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Introduction

In this thesis we study the geometry induced by certain classes of stable differential forms
on smooth manifolds of dimension six and seven.

Stability of k-forms is a very rigid condition and it happens in very few cases. Luckily,
it is also a pointwise condition, so it can be defined simply by working on a vector space.
Let V be an n-dimensional real vector space. We say that a k-form σ ∈ ΛkV ∗ is stable if
its orbit, under the natural action of GL(V ) on ΛkV ∗, is open. Stability does not depend
on what orientation one chooses for V , but, once such an orientation is fixed, a stable form
always induces a volume form, as shown in [29, 83]. The case k = 3 is of particular interest,
as recalled for instance by Hitchin in [83]. Indeed, besides the fact that 3 is the only possible
odd number for the stability of k-forms in dimension six and seven, it is interesting to note
that it may occur only in dimension six, seven and eight. Moreover, the stability of 3-forms
induces very interesting geometries in these dimensions. In this thesis, we shall focus on the
6- and 7-dimensional cases.

Let M be a 6-dimensional smooth manifold and let ρ ∈ Λ3(M) be a stable 3-form,
i.e., ρ(p) is stable on the tangent vector space TpM , for every p ∈ M . Fix an orientation
Ω ∈ Λ6(M). The stability of ρ may allow us to define an almost complex structure Jρ,Ω =: J
on M , depending on both ρ and the fixed orientation Ω. This possibility is encoded in the
negativity of a polynomial λ(ρ) of degree 4 in the coefficients of ρ in every local frame. When
this happens, since the pointwise stabilizer of ρ is isomorphic to the special linear group
SL(3,C), we say that ρ defines an SL(3,C)-structure on M . Pointwise, there exists a basis
(f1, . . . , f6) of TpM , called adapted basis, such that

ρp = f135 − f146 − f236 − f245,

with respect to the dual basis (f1, . . . , f6). We recall that a 2-form α is stable if and only if it
is non-degenerate, namely if α3 6= 0. Given an SL(3,C)-structure ρ and a stable 2-form ω̃ on
M , we say that ρ is tamed by ω̃ if the (1, 1)-part of ω̃ is positive with respect to the induced
almost complex structure J . This means that M inherits a Riemannian metric g, which is
J-Hermitian. Explicitly,

g = ω(·, J ·),

where ω := ω̃1,1. Special types of these structures are given by SU(3)-structures. Let us
assume ρ to be an SL(3,C)-structure onM and let ω be a non-degenerate positive (1, 1)-form
on M such that ρ ∧ Jρ = 2

3ω
3. In particular, ω is a taming form with respect to J with

vanishing (2, 0) + (0, 2)-part. Since the pointwise stabilizer of the pair (ω, ρ) is isomorphic
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to SU(3), we say that (ω, ρ) defines an SU(3)-structure on M . As in the case of SL(3,C)-
structures, it is always possible to find an adapted basis (f1, . . . , f6) of TpM such that

ρp = f135 − f146 − f236 − f245, ωp = f12 + f34 + f56,

at every point p ∈ M . The study of SU(3)-structures and, more generally, tamed SL(3,C)-
structures has many interactions with the stability of 3-forms in dimension seven.

Let N be a 7-dimensional smooth manifold and let ϕ be a stable 3-form on it. The 3-form
ϕ endows N with a Riemannian metric gϕ and an orientation Volgϕ . Explicitly,

gϕ(X,Y )Volgϕ =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ,

for every pair of vector fields X,Y on N , where ιV ϕ denotes the contraction of ϕ by the vector
field V . We denote by ∇gϕ the Levi-Civita connection of gϕ and by ∗ϕ the Hodge operator
determined by gϕ and Volgϕ . Since the pointwise stabilizer of such a form is isomorphic to
the exceptional Lie group G2 appearing in Berger’s list (see [14]), these structure are more
commonly known as G2-structures. An adapted basis for a G2-structure ϕ, at a point p ∈ N ,
is a basis (f1, . . . , f7) of TpN such that

ϕp = f127 + f347 + f567 + f135 − f146 − f236 − f245.

We can see how tamed SL(3,C)-structures in dimension six and G2-structures in dimen-
sion seven are linked one to the other by working on a vector space. Let W be an oriented
7-dimensional real vector space endowed with a 3-form ϕ ∈ Λ3W ∗. Choose a non-zero vector
z ∈W and a complementary subspace V ⊂W , so that W ∼= V ⊕ Rz. Then, we can write

ϕ = ω̃ ∧ θ + ρ,

where θ ∈ W ∗ is the dual of z with respect to the chosen complement V , ω̃ ∈ Λ2V ∗ and
ρ ∈ Λ3V ∗. The 3-form ϕ on W is a G2-structure if and only if the 3-form ρ on V is an
SL(3,C)-structure tamed by the non-degenerate 2-form ω̃. The pair (ω̃, ρ) defines an SU(3)-
structure on V, up to a suitable normalization, if and only if ω̃ ∧ ρ = 0. When this happens,
the vector space V coincides with the gϕ-orthogonal complement of Rz ⊂ W . On the other
hand, if ϕ defines a G2-structure on W inducing the Riemannian metric gϕ, we can consider
the 6-dimensional subspace U := (Rz)⊥gϕ ⊂W and the gϕ-orthogonal splitting W = U ⊕Rz.
It then follows that ϕ induces an SU(3)-structure on U .

Translating this construction into the manifold setting, we can consider a 7-dimensional
manifold N endowed with a G2-structure ϕ and an orientable 6-dimensional submanifold
i : M ↪! N . Let X be a vector field along M such that

TpM ⊕ 〈Xp〉 = TpN, p ∈ N. (1)

Then, the G2-structure ϕ induces an SL(3,C)-structure ρ := i∗ϕ on M tamed by the non-
degenerate 2-form ω̃ := ιXϕ. If the direct sum in (1) is gϕ-orthogonal and X is of constant
unit norm with respect to gϕ, then (ω̃, ρ) defines an SU(3)-structure on M .
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In this thesis, we study closed SL(3,C)-structures in dimension six and closed G2-structures
in dimension seven, where by closed we mean that the defining form is closed with respect to
the de Rham differential d of the manifold.

In the 6-dimensional case, we focus on closed SL(3,C)-structures which are either mean
convex or tamed by a symplectic form. Let ρ be a closed SL(3,C)-structure on an oriented
smooth 6-manifold M . As shown in [35], the differential dρ̂ of the 3-form ρ̂ = Jρ is of
type (2, 2) with respect to J . Therefore, one may wonder if dρ̂ is semi-positive. When this
happens, we say that ρ defines a mean convex closed SL(3,C)-structure on M . In a similar
way, we say that an SU(3)-structure (ω, ρ) is closed and mean convex if dρ = 0 and dρ̂ is semi-
positive. Note that J is integrable if and only if dρ̂ = 0. A special class of mean convex closed
SL(3,C)-structures is given by nearly-Kähler structures. Indeed, a nearly-Kähler structure
can be defined as an SU(3)-structure (ω, ρ) satisfying the following conditions:

dω = −3

2
ν0 ρ, dρ̂ = ν0 ω

2,

where ν0 ∈ R − {0}. Therefore, up to a change of sign of ρ, we can suppose ν0 > 0. The
nearly-Kähler condition forces the induced Riemannian metric g to be Einstein and, up to
now, very few examples of manifolds admitting complete nearly-Kähler structures are known
(see for instance [23, 62, 77, 78, 109, 110]).

In Chapter 2, we study mean convex closed SL(3,C)-structures on nilmanifolds, i.e., on
compact quotients Γ\G of connected simply connected nilpotent Lie groups G by co-compact
discrete subgroups (lattices) Γ. Nilmanifolds provide a large class of compact 6-manifolds
admitting invariant closed SL(3,C)-structures [24, 25, 26, 28, 53], where by invariant we
mean induced by a left-invariant one on the nilpotent Lie group G. Note that nilmanifolds
cannot admit invariant nearly Kähler structures, since by [107] the Ricci tensor of a left-
invariant metric on a non-abelian nilpotent Lie group always has a strictly negative direction
and a strictly positive direction.

In Section 2.3, we provide a full classification of nilmanifolds admitting an invariant mean
convex closed SL(3,C)-structure and we prove that an explicit example of mean convex
closed SU(3)-structure can also be found on each of them. We then restrict to half-flat
SU(3)-structures. An SU(3)-structure (ω, ρ) on a smooth 6-manifold M such that{

dρ = 0,

dω2 = 0

is called half-flat and we refer to it simply as a half-flat structure (see for instance [12, 20,
24, 26, 29, 50, 70, 83, 94] for general results on this type of structures). We then study
the interplay between these structures and mean convex ones and we determine nilmanifolds
admitting an SU(3)-structure which is both half-flat and mean convex.

Half-flat structures play an important role in constructing 7-dimensional manifolds en-
dowed with a torsion-free G2-structure, i.e., a stable 3-form ϕ which is parallel with respect
to the Levi-Civita connection ∇gϕ of gϕ. In particular, every oriented hypersurface of a
7-manifold endowed with a torsion-free G2-structure is naturally endowed with a half-flat
structure. Conversely, a 6-manifold with a real analytic half-flat structure can be realized as
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a hypersurface of a 7-manifold endowed with a torsion-free G2-structure. This was proved by
Hitchin in [83], with the introduction of the evolution equations{

∂
∂tρ(t) = dω(t),
∂
∂tω(t) ∧ ω(t) = −dρ̂(t),

(2)

now commonly known as Hitchin flow equations. A solution to (2), starting from a given
SU(3)-structure (ω, ρ) at t0 ∈ R, is a one-parameter family of SU(3)-structures (ω(t), ρ(t)),
with t belonging to an open interval I containing t0, which solves the Hitchin flow equations
and such that (ω(t0), ρ(t0)) = (ω, ρ). It is not difficult to see that, if the initial condition is
half-flat, then the solution is half-flat as long as it exists. Eventually, we study the solutions
to the Hitchin flow equations starting from our examples of mean convex half-flat structures
given in table 6.3 in the Appendix. In particular, since the mean convexity of the initial data
is preserved by the flow in all of them, we conjecture that this could always be the case.

Given a closed SL(3,C)-structure ρ on a 6-manifold, another natural condition to study
is the existence of a symplectic form Ω taming J . As shown in [35], a mean convex SL(3,C)-
structure on a compact 6-manifold cannot be tamed by any symplectic forms. If we remove
the assumption of mean convexity, examples of tamed closed SL(3,C)-structures are given by
symplectic half-flat structures (ω, ρ), i.e., half-flat structures (ω, ρ) with dω = 0. In this case,
ρ is tamed by the symplectic form ω. In [28], nilmanifolds admitting invariant symplectic half-
flat structures were classified. Later, this classification was generalized to solvmanifolds, i.e.
compact quotients Γ\G of connected simply connected solvable Lie groups G by lattices Γ (for
more details, see [47]). In Chapter 2, we also classify solvmanifolds admitting invariant closed
SL(3,C)-structures tamed by a symplectic form. In particular, we prove that solvmanifolds
admitting an invariant tamed closed SL(3,C)-structure also admit an invariant symplectic
half-flat SU(3)-structure. As an application, we classify 7-dimensional solvable Lie groups of
the form G× S1 admitting closed G2-structures.

In literature, many examples of closed G2-structures have been obtained on nilmanifolds
and solvmanifolds. The first one was given by Fernández on the compact quotient of a
nilpotent Lie group [42]. In the solvable non-nilpotent case, various examples are currently
known and many of them satisfy additional meaningful conditions that one can impose on a
closed G2-structure, see e.g. [43, 56, 64, 96, 97, 98]. In these examples, the closed G2-structure
on the Lie group G is left-invariant and thus it is determined by a G2-structure ϕ on the Lie
algebra g = Lie(G) which is closed with respect to the Chevalley-Eilenberg differential of g.
The isomorphism classes of nilpotent and unimodular non-solvable Lie algebras admitting
closed G2-structures were determined in [27] and [55], respectively. In Chapter 3, we prove
that a 7-dimensional Lie algebra g with non-trivial center endowed with a closed G2-structure
ϕ is the central extension of a 6-dimensional Lie algebra h via a closed 2-form ω0 ∈ Λ2h∗.
This allows us to reduce the classification problem from 7 dimensions to 6. In detail, g admits
a closed G2-structure ϕ if and only if h admits an SL(3,C)-structure ρ tamed by a symplectic
form ω̃ satisfying dρ = −ω0 ∧ ω̃. As special cases of this, we consider the case ω0 = 0 and
the case ω3

0 6= 0. In the former, the central extension reduces to the Lie algebra direct sum
between h and the abelian Lie algebra R. In the latter, g admits a contact 1-form θ such that
dθ = ω0. In this case, we refer to the pair (g, θ) as the contactization of (h, ω0).

Using these characterizations, we prove the following:
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Theorem. Let g be a 7-dimensional unimodular solvable non-nilpotent Lie algebra with non-
trivial center. Then, g admits closed G2-structures if and only if it is isomorphic to one of
the following:

s1 = (e23,−e36, e26, e26 − e56, e36 + e46, 0, 0),

s2 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0, 0),

s3 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0, 0),

s4 = (0,−e13,−e12, 0,−e46,−e45, 0),

s5 = (e15,−e25,−e35, e45, 0, 0, 0),

s6 = (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0, 0), α > 0,

s7 = (e25,−e15, e45,−e35, 0, 0, 0),

s8 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0, e34),

s9 = (−e26 + e35, e16 + e45,−e46, e36, 0, 0, e34),

s10 =
(
e23,−e36, e26, e26 − e56, e36 + e46, 0, 2 e16 + e25 − e34 +

√
3 e24 +

√
3 e35

)
,

s11 =
(
e23,−e36, e26, e26 − e56, e36 + e46, 0, 2 e16 + e25 − e34 −

√
3 e24 −

√
3 e35

)
.

In particular, g is the contactization of a symplectic Lie algebra if and only if it is isomorphic
either to s10 or to s11.

Moreover, the simply connected Lie groups corresponding to some of these Lie algebras
admit lattices. Recall that, a necessary condition for the existence of lattices is the unimod-
ularity of G, or, equivalently, of its Lie algebra g (see [107]). We use the results of [15] to
construct a lattice for two of them (see Remark 3.18). In this way, we obtain new locally
homogeneous examples of compact 7-manifolds with a closed G2-structure. Finally, as a
corollary of the classification result, we show that the abelian Lie algebra and a certain 2-step
solvable Lie algebra are the only unimodular Lie algebras with non-trivial center admitting
torsion-free G2-structures.

A torsion-free G2-structure can be equivalently defined as a G2-structure ϕ wich is both
closed and coclosed, i.e., {

dϕ = 0,

d ∗ϕ ϕ = 0.

In particular, the induced metric gϕ is Ricci-flat and the Riemannian holonomy group Hol(gϕ)
is isomorphic to a subgroup of G2. The first complete examples of torsion-free G2-structures
were constructed in [21]. In the compact case, 7-manifolds admitting torsion-free G2-structures
were constructed first in [88] and, later, in [30, 91]. In [88], Joyce proved that under certain
conditions, a closed G2-structure on a compact 7-manifold can be deformed into a torsion-free
G2-structure. In [19], Bryant introduced the so-called Laplacian flow, a geometric flow evolv-
ing a closed G2-structure ϕ in the direction of its Hodge Laplacian. Short-time existence was
proved in [22]. As shown in [101], the stationary points of the flow are exactly torsion-free
G2-structures. In [102], the authors proved a result of dynamical stability, stating that, on
a compact 7-manifold, if the initial data is close enough to being torsion-free, the solution
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exists for all positive times and converges to a torsion-free G2-structure. Therefore, closed
G2-structures provide an important tool in the study of torsion-free G2-structures on compact
7-manifolds.

A special class of closed G2-structures that has attracted a lot of attention in recent years
is given by Laplacian solitons. A closed G2-structure ϕ on a 7-manifold N is said to be a
Laplacian soliton if it satisfies the equation

∆ϕϕ = λϕ+ LXϕ, (3)

for some real constant λ and some complete vector field X on N, where ∆ϕ = d ◦ d∗ϕ + d∗ϕ ◦ d
denotes the Hodge Laplacian of the induced metric gϕ. Here, d∗ϕ = − ∗ϕ ◦ d ◦ ∗ϕ denotes
the codifferential of d induced by ϕ. These G2-structures give rise to self-similar solutions
of the Laplacian flow, i.e., solutions which differ from the initial data only by a uniform
rescaling and time-dependent diffeomorphisms. Depending on the sign of λ, a Laplacian
soliton is called expanding (λ > 0), steady (λ = 0), or shrinking (λ < 0). On a compact
manifold, every Laplacian soliton which is not torsion-free must be expanding and satisfy (3)
with LXϕ 6= 0 (see [99, 101]). The existence of non-torsion-free Laplacian solitons on compact
manifolds is still an open problem. In the non-compact setting, examples of Laplacian solitons
of every type are known, see e.g. [9, 56, 57, 63, 96, 97, 98, 111]. In particular, the steady
Laplacian solitons in [9] and the shrinking Laplacian soliton in [63] are inhomogeneous and of
gradient type, i.e., X is a gradient vector field. As for the known homogeneous examples, they
consist of simply connected Lie groups G endowed with a left-invariant closed G2-structure
satisfying the equation (3) with respect to a vector field X defined by a one-parameter group
of automorphisms induced by a derivation D of the Lie algebra g of G. According to [96],
these Laplacian solitons are called semi-algebraic.

In Chapter 4, we consider semi-algebraic Laplacian solitons on unimodular Lie algebras
with non-trivial center. Under a natural assumption on the derivation D, we are able to relate
the constant λ in (3) to a certain eigenvalue of D and to the norm of the intrinsic torsion
form of the semi-algebraic Laplacian soliton ϕ, namely the unique 2-form τ such that

d ∗ϕ ϕ = τ ∧ ϕ = − ∗ϕ τ.

Moreover, we show that λ coincides with the squared norm of τ whenever the Lie algebra is the
contactization of a symplectic one. In this last case, the semi-algebraic Laplacian soliton must
be expanding. We also prove the non-existence of semi-algebraic Laplacian solitons on certain
Lie algebras with 1-dimensional center and we obtain the classification of all unimodular Lie
algebras with center of dimension at least two that admit semi-algebraic Laplacian solitons,
up to isomorphism.

Let ϕ be a coclosed G2-structure on a smooth 7-manifold N . We say that ϕ is of pure type
if dϕ∧ϕ = 0. It is well known that a coclosed G2-structure ϕ on a 7-manifold N induces half-
flat SU(3)-structures on all orientable 6-dimensional submanifolds of N via the construction
described earlier. Moreover, if (ω, ρ) is balanced in the sense of [49], then ϕ is a purely coclosed
G2-structure. We say that a half-flat structure (ω, ρ) is balanced if dρ̂ = 0. Such structures
arise as a generalization of torsion-free SU(3)-structures, i.e., SU(3)-structures satifying

dω = 0, dρ = 0, dρ̂ = 0,
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in the non-Kählerian case dω 6= 0. In 1986, Hull and Strominger [87, 125], independently,
introduced a system of pdes, now known as the Hull–Strominger system, to formalize certain
properties of the inner space model used in string theory. Let J be a complex structure on a
smooth 6-manifold M and let Ψ = ρ+ iρ̂ be a nowhere-vanishing holomorphic (3, 0)-form on
M . We denote by E a holomorphic vector bundle on M endowed with the Chern connection.
The Hull–Strominger system consists of a set of partial differential equations involving a
pair of Hermitian metrics (g, h) on (M,E). One of these equations dictates the metric g
on M to be conformally balanced, more precisely d

(
‖Ψ‖ω ω2

)
= 0, where ω = g(J ·, ·) is

the fundamental form associated with (g, J) and ‖Ψ‖ω is the norm of Ψ given explicitly by
Ψ ∧ Ψ = − i

6 ‖Ψ‖
2
ω ω

3. When one assumes all structures to be invariant under the smooth
action of a certain Lie group G, the aforementioned condition reduces to the balanced equation
dω2 = 0, since the norm of Ψ is constant. Notice that in these cases the pair (ω, ρ) defines a
balanced SU(3)-structure on M , up to a suitable uniform scaling of ρ.

The issue of the existence and uniqueness of solutions to the Hull–Strominger system
is understood only in some special cases. In literature, particular focus is placed on the
non-Kählerian case (see for instance [39, 40, 41, 67, 68, 69, 75, 113]). In particular, in
[41], a class of invariant solutions to the Hull–Strominger system on complex Lie groups was
provided. These solutions extend to solutions on all compact complex parallelizable manifolds,
by Wang’s classification theorem [130]. Moreover, in [52], it was shown that a compact
complex homogeneous space with invariant complex volume admitting a balanced metric is
necessarily a complex parallelizable manifold. Therefore, the invariant solutions given in [41]
exhaust the complex compact homogeneous case. If one allows the Lie group acting on the
homogeneous space to be real, many other solutions to the Hull–Strominger system are known
in literature, see for instance [75, 118, 119, 128]. Then, one may wonder what happens in the
cohomogeneity one case. A cohomogeneity one manifold M is a connected smooth manifold
with an action of a compact Lie group G having an orbit of codimension one. In Chapter 4,
we prove the following non-existence result:

Theorem. LetM be a 6-dimensional simply connected cohomogeneity one manifold under the
almost effective action of a compact connected Lie group G. Then, M admits no G-invariant
balanced non-Kähler SU(3)-structures.
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Chapter 1

Preliminaries

In this chapter, we review the basic notions and fix some notations on the main topics
of interest of this thesis. After recalling some classical results on Lie groups and their Lie
algebras, we give a quick overview on the theory of group actions on smooth manifolds, a
bridge towards G-structures, the final goal of our preliminary discussion.

We start by fixing some notations. We shall denote smooth manifolds with capital Latin
letters like M and N and points of a smooth manifold M with lowercase Latin letters such
as p and q. The tangent and the cotangent bundles of M will be denoted by TM and T ∗M ,
respectively, with vector fields denoted by capital Latin letters such as X and Y and specific
vectors denoted by vector fields evaluated at a point (for example Xp ∈ TpM for a vector
field X) or lowercase Latin letters such as v and w. If E is the total space of a fiber bundle
π : E ! M we shall denote by Γ(E) the C∞(M)-module of its sections. Λk(M) will denote
the space of k-forms onM , that is, the space Γ(Λk(T ∗M)) of sections of the bundle of k-forms.
Its elements, k-forms, will be denoted by lowercase Greek letters such as α, β and γ. Given
a point p of an n-dimensional smooth manifold M , a basis for the tangent space TpM will be
denoted by the n-tuple (e1, . . . , en), with its dual basis for T ∗pM denoted by (e1, . . . , en). The
wedge products of 1-forms ei ∧ ej ∧ . . . . . . ∧ ek will be shortened as eij...k. In a similar way,
βk will be a shorthand for the wedge product β ∧ β ∧ . . .∧ β of k copies of a differential form
β. Lie groups and Lie algebras will usually be denoted by capital Latin letters such as G or
H and by gothic letters like g and h, respectively. Similarly to the case of tangent spaces, a
basis of vectors for an n-dimensional Lie algebra g and its dual basis for g∗ will be denoted
by n-tuples (e1, . . . , en) and (e1, . . . , en), respectively.

1.1 Lie group actions

Our first aim is to recall some facts about Lie groups and Lie algebras and to describe
how they can be exploited to impose symmetry on geometric structures on smooth manifolds,
via smooth actions. For more details, we refer for instance to [3].
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2 CHAPTER 1. PRELIMINARIES

1.1.1 Lie groups and Lie algebras

Definition 1.1. A Lie group G is a smooth manifold endowed with a group structure (G, ·)
such that the map

G×G! G,

(g, h) 7! gh−1

is smooth.

Let G be a connected Lie group. Each element g ∈ G defines three automorphisms of G,

Lg : G! G, h 7! g · h,
Rg : G! G, h 7! h · g,
Cg : G! G, h 7! g · h · g−1,

called left translation by g, right translation by g and conjugation by g, respectively.
Focusing on left translations, we say that a tensor field ψ on a Lie group G is left-invariant

if, for every g ∈ G,
L∗gψ = ψ,

i.e., if it is invariant under the action induced by the left translations on the corresponding
space of tensor fields.

Recall that a (real) Lie algebra g is defined as a (real) vector space endowed with a Lie
bracket, namely a g-valued R-bilinear skew-symmetric form satisfying the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, X, Y, Z ∈ g.

Focusing on left-invariant vector fields, we recall the following.

Definition 1.2. Given a Lie group G, its Lie algebra g, or Lie(G), is the Lie algebra of
left-invariant vector fields of G, with Lie bracket induced by the Lie brackets of vector fields.

The Lie algebra g of a Lie group G is naturally isomorphic to the tangent space TeG of
G at the identity element e ∈ G, via the map

g ! TeG,

X 7! Xe.

By a well known result, given a Lie algebra g, there exists a unique (up to isomorphism)
connected and simply connected Lie group G with Lie algebra g.

The importance of the concept of Lie algebra g of a Lie group G lies in the fact that
left-invariant tensor fields on G can be identified with tensors of the same type defined on g
and vice versa.

Every Lie group G acts on its Lie algebra g by the adjoint action

Ad : G! GL(g),

g 7! (dCg)e : g ! g.
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Its differential at the identity element e ∈ G,

ad := (dAd)e : g ! gl(g),

is such that
adXY = [X,Y ], X, Y ∈ g,

where [·, ·] denotes the Lie bracket of g. We say that G is unimodular if

| det(Ad(g))| = 1, g ∈ G.

When G is simply connected, this is equivalent to the unimodularity of its Lie algebra g, i.e.,

tr(adX) = 0, X ∈ g.

Every compact Lie group is unimodular. We recall that the Lie algebras of compact Lie
groups are called compact.

The Killing Cartan form of g is the symmetric bilinear form

B(X,Y ) := tr(adX ◦ adY ), X, Y ∈ g.

If B is non-degenerate, then g is said to be semisimple. A Lie group G is called semisimple if
its Lie algebra is semisimple. The Killing Cartan form is an important tool for characterizing
the structure of a Lie algebra, as the next results show. For further details, see for instance
[3, Section 2.3].

Proposition 1.3. The Killing Cartan form is Ad-invariant, that is, for all X,Y ∈ g and
g ∈ G, one has that

B(Ad(g)X,Ad(g)Y ) = B(X,Y ).

Theorem 1.4. Let G be an n-dimensional semisimple connected Lie group. Then, G is
compact if and only if its Killing Cartan form B is negative-definite.

Theorem 1.5. A Lie algebra g is semisimple if and only if it is the direct sum of simple Lie
algebras gi, that is,

g = g1 ⊕ . . .⊕ gk,

where each gi is non-abelian and contains no non-zero proper ideals.

Let g be the Lie algebra of an n-dimensional Lie group G. Let (e1, . . . , en) be a basis of
g, with associated dual basis (e1, . . . , en), which can be thought of as a basis for left-invariant
1-forms on G. We denote by

[ei, ej ] = ckij ek

the structure equations of g with respect to the chosen basis. The real numbers ckij = −ckji
are called structure constants. Differentiating the 1-forms e1, . . . , en with respect to the
differential d of G, one gets

dei(ej , ek) = ej(e
i(ek))− ek(ei(ej))− ei([ej , ek]) = −cijk,
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Therefore, the structure equations of g can be equivalently defined as

dei = −
∑
j<k

cijk e
jk,

where d is now seen as a linear map from Λ1g∗ to Λ2g∗. A Lie algebra g only depends on its
structure equations with respect to some basis, so we can indicate it via the n-tuplede1 = −

∑
j<k

c1
jk e

jk, . . . , den = −
∑
j<k

cnjk e
jk

 .

We can extend d to a linear map d : Λkg∗ ! Λk+1g∗ by requiring that

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

for every k-form α and every r-form β. At the Lie algebra level, the differential d is known
as the Chevalley-Eilenberg differential of g and it satisfies the identity d2 = d ◦ d = 0. Thus,
(Λ•g∗, d) is a differential complex. We define the spaces

Zkg = ker d
∣∣
Λk(g)∗

, Bkg = Im d|Λk−1g,

satisfying Bkg ⊂ Zkg. Their quotient defines the k-th cohomology group

Hkg :=
Zkg
Bkg

.

The dimension bk := dimHkg∗ is called k-th Betti number of g. We denote by z(g) the center
of the Lie algebra g, i.e.,

z(g) = {X ∈ g | [X,Y ] = 0, Y ∈ g},

which is an ideal of g. Other relevant ideals of a Lie algebra g are the terms of its lower
central series, which we denote as follows:

C0(g) = g,

Cr+1(g) = [g, Cr(g)], r ≥ 0.

By construction, Cr+1(g) is an ideal of Cr(g), for every r ≥ 0. The ideal C1(g) = [g, g] is
known as the commutator ideal of g.

Definition 1.6. We say that g is (k-step) nilpotent if there exists an integer k such that
Ck(g) = {0} and Ci(g) 6= {0} for every i < k. We say that a Lie group G is (k-step) nilpotent
if its Lie algebra is.

The derived series of g is defined by:

D0(g) = g,

Dr+1(g) = [Dr(g),Dr(g)], r ≥ 0,

By construction, Dr+1(g) is an ideal of Dr(g), for every r ≥ 0.
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Definition 1.7. We say that g is (k-step) solvable if there exists an integer k such that
Dk(g) = {0} and Di(g) 6= {0} for every i < k. We say that a Lie group G is (k-step) solvable
if its Lie algebra is.

Equivalently, we can say that a Lie algebra g is solvable if and only if its Killing Cartan
form B is such that

B(g, [g, g]) = {0}.

In particular, if B vanishes identically, then g is solvable.

