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A B S T R A C T   

Treatment-resistant depression (TRD) represents a severe clinical condition with high social and economic costs. 
Esketamine Nasal Spray (ESK-NS) has recently been approved for TRD by EMA and FDA, but data about 
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predictors of response are still lacking. Thus, a tool that can predict the individual patients’ probability of 
response to ESK-NS is needed. 

This study investigates sociodemographic and clinical features predicting responses to ESK-NS in TRD patients 
using machine learning techniques. In a retrospective, multicentric, real-world study involving 149 TRD subjects, 
psychometric data (Montgomery-Asberg-Depression-Rating-Scale/MADRS, Brief-Psychiatric-Rating-Scale/BPRS, 
Hamilton-Anxiety-Rating-Scale/HAM-A, Hamilton-Depression-Rating-Scale/HAMD-17) were collected at base-
line and at one month/T1 and three months/T2 post-treatment initiation. We trained three different random 
forest classifiers, able to predict responses to ESK-NS with accuracies of 68.53% at T1 and 66.26% at T2 and 
remission at T2 with 68.60% of accuracy. Features like severe anhedonia, anxious distress, mixed symptoms as 
well as bipolarity were found to positively predict response and remission. At the same time, benzodiazepine 
usage and depression severity were linked to delayed responses. Despite some limitations (i.e., retrospective 
study, lack of biomarkers, lack of a correct interrater-reliability across the different centers), these findings 
suggest the potential of machine learning in personalized intervention for TRD.   

1. Background 

Predicting existing treatments’ effectiveness for individual patients 
through precision medicine could personalize care (i.e., connecting the 
‘right patient’ with the ‘right treatment’), optimizing health system 
resources. 

Machine-learning methods process large amounts of data to stratify 
patients based on specific features (i.e., clinical phenotyping) for 
tailored treatments. To date, accuracy values greater than 50 percent are 
considered practically acceptable (Dadi et al., 2021). Emerging evidence 
highlights the potential benefits of machine learning approaches in the 
context of depressive disorders, with applications in diagnosis and 
personalized treatment strategies (Aleem et al., 2022). These method-
ologies, by providing an unbiased approach to assess heterogeneous 
data, hold promise for addressing the notable variation observed in 
treatment outcomes in this field (Lee et al., 2018). 

Patients with major depressive episodes who do not respond to two 
antidepressant treatments adequate in dose and duration are defined as 
‘treatment-resistant’ (TRD) (Sforzini et al., 2022). TRD exerts a sub-
stantial health burden along with significant social and economic re-
percussions (Perrone et al., 2021; Zhdanava et al., 2021). Thus, 
identifying clinical indicators for predicting treatment response is of 
paramount importance (Perrone et al., 2021; Shah et al., 2021). Also, as 
TRD diagnosis occurs after two failed treatments, patients face signifi-
cant disease duration before accessing second-level therapies. A Euro-
pean study revealed only 19.2% of TRD patients achieved remission 
after 12 months, with 69.2% unresponsive and 60% unchanged in 
treatment (Heerlein et al., 2021). Although several studies explore 
neuroimaging measures predictive of antidepressant response (Rajpur-
kar et al., 2020; Zhdanov et al., 2020), identifying clinical measures 
differentiating responders remains challenging. 

Intranasal esketamine (ESK-NS) offers new hope for TRD with high 
response rates in RCTs (Daly et al., 2018; Popova et al., 2019) and 
naturalistic settings (Martinotti et al., 2022) (70% and 64%, respec-
tively), and nowadays represents an evidence-based approach for TRD 
management (McIntyre et al., 2021). Naturalistic data also indicates the 
effectiveness of ESK-NS in several clinical presentations of TRD, like in 
elderly subjects (d’Andrea et al., 2023), among those with comorbid 
substance use disorder (Chiappini et al., 2023) or bipolar disorder 
(Martinotti et al., 2023). However, determining predictive clinical fea-
tures is still unresolved since ESK-NS efficacy may vary among TRD 
patients, with some benefiting more than others. 

