, and Makeev

2013) with parameters --position J,direct with J=-3,-2,-1,0 to allow up to four different

alignments to the most informative seven core positions of the mCross PWM (Feng et al.

2019). For each tetramer and RBP pair, the highest similarity amongst the four alignments

was retained. In case of multiple mCross PWMs for the same RBP, the different similarity

values were averaged. Hence, the similarity value  was measured as follows:

∀ 𝑅𝐵𝑃 𝑎𝑛𝑑 𝑡𝑒𝑡𝑟𝑎𝑚𝑒𝑟: Ω =
𝑖=1

𝑁
𝑃𝑊𝑀

∑ ω
𝑖

𝑁
𝑃𝑊𝑀

where is the similarity value between the tetramer and the mCross PWM or isω
𝑖

𝑖𝑡ℎ 𝑁
𝑃𝑊𝑀

the total number of mCross PWMs of a RBP. was named “sequence similarity score”.Ω

Next, the similarity between profiles of the RNAmotifs maps of each enriched tetramer and

those of eCLIP-based RNA splicing maps of the 62 RBPs was assessed. Firstly, cross-linking

sites, as iCounts peak instances, from eCLIP experiments in HepG2 cells for each RBP were

collected (Curk et al. (2019) iCount: protein-RNA interaction iCLIP data analysis (in

preparation)). Then, for each tetramer, eCLIP-based splicing maps of all RBPs were

generated around exons with tetramer instances (i.e. extending 1,000 and 50 nucleotides into

introns and exons). At each position, and for each RBP, a cross-linking enrichment score
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(CES) was computed by performing a Fisher’s exact test comparing the proportion of

FOXA1-regulated and constitutive exons having at least one iCounts peak:

𝐶𝐸𝑆 =  − 2𝑙𝑜𝑔(𝑝)

where p is the p-value of the Fisher’s exact test.

The similarity between the RNAmotifs and eCLIP-based RNA splicing map was then

evaluated by calculating the Battacharyya coefficient (BC) (Rizzo et al. 2019) as follows:

𝐵𝐶(𝑞, 𝑡) =
𝑖=1

𝑛

∑ 𝑞
𝑖
𝑡

𝑖

where qi is the RNAmotifs ES of the tetramer at position i on the map and ti is the CES of the

RBP at the same position i,  and n is the length of the maps.

Finally, for each tetramer and RBP a global Matching Score (MS) was computed as the

product of the sequence similarity score and the map similarity given by the BattacharyyaΩ

coefficient:

∀ 𝑅𝐵𝑃 𝑎𝑛𝑑 𝑡𝑒𝑡𝑟𝑎𝑚𝑒𝑟:  𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒 =  Ω ⋅𝐵𝐶

RBPs with MS ≥ 75th percentile of its distribution were considered as significantly

associated with the corresponding tetramer.
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Figure 44. Schematic overview of the integrated analysis employed to associate cis-acting elements of

FOXA1-regulated CEs to trans-acting factors.
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The outcomes of this analysis recapitulated many known RBP binding principles (Figure 45),

including HNRNPC, PTBP1 and U2AF2 at 3’ss (Sutandy et al. 2018; Zarnack et al. 2013),

SF3 complex components (SF3B4 and SF3A3) at the branch point site (Lardelli et al. 2010),

PRPF8 at 5’ss (Wickramasinghe et al. 2015), and HNRNP family (HNRNPK, HNRNPM, and

HNRNPU) at upstream and downstream intronic regions (Van Nostrand, Freese, et al. 2020;

Van Nostrand, Pratt, et al. 2020).

Figure 45. Heatmap of similarity scores (SimScore) between significantly enriched multivalent RNA motifs

identified amongst FOXA1-regulated CEs relative to constitutive exons (RNAmotifs two-tailed Fisher’s test

p-values cutoffs = 1.5x10-3, 5x10-2 and 1.2x10-2 for R1, R2 and R3, respectively) and mCross position weight

matrices (PWMs) of RBPs differentially expressed in pri-PC or mCRPC. Only SimScore ≥ 75th percentile of their

distribution across all motif-RBP pairs are shown. Top annotation heatmap shows the RNAmotifs regions (R1,

R2, R3) where tetramer enrichment reached the defined threshold around more-excluded (blue) or

more-included (red) CEs. Top bar plots depict the percentage of FOXA1-regulated CEs with tetramer

occurences. Motifs are grouped based on clusters identified by RNAmotifs. Right annotation shows the number

of significant associations with a tetramer for each RBP (N), the log2 average similarity across significant

associations (μJC), and the average expression level of each RBP in pri-PC and mCRPC with the corresponding

log2FC between FOXA1 HE and REST samples.

Together, these findings define the FOXA1-mediated splicing code where trans-acting

splicing factors, particularly U2AF2 and HNRNPK, controls exon inclusion.
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Genomic features depict an exon definition model for FOXA1-regulated

CEs

To gain insights into FOXA1-mediated calibration of AS, we initially sought to delineate the

features of exon definition. Compared to constitutive exons, cassette exons have weaker

splice sites (ss), are strongly conserved during evolution, and are usually shorter with longer

flanking introns (Keren, Lev-Maor, and Ast 2010; Mazin et al. 2021). By performing

conventional splice strength analysis, we did not find any significant difference in 3’ss and

5’ss scores between FOXA1-regulated and FOXA1-unrelated exons of primary tumors (data

not shown).

First, basewise conservation (PhyloP) data across 100 species were retrieved from UCSC

(http://genome.ucsc.edu) (Kent et al. 2002). We then compared the single base distributions

of PhyloP score between FOXA1-regulated and control CEs through a Wilcoxon Rank Sum

Test and correct p-values using the Benjamini Hochberg method.

FOXA1-regulated CEs were significantly more conserved across 100 species than controls,

with strongest enrichment of sequence conservation within 100nt of the exon/intron junctions

(Figure 46).

Figure 46. Upper panel shows the position-specific smoothed PhyloP conservation score of FOXA1-regulated

(green), variable (gray) and remaining (controls, black) more-excluded and more-included CEs in exonic and

intronic regions extending 50 and 150 nt from the splice sites, respectively. Bottom panel reports the
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position-specific -log10(FDR) of Wilcoxon Rank Sum test comparing the PhyloP score distributions between

FOXA1-regulated and control CEs (green), and FOXA1-regulated and variable CEs (gray).

Furthermore, compared to controls, FOXA1-regulated exons were significantly shorter,

whereas their flanking introns were significantly longer (Figure 47). These features were

more evident for FOXA1-regulated CEs in RBPs.

Figure 47. Box plots showing length distributions of the FOXA1-regulated (green), variable (gray) and control

(white) CEs and their flanking introns.

Together these findings evidenced an exon definition model for FOXA1-regulated cassette

exons identified by short exons with long introns that are under selective evolutionary

pressure.
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6. FOXA1 controls inclusion levels of nonsense-mediated

decay cassette exons

So are all truths, once they are discovered; the point is in being able to discover

them.

Galileo Galilei
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Splicing factors self-tune the production of their isoforms

Splicing factors can auto- and cross-regulate their mRNAs by controlling the inclusion of

exons that result in the introduction and prevention of a premature termination codon (PTC)

in the reading frame. Introduction of a PTC triggers nonsense mediated decay (NMD)

impacting isoform production (Pervouchine et al. 2019; Kurosaki, Popp, and Maquat 2019;

Hug, Longman, and Cáceres 2016). From here on we will call them PTC-introducing and

PTC-preventing exons (Figure 48).