Remark 1.8. Since one has Dr(g) ⊂ Cr(g) for every r ≥ 0, every (k-step) nilpotent Lie
algebra is also trivially (at most k-step) solvable.

Lie algebras have been classified in low dimensions only. Focusing on the nilpotent and
solvable ones, a full classification has been achieved up to dimension six only. According
to [73, 105], there are 34 isomorphism classes of 6-dimensional real nilpotent Lie algebras
gi, i = 1, . . . , 34, listed in Table 6.1. Solvable (non-nilpotent) Lie algebras of dimension six
have been classified in [108, 123, 124, 127]. In higher dimension the problem is still open
and only some partial results are known: in dimension seven, we recall Gong’s classification
of indecomposable real nilpotent Lie algebras [71]. This list contains 140 Lie algebras and
9 one-parameter families. In addition, there are 35 isomorphism classes of 7-dimensional
decomposable nilpotent Lie algebras [105, 121].

1.1.2 Smooth actions on manifolds and G-structures

Let M be a smooth manifold and Diff(M) be its group of diffeomorphisms.

Definition 1.9. A left action of a Lie group G on M is defined by a map

α : G×M !M

such that
α(e, p) = p, α(g, α(h, p)) = α(gh, p),

for every g, h ∈ G and p ∈M . For every g ∈ G, we denote

αg := α(g, ·) ∈ Diff(M)

and, when no confusion arises, g · p := α(g, p), for every p ∈M .

In a similar way, we give the following.

Definition 1.10. A right action of a Lie group G on M is defined by a map

σ : M ×G!M

such that
σ(p, e) = p, σ(σ(p, g), h) = σ(p, gh)

for every g, h ∈ G and p ∈M . When no confusion arises, we denote p · g := σ(p, g) for every
g ∈ G, p ∈M .
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In what follows, we consider a left action α : G ×M ! M , but the same constructions
also hold in the case of right actions, with the due adjustments. As usual, g denotes the Lie
algebra of the Lie group G acting on M .

Definition 1.11. For every X ∈ g, the induced vector field on M associated with X is

X̂p :=
d

dt

∣∣∣
t=0

(exp(tX) · p) , p ∈M,

where exp : g ! G is the exponential map of G. The map

g ! Γ(TM),

X 7! X̂

is called the infinitesimal action of g on M .

The orbit G · p, through p ∈M , is defined as the image of the map

αp : G!M

g 7! g · p,

while the isotropy (or stabilizer group) at p ∈M , is the set

Gp := α−1
p (p) = {g ∈ G | g · p = p}.

We say that α is proper if the inverse image of each compact set in M ×M via the map

G×M !M ×M,

(g, p) 7! (p, g · p)

is also compact in G×M . We say that α is almost effective if the kernel of the action, namely⋂
p∈M Gp, is a discrete subset of G, effective if

⋂
p∈M Gp = {e}. Moreover, if Gp = {e} for all

p ∈ M , we say that α is free. We recall that the isotropy group Gp changes by conjugation
as p moves along its orbit G · p, namely

Gg·p = g Gp g
−1, g ∈ G, p ∈M.

Let us assume that G acts properly on a smooth manifold M . Then, each isotropy group Gp
is a compact Lie subgroup of G. Moreover, each quotient space G/Gp is a smooth manifold,
the orbit G · p is the image of an embedding of G/Gp into M and the tangent space TpG · p
is given by

TpG · p = (dαp)e (g).

We denote by M/G the set of G-orbits in M and equip M/G with the quotient topology
relative to the canonical projection

π : M !M/G,

p 7! G · p.
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Exploiting the theory of right actions, we can define two special classes of fiber bundles.
Let N be a smooth manifold and G be a Lie group. A principal G-bundle on N is the data
of a smooth manifold P , a locally trivial surjection

π : P ! N

and a right and free action of G on P which preserves the fibers of π and is transitive on each
of them. The fibers of π can then be seen as the orbits of the G-action on P , which implies
that they are diffeomorphic to G. Moreover, one has that N is diffeomorphic to the orbit
space P/G. The group G is known as the structure group of the principal bundle.

Example 1.12. Let N be an n-dimensional smooth manifold. A linear frame u at a point
p ∈ N is an ordered basis (v1, . . . , vn) of the tangent space TpN . Let GL(N) be the set of
all linear frames at all points of N and denote by π : GL(N) ! N the map sending a linear
frame u at p into p. The natural right action of the general linear group GL(n,R) on GL(N)
makes π : GL(N) ! N a principal GL(n,R)-bundle.

A reduction of the structure group G to a closed subgroup H ⊆ G is a submanifold Q of
P which is invariant under the G-action restricted to H and such that

π|Q : Q! N,

together with the H-action on Q, defines a principal H-bundle.

Definition 1.13. A G-structure on a smooth manifold N is a reduction of the bundle of
linear frames GL(N) to a closed subgroup G ⊆ GL(n,R).

Let P be the total space of a principal G-bundle over a smooth manifold N and suppose
that the structure group G also acts on a smooth manifold M on the left. Therefore, one
gets a right action of G on the product manifold P ×M , given by

(u, p) · g = (u · g, g−1 · p), u ∈ P, p ∈M, g ∈ G.

We denote by P ×GM the quotient space of P ×M via this action, which defines the total
space of a fiber bundle on N with fiber M and structure group G, which is called the fiber
bundle associated with P with standard fiber M . Note that, if we replace M with a vector
space V on which G acts linearly, then the previous construction yields a vector bundle on
N with standard fiber the vector space V .

Going back to the theory of left actions, we now analyze the properties induced by proper
ones. In particular, proper actions induce Riemannian metrics which are invariant with
respect to the action. We start with the following.

Definition 1.14. Let (M, g) be a Riemannian manifold. An action of a Lie group G on M
is said to be isometric if αh ∈ Diff(M) is an isometry of (M, g), for all h ∈ G. In this case
the metric g is said to be G-invariant and αG := {αh, h ∈ G} is a subgroup of the isometry
group I (M, g) of (M, g).
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The action fields induced by the action of the isometry group I(M, g) on a Riemannian
manifold (M, g) are called Killing vector fields and are characterized by the fact that the Lie
derivative of the metric g with respect to them is identically zero. Therefore, the action fields
induced by an isometric action are Killing.

For a proof of the following theorem, see for instance [3, Theorem 3.65].

Theorem 1.15. Let α : G ×M ! M be a proper action. Then, there exists a G-invariant
metric g on M such that α is isometric on (M, g).

In the theory of left actions, great importance lies in the study of special submanifolds.

Definition 1.16. Let α : G ×M ! M be a left action. A slice at p0 ∈ M for the action α
is an embedded submanifold Sp0 of M through p0 such that

(i) Tp0M = (dαp0)e (g)⊕ Tp0Sp0 and TpM = (dαp)e (g) + TpSp0 , ∀p ∈ Sp0 ;

(ii) Sp0 is Gp0-invariant;

(iii) if p ∈ Sp0 , g ∈ G and α (g, p) ∈ Sp0 , then g ∈ Gp0 .

If g is a Riemannian metric on M , a slice at p0 is said to be normal with respect to g if the
direct sum in point (i) is orthogonal.

Theorem 1.17. Let α : G×M ! M be a proper left action. Then, for every p0 ∈ M there
exists a slice Sp0 at p0 which is normal with respect to the induced G-invariant metric g.

A slice Sp0 through p0 can be defined by

Sp0 := expp0 (Bε (0)) ,

where Bε (0) is an open ball of radius ε > 0 around the origin in the normal space Tp0 (G · p0)⊥

to the tangent space Tp0 (G · p0) inside Tp0M . In particular, Tp0M = (dαp0)e (g)
⊥
⊕ Tp0Sp0 .

Now, for every p ∈M , the isotropy group Gp acts on TpM by

Gp × TpM ! TpM,

(g,X) 7! (dαg)p (X) .

Since g ∈ Gp leaves G · p invariant, this action leaves the tangent space Tp (G · p) and any its
complement invariant.

The restriction
χp : Gp × Tp (G · p) ! Tp (G · p)

is called the isotropy representation of the action at p and, for every slice Sp0 at p, the
restriction

σp : Gp × TpS ! TpSp0

is called the slice representation of the action at p.
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Theorem 1.18. Let α : G×M !M be a left action of a compact Lie group G on a smooth
manifold M and let p0 ∈ M be such that α (g, p0) = p0, for all g ∈ G. Then, there exists a
G-invariant open neighborhood U of p0 in M and a diffeomorphism f from U onto an open
neighborhood V of 0 in Tp0M , such that

f (p0) = 0, dfp0 = IdTp0M ,

and
α (g, p) = f−1

(
(dαg)p0 (f (p))

)
, g ∈ G, p ∈ U.

For a proof, see [36, pages 96-97].

Definition 1.19. Let M and N be smooth manifolds. We say that a G-action α on M and
a G′-action β on N are equivalent if there exists a Lie group isomorphism Φ: G! G′ and a
diffeomorphism F from M to N which is Φ-equivariant, namely such that

F ◦ αg = βΦ(g) ◦ F, g ∈ G.

Definition 1.20. Let α : G ×M ! M be a proper left action. Given p0 ∈ M , let Sp0 be a
slice at p0. We define a tubular neighborhood of the orbit G · p0 as the image of Sp0 under the
G-action, namely

Tub (G · p0) := α (G,Sp0) .

The next theorem gives Tub (G · p0) the structure of an associated fiber bundle.

Theorem 1.21. Let α : G×M !M be a proper left action. Then, for every p0 ∈M , there
exists a G-equivariant diffeomorphism between Tub (G · p0) and G ×Gp0

B. Here, B is an
open Gp0-invariant neighborhood of 0 in Tp0 (G · p0)⊥ and G×Gp0

B is the total space of the
fiber bundle over U ⊂ M associated with the Gp0-principal bundle G ! G/Gp0 with fiber B
and Gp0-action on B defined by

Gp0 ×B ! B,

(g,X) 7! (dαg)p0 (X) .

Proof. One first proves that there exists a unique G-equivariant diffeomorphism

Φ: G×Gp0
Sp0 ! U ⊂M,

where Sp0 is a normal slice through p0. Then, the claim follows from Theorem 1.18, by
observing that the Gp0-action on Sp0 is equivalent to the tangent action of Gp0 on an open
Gp0-invariant neighborhood B of 0 in Tp0Sp0 = Tp0 (G · p0)⊥. For more details, see [36, pages
102-103].

Definition 1.22. Let α : ×M !M be a proper left action and let p be a point of M . The
orbit G · p through p is called principal if there exists a neighborhood V of p in M such that,
for each q ∈ V , Gp ⊂ Gg·q for some g ∈ G.

Proposition 1.23. Let α : G ×M ! M be a proper left action and let p be a point of M .
Then, the following are equivalent:
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(i) G · p is a principal orbit;

(ii) If Sp is a slice at p, then Gp = Gq for all q ∈ Sp.

For a proof of these properties, see [3, Proposition 3.74].

Proposition 1.24. Let α : G ×M ! M be an isometric proper left action and let Sp be a
slice at p. Then, the orbit G · p is principal if and only if the slice representation of Gp is
trivial.

See for instance [3, Exercise 3.77]. We denote by Mprinc the set of points of M contained
in principal orbits.

Theorem 1.25. Let α : G×M !M be a proper left action, where M is connected. Then,

• Mprinc is open and dense in M ;

• Mprinc/G is a connected submanifold of M/G;

• If G · p and G · q are principal orbits, there exists g ∈ G such that Gp = gGqg
−1.

For a proof, see [3, pages 75-76].

Definition 1.26 (Orbit types). Let α : G×M !M be a proper left action.

(i) The orbit G · p has a larger orbit type than G · q if there is g ∈ G such that Gp ⊂ Gg·q;

(ii) The orbits G ·p and G ·q have the same orbit type if there is g ∈ G such that Gp = Gg·q;

(iii) An orbit G ·p is said to be regular if the dimension of G ·p coincides with the dimension
of principal orbits;

(iv) A non-principal regular orbit is called exceptional ;

(v) A non-regular orbit is called singular.

1.2 Stable forms

In this section, we review the properties of the geometric structures defined by stable
differential forms. As a reference, see for instance [82, 83].

Definition 1.27. Let V be an n-dimensional real vector space. A k-form α ∈ ΛkV ∗ is stable
if its orbit under the natural action of GL(V ) is open in ΛkV ∗.

Stability occurs only in even dimension and in dimension seven. More precisely, in even
dimension n = 2m 6= 6, 8, a k-form may be stable only if k = 2, 2m − 2. The cases where
n is 6 or 8 are richer. Indeed, besides the previous values of k, stability may occur also for
k = 3, 2m− 3. In odd dimension n = 7, instead, a k-form may be stable only if k is equal to
3 or 4. Moreover, depending on both n and k, stability can be characterized in the following
ways.
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Proposition 1.28. [82] A 2-form ω a 2m-dimensional real vector space V is stable if and
only if ωm 6= 0, i.e., if ω is non-degenerate.

The previous proposition follows from a dimensional argument. Let ω be a non-degenerate
2-form on V . The orbit GL(V )/Sp(V, ω) of ω has the same dimension of Λ2V ∗, so it has to
be open in Λ2V ∗. On the other hand, since Λ2V ∗ contains only one open orbit, it has to
coincide with the orbit of a non-degenerate 2-form. Given a stable 2-form ω, we shall call
1
m!ω

m the Liouville volume form defined by ω.
Stability of 3-forms in dimension six was first characterized in Reichel’s thesis from 1907

[120]. The result was later riformulated by Hitchin [82]. Let V be a 6-dimensional real
vector space and let ρ be a 3-form on it. Choose an orientation Ω ∈ Λ6V ∗ and consider the
endomorphism Sρ : V ! V defined via the identity

ιvρ ∧ ρ ∧ η = η(Sρ(v))Ω, η ∈ V ∗, v ∈ V,

where ιvρ denotes the contraction of ρ by v ∈ V . One has S2
ρ = λ(ρ)IdV for some quartic

polynomial λ(ρ) in the coefficients of ρ. Moreover, ρ is stable if and only if λ(ρ) 6= 0 and the
quartic hypersurface defined by λ(ρ) = 0 is invariant under the GL(V )-action and divides
Λ3V ∗ into two open sets

O+ := {ρ ∈ Λ3V ∗| λ(ρ) > 0},
O− := {ρ ∈ Λ3V ∗| λ(ρ) < 0}.

The identity component of the stabilizer of a 3-form lying in the former is conjugate to
SL(3,R)× SL(3,R) and in the latter to SL(3,C). This motivates the following.

Proposition 1.29. [82] A stable 3-form ρ ∈ O− defines a complex structure and a complex
volume form on V .

The complex structure also depends on the choice of Ω ∈ Λ6V ∗. Explicitly,

Jρ,Ω := (−λ(ρ))−1/2 Sρ.

Notice that the 3-form ρ̂ := Jρρ is stable, as well. Here, we are using the convention
Jρ,Ωγ(v1, . . . , vk) = γ(Jρ,Ωv1, . . . , Jρ,Ωvk), for every k-form γ and v1, . . . , vk ∈ V . The complex
volume form is then given by

Ψ := ρ+ iρ̂.

Remark 1.30. A simple computation shows that Jρ does not change if ρ is rescaled by a
non-zero real constant, i.e., Jρ = Jsρ for every s ∈ R− {0}.

Following [35], we introduce the next definition.

Definition 1.31. A definite 3-form on an oriented 6-dimensional real vector space V is a
stable 3-form ρ ∈ O−.
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Now, let us focus on the concept of stability of 3-forms on 7-dimensional real vector
spaces. Let W be a 7-dimensional real vector space, let ϕ be a 3-form on it and consider the
symmetric bilinear map

bϕ : W ×W ! Λ7W ∗, bϕ(v, w) =
1

6
ιvϕ ∧ ιwϕ ∧ ϕ, v, w ∈W. (1.1)

By [83], ϕ is stable if and only if det(bϕ)1/9 ∈ Λ7W ∗ is non-zero. Therefore, the symmetric
bilinear map

gϕ := det(bϕ)−1/9 bϕ

is well defined and Volgϕ := det(bϕ)1/9 defines a volume form on W . By [18, 80], there
are exactly two open orbits of a stable 3-form ϕ, one corresponding to the case where gϕ is
positive definite, the other to the case where gϕ is of signature (3, 4). We denote by Λ3

+W
∗

the orbit of ϕ corresponding to the former case.
As for the 6-dimensional case, we introduce the following.

Definition 1.32. [35] A definite 3-form on a 7-dimensional real vector space W is a stable
3-form ϕ ∈ Λ3

+W
∗.

1.3 SL(3,C)-structures

In this section, M always denotes a 6-dimensional oriented smooth manifold.
An SL(3,C)-structure on M is a reduction of the frame bundle of M to SL(3,C). This

is equivalent to the existence of a definite 3-form ρ on M , i.e., such that ρ(p) ∈ Λ3T ∗pM is
definite for every p ∈ M . Since the identity component of the pointwise stabilizer of ρ is
isomorphic to SL(3,C), we introduce the following.

Definition 1.33. An SL(3,C)-structure on M (respectively, on TpM) is a definite 3-form
ρ ∈ Λ3(M) (respectively, a definite 3-form ρ(p) on TpM).

Fix Ω ∈ Λ6(M) and let ρ ∈ Λ3(M) be an SL(3,C)-structure on M . By Section 1.2, ρ
induces an almost complex structure Jρ,Ω on M which, at a pointwise level, coincides with
the linear complex structure on TpM induced by ρp and Ωp, at every point p ∈M . We shall
denote it by Jρ or, even more simply, by J , when no confusion arises. We denote by ρ̂ = Jρ
the image of ρ via J and by Ψ = ρ+ iρ̂ the complex (3, 0)-form induced by ρ. Notice that ρ̂
is stable, as well. Moreover, the wedge product between ρ and ρ̂ defines the same orientation
as Ω. By Section 1.2, at each point p of M , there exists a basis (e1, . . . , e6) of TpM with dual
basis (e1, . . . , e6) such that Ωp = e123456 and

ρp = e135 − e146 − e236 − e245. (1.2)

In particular,
Jp(e1) = e2, Jp(e3) = e4, Jp(e5) = e6. (1.3)

Definition 1.34. A basis (e1, . . . , e6) of TpM with dual basis satisfying (1.2) is called an
adapted basis for the SL(3,C)-structure ρ at p ∈M .
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From a Riemannian point of view, a special type of SL(3,C)-structures we are interested
in is the following.

Definition 1.35. An SL(3,C)-structure ρ ∈ Λ3(M) is tamed by a stable 2-form ω̃ ∈ Λ2(M)
if the (1, 1)-part ω̃1,1 of ω̃ is positive in the standard sense. The 2-form ω̃ is also called a
taming form with respect to Jρ.

The positivity in the standard sense of ω̃1,1 implies that the symmetric tensor

g := ω̃1,1(·, Jρ·).

is positive-definite. This implies that g defines an almost Hermitian metric on M , namely a
Riemannian metric satisfying

g(Jρ·, Jρ·) = g(·, ·).

We shall refer to (g, Jρ) as the induced almost Hermitian structure on M . Special types of
these structures are given by SU(3)-structures.

Definition 1.36. An SU(3)-structure (ω, ρ) on M is the data of an SL(3,C)-structure ρ
tamed by a stable 2-form ω satisfying the compatibility conditions

ω ∧ ρ = 0 (1.4)

and the normalization condition

ρ ∧ ρ̂ =
2

3
ω3. (1.5)

Remark 1.37. In the language of principal bundles, an SU(3)-structure on M is a reduction
of the frame bundle of M to SU(3).

Remark 1.38. An SU(3)-structure can be equivalent defined as the data of a Riemannian
metric g, a g-orthogonal almost complex structure J and a nowhere-vanishing (3, 0)-form Ψ.
If we denote by ρ the real part of Ψ and by ω the 2-form

ω(·, ·) := g(J ·, ·),

then the pair (ω, ρ) defines an SU(3)-structure in the sense of Definition 1.36, inducing the
almost complex structure J and the Riemannian metric g. The 2-form ω is also called the
fundamental form associated with the almost Hermitian structure (g, J).

Let (ω, ρ) be an SU(3)-structure on M . As we have seen in the previous section, we can
always find a pointwise coframe

(
e1, . . . , e6

)
such that

ω = e12 + e34 + e56, ρ = e135 − e146 − e236 − e245. (1.6)

Definition 1.39. A basis (e1, . . . , e6) of TpM with dual basis satisfying (1.6) is called an
adapted basis for the SU(3)-structure (ω, ρ) at p ∈M .
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We denote by g = ω(Jρ·, ·) the induced almost Hermitian metric and by ∗g the Hodge
operator associated with g and the Liouville volume form ω3

6 onM . Then, ρ̂ = ∗gρ. Moreover,
with respect to an adapted basis (e1, . . . , e6) at p ∈M , we may write

gp =
6∑
i=1

(ei)2,

and
ρ̂p = e136 + e145 + e235 − e246.

Let d be the de Rham differential of M . We then give the following.

Definition 1.40. An SL(3,C)-structure ρ (resp. an SU(3)-structure (ω, ρ)) is closed if dρ =
0.

Closed SL(3,C)-structures have been recently studied in [35, 65]. In Chapter 2, we
shall study two special classes of closed SL(3,C)-structures, both characterized by the (semi-
)positivity of certain differential forms. They are called mean convex and tamed by a symplec-
tic form, respectively. In particular, we shall also analyze the compatibility of mean convex
closed SL(3,C)-structures with the half-flat condition for SU(3)-structures.

Definition 1.41. An SU(3)-structure (ω, ρ) is called half-flat if{
dρ = 0,

dω2 = 0.
(1.7)

Half-flat SU(3)-structures have been extensively studied in literature (see for instance
[25, 26, 28, 83, 115, 116]). Special focus was placed, in particular, on symplectic half-flat and
balanced SU(3)-structures.

Definition 1.42. An SU(3)-structure (ω, ρ) is called symplectic half-flat if{
dρ = 0,

dω = 0.
(1.8)

Definition 1.43. An SU(3)-structure (ω, ρ) is called (non-Kähler) balanced if
dρ = 0,

dω2 = 0, (dω 6= 0),

dρ̂ = 0.

(1.9)

In Chapter 5, we shall study the existence of balanced SU(3)-structures on simply con-
nected manifolds of cohomogeneity one, namely manifolds admitting an action of a compact
Lie group having an orbit of codimension one.

Finally, we have the most restrictive case in which all the defining differential forms are
closed.
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Definition 1.44. An SU(3)-structure (ω, ρ) is called torsion-free if
dρ = 0,

dω = 0,

dρ̂ = 0.

(1.10)

A torsion-free SU(3)-structure (ω, ρ) is equivalent characterized by asking that the defining
tensors ω and Ψ = ρ+ iρ̂ are both parallel with respect to the Levi-Civita connection ∇g of
the induced metric g, i.e., {

∇gω = 0,

∇gΨ = 0.
(1.11)

For this reason, torsion-free SU(3)-structures are also called parallel. More commonly, they
are referred to as integrable SU(3)-structures or Calabi-Yau structures in the compact case.
By the holonomy principle, an SU(3)-structure is integrable if and only if Hol(g) is isomorphic
to a subgroup of SU(3), where Hol(g) is the holonomy group of ∇g. In particular, the induced
metric g is Ricci-flat, i.e., the Ricci tensor Ric(g) associated with g vanishes identically (see,
for instance, [89, Proposition 7.1.1]).

The obstruction for Hol(g) to be isomorphic to a subgroup of SU(3), hence for (ω, ρ)
to be torsion-free, is represented by the so-called intrinsic torsion τ of the SU(3)-structure.
The intrinsic torsion of (ω, ρ) is a section of the vector bundle T ∗M ⊗ su(3)⊥, which can be
identified with the pair (∇gω,∇gΨ). Here, su(3)⊥ ⊂ so(6) is the orthogonal complement of
su(3) with respect to the Killing Cartan form B of so(6). Moreover, by [24, Theorem 1.1], the
intrinsic torsion of (ω, ρ) is completely determined by the differentials dω, dρ and dρ̂. More
precisely, the natural action of SU(3) on the space of k-forms Λk(M), for k = 2, 3, gives rise
to the following splittings:

Λ2(M) = C∞(M)ω ⊕ Λ2
6(M) ⊕ Λ2

8(M),

Λ3(M) = C∞(M) ρ ⊕ C∞(M) ρ̂ ⊕ Λ3
6(M) ⊕ Λ3

12(M),

where the irreducible r-dimensional SU(3)-modules Λkr (M) are defined as follows

Λ2
6(M) =

{
σ ∈ Λ2(M) | Jσ = −σ

}
, Λ2

8(M) =
{
β ∈ Λ2(M) | Jβ = β, β ∧ ω2 = 0

}
and

Λ3
6(M) =

{
α ∧ ω |α ∈ Λ1(M)

}
, Λ3

12(M) =
{
γ ∈ Λ3(M) | γ ∧ ω = 0, γ ∧ ρ = 0, γ ∧ ρ̂ = 0

}
.

Therefore, there exist unique w+
0 , w

−
0 ∈ C∞(M), ν1, w1 ∈ Λ1(M), w+

2 , w
−
2 ∈ Λ2

8(M), w3 ∈
Λ3

12(M), such that

dω = −3

2
w−0 ρ+

3

2
w+

0 ρ̂+ w3 + ν1 ∧ ω,

dρ = w+
0 ω

2 + w+
2 ∧ ω + w1 ∧ ρ,

dρ̂ = w−0 ω
2 + w−2 ∧ ω + Jw1 ∧ ρ.

(1.12)

Notice that every 2-form σ ∈ Λ2
6(M) satisfies the identity σ ∧ ω = ∗gσ, while every 2-form

β ∈ Λ2
8(M) satisfies the identity β ∧ ω = − ∗g β.
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Definition 1.45. The differential forms w±0 , w1, ν1, w
±
2 , w3 uniquely defined by (1.12) are

called intrinsic torsion forms of the SU(3)-structure.

An SU(3)-structure is torsion-free if and only if its intrinsic torsion forms vanish identi-
cally.

1.4 G2-structures

Let R7 = 〈e1, . . . , e7〉 and consider the 3-form

ϕ0 := e135 − e146 − e236 − e245 + e127 + e347 + e567.

The exceptional Lie group G2 is the stabilizer of ϕ0 under the natural action of GL(7,R) on
Λ3(R7)∗. Explicitly,

G2 := {a ∈ GL(7,R)| a∗(ϕ0) = ϕ0} ⊂ SO(7).

G2 is a compact, connected, simply connected, simple Lie group of dimension 14. Therefore,
the orbit

GL(7,R) · ϕ0
∼= GL(7,R)/G2

is open in Λ3(R7)∗. Hence, ϕ0 is stable in the sense of Definition 1.27.
Let N be a 7-dimensional smooth manifold. A G2-structure on N is a reduction of the

structure group of its frame bundle to the exceptional Lie group G2. This reduction exists
if and only if N is orientable and spin (see [76]) and it is equivalent to the existence of a
definite 3-form ϕ ∈ Ω3(N), i.e., such that ϕ(p) ∈ Λ3T ∗pN is definite for every p ∈ N . Since
the identity component of the pointwise stabilizer of ϕ isomorphic to G2, we introduce the
following.

Definition 1.46. A G2-structure on N (respectively, on TpN) is a definite 3-form ϕ ∈ Λ3(N)
(respectively, a definite 3-form ϕ on TpN).

A G2-structure ϕ endows N with a Riemannian metric gϕ and an orientation Volgϕ .
Explicitly,

gϕ(X,Y )Volgϕ =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ,

for every pair of vector fields X,Y on N . We denote by ∇gϕ the Levi-Civita connection of gϕ
and by ∗ϕ the Hodge operator determined by gϕ and Volgϕ . Moreover, the 4-form ϕ̂ := ∗ϕϕ
is stable, as well.

Let ϕ ∈ Λ3(N) be a G2-structure on N . As we have recalled in Section 1.2, at each point
p of N , there exists a basis (e1, . . . , e7) of TpN with dual basis (e1, . . . , e7) such that

ϕp = e135 − e146 − e236 − e245 + e127 + e347 + e567. (1.13)

Definition 1.47. A basis (e1, . . . , e7) of TpN satisfying (1.13) is called an adapted basis for
the G2-structure ϕ at p ∈ N .
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Moreover, with respect to an adapted basis (e1, . . . , e7) at p ∈ N , we may write

(gϕ)p =
7∑
i=1

(ei)2, Volgϕ = e1234567

and
ϕ̂p = e1234 + e3456 + e1256 + e1367 + e1457 + e2357 − e2467.

In particular, this basis is orthonormal with respect to gϕ.

Definition 1.48. A G2-structure ϕ is closed if dϕ = 0.

Definition 1.49. A G2-structure ϕ is coclosed if d ∗ϕ ϕ = 0.

Closed and coclosed G2-structures exist on every open 7-manifold admitting G2-structures
[37]. In [31], the authors extended this result by proving that a compact 7-manifold admit-
ting G2-structures always admits coclosed ones. The same is no longer true for closed G2-
structures. Examples of compact 7-manifolds with a closed G2-structure can be obtained by
taking products of lower dimensional manifolds endowed with suitable geometric structures
(see for instance [46, 51, 56, 93]). In Chapter 3, we shall investigate their existence on certain
classes of compact 7-manifolds.

Definition 1.50. A G2-structure ϕ is torsion-free if{
dϕ = 0,

d ∗ϕ ϕ = 0,
(1.14)

i.e., if it is both closed and coclosed.

A torsion-free G2-structure ϕ is equivalently characterized by asking that the 3-form ϕ is
parallel with respect to the Levi-Civita connection ∇gϕ (see [46]), i.e.,

∇gϕϕ = 0. (1.15)

For this reason, torsion-free G2-structure are also called parallel. More commonly, they are
also referred to as integrable G2-structures. By the holonomy principle, a G2-structure ϕ is
integrable if and only if Hol(gϕ) is isomorphic to a subgroup of G2. In this case the induced
metric gϕ is Ricci-flat (see [16]).

