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Abstract: The use of ultrasound (US) in combination with a responsive chemical agent (sonosensitizer)
can selectively trigger the agent’s anticancer activity in a process called sonodynamic therapy (SDT).
SDT shares some properties with photodynamic therapy (PDT), which has been clinically approved,
but sets itself apart because of its use of US rather than light to achieve better tissue penetration. SDT
provides anticancer effects mainly via the sonosensitizer-mediated generation of reactive oxygen
species (ROS), although the precise nature of the underpinning mechanism is still under debate. This
work investigates the SDT anticancer activity of hypericin (Hyp) in vitro in two- (2D) and three-
dimensional (3D) HT-29 colon cancer models, and uses PDT as a yardstick due to its well-known
Hyp phototoxicity. The cancer cell uptake and cellular localization of Hyp were investigated first to
determine the proper noncytotoxic concentration and incubation time of Hyp for SDT. Furthermore,
ROS production, cell proliferation, and cell death were evaluated after Hyp was exposed to US. Since
cancer relapse and transporter-mediated multidrug resistance (MDR) are important causes of cancer
treatment failure, the US-mediated ability of Hyp to elicit immunogenic cell death (ICD) and overcome
MDR was also investigated. SDT showed strong ROS-mediated anticancer activity 48 h after treatment
in both the HT-29 models. Specific damage-associated molecular patterns that are consistent with
ICD, such as calreticulin (CRT) exposure and high-mobility group box 1 protein (HMGB1) release,
were observed after SDT with Hyp. Moreover, the expression of the ABC transporter, P-glycoprotein
(P-gp), in HT-29/MDR cells was not able to hinder cancer cell responsiveness to SDT with Hyp. This
work reveals, for the first time, the US responsiveness of Hyp with significant anticancer activity
being displayed, making it a full-fledged sonosensitizer for the SDT of cancer.

Keywords: hypericin; ultrasound; sonodynamic therapy; sonosensitizer; colon cancer; three-
dimensional cell cultures; immunogenic cell death

1. Introduction

Hypericin (Hyp) is a quinone derivative, structurally related to perylene quinones,
that derives from Hypericum perforatum, known as St. John’s wort [1,2]. Its broad pharma-
cological activity, which ranges from antidepressant to anti-inflammatory, antimicrobial,
and anticancer effects, is well known [3]. Additionally, its use as an inhibitor of β-amyloid
fibril formation has also been studied, making applications in the treatment of Alzheimer’s
disease a possibility [4].

The anticancer activity of Hyp relies on its phototoxicity as Hyp is probably the most
powerful photosensitizer found in nature. Hyp absorbs in the red wavelength region
(around 600 nm) and acts via both the type I (electron or hydrogen atom transfer) and
type II (energy transfer to molecular oxygen) reactions. Hyp is characterized by properties
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that are ideal for a photosensitizer, including its highly efficient production of superoxide
anions (O2

•−) and singlet oxygen (1O2) under light exposure and very-low-to-no toxicity
when not exposed to light [5,6]. In recent years, it has largely been studied as an anticancer
photodynamic agent [7,8]. Moreover, as the accumulation of Hyp is significantly higher in
tumor tissue than in normal tissue, it is used as a fluorescence probe for tumor detection in
photodynamic diagnosis [1]. Hyp is therefore an effective natural compound alternative to
chemically synthesized photosensitizers.

Photodynamic therapy (PDT) has been applied as adjuvant tumor therapy for more
than 40 years [9,10]. When the photosensitizer is excited by a light of appropriate wave-
length, it can directly transfer energy to oxygen to produce reactive oxygen species (ROS)
and 1O2 in tumor cells [10], resulting in severe cell alterations [11]. Light-activated Hyp
inhibits various mitogen-activated protein kinases, inducing peroxidation in lipid mem-
branes and mitochondrial damage. Consequently, ROS-mediated PDT leads to tumor
killing via apoptotic-, necrotic-, and autophagy-associated cell death [10,12].

In the battle against cancer, sonodynamic therapy (SDT) is under investigation as an
interesting approach to overcome some of the limitations of PDT, which include the poor
penetration depth of light in biological tissues [13–16]. Moreover, SDT also has the potential
to empower traditional anticancer treatment modalities; since many chemotherapeutic
agents have serious dose-dependent side effects, the combination with SDT may have
clinical relevance. Indeed, SDT requires low doses of responsive chemical compounds
known as sonosensitizers that should be used at noncytotoxic concentrations [17].

The single components of SDT (i.e., the sonosensitizer and US) generate marked
cytotoxicity only when combined, thanks to their synergistic effect [14]. This is based on the
idea that US can induce physical and chemical changes in biological tissues according to
US intensity and frequency [13,18]. Specifically, there are three physical mechanisms on the
basis of the biological effects induced by US: (i) heat generation, (ii) acoustic cavitation, and
(iii) radiation forces and acoustic streaming [19]. For instance, high-intensity focused US is
used for hyperthermia-mediated tumor ablation, while low-intensity US can enhance drug
uptake (sonoporation), control release by delivery systems, and activate a sonosensitizer
for SDT. However, a deep and complete understanding of the mechanisms behind SDT is
still lacking. This can be attributed to the complexity of this approach, with it involving a
variety of physical, chemical, and biological processes at the same time.

Acoustic cavitation, a phenomenon in which vapor bubbles oscillate and collapse un-
der the influence of varying pressures in a fluid medium and that can subsequently trigger
sonomechanical and sonochemical processes, is one of the most important US-induced
phenomena involved in SDT [20]. Noninertial (stable cavitation) and inertial (transient
cavitation) have been recognized as two specific types of acoustic cavitation activity. In the
first, bubbles persist for several acoustic cycles, oscillating around an equilibrium radius,
whereas in the second, bubbles grow more quickly, expanding to two to three times their
size, and rapidly and violently collapse once they reach a region with a pressure that is
above the vapor pressure, generating several physical effects, including flashes of light,
so-called sonoluminescence [21]. Although the mechanism of sonoluminescence is still un-
der debate, it seems to be related to sonosensitizer activation, which may also explain why
most sonosensitizers that are employed are also photosensitizers [22]. Sonoluminescent
light is absorbed by the sonosensitizer, and the compound is activated, passing from the
ground state into an excited state, with the process culminating again in the formation of
cytotoxic free radicals, which are responsible for SDT-mediated cytotoxicity. SDT has been
extensively investigated in both in vitro and in vivo studies, but is still far from achieving
clinical application [14].