Figure 48. Schematic overview of the mechanisms of AS-controlled nonsense mediated decay (NMD) through

the inclusion of PTC-introducing (left) or skipping of PTC-preventing (right) exons. PTC, premature termination

codon.

FOXA1 modulates NMD-determinant exon inclusion levels

Since FOXA1 predominantly regulates exons in splicing-related genes, we sought to assess

the regulation of NMD-determinant exons by the pioneer transcription factor.

Using a list of 15,518 NMD-determinant CEs (Pervouchine et al. 2019), we identified

PTC-introducing and PTC-preventing CE events that are regulated by FOXA1 in primary PC.

The UCSC custom track of annotated PTC-introducing and -preventing events available from

this resource was obtained for comparative analysis. Genomic coordinates of these events

were intersected with those of TCGA variable CE events using intersectBed command from

BEDTools toolset (Quinlan and Hall 2010) and CEs were annotated accordingly.

We found a significant enrichment of PTC-introducing and PTC-preventing exons amongst

FOXA1-regulated CEs relative to remaining CEs, both variable and constitutive (Figure 49).
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Figure 49. Bar plots representing the proportion of PTC-introducing (cyan) and PTC-preventing (purple) exons

among FOXA1-regulated, variable and control CEs. Number above/within each bar gives the total number of

CEs in each group.

Interestingly, FOXA1 more-excluded exons were significantly enriched for PTC-introducing

exons and depleted of PTC-preventing exons relative to variable CEs that exhibited

non-significant changes in inclusion levels in primary PC (Figure 50). Furthermore,

more-included CEs were enriched for PTC-preventing exons relative to variable CEs (Figure

50).
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Figure 50.   Bar plots representing the proportion of PTC-introducing (cyan) and PTC-preventing (purple) exons

among FOXA1-regulated, variable and control CEs. Number above/within each bar gives the total number of

CEs in each group. The proportion among more-excluded and more-included CEs is shown.

These results highlight a major effect of FOXA1 high expression in silencing

PTC-introducing and enhancing PTC-preventing exon inclusion. By inspecting the ∆μ(Ψ)

distribution, we confirmed that FOXA1-regulated PTC-introducing and -preventing CEs were

significantly more-excluded and more-included than variable CEs, respectively (Figure 51).

Nevertheless, a small fraction of PTC-introducing CEs were more-included by FOXA1 high

expression.
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Figure 51. Boxplots showing the ∆μ(Ψ) distribution of PTC-introducing and PTC-preventing FOXA1-regulated,

variable and control CEs.

Consistent with previous reports (Pervouchine et al. 2019; Kurosaki, Popp, and Maquat 2019;

Hug, Longman, and Cáceres 2016), over-representation analysis of genes harboring

NMD-determinant CEs in primary PC revealed RBPs as the only significantly

over-represented process amongst FOXA1-regulated PTC-introducing and -preventing exons

(Figure 52), to a greater extent relative to the other CE groups.

Figure 52. ORA results performed on genes harboring FOXA1-regulated, variable and control PTC-introducing

and PTC-preventing CE events annotated.

Next, in light of recent evidence implicating PTC-introducing exons in lung cancer

disease-free survival (DFS) (Thomas et al. 2020), we evaluated the clinical impact of the

level of inclusion of PTC-introducing and PTC-preventing exons.
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FOXA1 regulation of NMD-determinant exons impacts on prostate cancer

patient survival

In light of recent evidence implicating PTC-introducing exons in lung cancer disease-free

survival (DFS) (Thomas et al. 2020), we sought to investigate whether FOXA1 regulation of

NMD-determinant exons could impact on primary PC recurrence.

Clinical data for 332 primary PC patients were obtained from the TCGA Data Matrix portal

(Level 3, https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). Disease-free survival

(DFS) was defined as the length of time between primary treatment and the diagnosis of

disease progression, as defined by biochemical or clinical recurrence, or the end of follow-up.

PTC-introducing and -preventing FOXA1-regulated CEs were divided into silenced and

enhanced events according to their ∆μ(Ψ) sign upon FOXA1 HE, resulting into four groups

(i.e. 141 silenced PTC-introducing, 125 enhanced PTC-introducing, 52 silenced

PTC-preventing and 225 enhanced PTC-preventing FOXA1-regulated CEs). As previously

proposed (Thomas et al. 2020), for each group and each patient, the following S statistic was

computed:

S =n25n75

where n25 and n75 are the number of events with Ψ ≤25th and ≥75th percentiles, respectively, of

their inclusion distribution across patients.

For each group of FOXA1-regulated exons, patients were stratified into high and low

expressors based on the 25thand 75th percentile of the S statistics distribution, respectively.

Exploiting this stratification, DFS analysis was performed by fitting a univariate Cox

proportional hazards (PH) model with log-rank test (“Modeling Survival Data: Extending the

Cox Model” n.d.).

Cox PH model revealed that a low cumulative inclusion of FOXA1-regulated more-excluded

PTC-introducing exons was significantly associated with a longer patient DFS relative to

high inclusion (Figure 53). Similarly, a high cumulative inclusion of more-included

PTC-preventing CEs was significantly associated with a longer DFS than low cumulative

inclusion (Figure 53).
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Figure 53. Disease-free survival of pri-PC patients, stratified according to the 25th and 75th percentile of the

cumulative inclusion levels of PTC introducing or PTC-preventing exons that are more-excluded or

more-included by FOXA1 HE. Univariate hazard ratios (HR) with 95% confidence intervals (CI) and two-tailed

log-rank test p-values are shown when statistically significant (p-value≤0.05).

To assess the contribution of each PTC-introducing and -preventing FOXA1-regulated CE on

DFS, patients were stratified according to the 25th and 75th percentiles of the Ψ level

distribution of each event and DFS analysis was performed as described above. Log-rank test

p-values were corrected for multiple testing with the Benjamini–Hochberg procedure.

FOXA1-regulated CEs with FDR<0.05 were considered as significantly associated with DFS.

Out of 515 events, we found 85 NMD-determinant CEs with a significant DFS association

(i.e. two-tailed log-rank test p-value<0.05). Out of the 39 exons with HR>1, 62% were

more-excluded PTC-introducing events (Figure 54, top quadrants). Conversely, out of the 46

exons with HR<1, 60.9% were FOXA1-regulated “enhanced PTC-preventing” events (Figure

54, bottom quadrants). Eight FOXA1-regulated NMD-determinant CEs exhibited the

strongest association with patient DFS (i.e. FDR<0.05), with the inclusion of exon 30 of the
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cancer gene FLNA identified as the top ranked event (FDR=0.002, HR=5.6, 95% CI:

2.4-12.7).

Figure 54. Scatter plot of univariate HRs of FOXA1-regulated PTC-introducing and PTC-preventing CE inclusion

levels with respect to their ∆μ(Ψ) upon FOXA1 HE. The size of dots represents the log-rank test FDR. Events

with log-rank test p-value>0.05 are shown in gray. Contour lines indicate the density of points for

PTC-introducing and PTC-preventing exons. Bar plots show the number of PTC-introducing and PTC-preventing

exons with log-rank test p-value<0.05 in each quadrant of the scatter plot. CEs with log-rank test FDR<0.05 are

indicated as text.