The first complete examples of torsion-free G2-structures were constructed in [21]. In the
compact case, 7-manifolds admitting torsion-free G2-structures were constructed first in [88]
and, later, in [30, 90, 91]. Up to now, all known and potentially effective methods to obtain
new examples of torsion-free G2-structures on compact 7-manifolds involve closed ones: in
[88], Joyce proved that a closed G2-structure on a compact 7-manifold with small torsion, in
a suitable sense, can be deformed into a torsion-free G2-structure. In [19], Bryant introduced
the Laplacian flow, a geometric flow for closed G2-structures (for more details, see Section
4.1). Since the stationary points of this flow are torsion-free G2-structures, one may expect
that, starting from a closed initial data, the flow could possibly converge to a torsion-free
G2-structure.
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The obstruction for Hol(gϕ) to be isomorphic to a subgroup of G2 is represented by the
so-called intrinsic torsion τϕ of the G2-structure. The intrinsic torsion of a G2-structure is a
section of the vector bungle T ∗N ⊗ g⊥2 and it can be identified with the covariant derivative
∇gϕϕ. Here g⊥2 ⊂ so(7) is the orthogonal complement of g2 with respect to the Killing Cartan
form B of so(7). In a similar way to what happens for SU(3)-structures, the components of
τϕ are completely determined by those of dϕ and d ∗ϕ ϕ (see [19, Proposition 1]). The
decompositions of the spaces Λk(N), for k = 2, 3, into irreducible G2-modules induce the
following decompositions:

Λ2(N) = Λ2
7(N) ⊕ Λ2

14(N),

Λ3(N) = C∞(N)ϕ ⊕ Λ3
7(N) ⊕ Λ3

27(N),

where the irreducible r-dimensional G2-modules Λkr (N) are defined as follows

Λ2
7(N) = {κ ∈ Λ2(N)| ∗ϕ (κ ∧ ϕ) = 2κ}, Λ2

14(N) = {κ ∈ Λ2(N)|κ ∧ ∗ϕϕ = 0},

and

Λ3
7(N) = {∗ϕ(α ∧ ϕ)|α ∈ Λ1(N)}, Λ3

27(N) = {β ∈ Λ3(N)|β ∧ ϕ = 0, β ∧ ∗ϕϕ = 0}.

Therefore, there exist unique τ0 ∈ C∞(N), τ1 ∈ Λ1(N), τ2 ∈ Λ2
14(N) and τ3 ∈ Λ3

27(N) such
that

dϕ = τ0 ∗ϕ ϕ+ 3τ1 ∧ ϕ+ ∗ϕτ3,

d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ+ τ2 ∧ ϕ.
(1.16)

Definition 1.51. The differential forms τ0, τ1, τ2, τ3 uniquely defined by (1.16) are called
intrinsic torsion forms of the G2-structure.

A G2-structure is torsion-free if and only if its intrinsic torsion forms vanish identically.

1.5 The link between SL(3,C)-structures and G2-structures

In this section, we recall the interplay between G2-structures in dimension seven and
the geometry of SL(3,C)-structures and SU(3)-structures in dimension six. Consider a 7-
dimensional real vector space W and let ϕ be a 3-form on it. Choose a non-zero vector
z ∈W and a complementary subspace V ⊂W so that W ∼= V ⊕ Rz. Then, we can write

ϕ = ω̃ ∧ θ + ρ,

where θ ∈W ∗ is the dual of z with respect to the chosen subspace V , ω̃ ∈ Λ2V ∗ and ρ ∈ Λ3V ∗.
The 3-form ϕ on W is definite if and only if the 3-form ρ on V is definite and ω̃ is a taming
form for the complex structure J induced by ρ and one of the two orientations of V .

Remark 1.52. If ϕ = ω̃ ∧ θ + ρ is definite, then the 2-form ω̃ = ιzϕ|V on V has rank 6,
namely it is a non-degenerate 2-form. The pair (ω̃, ρ) defines an SU(3)-structure on V, up to
a suitable normalization, if and only if ω̃ ∧ ρ = 0. When this happens, the vector space V
coincides with the gϕ-orthogonal complement of Rz ⊂W.
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On the other hand, if ϕ defines a G2-structure on W, we can consider the 6-dimensional
subspace U := (Rz)⊥ ⊂ W and the gϕ-orthogonal splitting W = U ⊕ Rz. Then, if we let
u := |z|ϕ = gϕ(z, z)1/2 and η := u−2z[, so that η(z) = 1, we have

ϕ = uω ∧ η + ψ+,

for some (ω, ψ+) ∈ Λ2U∗ × Λ3U∗. Therefore, the pair (ω, ψ+) defines an SU(3)-structure on
U inducing the metric g such that

gϕ = g + u2η ⊗ η.

Moreover,

∗ϕϕ =
1

2
ω ∧ ω + uψ− ∧ η,

where ψ− := Jψ+ψ+, Jψ+ being the almost complex structure induced by ψ+. In particular,

Volgϕ = uVolg ∧ η.

Since the vector subspaces V and U are isomorphic, there exists an SU(3)-structure on V
corresponding to (ω, ψ+) via the identification V ∼= U . We shall denote this SU(3)-structure
using the same symbols. It follows from the discussion in Remark 1.52 that V and U coincide
if and only if ω̃ ∧ ρ = 0. In such a case, η and θ coincide, too.

Remark 1.53.

1. The structures (ω̃, ρ) and (ω, ψ+) on V are related as follows. OnW = V ⊕Rz, we have
ϕ = ω̃ ∧ θ + ρ and ϕ = uω ∧ η + ψ+. Thus, ω̃ = ιzϕ = uω. Moreover, since η(z) = 1,
we can consider the decomposition η = ηV + θ, where ηV ∈ V ∗ and see that

ρ = uω ∧ ηV + ψ+.

2. Let (e1, . . . , e7) be a basis of W = V ⊕ Rz with V = 〈e1, . . . , e6〉 and e7 = z. Then, a
basis for U = (Re7)⊥ is given by

(
ek − gϕ(ek,e7)

u2
e7

)
k=1,...,6

. Consequently, (e1, . . . , e6)

is a basis of U∗.

The following identities will be useful in the sequel. The reader may refer to [56, Lemma
3.7] for a proof.

Lemma 1.54. Let (ω, ψ+) be an SU(3)-structure on a 6-dimensional real vector space V and
let α ∈ V ∗. We denote ψ− = Jψ+, J being the almost complex structure induced by ψ+.
Then,

(1) ∗g(α ∧ ψ−) ∧ ω = Jα ∧ ψ+ = α ∧ ψ−,

(2) ∗g(α ∧ ψ−) ∧ ω2 = 0,

(3) ∗g(α ∧ ψ−) ∧ ψ+ = − ∗g (α ∧ ψ+) ∧ ψ− = α ∧ ω2 = 2 ∗g (Jα),

(4) ∗g(α ∧ ψ−) ∧ ψ− = ∗g(α ∧ ψ+) ∧ ψ+ = −Jα ∧ ω2 = 2 ∗g α.
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At the level of smooth manifolds, the previous construction hold by working on the tangent
space of a 7-dimensional smooth manifold N endowed with a G2-structure ϕ. Let i : M ↪! N
be an orientable 6-dimensional submanifold of N and let X be a vector field along M which,
at every point p ∈M , is complementary to the the tangent space of M at p, i.e., such that

TpM ⊕ 〈Xp〉 = TpN.

The 3-form ρ := i∗ϕ is an SL(3,C)-structure tamed by the non-degenerate 2-form ω̃ := ιXϕ.
Note that when X = ν is a normal vector field of unit norm with respect to gϕ, then the pair
(i∗ϕ, ινϕ) defines an SU(3)-structure on M .

Conversely, if ρ is an SL(3,C)-structure tamed by a non-degenerate 2-form ω̃ on an ori-
ented smooth 6-manifoldM , we may define a G2-structure ϕ on the cartesian product between
M and a smooth 1-fold I; explicitly,

ϕ = ω̃ ∧ θ + ρ,

where θ is a nowhere-vanishing global 1-form on I. In particular, ϕ induces the product
metric if and only if ω̃ ∧ ρ = 0.

Remark 1.55. Let ϕ be a G2-structure on a smooth 7-manifold N and let (e1, . . . , e7) be
an adapted basis of TpN at a point p ∈ N . The sextuple (e1, . . . , e6) is an adapted basis for
the SU(3)-structure (ω, ρ) induced on Re⊥7 ⊂ TpN . In particular,

ϕp = ω ∧ e7 + ρ, ϕ̂p =
1

2
ω2 + ρ̂ ∧ e7.



Chapter 2

Closed SL(3,C)-structures

As remarked in [35], closed SL(3,C)-structures obey an h-principle, since every hypersur-
face in R7 acquires a closed SL(3,C)-structure. In this chapter, we consider closed SL(3,C)-
structures which are either mean convex or tamed by a symplectic form. These notions were
introduced by Donaldson in relation to G2-manifolds with boundary. Since both definitions
rely on concepts of semi-positivity for (p, p)-forms, we start by recalling some general results
on these structures. Then, we frame them within the theory of closed SL(3,C)-structures and
SU(3)-structures, providing some characterizations in terms of the intrinsic torsion forms of
the SU(3)-structure. We then focus on nilmanifolds and solvmanifolds. In particular, we clas-
sify nilmanifolds which carry an invariant mean convex closed SL(3,C)-structure and those
which admit an invariant mean convex half-flat SU(3)-structure. Finally, we prove that, if a
solvmanifold admits an invariant tamed closed SL(3,C)-structure, then it also has an invari-
ant symplectic half-flat SU(3)-structure. The main contents and results of this chapter were
published in [59].

2.1 Semi-positive (p, p)-forms

In this section we review the definitions and main results regarding semi-positive (p, p)-
forms on complex vector spaces. For more details, we refer for instance to [33, 81].

Let V be a complex vector space of complex dimension n, with coordinates (z1, . . . , zn).
Notice that V can be considered also as a real vector space of dimension 2n endowed with
the complex structure J given by the multiplication by i. Consider the exterior algebra

ΛV ∗ ⊗ C =
⊕

Λp,qV ∗,

where Λp,qV ∗ is a shorthand for ΛpV ∗ ⊗ΛqV
∗. A canonical orientation for V is given by the

(n, n)-form

τ(z) :=
1

2n
idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn = dx1 ∧ dy1 ∧ dxn ∧ . . . ∧ dyn, (2.1)

where zj = xj + iyj . We say that a (p, p)-form γ is real if γ = γ. One may introduce a natural
notion of positivity for real (p, p)-forms.

21
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Definition 2.1. A real (p, p)-form γ ∈ Λp,pV ∗ is said to be semi-positive (resp. positive) if,
for all αj of Λ1,0V ∗, 1 ≤ j ≤ n− p,

γ ∧ iα1 ∧ α1 ∧ . . . ∧ iαn−p ∧ αn−p = λτ(z),

where λ ≥ 0 (resp. λ > 0 when α1, . . . , αn−p are linearly indipendent).

We now focus on the case n = 3 and we provide equivalent definitions for semi-positive
real forms of type (1, 1) and (2, 2). For a more general discussion we refer the reader to [33,
Chapter III].

Proposition 2.2. Let α = i
2

∑
j,k ajk dzj∧dzk be a real (1, 1)-form on V . Then, the following

are equivalent:

(i) α is semi-positive (resp. positive);

(ii) the Hermitian matrix of coefficients (ajk) is positive semi-definite (resp. positive defi-
nite);

(iii) there exist coordinates (w1, . . . wn) on V such that

α =
i

2

n∑
k=1

ãkk dwk ∧ dwk,

with ãkk ≥ 0 (resp. ãkk > 0), k = 1, . . . , n.

Proof.
(i)⇐⇒ (ii) follows from [33, Chapter III, Corollary 1.7] and its straightforward generalization
for the case of positive (1, 1)-forms;
(ii) ⇐⇒ (iii) is achieved by diagonalizing the Hermitian matrix of coefficients (ajk).

The next result follows from [33, Chapter III, Corollary 1.9 and Proposition 1.11].

Proposition 2.3. If α1, α2 are semi-positive real (1, 1)-forms, then α1 ∧ α2 is semi-positive.

We want to characterize the semi-positivity of real (2, 2)-forms. Let γ be a real (2, 2)-form
on a 3-dimensional complex vector space V . We may write

γ = −1

4

∑
i<k
j<l

γijkl dzi ∧ dzj ∧ dzk ∧ dzl, (2.2)

with respect to some coordinates (z1, z2, z3) on V . We may associate with γ the real (1, 1)-
form

β =
i

2

∑
m,n

βmn dzm ∧ dzn,

whose coefficients are determined by those of γ following

βmn :=
1

4

∑
i,j,k,l

γijklεikmεjln. (2.3)
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Here εabc is the Levi-Civita symbol, with ε123 = 1. Using a change of basis dzi =
∑

pA
p
i dwp,

the matrix (βmn) changes by congruence via the matrix Ã = det(A)(At)−1, where A = (Api ).
Consequently, the semi-positivity of β does not depend on the choice of coordinates on V.
Notice that the matrix (βmn) is Hermitian, since γ = γ implies γijkl = γjilk.

Proposition 2.4. Let γ be a non-zero real (2, 2)-form on V . Then, the following are equiv-
alent:

(i) γ is semi-positive,

(ii) γ ∧ α > 0 for every positive real (1, 1)-form α, i.e., γ ∧ α = λτ(z), where λ > 0,

(iii) the associated (1, 1)-form β is semi-positive.

Proof.
(i) ⇐⇒ (iii) Let γ be a real (2, 2) form on V . Then, γ can be written as in (2.2) with respect
to a basis (dz1, dz2, dz3) of Λ1,0V ∗. By Definition 2.1, γ is semi-positive if for all η ∈ Λ1,0V ∗

one has i
2γ ∧ η ∧ η ≥ 0. Set η =

∑
m ηmdzm; then

i

2
γ ∧ η ∧ η =

∑
m,n

βmnηmηnτ(z),

where the coefficients βmn are defined in (2.3). Therefore, since η is arbitrary, γ is semi-
positive if and only if the matrix (βmn) is positive semi-definite.
(i) =⇒ (ii) Let α be a positive (1, 1)-form on V . Then, there exists a basis (dz1, dz2, dz3) of
Λ1,0V ∗ such that,

α =
i

2

∑
k

akkdzk ∧ dzk

with akk > 0. Let γ be a semi-positive (2, 2)-form on V . We may write

γ = −1

4

∑
i<k
j<l

γijkldzi ∧ dzj ∧ dzk ∧ dzl.

Then,
γ ∧ α =

∑
r

arrβrrτ(z).

Since γ is semi-positive, by (iii) we have that βrr ≥ 0 for all r = 1, 2, 3 with at least one of
them being strictly positive. Therefore, since arr > 0, for every r, the claim follows.
(ii) =⇒ (i) Let (α1, α2, α3) be a basis of Λ1,0V ∗. We define

αε :=
i

2
(α1 ∧ α1 + ε(α2 ∧ α2 + α3 ∧ α3)).

We notice that, for every ε > 0, αε is a positive (1, 1)-form. Then, by hypothesis, γ ∧αε > 0.

The claim follows by continuity since
i

2
γ ∧ α1 ∧ α1 = limε!0(γ ∧ αε) ≥ 0.
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As shown in [81, Theorem 1.2], a real (2, 2)-form γ is always diagonalizable, i.e., there
exist coordinates (w1, w2, w3) of V such that

γ = −1

4

∑
i<k

γiikkdwi ∧ dwi ∧ dwk ∧ dwk.

By Proposition 2.4, γ is semi-positive if and only if γiikk ≥ 0, for every i < k. In particular,
the diagonal matrix (βmn) associated with γ in these coordinates is positive semi-definite.
Moreover, γ is positive if and only if γiikk > 0, for every i < k.

Remark 2.5. [106, formula (4.8)] A real (2, 2)-form γ on V is positive if and only if γ = α2,
where α is a positive (1, 1)-form.

2.2 Mean convexity and intrinsic torsion of closed SU(3)-struc-
tures

In this section, we study the mean convex property in the context of closed SU(3)-
structures and provide necessary and sufficient conditions in terms of the intrinsic torsion
of the SU(3)-structure.

Let M be an oriented smooth 6-manifold endowed with an SU(3)-structure (ω, ρ). Ac-
cording to [35], the differential dρ̂ of the SL(3,C)-structure ρ̂ = Jρ is a real (2, 2)-form, so
that it could be semi-positive in the sense of Definition 2.1.

Definition 2.6. A closed SL(3,C)-structure ρ on M is (strictly) mean convex if dρ̂ is a
non-zero semi-positive (resp. positive) (2, 2)-form at every point of M .

Definition 2.7. A closed SU(3)-structure (ω, ρ) on a 6-manifold M is (strictly) mean convex
if the SL(3,C)-structure ρ is (strictly) mean convex.

As a consequence of (1.12), if ρ is closed we have dρ̂ = θ ∧ ω, where θ is the (1, 1)-form
defined by θ := w−0 ω + w−2 .

We recall that, given a real (1, 1)-form α, the trace tr(α) of α is given by 3α∧ω2 = tr(α)ω3.
Then, in terms of w−0 and the (1, 1)-form θ, we can prove the following.

Proposition 2.8. Let (ω, ρ) be a closed SU(3)-structure on M . Then,

(i) if (ω, ρ) is mean convex, the intrinsic torsion form w−0 is strictly positive and the (1, 1)-
form θ is not negative (semi-)definite. Moreover, its trace tr(θ) is strictly positive;

(ii) if θ is semi-positive, the SU(3)-structure is mean convex.

Proof. Let us assume that (ω, ρ) is a mean convex closed SU(3)-structure on M . By (1.12),
we have dρ̂ = θ∧ω. Now, Proposition 2.4 implies dρ̂∧α > 0 for every positive real (1, 1)-form
α. Then, (i) follows by choosing α = ω; indeed, dρ̂ ∧ ω = w−0 ω

3, since w−2 ∈ Λ2
8(M). In

particular tr(θ) = 3w−0 > 0. (ii) follows from Proposition 2.3 and the positivity of ω.
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Let N be a 7-dimensional smooth manifold endowed with a torsion-free G2-structure
ϕ ∈ Λ3(N). By Section 1.5, ϕ induces an SU(3)-structure (ω, ρ) on each oriented hypersurface
i : M ↪! N . By a quick computation, one can see that the resulting SU(3)-structure is half-
flat. As a matter fact, one has

ρ = i∗ϕ, ω2 = 2 i∗(∗ϕϕ),

which are closed when ϕ is both closed and coclosed. Moreover, the intrinsic torsion of the
half-flat structure can be identified with the second fundamental form B ∈ Γ(S2(T ∗M)) of
M with respect to a fixed unit normal vector field ν. As in [35], with respect to Jρ, we can
write B = B1,1 +BC , where B1,1 is the real part of a Hermitian form and BC is the real part
of a complex quadratic form. If we denote by β1,1 = B1,1(Jρ·, ·) the corresponding (1, 1)-form
on M , we have β1,1 ∧ ω = 1

2dρ̂, from which it follows that, if (ω, ρ) is mean convex, then the
mean curvature µ given explicitly by 1

4µρ∧ ρ̂ = 1
2dρ̂∧ω is positive with respect to the normal

direction (for more details see [35, Proposition 1]). Moreover, since the wedge product with
ω defines an injective map on 2-forms, comparing this with (1.12) yields θ = 2β1,1. Then, by
Proposition 2.8, if B1,1 defines a positive semi-definite Hermitian product, then the half-flat
structure (ω, ρ) is mean convex.

Special types of half-flat structures (ω, ρ) are called coupled, when dω = −3
2w
−
0 ρ, and

double, when dρ̂ = w−0 ω
2. Notice that, by Proposition 2.8, double structures (ω, ρ) are

trivially mean convex as long as w−0 > 0. However, it is straightforward to check that, if
(ω, ρ) is a double structure such that w−0 < 0, then (ω,−ρ) is mean convex. In [25, Theorem
4.11], a classification of 6-dimensional nilpotent Lie algebras endowed with a double structure
was given. Other examples of double structures on S3 × S3 were found in [104, 122].

For a general Lie algebra, we can show the following.

Proposition 2.9. If a Lie algebra g has a strictly mean convex closed SL(3,C)-structure,
then g admits a double structure.

Proof. Let ρ be a strictly mean convex closed SL(3,C)-structure on g. Then, dρ̂ is a positive
(2, 2)-form and, as shown in [106] (see Remark 2.5), there exists a positive (1, 1)-form α such
that dρ̂ = α2. Moreover, since α is positive with respect to Jρ, α3 is a positive multiple of
the volume form ρ ∧ ρ̂. Since Jρ does not change for a non-zero rescaling of ρ, this implies
that there exists b 6= 0 such that (bρ, α) is a double structure on g.

As a consequence, the classification of nilpotent Lie algebras admitting strictly mean
convex closed SL(3,C)-structures reduces to Theorem 4.11 in [25]. Therefore, in the next
section we weaken the condition asking for the existence of (non-strictly) mean convex closed
SL(3,C)-structures.

2.3 Mean convex closed SL(3,C)-structures on nilpotent Lie al-
gebras

Using the classification result in [73, 105], we can prove the following.
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Theorem 2.10. Let M = Γ\G be a 6-dimensional nilmanifold. Then, M admits invariant
mean convex closed SL(3,C)-structures if and only if the Lie algebra g of G is not isomorphic
to any of the six Lie algebras gi, i = 1, 2, 4, 9, 12, 34, as listed in Table 6.1.

Proof. Let g be the Lie algebra of G. We recall that every invariant SL(3,C)-structure on M
is determined by an SL(3,C)-structure on g and vice versa. First notice that the possibility
that g is abelian is precluded by Definition 2.7. Then, in order to prove the first part of the
theorem, we first show the non-existence result for the five Lie algebras g1, g2, g4, g9 and g12.
For each of these Lie algebras, let us consider a generic closed 3-form

ρ =
∑
i<j<k

pijk e
ijk, pijk ∈ R.

Let us assume that ρ is definite, i.e., stable with λ(ρ) < 0. Then, ρ induces an almost
complex structure Jρ and we may ask if the induced (2, 2)-form dρ̂ is semi-positive. Notice
that the 1-forms ζk = ek − iJρek, for k = 1, . . . , 6, generate the space Λ1,0g∗i of (1, 0)-forms
with respect to Jρ on gi, i = 1, 2, 4, 9, 12. So, for every closed definite 3-form ρ, we extract
a basis (ξ1, ξ2, ξ3) for Λ1,0g∗i , where ξ

j = ζkj for some kj ∈ {1, . . . , 6} and j = 1, 2, 3. Then,
(ξ1, ξ2, ξ3, ξ

1
, ξ

2
, ξ

3
) is a complex basis for g∗i ⊗ C and we can write dρ̂ in this new basis as

dρ̂ = −1

4

∑
i<k
j<l

γijkl ξ
iξ
j
ξkξ

l
,

for some γijkl ∈ C. We note that the real 1-forms

ekj =
1

2
(ξj + ξ

j
), Jρ(e

kj ) =
i

2
(ξj − ξj), j = 1, 2, 3,

define a new real basis for g∗i . Now, following Section 2.1, we consider the real (1, 1)-form β
associated with dρ̂, given explicitly by

β =
i

2

∑
m,n

βmn ξ
mξ

n
, βmn =

1

4

∑
i,j,k,l

γijklεikmεjln, (2.4)

and we compute the expression of βmn in terms of pijk. Therefore, dρ̂ is semi-positive (non-
zero) if and only if the Hermitian matrix (βmn) is positive semi-definite, which occurs if and
only if 

βkk ≥ 0, k = 1, 2, 3,

βrrβkk − |βrk|
2 ≥ 0, r < k, r, k = 1, 2, 3,

det(βmn) ≥ 0,

(2.5)

with (βmn) different from the zero matrix. Then, it can be shown that, for every closed
3-form ρ such that λ(ρ) < 0, the system (2.5) in the variables pijk has no solutions. The
computations have been made with the aid of Maple 2021 (see Appendix 2 for the list of
instructions used). Let us see this explicitly for gi, i = 1, 2. By a direct computation, for the
generic closed 3-form ρ on g1 we have

λ(ρ) =
[
(p145 + 2p235)p146 + p145p236 + p2

245

]2
+ 4p146p236 (p126 − p145p235 + p135p245)
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and, for the generic closed 3-form ρ on g2, we get

λ(ρ) =
(
p2

245 + p145p236 + 2p146p235

)2
+ 4p146p236 (−p145p235 + p135p245 + p125p146) .

Notice that, if at least one between p146 and p236 is equal to zero, then λ(ρ) ≥ 0. So let
us assume that both p146 and p236 are non-zero. Then, (e1, Jρe

1, e2, Jρe
2, e5, Jρe

5) defines a
basis of g∗i , for i = 1, 2, hence (ξ1 = e1 − iJρe1, ξ2 = e2 − iJρe2, ξ3 = e5 − iJρe5) is a basis
of (1, 0)-forms on gi, i = 1, 2. By a direct computation, it can be shown that in these cases
the matrix coefficient β11 vanishes and so β11β33 − |β13|2 = −|β13|2 ≤ 0, but β13 = 0 implies
λ(ρ) = 0, which is a contradiction.

By a very similar discussion, we may discard cases g4, g9 and g12 as well. In order to prove
the second part of the theorem, we construct an explicit mean convex closed SU(3)-structure
(ω, ρ) on the remaining nilpotent Lie algebras (see Table 6.3).

Using the classification of half-flat nilpotent Lie algebras (see [26]), we can then prove the
following.

Theorem 2.11. A 6-dimensional nilmanifold M = Γ\G has an invariant mean convex half-
flat structure if and only if the Lie algebra g of G is isomorphic to one of the Lie algebras gi,
i = 6, 7, 8, 10, 13, 15, 16, 22, 24, 25, 28, 29, 30, 31, 32, 33, as listed in Table 6.1.

In [26], a classification up to isomorphism of 6-dimensional real nilpotent Lie algebras
admitting half-flat structures was given. They are twenty-four and they are listed in Table
6.3. So, in order to classify nilpotent Lie algebras admitting a mean convex half-flat structure,
we restrict our attention to this list. An explicit example of mean convex half-flat structure on
gi, i = 6, 7, 8, 10, 13, 15, 16, 22, 24, 25, 28, 29, 30, 31, 32, 33, is provided in Table 6.3. Therefore,
we only need to prove non-existence of mean convex half-flat structures on the remaining Lie
algebras gi, i = 4, 9, 11, 12, 14, 21, 27. By Theorem 2.10, we may immediately exclude the
Lie algebras gi, i = 4, 9, 12, since mean convex half-flat structures are mean convex closed
SL(3,C)-structures, in particular.

For the remaining Lie algebras gi, i = 11, 14, 21, 27, whose first Betti number is 3 or 4,
we first collect some necessary conditions for the existence of mean convex closed SU(3)-
structures (ω, ρ) in terms of a filtration of Jρ-invariant subspaces Ui of g∗. Then, by working
in an SU(3)-adapted basis, we exhibit further obstructions.

Let us start by defining the filtration {Uj} as in [25]. Let (ω, ρ) be an SU(3)-structure on
a 6-dimensional real nilpotent Lie algebra g and let (g, Jρ) be the induced almost Hermitian
structure. By nilpotency, there exists a basis

(
α1, . . . , α6

)
of g∗ such that, if we denote

Vj :=
〈
α1, . . . , αj

〉
, then dVj ⊂ Λ2Vj−1 and, by construction, 0 ⊂ V1 ⊂ . . . ⊂ V5 ⊂ V6 = g∗.

We notice that the basis (e1, . . . , e6), whose corresponding structure equations are given in
Table 6.1, satisfies the previous conditions and Vj = ker d when b1(g) = j. In the following,
we consider Vj =

〈
e1, . . . , ej

〉
. As in [25], let Uj := Vj ∩ JρVj be the maximal Jρ-invariant

subspace of Vj for each j. Then, since Jρ is an automorphism of the vector space g, a
simple dimensional computation shows that dimR U2, dimR U3 ∈ {0, 2}, dimR U4 ∈ {2, 4} and
dimR U5 = 4. Notice that the filtration {Uj} depends on Vj and the almost complex structure
Jρ.

We can prove the following.
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Lemma 2.12. Let ρ be a mean convex closed SL(3,C)-structure on a nilpotent Lie algebra
g. If g is isomorphic to

g11 = (0, 0, 0, e12, e14, e15 + e23 + e24) or g14 = (0, 0, 0, e12, e13, e14 + e35),

then U3 = U4. If g is isomorphic to

g21 = (0, 0, 0, e12, e13, e14 + e23) or g27 = (0, 0, 0, 0, e12, e14 + e25),

then dimR U2 = 2, or equivalently
〈
e1, e2

〉
is Jρ-invariant. Moreover, on g21 (up to isomor-

phism) we also have dimR U4 = 4.