ESK-NS interacts with the glutamatergic system, antagonizing NMDA 
receptors, resulting in varying efficacy among TRD patients (Zanos et al., 
2018). Literature suggests those with high anxiety symptoms benefit 
more, while high disease severity predicts early negative response to 
intravenous esketamine (Jesus-Nunes et al., 2022; Lucchese et al., 
2021). Unlike other treatments, childhood sexual abuse hasn’t been 
found to predict response negatively (Lipsitz et al., 2021). Studies 
indicate intravenous ketamine’s effectiveness on specific symptoms (e. 
g., cognition, anhedonia, suicidality, and psychosocial function), 

supporting the identification of clinical phenotypes for responders to 
glutamatergic agents, even though preliminary research of clinical 
moderators of response were inconsistent (Jawad et al., 2023; Price 
et al., 2022; Rong et al., 2018). These preliminary data highlight the 
need for more precise ESK-NS applications in TRD. Identification of 
response predictors may inform patient profiling, clinical decisions, and 
policies. This study investigates baseline clinical factors predicting 
ESK-NS response using machine-learning methods and evaluates which 
TRD patients are likelier to achieve clinical remission after three months 
of ESK-NS treatment. 

2. Material and methods 

2.1. Participants and ESK-NS treatment administration 

The REAL-ESK study, an observational, retrospective, and multi-
centric investigation, analyzed ESK-NS use in TRD as part of an early 
access program (Martinotti et al., 2022). In compliance with guidelines 
from the Agenzia Italiana del Farmaco (AIFA, i.e., the Italian regulatory 
drug agency), subjects included were diagnosed with a Major Depressive 
Episode (MDE) as part of a major depressive disorder or bipolar disorder 
and met the following criteria: a) in the context of MDD, failed response 
to at least two prior antidepressant treatments at adequate doses, 
duration, and adherence, following TRD consensus criteria (Sforzini 
et al., 2022) while in the context of BD, failed at least two adequate trials 
(in dosage achieved and duration) from 2 classes of antidepressants and 
two classes of mood stabilizers, following the operational definition of 
Murphy and colleagues (Murphy et al., 2014) b) current treatment with 
at least one SSRI or SNRI; and c) age ≥ 18 years (EMA 2019). Exclusion 
criteria included comorbid medical diseases, such as untreated hyper-
tension or prior cerebrovascular disorders, which contraindicate ESK-NS 
administration (EMA 2019). One-hundred-forty-nine patients with TRD 
(55% female, 45% male; mean age = 52.31 ± 12.28 years) were 
recruited across various Italian mental health facilities, as detailed in 
prior publications from the REAL-ESK study group(Martinotti et al. 
2023). 

2.2. Baseline predictors and outcome measures 

Anamnestic data and psychometric assessments were collected from 
patients’ records at baseline (T0), one month (T1), and three months 
(T2) after treatment initiation. Data collected included sociodemo-
graphic factors, previous depressive episodes, all antidepressant trials 
(including TRD augmentation strategies), and psychiatric comorbidities 
(See Supplementary Materials). 

Clinicians used the Montgomery-Åsberg Depression Rating Scale 
(MADRS) (Montgomery and Asberg 1979), the Hamilton Anxiety Rating 
Scale (HAM-A-21) (HAMILTON 1959), the Hamilton Depression Rating 
Scale (HAM-D-21) (HAMILTON 1960) and the Brief Psychiatric Rating 
Scale (BPRS) (Zanello et al., 2013) to characterize psychiatric 
symptoms. 
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Treatment outcomes included the treatment response and clinical 
remission from depression. A reduction of 50% or more in the MADRS 
total score was set as the threshold for the treatment response (Fedgchin 
et al., 2019). A reduction of symptoms below the MADRS total score of 
10 defined the limit for the clinical remission (Frank et al., 1991). 