We then focused on the two survival-associated events whose inclusion, promoted by

FOXA1, was deleterious for survival, FLNA ex. 30 and NDRG1 ex. 2 and we exploited their

association with the FOXA1 expression using a linear model. Ψ levels of the eight

survival-associated events and FOXA1 expression were normalized using near-zero variance

filter, Yeo-Johnson transformation, centering around their mean, and scaling by their standard

deviation implemented in the preProcess function in the R ‘caret’ package, with parameters

method = c("center", "scale", "YeoJohnson", "nzv"). A GLM was fitted to FOXA1 expression

based on the events Ψ levels. Relative importance of each event in the GLM was calculated

using the averaging over ordering method (“Introduction to Bivariate and Multivariate
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Analysis” n.d.). Confidence intervals of the regressor contributions were measured using a

bootstrap procedure. For 1,000 iterations the full observation vectors were resampled and the

regressor contributions were calculated.

FLNA exon 30 inclusion level was the strongest predictor of FOXA1 expression (Figure 55).

Figure 55. Relative importance of each survival-associated CEs to the R2 measured on the GLM.

Overall, results of our cumulative and individual exon analyses reveal that FOXA1

predominantly silences PTC-introducing exons (75%) that are associated with a poor patient

prognosis and enhances PTC-preventing exons (90%) that are associated with favorable

outcomes. However, FOXA1 also enhances the inclusion of the essential FLNA exon 30 that

is associated with shorter DFS, thereby underlying a more aggressive cancer phenotype. As

so, we went deeper into the regulation of FLNA exon 30.

FOXA1-regulated exon 30 in FLNA promotes prostate cancer growth

To determine the impact of FLNA exon 30 on PC cell phenotypes, we transfected AR- PC3

cells with ectopic expression vectors with and without exon 30 (i.e. FLNA+ex30 and

FLNAΔex30, respectively), and confirmed exon 30 inclusion levels by in vitro splicing

assays (Figure 56).
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Figure 56. Ψ for FLNA exon 30 in PC3 cells was measured by splicing assays upon ectopic expression of FLNA

with or without exon 30 (i.e. FLNA+ex30 or FLNAΔex30, respectively, or vector only (VO)).

Using a cell viability MTT assay, we observed a statistically significant increase in growth of

cells overexpressing FLNA+ex30 than FLNAΔex30 (Figure 57). Furthermore, in a cell

growth clonogenic assay, FLNA+ex30, but not FLNAΔex30, resulted in a statistically

significant increase in colony number and staining intensity (Figure 57).

Figure 57. Upper panel, Left. PC3 cell growth was measured by MTT assay following ectopic expression of FLNA

vectors. Upper panel, Right.PC3 clonogenic potential was measured by crystal violet assays following ectopic

expression of FLNA+ex30 or FLNAΔex30. Bottom panel, Left. Colony number. Bottom panel, Right. Staining

intensity.
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Consistent with our DFS analysis, these functional data demonstrate that FLNA exon 30

inclusion provides a growth advantage to PC cells.

FLNA exon 30 inclusion is regulated by SRSF1 and HNRNPK

To determine putative regulators of FLNA exon 30 inclusion modulated by FOXA1, we

employed a GLM to fit exon inclusion as a function of the expression levels of ten RBPs that

were significantly and concordantly regulated by FOXA1 across primary PC. Using the

averaging over ordering method on the GLM, we found that SRSF1 was the most important

positive predictor of FLNA exon 30 inclusion (Figure 58), followed by HNRNPK.

Figure 58. Relative importance of each  RBP to the R2 measured by the GLM fitting FLNA exon 30 inclusion.

To validate the contribution of SRSF1 to FLNA exon 30 inclusion in the context of FOXA1,

we stratified primary PC samples according to high and low expression of the two genes (i.e.

75th and 25th percentiles of normalized expression distributions, respectively). We found a

statistically significant higher inclusion of the event in samples with high expression of both

genes compared to other groups of samples (Figure 59, left panel). Similarly, stratification by

HNRNPK and FOXA1 expression levels revealed a significantly greater inclusion of FLNA

exon 30 in samples with high expression of both genes (Figure 59, right panel).
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Figure 59. Boxplots displaying FLNA exon 30 inclusion level in sets of patients stratified according to the high or

low expression (above the 75th and below the 25th percentile, respectively) of FOXA1 and SRSF1 (Left panel) or

HNRNPK (Right panel).

Using results from our integrated analysis of FOXA1 binding to chromatin-accessible regions

in PC, we confirmed that FOXA1 binds to the promoter and associated active enhancers of

SRSF1 (Figures 60,61), revealing a direct regulation of SRSF1 by FOXA1 similarly to

HNRNPK (Figures 37,38).
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Figure 60. Genome view representing SRSF1 promoter and enhancer regions that are bound by FOXA1 in VCaP

cells. ChIP-seq density read tracks for H3K27ac, H3K4me3, CTCF (2 overlayed experiments) and FOXA1 in VCaP

cells are shown together with pri-PC-reproducible ATAC-seq peak calls, FOXA1 active binding sites (bs) and RNA

PolII ChIA-PET-derived FOXA1 bound enhancer-SRSF1 associations. The position of the considered SRSF1

regulatory regions along chromosome 17 is shown at the top of the panel.
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Figure 61. Genome view representing SRSF1 promoter and enhancer regions that are bound by FOXA1 in LNaP

cells. ChIP-seq density read tracks for H3K27ac, H3K4me3, DNAse-Seq, CTCF and FOXA1 in LNCaP cells are

shown together with pri-PC-reproducible ATAC-seq peak calls, FOXA1 active binding sites (bs) and RNA PolII

ChIA-PET-derived FOXA1 bound enhancer-SRSF1 associations. The position of the considered SRSF1 regulatory

regions along chromosome 17 is shown at the top of the panel.
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We further assessed SRSF1 and HNRNPK binding to FLNA exon 30 AS region using eCLIP

data for the two proteins in HepG2 cells (Van Nostrand, Pratt, et al. 2020; Van Nostrand,

Freese, et al. 2020). We observed clusters of eCLIP reads, and significantly cross-linked sites

as detected by iCounts (Curk et al. (2019) iCount: protein-RNA interaction iCLIP data

analysis (in preparation)) , within FLNA exon 30 and around 600nt in the downstream intron

for SRSF1 and HNRNPK, respectively (Figure 62).

Figure 62. SRSF1 and HNRNPK eCLIP density read distribution in HepG2 cells in the AS region of FLNA exon 30.

Significant cross-linked sites detected by iCounts of the two proteins are shown in black.

Importantly, this result supports the role of distal intronic binding of HNRNPK in exon

inclusion (Figure 45).

To confirm the regulation of FLNA exon 30 by SRSF1 and HNRNPK, we performed

siRNA-mediated depletion of SRSF1 and HNRNPK individually and in combination in PC3

cells (Figure 63).
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Figure 63. Representative Western blotting images of SRSF1 and HNRNPK depletion in PC3 cells by transfection

with one siRNA duplex sequence per gene alone or in combination (40nM for 72 hours). Normalised (to ACTB)

protein expression compared to control (NSI), calculated by densitometric band quantitation, is shown below

SRSF1 and HNRNPK blot images.

Using splicing assays, we demonstrated a statistically significant decrease in FLNA exon 30

inclusion in individual and combined siRNA conditions compared with NSI controls, with

SRSF1 depletion providing the strongest contribution (Figure 64).