Proof. On each Lie algebra gi, i = 11, 14, 21, 27, we consider the generic closed 3-form

ρ =
∑
i<j<k

pijk e
ijk, pijk ∈ R,

and we impose λ(ρ) < 0 and the mean convex condition. First, by a direct computation on
each Lie algebra, we determine the expression of λ(ρ) in terms of the coefficients pijk and a
basis of (1, 0)-forms with respect to Jρ. Then, we exclude the cases where either λ(ρ) ≥ 0 or
the matrix (βmn) associated with dρ̂ is not positive semi-definite. As in the proof of Theorem
2.10, we first extract a basis of (1, 0)-forms from the set of generators (ζi) and we use (2.4)
to compute (βmn) in terms of pijk. We shall give all the details for the Lie algebra g11. For
the other cases the computations are similar and we only report the necessary conditions on
pijk. The generic closed 3-form ρ on the Lie algebra g11 has

λ(ρ) =(p126p236 − p126p146 − p135p246 + p145p236 + p146p235 − p146p245 + p234p246

− p235p245)2 + 4p246(p123p236p246 − p123p
2
246 − p124p

2
236 + p124p236p246

+ 2p125p146p236 − p125p146p246 + p125p235p236 − p125p235p246 − p134p235p246

+ p134p236p245 − p125p146p246 + p135p234p246 − p135p235p245 + p145p146p235

+ p145p
2
235 − p145p234p236) + 4p146p236(−p125p236 + p135p235 − p145p235).

Then, we have the following possibilities:

(a) p246 6= 0, p246 6= p236. Then,
(
e1 − iJρe1, e2 − iJρe2, e3 − iJρe3

)
is a basis for Λ1,0g∗11,

but (βmn) being positive semi-definite implies λ(ρ) = 0, a contradiction.

(b) p246 = 0, p236 6= 0, p146 6= 0. Taking
(
e1 − iJρe1, e2 − iJρe2, e5 − iJρe5

)
as a basis for

Λ1,0g∗11, again we find that (βmn) being positive semi-definite implies λ(ρ) = 0.

(c) p246 = p236 = 0, or p246 = p146 = 0. These would force λ(ρ) ≥ 0.

(d) p236 = p246 6= 0. In particular, this implies that V2 =
〈
e1, e2

〉
is Jρ-invariant, i.e.,

dimR U2 = 2. Notice also that, since Jρe3(e6) = 0 if and only if p236 = 0, we also have
that V4 =

〈
e1, e2, e3, e4

〉
is not Jρ-invariant, hence U2 = U3 = U4.
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By a very similar discussion, one can show that a generic mean convex closed SL(3,C)-
structure ρ on g14 must have p245 = 0 and p356 6= 0. In particular, since Jρe1, Jρe

3 ∈
〈
e1, e3

〉
,

we have dimR U3 = 2. Moreover, Jρe2(e6) 6= 0, hence dimR U2 = 0 and U3 = U4.
Analogously, every mean convex closed SL(3,C)-structure ρ on g21 must have p345 = 0.

This implies that V2 and V4 are Jρ-invariant, so that dimR U2 = 2, dimR U4 = 4 and U2 = U3.
Finally, a mean convex closed SL(3,C)-structure ρ on g27 must have p345 = 0. In partic-

ular, this implies that V2 is Jρ-invariant, so that U2 = U3.

Now we can prove Theorem 2.11.

Proof of Theorem 2.11. Starting from the classification of half-flat nilpotent Lie algebras
given in [26], we divide the discussion depending on the first Betti number b1 of g.

When b1(g) = 2, the claim follows directly by Theorem 2.10. In particular, we have
seen that g4 cannot admit mean convex closed SL(3,C)-structures and, for the remaining Lie
algebras g6, g7 and g8 from Table 6.1, we provide an explicit example in Table 6.3 on the
respective Lie algebras.

Analogously, when b1(g) = 3, an explicit example of mean convex half-flat structure on
gi, i = 10, 13, 15, 16, 22, 24, is given in Table 6.3. By Theorem 2.10, we may exclude the
existence of mean convex half-flat structures on g9 and g12. For the remaining Lie algebras
gi, i = 11, 14, 21, let (ω, ρ) be a mean convex half-flat structure on gi. Then, by Lemma 2.12,
with respect to the fixed nilpotent filtration Vj =

〈
e1, . . . , ej

〉
, we may assume dimR U3 = 2.

Using this and the information on U4 we also collected in Lemma 2.12, we shall show that
on the three Lie algebras there exists an adapted basis (fi) with dual basis (f i) such that
df1 = df2 = 0 and f6 ∈ z(gi).

Let us consider the case of g21, first. Then, we may assume dimR U4 = 4, which occurs if
and only if V4 = JρV4. In particular, we may choose a g-orthonormal basis

(
f1, f2

)
of U3 such

that Jρf1 = −f2, take f3, f4 ∈ U⊥3 ∩ U4 of unit norm such that Jρf3 = −f4 and complete
it to a basis for g∗21 by choosing f5 ∈ U⊥4 ∩ V5 and f6 ∈ U⊥4 ∩ JρV5 of unit norm such that
Jρf

5 = −f6. Then, by construction, (f1, . . . , f6) is an adapted basis for the SU(3)-structure
(ω, ρ). In particular, since V5 =

〈
f1, f2, f3, f4, f5

〉
, the inclusion dVj ⊂ Λ2(Vj−1) implies

f6 ∈ z(g21). Therefore, since f1, f2 ∈ V3 = ker d, we have df1 = df2 = 0.
Cases g11 and g14 may be discussed in the same way. By Lemma 2.12, we can assume

dimR U4 = 2 for both Lie algebras. As shown in [25], since U4, V3 ⊂ V4, we have dimR(U4 ∩
V3) ≥ 1 and we may take

(
f1, f2

)
to be a unitary basis of U4 with f1 ∈ V3. Then, since

U3 ⊂ V3 = ker d, we may suppose df1 = df2 = 0. Analogously, since dimR(V4∩JρV5) ≥ 3 and
U5∩V4 = V5∩JρV5∩V4 = V4∩JρV5, then dimR(U5∩V4) ≥ 3, from which dimR(U5∩V4∩U⊥4 ) ≥
1 follows. Then, we may take

(
f3, f4

)
to be a unitary basis of U⊥4 ∩U5 with f3 ∈ V4. Finally,

since dimR(U⊥5 ∩ V5) ≥ 1, we may take a unitary basis
(
f5, f6

)
of U⊥5 with f5 ∈ V5. By

construction,
(
f1, f2, . . . , f6

)
is the dual basis of an adapted basis for (ω, ρ). In particular,

since U5 ⊂ V5, we also have V5 =
〈
f1, f2, f3, f4, f5

〉
, which implies f6 ∈ z(gi), for i = 11, 14.

This proves our claim.
Using this, we prove that the three Lie algebras gi, i = 11, 14, 21, do not admit any

mean convex half-flat structures. By contradiction, let us suppose there exists a nilpotent Lie
algebra g endowed with a mean convex half-flat structure (ω, ρ) which is isomorphic to g11,
g14 or g21. Without loss of generality, we may assume that there exists an adapted basis (fi)
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for the SU(3)-structure such that df1 = df2 = 0, f6 ∈ z(g). In this basis,

ω = f12 + f34 + f56, ρ = f135 − f146 − f236 − f245, ρ̂ = f136 + f145 + f235 − f246.

Therefore, g has structure equations

df1 = df2 = 0, dfk = −
5∑
i<j
i,j=1

ckijf
ij , k = 3, 4, 5, 6.

By imposing the unimodularity condition
∑

j c
j
ij = 0, for all i = 1, . . . , 6, and the half-flat

equations
dρ = 0, dω2 = 0,

a direct computation shows that, if c5
34 6= 0, then the Jacobi identities d2f i = 0, i = 3, . . . , 6,

are equivalent to the conditions

c4
15 = c4

25 = c3
25 = c6

15 = c4
13 = c4

14 = c3
13 = c3

23 = c3
24 = 0,

which imply b1(g) ≥ 4, a contradiction. Then, we have to impose c5
34 = 0. Let us assume

c6
12 6= 0. Again, a straightforward computation shows that d2f6 = 0 implies

c3
25 = c4

25 = c4
15 = 0, c3

13 = −c4
14, c3

23 = −c4
13 − c6

15.

Now, let us look at the mean convex condition. Using (2.4), we obtain that the matrix (βmn)
associated with dρ̂, with respect to the basis (ξ1 = f1 + if2, ξ2 = f3 + if4, ξ3 = f5 + if6), is
given by 0 0 0

0 0 c6
15 − i(c3

24 + c4
14)

0 c6
15 + i(c3

24 + c4
14) −c5

14 − c6
13 + c6

24 − c5
23

 .

Therefore, dρ̂ is semipositive if and only if c6
15 = 0, c3

24 = −c4
14 and −c5

14− c6
13 + c6

24− c5
23 > 0.

In particular, c6
15 = 0 and c3

24 = −c4
14 imply that the Jacobi identities hold if and only if

c4
13 = c4

14 = 0. However, this also implies df3 = df4 = 0, so that b1(g) ≥ 4, meaning that we
have to discard this case as well. Therefore, c5

34 = c6
12 = 0 and, as a consequence,

df3 =− c3
13f

13 − (c4
13 + c6

15)f14 − c4
25f

15 − c3
23f

23 − c3
24f

24 − c3
25f

25,

df4 =− c4
13f

13 − c4
14f

14 − c4
15f

15 − c3
13f

23 − (c4
13 + c6

15)f24 − c4
25f

25,

df5 =− (c6
14 + c6

23 + c5
24)f13 − c5

14f
14 + (c4

14 + c3
13)f15 − c5

23f
23 − c5

24f
24

+ (c3
23 + c4

13 + c6
15)f25,

df6 =− c6
13f

13 − c6
14f

14 − c6
15f

15 − c6
23f

23 − c6
24f

24 − (c3
24 − c3

13)f25.

(2.6)

In particular, f12 is a non-exact 2-form belonging to Λ2(ker d) such that f12 ∧ dg∗ = 0. On
the other hand, a simple computation shows that for every Lie algebra gi, for i = 11, 14, 21,
a 2-form α ∈ Λ2(ker d) such that α ∧ dg∗i = 0 is necessarily exact, leading to a contradiction.
This concludes the non-existence part of the proof in the case b1 = 3.
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Now, we consider the remaining case b1(g) ≥ 4. An explicit example of mean convex
half-flat structure on gi, i = 25, 28, 29, 30, 31, 32, 33, is given in Table 6.3. Then, we only need
to prove the non-existence of mean convex half-flat structures on g27.

Let (ω, ρ) be a mean convex half-flat structure on g27. We claim that there exists an
adapted basis (fi) with dual basis (f i) such that df1 = df2 = df3 = 0 and f6 ∈ z(g27). By
Lemma 2.12, we can assume U2 = U3, with dimR U3 = 2. We recall that U4 has dimension
two or four. Let us suppose dimR U4 = 4, first. We note that, in this case, the existence of
an adapted basis (fi) for (ω, ρ) such that f6 ∈ z(g27) and V4 = U4 =

〈
f1, f2, f3, f4

〉
follows

from the previous discussion on g21, where we only used dimR U2 = 2 and dimR U4 = 4. In
particular, since V4 = ker d on g27, in this case we also have df1 = df2 = df3 = df4 = 0.
When dimR U4 = 2 instead, since U2 = U3 = U4, the discussion is the same as for g11 and
g14, where we only used U3 = U4 to find an adapted basis such that df1 = df2 = 0 and
f6 lying in the center. In particular, since by construction f1, f2, f3 ∈ V4, on g27 we also
have df3 = 0, since V4 = ker d. This proves our claim on g27. Now, using this claim we
shall show that g27 does not admit any mean convex half-flat structures. Like in the previous
cases, by contradiction, let us suppose there exists a nilpotent Lie algebra g isomorphic to g27

admitting a mean convex half-flat structure (ω, ρ). Then, we may assume that there exists
an adapted basis (fi) for (ω, ρ) such that df1 = df2 = df3 = 0 and V5 =

〈
f1, f2, f3, f4, f5

〉
,

so that f6 ∈ z(g). Therefore,

dfk = −
5∑
i<j
i,j=1

ckijf
ij , k = 4, 5, 6.

By imposing the unimodularity of g and the half-flat condition for (ω, ρ), we get

df4 =c6
15f

13 − c4
14f

14 − c4
15f

15,

df5 =c5
34f

12 − (c5
24 + c6

14 + c6
23)f13 − c5

14f
14 + c4

14f
15 − c5

23f
23

− c5
24f

24 − c5
34f

34,

df6 =− c6
12f

12 − c6
13f

13 − c6
14f

14 − c6
15f

15 − c6
23f

23 − c6
24f

24 + c6
12f

34.

(2.7)

Since b1(g) = 4, there should exist a closed 1-form linearly independent from f1, f2 and f3.
Moreover, since ker d = V4 ⊂ V5 =

〈
f1, f2, f3, f4, f5

〉
, the matrix C associated with

d :
〈
f4, f5

〉
! Λ2V5 = Λ2

〈
f1, f2, f3, f4, f5

〉
must have rank equal to 1. This is equivalent to requiring that C is not the zero matrix and
all the 2× 2 minors of C vanish. After eliminating all the zero rows, we have

C =



0 c5
34

c6
15 −c5

24 − c6
14 − c6

23

−c4
14 −c5

14

−c4
15 c4

14

0 −c5
23

0 −c5
24

0 −c5
34


.



32 CHAPTER 2. CLOSED SL(3,C)-STRUCTURES

By using that (fi) is an adapted basis and (2.4), we get

(βmn) =

0 0 0
0 c4

15 c6
15 − ic4

14

0 c6
15 + ic4

14 −c5
14 − c6

13 + c6
24 − c5

23

 .

Let us suppose c4
15 = 0. Then, (βmn) being positive semi-definite implies c4

14 = c6
15 = 0, from

which it follows that g is 2-step nilpotent, so that we can discard this case since g27 is 3-step
nilpotent. Thus, we have to impose c4

15 6= 0. As a consequence, d2f i = 0, i = 4, 5, 6, if and
only if c5

24 = c5
34 = c6

24 = c5
23 = c6

12 = 0, from which it follows that b1(g) = 4 holds if and only
if

c5
14 = −c

4
14

c4
15

, c6
14 =

c4
14c

6
15 − c4

15c
6
23

c4
15

.

Then, g must have structure equations

df1 =df2 = df3 = 0,

df4 =c6
15f

13 − c4
14f

14 − c4
15f

15,

df5 =− c4
14c

6
15

c4
15

f13 +
(c4

14)2

c4
15

f14 + c4
14f

15,

df6 =− c6
13f

13 − c4
14c

6
15 − c4

15c
6
23

c4
15

f14 − c6
15f

15 − c6
23f

23.

(2.8)

By (2.8), g has the same central and derived series as g27. Note that, if c6
23 = 0, then g is

almost abelian, so it cannot be isomorphic to g27. Thus, we can suppose c6
23 6= 0. By [26], a

6-dimensional 3-step nilpotent Lie algebra having b1 = 4 and admitting a half-flat structure
must be isomorphic to either g25 or g27. In addition, b2(g25) = 6, while b2(g27) = 7. We show
that we cannot have b2(g) = 7, which is a contradiction. To this aim, we need to compute
the space Z2g of closed 2-forms of g. By a direct computation using (2.8) and c6

23 6= 0, it
follows that dimZ2g = dim Λ2V4 + 2 = 8. Therefore, in order to get b2(g) = 7, we have to
require that the space B2 of exact 2-forms of g is 1-dimensional. This is equivalent to asking
that the linear map

d|〈f4,f5,f6〉 :
〈
f4, f5, f6

〉
! Λ2g∗

has rank equal to 1. Let E denote the matrix associated with d|〈f4,f5,f6〉 in the induced basis
(f ij) of Λ2g∗. Eliminating all the zero rows, one has

E =


c6

15 −c
4
14c

6
15

c4
15

−c6
13

−c4
14

(c4
14)2

c4
15

−c
4
14c

6
15 − c4

15c
6
23

c4
15

−c4
15 c4

14 −c6
15

0 0 −c6
23

 .

Then, E has rank 1 if and only if E is not the zero matrix and all the 2×2 minors of E vanish.
Notice that the minor c6

23c
4
15 is different from zero, since we have already excluded both cases

c6
23 = 0 and c4

15 = 0. Then, g cannot be isomorphic to g27 and we obtain a contradiction.
This concludes the case b1 ≥ 4 and the proof of the theorem.
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Remark 2.13. A 6-dimensional nilpotent Lie algebra g with b1(g) = 2 admitting mean
convex half-flat structures also admits double SU(3)-structures. See Table 6.3 for an explicit
example. This is not true for different values of the first Betti number.

Under the hypothesis of exactness, we can prove the following.

Theorem 2.14. Let g be a 6-dimensional nilpotent Lie algebra admitting an exact mean
convex SL(3,C)-structure. Then, g is isomorphic to g18 or g28. Moreover, up to a change of
sign, every exact definite 3-form ρ on g18 and g28 is mean convex and g28 is the only nilpotent
Lie algebra admitting mean convex coupled structures, up to isomorphism.

Proof. Among the 6-dimensional nilpotent Lie algebras admitting half-flat structures, as
shown in the proof of [53, Theorem 4.1], the only Lie algebras that can admit exact SL(3,C)-
structures are isomorphic to g4, g9 or g28. Therefore, by Theorem 2.10, g28 is the only
nilpotent Lie algebra among them which can admit a mean convex structure. In particular,
a coupled mean convex structure on g28 is given in Table 6.3. This example was first found
in [53], up to a change of sign of the definite 3-form. For the remaining nilpotent Lie alge-
bras gi, for i = 3, 5, 17, 18, 19, 20, 23, 26, which can admit mean convex SL(3,C)-structures by
Theorem 2.10, we prove that g18 is the only one that admits exact definite 3-forms. To see
this, let (ej) be the basis of g∗i as listed in Table 6.1. Then, the generic exact 3-form ρ on gi
is given by dη, where

η =
∑
i<j

pije
ij , pij ∈ R. (2.9)

By an explicit computation, one can show that, on gi, for i = 3, 17, 19, 23, 26, λ(ρ) = 0,
while, on g5 and g20, λ(ρ) = p4

56 > 0. Finally, on g18, λ(ρ) = −4p4
56. Then, if p56 6= 0,

ρ = dη is a definite 3-form on g18. Moreover, (e1 − iJρe1, e3 − iJρe3, e5 − iJρe5) is a basis
for Λ1,1g∗18 and, with respect to this basis, the matrix (βmn) associated with the (2, 2)-form
dρ̂ is diag(0, 0,−4p56). Then, when p56 < 0, ρ is mean convex, otherwise −ρ is. By a direct
computation one can check that the same conclusions hold also for g28. In particular, the
generic exact 3-form ρ = dη, with η as in (2.9), is definite as long as p56 6= 0. Moreover, (e1−
iJρe

1, e3 − iJρe3, e5 − iJρe5) is a basis of Λ1,1g∗28, for every exact definite ρ and, with respect
to this basis, the matrix (βmn) associated with the (2, 2)-form dρ̂ is diag(0, 0,−4p56).

2.4 The Hitchin flow

In this section we study the mean convex property in relation to the Hitchin flow equations
(2). We recall that the solution (ω(t), ρ(t)) of (2) starting from a half-flat structure remains
half-flat as long as it exists. However, the same does not happen in general for special classes
of half-flat structures. Then, a natural question is whether the Hitchin flow equations preserve
the mean convexity of the initial data (ω(0), ρ(0)). A first example of solution preserving the
mean convex condition of the initial data, up to change of sign of ρ(0), was found in [54,
Proposition 5.4]. In this case the initial structure is coupled. More generally, when the
Hitchin flow solution (ω(t), ρ(t)) preserves the coupled condition of the initial data, then
ρ(t) = f(t)ρ(0), where f : I ! R is a non-zero smooth function with f(0) = 1 (for more
details see [54, Proposition 5.2]). Then, a coupled solution preserves the mean convexity of



34 CHAPTER 2. CLOSED SL(3,C)-STRUCTURES

the initial data as long as it exists. Some further remarks can be made in other special cases.
If (ω(t), ρ(t)) is a solution to (2) starting from a strictly mean convex half-flat structure (ω, ρ),
the solution remains mean convex, at least for small times, by continuity. This occurs, for
instance, for double structures. In particular cases, the mean convex property of the double
initial data is preserved for all times:

Proposition 2.15. Let M be a connected 6-manifold endowed with a double structure (ω, ρ).
If (ω(t), ρ(t)) is a double solution to (2) defined on some I ⊆ R, 0 ∈ I, i.e., dρ̂(t) = ν0(t)ω2(t)
for each t ∈ I, for some smooth nowhere-vanishing function ν0 : I ! R, then there exists a
nowhere-vanishing smooth function f : I ! R such that ω(t) = f(t)ω(0). Conversely, if
(ω(t), ρ(t)) is a solution to (2) with ω(t) = f(t)ω(0), then it is a double solution.

Proof. Let (ω(t), ρ(t)) be a solution to (2) with ω(t) = f(t)ω(0). From (2), one gets

dρ̂(t) = −1

2

∂

∂t

(
ω(t)2

)
= −1

2

∂

∂t

(
f2(t)ω(0) ∧ ω(0)

)
= −f(t)f ′(t)ω(0)2.

Then, ω(t) = f(t)ω(0) is a double solution with ν0(t) = − d
dt ln f(t). Conversely, if dρ̂(t) =

ν0(t)ω(t)2, then
∂

∂t
ω(t) ∧ ω(t) = −dρ̂(t) = −ν0(t)ω(t)2.

Since the wedge product with ω(t) is injective on 2-forms, this is equivalent to ∂
∂tω(t) =

−ν0(t)ω(t), whose unique solution is ω(t) = f(t)ω(0), with f(t) = e−
∫ t
0 ν0(s)ds.

We now provide an explicit example of double solution to (2) and show that a double
solution with double initial data may not exist.

Example 2.16. Consider the double SU(3)-structure (ω, ρ) on g24 given in Table 6.3. The
solution to the Hitchin flow equations with initial data (ω, ρ) is double and it is explicitly
given by

ω(t) =

(
1− 5

2
t

) 1
5

ω,

ρ(t) = −
(

1− 5

2
t

) 6
5

e123 + e145 + e246 + e356.

In particular dρ̂(t) = ν0(t)ω2(t) with ν0(t) = (2−5t)−1 > 0, for each t in the maximal interval
of definition I = (−∞, 2

5). Consider now the double SU(3)-structure (ω, ρ) on g6 given in
Table 6.3. The solution to the Hitchin flow equation with initial data (ω, ρ) is given by

ω(t) = f1(t)
(
e15 − e24

)
− f2(t)e36,

ρ(t) = h1(t)e123 + (h2(t)− 1) e134 − e146 − e235 + e256 − e345 + h2(t)e126,
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where f1(t), f2(t), h1(t), h2(t) satisfy the following autonomous ode system:

f ′1 =
1

2f3
1 f2

(2h2 − 1) ,

f ′2 = − 1

2f4
1 f2

(2f1 + f2 (2h2 − 1)) ,

h′1 = −2f1,

h′2 = −f2,

with initial conditions f1(0) = f2(0) = h1(0) = 1, h2(0) = 0, which, by known theorems,
admits a unique solution with given initial data. In particular, this solution is not a double
solution. A direct computation shows that the eigenvalues λi(t) of the matrix (βmn(t))
associated with dρ̂(t) are

λ1 = λ2 =
√
−h2

2 + h1 + h2, λ3 = (1− 2h2)
√
−h2

2 + h1 + h2.

In particular, the mean convex property is preserved for small times as expected.

To our knowledge, the question of whether the Hitchin flow preserves the mean convexity
of the initial data when the (2, 2)-form is not positive but just semi-positive is still open.
Nonetheless, some easy considerations can be made in order to obtain a better understanding
of the problem. Let M be a compact real analytic 6-dimensional manifold endowed with a
half-flat mean convex SU(3)-structure (ω, ρ). Since the unique solution to (2) starting from
(ω, ρ) is a one-parameter family of half-flat structures (ω(t), ρ(t)), we can write

dρ̂(t) = (ν0(t)ω(t)− ν2(t)) ∧ ω(t),

where ν0(t) ∈ C∞(M) and ν2(t) ∈ Λ2
8M with respect to Jρ(t) for every t ∈ I, where I is

the maximal interval of definition of the flow. Then, dρ̂(t) ∧ ω(t) = ν0(t)ω(t)3 and, since
ν0(0) > 0 by the mean convexity of the initial data, by continuity we have ν0(t) > 0 at least
for small times. By (2), as long as ν0(t) > 0, the volume form ω(t)3 is pointwise decreasing:

∂

∂t
(ω(t)3) =

∂

∂t
(ω(t)2) ∧ ω(t) +

∂

∂t
ω(t) ∧ ω(t)2 = −3dρ̂(t) ∧ ω(t) = −3ν0(t)ω(t)3.

Moreover, ω(t)2 is a positive (2, 2)-form with respect to Jρ(t) for all t ∈ I and, from the
second equation in (2), we know that −∂t(ω2(t)) remains a (2, 2)-form with respect to Jρ(t)

for each t ∈ I such that −∂t(ω2(t))
∣∣
t=0

= 2dρ̂(0) is semi-positive. Then, the Hitchin flow
solution preserves the mean convexity of the initial data if and only if −∂t(ω2(t)) = 2dρ̂(t)
remains semi-positive. The essential difficulty in this problem lies in the fact that the link
between the positivity of ω2(t) and the mean convexity of the initial data is not sufficient to
ensure the mean convexity of the solution, since also the almost complex structure evolves in
a non-linear way under the equation ∂t(ρ(t)) = dω(t).

Let us look at the behaviour of (2) on a specific mean convex example.

Example 2.17. Consider the mean convex half-flat structure (ω, ρ) on g25 given in Table
6.3 and consider the family of solutions to the second equation in (2), starting from (ω, ρ):

ω(t) = −a1(t)e13 +
1

a2(t)
e45 + a2(t)e26,

ρ(t) = e156 + b1(t)e124 − e235 − e346 + b2(t)(e125 − e234),
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where a1(t), a2(t), b1(t), b2(t) satisfy the ode system
a′1 = − 1

2a1a2

(
2a2

2b2 + 1
)
,

a′2 =
1

2a2
1

(
2a2

2b2 − 1
) (2.10)

and the normalization condition
√
b1 − b22 = a1, with initial data a1(0) = a2(0) = b1(0) = 1,

b2(0) = 0. This system defines a family of solutions to 1
2∂t(ω(t)2) = −dρ̂(t) depending on

b2(t). Then, if b2(t) = a1(t) − 1, for instance, dρ̂(t) is not semi-positive, at least for small
times t > 0. Anyway, the unique solution to (2) starting from (ω, ρ), given by (2.10), together
with b

′
1 = − 1

a2
,

b′2 = a2,

preserves the mean convexity of the initial data.

By a direct computation, one may show that the mean convexity of (ω, ρ) is never strict
for all the examples proposed in Table 6.3 on g10, g13, g16, g22, g29, g30, g31, g32, g33, since
there is always a vanishing eigenvalue λi of the matrix associated with dρ̂. This follows also
by Proposition 2.9, since these Lie algebras do not admit double structures (see [25]). This
means that, a priori, a solution to the Hitchin flow equations starting from one of these pair
might not preserve the mean convexity of the initial data. Anyway, we show that this happens
in our examples, at least for small times. Therefore, it would be interesting to determine if
this is always the case.

Example 2.18. Let (ω, ρ) be the mean convex half-flat structure on g10 given in Table 6.3.
The unique solution to the Hitchin flow equations starting from (ω, ρ) is given by

ω(t) =− a1(t)

2
e13 + a2(t)e46 − 1

a2(t)
e25,

ρ(t) =− 1

2
e236 −

(
1

2
+ b1(t)

)
e234 +

1

2
e345 + e156

+ (b1(t)− 1)e145 + b2(t)e124 + b1(t)e126,

where a1(t), a2(t), b1(t), b2(t) satisfy the following ode system:

a′1 = −a
2
2(6b1 + 1) + 1

2a1a2
,

a′2 =
a2

2(6b1 + 1)− 1

2a2
1

,

b′1 = a2,

b′2 = − 1

a2
,

(2.11)

with initial conditions a1(0) = a2(0) = b2(0) = 1, b1(0) = 0. The mean convex property is
preserved for small times since the eigenvalues λi(t) of the matrix (βmn(t)) associated with
dρ̂(t) are

λ1 = 0, λ2 = a1, λ3 = (6b1 + 1)a1.
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Example 2.19. Consider the mean convex half-flat structure (ω, ρ) on g13 given in Table
6.3. The solution to (2) starting from (ω, ρ) is thus given by

ω(t) = a1(t)e13 + a2(t)e46 +
1

a2(t)
e25,

ρ(t) = −e236 + e234 − e345 + e156 + (1 + b1(t))e145 − b2(t)e124 + b1(t)e126,

where a1(t), a2(t), b1(t), b2(t) satisfy the following ode system:

a′1 = −1 + a2
2(2b1 + 1)

2a1a2
,

a′2 =
a2

2(2b1 + 1)− 1

2a2
1

,

b′1 = a2,

b′2 = − 1

a2
,

(2.12)

with initial conditions a1(0) = a2(0) = b2(0) = 1, b1(0) = 0. The mean convex property is
preserved for small times since the eigenvalues λi(t) of the matrix (βmn(t)) associated with
dρ̂(t) are

λ1 = 0, λ2 = a1, λ3 = (2b1 + 1)a1.

Example 2.20. Let (ω, ρ) be the mean convex half-flat structure on g16 given in Table 6.3.
The solution to the Hitchin flow equations with initial data (ω, ρ) is given by

ω(t) = a1(t)e13 + a2(t)e26 − 1

a2(t)
e45,

ρ(t) = (2 + b1(t))e124 −
√

2

2
e156 + (b1(t)− 1)e235 +

√
2

2
e346 + b2(t)(e125−e234),

with coefficients satisfying 

a′1 =
2b2 − a2

2(1 + 2b1)

4a1a2
,

a′2 =
2b2 + a2

2(1 + 2b1)

4a2
1

,

b′1 = a2,

b′2 = − 1

a2

and having initial conditions a1(0) = a2(0) = 1, b1(0) = b2(0) = 0. The eigenvalues associated
with dρ̂(t) are

λ1 = 0, λ2 =
a1(2b1 + 1)

(b1 − 1)2
, λ3 =

2
√

2a1b2
b1 − 1

.