2.3. Machine learning procedures 

2.3.1. Data preprocessing 
Missing values are common in clinical and psychological data, 

potentially affecting the dataset size. Among various imputation tech-
niques (Josse et al., 2019; Little, Roderick 2019), we chose to fill missing 
values with the average and added a feature indicating which values 
were imputed (Perez-Lebel et al., 2022). 

As our class definition relies on MADRS scores at different time-
points, missing values limit subject inclusion in analyses. We imputed 
MADRS scores using a linear regression model to prevent a significant 
cohort reduction. A separate dataset of 26 TRD subjects (see Supple-
mentary Materials) informed the model, which predicted MADRS scores 
based on HAM-D scores. This model was applied to predict missing 
MADRS values in our study cohort. 

We imputed values for ten subjects at T1 and nine subjects at T2, 
adding an extra variable to indicate MADRS score prediction. Ulti-
mately, the dataset included 146 subjects at T1 and 115 at T2. (Josse 
et al., 2019; Little, Roderick 2019) (See Supplementary Materials). 

2.3.2. Models predicting treatment outcomes 
We created machine-learning models with baseline clinical data to 

predict treatment outcomes (response and remission) and identify fea-
tures driving the classifiers – those most informative for outcome pre-
diction. Considering the data’s heterogeneous nature, we chose 
ensemble methods, specifically random forest techniques, suitable for 
these tasks and relevant for post hoc analysis of the results (Breiman 
2001). We conducted three analyses. The first two classified subjects as 
responders or non-responders based on a 50% or greater reduction in 
MADRS score between T1 and T0 and T2 and T0, respectively (Fedgchin 
et al., 2019). The third analysis categorized subjects as remitters or 
non-remitters at T2, with remission defined as a MADRS score below 10 
(Frank et al., 1991). Both classifiers included T0 clinical variables, 
encompassing anamnestic and psychometric features (all variables are 
detailed in supplementary materials). 

We trained a Random Forest (number of trees=100) using 75% of 
subjects (N = 105 at T1; N = 86 at T2) and tested the remaining 25% (N 
= 41 at T1; N = 29 at T2). We repeated the procedure by shuffling 
subjects in the training and testing set 150 times and averaging accu-
racies in each cross-validation split (Varoquaux 2018). 

Due to differing class sizes, we used Random Upsampling and 
balanced accuracy to prevent bias (He and Garcia 2009). We repeated 
upsampling 100 times to assess the robustness and reported the standard 
deviation. 

We extracted factor importance from the classifier, utilizing the 
normalized average Gini importance coefficient (Franklin 2005), which 
is based on how often the feature is used to build the trees and the hi-
erarchy of the feature in the trees. We selected features with statistically 
significant values (p<0.05) based on permutation tests on the Gini co-
efficient. Finally, we analyzed the dependence of feature value on the 
predicted outcomes using partial dependence analysis, which can be 
interpreted as a probability marginalization over the feature values 
(Franklin 2005). Permutation tests (n = 200) were used to assess the 
significance of the results and feature importance as the gold standard 
for evaluating machine-learning algorithms (Combrisson and Jerbi 
2015; Varoquaux 2018). Class labels are shuffled several times (n =
200), and classification is performed without a relationship between 
labels and features; this allows us to build a null-distribution for accu-
racy and feature importance and then compare non-shuffled results with 
the obtained distribution. 

All the machine learning analyses were performed using a custom- 
made Python script based using scikit-learn (Pedregosa et al., 2011), 
imblearn (Lemaître et al., 2017), and scipy (Virtanen et al., 2020). 

2.4. Ethics 

The study was conducted following the Helsinki Declaration (WMA, 
2013), ensuring the confidentiality and anonymity of patient data. The 
University of Brescia’s ethics committee approved the study (Protocol 
Number: NP5331). The study protocol was published in the open-access 
journal of the Italian Society of Psychiatry (D’Andrea et al., 2022). 