Preclinical studies of innovative anticancer treatments are traditionally based on
in vitro investigations in two-dimensional (2D) cell cultures. While these cancer models are
certainly simple and widely used, they are not able to reproduce the complexity of tumor
tissues, making the screening of new anticancer treatments somewhat inefficient. In three-
dimensional (3D) cell cultures, cells group together to form spheroidal structures that are
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more closely related to in vivo tumor masses and mimic various in vivo functions [23,24].
For instance, cancer cells that grow in 3D cell cultures interact with the extracellular matrix,
which defines the features of the tissue environment, which, in turn, directly affects cell
phenotype [25]. In vitro 3D cancer models are therefore a very valuable tool for cancer
research and one that can reduce the gap between in vitro and in vivo cancer models,
thus aiding the successful translation of innovative therapeutic approaches. In particular,
3D cancer models provide us with the opportunity to perform more realistic studies of
minimally invasive approaches, such as PDT and SDT, as they can take into account the
limited sensitizer penetration through the extracellular matrix and the presence of hypoxia,
which can limit the treatment efficacy of such oxygen-dependent treatments [26].

As the role of the sonosensitizer is pivotal to SDT outcomes, the ability of Hyp to
respond to US stimulation merits investigation. Hyp possesses multifaceted anticancer
activity as it is also able to elicit an antitumor immune response upon light activation. This
can be mainly ascribed to the induction of immunogenic cell death (ICD) [27], as mediated
by damage-associated molecular patterns (DAMPs), which include calreticulin (CRT) and
high-mobility group protein 1 (HMGGB1), leading to dendritic cell (DC) maturation and
antigen presentation [28–30]. Moreover, Hyp appears not to be a substrate of P-gp, meaning
that the US activation of Hyp, in a combination treatment with chemotherapeutic drugs,
has the potential to counteract P-gp-mediated multidrug resistance (MDR) [31]. Cancer
relapse, one of the major causes of cancer treatment failure, can be directly correlated to
the insurgence of chemoresistance and consequent treatment failure [32]. The transporter-
mediated efflux of drugs by cancer cells is present among the many mechanisms of MDR,
with many different transporters being involved, especially the ATP-binding cassette (ABC)
transporter superfamily [33]. ABCB1 (MDR1 or P-glycoprotein, P-gp), a member of the
ABC transporter superfamily that binds amphipathic and lipid-soluble compounds, plays
a pivotal role [34,35]. Although three generations of P-gp inhibitors have been developed
to face P-gp-mediated MDR in recent years, they have had low clinical impact [36].

The aim of this work is therefore to evaluate Hyp as a US-responsive agent, namely, a
sonosensitizer, by investigating the effect of hypericin-mediated sonodynamic therapy (Hyp-
SDT) in 2D and 3D cell culture models of colon cancer using the human colorectal cancer
cell line HT-29. Specifically, the Hyp’s ability to generate ROS under US exposure will be
investigated as well as its ability to induce ICD and to affect MDR colorectal cancer cells.

2. Materials and Methods
2.1. Hypericin

4,5,7,4′,5′,7′-Hexahydroxy-2,2′-dimethylnaphtodianthrone (MW 504.44 g/Mol) was
purchased as powder (Alfa Aesar, Kandel, Germany) and stored at −20 ◦C, away from
light. A 2 mM Hyp stock solution was prepared in dimethyl sulfoxide (Sigma-Aldrich,
Milano, Italy) and stored as aliquots at −20 ◦C. Working solutions were prepared fresh
at a concentration of 50 mM in phosphate-buffered saline (PBS), in accordance with
Kleemann et al. [37]. The final Hyp solutions, at concentrations suitable for cell experi-
ments, were then prepared in complete cell culture medium.

2.2. Cell Cultures

The human colorectal adenocarcinoma cell line HT-29 was purchased from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA, USA). Two-dimensional HT-29 cell cul-
tures were maintained as monolayers in RPMI-1640 medium (Sigma-Aldrich, Milano, Italy),
supplemented with 10% fetal bovine serum (FBS) (Lonza, Verviers, Belgium), 100 UI/mL
penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine (Sigma-Aldrich, Milano,
Italy). Cells were cultured in an incubator (Thermo Fisher Scientific, Rodano, Italy) with
a humidified atmosphere containing 5% CO2 air at 37 ◦C. Three-dimensional HT-29 cell
cultures were developed as spheroids by using a 96-multiwell round bottom (U) plate
(BRANDplates® BRAND GMBH + CO KG, Wertheim, Germany) that was previously
covered with 1.5% agarose (Sigma-Aldrich, Milano, Italy) to avoid a direct cell attachment
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to the plate. Briefly, agarose was dissolved in PBS, sterilized in an autoclave at 120 ◦C
for 15 min, and then maintained in a hot water bath to prevent agarose solidification.
Agarose (60 µL) was then used to coat each U well. The plates were left to cool down
at room temperature for 15 min, then covered with parafilm, and placed in the dark for
24 h. HT-29 cells in their exponential phase were detached using a 0.05% trypsin–0.02%
EDTA solution, and 5 × 103 cells were seeded in each well in 200 µL of a culture medium.
After 4 days, the spheroids were established, and their growth was monitored over time
using a Leica DMI4000B fluorescent microscope (Leica Microsystems, Milano, Italy). The
spheroid media were then changed every other day. HT-29 multi-drug-resistant (MDR) cells
(HT-29/MDR) were obtained in accordance with Riganti et al. [38]. Briefly, 1 × 105 HT-29
cells were seeded into 75 cm2 culture flasks (Techno Plastic Products, TPP, Trasadingen,
Switzerland) and cultured in RPMI 1640 medium, supplemented with 10% FBS, 100 UI/mL
penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, and 10 pM doxorubicin (Sigma-
Aldrich, Milano, Italy), which is a chemotherapeutic drug that can induce the acquired
MDR. After 3-cell passages, the doxorubicin concentration in the culture medium was
progressively increased, 2.5 times every 3-cell passages, up to 100 nM. HT-29/MDR cells
were periodically tested using a flow cytometric assay with calcein-AM (Sigma-Aldrich,
Milano, Italy) to confirm the resistant phenotype, as calcein-AM is a P-gp substrate [32].
Briefly, 1.0 × 105 HT-29 cells were incubated with 2 µL of calcein-AM in 1 mL of PBS at
37 ◦C for 15 min. Cytofluorimetric evaluation was assessed using a C6 flow cytometer
(Accuri C6, Milano, Italy) with excitation at 490 nm and emission at 515 nm. Data were
analyzed as the integrated mean of fluorescence intensity (iMFI), which is the product of
the frequency of calcein-AM-positive cells and the mean fluorescence intensity of cells.
Finally, P-gp expression was evaluated via flow cytometry using a mouse anti-P-gp primary
antibody (Ab3366, Abcam, Cambridge, UK) at a dilution of 1:200 in 2.0 × 105 cells for
30 min at room temperature. At the end of incubation, cells were washed with PBS and
incubated with a secondary antibody goat anti-mouse conjugated with Alexa FluorTM

647 nm (Ab150119, Abcam, Cambridge, UK) for 1 h at room temperature. After incubation,
cells were washed with PBS, and flow cytometry analysis was performed (λex = 650 nm
and λem = 665 nm).