Figure 64. Ψ changes for FLNA exon 30 in PC3 cells were measured by splicing assays upon depletion of SRSF1

or HNRNPK or both. Two-tailed T-test was used to compare conditions.
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Taken together, these findings clearly demonstrate that FLNA exon 30 inclusion is controlled

by SRSF1 and HNRNPK, which are directly regulated by FOXA1 (Figures 37,38,60,61). The

increased inclusion of FLNA exon 30 confers a growth advantage to PC cells and is

associated with a shorter patient DFS.

90



7. Discussion and Conclusion

Never discourage anyone...who continually makes progress, no matter how

slow. Plato
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The expression of splicing factors is altered in the majority of cancer types

In this study, we aimed at disentangling AS deregulation across cancer types focusing

specifically on the role of transcription factors in modulating the expression of splicing

factors. To do so, we first developed a new algorithm to account for the heterogeneity proper

of cancer transcriptomes, particularly in presence of high-volume datasets, and extract the

relevant biological information. Heterogeneity is a fundamental characteristic of information

associated with complex traits, which can arise from subtle deregulation of distinct genes in

different patients rather than of a single gene (Cereda et al. 2016; A. Subramanian et al. 2005;

Gambardella et al. 2017). In diseases such as cancer, heterogeneity strongly impacts on its

progression and drug response (Cereda et al. 2016; A. Subramanian et al. 2005; Gambardella

et al. 2017). Therefore, dissecting the contribution of heterogeneity becomes crucial to detect

defective biological processes and to the therapy management of patients. Thus, we addressed

this challenge and introduced the novel concept of discretization of gene expression levels,

which we derived from probabilistic modeling and shaped upon knowledge of RNA biology.

Our Gene Set Enrichment Class Analysis (GSECA) algorithm exploits the bimodal behavior

of RNA-sequencing gene expression profiles to identify altered gene sets in heterogeneous

patient cohorts. We showed that GSECA outperformed 'state-of-art' algorithms in handling

gene sets characterized by expression changes of groups of genes that are more intensively

activated or repressed in a heterogeneous manner across samples. GSECA can detect

functionally related altered cell mechanisms in a condition of interest considering more

heterogeneous cohorts as compared to other available methods. By boosting signal-to-noise

ratio, GSECA can successfully manage the heterogeneity of thousands of samples and

provides useful insights on clinical and biological patterns proper of a phenotype. With this

algorithm we introduced the paradigm shift of "less is more" in treating large heterogeneous

RNA-seq datasets showing that it improves the detection of the altered biological processes

in the phenotype of interest.

We therefore applied the “less is more” paradigm to assess the dysregulation of RBP

expression in different cancer types. GSECA detected the alteration of the RBP-related

pathway at a high confidence in thirteen cancer types, suggesting that not only alternative

splicing itself but also the expression levels of RBP is a hallmark of cancers. Specifically,

Head and Neck Squamous Carcinoma (HNSC), Breast Cancer (BRCA), Colon

Adenocarcinoma (COAD), and Prostate Adenocarcinoma (PRAD) showed the strongest

deregulation of the RBP gene set. Notably, the prognostic role of splicing has been recently
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proposed in HNSC (Ding, Feng, and Yang 2020) and COAD (Y. Chen et al. 2021), while in

BRCA aberrant expression of splicing factors leads to the proliferation of somatic cells

(Cieśla et al. 2021). Similarly, deregulated expression of RBP expression leads to alternative

pre-mRNA in aggressive prostate cancer (Phillips et al. 2020). Conversely, Bladder

Urothelial Carcinoma (BLCA), Cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC), Kidney Renal Papillary Cell Carcinoma (KIRP) and Kidney Renal

Clear Cell Carcinoma (KIRC) did not show any enrichment. Overall, Cholangiocarcinoma

(CHOL) and Kidney Chromophobe (KICH) presented a limited number of enriched

pathways, with no enrichment for RBP deregulation. Nevertheless, these results can be

imputed to the low number of samples available for these cancer types.

The analysis of discretized expression levels of genes in the RBP gene set across tumors

revealed a pattern of somatic rewiring of splicing factors’ expression. We found that the

number of tumors expressing RBPs at highest levels was significantly reduced compared to

normals, whereas those expressing RBPs at the intermediate levels significantly increased.

This dichotomous effect may reflect the inter- and intra- sample heterogeneity of tumors,

where different tumors may aberrantly activate different splicing factors through specific

transcriptional and epigenetic programs. Different cancer types showed a distinct extent of

this effect, with COAD, Lung Adenocarcinoma (LUAD) and Lung Squamous Cell

Carcinoma (LUSC) exhibiting the strongest patterns. In lung cancer, changes in expression of

RBPs have been identified, as well as chances in splicing patterns, suggesting splicing as a

possible therapeutic target (Coomer et al. 2019).

Our unbiased pan-cancer gene set enrichment analysis identified the disruption of RBP

expression as a cancer hallmark of the majority of tumor types. Furthermore, our results

revealed an heterogeneous utilization of splicing factors that are generally expressed at

intermediate levels of expression across tumors, underlying specific transcriptional programs

in different subsets of samples.

A subset of transcription factors controls splicing factors’ expression across

cancer types

As a systematic pan-cancer analysis of transcription factor regulation on RBPs was still

lacking, we developed a pipeline for integrating both DNA and RNA levels, namely active

binding sites and expression profiles. Combining different layers of information, provenient
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from different omic data, has been shown to be fundamental for understanding biological

processes (I. Subramanian et al. 2020; Planell et al. 2021; Vasaikar et al. 2018; Hawe, Theis,

and Heinig 2019). As a novelty in literature, we filtered cell line ChIP-seq data with

ATAC-seq peaks from their corresponding tumor, as our main goal was to exploit

mechanisms in patients and, currently, no ChIP-seq in vivo is available. This pan-cancer

analysis was possible thanks to the recent years increase of available data, a phenomenon

known as Big Data era, that allows the creation of databases whose data are shared with the

scientific community (Del Giudice et al. 2021).

RBP were enriched for active binding sites of MYC, MAX, and FOXA1 on their promotorial

regions in the greatest number of cell lines. In particular, MYC and MAX resulted as active

transcriptional regulators of RBPs in the same cell lines, confirming their cooperative work as

heterodimer (Arsura et al. 1995; Bissonnette et al. 1994; Walhout et al. 1997; Nair and Burley

2003; Grandori et al. 1996). Interestingly, in most of these cell lines, FOXA1 also resulted as

an active transcriptional regulator of RBPs. These results may underline a possible

concomitant involvement of the three proteins in the transcriptional regulation of splicing

factors.

To evaluate whether the enrichment of a TF’s active binding on RBP promoters over the rest

of genes was reflected in expression changes, we modeled the cumulative expression of RBPs

through the contribution of transcription factors using a generalized linear model. Regression

models have become the most used method for feature selection, with the advent of artificial

intelligence in RNA-seq data analyses (Del Giudice et al. 2021). In accordance with the

DNA level analysis we found that MYC and FOXA1 were the most significant TFs.