Therefore, the mean convexity of the initial data is preserved for small times.
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Example 2.21. Let (ω, ρ) be the mean convex half-flat structure on g22 given in Table 6.3.
The solution to the Hitchin flow equations with this initial data is given by

ω(t) = a1(t)e16 + a2(t)e23 +
1

a1(t)
e45,

ρ(t) = b1(t)e124 − e135 − e256 − e346 + b2(t)(e125 − e134),

with coefficients satisfying 

a′1 =
a2

1 − 2b2
2a2

2

,

a′2 = −a
2
1 + 2b2
2a1a2

,

b′1 = −a1,

b′2 =
1

a1

and having initial conditions a1(0) = a2(0) = b1(0) = 1, b2(0) = 0. The eigenvalues λi(t)
associated with dρ̂(t) are

λ1 = a2, λ2 = 0, λ3 = 2a2b2.

Therefore, the mean convexity of the initial data is preserved for small times.

Example 2.22. Consider the mean convex half-flat structure (ω, ρ) on g29 given in Table
6.3. The solution to the Hitchin flow equations with initial data (ω, ρ) is given by

ω(t) = a1(t)(e13 + e24)− 1

a1(t)
e56,

ρ(t) = b1(t)(e126 − e145) + b2(t)e235 − e346,

with coefficients satisfying 

a′1 =
b1 − 2b2

2b1b2
,

b′1 = − 1

a1
,

b′2 =
1

a1

and having initial conditions a1(0) = b1(0) = b2(0) = 1. The eigenvalues of dρ̂(t) are

λ1 = 0, λ2 = 0, λ3 =
b21(2b2 − b1)

a1
.

In particular, the mean convexity of (ω, ρ) is preserved for small times.

Example 2.23. Let (ω, ρ) be the mean convex half-flat structure on g30 given in Table 6.3.
The solution to the Hitchin flow equations starting from (ω, ρ) is given by

ω(t) = a1(t)(e13 − e24) +
1

a1(t)
e56,

ρ(t) = (b1(t)− 1)e126 + e236 + e145 + (1− b1(t))e345 + e146 + e125,
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with coefficients satisfying 
a′1 = −b

3
1 − 3b21 + 2b1 + 1

2a2
1

,

b′1 =
1

a1

and having initial conditions a1(0) = 1, b1(0) = 0. The eigenvalues λi(t) associated with
dρ̂(t) are

λ1 = 0, λ2 = 0, λ3 =
a1(b31 − 3b21 + 2b1 + 1)

(b1 − 1)2
.

Therefore, the mean convexity of the initial data is preserved for small times.

Example 2.24. Consider the mean convex half-flat structure (ω, ρ) on g31 given in Table
6.3. The solution to the Hitchin flow equations with initial data (ω, ρ) is explicitly given by

ω(t) = −
√

1− 2t e14 − e35 + e26,

ρ(t) = −e346 − e245 + e156 − (1− 2t) e123.

The eigenvalues associated with dρ̂(t) are

λ1(t) = 0, λ2(t) =
1√

1− 2t
, λ3(t) =

√
1− 2t.

Therefore, the mean convexity of (ω, ρ) is preserved by the solution to (2), as long as it exists.

Example 2.25. Let (ω, ρ) be the mean convex half-flat structure on g32 given in Table 6.3.
The solution to the Hitchin flow equations starting from (ω, ρ) is given by

ω(t) = −a1(t)(e24 +
√

2 e13)− 1

a1(t)
e56,

ρ(t) = (b1(t)− 1)e125 + e146 − e236 + (2 + b1(t))e345,

with coefficients satisfying 
a′1 = −2b1 + 1

4a2
1

b′1 =
1

a1

and having initial conditions a1(0) = 1, b1(0) = 0. The eigenvalues λi(t) associated with
dρ̂(t) are

λ1 = 0, λ2 = 0, λ3 =
−2b21 + b1 + 1√

2a1(b1 + 2)
.

Therefore, the mean convexity of the initial data is preserved for small times.

Example 2.26. Let (ω, ρ) be the mean convex half-flat structure on g33 given in Table 6.3.
The solution to the Hitchin flow equations starting from (ω, ρ) is given by

ω(t) = −a1(t)(e13 + e24)− a2(t)e56,

ρ(t) = −b1(t)e125 + e146 − e236 + e345,
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with coefficients satisfying 
a′1 = − 1

2a1

√
b1

a′2 =
a2

2a2
1

√
b1

b′1 = −a2

and having initial conditions a1(0) = a2(0) = b1(0) = 1. The eigenvalues λi(t) associated
with dρ̂(t) are

λ1 = 0, λ2 = 0, λ3 =
√
b1.

Therefore, the mean convexity of the initial data is preserved for small times.

2.5 Tamed closed SL(3,C)-structures on solvable Lie algebras

Let M be a 6-dimensional smooth manifold endowed with a closed SL(3,C)-structure
ρ ∈ Λ3(M) inducing the almost complex structure Jρ ∈ End(TM).

Definition 2.27. The 3-form ρ is called tamed if there exists a symplectic form Ω ∈ Λ2(M)
taming Jρ.

As already observed in [35], a compact 6-manifold M cannot admit a mean convex
SL(3,C)-structure ρ tamed by a symplectic form Ω, since∫

M
dρ̂ ∧ Ω =

∫
M
ρ̂ ∧ dΩ = 0.

Notice that, when the normalization condition ρ ∧ ρ̂ = 2
3Ω3 is satisfied and dΩ = 0, the pair

(Ω, ρ) defines a symplectic half-flat structure.
Since we consider invariant tamed closed SL(3,C)-structures on solvmanifolds, we can

work in the same way as in the previous sections at the level of solvable unimodular Lie
algebras. We then prove the following result.

Theorem 2.28. Let g be a 6-dimensional unimodular solvable (non-abelian) Lie algebra.
Then, g admits tamed closed SL(3,C)-structures if and only if it has symplectic half-flat
structures. If g is nilpotent, then it is isomorphic to g24 or g31 as listed in Table 6.1. If g is
solvable, then it is isomorphic to one among g0

6,38, g
0,−1
6,54 , g

0,−1,−1
6,118 , e(1, 1)⊕e(1, 1), A−1,β,−β

5,7 ⊕R,
A0,0,1

5,17 ⊕R and Aα,−α,15,17 ⊕R, as listed in Table 6.2. Moreover, all nine Lie algebras admit closed
SL(3,C)-structures tamed by a symplectic form Ω such that dΩ1,1 6= 0.

Proof. First we prove the theorem in the nilpotent case. 6-dimensional symplectic nilpotent
Lie algebras were classified in [73] (see also [121]) and their structure equations are listed in
Table 6.1. For each of these Lie algebras, we consider a pair (ρ,Ω) ∈ Λ3g∗i × Λ2g∗i explicitly
given by

ρ =
∑
i<j<k

pijk e
ijk, Ω =

∑
r<s

hrs e
rs,

with pijk, hrs ∈ R, and impose the two conditions dρ = 0 and dΩ = 0, which are both linear
in the coefficients pijk, hrs. Then, Ω is a symplectic form provided that it is non-degenerate,
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Table 2.1: Tamed closed SL(3,C)-structure on 6-dimensional nilpotent Lie algebras

g Structure constants Tamed closed SL(3,C)-structure

g24 (0, 0, 0, e12, e13, e23)
ρ = −e125 − e146 − e156 − e236 − e245 − e345 − e356

Ω = e13 + 1
2e

14 − 1
2e

24 + e26 + e35 + e36

g31 (0, 0, 0, 0, e12, e13)
ρ = e123 + 2e145 + e156 + e235 + e246 + e345

Ω = e16 − e25 − e34 + e36

i.e., Ω3 6= 0. By [38, Lemma 3.1], a real Lie algebra g endowed with an almost complex
structure J such that Jz(g)∩ [g, g] 6= {0} cannot admit a symplectic form Ω taming J . If we
assume λ(ρ) < 0, we may then apply this result on each gi by considering the almost complex
structure Jρ induced by ρ. We notice that, for every gi listed in Table 6.1, e6 ∈ z(gi). A
direct computation on each gi for i = 3, 4, 5, 6, 7, 8, 9, 10, 13, 18, 19, 20, 28, 29, 30, shows that
Jρe6 ∈ [gi, gi], for every Jρ induced by a closed 3-form ρ. On gi, for i = 23, 26, 33, the same
obstruction holds since an explicit computation shows that the map

π ◦ Jρ : z(gi) ! gi/[gi, gi]

has non-trivial kernel, where π denotes the projection onto gi/[gi, gi]. This means that, for
each ρ, one can find a non-zero element in the center of gi whose image under Jρ lies entirely
in [gi, gi]. For all the other cases, let Ω = Ω1,1 + Ω2,0 + Ω0,2 be the decomposition of Ω in
types with respect to Jρ and denote by ω the (1, 1)-form Ω1,1 := 1

2 (Ω + JρΩ). Then, in order
to have a closed SL(3,C)-structure tamed by Ω, we have to require that ω is positive, i.e.,
that the symmetric 2-tensor g := ω(·, Jρ·) is positive definite. Denote by gij := g(ei, ej) the
coefficients of g with respect the dual basis (e1, . . . , e6) of g. Then, a direct computation
on gi, for i = 11, 12, 21, 22, 27, shows that g66 always vanishes, so we may discard these
cases as well. We may then restrict our attention to the remaining Lie algebras g24 and g31.
As shown in [28, Theorem 2.4], these are the only 6-dimensional non-abelian nilpotent Lie
algebras carrying a symplectic half-flat structure, up to isomorphism. Explicit examples of
closed SL(3,C)-structures tamed by a symplectic form Ω such that dΩ1,1 6= 0 are given in
Table 2.1. This proves the first part of the theorem.

Using the classification results in [103, Theorem 2] for 6-dimensional symplectic unimod-
ular (non-nilpotent) solvable Lie algebras, for each Lie algebra one can compute the metric
coefficients gij of g with respect to the basis (e1, . . . , e6) for g as listed in Table 6.2. It turns

out that, if g is one among g0,−1
6,3 , g0,0

6,10, g
−1, 1

2
,0

6,13 , g
1
2
,−1,0

6,13 , g0
6,21, g

0,0
6,36, g6,78, A−1

5,8 ⊕ R, A−1,0,γ
5,13 ,

A0
5,14 ⊕ R, A−1

5,15 ⊕ R, A0,0,γ
5,17 ⊕ R, A0

5,18 ⊕ R and A−1,2
5,19 ⊕ R, each closed definite 3-form ρ

induces a Jρ such that g11 = 0. In a similar way, if g is g−1
6,15 or g−1,−1

6,18 , then g44 = 0, while
when g is n±1

6,84, e(2) ⊕ R3 or e(1, 1) ⊕ R3, we have g33 = 0. Finally, when g = e(1, 1) ⊕ h,
then g66 = 0. In some other cases, g cannot ever be positive definite since, for each closed ρ
inducing an almost complex structure Jρ, one has grr = −gkk for some r 6= k. In particular,
when g = g0,0

6,70, then g11 = −g22, when g = e(2) ⊕ e(2), then g55 = −g66 and, when g is
e(2) ⊕ e(1, 1) or e(2) ⊕ h, then g22 = −g33. As shown in [47, Propositions 3.1, 4.1 and 4.3],
for the remaining Lie algebras g0

6,38, g
0,−1
6,54 , g

0,−1,−1
6,118 , e(1, 1)⊕ e(1, 1), A−1,β,−β

5,7 ⊕R, A0,0,1
5,17 ⊕R,

Aα,−α,15,17 ⊕ R, as listed in Table 6.2, a symplectic half-flat structure always exists. Explicit
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Table 2.2: Tamed closed SL(3,C)-structure on unimodular symplectic non-nilpotent solvable
Lie algebras

g Structure constants Tamed closed SL(3,C)-structure

g0
6,38 (e23,−e36, e26, e26 − e56, e36 + e46, 0)

ρ = −e124 − e135 + e236 − e456

Ω = −2e16 + e23 − e25 + e34

g0,−1
6,54 (e16 + e35,−e26 + e45, e36,−e46, 0, 0)

ρ = e125 − e136 + e246 + e345

Ω = e14 + e23 + e34 + 4
3e

56

g0,−1,−1
6,118 (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0)

ρ = e126 + e135 + e145 − e245 + e346

Ω = e14 + e23 + e56

e(1, 1)⊕ e(1, 1) (0,−e13,−e12, 0,−e46,−e45)
ρ = −e125 − e126 + e135 − e145 − e246 + e345 + e346

Ω = −e14 + e23 − 2e56

A−1,β,−β
5,7 ⊕ R (e15,−e25, βe35,−βe45, 0, 0), −1 ≤ β < 0

ρ = −e126 − e145 − e235 − e346

Ω = −e13 + e15 + e24 + e56

Aα,−α,15,17 ⊕ R (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0), α > 0
ρ = e125 + e136 + e145 + e246 − e345

Ω = −e14 + e23 − e56

A0,0,1
5,17 ⊕ R (e25,−e15, e45,−e35, 0, 0)

ρ = e145 − e136 + e246 + e235 − e346 − e456

Ω = e12 − e13 + e24 − e56

examples of closed SL(3,C)-structures ρ tamed by a symplectic form Ω such that dΩ1,1 6= 0
are given in Table 2.2.

Remark 2.29. 1. By [47, Remarks 3.2 and 4.4], the solvable Lie groups corresponding
to each solvable Lie algebra admitting closed tamed SL(3,C)-structures admit compact
quotients by lattices (for further details see [15, 44, 126, 131]).

2. Let g be a real 6-dimensional Lie algebra endowed with a closed SL(3,C)-structure ρ
tamed by a symplectic 2-form Ω. Then, the 3-form

ϕ = ρ+ Ω ∧ dt

defines a closed G2-structure on g ⊕ R. Therefore, as an application of Theorem 2.28,
we classify decomposable solvable Lie algebras of the form g ⊕ R admitting a closed
G2-structure. In particular, in the nilpotent case, this result was already obtained in
[27].



Chapter 3

Closed G2-structures

In this chapter, we characterize the structure of a 7-dimensional Lie algebra with non-
trivial center endowed with a closed G2-structure. Using this result, we classify all unimodular
Lie algebras with non-trivial center admitting closed G2-structures, up to isomorphism, and
we show that six of them arise as the contactization of a symplectic Lie algebra. The main
contents and results of this chapter were published in [58].

3.1 Central extensions and contactizations

In this section, we review the general construction of central extensions and contactizations
of a given Lie algebra. Let h be a real Lie algebra of dimension n ≥ 2 and denote by [·, ·]h
its Lie bracket. Consider a 2-form ω0 ∈ Λ2h∗ that is closed with respect to the Chevalley-
Eilenberg differential dh of h.

Definition 3.1. The central extension of (h, ω0) is the n+ 1-dimensional real Lie algebra

g := h⊕ Rz,

endowed with the Lie bracket

[z, h] = 0, [x, y] = −ω0(x, y)z + [x, y]h, x, y ∈ h. (3.1)

It is clear from this definition that the vector z belongs to the center of g. More precisely,
the center of g is given by

z(g) = (z(h) ∩ Rad(ω0))⊕ Rz,

where Rad(ω0) := {x ∈ h | ω0(x, y) = 0, y ∈ h}.

Remark 3.2. The central extension of (h, ω0) only depends on the cohomology class [ω0] ∈
H2(h). Indeed, different representatives of [ω0] give rise to isomorphic central extensions.

In the following, we shall denote by θ ∈ g∗ the dual of z with respect to the complement
h, namely θ(z) = 1, θ|h = 0. Let d denote the Chevalley-Eilenberg differential of g. Then,
dθ defines an exact 2-form on g that coincides with ω0 on h and satisfies ιzdθ = 0. Thus, we
can write dθ = ω0 on g by extending ω0 to g via the condition ιzω0 = 0. When ω0 is zero,

43



44 CHAPTER 3. CLOSED G2-STRUCTURES

the Lie algebra g is simply the direct sum of h and the abelian Lie algebra R. When (h, ω0)
is a symplectic Lie algebra of dimension 2n, the previous construction gives rise to a contact
Lie algebra (g, θ) of dimension 2n + 1 with center z(g) = Rz. Indeed, θ ∈ g∗ satisfies the
condition (dθ)n ∧ θ 6= 0 and so it is a contact form on g (see [1]). Moreover, Rad(ω0) = {0},
whence z(g) = Rz. Notice that z is the Reeb vector of the contact structure θ, as θ(z) = 1.
This motivates the following.

Definition 3.3. The contact Lie algebra (g, θ) obtained from the symplectic Lie algebra
(h, ω0) via the construction described above is called the contactization of (h, ω0).

It is easy to characterize contact Lie algebras arising as the contactization of a symplectic
Lie algebra, as the next result shows (see also [34]).

Proposition 3.4. A contact Lie algebra (g, θ) is the contactization of a symplectic Lie algebra
(h, ω0) if and only if the center z(g) of g is not trivial.

Proof. If (g, θ) is the contactization of a symplectic Lie algebra (h, ω0), then the assertion is
true. Conversely, let us assume that (g, θ) is a contact Lie algebra of dimension 2n+ 1 with
non-trivial center. Then, z(g) is 1-dimensional and it is spanned by the Reeb vector z of the
contact structure θ (cf. [6, Proposition 1]). Consequently, we can consider the decomposition
g = h⊕Rz, where the 2n-dimensional subspace h := ker θ is a Lie algebra with respect to the
bracket

[x, y]h := [x, y]− θ ([x, y]) z, x, y ∈ h.

Let ω0 be the 2-form on h defined as ω0(x, y) = dθ(x, y), for all x, y ∈ h. A direct computation
shows that ω0 is closed with respect to the Chevalley-Eilenberg differential dh of h. Moreover,
ω0 is non-degenerate. Indeed, (dθ)n ∧ θ is a volume form on g and contracting it with z gives
(dθ)n 6= 0, as θ(z) = 1 and ιzdθ = −θ([z, ·]) = 0. Therefore, (g, θ) is the contactization of the
symplectic Lie algebra (h, ω0).

3.2 Closed G2-structures on central extensions and contactiza-
tions

In this section, we investigate the structure of a 7-dimensional Lie algebra g with non-
trivial center endowed with a closed G2-structure. From the previous section, g is the central
extension of a 6-dimensional Lie algebra h endowed with a closed 2-form ω0. As a special
case of this, when ω3

0 6= 0, g admits both a closed G2-structure ϕ and a contact structure θ.
More generally, every 7-manifold admitting G2-structures is spin, therefore it also admits

almost contact structures. The interplay between these structures and the existence of contact
structures on 7-manifolds endowed with special types of G2-structures have been recently
investigated in [8, 32]. Moreover, it is possible to construct examples of compact 7-manifolds
with both a G2-structure and a contact structure as follows. In [17], Boothby and Wang
showed that an even-dimensional compact manifold M endowed with a symplectic form ω0

with integral periods is the base of a principal S1-bundle π : N !M having a connection 1-
form θ that defines a contact structure on N and satisfies the structure equation dθ = π∗ω0.
If M is 6-dimensional and it also admits a definite 3-form ρ and a non-degenerate 2-form
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ω̃ which is taming for the almost complex structure J induced by ρ and one of the two
orientations of M, then the total space N has a natural G2-structure defined by the 3-form
ϕ = π∗ω̃ ∧ θ + π∗ρ. A special case of this construction occurs when the pair (ω̃, ρ) defines
an SU(3)-structure on M . On the other hand, a G2-structure which is invariant under a
free S1-action on a 7-manifold N induces an SU(3)-structure on the orbit space N/S1 (see
[7]). Furthermore, the G2-structure ϕ = π∗ω̃ ∧ θ + π∗ρ on the total space of the S1-bundle
π : N !M is closed whenever the 2-form ω̃ on M is symplectic and ρ satisfies the condition
dρ = −ω0 ∧ ω̃.

Going back to the Lie algebra setting, we can state the next results, which are reminiscent
of the construction described above. We begin with the following.

Proposition 3.5. Let h be a 6-dimensional Lie algebra and let ω0 be a closed 2-form on it.
Assume that h admits a definite 3-form ρ and a symplectic form ω̃ such that

a) ω̃ is a taming form for the almost complex structure Jρ on h induced by ρ and one of
the two orientations of h,

b) dρ = −ω̃ ∧ ω0.

Then, the 7-dimensional Lie algebra g := h ⊕ Rz obtained as the central extension of (h, ω0)
is endowed with a closed G2-structure defined by the 3-form

ϕ = ω̃ ∧ θ + ρ.

Proof. The hypothesis on ρ and ω̃ guarantee that the 3-form ϕ = ω̃ ∧ θ + ρ defines a G2-
structure on g = h⊕ Rz. Moreover, since ω̃ is closed and ω0 = dθ, we have

dϕ = dω̃ ∧ θ + ω̃ ∧ dθ + dρ = ω̃ ∧ ω0 + dρ = 0.

Corollary 3.6. Let h be a 6-dimensional Lie algebra. Assume that h admits a definite 3-form
ρ and a symplectic form ω̃ such that

a) ω̃ is a taming form for the almost complex structure Jρ on h induced by ρ and one of
the two orientations of h,

b) dρ = 0.

Then, the Lie algebra direct sum g := h⊕R is endowed with a closed G2-structure defined by
the 3-form

ϕ = ω̃ ∧ θ + ρ.

Proof. It follows from Proposition 3.5 with ω0 = 0.

The next result is a converse of Proposition 3.5.

Proposition 3.7. Let g be a 7-dimensional Lie algebra endowed with a closed G2-structure
ϕ. Assume that the center of g is not trivial, consider a non-zero vector z ∈ z(g) and let
θ ∈ g∗ be such that θ(z) = 1. Then, g is the central extension of a 6-dimensional Lie algebra
(h, ω0), and the closed G2-structure can be written as ϕ = ω̃ ∧ θ + ρ, where ρ is a definite
3-form on h, ω̃ is a taming symplectic form for Jρ and dρ = −ω̃ ∧ ω0.
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Proof. Consider the 6-dimensional subspace h := ker θ of g. Then, h is a Lie algebra with
respect to the bracket

[x, y]h := [x, y]− θ ([x, y]) z, x, y ∈ h, (3.2)

and the 2-form ω0 := dθ|h×h on h is closed with respect to the Chevalley-Eilenberg differential
of (h, [·, ·]h). In particular, g = h ⊕ Rz is the central extension of (h, ω0). Since Λ3g∗ =
(Λ2h∗ ⊗ Rθ)⊕ Λ3h∗, there exist some ω̃ ∈ Λ2h∗, ρ ∈ Λ3h∗ such that ϕ = ω̃ ∧ θ + ρ. Clearly,
ρ is a definite 3-form on h and ω̃ = ιzϕ is a non-degenerate 2-form taming Jρ. Moreover, ω̃
is symplectic. Indeed,

0 = Lzϕ = d(ιzϕ) = dω̃,

as z ∈ z(g). Finally, we have

0 = dϕ = ω̃ ∧ dθ + dρ = ω̃ ∧ ω0 + dρ,

where the last identity follows from ιzdθ = 0.

Corollary 3.8. Let g be a 7-dimensional Lie algebra endowed with a closed G2-structure ϕ.
If g := h⊕R as Lie algebras direct sum, then the G2-structure can be written as ϕ = ω̃∧θ+ρ,
where ω̃ ∈ Λ2h∗ is a symplectic 2-form and ρ ∈ Λ3h∗ is a closed SL(3,C)-structure tamed by
ω̃.

Proof. It follows from Proposition 3.7 with ω0 = 0.

Remark 3.9. 1) It follows from [55] that every 7-dimensional unimodular Lie algebra
with non-trivial center admitting closed G2-structures is necessarily solvable. On the
other hand, there exist unimodular solvable centerless Lie algebras admitting closed
G2-structures, see e.g. [97, Example 4.7].

2) Every vector z ∈ z(g) satisfies Lzϕ = 0. More generally, if x ∈ g satisfies Lxϕ = 0, then
Lxgϕ = 0, whence it follows that adx ∈ Der(g) is skew-symmetric. Consequently, if the
Lie algebra g is completely solvable, namely the spectrum of adv is real for all v ∈ g,
then every vector x satisfying Lxϕ = 0 must belong to the center of g.

The following result is a consequence of Proposition 3.7.

Corollary 3.10. Let g be a 7-dimensional nilpotent Lie algebra endowed with a closed G2-
structure ϕ. Then g is the central extension of a 6-dimensional nilpotent Lie algebra h admit-
ting symplectic structures. Moreover, g is the contactization of a 6-dimensional symplectic
nilpotent Lie algebra (h, ω0) if and only if g is isomorphic to one of the following:

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25),

n10 = (0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23),

n11 = (0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26),

n12 = (0, 0, 0, e12, e23,−e13, 2e26 − 2e34 − 2e16 + 2e25).
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Proof. Since a nilpotent Lie algebra has non-trivial center, the first assertion immediately
follows from Proposition 3.7. By the classification result of [27], a 7-dimensional nilpotent
Lie algebra admitting closed G2-structures is isomorphic to one of the following:

n1 = (0, 0, 0, 0, 0, 0, 0),

n2 = (0, 0, 0, 0, e12, e13, 0),

n3 = (0, 0, 0, e12, e13, e23, 0),

n4 = (0, 0, e12, 0, 0, e13 + e24, e15),

n5 = (0, 0, e12, 0, 0, e13, e14 + e25),

n6 = (0, 0, 0, e12, e13, e14, e15),

n7 = (0, 0, 0, e12, e13, e14 + e23, e15),

n8 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34),

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25),

n10 = (0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23),

n11 = (0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26),

n12 = (0, 0, 0, e12, e23,−e13, 2e26 − 2e34 − 2e16 + 2e25).

By [92, Theorem 4.2], a decomposable nilpotent Lie algebra cannot admit any contact
structures. Consequently, the Lie algebras n1, n2 and n3 cannot be the contactization of
any symplectic Lie algebra. 7-dimensional indecomposable nilpotent Lie algebras admitting
contact structures have been classified in [92]. Comparing this classification with the one
above, we see that g must be isomorphic to one among n9, n10, n11, n12. For each of these
Lie algebras, z(ni) = Re7 and the 2-form de7 induces a symplectic form on the 6-dimensional
nilpotent Lie algebra hi := ker e7 with Lie bracket defined as in (3.2).

Let us now consider a 7-dimensional Lie algebra g with non-trivial center endowed with a
closed G2-structure ϕ. Then, from the previous discussion we can assume that g = h⊕Rz is
the central extension of a 6-dimensional Lie algebra (h, ω0 := dθ|h×h), and that ϕ = ω̃∧ θ+ρ,
with dρ = −ω̃ ∧ ω0 and dω̃ = 0. From Section 1.5, we also know that h admits an SU(3)-
structure (ω, ψ+) such that ϕ = uω∧η+ψ+, with u := |z|ϕ and η := u−2z[ = ηh +θ, for some
ηh ∈ h∗. In particular, h is the gϕ-orthogonal complement of Rz in g if and only if ηh = 0. It
is worth observing that this setting generalizes the one considered in [56, Section 6.1], which
corresponds to the case where both ηh and ω0 vanish, i.e., to the direct sum of Lie algebras
g = h⊕ R endowed with a closed G2-structure inducing the product metric.

We now investigate the properties of the SU(3)-structure (ω, ψ+) on h. Since uω = ω̃, we
immediately see that dω = 0 holds. Consequently, by (1.12), we have

dψ+ = w+

2 ∧ ω + w1 ∧ ψ+,

dψ− = w−2 ∧ ω + Jw1 ∧ ψ+,
(3.3)

for some unique w1 ∈ h∗ and w±2 ∈ Λ2
8h
∗.
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Lemma 3.11. The 2-form dη ∈ Λ2h∗ has no component in Λ2
1h
∗ = Rω, that is, dη ∧ω2 = 0.

Moreover, the intrinsic torsion forms w−2 and w1 are related to the components (dη)k of dη
in Λ2

kh
∗, k = 6, 8, as follows:

u (dη)6 = − ∗g (w1 ∧ ψ+),

u (dη)8 = −w+

2 .

In particular, w1 = u
2 ∗g (ψ+ ∧ dη).

Proof. The condition dϕ = 0 is equivalent to dψ+ = −uω ∧ dη. Since ω is symplectic and we
have ω∧ψ+ = 0, we get dη∧ω2 = 0. Now, according to the SU(3)-irreducible decomposition
Λ2h∗ = Λ2

1h
∗ ⊕ Λ2

6h
∗ ⊕ Λ2

8h
∗, this implies (dη)1 = 0 and we thus have dη = (dη)6 + (dη)8,

with (dη)6 ∧ ω = ∗g(dη)6 and (dη)8 ∧ ω = − ∗g (dη)8, see (1.12). Therefore,

dψ+ = −uω ∧ dη = −u ∗g (dη)6 + u ∗g (dη)8.

Comparing this expression with the one in (3.3), we obtain the identities relating (dη)6 and
(dη)8 with w1 and w+

2 , respectively. Finally, to obtain the expression of w1, it is sufficient to
notice that

u dη ∧ ψ+ = u (dη)6 ∧ ψ+ = − ∗g (w1 ∧ ψ+) ∧ ψ+ = −2 ∗g w1,

where the last identity follows from Lemma 1.54.

The 2-form dη belongs to Λ2
6h
∗ ⊕ Λ2

8h
∗, hence it satisfies the following condition (see [10,

Remark 2.7]):
dη ∧ ω = −J ∗g dη. (3.4)

In the next lemma, we describe the intrinsic torsion form τ of the closed G2-structure
ϕ = uω ∧ η + ψ+ on g in terms of the intrinsic torsion forms of the SU(3)-structure (ω, ψ+)
on h.