2.3. Cytotoxicity Evaluation

In order to identify the optimal concentration of Hyp to act as a sonosensitizer, Hyp
cell toxicity was first investigated. Briefly, 2.5 × 103 HT-29 cells were cultured in 100 µL
of a culture medium in replicates (n = 6) in 96-multiwell plates (Techno Plastic Products,
TPP, Trasadingen, Switzerland). The medium was removed after 24 h and replaced with a
medium at increasing Hyp concentrations (0.001, 0.01, 0.1, 1 and 10 µM). After 24, 48, and
72 h of incubation, the WST-1 reagent (10 µL/100 µL) was added, and plates were incubated
at 37 ◦C in 5% CO2 for 1.5 h. Cellular absorbance was measured at 450 and 620 nm (reference
wavelength) using a microplate reader (Asys UV340; Biochrom, Cambridge, UK). The WST-
1 cell proliferation assay (Roche Applied, Milan, Italy) relies on the reduction of the WST-1
tetrazolium salt to formazan by mitochondrial dehydrogenases. This metabolic reaction
produces a color change that is directly proportional to the mitochondrial dehydrogenase
amount and reflects cell number [39]. Cell proliferation is expressed as absorbance (Abs),
and cytotoxicity is expressed as a percentage (%), according to the following equation: %
cytotoxicity = 100 × (absorbance of untreated cells − absorbance of treated cells). In order
to confirm the resistant phenotype in the HT-29/MDR cells, the effects of doxorubicin on
cell proliferation was investigated using the WST-1 assay. Briefly, 2.5 × 103 HT-29 and
HT-29/MDR cells were seeded in 100 µL of a culture medium in replicates (n = 6) in 96-
multiwell culture plates. After 24 h, the medium was removed and replaced with a medium
that contained doxorubicin at 100 µM. After 48 h, the WST-1 reagent (10 µL/100 µL) was
added, and the plates were incubated at 37 ◦C for 1.5 h. Cellular absorbance was measured
as previously reported.
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2.4. Cell Uptake Evaluation

In order to identify the optimal incubation time for the activity of Hyp as a sonosen-
sitizer, the uptake of Hyp by HT-29 cells was investigated in 2D cell cultures using flow
cytometry, thanks to Hyp’s fluorescence properties. Briefly, 8 × 104 HT-29 cells were plated
in 6-well culture plates, and 24 h after seeding, cells were incubated for 1, 3, 6, 12, and
24 h with Hyp at 0.1 µM. At the end of each incubation time, cells were detached using
trypsin, centrifuged, and resuspended in 100 µL of PBS. Cells were then analyzed using
flow cytometry (Accuri C6, Milano, Italy), with excitation at 488 nm, in the spectral range
>590 nm [40], considering 1 × 104 events. Cells debris with low forward scatter (FSC) and
side scatter (SSC) was excluded from the analysis. Results are expressed as iMFI, which
is the product of the frequency of Hyp-positive cells and the mean fluorescence intensity
of the cells. Data are expressed as iMFI ratio, which is the ratio between the iMFI values
of the treated and untreated cells. Hyp uptake by HT-29 cells was investigated in 3D
spheroids using flow cytometry. HT-29 spheroids were incubated with 0.1 and 0.2 µM Hyp
for 24 h. After the Hyp-incubation period, four spheroids for each condition were collected
in Eppendorf tubes, washed twice with PBS, and then trypsinized for 15 min at 37 ◦C. Cell
pellets were then centrifuged, resuspended accurately in 400 µL of PBS, and analyzed by
flow cytometry as previously described.

2.5. Confocal Microscopy

The intracellular localization of Hyp was investigated via confocal analysis at the con-
centration selected for the photodynamic and sonodynamic treatments. Briefly,
4 × 105 HT-29 cells were seeded in 24-well plates with glass coverslips on the bottom
of the wells. Twenty-four hours after seeding, cells were incubated with Hyp (0.1 µM) for 3,
6, and 24 h. After each Hyp incubation period, cells were washed with PBS and incubated
with MitoTrackerTM green FM staining 100 nM (Thermo Fisher Scientific, Rodano, Italy)
for 45 min at 37 ◦C in order to detect the mitochondria. The slides were then washed twice
with PBS, and the cells fixed with 4% paraformaldehyde (PAF; Sigma-Aldrich, Milano,
Italy) for 15 min at room temperature. The slides were then washed again, and glass cov-
erslips were placed on the slides with Fluoroshield™ mounting medium (Sigma-Aldrich,
Milano, Italy) to preserve the cells and prevent the rapid photobleaching of the fluorescent
probe. Confocal images were acquired using a laser scanning (λex = 405 nm diode laser,
λem = 633 nm) confocal microscope (LSM 900, Zeiss, Milano, Italy) with a 40× oil immersion
objective using the multitrack mode. Imagines were then analyzed using ImageJ software
(version 2.0).

2.6. Photodynamic Treatment

HT-29 cells in the exponential growth phase were preincubated for 24 h, with 0.1 µM
Hyp under protection from light. After the Hyp incubation period, cells were washed with
PBS, trypsinized, and normalized to 5 × 105 cells in 1 mL PBS in polystyrene tubes (TPP,
Trasadingen, Switzerland), under protection from light. Hyp-incubated cells underwent to
PDT by being exposed to a light beam (LB) using a light-emitting source based on InGaN
light-emitting diodes (Cree Inc., Durham, NC, USA) at a central wavelength of 543–548 nm
in a dark box. The energy fluency rate of the LB was fixed at 15 mW/cm2 (Jelosil, Le
Landeron, Switzerland) for 20 min. After PDT treatment, cells were resuspended in a
culture medium, and 5 × 103 HT-29 cells were seeded in 100 µL of a culture medium in
replicates (n = 6) into 96-multiwell culture plates. Cell proliferation was evaluated 24, 48,
and 72 h after PDT using a WST-1 assay. HT-29 spheroids were left to grow for 4 days, as
previously described, and then incubated with 0.2 µM Hyp for 24 h, under protection from
light. After the Hyp incubation period, spheroids were washed with a culture medium
prior to treatment. A total of five spheroids per condition were treated in a 48-multiwell
culture plate that was previously coated with 1.5% agarose. Spheroids underwent PDT
by being irradiated at 54–3548 nm in a dark box, at 15 mW/cm2 for 20 min, as previously
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described. At the end of the treatment, each spheroid was placed into a 96-multiwell culture
plate that had been coated with 1.5% agarose to monitor their growth over time.