In recent years, the relation between MYC and RBPs has been widely studied. In particular, it

has been shown that MYC upregulates components of the spliceosome in promoting

lymphomagenesis (Koh et al. 2015) and is often associated with RBP aberrant expression

(David et al. 2010). Moreover, MYC has been related to RBP expression in triple negative

breast cancer (Cieśla et al. 2021) and prostate cancer and to the inclusion level of more than a

thousand cassette exons, many of which are nonsense-mediated decay-determinant exons,

also in genes encoding RNA binding proteins (Phillips et al. 2020). As the direct targeting of

MYC has been clinically unsuccessful, targeting its downstream effector pathways seems a

valid opportunity. Given the strict relation between MYC and splicing in promoting cancer

invasiveness, it has been recently proposed that methods targeting RBPs or their downstream

splicing targets may be a potential avenue for treatment (Urbanski et al. 2021).
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FOXA1 has been recently proposed as a splicing factors’ regulator (Foster et al. 2018),

nevertheless its role was not entirely defined. FOXA1 exhibits a common pioneer function

for AR and MYC-driven PC transcriptional programs, occupying the majority of binding

regions shared by AR and MYC (Barfeld et al. 2017). An increased FOXA1 co-occupancy at

AR binding sites characterizes MYC-induced suppression of AR transcriptional programs,

which in turn accelerates PC progression towards CRPC (X. Qiu et al. 2021). This evidence

may suggest a possible relationship between FOXA1 and MYC in regulating RBP

expression.

Our multi-omic analysis provided the tissue-specific landscape of transcription factor

regulation on RPB expression. Furthermore, we identified MYC and FOXA1 as the major

regulators of RBPs across cancer types.

FOXA1 orchestrates alternative splicing dysregulation in prostate cancer

We revealed that the pioneer transcription factor FOXA1 orchestrates alternative splicing

regulation in PC, impacting on gene expression control mechanisms control and disease

recurrence risk.

Collectively, our results, in primary PC and mCRPC patients, indicate that, among the key PC

TFs tested, FOXA1 expression is a predominant hallmark of the transcriptional dysregulation

of splicing-related genes. By defining the architectural features of FOXA1 transcriptional

control in PC, we showed that this pioneer factor preferentially binds chromatin-accessible

active enhancers of RBPs. As a pioneer factor, FOXA1 accesses compact chromatin and

opens up nucleosomal domains for DNA binding of distinct transcription factors controlling

the expression of nearby essential genes (Fei et al. 2019; Lupien et al. 2008). Therefore,

FOXA1 may open multiple channels to transmit transcriptional signals to RBP loci. The

preferential active binding of FOXA1 to regulatory regions of splicing factors, rather than

genes underpinning other fundamental biological processes, may implicate the recruitment of

different transcription factors to achieve a comprehensive alternative splicing regulation.

We assessed the AS changes in primary PC and by the analysis of multivalent RNA motifs

and we generated a RBP-mRNA-interaction atlas that defines the position-dependent splicing

regulation of cassette exons driven by FOXA1 high expression. Our results recapitulate many

known RBP regulatory principles at exon/intron junctions and support the coordinate

regulation of CEs by multiple proteins. FOXA1-regulated exons are defined by T- and C-rich
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motifs at 3’ss and 5’ss, respectively, extending hundreds of nucleotides within introns, which

work as intronic splicing enhancers and silencers (Murray et al. 2008). By integrating results

of ENCODE experiments, such as assessment of RBP cross-linking sites by eCLIP and

splicing changes by RNA-seq upon RBP depletion, we confirmed coordinate splicing control

by FOXA1-regulated RBPs, highlighting HNRNPK and U2AF2 as major players. RNA

splicing maps validate the canonical binding of these two RBPs proximal to

FOXA1-regulated exons (Van Nostrand, Freese, et al. 2020; Briese et al. 2019). Interestingly,

HNRNPK exhibits a distinctive footprint hundreds of nucleotides (~600) downstream of

FOXA1-regulated exons. The enrichment for HNRNPK cross-linking sites at both

more-excluded and more-included exons support its known bidirectional splicing regulatory

effect (Venables et al. 2009), promoting (Expert-Bezançon et al. 2004) or inhibiting

(Marchand et al. 2011) exon inclusion. By binding downstream the 5’ ss HNRNPK can

interact with components of the U1 snRNP and modulate AS (Hegele et al. 2012; Thompson

et al. 2018). Similarly, our analyses revealed that U2AF2 can cooperate with HNRNPK and

SF3A3 to silence and enhance the inclusion of sets of FOXA1-regulated exons, respectively.

It has been shown that auxiliary RBPs can stabilize or clear U2AF2 binding in vivo at 3′ss

and control splicing decisions (Sutandy et al. 2018). U2AF2 competes with HNRNPs to bind

the Py-tract (Sutandy et al. 2018; Zarnack et al. 2013), whereas it cooperates with SF3A3 in

branch point recognition for exon definition (Briese et al. 2019). Taken together, it is

tempting to speculate that FOXA1-regulated RBPs orchestrate the binding of core

spliceosomal components, such as U2 and U1 snRNPs, by competing or cooperating with

them to silence or enhance exon inclusion, respectively.

We showed that exons responding to FOXA1 expression are shorter with longer flanking

introns that maintain a greater sequence conservation than the rest of CEs. A smaller exon

size and higher intronic sequence conservation have been associated with a higher exon

exclusion to inclusion rate, under evolutionary constraints, to control relative isoform

frequencies (Baek and Green 2005). By integrating analyses of cis-acting elements and

trans-acting factors, we demonstrated that FOXA1 calibrates AS by enlisting splicing factors

under its transcriptional control. Amongst all FOXA1-controlled factors, HNRNPK emerges

as the major mediator of FOXA1-induced alternative splicing.

FOXA1-mediated calibration of AS preferentially impacts on splicing genes, evidencing a

regulatory feedback loop involving splicing factors (Müller-McNicoll et al. 2019). We

showed that FOXA1 affects the inclusion of NMD-determinant exons, with the strongest
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effect on silencing of poison exons, reinforcing the hypothesis of TF-driven auto- and/or

cross-regulation of RNA splicing networks in PC (Munkley et al. 2019; Phillips et al. 2020;

K. Shah et al. 2020). By performing a survival analysis of FOXA1-regulated

NMD-determinant exons in PC patients, we showed that either low or high cumulative

inclusion of more-excluded poison or more-included essential CEs, respectively, are

associated with favorable patient prognosis. This observation is consistent with the role of

NMD-determinant exons as tumor suppressors, mediators of cell viability, and patient

outcomes (Thomas et al. 2020). Importantly, FOXA1-mediated splicing regulation leads to an

increased inclusion of a subset NMD-determinant exons that are strongly associated with

disease recurrence (e.g. NDGR1 and FLNA). We demonstrated in vitro that the FOXA1

more-included essential exon 30 in the cancer gene FLNA promotes PC cell growth.

Combining statistical modeling of FOXA1-regulated RBPs, integration of eCLIP data,

sequence motif analysis, and in vitro validation, we showed that the inclusion of FLNA exon

30 is controlled primarily by the oncogenic SRSF1 and could be influenced by HNRNPK.

Similarly to HNRNPK, FOXA1 controls SRSF1 expression by physically interacting with its

promoter. Interestingly, we showed that HNRNPK binds at ~600nt downstream the 5’ss of

FLNA exon 30, exemplifying the putative role of HNRNPK distal binding in AS regulation.

HNRNPK and SRSF1 have recently been shown to have an evolutionary conserved role in

intron retention regulation in B-cell development (Ullrich and Guigó 2020). Therefore,

together with our results, it is tempting to speculate that FOXA1-mediated splicing regulation

of NMD-determinant exons, and more generally of exons, may underlie evolutionary

conserved constraints of mRNA isoform production.