Lemma 3.12. The intrinsic torsion form τ ∈ Λ2
14g
∗ of the closed G2-structure ϕ = uω∧η+

ψ+ is given by
τ = w−2 − ∗g (Jw1 ∧ ψ+)− 2uJw1 ∧ η,

while its Hodge dual is

∗ϕτ = u ∗g w−2 ∧ η − uJw1 ∧ ψ+ ∧ η + 2 ∗g Jw1.

Consequently, |τ |2ϕ = |w−2 |2g + 6|w1|2g.

Proof. Recall τ = − ∗ϕ d ∗ϕ ϕ, with ∗ϕϕ = 1
2 ω

2 + uψ− ∧ η. We first compute

d ∗ϕ ϕ = u dψ− ∧ η − uψ− ∧ dη = u dψ− ∧ η − uψ− ∧ (dη)6

= u dψ− ∧ η − 2 ∗g Jw1,

where we used (dη)8 ∧ ψ− = 0, Lemma 3.11 and the identity ∗g(w1 ∧ ψ+) ∧ ψ− = −2 ∗g Jw1.
Using now the relation between the Hodge operators ∗ϕ and ∗g together with the identity

dψ− = − ∗g w−2 + Jw1 ∧ ψ+, we obtain

τ = − ∗ϕ d ∗ϕ ϕ = − ∗g dψ− − 2uJw1 ∧ η = w−2 − ∗g (Jw1 ∧ ψ+)− 2uJw1 ∧ η.
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From this expression and the relation between ∗ϕ and ∗g, one can easily compute ∗ϕτ . To
obtain the norm of τ , it is then sufficient to use the identity τ ∧ ∗ϕτ = |τ |2ϕVolgϕ and the
identity (4) of Lemma 1.54.

We now examine an example of closed G2-structure on the nilpotent Lie algebra n9 in the
light of Propositions 3.5 and 3.7.

Example 3.13. Consider the 6-dimensional nilpotent Lie algebra h with structure equations

(0, 0, e12, e13, e23, e15 + e24).

The following 2-forms are symplectic forms on h:

ω0 = e16 + e25 + e34, ω̃ = −e12 − e14 − e35 + e26.

Let g = h ⊕ Re7 be the contactization of (h, ω0) with contact form θ = e7 and Reeb vector
z = e7. Then, g has structure equations

(0, 0, e12, e13, e23, e15 + e24, e16 + e25 + e34)

and so it coincides with the Lie algebra n9 described in the proof of Corollary 3.10. It is easy
to check that ω̃ ∧ ω0 = −dρ holds, where

ρ = e124 − e125 − e136 − e234 − e345 + e456

is a definite 3-form on h. The almost complex structure J induced by (ρ, e123456) on h is given
by

Je1 = −e4 − e5, Je2 = e6, Je3 = e2 − e5, Je4 = e1 − e3 − e6, Je5 = e3 + e6, Je6 = −e2.

The 2-form ω̃ is a taming form for J, as for every non-zero vector ξ = ξkek ∈ g we have

ω̃(ξ, Jξ) =
6∑

k=1

(ξk)2 + ξ1ξ6 + ξ2ξ5 − ξ3ξ6 − ξ4ξ5 > 0.

Therefore, ϕ = ω̃ ∧ e7 + ρ defines a closed G2-structure on g. The metric induced by ϕ has
the following expression:

gϕ = 2
1
3

[
7∑
i=1

ei � ei + (e1 � e6 + e2 � e5 − e3 � e6 − e4 � e5) + (e2 − e4 + e5)� e7

]
,

where ei � ek := 1
2

(
ei ⊗ ek + ek ⊗ ei

)
.

On the other hand, we can start with the Lie algebra g endowed with the closed G2-
structure ϕ and consider the SU(3)-structure induced by it on the gϕ-orthogonal complement
u of the 1-dimensional subspace generated by e7 ∈ z(g). We have u = |e7|ϕ = 2

1
6 and

η = u−2 (e7)[ =
1

2

(
e2 − e4 + e5

)
+ e7.
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The closed G2-structure ϕ can be written as ϕ = uω ∧ η + ψ+, where the pair

ω = u−1 ω̃ = 2−
1
6
(
−e12 − e14 − e35 + e26

)
,

ψ+ = −1

2
e125 − e136 +

1

2
e145 − e234 − 1

2
e246 +

1

2
e256 − 1

2
e345 +

1

2
e235 + e456

defines an SU(3)-structure on the vector subspace u ⊂ g. Notice also that h := ker θ is a
Lie algebra with respect to the bracket (3.2) and that it is endowed with an SU(3)-structure
(ω, ψ+) whose expression with respect to the basis (e1, . . . , e6) of h∗ is the same as the one
appearing above (cf. Remark 1.53). The metric induced by (ω, ψ+) on h is

g = 2
1
3
(
e1 � e1 + e3 � e3 + e6 � e6

)
+

3

4
2

1
3
(
e2 � e2 + e4 � e4 + e5 � e5

)
+ 2

1
3

[
e1 � e6 − e3 � e6 +

1

2

(
e2 � e4 + e2 � e5 − e4 � e5

)]
and we have gϕ = g + u2 η ⊗ η.

The results of Proposition 3.5 are also useful to produce examples of 7-dimensional solvable
non-nilpotent Lie algebras admitting closed G2-structures, as the next example shows.

Example 3.14. On the 6-dimensional unimodular solvable non-nilpotent Lie algebra g0,0
6,70

with structure equations (
−e26 + e35, e16 + e45,−e46, e36, 0, 0

)
,

consider the closed 2-forms

ω0 = 2e34, ω̃ = −e13 − e24 − e56

and the definite 3-form
ρ = e125 − e146 + e236 − e345.

Then, we have dρ = −ω̃ ∧ ω0 and that the almost complex structure J induced by the pair
(ρ, e123456) is given by

Je1 = −e3, Je2 = −e4, Je3 = e1, Je4 = e2, Je5 = −e6, Je6 = e5.

In particular, ω̃ is a taming form for J , as for every non-zero vector ξ = ξkek ∈ g0,0
6,70 we have

ω̃(ξ, Jξ) =
6∑

k=1

(ξk)2 > 0.

The pair (ω̃, ρ) defines an SU(3)-structure on g0,0
6,70, since ω̃ ∧ ρ = 0 and 3ρ∧ Jρρ = 2ω̃3. The

central extension of (g0,0
6,70, ω0) is given by

g = (−e26 + e35, e16 + e45,−e46, e36, 0, 0, 2e34)

and it is isomorphic to the Lie algebra s9 of Theorem 3.15 below. By Proposition 3.5, we
know that the 3-form ϕ = ω̃ ∧ e7 + ρ defines a closed G2-structure on g. Notice that the
1-form e7 does not define a contact structure on g, as the closed 2-form ω0 is degenerate.
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More generally, one can consider the list of all 6-dimensional unimodular solvable non-
nilpotent Lie algebras admitting symplectic structures (see [103]) and determine which of
them admit a structure (ω0, ω̃, ρ) satisfying the hypothesis of Proposition 3.5. This allows
one to obtain further examples of solvable non-nilpotent Lie algebras admitting closed G2-
structures.

3.3 A classification result

In this section, we classify all 7-dimensional unimodular Lie algebras with non-trivial
center admitting closed G2-structures, up to isomorphism. Every such Lie algebra must be
solvable by the results of [55]. If it is nilpotent, then it is isomorphic to one of the Lie algebras
n1, . . . , n12, by [27]. To complete the classification, we have to determine which unimodular
solvable non-nilpotent Lie algebras with non-trivial center admit closed G2-structures. We
can state the following result.

Theorem 3.15. Let g be a 7-dimensional unimodular solvable non-nilpotent Lie algebra with
non-trivial center. Then, g admits closed G2-structures if and only if it is isomorphic to one
of the following:

s1 = (e23,−e36, e26, e26 − e56, e36 + e46, 0, 0),

s2 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0, 0),

s3 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0, 0),

s4 = (0,−e13,−e12, 0,−e46,−e45, 0),

s5 = (e15,−e25,−e35, e45, 0, 0, 0),

s6 = (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0, 0), α > 0,

s7 = (e25,−e15, e45,−e35, 0, 0, 0),

s8 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0, e34),

s9 = (−e26 + e35, e16 + e45,−e46, e36, 0, 0, e34),

s10 =
(
e23,−e36, e26, e26 − e56, e36 + e46, 0, 2 e16 + e25 − e34 +

√
3 e24 +

√
3 e35

)
,

s11 =
(
e23,−e36, e26, e26 − e56, e36 + e46, 0, 2 e16 + e25 − e34 −

√
3 e24 −

√
3 e35

)
.

In particular, g is the contactization of a symplectic Lie algebra if and only if it is isomorphic
either to s10 or to s11.

Proof. Since the central extension of a nilpotent Lie algebra is nilpotent, by Proposition 3.7
we can assume that g is the central extension of a 6-dimensional unimodular solvable non-
nilpotent Lie algebra (h, ω0) admitting symplectic structures. Recall that g is determined by
any representative in the cohomology class [ω0] ∈ H2(h), up to isomorphism. Moreover, h is
isomorphic to one of the Lie algebras listed in Table 6.2 (cf. [47, 103]).

If ω0 = 0, then g is the direct sum of h and the abelian Lie algebra R. As a consequence
of Theorem 2.28, g admits closed G2-structures if and only if h admits symplectic half-flat
SU(3)-structures. Therefore, by [47, Theorem 1.1], g must be isomorphic to one of the Lie
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algebras s1
∼= g0

6,38 ⊕ R, s2
∼= g0,−1

6,54 ⊕ R, s3
∼= g0,−1,−1

6,118 ⊕ R, s4
∼= e(1, 1) ⊕ e(1, 1) ⊕ R,

s5
∼= A−1,−1,1

5,7 ⊕ R2, s6
∼= Aα,−α,15,17 ⊕ R2, s7

∼= A0,0,1
5,17 ⊕ R2.

We can then focus on the case where ω0 6= 0 and h is one of the Lie algebras appearing in
Table 6.2. To determine those having a central extension admitting closed G2-structure, we
proceed as follows. First, we compute a basis of the second cohomology group H2(h) using
the structure equations given in Table 6.2. Then, we consider a non-zero representative ω0

of the generic element in H2(h), and we look for closed non-degenerate 2-forms ω̃ ∈ Λ2h∗

such that ω̃ ∧ ω0 is exact (cf. Proposition 3.7). A computation shows that there are no exact
4-forms of this type when h is a decomposable Lie algebra not isomorphic to A−1

5,15 ⊕ R or
to A0

5,18 ⊕ R. Let us prove this claim, for instance, for the first decomposable Lie algebra

appearing in Table 6.2, namely g
−1, 1

2
,0

6,13 . A basis for its second cohomology group is given by(
[e13], [e24], [e56]

)
,

and we can consider the non-zero representative

ω0 = f1 e
13 + f2 e

24 + f3 e
56,

where f1, f2, f3 ∈ R satisfy f2
1 + f2

2 + f2
3 6= 0. The generic closed non-degenerate 2-form ω̃ on

g
−1, 1

2
,0

6,13 has the following expression:

ω̃ = h1 e
13 + h2

(
e23 − 1

2
e16

)
+ h3 e

24 + h4 e
26 + h5 e

36 + h6 e
46 + h7 e

56,

for some hi ∈ R such that h1 h3 h7 6= 0. Now, we compute

ω̃ ∧ ω0 =− (f1h3 + f2h1) e1234 − f1h4 e
1236 + f1h6 e

1346 + (f1h7 + f3h1) e1356

− 1

2
f2h2 e

1246 − f2h5 e
2346 + (f2h7 + f3h3) e2456 + f3h2 e

2356,

and we see that this 4-form is exact only if the coefficients of e1234, e1356 and e2456 vanish,
namely 

f1 h3 + f2 h1 = 0,

f1 h7 + f3 h1 = 0,

f2 h7 + f3 h3 = 0.

This is a homogeneous linear system in the variables fi’s whose unique solution under the
constraint h1 h3 h7 6= 0 is f1 = f2 = f3 = 0. Thus, ω̃∧ω0 cannot be exact if ω0 6= 0. A similar
discussion leads us to ruling out all of the decomposable Lie algebras listed in Table 6.2 with
the exception of A−1

5,15 ⊕ R and A0
5,18 ⊕ R. In the remaining two cases, h is the direct sum of

a 5-dimensional ideal k and R. A computation shows that there exist pairs (ω̃, ω0) satisfying
the required conditions only when ω0 ∈ Λ2k∗. In detail, if h ∼= A−1

5,15 ⊕ R, then the possible
2-forms are given by

ω̃ = h1 (e14 − e23) + h2 e
15 + h3 e

24 + h4 e
25 + h5 e

35 + h6 e
45 + h7 e

56, ω0 = a e24,
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where a, hi ∈ R and a h1 h7 6= 0. If h ∼= A0
5,18 ⊕ R, then the possible 2-forms are given by

ω̃ = k1 (e13 + e24) + k2 e
15 + k3 e

25 + k4 e
34 + k5 e

35 + k6 e
45 + k7 e

56, ω0 = b e34,

where b, ki ∈ R and b k1 k7 6= 0. Since, in both cases, h = k ⊕ R and ω0 ∈ Λ2k∗, all possible
central extensions of (h, ω0) split as the Lie algebra direct sum of a 6-dimensional ideal and R.
If such an extension admits closed G2-structures, then it must be isomorphic to one among
s1, . . . , s7.

We are then left with the indecomposable Lie algebras appearing in Table 6.2. Also in this
case, with analogous computations as before, one can check that there are no pairs (ω̃, ω0)
satisfying the required conditions when h is an indecomposable Lie algebra not isomorphic
to one among g0

6,38, g
0,−1
6,54 , g

0,0
6,70. In the remaining three cases, we claim that h has a central

extension admitting closed G2-structures.
If h ∼= g0

6,38, then there exist closed non-degenerate 2-forms ω̃ such that ω̃ ∧ ω0 is exact
if and only if either ω0 = a

(
2 e16 + e25 − e34 +

√
3 e24 +

√
3 e35

)
, for some a 6= 0, or ω0 =

b
(
2 e16 + e25 − e34 −

√
3 e24 −

√
3 e35

)
, for some b 6= 0. These forms are not cohomologous,

so they give rise to non-isomorphic central extensions of h. In the former case, the central
extension of (h, ω0) is isomorphic to s10 and admits closed G2-structures. An example is given
by

ϕ = e123 − 4 e145 + 2 e167 −
√

3 e247 + e256 + e257 − e346 − e347 −
√

3 e357.

In the latter case, the central extension of (h, ω0) is isomorphic to s11 and admits closed
G2-structures. An example is given by

ϕ = e123 − 4 e145 + 2 e167 +
√

3 e247 − e256 + e257 + e346 − e347 +
√

3 e357.

Both s10 and s11 are contactizations, since the 2-form ω0 is non-degenerate.
If h ∼= g0,−1

6,54 , then ω0 = a e34, for some a 6= 0. The central extension of (h, ω0) is isomorphic
to s8 and it admits closed G2-structures. An example is given by

ϕ = e147 + e237 + e567 + e125 − e136 +
1

2
(e146 − e236) +

5

4
e246 + e345.

If h ∼= g0,0
6,70, then ω0 = a e34, for some a 6= 0. The central extension of (h, ω0) is isomorphic

to s9 and admits closed G2-structures. An example is given by

ϕ = e137 + e247 + 2 e567 − e125 + e146 − e236 + e345,

see also Example 3.14.
To conclude the proof, we first observe that the Lie algebras s8 and s9 cannot be the

contactization of a symplectic Lie algebra. Indeed, in both cases ω0 is a closed degenerate 2-
form on the unimodular Lie algebra h, thus every representative of [ω0] ∈ H2(h) is a degenerate
2-form. Finally, a direct computation shows that the remaining Lie algebras s1, . . . , s7 do not
admit any contact structures.

Remark 3.16. Notice that there are some misprints in [103] that have been corrected in
Table 6.2, see also the appendix in [47].
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Corollary 3.17. A 7-dimensional Lie algebra with non-trivial center admitting torsion-free
G2-structures is either abelian or isomorphic to s7.

Proof. Let g be a 7-dimensional Lie algebra with non-trivial center endowed with a torsion-
free G2-structure ϕ. Then, the metric gϕ induced by ϕ is Ricci-flat and thus flat by [2].
Consequently, the results of [107] imply that either g is abelian, or g splits as a gϕ-orthogonal
direct sum g = b ⊕ a, where b is an abelian subalgebra, a is an abelian ideal and the
endomorphism adx is skew-adjoint for every x ∈ b. In the latter case, g is a unimodular 2-step
solvable Lie algebra and the eigenvalues of adx are purely imaginary for every x ∈ g (cf. [72,
Section 2.8]). Among the Lie algebras obtained in Theorem 3.15, the 2-step solvable ones are
s2, s3, s4, s5, s6 and s7. The first four Lie algebras in this list do not admit flat metrics, as the
following endomorphisms have real spectrum: ade6 ∈ Der(s2), ade6 ∈ Der(s3), ade1 ∈ Der(s4),
ade5 ∈ Der(s5). Also the Lie algebra s6 can be ruled out, since ade5 has complex eigenvalues
that are not purely imaginary. Finally, the Lie algebra s7 admits torsion-free G2-structures.
An example is given by the G2-structure

ϕ = e137 + e247 + e567 + e125 − e146 + e236 − e345,

which induces the metric gϕ =
∑7

i=1 e
i � ei.

Remark 3.18. The simply connected solvable Lie groups whose Lie algebra is one among
s1, s2, s3, s4, s5, s7 admit lattices, and this is the case also for the family of Lie algebras
s6
∼= Aα,−α,15,17 ⊕R2, for certain values of the parameter α > 0 (see e.g. [47] and the references

therein). We now show that the simply connected Lie groups with Lie algebra s8 or s9 admit
lattices, too. Indeed, since they are both almost nilpotent, it is possible to construct a lattice
using the following criterion.

Proposition 3.19. [15] Let G = R nµ H be an almost nilpotent Lie group with nilradical
H and let g = R nD h be its Lie algebra, where h := Lie(H) and D ∈ Der(h) is such that
dµ(t)|1G = exp(tD). If there exists t0 ∈ R − {0} and a rational basis (x1, . . . , xn) of h
such that the coordinate matrix of exp(t0D) in such a basis is integral, then Γ := t0Z nµ

exp(Z〈x1, . . . , xn〉) is a lattice in G.

Let us consider the Lie algebra s9 with the basis (e1, . . . , e7) as in Theorem 3.15. We
can write s9 = R nD h, where h = 〈e1, . . . , e5, e7〉 is a nilpotent Lie algebra with structure
equations

(e35, e45, 0, 0, 0, e34), (3.5)

and

D = ade6 |h =



0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

For t0 = 2π, this basis satisfies Proposition 3.19 guaranteeing the existence of a lattice in the
simply connected Lie group corresponding to s9.
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Let us now focus on the Lie algebra s8 with the basis (e1, . . . , e7) as in Theorem 3.15.
We note that s8 = R nD h, where the structure equations of the nilpotent Lie algebra h =
〈e1, . . . , e5, e7〉 are those given in (3.5) and D = ade6 |h = diag(1,−1, 1,−1, 0, 0). Let t0 =

ln
(

3+
√

5
2

)
. We note that exp(t0D) = E−1BE, where

B =



3 0 −1 0 0 0
0 3 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , E =



2
3−
√

5
2

3+
√

5
0 0 0 0

0 0 2
3−
√

5
2

3+
√

5
0 0

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

0 0 0 0 0
√

5


.

Thus, the integer matrix B is the matrix associated with exp(t0D) with respect to a suitable
basis (f1, . . . , f5, f7) of h. Moreover, h has rational structure equations

(f25, 0, f45, 0, 0, f24)

in such a basis. The existence of a lattice in the simply connected solvable Lie group with
Lie algebra s8 then follows.





Chapter 4

Laplacian solitons

We study the existence of self-similar solutions of the G2-Laplacian flow on the Lie algebras
from our previous classification. In particular, we prove that every semi-algebraic Laplacian
soliton on a unimodular solvable Lie algebra with 1-dimensional center must be expanding
and we determine all unimodular Lie algebras with center of dimension at least two that
admit semi-algebraic Laplacian solitons, up to isomorphism. The main results of this chapter
were published in [58].

4.1 The G2-Laplacian flow

In [19], Bryant introduced a geometric flow for closed G2-structures. LetN be a 7-manifold
endowed with a closed G2-structure ϕ0.

Definition 4.1. The G2-Laplacian flow starting from ϕ0 is the initial value problem
∂

∂t
ϕ(t) = ∆ϕ(t)ϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ0,

(4.1)

where ∆ϕ = d ◦ d∗ϕ + d∗ϕ ◦ d is the Hodge Laplacian with respect to the metric gϕ and
d∗ϕ = − ∗ϕ ◦ d ◦ ∗ϕ is the codifferential of d induced by ϕ.

The solution to (4.1) is a one-parameter family of G2-structures ϕ(t) which preserves the
closure of the initial data, i.e.,

dϕ(t) = 0, t ∈ I,

where I is the maximal definition interval of the solution. Assume N is compact. Since ϕ(t)
evolves in the same cohomology class of the initial data ϕ0, we can write

ϕ(t) = ϕ0 + dη(t),

for some time-dependent 2-form η(t). Using this, Hitchin showed that the G2-Laplacian
flow is the gradient flow of a volume functional [82]. Let [ϕ0]+ be the open subset of G2-
structures in the cohomology class [ϕ0] = {ϕ0 +dβ |β ∈ Λ2(N)} of ϕ0. The volume functional

57
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H : [ϕ0]+ ! R>0 is defined by

H(ϕ) =
1

7

∫
N
ϕ ∧ ∗ϕϕ =

∫
N
∗ϕ1.

Consider its restriction

H̃ : {η ∈ Λ2(N) |ϕ0 + dη ∈ [ϕ0]+}! R>0

η 7! H(ϕ0 + dη).

Its gradient ∇H̃ is a vector field defined on an open subset of Λ2(N) satisfying

∂

∂t
H̃(η(t)) = dH̃(η′(t)) =

〈
η′(t),∇H̃

〉
.

On the other hand, one can show that

∂

∂t
H̃(η(t)) =

〈
η′(t), d∗ϕ(t)ϕ(t)

〉
.

Therefore,
∇H̃ = d∗ϕ(t)ϕ(t). (4.2)

If we consider the gradient flow of H̃,

∂

∂t
η(t) = ∇H̃,

from the previous discussion we have

∂

∂t
η(t) = ∇H̃ = d∗ϕ(t)ϕ(t)

= d∗ϕ(t)(ϕ0 + dη(t)).

Therefore,

∂

∂t
ϕ(t) =

∂

∂t
(ϕ0 + dη(t)) = dη′(t)

= dd∗ϕ(t)(ϕ0 + dη(t)) = dd∗ϕ(t)ϕ(t) = ∆ϕ(t)ϕ(t),

which is exactly the G2-Laplacian flow. Thus, along the flow, the volume will increase unless
ϕ(t) is torsion-free. Moreover, by (4.2), ϕ ∈ [ϕ0]+ is a critical point for the volume functional
if and only if d∗ϕϕ = 0, i.e., if ϕ is torsion-free.

Short-time existence of the solutions in the compact case was proved in [22]; in particu-
lar, since the G2-Laplacian flow appears to have the wrong sign for the parabolicity, using
DeTurck’s trick, Bryant and Xu modified the Laplacian flow by a gauge fixing LV (t)ϕ(t) =
dιV (t)ϕ(t) for some vector field V (t), so that the new flow

∂

∂t
ϕ(t) = ∆ϕ(t)ϕ(t) + dιV (t)ϕ(t) (4.3)

was strictly parabolic in the direction of closed forms. Therefore, short-time existence was
proved by applying the Nash Moser inverse function theorem to (4.3).
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Theorem 4.2. [22] Assume that N is compact and ϕ(0) is a closed G2-structure on N . Then,
the Laplacian flow has a unique solution for a short time t ∈ [0, ε) with ε depending on ϕ(0).

The stationary points of the Laplacian flow are the harmonic ϕ, which on compact man-
ifolds are exactly the torsion-free G2-structures, since

∇gϕϕ = 0 ⇐⇒

{
dϕ = 0,

d ∗ϕ ϕ = 0,

where ∇gϕ is the Levi-Civita connection of the metric gϕ induced by ϕ. This is true also
in the non-compact setting, as shown in [101]. We shall review this result in the next sec-
tion. Therefore, the Laplacian flow provides an important tool for studying the existence
of torsion-free G2-structures on 7-manifolds admitting closed G2-structures. Anyway, the
Laplacian flow does not always converge to a torsion-free G2-structure even if it has long-time
existence. Indeed, examples of long-time existence on 7-manifolds not admitting torsion-free
G2-structures are known in literature (see, for instance, [19]). Examples of solutions to the
Laplacian flow which exist for all times and converge to a torsion-free G2-structure can be
found in [45, 56, 86]. In [102], Lotay and Wei proved that torsion-free G2-structures are
(weakly) dynamically stable along the Laplacian flow: this means that, if the initial data ϕ0

is sufficiently close to a given torsion-free G2-structure ϕ̄, then the solution to the flow exists
for all times and converges to a torsion-free G2-structure in the same orbit of ϕ̄.

In the next section, we shall focus on self-similiar solutions of the G2-Laplacian flow, i.e.,
solutions which differ from the initial data ϕ0 just by time-dependent scalings and pullbacks
by diffeomorphisms.

4.2 Laplacian solitons

Let N be a smooth 7-manifold.

Definition 4.3. A closed G2-structure ϕ on N is called a Laplacian soliton if

∆ϕϕ = λϕ+ LXϕ, (4.4)

where λ ∈ R is a constant and X is a complete vector field of N .

Laplacian solitons are initial data to self-similar solutions of the Laplacian flow. More
precisely, consider

α(t) :=

(
1 +

2

3
λt

) 3
2

,

X(t) := α(t)−
2
3X,

and let Φ(t) be the family of diffeomorphisms generated by the vector field X(t) such that
Φ(0) = Id. One obtains that

ϕ(t) := α(t) Φ(t)∗ϕ(0)
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is a solution to the Laplacian flow which differs from the initial data only by a time-dependent
scaling factor α(t) and a pullback by Φ(t). Depending on the sign of λ, we say that a Laplacian
soliton ϕ is expanding if λ > 0, steady if λ = 0, or shrinking if λ < 0.

In recent years, there has been a lot of interest in Laplacian solitons. In [99], Lin proved
that on compact 7-manifolds there are no shrinking Laplacian solitons and that the only
steady ones are given by torsion-free G2-structures. In [101], Lotay and Wei looked at the
stronger eigenform condition

∆ϕϕ = λϕ, (4.5)

proving that a closed G2-structure ϕ satisfying (4.5) has to be expanding (λ > 0) or torsion-
free (λ = 0). Therefore, stationary points of the G2-Laplacian flow are exactly torsion-free
G2-structures, even if N is not compact. Combining the results obtained in [99] and in [101],
one has that every non trivial Laplacian soliton on a compact manifold N has to be expanding
and the vector field X in (4.4) has to be different from zero. This result is very interesting if
we think of the analogous for the Ricci flow. The Ricci flow

∂

∂t
g(t) = −2Ric(g(t)),

g(0) = g0,
(4.6)

is a geometric flow evolving a Riemannian metric g0 in the direction of its Ricci tensor (for
further details, see [79]). Initial data of self-similar solutions of (4.6) are the so-called Ricci
solitons, i.e., Riemannian metrics g satisfying

Ric(g) = λ g + LX g, (4.7)

for some complete vector field X and some constant λ ∈ R. When X = 0, a Ricci soliton g
is called Einstein and we refer to g simply as an Einstein metric. Unlike Laplacian solitons,
there are many examples of compact manifolds admitting Einstein metrics for different values
of λ ∈ R.

The first example of an expanding Laplacian soliton which is not an eigenform for its
Hodge Laplacian was found by Lauret on a nilpotent Lie group [95]. The shrinking condition
appears to be rarer and all the known examples of Lie groups admitting these Laplacian
solitons have trivial center. See, for instance, [97, 112] for some explicit examples. Other
interesting examples of Laplacian solitons have been found in [63, 86]. In particular, in [63],
the author provided a first example of shrinking Laplacian soliton of gradient type, i.e., one
where the vector field X in (4.4) is the gradient of a smooth function. In [86], the authors
provided a first example of cohomogeneity one solution to the G2-Laplacian flow existing for
all times and converging to a torsion-free G2-structure. It is interesting to note that, up to
now, there are no known examples of compact manifolds admitting Laplacian solitons.

In the next section, we shall focus on the existence of Laplacian solitons on unimodular
solvable Lie groups with non trivial center. As shown by Lauret in [96], these Laplacian
solitons correspond to semi-algebraic Laplacian solitons on the corresponding Lie algebras.
Regarding the existence of compact examples, we recall that, if a Lie group G admits a
compact quotient via a lattice Γ, a Laplacian soliton on G may not descend to a Laplacian
soliton on the compact quotient Γ/G, since the vector field X in (4.4) may not be invariant
with respect to the action of G restricted to Γ. We remark that, in [57], the authors found
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the first example of a left-invariant closed G2-structure on a (non-unimodular) solvable Lie
group satisfying (4.4) for λ = 0 and a left-invariant vector field X.

4.3 Semi-algebraic Laplacian solitons on the central extension
of a Lie algebra

Let G be a 7-dimensional simply connected Lie group with Lie algebra g. Consider a
derivation D of g and denote by XD the vector field on G induced by the one-parameter
group of automorphisms Ft ∈ Aut(G) with derivative dFt|e = exp(tD) ∈ GL(g).