2.7. Sonodynamic Treatment

HT-29 cells in the exponential growth phase were preincubated for 24 h with 0.1 µM
Hyp, under protection from light. After the Hyp incubation period, cells were washed
with PBS, trypsinized, and normalized to 5.0 × 105 cells in 2.7 mL PBS in polystyrene
tubes, under protection from light. The US field was generated using a piezoelectric plane
wave transducer (2.54 cm diameter) that was connected to a power amplifier (Type AR
100A250A; Amplifier Research, Souderton, PA, USA) and a function generator (Type 33250;
Agilent, Santa Clara, CA, USA). The polystyrene tube (1.0 cm diameter) was connected to
the US transducer, thanks to a particular mechanical adaptor filled with ultrapure water.
The US field was generated at 1.5 W/cm2 and 1.5 MHz in continuous mode for 5 min.
After US exposure, cells were resuspended in the culture medium, and 5 × 103 cells were
seeded in 100 µL of growth medium in replicates (n = 6) into 96-multiwell culture plates.
Cell proliferation was evaluated 24, 48, and 72 h after SDT using a WST-1 assay. HT-29
spheroids were left to grow for 4 days, as previously described, and then incubated with
0.2 µM for 24 h, under protection from light. After the Hyp incubation period, spheroids
were washed with a culture medium prior to treatment. A total of five spheroids per
condition were treated. Spheroids underwent SDT by being exposed to US in 2.7 mL of
PBS into a polystyrene tube. The US field was generated at 1.5 W/cm2 and 1.5 MHz, in
continuous wave mode for 5 min, as previously described. At the end of the treatment,
each spheroid was transferred into a 96-multiwell U plate that was previously coated with
agarose 1.5%.

2.8. ROS Production

Intracellular ROS production after Hyp-SDT was measured using CellROXTM green
(Thermo Fisher Scientific, Rodano, Italy) for oxidative stress detection. Briefly, at the end
of Hyp incubation for SDT, HT-29 cells were incubated with 500 nM CellROXTM green
for 30 min at 37 ◦C. Following CellROXTM green incubation, cells were washed with PBS,
trypsinized, normalized to 5 × 105 in 2.7 mL of PBS, and subjected to US exposure. ROS
production was assessed at 1, 5, 15, 30, and 60 min after US exposure using a C6 flow
cytometer (λex = 488 nm and λem = 530 nm) by considering 1 × 104 events and excluding
cell debris with low FSC and low SSC from the analyses. ROS production is expressed as
iMFI ratio to provide information on the ratiometric variation in fluorescence per time point
compared with control cells (untreated cells). This ratio was calculated as the difference in
the iMFI of treated and untreated cells over the iMFI of untreated cells [41].

2.9. Cell Death Assay

SDT-induced cell death, in the HT-29 2D and 3D cell cultures, was evaluated using
a SYTOX™ green dead cell stain for flow cytometry (Thermo Fisher Scientific, Rodano,
Italy), according to the manufacturer’s instructions. After the Hyp-SDT of the HT-29 2D
cell cultures, 5 × 105 cells were seeded in culture flasks for each treatment condition, and
they were trypsinized and collected in PBS after 48 h. HT-29 cells were then stained with
SYTOXTM green (1 µL /100 µL) for 15 min at 37 ◦C, under protection from light. After the
Hyp-SDT of the HT-29 spheroids, five spheroids were considered for each condition 48 h
after treatment. Briefly, spheroids were centrifuged at 1500 rpm for 2 min, the supernatant
was removed, and cell spheroid pellets were then washed with 300 µL of PBS. Finally,
spheroid pellets were centrifuged for 2 min and trypsinized for 15 min, and then 1 µL of
SYTOXTM green was added to 100 µL of PBS in each flow cytometry tube. HT-29 cells
were then incubated for 15 min at 37 ◦C, under protection from light. At the end of the
SYTOX™ green incubation, 400 µL of PBS was added, and samples were analyzed using
a C6 flow cytometer at 488 nm excitation and 530 nm emission. A total of 1 × 104 events
were analyzed to discriminate viable (SYTOXTM green negative) from dead (SYTOXTM
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green positive) cells. Cell debris with low FSC and SSC was excluded from the analyses.
To confirm the SDT-induced cell death in HT-29 spheroids, fluorescence microscopy was
also carried out using propidium iodide (PI; Thermo Fisher Scientific, Rodano, Italy),
according to the manufacturer’s instructions. Briefly, 48 h after Hyp-SDT, spheroids were
washed twice with PBS and then incubated with PI for 20 min at room temperature, under
protection from light. At the end of PI incubation, each spheroid was washed with PBS, and
images were acquired (λex = 540 nm and λem = 590 nm) using a Leica DMI4000B fluorescent
microscope (Leica Microsystems, Milano, Italy). Images were then analyzed using ImageJ
software to quantify the PI fluorescence of HT-29 spheroids, and the results are expressed
as mean of PI intensity/µm2 ± standard deviation.

2.10. Calreticulin and High-Mobility Group Box 1 Evaluation

The exposure of calreticulin (CRT) on the HT-29 cell surface was determined 6 h
after treatment with Hyp-SDT. Briefly, 5 × 105 cells for each experimental condition were
considered and incubated with Alexa Fluor® 488 anti-CRT antibody (ab196158; Abcam,
Cambridge, UK), 10 µg/mL, for 40 min at room temperature, under cover from light.
At the end of the incubation, cells were washed twice with PBS and then immediately
analyzed using a C6 flow cytometer (λex = 488 nm, λem = 530 nm). In the analysis,
1 × 104 events were considered at a medium flow rate, and cellular debris with low
FSC and low SSC were discarded. HMGB1 occurrence was determined 24 h after treatment
with Hyp-SDT. Briefly, 5 × 105 cells for each experimental condition were considered and
incubated with anti-HMGB1 antibody (ab77302; Abcam, Cambridge, UK), 10 µg/mL, for
30 min at room temperature, protected from light. At the end of the incubation, cells were
washed once with PBS and then incubated with rabbit F(ab’)2 goat anti-mouse IgG H&L
(Alexa Fluor® 647) (ab150119; Abcam, Cambridge, UK), 1:2000, for 1 h at room temperature,
under protection from light. At the end of incubation, cells were washed twice with PBS
and then analyzed using a C6 flow cytometer (λex = 640 nm and λem = 665 nm). In the
analysis, 1 × 104 events were considered at a medium flow rate, and cellular debris with
low FSC and low SSC were discarded.

2.11. Statistical Analyses

Data are reported as mean values ± standard deviation of three independent experi-
ments. Statistical analysis was carried out by using Prism 9.0 software (GraphPad, La Jolla,
CA, USA). According to the experimental design, multiple t-test, two-way ANOVA, one-
way ANOVA analysis of variance, and Bonferroni’s test were used to calculate the threshold
of significance. The statistical significance was set at p ≤ 0.05.

3. Results
3.1. Hypericin Cytotoxicity

To select the Hyp noncytotoxic concentration for sonodynamic experiments,
HT-29 cells in 2D were incubated at increasing concentrations of Hyp (0.001, 0.01, 0.1,
1, and 10 µM) for 24, 48, and 72 h. A significant Hyp cytotoxicity was observed starting
from 1 µM after 24 (p ≤ 0.01) and 48 (p ≤ 0.05) h, and the highest Hyp concentration
tested (10 µM) resulted in a significant cytotoxicity (p ≤ 0.001) over time (Figure 1). There-
fore, the maximum Hyp noncytotoxic concentration, 0.1 µM, was selected as the proper
concentration for investigating the possible synergistic activity of Hyp in combination
with US.
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Figure 1. Hypericin cytotoxicity in HT-29 2D cells. Cytotoxicity curves in HT-29 2D cell cultures 
were obtained by incubating cells with increasing concentrations of Hyp (0.001, 0.01, 0.1, 1, and 10 
μM). WST-1 assay was carried out to evaluate Hyp cytotoxicity that was expressed as a percentage 
compared with untreated cells after 24, 48, and 72 h of incubation. Statistically significant difference 
versus untreated cells: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 (n = 2). 
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Figure 1. Hypericin cytotoxicity in HT-29 2D cells. Cytotoxicity curves in HT-29 2D cell cultures
were obtained by incubating cells with increasing concentrations of Hyp (0.001, 0.01, 0.1, 1, and
10 µM). WST-1 assay was carried out to evaluate Hyp cytotoxicity that was expressed as a percentage
compared with untreated cells after 24, 48, and 72 h of incubation. Statistically significant difference
versus untreated cells: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 (n = 2).