3. Results 

3.1. Sociodemographic and clinical characteristics of the sample 

The analysis included 149 TRD individuals, with extensive socio-
demographic and clinical characteristics detailed in Table 1 (see also 
Supplementary Material). 

3.2. Response and remission rates 

Descriptive analysis reveals a one-month response rate of 30.2% (45/ 
149 TRD subjects), increasing to 57% (85/149 TRD subjects) at three 
months. Additionally, 38.9% (58/149 TRD subjects) achieved remission 
(MADRS<10) from the current depressive episode by the three-month 
follow-up. 

3.3. Machine learning evaluation 

We developed three distinct random forest classifiers to explore: a) 
the most predictive baseline variables for early response or non-response 
(one month); b) those for response or non-response at three months; and 

Table 1 
Sociodemographic and clinical characteristics of the sample.   

Mean SD 

Age 52.31 12.28 
Education (years) 12.9 4.4 
MDE duration (months) 15.85 7.51 
Age at onset of depression (years) 34.11 13.622 
Number of previous EDM (n) 3.53 2.62 
Duration of depression (years) 18.05 11.11 
Number of adequate antidepressant trials (n) 3.5 1.16 
Baseline clinical measures   
MADRS 34.35 8.81 
HAM-D, 21 item 26.86 9.42 
HAM-A 25.52 11.92  

N % 
Female/Male 82/67 55/45 
Baseline Hyperthymic Temperament 41 27.5 
Status 

Single 
Married 
Divorced /widowed   

49 
82 
18 

32.9 
55 
12.1 

Occupation   
Unemployed/ Employed 64/85 43/57 
Previous Suicidal Attempts 33 22.15 
Participants who attempted FDA-approved rTMS 11 7.5 
Participants who attempted ECT 6 4.1 
Comorbidities   
Bipolar Disorder 39 26.2 
Personality Disorders 21 14.1 
Alcohol Use Disorder 20 13.4 
Substance Use Disorders 12 8.1 
General Anxiety Disorder 8 5.4 
Obsessive Compulsive Disorder 7 4.7 
Eating Disorders 7 4.7 
Post-traumatic stress disorder 4 2.7 
Psychosis 1 0.7  
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c) those for remission or non-remission from the MDE at three months. 

3.3.1. Benzodiazepine use and depression severity reduce early response at 
one month, while inner tension predicts rapid response 

We trained a random forest to predict treatment responsiveness at 
T1, achieving an overall accuracy of 68.53% (SD 0.96%; p<0.005, 
permutation-test, n = 200). The most predictive variables are shown in 
Fig. 1A, while partial dependence plots for each variable are presented 
in Fig. 1B. 

Key predictive variables at T1 included self-neglect (BPRS item 13), 
emotional withdrawal (BPRS item 17), inner tension (MADRS item 3), 
current benzodiazepine use, retardation (HAM-D item 8), somatic con-
cerns (BPRS item 1), motor retardation (BPRS item 18), hypochondria 
(HAM-D item 15), suicidality (BPRS item 4), obsessive-compulsive 
symptoms (HAM-D item 21), somatic anxiety (HAM-A item 8), and 
paranoid symptoms (HAM-D item 20). Most variables acted as negative 
predictors of response, meaning higher scores correlated with a higher 
risk of unresponsiveness to ESK-NS treatment at T1. Inner tension 
(MADRS item 3) was the only positive predictor, where higher scores 
indicated a higher likelihood of early response to ESK-NS treatment 

(Fig. 1B). 

3.3.2. Anhedonic and mixed features predict response at three months 
A second random forest classifier was trained to predict respon-

siveness three months after ESK-NS treatment initiation. The model 
achieved an average accuracy of 66.26% (SD 1.18%; p<0.005, permu-
tation test, n = 200). Fig. 2A displays the most informative variables, 
while Fig. 2B shows partial dependence plots for each variable and their 
relationship to response/unresponsiveness. 