In summary, we assessed the dysregulation of RBPs at a pancancer level, proposing

transcription factors MYC and FOXA1 as the major regulators of splicing factor expression.

In particular, focusing on prostate cancer, we revealed a novel role for the pioneer

transcription factor FOXA1 in orchestrating alternative splicing regulation in PC at different

stages of gene expression. FOXA1 controls the expression of splicing-related genes,

including HNRNPK, by binding to their promoters or interacting enhancer regions.

Moreover, a link between FOXA1 and the inclusion of NMD-determinant exons has been

found.

Further functional studies are necessary to determine whether FOXA1 cooperates with

specific TFs, such as MYC, chromatin modifiers, and RNA Polymerase II, to rewire the
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alternative splicing landscape of PC, and determine whether targeting splicing is a therapeutic

vulnerability for FOXA1-driven tumors.
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Appendix A. Gene Set Enrichment Class Analysis

The details are not details. They make the design.
Charles Eames

99



We developed GSECA (Lauria et al. 2020) as described in chapter 2 Also, GSECA was

compared with other previously published Gene set enrichment analysis algorithms (i.e.

GSVA (Hänzelmann, Castelo, and Guinney 2013), Z-score (E. Lee et al. 2008), PLAGE

(Tomfohr, Lu, and Kepler 2005), ssGSEA (Barbie et al. 2009), Globaltest (Goeman et al.

2004), ROAST (Wu et al. 2010) and GSEA (A. Subramanian et al. 2005)), designed to

manage microarray data but widely used also on RNAseq data. To test GSECA performance

with respect to the other methods we firstly used simulated data. In particular, to measure the

type I error rate, we generated read counts for N samples and 1,000 gene sets of equal size P

in the condition of no differential expression and we tested the null hypothesis of no

difference between the two cohorts. We tested different combinations of parameters: N (60,

150, 300, 500) and P (25, 50, 100, 300), repeating the analysis 10 times to obtain more stable

results. GSECA showed the lowest type I error rate. The conservativeness of our method is

due to the intrinsic conservativeness of Fisher’s Exact Test (FET). As the sample size grows,

the ability to detect small variations increases, so GSECA is able to account for false

positives better than the other algorithms. Moreover, GSECA specificity was not influenced

by sample and gene set sizes (Figure 65).
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Figure 65. From (Lauria et al. 2020), Boxplots depicting the type I error rates for GSA methods evaluated for

different settings of sample and gene set sizes on ten replicates. Red and blue dashed lines show the nominal

values of 0.01 and 0.05, respectively.

Then we also tested the statistical power of each algorithm, performing two independent

simulations, named “FC” and “dispersion” studies, modeling the contribution of fold and

dispersion variations, respectively, in gene expression between the two cohorts. Three

different parameters were taken under consideration: the proportion of gene sets that contain

differentially expressed (DE) genes , the percentage of DE genes in each gene set and theβ γ

FC in gene counts between the two cohorts. Also, a scaling factor D was introduced. For both

FC and dispersion studies we modeled eight conditions where, out of 1000 gene sets, the

fraction of true positives was equal to the 5% and 25% and the percentage of DE genes in

each gene set was set at 25% and 50% for gene set sizes of 25 and 100. Moreover, for the FC

study, fold changes ranging from 1.5 and 3 were selected, without changes in dispersion

value (D=1). For dispersion study, instead, D varied between 1.5 and 10 with no or low

values of FC (FC={1,1.1,1.25}, modeling expression changes due to inter-sample

101

https://paperpile.com/c/3nThs6/HutB


heterogeneity. So, we generated expression values for N samples divided in two groups. To

take into account specificity of gene set enrichment methods we introduced the calculation of

the F1 score, a performance evaluation metric that provides a harmonic mean of the precision

and sensitivity in case of an uneven distribution of true and false positives for all simulations.

Regardless of gene set size and changes in percentage of the DE genes in the gene sets the

statistical power of GSECA increased with sample sizes and FC (Figure 66). For medium and

high sample sizes GSECA reached high statistical power, while for little ones other methods

outperformed it. Nevertheless, always GSECA showed a better tradeoff between precision

and sensitivity (F1 > 0.7), reflecting the high specificity of GSECA in detecting truly altered

gene sets.

Figure 66. From (Lauria et al. 2020), Scatter plots depicting the statistical power of each GSA algorithm at the

increase of FC between cohorts for different settings of sample size N, gene set size P, the proportion of gene

sets containing differentially expressed genes β, the percentage of DE genes in each gene set γ.
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In case of inter-sample heterogeneity, the statistical power of GSECA grew exponentially

with the dispersion parameter, outperforming other methods (Figure 67). Even at a lesser

extent, ssGSEA performed similarly to GSECA in handling heterogeneity, thanks to its

collapsing of gene expression to common scale that reduces heterogeneity.

Figure 67. From (Lauria et al. 2020), Scatter plots depicting the statistical power of each GSA algorithm at the

increase of dispersion factor D at a fixed FC of 1.1 between cohorts for different settings of N, P, β, and γ.

GSECA achieved the highest F1 scores, showing high sensitivity and specificity in deeply

heterogeneous  gene expression profiles, regardless of FC and dispersion (Figure 68).
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Figure 68. From (Lauria et al. 2020), Bar plots representing the median values of statistical power and F1 score

measured for all GSA methods in all simulations for the FC and dispersion studies. Gray and purple dashed lines

represent values of 0.7 and 0.9, respectively. Black error bars depict standard errors.

We also tested GSECA on real samples. In doing so, we focused on Prostate Adenocarcinoma

samples. Somatic mutation, RNA-seq expression, protein expression and phosphorylation

data for 498 samples of prostate adenocarcinoma (PRAD) samples were downloaded from

TCGA Data matrix portal (Level 3, https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).

PTEN was considered as somatically lost if undergoing homozygous/heterozygous gene

deletions, truncating mutations or damaging mutations. 158 manually curated gene sets from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) available from MSigDb35 (version

5, https://software.broadinstitute.org/gsea/msigdb/ ) were used. From literature we know that

the loss of PTEN brings to the alteration of PI3K/AKT signaling pathway that involves nine

genes according to KEGG. First, a differential expression analysis was performed between

the PTEN-loss and the PTEN-wt cohorts. We tested the significantly lower expression of

PTEN in PTEN-loss samples and also the alteration in the expression of the PI3K/AKT

pathway genes. Also, we tested the higher phosphorylation level of AKT1 in PTEN-loss

tumors. Looking at PTEN-loss and wild type samples, we evaluated the log fold change and

the dispersion of data, along with density distributions (Figure 69).
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Figure 69. From (Lauria et al. 2020), Left panel.   Scatter plot showing the log2 fold change (FC) and dispersion

(D) values of all genes between PTEN-loss and PTEN-wt samples. Gray lines represent the median values of FC

and D. Dashed gray lines show the 25th and 75th percentile of the FC and D distributions and define four regions

of expression changes (TL=top-left; TR=top-right; BL=bottom-left; BR=bottom-right). Right panel. Kernel

density distributions of FPKM values for PTEN-loss and PTEN-wt samples.