3.2. Hypericin Cellular Uptake and Intracellular Localization

To select the best suitable incubation time of Hyp for sonodynamic experiments, the
intracellular uptake of 0.1 µM Hyp was evaluated in HT-29 2D cell cultures at different
incubation times (1, 3, 6, 12, and 24 h). An increase in Hyp uptake was observed over time
up to a maximum level ranging from 6 to 24 h (Figure 2). Since no statistically significant
differences were observed among 6, 12, and 24 h, 24 h of Hyp incubation was selected
as the most appropriate time for investigating the possible synergistic activity of Hyp in
combination with US.
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Figure 2. Hypericin uptake in 2D HT-29 cell cultures. HT-29 cells were incubated for 1, 3, 6, 12, and
24 h with 0.1 µM Hyp. Fluorescent signals were detected using a flow cytometer at 488 nm excitation
to measure the intracellular amount of Hyp that was expressed as iMFI ratio versus untreated cells
(Ctrl). Statistically significant difference versus untreated cells (Ctrl): * p ≤ 0.05, ** p ≤ 0.01 (n = 3).

A confocal fluorescence analysis of Hyp in HT-29 cells was then performed to confirm
the cytofluorimetric data by establishing Hyp cellular localization, as cellular localization
can significantly influence the sonodynamic activity of Hyp. In the same procedure as the
cytofluorimetric study of Hyp uptake, HT-29 cells were incubated for 3, 6, and 24 h with
0.1 µM Hyp. By staining mitochondria with an appropriate probe, MitoTrackerTM green,
overlay imaging analysis revealed that Hyp displayed cytoplasmic distribution, specifically
at the mitochondrial level (Figure 3). The mitochondrial localization of Hyp increased



Pharmaceutics 2022, 14, 1102 9 of 22

over time, in accordance with the cytofluorimetric study of Hyp cellular uptake (Figure 2).
Moreover, the accumulation of Hyp clusters close to the cell membrane was observed.
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3.3. Hypericin-Induced ROS Generation under US Exposure

Since the ability of Hyp to provoke ROS production under PDT treatment has been
reported in the literature [42], we thought it would be interesting to analyze ROS production
under US exposure. As observed in Figure 4, slight, but statistically significant, ROS
generation was observed in HT-29 cells under the combined treatment of Hyp and US over
time (p ≤ 0.05), with the maximum being found 5 min after treatment. Moreover, the signal,
expressed as iMFI ratio versus Ctrl (i.e., untreated cells), remained almost constant up to
1 h after treatment.
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Figure 4. ROS generation under sonodynamic exposure of Hyp. HT-29 cells were incubated for 24 h
with 0.1 µM Hyp and then exposed to US (1.5 W/cm2 at 1.5 MHz, continuous wave mode for 5 min).
Statistically significant difference versus untreated cells: * p ≤ 0.05 (n = 3).

3.4. Effects of Photodynamic and Sonodynamic Treatment with Hypericin on HT-29 Cells

As Hyp is a well-known photosensitizer, the effects of PDT with Hyp on HT-29 cell pro-
liferation were evaluated, using the selected noncytotoxic concentration of Hyp
(0.1 µM), 24, 48, and 72 h after treatment. A significant reduction in HT-29 cell prolif-
eration was observed only when the HT-29 cells underwent PDT, starting from 48 h after
treatment, whereas no significant effect was observed in untreated cells, cells treated with
Hyp only, and cells exposed to LB only (Figure 5a). A marked increase in the percentage of
dead cells (58.34± 6.47%, p≤ 0.001) and a statistically significant decrease in the percentage
of live cells (41.66 ± 4.93%, p ≤ 0.001), both compared with untreated cells, were observed
48 h after the photodynamic treatment of HT-29 cells with Hyp and LB (Figure 5b).
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Figure 5. Effects of hypericin-mediated photodynamic treatment on HT-29 cell proliferation. HT-29
cells were incubated for 24 h with 0.1 µM Hyp and then exposed to LB (green LED at 1.5 W/cm2

for 20 min). (a) Cell proliferation was evaluated by WST-1 assay 24, 48, and 72 h after treatment.
Statistically significant difference versus untreated cells: ** p ≤ 0.01, *** p ≤ 0.001. (b) Cell death was
evaluated, 48 h after the treatment, using flow cytometry with SYTOX™ green dead cell staining
and expressed as cell percentage. Statistically significant difference versus untreated cells (Ctrl):
** p ≤ 0.01, *** p ≤ 0.001 (n = 3).

To verify the responsiveness of Hyp, acting as a sonosensitizer, to US, the effects of Hyp-
SDT were evaluated on HT-29 cell proliferation using a Hyp noncytotoxic concentration of
0.1 µM. A statically significant decrease in cell proliferation was observed when HT-29 cells
underwent Hyp-SDT, starting from 48 h after treatment (Figure 6a). A significant increase in
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the percentage of dead cells (33.20 ± 8.97%, p ≤ 0.01) and a statistically significant decrease
in the percentage of live cells (66.60 ± 4.25%, p ≤ 0.01), both compared with untreated
cells, were observed 48 h after the sonodynamic treatment of HT-29 cells with Hyp and
US (Figure 6b).
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from the nucleus of dying cells, and this is considered a late signal in the ICD pathway 
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Figure 6. Effects of hypericin-mediated sonodynamic treatment on HT-29 cell proliferation.
HT-29 cells were incubated for 24 h with 0.1 µM Hyp and then exposed to US (1.5 W/cm2 at 1.5 MHz,
continuous wave mode for 5 min). (a) Cell proliferation was evaluated by WST-1 assay 24, 48, and 72 h
after treatment. Statistically significant difference versus untreated cells: ** p ≤ 0.01. (b) Cell death
was evaluated, 48 h after the treatment, using flow cytometry with SYTOX™ green dead cell staining
and expressed as cell percentage. Statistically significant difference versus untreated cells (Ctrl):
** p ≤ 0.01 (n = 3).