Definition 4.4. [96] A left-invariant closed G2-structure ϕ on G is said to be a semi-algebraic
Laplacian soliton if it satisfies the Laplacian soliton equation (4.4) with respect to some vector
field XD corresponding to a derivation D ∈ Der(g). In this case, LXD

ϕ = D∗ϕ, so that
equation (4.4) can be rewritten as follows:

∆ϕϕ = λϕ+D∗ϕ, (4.8)

where
A∗β(x1, . . . , xk) := β(Ax1, . . . , xk) + · · ·+ β(x1, . . . , Axk),

for every A ∈ gl(g), x1, . . . , xk ∈ g and β ∈ Λkg∗. When the gϕ-adjoint Dt of D is also a
derivation of g, the G2-structure ϕ is called an algebraic Laplacian soliton.

We note that ∆ϕϕ = dd∗ϕϕ = dτ, τ being the intrinsic torsion form of ϕ. Let us focus
on the case where g is a unimodular Lie algebra with non-trivial center. By the results of
Section 3.2, we can assume that g = h ⊕ Rz is the central extension of a 6-dimensional
unimodular Lie algebra (h, ω0). Moreover, every closed G2-structure ϕ on g can be written
both as ϕ = ω̃∧θ+ρ, with dρ = −ω̃∧ω0 and dω̃ = 0, and as ϕ = uω∧η+ψ+, where (ω, ψ+)
is an SU(3)-structure on h, u := |z|ϕ and η := u−2z[ = ηh + θ, for some ηh ∈ h∗.

If ϕ is a semi-algebraic Laplacian soliton, the condition (4.8) is equivalent to a set of equa-
tions involving either the forms (ω̃, ρ) or the SU(3)-structure (ω, ψ+) on h. In the following,
we shall see that it is possible to obtain information on the semi-algebraic Laplacian soliton
ϕ under suitable assumptions. We are interested in the case where z is an eigenvector of D,
as this happens whenever g is the contactization of a symplectic Lie algebra. Indeed, in that
case the center of g is z(g) = Rz and it is preserved by all derivations of g.

Henceforth, we assume that ϕ is a semi-algebraic Laplacian soliton on the unimodular
Lie algebra g = h ⊕ Rz and that it satisfies the equation (4.8) with respect to a derivation
D ∈ Der(g) such that Dz = cz, for some c ∈ R. Then, we have D∗θ = α + c θ, with α ∈ h∗.
We let D̃ := πh ◦D|h ∈ gl(h), where πh : g ! h denotes the projection onto h.

Using the expression of τ obtained in Lemma 3.12, we see that ϕ = ω̃∧θ+ρ = uω∧η+ψ+

solves the equation dτ = ∆ϕϕ = λϕ+D∗ϕ if and only if the following equations hold on h:{
2 d(Jw1) = −D̃∗ω − (c+ λ)ω,

dw−2 − d ∗g (Jw1 ∧ ψ+)− 2u (d(Jw1) ∧ ηh − Jw1 ∧ dη) = uω ∧ α+ D̃∗ρ+ λρ,
(4.9)



62 CHAPTER 4. LAPLACIAN SOLITONS

where w1, w
−
2 are the intrinsic torsion forms of the SU(3)-structure (ω, ψ+) and ρ = uω∧ηh +

ψ+. Recall that the 2-form dη depends on the intrinsic torsion forms w+

2 and w1 of (ω, ψ+)
as shown in Lemma 3.11.

The equations (4.9) allow us to relate the constant λ to the eigenvalue c and the norm of
the intrinsic torsion form of the semi-algebraic Laplacian soliton. Before stating the result,
we show a preliminary lemma.

Lemma 4.5. Let (ω, ψ+) be an SU(3)-structure on a 6-dimensional real vector space V and
let A ∈ gl(V ). Then,

A∗ψ+ ∧ ψ− = A∗ω ∧ ω2 =
1

3
(trA)ω3.

Proof. Consider a basis (e1, . . . , e6) of V which is adapted to the SU(3)-structure (ω, ψ+).
Then,

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245, ψ− = e136 + e145 + e235 − e246,

with respect to the dual basis (e1, . . . , e6) of V ∗. Now, a direct computation shows that

A∗ψ+ ∧ ψ− = A∗ω ∧ ω2 = 2 (trA) e123456 =
1

3
(trA)ω3.

Proposition 4.6. The constant λ is given by

λ = −3 c− 1

2

(
|w−2 |

2
g + 6 |w1|2g

)
= −3 c− 1

2
|τ |2ϕ.

Proof. Wedging the first equation of (4.9) by the closed 4-form ω2, we obtain

D̃∗ω ∧ ω2 + (c+ λ)ω3 = −2 d(Jw1) ∧ ω2 = −2 d(Jw1 ∧ ω2) = 0,

as every 5-form on the unimodular Lie algebra h is closed. Then, by Lemma 4.5, we get

tr D̃ = −3(c+ λ). (4.10)

Let us now consider the second equation in (4.9). Wedging both sides by ψ− and using the
compatibility condition ω ∧ ψ− = 0, we obtain

(dw−2 − d ∗g (Jw1 ∧ ψ+)− 2u (d(Jw1) ∧ ηh − Jw1 ∧ dη)) ∧ ψ− =
(
D̃∗ρ+ λρ

)
∧ ψ−. (4.11)

Since ρ = uω ∧ ηh + ψ+ and ω ∧ ψ− = 0, the right-hand side of (4.11) can be rewritten as
follows(

D̃∗ρ+ λρ
)
∧ ψ− = u D̃∗ω ∧ ηh ∧ ψ− + D̃∗ψ+ ∧ ψ− + λψ+ ∧ ψ−

= u (−2 d(Jw1)− (c+ λ)ω) ∧ ηh ∧ ψ− +
1

3
(tr D̃)ω3 +

2

3
λω3

= −2u d(Jw1) ∧ ηh ∧ ψ− +
1

3
(tr D̃)ω3 +

2

3
λω3,
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where the second equality follows from the first equation of (4.9), Lemma 4.5 and the nor-
malization condition ψ+∧ψ− = 2

3ω
3. The summands appearing in the left-hand side of (4.11)

can be rewritten as follows. Since w−2 ∈ Λ2
8h
∗, we have

dw−2 ∧ ψ− = d(w−2 ∧ ψ−)− w−2 ∧ dψ− = −w−2 ∧ (− ∗g w−2 + Jw1 ∧ ψ+) = |w−2 |
2
g Volg.

Since every 5-form on h is closed, we get

−d ∗g (Jw1 ∧ ψ+) ∧ ψ− = ∗g(Jw1 ∧ ψ+) ∧ dψ− = ∗g (Jw1 ∧ ψ+) ∧ (− ∗g w−2 + Jw1 ∧ ψ+)

= Jw1 ∧ 2 ∗g (Jw1) = 2 |Jw1|2g Volg = 2 |w1|2g Volg,

where we used the identity (4) of Lemma 1.54. Finally, by Lemma 3.11 and the identity (3)
of Lemma 1.54, we have

2uJw1 ∧ dη ∧ ψ− = −2 Jw1 ∧ ∗g(w1 ∧ ψ+) ∧ ψ− = 4 Jw1 ∧ ∗g(Jw1) = 4 |w1|2g Volg.

Hence, equation (4.11) becomes

(
|w−2 |

2
g + 6 |w1|2g

)
Volg =

1

3
(tr D̃)ω3 +

2

3
λω3.

Recalling that Volg = 1
6 ω

3, we have

1

2

(
|w−2 |

2
g + 6 |w1|2g

)
= tr D̃ + 2λ.

Now, the claim follows by combining this identity with tr D̃ = −3(c + λ) and recalling that
|w−2 |2g + 6 |w1|2g = |τ |2ϕ (cf. Lemma 3.12).

As a consequence of Proposition 4.6, we have the following.

Corollary 4.7. Let (g, θ) be the contactization of a symplectic unimodular Lie algebra (h, ω0)
and let ϕ be a semi-algebraic Laplacian soliton on g such that ∆ϕϕ = λϕ + D∗ϕ, for some
D ∈ Der(g). Then,

λ = |w−2 |
2
g + 6 |w1|2g = |τ |2ϕ

and ϕ is expanding.

Proof. Since g is the contactization of a symplectic Lie algebra (h, ω0), we have g = h ⊕ Rz
and z(g) = Rz. In particular, Dz = cz, for some c ∈ R. Therefore, by Proposition 4.6, the
constant λ is given by

λ = −3 c− 1

2

(
|w−2 |

2
g + 6 |w1|2g

)
= −3 c− 1

2
|τ |2ϕ.

Recall that ω0 = dθ on g. Since D ∈ Der(g), we see that

D∗ω0 = D∗(dθ) = d(D∗θ) = d(α+ c θ) = dα+ c ω0.
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On the other hand, ω0 is a non-degenerate 2-form on the unimodular Lie algebra h. Conse-
quently,

1

3
(tr D̃)ω3

0 = D̃∗ω0 ∧ ω2
0 = D∗ω0 ∧ ω2

0 = (dα+ c ω0) ∧ ω2
0 = c ω3

0 ,

as every 5-form on h is closed. Now, from the proof of Proposition 4.6, we know that 3c =
tr D̃ = −3c− 3λ, whence −2c = λ. Therefore, we have λ = |w−2 |2g + 6 |w1|2g = |τ |2ϕ.

To conclude the proof, we observe that λ = 0 holds if and only if ϕ is torsion-free. By
Corollary 3.17, torsion-free G2-structures do not occur on the contactization of any symplectic
unimodular Lie algebra. Thus, λ > 0 and ϕ is expanding.

The previous result applies, for instance, to the nilpotent Lie algebra n12 endowed with
the closed G2-structure considered in [45, Theorem 3.6].

Example 4.8. Consider the nilpotent Lie algebra n12 and let (e1, . . . , e7) be the basis of n∗12

for which the structure equations are the following:(
0, 0, 0,

√
3

6
e12,

√
3

12
e13 − 1

4
e23,−

√
3

12
e23 − 1

4
e13,

√
3

12
e16 − 1

4
e15 +

√
3

12
e25 +

1

4
e26 −

√
3

6
e34

)
.

Recall that n12 is the contactization of a 6-dimensional symplectic nilpotent Lie algebra (cf.
Corollary 3.10). The 3-form

ϕ = e167 + e257 + e347 + e135 − e124 − e236 − e456

defines a closed G2-structure on n12 inducing the metric gϕ =
∑7

i=1 e
i�ei. The corresponding

intrinsic torsion form is τ = 1
2

(
e56 − e37

)
. A computation shows that ϕ is an expanding

algebraic Laplacian soliton solving the equation ∆ϕϕ = λϕ+D∗ϕ with λ = 1
2 = |τ |2ϕ and

D = −1

8
diag (1, 1, 0, 2, 1, 1, 2) ∈ Der(n12).

In addition to n12, also the non-abelian nilpotent Lie algebras n2, . . . , n7 admit (semi-
)algebraic Laplacian solitons (see [111]). However, it is currently not known whether semi-
algebraic Laplacian solitons occur on the nilpotent Lie algebras n8, n9, n10 and n11.

Using Corollary 4.7 and Proposition 3.7, we can show that semi-algebraic Laplacian soli-
tons do not exist on n9.

Proposition 4.9. The nilpotent Lie algebra

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25)

does not admit any semi-algebraic Laplacian solitons.

Proof. As we observed in Corollary 3.10, the Lie algebra n9 is the contactization of the
nilpotent Lie algebra h = (0, 0, e12, e13, e23, e15 + e24) endowed with the symplectic form
ω0 = e16 + e34 + e25. In particular, z(n9) = Re7.

By Proposition 3.7, every closed G2-structure on n9 can be written as ϕ = ω̃ ∧ e7 + ρ,
where ρ is a definite 3-form on h, ω̃ is a symplectic form taming Jρ and dρ = −ω̃ ∧ ω0 (see
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Example 3.13 for an explicit case). This G2-structure is a semi-algebraic Laplacian soliton
solving ∆ϕϕ = λϕ + D∗ϕ, for some λ ∈ R and some D ∈ Der(n9), if and only if the system
(4.9) is satisfied. By Corollary 4.7, we must have De7 = ce7 and λ = −2c = |τ |2ϕ > 0.
Moreover, the first equation in (4.9) forces the 2-form on h

β := D̃∗ω̃ + (c+ λ) ω̃ = D̃∗ω̃ − c ω̃

to be exact. We shall show that, if this last condition holds for every derivation D and every
symplectic form ω̃ on n9, then ω̃ ∧ ω0 cannot be exact.

The matrix associated with the generic derivation D ∈ Der(n9) with respect to the basis
(e1, . . . , e7) is given by

D =



h1 0 0 0 0 0 0
0 2h1 0 0 0 0 0
h2 h3 3h1 0 0 0 0
h4 h5 h3 4h1 0 0 0
h6 h7 −h2 0 5h1 0 0
h8 h9 h7 − h4 −h2 h3 6h1 0
h10 h11 h9 − h6 h7 − 2h4 −h5 − h2 h3 7h1


,

with hj ∈ R. In particular, c = 7h1 and we can assume h1 < 0.
The generic closed 2-form ω̃ on h is

ω̃ = f1e
12 + f2e

13 + f3e
14 + f4

(
e15 + e24

)
+ f5

(
e16 + e34

)
+ f6e

23 + f7e
25 + f8

(
e26 − e35

)
,

which is non-degenerate if and only if f2
5 f7 − f3f

2
8 6= 0. Now, we have

β = D̃∗ω̃ − 7h1 ω̃

= (h3f2 − 4h1f1 + h5f3 − h4f4 + h7f4 + h9f5 − h2f6 − h6f7 − h8f8) e12

+ (h3f3 − 3h1f2 − h2f4 − 2h4f5 + f5h7 + h6f8) e13

+ (h3f5 − h1f4 − h2f8)
(
e15 + e24

)
+ (h3f4 − h5f5 − 2h1f6 − h2f7 − f8h4 + 2h7f8) e23

− 2h1f3 e
14 + h1f8 e

26 − h1f8 e
35.

Since the space of exact 2-forms on h is generated by e12, e13, e15 + e24, e23 and, since h1 < 0,
we see that β is exact if and only if f3 = f8 = 0. Consequently, ω̃ is non-degenerate if and
only if f5f7 6= 0. This last constraint implies that ω̃ ∧ ω0 cannot be exact, since the space of
exact 4-forms is spanned by

e1234, e1235, e1245, e1236, e1246 + e1345, e1256 − e2345, e1356 − e2346.

By similar arguments, the same non-existence result holds more generally on some central
extensions of solvable non-nilpotent Lie algebras.

Proposition 4.10. The 7-dimensional solvable Lie algebras

s8 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0, e34),

s9 = (−e26 + e35, e16 + e45,−e46, e36, 0, 0, e34)

do not admit semi-algebraic Laplacian solitons.
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Proof. We prove the result only for s8, since the discussion for s9 is analogous. We recall
that s8 is the central extension of (h, ω0), where h = g0,−1

6,54 and ω0 = e34. Then, we consider
the generic closed 2-form ω̃ and the generic 3-form ρ on h satisfying the necessary condition
dρ = −ω̃ ∧ ω0. By an explicit computation using the structure equations of Table 6.2, one
has

ω̃ = f1(e14 + e23) + f2e
34 + f3(e16 + e35) + f4e

36 + f5(e45 − e26) + f6e
46 + f7e

56

and

ρ =p1e
125 − f3e

134 + p2e
136 + p3e

145 + (p4 + f7)e146 + p5e
156 − f5e

234

+ p6e
235 + p4e

236 + p7e
246 + p8e

256 + p9e
345 + p10e

346 + p11e
356 + p12e

456,

for some f1, . . . , f7, p1, . . . , p12 ∈ R. In particular ω̃3 = 6f2
1 f7e

123456 6= 0 if and only if
f1f7 6= 0. Now, by (4.9) and (4.10), in order to have a semi-algebraic Laplacian soliton on
s8, we have to require that the 2-form

D̃∗ω̃ − 1

3
(tr D̃)ω̃

is exact on h, for some D̃ ∈ Der(h). The matrix of the generic derivation D of s8 is given by

D =



h1 0 h2 0 h3 h4 0
0 h5 0 h6 h7 h8 0
0 0 h9 0 0 h3 0
0 0 0 h9 + h5 − h1 0 −h7 0
0 0 0 0 −h9 + h1 0 0
0 0 0 0 0 0 0
0 0 −h7 h3 h10 h11 2h9 + h5 − h1


,

for some h1, . . . , h11 ∈ R. In particular, α = −h7e
3+h3e

4+h10e
5+h11e

6 and c = 2h9+h5−h1.
If we compute D̃∗ω̃− 1

3(tr D̃)ω̃ for the generic D̃ = πh ◦D|h on h, we have that its projection
onto e14 has to vanish, since e14 is not exact on h. This forces

1

3
f1(h5 + 2h9 − h1) = 0,

hence h1 = h5 + 2h9. Then, c = 0 and λ = −(h5 +h9) ≤ 0, by Proposition 4.6. In particular,
by (4.10), λ = 0 holds if and only if tr D̃ = 0 which corresponds to the case where the G2-
structure ϕ = ρ+ ω̃ ∧ e7 is torsion-free. However, s8 cannot admit torsion-free G2-structures
by Corollary 3.17. In particular, we may assume h5 > −h9. Let us look at the second equation
in (4.9). We note that the projection of the 3-form D̃∗ρ+λρ+ ω̃ ∧α onto e125 has to vanish,
since e125 6∈ Rω0 ∧ h∗ and it is not exact on h. This is equivalent to 2p1(h5 + h9) = 0, which
implies p1 = 0, since h5 > −h9. It is straightforward to check that p1 = 0 implies that the
bilinear form bϕ defined on s8 is never positive-definite, since bϕ(e1, e1) = bϕ(e2, e2) = 0.

By [27] and Theorem 3.15, we know that a 7-dimensional unimodular Lie algebra with
1-dimensional center admitting closed G2-structures is isomorphic to one among n8, n9, n10,
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n11, n12, s2, s3, s4, s8, s9, s10 and s11. By Proposition 4.9 and Proposition 4.10, the only ones
which may admit semi-algebraic Laplacian solitons are n8, n10, n11, n12, s2, s3, s4, s10 and
s11.

Examples of expanding semi-algebraic Laplacian solitons are known on n12 (see Example
4.8) and on the Lie algebras s2 and s4 (see [56, Proposition 6.5]). In the remaining cases, it
is still not known whether semi-algebraic Laplacian solitons exist. However, if there are any,
they must be expanding. This follows from Corollary 4.7 when the Lie algebra is one among
n10, n11, n12, s10 and s11, while it follows by a direct computation when the Lie algebra is
one among n8, s2, s3 and s4. We shall see it in detail in the next proposition.

Proposition 4.11. Let g be a 7-dimensional Lie algebra isomorphic to either n8, s2, s3 or
s4. If g admits a semi-algebraic Laplacian soliton, then it is expanding.

Proof. We work case-by-case. Let us start with the Lie algebra n8, which is the central
extension of (h, ω0), where h is the nilpotent Lie algebra whose structure equations are

(0, 0, e12, e13, e23, e15 + e24)

and
ω0 = e16 + e34.

The generic closed 2-form in this coframe is

ω̃ = f1e
12 +f2e

13 +f3e
14 +f4(e15 + e24) +f5(e16 + e34) +f6e

23 +f7e
24 +f8e

25 +f9(e26− e35),

for some fi ∈ R, i = 1, . . . , 9. In particular, ω̃3 = 6(f2
5 f8 − f3f

2
9 )e123456. The matrix of the

generic derivation D of n8 is given by

D =



h1 0 0 0 0 0 0
0 h2 0 0 0 0 0
h3 h4 h1 + h2 0 0 0 0
h5 h6 h4 2h1 + h2 0 0 0
h7 h8 −h3 0 h1 + 2h2 0 0
h9 h10 −h5 + h8 −h3 h4 2(h1 + h2) 0
h11 h12 h10 h8 − 2h5 −h6 h4 2h2 + 3h1


,

for some h1, . . . , h12 ∈ R. In particular, α = h11e
1+h12e

2+h10e
3+(h8−2h5)e4−h6e

5+h4e
6 ∈

h∗ and c = 2h2 + 3h1. Since the 2-form

D̃∗ω̃ − 1

3
(tr D̃)ω̃

has to be exact on h, its projections onto e14, e16, e25, e26, e34, e35 have to vanish. This is
equivalent to the following system of equations

f3(h1 − 2h2) = 0,

f5(2h1 − h2) = 0,

f8(2h1 − h2) = 0,

f9(h1 − 2h2) = 0.

(4.12)
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If h1 = 2h2, then c = 8h2, trD = 29h2 and λ = −15h2. In particular, by Proposition 4.6,
h2 ≤ 0, so that λ ≥ 0 holds, with λ = 0 only if the semi-algebraic Laplacian soliton arises
from a torsion-free G2-structure, which is impossible by Corollary 3.17. If h1 6= 2h2, instead,
(4.12) implies f3 = f9 = 0 and, since the vanishing of both f5 and f8 implies the degeneracy
of ω̃, (4.12) admits solutions if and only if h2 = 2h1. In particular, λ > 0 holds as before.

Now, let us consider the Lie algebra s2. We recall that this Lie algebra is obtained as the
Lie algebra direct sum g0,−1

6,54 ⊕ R, so in this case we have ω0 = de7 = 0. The matrix of the
generic derivation D of s2 is given by

D =



h1 0 h2 0 h3 h4 0
0 h5 0 h6 h7 h8 0
0 0 h9 0 0 h3 0
0 0 0 h9 + h5 − h1 0 −h7 0
0 0 0 0 −h9 + h1 0 0
0 0 0 0 0 0 0
0 0 0 0 h10 h11 h12


,

h1, . . . , h12 ∈ R. In particular, α = h10e
5 + h11e

6 ∈ h∗ is closed. We note this is always true
when ω0 = 0, since, by differentiating D∗e7 = α+ ce7, we get 0 = dα since d ◦D = D ◦ d. In
particular, (4.9) reduces to asking that the forms

D̃∗ω̃ − 1

3
(tr D̃)ω̃, D̃∗ρ+ λρ+ ω̃ ∧ α

are exact on g0,−1
6,54 , where λ = −1

3(trD + 2c). Let us consider a pair (ω̃, ρ) ∈ Λ2h × Λ3h of
generic forms closed forms on h = g0,−1

6,54 . Then,

ω̃ =f1(e14 + e23) + f2(e16 + e35) + f3(e45 − e26) + f4e
34 + f5e

36 + f6e
46 + f7e

56,

ρ =p1e
125 + p2e

136 + p3e
145 + p4(e146 + e236) + p5e

156 + p6e
235 + p7e

246 + p8e
256

+ p9e
345 + p10e

346 + p11e
356 + p12e

456,

for some f1, . . . , f7, p1, . . . , p12 ∈ R. We recall that this is equivalent to the closure of the
3-form ϕ = ρ + ω̃ ∧ e7 on s2, since ω0 = 0. Then, ω̃3 = 6f2

1 f7e
123456, so we may assume

both f1 and f7 different from zero. Now, since e14 is not exact on g0,−1
6,54 , the projection of

D̃∗ω̃− 1
3(tr D̃)ω̃ onto this direction, given by 1

3f1(h5 +2h9−h1), has to vanish. This occurs if
and only if h1 = h5 + 2h9, since f1 6= 0. Analogously, the projection of D̃∗ρ+λρ+ ω̃∧α onto
e125, given by p1(2(h5+h9)−h12), has to vanish, since e125 is not exact. Let us suppose p1 = 0,
first. A direct computation shows that, if we consider the generic closed 3-form ϕ = ρ+ω̃∧e7,
then the bilinear symmetric tensor bϕ is never positive-definite, since bϕ(1, 1) = bϕ(2, 2) = 0.
If p1 6= 0 instead, then h12 = 2(h5 + h9) which implies

trD =
5

2
c, λ = −3

2
c.

In particular trD− 7c = −9
2c. Then, by Proposition 4.6, λ ≥ 0 holds, with λ = 0 only in the

torsion-free case, which cannot occur by Corollary 3.17. This concludes the proof in the case
where g is isomorphic to s2.

By a very similar discussion, the same result holds for s3 and s4.
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When the center of the Lie algebra is at least 2-dimensional, we have the following clas-
sification result.

Theorem 4.12. Let g be a 7-dimensional unimodular Lie algebra with dim z(g) ≥ 2 admitting
closed G2-structures. Then, g admits semi-algebraic Laplacian solitons if and only if it is
isomorphic to one among n1, n2, n3, n4, n5, n6, n7, s5, s6 and s7.

Proof. If g is nilpotent, then it must be isomorphic to one among n1, n2, n3, n4, n5, n6 and
n7, by the classification result in [27]. Every G2-structure ϕ on the abelian Lie algebra n1 is
torsion-free and thus solves the equation ∆ϕϕ = λϕ+D∗ϕ with λ = 0 and D = 0 ∈ Der(n1).
In the remaining cases, the existence of semi-algebraic Laplacian solitons is known from [111].

We can then focus on the case where g is solvable non-nilpotent. By Theorem 3.15, g
must be isomorphic to one among s1, s5, s6 and s7. Examples of semi-algebraic Laplacian
solitons on s5 and s6 were given in [56, Proposition 6.5]. By Corollary 3.17, the Lie algebra
s7 admits torsion-free G2-structures, which are semi-algebraic Laplacian solitons with λ = 0
and D = 0 ∈ Der(s7).

To conclude the proof, we must show that the Lie algebra s1 does not admit any semi-
algebraic Laplacian solitons. Let us assume by contradiction that ϕ is a semi-algebraic Lapla-
cian soliton on s1. Then, as s1

∼= g0
6,38 ⊕ R, we can write ϕ = ω̃ ∧ e7 + ρ, where e7 spans R∗

and ω̃ and ρ are closed forms on g0
6,38. In particular, we have

ω̃ = f1

(
2 e16 + e25 − e34

)
+ f2 e

23 + f3

(
e24 + e35

)
+ f4 e

26 + f5 e
36 + f6 e

46 + f7 e
56,

ρ = p1 e
123 + p2

(
e124 + e135

)
+ p3 e

126 + p4 e
136 + p5

(
e146 − e235

)
+ p6

(
e156 + e234

)
+ p7 e

236 + p8 e
246 + p9 e

256 + p10 e
346 + p11 e

356 + p12 e
456,

with the f1, . . . , f7, p1, . . . , p12 ∈ R. The symmetric bilinear form bϕ induced by ϕ as in (1.1)
satisfies bϕ(e1, e1) = −2p2

2f1 e
1234567 and bϕ(e4, e4) = −p2f1p12e

1234567. Since bϕ is definite,
we must have p2p12f1 6= 0.

The generic derivation D ∈ Der(s1) has the following expression with respect to the basis
(e1, . . . , e7) of s1:

D =



h1 h2 h3 0 0 h4 h5

0 1
2 h1 h6 0 0 h2 0

0 −h6
1
2 h1 0 0 h3 0

0 h7 h8
1
2 h1 h6 h9 0

0 −h8 h7 −h6
1
2 h1 h10 0

0 0 0 0 0 0 0

0 0 0 0 0 h11 h12


,

with hi ∈ R. Since ϕ is a semi-algebraic Laplacian soliton, there is some λ ∈ R such that
the 3-form D∗ϕ + λϕ on s1 is exact. Under the constraint p2p12f1 6= 0, this implies that
λ = 0 and that z(s1) = 〈e1, e7〉 ⊂ kerD. By Proposition 4.6, we then have |τ |ϕ = 0, i.e., the
G2-structure ϕ is torsion-free. However, s1 does not carry any torsion-free G2-structures by
Corollary 3.17.





Chapter 5

Balanced SU(3)-structures of
cohomogeneity one

A Hermitian structure (g, J) on a 2n-dimensional manifoldM is called balanced if dωn−1 =
0, ω being the fundamental form associated with (g, J). Balanced metrics have been exten-
sively studied in [11, 52, 60, 61, 66, 106, 114]. In this chapter, we consider balanced metrics
on complex manifolds with holomorphically trivial canonical bundle, most commonly known
as balanced SU(n)-structures. Such structures are of interest for both Hermitian geome-
try and string theory, especially in dimension 2n = 6, since they provide the ideal setting
for the Hull–Strominger system. We provide a non-existence result for balanced non-Kähler
SU(3)-structures which are invariant under a cohomogeneity one action on simply connected
6-manifolds. The discussion and the main results of this chapter were published in [5].

5.1 Cohomogeneity one manifolds

Here, we recall the basic structure of cohomogeneity one manifolds. For further details,
see for instance [3, 13, 84, 85, 132].

Definition 5.1. A cohomogeneity one manifold is a connected smooth manifold M with a
left action α : G×M !M of a compact Lie group G having an orbit of codimension one.

From now on, let us assume that M is a simply connected cohomogeneity one manifold
and that G is connected. By the compactness of G, the action α is proper and there exists a
G-invariant Riemannian metric g on M (cf. Theorem 1.15). This is equivalent to saying that
the G-action on (M, g) is isometric (cf. Definition 1.14). Moreover, we assume that the action
α is almost effective. As usual, we denote by π : M !M/G the canonical projection and we
equip M/G with the quotient topology relative to π. By a result of Bérard Bergery [13], the
quotient spaceM/G is homeomorphic to a circle or an interval. As we are assuming thatM is
simply connected, we have thatM/G is homeomorphic to an interval I. The inverse images of
the interior points of the orbit space M/G are principal orbits in the sense of Definition 1.22,
while the inverse images of the boundary points are singular orbits in the sense of Definition
1.26. As usual, we denote by Mprinc the union of all principal orbits, which is an open dense
subset of M (cf. Theorem 1.25) and by Gp the isotropy group at p ∈M .