Then, we run GSECA between the PTEN-loss and the PTEN-wt cohort. The fraction of genes

in the gene sets reflected the landscape of FC and dispersion values of the cohorts. We found

21 significantly altered (AS≤0.01, Pemp≤0.001 and SR≥0.9) signaling pathways. Among

them the second top-ranked was the PI3K/AKT signaling pathway, showing a significant

increase in the number of samples expressing genes in the LE, ME and HE1 and a significant

decrease in the HE2 and HE3 classes (FDR<0.1), supporting the presence of high

inter-sample heterogeneity of PI3K/AKT genes at low level of expression (Figure 70).
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Figure 70. From (Lauria et al. 2020), EC map for the AGSs identified by GSECA in PTEN-loss prostate

adenocarcinoma.

We next compared GSECA with other tools on the prostate dataset. Z-Score, PLAGE,

ssGSEA identified about 20 enriched gene sets each, comparably with GSECA, while GSVA

selected 41 altered sets and ROAST and GSEA only one (adjusted P-value < 0.1, SR >0.9).

We computed the Jaccard index (JC) to assess the concordance of results (Figure 71).

Similarity between tools resulted generally low (mean JC = 12%).
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Figure 71. From (Lauria et al. 2020), Overlap of AGSs in PRAD PTEN-loss samples identified by the GSA

algorithms. GSECA results are reported in red.

Then, gene set analysis (GSA) methods were also compared to other orthogonal approaches.

In particular, the ten top-ranked AGSs for each method were selected. Then, gene ontology

(GO) analyses were performed using STRING PPI network and the differentially expressed

genes in PTEN-loss as compared to PTEN-wt tumors. Also, a text mining of published

articles was carried out. Hierarchical clustering revealed the presence of five groups of gene

sets that were: (i) identified only by GSECA and Globaltest (G1); (ii) detected by various

methods (G2); enriched from methods out of GSECA (G3) (Figure 72). Importantly, GSECA

was the only algorithm that indicated the PI3K/AKT pathway as a top-ranking result (Figure

72).
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Figure 72. From (Lauria et al. 2020), Hierarchical clustering of the first ten top-ranked AGSs in PRAD PTEN-loss

detected by GSA algorithms. Each cell reports the rank of the gene set of a specific method. The ranks of the

top ten ranked gene sets are reported in black. Annotation heatmap (right) depicts gene sets identified by GO
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analysis performed considering the STRING PPI network and differentially expressed genes (i.e. D.E.G.) in black

and (ii) evidence coming from literature text mining in the color key of blues.

Have to be noticed that group 1 contained 75% of gene sets enriched from the STRING PPI

gene ontology, confirming the higher ability of GSECA in detecting that are functionally

altered upon the loss of PTEN compared to the other methods. GSECA also identified five

out of eight gene sets enriched for significantly up- and down-regulated genes. The GO

analysis showed the enrichment of PI3K/AKT only when considering significantly activated

and repressed genes.

This consideration suggested the agility of GSECA in identifying processes where genes are

significantly altered in both directions and not only activated or repressed.

Four out of the ten GSECA top-ranked gene sets showed, moreover, evidence in literature,

including the most cited one, PI3K/AKT, that were found in 499 articles related to PTEN loss

(Figure 72).

We finally assessed four parameters (i.e. FPKM values, FC, absolute FC and dispersion)

measuring range, direction, intensity and inter sample heterogeneity (IH) of gene expression

captures as altered by each method (Figure 73). In a few words, we evaluated the mean andµ

the standard deviation of each parameter across prostate cancer samples and, then theσ

average values across genes. Overall, GSECA outperformed the other tools, thanks to its

ability in handling gene sets characterized by expression changes of genes that are more

intensively activated or repressed (i.e. direction and intensity) at all levels (i.e. range) in an

heterogeneous manner across samples (i.e. IH). Has to be noticed that Globaltest performed

similarly to GSECA, nevertheless also showed the highest type I error, character that confers

less confidence to the results.
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Figure 73. From (Lauria et al. 2020), Scatter plot of the mean absolute FC (Abs. FC), and D averaged on the 20

top-ranked gene sets detected by each method. Dot size represents the average standard deviation (s) of D for

the 20 top-ranked gene sets. Color key depicts the percentage of the 20 top-ranked gene sets that contain both

activated and repressed gene sets, namely coordinated variability.

As somatic loss of PTEN is frequent across various cancer types, we disentangled its effect at

a pancancer level. Somatic alterations and transcriptome profiling data were downloaded

from TCGA Data Matrix portal (Level 3,

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) for other 30 cancer types for a total

of 9,944 samples and for each PTEN-loss samples were identified as described for the PRAD

cohort. Cancer types with at least 30 samples harboring the somatic loss of PTEN were

retained for further analysis. In total, 13 cancer types, excluding PRAD, were retained.

Running GSECA with 158 KEGG gene sets, we found that 10 out of 13 cancer types showed

at least one AGS (AS≤0.05, pemp≤0.05 and SR≥0.7). Significantly, six cancer types showed

the alteration of the PI3K/AKT signaling pathway (Figure 74).
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Figure 74. From (Lauria et al. 2020), GSECA EC map showing the pan-cancer alteration of PI3K/AKT signaling

pathway as a consequence of the somatic loss of PTEN.

AS was positively correlated with the statistical difference in the cumulative expression of

PI3K/AKT genes in PTEN-loss tumors as compared to wild-type ones (Figure 75).

Figure 75. From (Lauria et al. 2020), Scatter plot showing the correlation of GSECA AS and the significant

alteration of PI3K/AKT signaling pathway in PTEN-loss as compared to PTEN-wt tumors measured in terms of
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the adjusted p-value (i.e. FDR) across cancer types. The size of the colored circles shows the number of

samples, whereas the inner white circles the number of PTEN loss samples.

We further inspected results, by selecting the 10 top-ranked AGSs for each cancer type. We

found that metabolic processes, information-related processes and immune system gene sets

were the most frequent (Figure 76). In particular, SARC, KIRCH and SKCM showed the

highest number of immune-related AGSs.

Figure 76. From (Lauria et al. 2020), Heatmap showing the altered classes of gene sets across cancer types.

Classes are defined according to the KEGG category. Each cell reports the number of AGSs. The annotation

heatmap indicates the KEGG superclass of biological processes.

Focusing on immune-related gene sets, we compared GSECA results with the ones of the

other gene set analysis methods and evaluated the changes in the tumor immune

microenvironment (TIME) upon the loss of PTEN (Figure 77). In particular, we collected

information about the cellular composition of immune infiltrates for 14 TCGA tumor types

and statistically measured the differences in the composition of 22 immune cell types. The

final degree of alteration of the immune cell population was obtained combining the

significance level of each comparison through the Fisher’s Method into an unique immune

score (IS).
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GSECA detected the highest number of tumors with a significant alteration of immune cell

fractions and showed the highest positive correlation between the number of immune-related

AGSs and IS (Pearson’s correlation coefficient R=0.77, P-value=0.003).

Figure 77. From (Lauria et al. 2020), Heatmap on the left panel shows the number of immune-related gene sets

that are altered upon the loss of PTEN across cancer types according to GSECA and the other GSA methods. On

the right panel, EC map-like heatmap depicts the statistically significant alteration of the immune cell

population across cancer types. The size of triangles, the relative change of the percentage of tumor immune

infiltrates between PTEN-loss and wild-type samples. The upper and lower vertexes of the triangles represent

the increase or decrease of immune cells in PTEN-loss samples as compared to PTEN-wt tumors. The bar plot

reports the IS for each cancer type.