3.5. CRT and HMGB1 Induced by Sonodynamic Treatment with Hypericin on HT-29 Cells

CRT is an early signal exposed on cancer cell membranes and an important ICD-
related DAMP [43,44]. CRT exposure on HT-29 cell surfaces was therefore evaluated 6 h
after Hyp-SDT treatment, and a significant increase in the CRT fluorescent signal was
observed in the SDT condition compared with untreated cells (Ctrl), which are indicated
by a dashed line (Figure 7, p ≤ 0.05). Another important ICD hallmark is the release of
HMGB1 from the nucleus of dying cells, and this is considered a late signal in the ICD
pathway [40]. Therefore, HMGB1 release was evaluated in HT-29 cells 24 h after Hyp-SDT
treatment. A significant increase in HMGB1 was observed when HT-29 cells underwent
Hyp preincubation, followed by US exposure (Figure 7, p ≤ 0.05).
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Figure 7. Evaluation of CRT and HMGB1 after hypericin-mediated sonodynamic treatment.
HT-29 cells were incubated for 24 h with 0.1 µM Hyp and then exposed to US (1.5 W/cm2 at
1.5 MHz, continuous wave mode for 5 min). The presence of CRT and HMGB1 was evaluated 6 and
24 h after treatment, respectively. Results are expressed as iMFI ratio. Statistically significance of
treated cells versus untreated cells (dashed line): * p ≤ 0.05 (n = 3).
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3.6. Effects of Sonodynamic Treatment with Hypericin on HT-29/MDR Cells

The acquired MDR in HT-29/MDR cells was verified by cytofluorimetric analysis of
calcein-AM, a substrate of P-gp that can highlight differences in its own cellular internal-
ization according to P-gp expression. The results were compared with the ones obtained
from the parental cell line, HT-29. HT-29/MDR cells presented a significantly lower inter-
nalization of calcein-AM than HT-29 cells (Figure 8a, p ≤ 0.01). To confirm the resistant
phenotype in HT-29/MDR cells, P-gp expression was also evaluated using a specific P-gp
antibody to allow its cytofluorimetric detection. The cytofluorimetric analysis displayed
a 2.4-fold increase in P-gp expression of HT-29/MDR cells compared with HT-29 cells
(Figure 8b). Moreover, the cytotoxic effect of a chemotherapeutic drug that is a well-known
P-gp substrate, doxorubicin [45], was evaluated at a concentration (100 µM) above its
IC50 value [46]. After 48 h of doxorubicin incubation, a significant decrease in HT-29 cell
proliferation was observed, while no significant effect on cell proliferation was observed in
HT-29/MDR (Figure 8c).
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Figure 8. Assessment of the multi-drug-resistant phenotype in HT-29/MDR cells. (a) Cellular
internalization of a P-gp substrate expressed as the integrated mean fluorescence intensity (iMFI) of
calcein-AM, as detected by cytofluorimetric analysis in HT-29 and HT-29/MDR cells. Statistically
significant difference versus HT-29 cells: ** p ≤ 0.01 (n = 3). (b) Pg-p expression by cytofluorimetric
analysis in HT-29 and HT-29/MDR cells. Statistically significant difference versus HT-29 cells:
* p ≤ 0.05 (n = 3). (c) Cell proliferation was evaluated by WST-1 assay after 48 h of doxorubicin
(100 µM) incubation. Statistical significance versus untreated cells: ** p ≤ 0.01 (n = 2).

Moreover, when HT-29/MDR cells underwent sonodynamic treatment with Hyp, a
statistically significant reduction in cell proliferation was observed after 48 h (Figure 9,
p ≤ 0.01) unlike what was observed when incubating the cells with doxorubicin (Figure 8c).

3.7. Effects of Photodynamic and Sonodynamic Treatment with Hypericin on HT-29 Spheroids

Prior to performing photodynamic and sonodynamic treatment on HT-29 spheroids,
an uptake study of Hyp in HT-29 cells organized into 3D structures was carried out.
Since Hyp uptake may be influenced by the multiple layers of cells that characterize
the 3D architecture, HT-29 spheroids were incubated with a Hyp concentration (0.2 µM)
twice that used in the 2D cell cultures (0.1 µM), for the same incubation time (24 h). As
shown in Figure 10, significant Hyp cellular uptake was observed 24 h after the HT-29
spheroids were incubated with 0.2 µM Hyp (p ≤ 0.01). It is worth noting that the iMFI
ratio induced in HT-29 spheroids by 0.2 µM Hyp was similar to that obtained in the
HT-29 monolayers incubated with 0.1 µM Hyp (Figure 2). Therefore, 0.2 µM was chosen as
the proper concentration with which to investigate the possible synergistic activity of Hyp
and US in HT-29 spheroids.
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Figure 9. Effects of Hyp-mediated sonodynamic treatment on HT-29/MDR cell proliferation. HT-29
cells were incubated for 24 h with 0.1 µM Hyp and then exposed to US (1.5 W/cm2 at 1.5 MHz,
continuous wave mode for 5 min). Cell proliferation was then evaluated by WST-1 assay after 48 h.
Statistically significant difference versus untreated cells: ** p ≤ 0.01 (n = 3).
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Figure 10. Hypericin uptake in 3D HT-29 cell cultures. HT-29 spheroids were incubated for 24 h
with 0.2 µM Hyp. Fluorescent signals were detected using a flow cytometer at 488 nm excitation to
measure the intracellular amount of Hyp, which was expressed as iMFI ratio. Statistically significant
difference versus untreated cells (Ctrl): * p ≤ 0.05, ** p ≤ 0.01 (n = 3).

The effect of photodynamic treatment with Hyp on HT-29 spheroids was first evalu-
ated by analyzing their shape using optical microscopy. HT-29 spheroids that underwent
PDT with Hyp showed significant shape modification, with a loss of central density, 48 h
after treatment. No modifications in the HT-29 spheroid shape were observed in spheroids
treated with Hyp only or those exposed to LB only (Figure 11a). The PDT effect was then
evaluated by incubating spheroids with PI to detect dead cells via fluorescence microscopy,
48 h after treatment. Only HT-29 spheroids that underwent PDT showed a significant
increase in PI fluorescence compared with untreated spheroids (Figure 11b).

The effect of Hyp-PDT on the HT-29 spheroids was then evaluated by analyzing cell
death using flow cytometry. As shown in Figure 12, a statistically significant increase in the
percentage of dead cells (33.22 ± 9.81%, p ≤ 0.05) and a statistically significant decrease
in the percentage of live cells (66.78 ± 12.68%, p ≤ 0.05), both compared with untreated
spheroids, were observed 48 h after the photodynamic treatment of HT-29 spheroids with
Hyp and LB, which is in line with the results of the microscopy analyses (Figure 11).
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Figure 11. Effects of Hyp-mediated photodynamic treatment on HT-29 spheroids. (a) Representative
optical (bright field) and fluorescence (PI staining in red) images that were acquired 48 h after the
spheroid treatment as follows: untreated spheroid, spheroid incubated with 0.2 µM Hyp, spheroid
exposed to LB (green led at 1.5 W/cm2 for 20 min), and spheroid treated with PDT (0.2 µM Hyp + LB).
Magnification 10×, scale bar: 100 µm. (b) Quantification of PI fluorescence intensity in HT-29 spheroids
after the different treatments. Statistically significant difference of treated cells versus untreated cells:
* p ≤ 0.05 (n = 3).
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Figure 12. Cell death evaluation after Hyp-mediated photodynamic treatment in HT-29 spheroids.
HT-29 spheroids were previously incubated with 0.2 µM Hyp and then exposed to LB (green LED at
1.5 W/cm2 for 20 min). Cell death was evaluated by flow cytometry using SYTOX™ green dead cell
staining and expressed as cell percentage. Statistically significant difference versus untreated cells
(Ctrl): * p ≤ 0.05 (n = 3).