Most predictive variables included inner tension (MADRS item-3), 
pessimistic thoughts (MADRS item-9), anhedonia (MADRS item-8), re-
ported sadness (MADRS item-2), concentration difficulties (HAM-A item 
5), somatic anxiety (HAM-D item 11), hyperthymic temperament, feel-
ings of guilt (HAM-D item 2), restlessness (HAM-A item 14), fears (HAM- 
A item 3), cardiovascular anxiety symptoms (HAM-A item 9), and failure 
of previous rTMS treatment. Partial dependence plots revealed mixed 
influences, with some variables being positive predictors (inner tension, 
anhedonia, reported sadness, concentration difficulties, hyperthymic 
temperament, pessimistic thoughts, and feelings of guilt), others nega-
tive (previous rTMS treatment), and some with mixed patterns (see 

Fig. 1. Most predictive variables for T1-response 
prediction. In panel A, the figure highlights the 
statistically significant features of the random for-
est classifier. The features are shown in ascending 
order from most to least informative, measured 
using the normalized Gini importance index. The 
variables with a statistically significant importance 
index, evaluated using permutation tests, are 
plotted. In panel B, the plot shows the partial 
dependence of each important variable on the 
responsiveness outcome. The x-axis indicates the 
values the variables can assume, while the y-axis 
specifies the probability of being a responder (y =
1) or non-responder (y = 0). The solid line repre-
sents the average partial dependence of the random 
forest.   
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Fig. 2B) (somatic anxiety). These findings suggest that various variables 
can influence remission response depending on symptom intensity pat-
terns (Fig. 2B). 

3.3.3. Recurrence, suicidality, and obsessive thoughts may impede 
remission at three months, while anhedonia and bipolarity could predict 
successful remission 

Finally, we trained a third random forest classifier to evaluate pre-
dictors of remission after three months of ESK-NS treatment. The model 
achieved a classification accuracy of 68.60% (SD 1.10%; p<0.005, 
permutation tests, n = 200). 

The model identified 17 statistically significant variables (Fig. 3A), 
with direction plots illustrating their role in determining remission 
(Fig. 3B). Key features included the number of previous MDEs, anhe-
donia (MADRS item-8), pessimistic thoughts (MADRS item-9), baseline 
motor tension (BPRS item 19), general anxiety symptoms (BPRS item 2), 
emotional blunting (BPRS item 16), feelings of guilt (BPRS item-5), 
psychic anxiety (HAM-D item 10), somatic anxiety (HAM-D item 11), 
general depressive symptoms (BPRS item 3), depressed mood (HAM-D 
item 1), suicidality (BPRS item 3), comorbidity with bipolar disorder, 
baseline dissociative symptoms (HAM-D item 19), obsessive-compulsive 
symptoms (HAM-D item 21), failure of previous rTMS treatment, and 
comorbid anxiety disorder. 

Partial dependence plots revealed some features as positive pre-
dictors of remission (anhedonia, anxiety, comorbidity with bipolar dis-
order, motor tension, emotional blunting), others as negative predictors 
(number of previous MDEs, previous rTMS treatment, obsessive- 
compulsive symptoms, suicidality), and some with mixed directions 
(depressed mood, pessimistic thoughts, feelings of guilt, psychic and 
somatic anxiety) (Fig. 3B). 

4. Discussion 

This is the first machine learning study examining factors predicting 
response and remission in patients with TRD treated with ESK-NS. This 
statistical approach offers valuable insights into identifying phenotypes 
responsive to ESK-NS, informing treatment selection. Our prediction 
model accurately estimates outcomes: one-month response, 68.53%; 
three-month response, 66.26%; three-month remission, 68.60%. 