To further investigate the immunosuppressive trait of the loss of PTEN in PRAD, that had

been previously suggested (L. Chen and Guo 2017), we ran GSECA on a collection of 102

expression signatures representative of different immune cell activities, states and modes in

tumor tissues (Thorsson et al. 2018). The altered pathways were 15 (Figure 78). Six of the top

ten AGSs characterized the state and activity of T and B cells, showing a general reduction of

gene expression in the high expression classes and reciprocal increase of genes in lower ones.
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Figure 78. From (Lauria et al. 2020), GSECA EC map showing the altered immune expression signatures as a

consequence of the somatic loss of PTEN in PRAD.

The two top-ranked gene sets contained markers of lymphocyte activation and proliferation.

Intriguingly, down-regulation of T/B cell modules in combination with the upregulation of

proliferation had been related to poor survival in breast cancer (Wolf et al. 2014), so we

explored the impact of the loss of PTEN on disease free survival (DFS) of prostate cancer

patients.

Clinical data were downloaded from the GDC data portal (https://portal.gdc.cancer.gov) for

355 PRAD patients and the DFS time was defined as the interval between the date of

treatment and disease progression, as defined by biochemical or clinical recurrence, or until

the end of follow up (“The Molecular Taxonomy of Primary Prostate Cancer” 2015). We

observed a statistically significant difference in DFS in the first 24 months from the treatment

between patients with PTEN loss and rest (Figure 79), confirming the harmful impact of

PTEN loss on cancer phenotype.
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Figure 79. From (Lauria et al. 2020), Disease-free survival (DFS) Kaplan-Mayer curves for PTEN-loss and

PTEN-wt patients.

We also tested if the absolute PTEN expression levels were also prognostic of survival. The

maximally selected rank statistics approach was used. We found that patients with PTEN

expression levels lower than 3.58 TPM had a statistically significantly shorter DFS time in

the first two year from the treatment (Figure 80).

Figure 80. From (Lauria et al. 2020), DSF Kaplan-Mayer curves measured stratifying PRAD patients on the

optimal PTEN expression level (i.e. TPM=3.56, maximally selected rank statistics = 2.34) within two years from

the initial treatment.

Taken together, these results showed that GSECA is able to detect altered biological

processes between highly heterogeneous cohorts, keeping in consideration genes both if

decreased or increased. In particular, we accurately associated the loss of PTEN to the

alteration of PI3K/AKT signaling pathway and to the different regulation of immune-related

processes across cancer types. Our results also support the emerging role of PTEN in the
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immune system (Chakravarthy et al. 2018; Armstrong et al. 2016; Leavy 2015) and therapy

resistance (George et al. 2017; Peng et al. 2016; Tilot et al. 2016).
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Appendix B. Insights into literature

To learn to read is to light a fire; every syllable that is spelled out is a spark.

Victor Hugo
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A. Compendium of ChIP-sequencing experiments: ReMap and Chip-Atlas

databases

ReMap (Griffon et al. 2015; Chèneby et al. 2018, 2020; Hammal et al. 2021) is an online

database containing ChIP-seq datasets. It was created in 2015 and updated in 2018 (now it is

actually in the 2022 version, after another in 2020, but the 2018 version is the one that was

available when I started the PhD). Curators analyzed 2,829 quality controlled ChIP-seq

experiments from ENCODE and public sources (GEO, ArrayExpress). The public ChIP-seq

datasets (n = 1,763), as well as the ENCODE ChIP-seq data (n = 1,066), have been mapped

to the GRCh19/hg19 human assembly. They defined a “dataset” as a ChIP-seq experiment in

a given series (e.g. GSE46237), for a given TF (e.g. NR2C2), in a particular biological

condition (i.e. cell line, tissue type, disease state or experimental conditions; e.g. HELA).

Datasets were labeled by concatenating these three pieces of information. ENCODE and

Public data have been analyzed to propose an unified integration of both data sources,

producing a unique atlas of regulatory regions for 485 transcription regulators (TRs). They

found 125 TRs common to the two sets, 154 proteins specific to ENCODE and 206 specific

to the Public catalog. Taken separately, the ENCODE peaks overlapped by 96% the Public

regions, and 87% of the Public peaks overlapped ENCODE regions. Notably, 347 cell lines in

40 tissues have been taken under consideration. As not every ChIP-seq datasets are equal in

terms of quality, they used four different metrics based on ENCODE ChIP-seq guidelines to

retain high quality datasets for downstream analyses. First, they used the normalized strand

cross-correlation coefficient (NSC) which is a normalized ratio between the fragment-length

cross-correlation peak and the background cross-correlation, and the relative strand

cross-correlation coefficient (RSC), a ratio between the fragment-length peak and the

read-length peak to exclude low quality datasets. Moreover, they also used the FRiP, the

fraction of reads in peaks, and the number of peaks identified in each dataset (min.100) to

filter datasets. Every dataset that did not respect these parameters was excluded. After

consistent peak calling, they identified 49 million peaks bound by transcription factors (80

million with ENCODE data included). These numbers include overlapping sites for identical

TRs which were studied in various conditions.

ChIP-Atlas (Oki et al. 2018) is an online database containing ChIP-seq and DNase-seq

datasets. Experiments targeting RNA polymerases, transcription factors,

chromatin-remodeling factors and histone modification enzymes from the NCBI Sequence

Read Archive (SRA) are included. The motivations under this work of uniformation are that
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although data on SRA are publicly available, only raw data are archived in most cases,

metadata are often ambiguous and integrative analyses require skills for data mining and

huge computational resources. ChIP-Atlas database contains 76,217 experiments consisting

of 6 model organisms, human, mouse, rat, fruit fly, nematode and budding yeast. All

experiments are analyzed using the same pipeline and no quality filters are applied, contrary

to the ReMap database. Antigens and cell types are sorted into “antigen class” and “cell type

classes”. Moreover, a brief description of each experiment is also furnished, including quality

controls, allowing a punctual selection and extraction of data.

B. Recurrent accessible chromatin regions in distinct cancer types

Corges et al. (Corces et al. 2018) generated ATAC-seq data in 410 tumor samples from 404

donors of TCGA across 23 cancer types. Technical replicates were also done for 386 samples

and only data that passed a minimum threshold of enrichment of signal over background were

retained. Hg38 assembly was used for alignment and peak calling was performed with

fixed-width option. Authors also defined “cancer type-specific peak sets”, combining all

“sample peak sets” from a given cancer type into a cumulative peak set. Peaks from the

merged peak set that were observed in at least two samples with a score per million ≥ 5 were

considered as reproducible. Results of this analysis are reproducible, fixed-width peaks for a

specific cancer type.

C. The Network of Cancer Genes: NCG

The Network of Cancer Genes (NCG) (Repana et al. 2019; Rambaldi et al. 2008; D’Antonio

and Ciccarelli 2011; D’Antonio et al. 2012; An et al. 2014, 2016; Dressler et al. 2021) is a

manually curated repository of genes whose somatic modification is known or predicted to

have a cancer driver role. NCG6 (Repana et al. 2019), the version used in the present work,

contains 2,372 genes that were collected from 275 publications, including two sources of

known cancer genes and 273 cancer sequencing screens of 119 cancer types in 31 primary

sites, for a total of 34,905 cancer donors. In addition to collecting cancer genes, NCG

annotates their system-level properties, such as duplicability, evolutionary origin, RNA and

protein expression, miRNA and protein interactions, protein function and essentiality.
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