The effect of Hyp-SDT on the HT-29 spheroids was first evaluated by analyzing their
shapes with optical microscopy. HT-29 spheroids that underwent Hyp preincubation,
followed by US exposure, showed clear edges, but they were smaller than those of the
untreated spheroids, 48 h after treatment (Figure 13a). The SDT effect was also evaluated
by incubating spheroids with PI to detect dead cells, 48 h after treatment. A significant
increase in PI fluorescence was observed in SDT-treated spheroids compared with untreated
spheroids, while they also maintained their external spheroid shape (Figure 13b).
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Figure 13. Effects of Hyp-mediated sonodynamic treatment on HT-29 spheroids. (a) Representative
optical (bright field) and fluorescence (propidium iodide staining in red) images acquired 48 h after
the spheroid treatment as follows: untreated spheroid, spheroid incubated with 0.2 µM Hyp, spheroid
exposed to US (1.5 W/cm2 at 1.5 MHz, continuous wave mode for 5 min), and spheroid treated with
SDT (0.2 µM Hyp + US). Magnification: 10×, scale bar: 100 µm. (b) Quantification of PI fluorescence
intensity in HT-29 spheroids after the different treatments. Statistically significant difference of treated
cells versus untreated cells: ** p ≤ 0.01 (n = 3).

The evaluation of sonodynamic treatment with hypericin on HT-29 spheroids was also
carried out by analyzing cell death by flow cytometry. As shown in Figure 14, a marked
increase in the percentage of dead cells (44.00 ± 3.50%, p ≤ 0.01) and a significant decrease
in the percentage of live cells (56.00 ± 4.00%, p ≤ 0.01), both compared with untreated
spheroids, were observed 48 h after the sonodynamic treatment of HT-29 spheroids with
Hyp and US, which is in line with the results of the microscopy analyses (Figure 13).
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4. Discussion

Hyp has been widely studied as a photodynamic agent in cancer treatment due to its
high triplet quantum yield, high cancer selectivity, and low cytotoxicity [47,48]. Moreover,
several studies have demonstrated the efficacy of light-activated Hyp in PDT-induced
cancer killing [47–49]. SDT is evolving as an alternative noninvasive strategy for cancer
treatment that relies on the cytotoxicity induced by the combination of sonosensitizer and
US [14]. Like PDT, several studies have identified sensitizer-mediated ROS generation as the
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main mechanism of SDT-induced cancer cell killing as the release of ROS causes oxidative
damage in proteins, lipids, and DNA [50–52]. Unlike PDT, SDT can reach deep-seated
tumor areas, thanks to the high penetration ability of US. While the exact SDT mechanism
of action is still under debate, acoustic-cavitation-mediated sonoluminescence is believed
to be a key mechanism in generating sonosensitizer-mediated ROS [52,53]. Moreover, the
characteristics of the sensitizer is one of the key factors in determining the efficacy of both
PDT and SDT, and the physicochemical properties of the sensitizer influence not only the
therapeutic outcomes of PDT and SDT but also treatment safety. Furthermore, we must
remember that most sonosensitizers derive from photosensitizers that have been widely
used in PDT [54]. However, Hyp-mediated SDT has only been studied in the induction of
THP-1 macrophage apoptosis for atherosclerosis treatment, leading to autophagy through
the AMPK/mTOR pathway [55]. Hyp-SDT reduces lipids in macrophages through the
upregulation of the ROS-dependent nuclear translocation of transcription factor EB, which
is involved in the autophagy–lysosome pathway [56]. In macrophages, this pathway lowers
the amount of intracellular lipids, suppressing foam cell generation and promoting lipid
depletion in plaques, thus lowering atherosclerosis progression [55].

In the present work, Hyp was investigated as a sonosensitizer for anticancer SDT
in a colon cancer model. The proper Hyp concentration and incubation time for Hyp-
mediated SDT were chosen in accordance with data from cytotoxicity and cellular uptake
studies. No cytotoxicity was observed in HT-29 cells at Hyp concentrations lower than
1 µM, whereas the highest concentration, 10 µM, exerted significant cytotoxicity over time.
Ozen et al. have already observed the effect of Hyp on cell proliferation in human leukemic
HL-60 cells, resulting in a time- and dose-dependent cytotoxicity with a half-maximal
cytotoxic concentration (IC50) of 0.5 µM [57]. In human colorectal cancer HT-29 cells, a
half-maximal cytotoxic concentration was not observed up to 100 µM concentration. A
noncytotoxic concentration of 0.1 µM was therefore selected as the proper sonosensitizer
concentration for the study of the Hyp cytotoxicity triggered in 2D HT-29 cell cultures
by US.

Since, in both PDT and SDT, sensitizer-induced damage occurs in proximity to the
oxidizing species produced by the excited molecules [48], sensitizer cellular uptake and
its intracellular localization are crucial if photodynamic and sonodynamic protocols are
to be properly tuned. In HT-29 cells, the maximum level of Hyp intracellular uptake
was observed between 6 and 24 h with somewhat of a plateau being reached after 6 h
of incubation. Furthermore, upon comparing 2D and 3D cell cultures, similar results
were obtained when double the concentration of Hyp (0.2 mM) was used on the 3D
cultures to account for the 3D architecture [58]. Although the cellular mechanisms of Hyp
uptake remain unclear, the results obtained by Thomas et al. suggest that Hyp might
be transported into cells via partitioning, pinocytosis, or endocytosis [59]. Concerning
its subcellular redistribution, Hyp localizes in a time-dependent manner in cytoplasmic
membranes, particularly accumulating into the membranes of the endoplasmic reticulum,
Golgi apparatus, and mitochondria [48,60].

In order to investigate Hyp distribution inside HT-29 cells, confocal microscopy analy-
ses have been performed, confirming the cytoplasmic distribution of Hyp in cells, which
increases over time, specifically at the mitochondrial level with peculiar accumulation
being observed close to the cell membrane. This last fact may be attributed to Hyp local-
ization in the endoplasmic reticulum. This Hyp localization close to the cell membrane
may perhaps explain the observed efficient Hyp cytotoxicity under US stimulation, consid-
ering the mechanical nature of US waves and their fundamental interactions with these
membranes [61].