4.1. Responder profiles: the role of anhedonia, anxiety, and bipolar 
features 

Our study highlights the importance of anhedonia and hopelessness/ 
pessimism as predictors of positive outcomes after three months of ESK- 
NS treatment, influencing both response and remission. This aligns with 

Fig. 2. Most predictive variables for T2- 
response prediction. In panel A, the figure 
highlights the statistically significant features of 
the random forest classifier. The features are 
shown in ascending order from most to least 
informative, measured using the normalized 
Gini importance index. The variables with a 
statistically significant importance index, eval-
uated using permutation tests, are plotted. In 
panel B, the plot shows the partial dependence 
of each important variable on the responsive-
ness outcome. The x-axis indicates the values 
the variables can assume, while the y-axis 
specifies the probability of being a responder (y 
= 1) or non-responder (y = 0). The solid line 
represents the average partial dependence of 
the random forest.   
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previous ketamine research, suggesting anhedonia as a central target 
(Lally et al., 2014, 2015; Mkrtchian et al., 2021; Nogo et al., 2022; 
Sterpenich et al., 2019; Vasavada et al., 2021). Intravenous esketamine 
studies support its potential anti-anhedonic effects in unipolar and bi-
polar patients (Delfino et al., 2021). Anhedonia and hopelessness share 
fronto-striatal dopaminergic pathways (Pettorruso et al., 2020; Pizza-
galli 2014), involved in the reward network (Li et al., 2018). Recent 
findings reveal that prefrontal areas modulate these circuits through 
glutamatergic pathways, and hypoactivation leads to decreased hedonic 
function (Kokane et al., 2020). Ketamine and ESK-NS may restore he-
donic function by modulating reward network circuits (Arnsten et al., 
2023), explaining glutamatergic compounds’ potential as 
anti-anhedonic therapies. 

Baseline measures of psychic activation and comorbidity with anxi-
ety disorders were positive predictors of ESK-NS treatment response. 
These dimensions encompass inner tension, restlessness, motor tension, 
psychic anxiety, and general anxiety symptoms. Prior research indicates 
ketamine and esketamine’s anxiolytic effects in treatment-resistant 
unipolar and bipolar depression (Martinotti et al., 2023; McIntyre 
et al., 2020, 2021). Comorbidity with anxiety symptoms also positively 

impacted esketamine treatment response (Lucchese et al., 2021). As 
ketamine derivatives were initially anesthetic agents, their anxiolytic 
effect is consistent. Our findings suggest a new perspective for TRD 
treatment algorithms, highlighting anxiety’s key role. Anxiety is often 
considered a predisposing factor for TRD due to poor response rates to 
conventional antidepressants and frequent co-occurrence during MDEs 
(Cepeda et al., 2018; Maj et al., 2020). 

Our analysis emphasizes the potential predictive role of psychic 
activation and mixed-related symptoms (restlessness, inner tension, 
motor tension) for response/remission to ESK-NS treatment. Interest-
ingly, inner tension emerged as a strong predictor of positive outcomes 
at T1 and T2. Often linked to mixed features, these symptoms affect 
around 30% of TRD subjects during a MDE (Suppes and Ostacher 2017). 
Previous studies (Martinotti et al., 2023; McIntyre et al., 2020) suggest 
glutamatergic agents’ potential in treating mixed symptoms in TRD due 
to their pharmacodynamic action, such as modulating neuronal excit-
ability (d’Andrea et al., 2023). Hyperthymic temperament and comor-
bidity with bipolar disorder also indicate a good likelihood of treatment 
response. This holds considerable implications, particularly about the 
involvement of coexisting features in MDEs within the framework of 

Fig. 3. Most predictive variables for T2- 
remission prediction. In panel A, the figure 
highlights the statistically significant features of 
the random forest classifier. The features are 
shown in ascending order from most to least 
informative, measured using the normalized 
Gini importance index. The variables with a 
statistically significant Gini index, evaluated 
using permutation tests, are plotted. In panel B, 
the plot shows the partial dependence of each 
important variable on the responsiveness 
outcome. The x-axis indicates the values the 
variables can assume, while the y-axis specifies 
the probability of being a responder (y = 1) or 
non-responder (y = 0). The solid line represents 
the average partial dependence of the random 
forest.   
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TRD and TRDBD. Prior empirical data suggests an increased propensity 
for non-responsiveness among patients exhibiting mixed features con-
current with an MDE (Fornaro et al., 2020). 

Growing evidence supports ketamine’s effectiveness and safety in 
bipolar depression (Bahji et al., 2021; Roger S McIntyre et al., 2021; 
Wilkowska et al., 2021), while evidence for esketamine is preliminary 
(Delfino et al., 2021; Martinotti et al. 2023) (e.g., no RCTs for ESK-NS). 
About 60% of initially diagnosed unipolar MDEs are reclassified as bi-
polar depression (McIntyre and Calabrese 2019), with conversion rates 
increasing over time (Kessing and Andersen 2017). Shifting to a bipolar 
spectrum perspective, “soft” or “attenuated” features like hyperthymic 
temperament, mixed features, family history of BD, and (hypo)manic 
switches with antidepressants (Akiskal 2003) are linked to recurrences 
and treatment resistance in MDEs (Mazzarini et al., 2018). Our results 
suggest considering bipolar spectrum-related features in TRD treatment 
algorithms as predictors of ESK-NS response. Studying depression 
sub-phenotypes is crucial, as some forms unresponsive to conventional 
treatments may respond to novel glutamatergic therapies and belong to 
the bipolar spectrum. 

4.2. Non-responder profile: prior unsuccessful rTMS, obsessive thoughts, 
recurrences, and suicidalit as negative predictors 

Our model identifies significant negative predictors of response, of-
fering valuable insights for clinicians. Notably, prior inefficacy of rTMS 
treatment is a negative predictor. This contrasts with earlier studies on 
ketamine, wherein its efficacy was similar for individuals with and 
without a history of neurostimulation treatments (Rodrigues et al., 
2022). 

However, although ESK-NS and rTMS are distinct antidepressant 
therapies, they may share underlying mechanisms of action. Both target 
prefrontal areas to restore proper connectivity between prefrontal re-
gions and the cingulate cortex (Arnsten et al., 2023). While rTMS pri-
marily targets left DLPFC hypoactivation, ESK-NS directly impacts the 
cingulate cortex, reducing hyperactivation and indirectly restoring 
top-down control (Arnsten et al., 2023). We could speculate that in-
dividuals not responding to rTMS and ESK-NS may have depression 
without prominent DLPFC-cingulate cortex imbalance. In this perspec-
tive, a recent head-to-head preliminary study shows similar response 
and remission rates in TRD patients treated with rTMS and ESK-NS, with 
the former showing a more rapid action (Pettorruso et al., 2023). 
However, our finding and previous data doesn’t exclude exploring the 
potential synergistic effects of these combined approaches. 

The presence of obsessive symptoms was linked to negative re-
sponses. Obsessive thoughts often manifest as ruminative thoughts in 
depressive episodes (Ehring 2021). Maladaptive traits like anankastia 
may contribute to depression recurrence and pharmacological resis-
tance, highlighting the need for combined approaches (Maj et al., 2020). 
Aberrant activity in the Default-Mode Network has been linked to 
ruminative and obsessive thoughts (Koch et al., 2018; Tozzi et al., 2021). 
Glutamatergic agents act on prefrontal components of the executive 
control network (Arnsten et al., 2023), but their impact on DMN activity 
is less understood (Hamilton et al., 2015). We speculate that ruminati-
ve/obsessive depression resistant to ESK-NS may respond to therapies 
rebalancing DMN activity (Carhart-Harris et al., 2012), like psychedelics 
(Barba et al., 2022). 