Since it has been shown that ROS in cancer cells are strictly connected to apoptosis
activation and autophagy in response to SDT [62], a ROS investigation under Hyp stimula-
tion by US has been performed in HT-29 cells. Our data demonstrate a significant increase
in ROS generation up to 5 min after treatment, followed by a slow reduction. While we
find these data particularly interesting, they are only supported in the literature by the



Pharmaceutics 2022, 14, 1102 17 of 22

work of Li and colleagues, who observed ROS production in the early first 30 min, with a
further extension to 1 h when THP-1 macrophages were treated with Hyp and then exposed
to US [56].

Starting with these data, experiments have been performed on both 2D and 3D HT-29
cell cultures to investigate the synergistic action of Hyp and US, with Hyp activity under
light exposure also being reported as a reference. Since strong evidence of SDT anticancer
efficacy in 2D cancer cell culture models has been reported, experiments on 3D cancer
cell models are needed to further substantiate the ability of US to trigger sonosensitizer
cytotoxicity. Three-dimensional cell cultures better imitate living tissues, and their use has
the potential to lower drug development costs, allowing more efficient drug screening and
thereby minimizing failure rates and decreasing animal use during drug discovery [63].
Spheroids are the main 3D cell culture model used in cancer research because they are able
to reproduce a great number of the structural, physiological, and biological features of
solid tumors [64].

Upon comparing the effects of Hyp-mediated photodynamic and sonodynamic treat-
ments in 2D and 3D HT-29 cell cultures, we observed that US was able to efficiently trigger
Hyp cytotoxicity, just like light, leading to a significant decrease in cell proliferation and a
marked increase in cell death. As expected, Hyp-PDT in 2D HT-29 cell cultures resulted in
significant cytotoxicity starting from 48 h after treatment, along with a significant increase
in the percentage of dead cells. Similar results were obtained from HT-29 spheroids, where
flow cytometry analyses revealed a significant increase in the percentage of dead cells along
with a significant decrease in the percentage of live cells 48 h after Hyp-PDT. The data were
also supported by optical and fluorescence microscopy, which showed, after Hyp-PDT,
spheroid disaggregation and increased PI staining, respectively.

Hyp-SDT in 2D HT-29 cell cultures also exerted significant cytotoxicity starting from
48 h after treatment and a significant increase in the percentage of dead cells, which were
also confirmed by cytofluorimetric data. Interestingly, spheroids treated with Hyp-SDT
were found to be smaller than untreated spheroids and showed an increase in PI staining.

Three-dimensional cancer models have recently been noted to efficiently mimic
in vivo cancer features, such as growth [65], genomic heterogeneity [66,67], cancer cell
migration [68–70], or drug resistance [71]. Indeed, cells cultured in 3D can exhibit different
responses to drugs compared with cells cultured in 2D [64,72]. The differences in the phys-
iological features of 2D and 3D cultures usually mean that 2D cells are more responsive
to drug effects than 3D cells. Indeed, cells in 2D cultures are unable to preserve normal
morphology in the way that cells in 3D cultures do. Moreover, the higher responsiveness to
drugs of 2D cell cultures may be influenced by differences in the organization of surface
receptors compared with 3D cell cultures [59]. In addition, most of the cells in 2D cultures
are at the same cell stage, whereas cells in 3D cultures are usually at a variety of cell stages,
as are cells in vivo [63]. Therefore, 3D systems can promote the development of new drug
candidates and novel therapeutic effects. For instance, it has been reported that 3D cultures
are more suitable models than 2D cultures to investigate the efficacy of treatment, such as
PDT [73,74]. However, there are few papers that investigate SDT in 3D cell cultures [75,76]
that could represent a suitable tool to optimize this US-based treatment before approaching
in vivo models.

In this work, experiments conducted in 2D and 3D cell cultures gave similar results, in
terms of treatment response, in experiments on Hyp activation by light and US exposure.
Therefore, once the proper sensitizer concentration was chosen according to the type of
cell culture, the use of physical agents (e.g., light and US) did not seem to be influenced as
much by interactions with 2D or 3D structures as by the intracellular localization of the
sonosensitizer.

Recent investigations on SDT have highlighted its ability to induce ICD [77] similarly
to PDT, which is already recognized as a treatment modality that can induce this peculiar
type of cell death [29,78]. SDT has been shown to work in a comparable way to PDT, relying
on ROS production as well, whereas US has also shown immunomodulatory action [79].
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However, the exact mechanisms underlying ICD induction are still poorly understood. One
formulated hypothesis is that oxidative stress may be the pivotal mechanism that makes
cancer cells more immunogenic compared with cancer cells killed by other mechanisms. In
accordance with this idea, it has been reported that some DAMPs that are associated with
oxidative stress, such as peroxidized phospholipids, may be recognized as immunogenic
by the immune system [80]. Therefore, the activation of antitumor immunity contributes to
killing primary tumor cells as tumor cells even at isolated locations [81]. Given the pivotal
role of immune responses, exploiting anticancer immune responses may pave the way to
new possibilities for long-lasting tumor control.

Some studies have demonstrated that Hyp directly accumulates in the endoplasmic
reticulum and mitochondria [6], and it is able, under proper light exposure as a nonpor-
phyrin photosensitizer in PDT, to generate high levels of ROS along with a strong anticancer
immune response [82,83]. Therefore, to assess whether our SDT approach may have im-
munological features, an ICD investigation in our experimental setup was evaluated, and
CRT and HMGB1 occurrence was observed after Hyp was exposed to SDT. The statistically
significant presence of both ICD markers, CRT and HMGB1, was detected at 6 and 24 h,
respectively. Moving to the literature, several in vitro and in vivo works have already
reported the role of SDT in inducing ICD, although the sensitizer used belonged to the
porphyrin family in most cases [84]. In our work, we have demonstrated, for the first
time, that the sonodynamic stimulation of Hyp induces ICD marker release, suggesting the
existence of a strict correlation between SDT-Hyp and ICD induction.

Other than stimulating an anticancer immune response, hindering the effect of ac-
quired MDR is another important strategy when facing cancer treatment failure. SDT
has the potential to also be effective on cells displaying transporter-mediated multidrug
resistance (MDR) by exploiting the cytotoxicity of sonosensitizers that are not substrates of
MDR transporters [85]. Moreover, it has been reported that SDT can decrease the expression
levels of ABC transporters, in particular, P-gp [86,87]. As colon cancer is one of the solid
tumors that most frequently show MDR, a MDR subcell line that was characterized by P-gp
overexpression was developed from the human colon cancer HT-29 cell line. As expected,
Hyp-SDT was able to significantly decrease MDR cancer cell proliferation, while this was
unaffected by doxorubicin, which is one of the most frequently used chemotherapeutic
drugs and is subjected to transporter-mediated MDR [88].

In conclusion, this work demonstrates Hyp responsiveness to US and its ability to act
as a sonosensitizer that can induce, under US exposure, selective and efficient cancer cell
killing. US also has the potential to elicit the multifaceted anticancer activity of Hyp by
provoking a specific anticancer immune response and hindering acquired MDR. Hypericin-
mediated sonodynamic treatment has been investigated in both 2D and 3D colorectal cancer
cell cultures, providing useful data on the potential application of this approach in the
in vivo setting.
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