Intriguingly, higher baseline suicidality predicts poor ESK-NS treat-
ment response at T1 and T2. This, however, does not contest the pre-
viously documented anti-suicidal properties of ESK-NS (Mahase 2021), 
as our study did not investigate the drug’s direct impact on suicidal 
ideation. Our finding underscores the intricate nature of suicidality. 
From a clinical perspective, suicidality is a remarkably heterogeneous 
construct, spanning an array of clinical manifestations - from suicidal 
ideation to instances of deliberate self-inflicted harm. It is commonly 
associated with the co-occurrence of personality disorders and is typi-
cally recognized as an indicator of the most severe form of MDE. 

Suicidality also amplifies the likelihood of recurrence, an additional 
adverse predictor identified in our model. Taken together, our data 
suggest that ESK-NS exhibits diminished efficacy in treating more 
complex, chronic forms of depression associated with important nega-
tive prognostic factors (i.e., suicidality) and characterized by a decrease 
in functional ability (i.e., difficult-to-treat depression) (McAllis-
ter-Williams 2022). 

4.3. Late responders: could benzodiazepine use and depression severity 
delay ESK-NS response? 

In our model, several factors interfered with early response to ESK- 
NS, with concurrent benzodiazepine use and depression severity being 
the most significant. This contrasts with a previous post-hoc analysis on 
ESK-NS RCTs that didn’t find the use of benzodiazepine to affect ESK-NS 
action negatively (Diekamp et al., 2021). This difference could be due to 
the opposing effects of benzodiazepines and ESK-NS on gluta-
mate/GABA balance. Benzodiazepines inhibit glutamate activation by 
activating GABAa interneuron receptors (Haefely 1984), while ESK-NS 
increases glutamate activity by antagonizing the NMDA receptor 
(Zanos et al., 2018). Thus, benzodiazepine use may slow ESK-NS action 
and reduce its efficacy. 

Certain variables indicating high depression severity (psychomotor 
retardation, emotional withdrawal, self-neglect) predicted early unre-
sponsiveness to ESK-NS. Notably, these features didn’t predict T2 
response and remission. This discrepancy suggests that high depression 
severity and benzodiazepine treatment might not impact ESK-NS effec-
tiveness but rather delay response. Reducing benzodiazepines could 
speed up clinical response, and the most severe patients may need longer 
ESK-NS treatment for mood improvements. 

4.4. Study limitations 

A key limitation of our study is the heterogeneity of settings and 
methods due to its naturalistic design. This may have led to under-
estimating selection bias or inconsistent methods, but it also reflects 
real-world scenarios, enhancing the applicability of the results. Another 
limitation is the smaller sample size compared to previous machine- 
learning studies (Pigoni et al., 2019), which limited our ability to 
draw significant conclusions. However, the robust statistical analysis 
and cross-validation schema (Varoquaux 2018) suggest that the findings 
are not over-inflated. The T2 dropout rate (31/149 subjects) could also 
affect the study’s overall significance. Developing inter-rater reliability 
among different centers wasn’t possible, but evaluations were con-
ducted by well-trained psychiatrists and clinical psychologists, ensuring 
good reliability and data reproducibility. 

Another significant limitation of this study is the lack of biomarkers 
in our predictive model. Previous research has demonstrated that 
incorporating biological measures can amplify the overall precision of 
ML algorithms, additionally providing an objective quantification (Li 
et al., 2022). Given the inherent nature of this study—multicentric, 
real-world, and retrospective— the integration of such biological mea-
surements was not feasible. 

5. Conclusion 

Our study suggests that machine-learning models can predict ESK-NS 
treatment outcomes using sociodemographic factors and clinical phe-
notyping. Despite limitations, these findings may aid clinicians in 
identifying subjects more likely to respond to ESK-NS. Anhedonic fea-
tures, comorbid anxiety, and mixed symptoms predict better responses 
in TRD patients, while chronic and complex depressive disorders are less 
likely to achieve positive outcomes. The concurrent use of benzodiaze-
pine and high depression severity delay the treatment response. If 
confirmed in larger samples, these machine learning-based results could 
help expand personalized medicine approaches in psychiatry. 
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Machine Learning in Python. J. Mach. Learn Res. 12, 2825–2830. 
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