71
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First, we will suppose M is compact. It follows that M/G is homeomorphic to the closed
interval I = [−1, 1]. Denote by O1 and O2 the two singular orbits π−1 (−1) and π−1 (1),
respectively, and fix q1 ∈ O1. By the compactness of the G-orbits, there exists a minimizing
geodesic γq1 : [−1, 1] ! M from q1 to O2 which is orthogonal to every principal orbit. We
call normal geodesic a geodesic orthogonal to every principal orbit. Let γ : [−1, 1] !M be a
normal geodesic between π−1 (−1) and π−1 (1). Up to rescaling, we can always suppose that
the orbit space M/G is such that π ◦ γ = Id[−1,1]. Then, by Kleiner’s Lemma, there exists a
subgroup K of G such that Gγ(t) = K for all t ∈ (−1, 1) and K is subgroup of Gγ(−1) and
Gγ(1) (cf. also Proposition 1.23).

For M non-compact, M/G is homeomorphic either to an open interval or to an interval
with a closed end. In the former case, M is a product manifold M ∼= I ×G/K. In the latter
case, there exists exactly one singular orbit and M/G ∼= I where I = [0, L) and L is either
a positive number or +∞. Analogously to the compact case, there exists a normal geodesic
γ : [0, L) ! M such that γ(0) ∈ π−1(0) and we can suppose π ◦ γ = Id[0,L). In addition,
there exists a subgroup K of G such that Gγ(t) = K for all t ∈ (0, L) and K is a subgroup of
H := Gγ(0). So, we have

• π−1 (t) ∼= G/K for all t ∈
◦
I,

• Mprinc =
⋃
t∈
◦
I
π−1 (t) =

⋃
t∈
◦
I
G · γ (t),

• for every p1, p2 ∈Mprinc, G · p1 and G · p2 are diffeomorphic.

Therefore, up to conjugation along the orbits, when M is compact we have three possible
isotropy groups H1 := Gγ(−1), H2 := Gγ(1) and K := Gγ(t), t ∈ (−1, 1). When M is non-
compact and has one singular orbit, instead, we have two possible isotropy groups H := Gγ(0)

and K := Gγ(t), t ∈ (0, L). From all of the above, we have

Mprinc ∼=
◦
I ×G/K,

so that, by fixing a suitable global coordinate system, we can decompose the G-invariant
metric g as

gγ(t) = dt2 + gt, (5.1)

where dt2 is the (0, 2)-tensor corresponding to the vector field ξ := γ′ (t) evaluated at the
point γ (t) and gt is a G-invariant metric on the homogeneous orbit G ·γ (t) through the point
γ (t) ∈M .

Now, assume M is compact. By the density of Mprinc in M and Theorem 1.21, M is
homotopically equivalent to(

G×H1 Sγ(−1)

)
∪G/K

(
G×H2 Sγ(1)

)
, (5.2)

where the geodesic balls Sγ(±1) := exp (Bε± (0)), Bε± (0) ⊂ Tγ(±1) (G · γ (±1))⊥, are normal
slices to the singular orbits in γ (±1). Here, G ×Hi Sγ(±1) is the associated fiber bundle
to the principal bundle G ! G/Hi with type fiber Sγ(±1). By Theorem 1.18, M is also
homotopically equivalent to

(G×H1 Bε− (0)) ∪G/K (G×H2 Bε+ (0)) . (5.3)
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The isotropy groups Hi act on Bε± (0) via the slice representation and, since the boundary of
the tubular neighborhood Tub(Oi) := G×Hi Bε± (0), i = 1, 2, is identified with the principal
orbit G/K and the G-action on Tub(Oi) is identified with the Hi-action on Bε± (0), then
Hi acts transitively on the sphere Sli := ∂Bε± , li > 0 again with isotropy K. The normal
spheres Sli are thus the homogeneous spaces Hi/K, i = 1, 2. The Hi-action on Sli , i = 1, 2,
may be ineffective, but it is sufficient to quotient Hi by the ineffective kernel to obtain an
effective action. Transitive effective actions of compact Lie groups on spheres were classified
by Borel and are summarized in Table 5.1.

H SO(n) U(n) SU(n) Sp(n)Sp(1) Sp(n)U(1) Sp(n) G2 Spin(7) Spin(9)

K SO(n− 1) U(n− 1) SU(n− 1) Sp(n− 1)Sp(1) Sp(n− 1)U(1) Sp(n− 1) SU(3) G2 Spin(7)

Sl = H/K Sn−1 S2n−1 S4n−1 S6 S7 S15

Table 5.1: Transitive effective actions of compact Lie groups on spheres

The collection of G with its isotropy groups G ⊃ H1, H2 ⊃ K is called the group diagram
of the cohomogeneity one manifold M . Conversely, let G ⊃ H1, H2 ⊃ K be compact groups
with Hi/K = Sli , i = 1, 2. By the classification of transitive actions on spheres, one has that
the Hi-action on Sli is linear, so that it can be extended to an action on Bε±(0) bounded by
Sli , i = 1, 2. Therefore, (5.3) defines a cohomogeneity one manifold M . Analogously, if M
is a non-compact cohomogeneity one manifold with one singular orbit, we define the group
diagram of M to be the collection of G and the isotropy groups G ⊃ H ⊃ K, where the
homogeneous space H/K is a sphere. The converse is also true: the group diagram defines a
non-compact cohomogeneity one manifold M . In these cases, M is homotopically equivalent
to G×H Bε(0), where Bε(0) ⊆ Tγ(0)(G · γ(0))⊥ as before.

We study cohomogeneity one manifolds up to the equivalence given in Definition 1.19.
Moreover, if a cohomogeneity one manifold M has group diagram G ⊃ H1, H2 ⊃ K or
G ⊃ H ⊃ K, one can show that each of the following operations results in a G-equivariantly
diffeomorphic manifold:

1. switching H1 and H2,

2. conjugating each group in the diagram by the same element of G,

3. replacing Hi (respectively H) with aHia
−1 (respectively aHa−1), where a is an element

of the identity component of the normalizer of K.
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5.2 Balanced SU(3)-structures on cohomogeneity one 6-mani-
folds

We recall that an SU(3)-structure (ω, ψ+) on a 6-manifold M is called balanced if
dψ+ = 0,

dψ− = 0,

dω2 = 0.

where ψ− = Jψ+, J being the almost complex structure on M induced by the 3-form ψ+.
We denote by Ψ = ψ+ + iψ− the induced (3, 0)-form on M . Following [49] and Remark 1.38,
a balanced SU(3)-structure can be equivalent defined as a triple (g, J,Ψ) of tensors on M
satisfying the following conditions:

• J is integrable, i.e., (M,J) is a complex manifold. We recall that, for SU(3)-structures,
the integrability of J is equivalent to the condition (dΨ)2,2 = 0,

• Ψ is a nowhere-vanishing holomorphic (3, 0)-form,

• dω2 = 0, ω being the associated fundamental form.

In particular, we are interested in the non-Kählerian case, i.e., dω 6= 0.

Remark 5.2. We can equivalently say that an SU(3)-structure (g, J,Ψ) on M is balanced if
and only if {

dΨ = 0,

dω2 = 0,

since dψ± = 0 if and only if dΨ = 0. Moreover, dΨ = 0 if and only if Ψ = ψ+ + iψ− is
holomorphic and the induced almost complex structure J = Jψ+ is integrable.

Remark 5.3. From the formulas in [10], we have that, if (ω, ψ+) is a balanced non-Kähler
SU(3)-structure on a 6-dimensional smooth manifoldM , the scalar curvature of the associated
metric g is strictly negative.

LetM be a simply connected cohomogeneity one 6-manifold for the almost effective action
of a compact connected Lie group G and let (ω, ψ+) be a balanced SU(3)-structure on M
which is invariant under the cohomogeneity one action. We are thus requiring G to preserve
the SU(3)-structure on M . For the convenience of the reader, we recall that

• G preserves the induced metric g if and only if αh is an isometry for g, for each h ∈ G,

• G preserves the induced complex structure J if and only if J commutes with the differ-
ential dαh, for each h ∈ G,

• G preserves the induced 3-form Ψ if and only if (αh)∗Ψ = Ψ, for each h ∈ G.
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In particular, this implies that the principal isotropy K acts on TpM preserving (ωp, (ψ+)p)
for every p ∈M , which means that K can be identified with a subgroup of SU(3). Now, since
the J-invariant K-action fixes the subspace 〈ξ|p〉 of TpM , then it fixes 〈Jξ|p〉 as well. Let us
write TpM as

TpM = 〈ξ|p〉 ⊕ 〈Jξ|p〉 ⊕ V,

where V is the 4-dimensional gp-orthogonal complement of 〈ξ|p, Jξ|p〉 in TpM . Notice that
V is Jp- and K-invariant. To see the K-invariance, let h ∈ K and v ∈ V be generic. Then,
if dαhp (v) = λ (Jξ|p) + w, for some λ ∈ R, w ∈ V , we would have J

(
dαhp (v)

)
= dαhp (Jpv) =

−λ ξ|p + Jpw, which contradicts the fact that the K-action is closed along the G-orbits.
Therefore, for each h ∈ K, its action on TpM is described by a 6× 6 block matrix

1 0
0 1

0

0 A


with respect to the decomposition of TpM = 〈ξ|p〉⊕〈Jξ|p〉⊕V . Since the matrix above lies in
SU(3), we have A ∈ SU(2), hence K can be identified with a subgroup of SU(2). Therefore,
k := Lie (K) is {0}, R, or su (2). As observed in [117], all the possible candidate pairs (g, k),
with g compact, which may admit an SU(3)-structure in cohomogeneity one are:

(a) k = {0} and

(1) g = su (2)⊕ R⊕ R,
(2) g = R⊕ . . .⊕ R︸ ︷︷ ︸

5 times

,

(b) k = R and

(1) g = su (2)⊕ su (2),
(2) g = su (2)⊕ R⊕ R⊕ R,
(3) g = R⊕ . . .⊕ R︸ ︷︷ ︸

6 times

,

(c) k = su (2) and

(1) g = su (2)⊕ su (2)⊕ R⊕ R,
(2) g = su (2)⊕ R⊕ . . .⊕ R︸ ︷︷ ︸

5 times

,

(3) g = su (3).

Under the assumption of simply connectedness of M , we can discard some pairs of this
list. IfM is compact, by Hoelcher’s classification [84, Proposition 3.1], we can readily discard
cases (a.2), (b.2), (b.3), (c.1) and (c.2). For the case where M is non-compact and has one
singular orbit, we can suitably adapt [84, Proposition 1.8] which deals with the compact case,
to obtain:
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Proposition 5.4. Let M be the non-compact cohomogeneity one manifold given by the group
diagram G ⊃ H ⊃ K with H/K = Sl. Then, π1(M) ∼= π1(G/K)/N where

N = ker{π1(G/K) ! π1(G/H)} = Im{π1(H/K) ! π1(G/K)}.

In particular, M is simply connected if and only if the image of π1(Sl) generates π1(G/K)
under the natural inclusions.

We know that π1(Sl) is either {0} or Z. Now, we observe that

π1(G/K) = Z2 in cases (a.1) and (c.1),

π1(G/K) = Z5 in cases (a.2), (b.3) and (c.2),

π1(G/K) = Z2 or π1(G/K) = Z3 in case (b.2).

If M is non-compact and has no singular orbits, π1(M) = π1(G/K). Hence, when M is
non-compact, we can discard the pairs (a.1), (a.2), (b.2), (b.3), (c.1) and (c.2), as π1(M)
would be infinite. Therefore, the possible pairs which may admit a balanced SU(3)-structure
on a simply connected manifold of cohomogeneity one under the almost effective action of a
compact connected Lie group G are (a.1) (only when M is compact), (b.1) and (c.3).

Remark 5.5. In case (b.1), we shall need to divide the discussion depending on the em-
beddings of k = R in g = su(2) ⊕ su(2), which, up to isomorphism, are all generated by an
element of the form 

ip 0 0 0
0 −ip 0 0
0 0 iq 0
0 0 0 −iq

 ∈ su(2)⊕ su(2),

with fixed p, q ∈ N. Up to uniform rescalings, which do not change the immersion of k,
we can assume either (p, q) = (1, 0) or p, q to be coprime, if neither is zero. Notice that,
when (p, q) = (1, 1) or (p, q) = (1, 0), k induces a decomposition of g in Ad(K)-modules,
some of which are equivalent. In the former case, we shall say that k is diagonally embedded
in g, while, in the latter, k is said to be trivially embedded in one of the two su(2)-factors
of g. Instead, when p and q are different and non-zero, the Ad(K)-modules are pairwise
inequivalent.

From now on, for each p ∈Mprinc, let mp =: m be an Ad(K)-invariant complement of k in
g. For each p ∈Mprinc, we have TpM = 〈ξ|p〉⊕ m̂|p, where, for every X ∈ g, we denoted by X̂

the action field as defined in Definition 1.11. It is known that, sinceMprinc ∼=
◦
I×G/K, every

G-invariant structure on Mprinc can be expressed via a K-invariant structure on 〈ξ〉 ⊕ m̂,

with C∞(
◦
I)-coefficients. Let m = m1 ⊕ . . . ⊕ mr be the decomposition of m into irreducible

Ad(K)-modules. Recall that, if the mi’s are pairwise inequivalent, then they are orthogonal
with respect the metric gt, for every t (see (5.1)). Otherwise, the expression of the metric
strongly depends on the specific equivalence of the modules. In all cases, we recover the
whole SU(3)-structure from a pair of G-invariant stable forms (ω, ψ+) of degree two and
three, respectively.

To fix the notations, in what follows, we shall denote by
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• B̃ = −B the opposite of the Killing Cartan form on g,

• (ẽi)i=1,2,3 the standard basis for su(2) given by

ẽ1 =

(
i 0
0 −i

)
, ẽ2 =

(
0 i
i 0

)
, ẽ3 =

(
0 1
−1 0

)
,

• (fi)i=1,...,m the generic basis for g = k⊕m, k = 〈f1, . . . , fk〉, m = 〈fk+1, . . . , fm〉, where
k = dim k, m = dim g,

• e1 := ξ ∼= ∂
∂t ,

• ei := f̂j , j = dim k− 1 + i, the Killing vector fields on Mprinc induced by the G-action,
for i = 2, . . . , 6,

• ei the dual 1-forms to ei.

Therefore, in what follows (ei)i=1,...,6 will be vectors onMprinc which provide a basis for TpM

at each point p = γ(t) ∈ Mprinc, where γp :
◦
I ! M is a normal geodesic through p. For

every principal point p of M , we also denote by γp the normal geodesic such that γp(0) = p.
Moreover, we recall some basic facts about G-actions which will be useful for our discussion:

• Since g · γp = γg·p for the uniqueness of the normal geodesic γ starting from the point
g · p, we have ΦX̂

1 ◦Φξ
t (p) = Φξ

t ◦ΦX̂
1 (p), where Φv

t denotes the flow of the vector field v
evaluated at time t. This is equivalent to [ξ, X̂] = 0, for all X ∈ g;

• A k-form α on Mprinc of the form

α =
6∑

i1<...<ik=1

ai1...ik e
i1...ik ,

with ai1...ik ∈ C∞(
◦
I) for all i1 < . . . < ik, is G-invariant if and only if αp is K-invariant

for all p ∈Mprinc.

• If α is a G-invariant k-form on M and v1, . . . , vk are G-invariant vector fields on M ,
then α (v1, . . . , vn) |p is constant along the G-orbit through p, for all p ∈M .

5.3 Non-existence result

We first give a local result (Theorem 5.6) for the existence of balanced non-Kähler SU(3)-
structures by working on the principal part and then we prove that none of these local
solutions can be extended to a global one (Theorem 5.10).

Theorem 5.6. LetM be a 6-dimensional simply connected cohomogeneity one manifold under
the almost effective action of a compact connected Lie group G and let K be the principal
isotropy group. Then, the principal part Mprinc admits a G-invariant balanced non-Kähler
SU(3)-structure (ω, ψ+) if and only if M is compact and (g, k) = (su(2)⊕ 2R, {0}).
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Proof. From all the above discussion and the previous lemmas, the only possible pairs allowing
Mprinc to support a balanced SU(3)-structure are (a.1) with M compact, (c.3) and (b.1). We
investigate these three cases separately.

For each of these cases, we shall consider the generic pair (ω, ψ+) of G-invariant forms on

Mprinc of degree two and three, respectively, with C∞(
◦
I)-coefficients. In order for the pair

(ω, ψ+) to define a G-invariant balanced non-Kähler SU(3)-structure on Mprinc, we have to
impose the following conditions:

(1) the stability conditions:

• ω3 6= 0,

• λ := λ (ψ+) < 0,

(2) the compatibility conditions ψ± ∧ ω = 0,

(3) the normalization conditions:

• ψ+ ∧ ψ− = 2
3ω

3,

• 1
6ω

3 = ±
√

det(g) e1...6 where the sign ± depends on the fixed orientation ±e1...6,

(4) dψ± = 0,

(5) the balanced condition dω2 = 0,

(6) the non-Kähler condition dω 6= 0,

(7) the positive-definiteness of the induced symmetric bilinear form g := ω(·, J ·) on Mprinc.

We start with case (b.1).

5.3.1 Case (b.1): (g, k) = (su(2)⊕ su(2),R)

In the notation of Remark 5.5, let us suppose p, q non-zero and coprime with (p, q) 6= (1, 1),
first. Consider the B̃-orthonormal basis of g given by

f1 =
1

2
√

2(p2 + q2)

(
pẽ1 0
0 qẽ1

)
, f2 =

1

2
√

2(p2 + q2)

(
qẽ1 0
0 −pẽ1

)
,

f3 =
1

2
√

2

(
ẽ3 0
0 0

)
, f4 =

1

2
√

2

(
0 0
0 ẽ3

)
,

f5 =
1

2
√

2

(
ẽ2 0
0 0

)
, f6 =

1

2
√

2

(
0 0
0 ẽ2

) (5.4)

and take k = 〈f1〉. Notice that, since rk(su(2)) = 1, this assumption is not restrictive. The
decomposition of g into irreducible Ad (K)-modules is given by

g = k⊕ a⊕ b1 ⊕ b2,
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with a := 〈f2〉 is Ad(K)-fixed, b1 := 〈f3, f5〉 and b2 := 〈f4, f6〉, hence m = a ⊕ b1 ⊕ b2. Fix
the orientation given by Ω = e1...6 and consider the generic G-invariant 3-form ψ+ on Mprinc,

ψ+ := p1 e
135 + p2 e

146 + p3 e
235 + p4 e

246,

where pj ∈ C∞(
◦
I), j = 1, . . . , 4. A simple calculation shows that the stability condition

λ(ψ+) < 0 never holds, since λ(ψ+) = (p1p4 − p2p3)2 ≥ 0.
Now, let (p, q) = (1, 0) and consider the B̃-orthogonal basis of g given by (5.4) when

(p, q) = (1, 0) and assume k = 〈f1〉 as before. Then, the decomposition of g into irreducible
Ad(K)-modules is given by

g = k⊕ b1 ⊕ a1 ⊕ a2 ⊕ a3,

with b1 := 〈f3, f5〉, a1 := 〈f2〉, a2 := 〈f4〉 and a3 := 〈f6〉. Observe that the modules ai,
i = 1, 2, 3, are equivalent. Consider the generic G-invariant 3-form ψ+ on Mprinc, which is of
the form

ψ+ := p1 e
124 + p2 e

126 + p3 e
135 + p4 e

146 + p5 e
235 + p6 e

246 + p7 e
345 + p8 e

356,

with pj ∈ C∞(
◦
I), j = 1, . . . , 8. It is straightforward to show

λ(ψ+) = (p1p8 + p2p7 − p3p6 + p4p5)2 ≥ 0.

Remark 5.7. By the previous discussion we have that, when (g, k) = (su(2)⊕ su(2),R) with k
not diagonally embedded in g, M admits no G-invariant SL(3,C)-structures, i.e., G-invariant
stable 3-forms inducing an almost complex structure on M .

Finally, let us consider the case where k is diagonally embedded in g. Without loss of
generality, we can assume (p, q) = (1, 1). We consider the B̃-orthonormal basis of g given by
(5.4) when (p, q) = (1, 1). The decomposition of g into irreducible Ad (K)-modules is given
by

g = k⊕ a⊕ b1 ⊕ b2,

with k = 〈f1〉, a := 〈f2〉 being Ad(K)-fixed, b1 := 〈f3, f5〉 and b2 := 〈f4, f6〉. Then, m =
a⊕ b1⊕ b2. Unlike the case p 6= q both non-zero, here the equivalence of the modules b1 and
b2 implies that the metric g on Mprinc is not necessarily diagonal but of the form

g = dt2 + f(t)2B̃|a×a + h1(t)2B̃|b1×b1 + h2(t)2B̃|b2×b2 +Q|b1×b2 ,

for some f, h1, h2 ∈ C∞(
◦
I), where Q denotes a symmetric quadratic form on the isotypic

component b1 ⊕ b2. In particular, the metric coefficients gij := g(ei, ej) must satisfy

g1i = gi1 = 0, i = 2, . . . , 6,

g2i = gi2 = 0, i = 3, . . . , 6,

g33 = g55, g35 = g53 = 0,

g44 = g66, g46 = g64 = 0.

(5.5)
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where ei, i = 1, . . . , 6, are the vector fields defined in the usual way. Fix the orientation given
by Ω := e1...6 and consider a pair of G-invariant forms (ω, ψ+) of degree two and three, given
respectively by

ω =h1 e
12 + h2 e

35 + h3 e
46 + h4(e34 + e56) + h5(e36 + e45),

ψ+ =p1 e
135 + p2 e

146 + p3(e134 + e156) + p4(e136 + e145)

+ p5 e
235 + p6 e

246 + p7(e234 + e256) + p8(e236 + e245),

with hi, pj ∈ C∞(
◦
I), i = 1, . . . , 5, j = 1, . . . , 8. Moreover, the structure equations are given

by

de1 = 0, de2 =
1

2

(
e35 − e46

)
, de3 = −1

2
e25, de4 =

1

2
e26, de5 =

1

2
e23, de6 = −1

2
e24.

In order to find a G-invariant balanced non-Kähler SU(3)-structure on Mprinc, we have to
impose the conditions (1) to (7) listed at the beginning of this section, together with (5.5).
We shall show that this system of equations is incompatible. This implies there are no G-
invariant balanced non-Kähler SU(3)-structures on the corresponding M . In order to see
this, we write all conditions in terms of the coefficients hi, pj of (ω, ψ+), for i = 1, . . . , 5,
j = 1, . . . , 8. One has that dω2 = 0 holds if and only if

h1

2
(h3 − h2)−

(
h2h3 − h2

4 − h2
5

)′
= 0

and, in particular, dω = 0 holds if and only if
−h1

2
+ h′2 = 0,

(h2 + h3)′ = 0,

h4 = h5 = 0.

Similarly, dψ+ = 0 holds if and only if
p′8 − p3 = 0,

p′7 + p4 = 0,

p5 = p6,

p′6 = 0.

(5.6)

Let us suppose that ψ+ is stable with λ < 0 and consider the induced almost complex
structure J on Mprinc. Recall that, by G-invariance, ψ− = Jψ+ needs to be of the same
general form of ψ+, namely

ψ− =q1e
135 + q2e

146 + q3(e134 + e156) + q4(e136 + e145)

+ q5e
235 + q6e

246 + q7(e234 + e256) + q8(e236 + e245),
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where q1, . . . , q8 are functions of p1, . . . , p8. Therefore, one has dψ− = 0 if and only if
q′8 − q3 = 0,

q′7 + q4 = 0,

q5 = q6,

q′6 = 0.

(5.7)

Moreover, (5.5) is equivalent to the system

p1p6 + p2p6 − 2p3p7 − p4p8 = 0,

h2(p3p8 − p4p7) + h4(p4p6 − p1p8) + 2h5(p1p7 − p3p6) = 0,

h3(p3p8 − p4p7) + h4(p4p6 − p2p8) + 2h5(p2p7 − p3p6) = 0,

h5(p4p6 − p1p8) = 0,

h5(p2p8 − p4p6) = 0,

h2(p2p6 − p1p6) + 2h4(p1p7 − p3p6) = 0,

h3(p2p6 − p1p6) + 2h4(p3p6 − p2p7) = 0,

(5.8)

where we have already assumed p5 = p6 from (5.6). Since p′6 = 0 and all the conditions for
the G-invariant balanced non-Kähler SU(3)-structure involve only homogeneous polynomials,
we can assume either p6 = 0 or p6 = 1, up to scalings. Some possibilities can be excluded
using the following lemmas.

Lemma 5.8. Assume p6 = 0. If p1 = 0, or p2 = 0, or p7 = 0, then conditions (1)-(7) are
incompatible.

Proof. Let us assume p1 = 0. Then, λ(ψ+) = −2(p3p8 − p4p7)2 ≤ 0 and

qi = 0, i = 4, 5, 8,

q3 = ± 1√
2
p4,

q7 = ± 1√
2
p8,

where the signs of q3 and q7 depend on that of (p3p8 − p4p7). Then, dψ± = 0 implies
p3 = p4 = 0, from which λ = 0 follows.

Assume instead p2 = 0. Then, we have λ = −2(p3p8−p4p7)2 ≤ 0, as in the previous case.
Moreover, one can easily compute

q4 = q8 = 0,

q3 = ± 1√
2
p4,

q7 = ± 1√
2
p8,

by which we can draw the same conclusion.
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Finally, let us assume p7 = 0. Then, (5.6) implies p4 = 0. In this case, λ(ψ+) =
2p2

8(p1p2 − p2
3) can be strictly negative and one can compute

qi = 0, i = 3, 4, 8,

q5 =
p1p

2
8√
−λ

,

q6 =
p2p

2
8√
−λ

,

q7 =
p3p

2
8√
−λ

.

Therefore, assuming p8 6= 0 to ensure λ(ψ+) 6= 0, the requirement dψ± = 0 imposes
p1 = p2,

q′6 = 0,

q′7 = 0,

which implies λ ≥ 0.

Lemma 5.9. If h5 6= 0, p6 = 1, p8 = 0, then conditions (1)-(7) and (5.8) are incompatible.

Proof. From (5.8) and the closure of ψ+, one has

p3 = 0,

p4 = 0,

p1 = −p2,

from which it follows that λ = −4p2
2(p2

7 − 1) and

q5 = −2(p2
7 − 1)p2√
−λ

= −q6.

Thus q5 = q6 = 0, from (5.7), which would force λ to vanish.

We can then divide the discussion into the following cases:

1. h5 6= 0, p6 = 0,

2. h5 6= 0, p6 = 1,

3. h5 = 0, p6 = 0,

4. h5 = 0, p6 = 1.

We study each case separately.
Case (1). By (5.8), Lemma 5.8 and dψ+ = 0, it follows that p3 = p8 = h4 = 0. Then,

dψ− = 0 implies p1 = p2. Now, we have λ = 2p2
7(2p2

2 − p2
4). The compatibility condition
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ψ+ ∧ ω = 0 holds if and only if p2(h2 + h3) = 2h5p4. Then, if h2 6= −h3, we can write
p2 = 2p4h5

(h2+h3) . Therefore, (5.8) reduces to{
−p4p7(h2

2 + h2h3 − 4h2
5) = 0,

−p4p7(h2
3 + h2h3 − 4h2

5) = 0,

all of whose solutions imply λ ≥ 0. When h2 = −h3, the condition ψ+∧ω = 0 implies p4 = 0,
from which λ ≥ 0 follows.

Case (2). By Lemma 5.9, we can assume p8 6= 0. Then, by (5.8), we have

p1 = p2,

p4 = p2p8.

Moreover, since in this case λ = −2(p2
8 − 2)(p2p7 − p3)2, (5.8) implies h4 = 0 as well. Then,

(5.8) implies

(p2p7 − p3)(h2p8 − 2h5) = 0,

(p2p7 − p3)(h3p8 − 2h5) = 0,

from which it follows that h2 = h3 = 2h5p8 , since λ must not vanish. Then, ψ+ ∧ ω = 0 holds
if and only if p2

8 − 2 = 0, which would imply λ = 0.
Case (3). By (5.8) and Lemma 5.8, we have h4 = 0, which implies det(g) = h2

1h
2
2h

2
3.

Then, from (5.8), we also have
p3p8 = p4p7,

2p3p7 = −p4p8.
(5.9)

If p3, p8 6= 0, then (5.9) implies p2
8 + 2p2

7 = 0, which contradicts our hypothesis. If p8 = 0,
the closure of ψ+ implies p3 = 0. Then, we only need to discuss the remaining case, p3 = 0.
Supposing this is the case, we have that (5.9), together with Lemma 5.8, implies p4 = 0.
Under these hypotheses, one can easily compute λ = 2p1p2(2p2

7 + p2
8),

q5 =
(2p2

7 + p2
8)p1√

−λ
,

q6 =
(2p2

7 + p2
8)p2√

−λ
,

so that λ < 0 forces q5 6= q6, a contradiction.
Case (4). Here, the compatibility condition ψ+ ∧ ω = 0, which holds if and only if{

h2 = 2h4p7 − h3,

−h2p2 − h3p1 + 2h4p3 = 0,
(5.10)

together with (5.8), implies that one of the following must hold:

(4.a) h4 = 0,

(4.b) p4 = 0,
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(4.c) 2p2
7 + p2

8 = 2.

Let us start with case (4.a). By (5.10), we have h2 = −h3. In particular, since det(g) =
h2

1h
2
2h

2
3, we must have h3 6= 0. Then, a simple calculation show that dω2 = 0 is equivalent to

dω = 0. In case (4.b), by (5.10) and (5.8), we have

p1 = 2p3p7 − p2,

h2 = 2h4p7 − h3,

from which it follows that λ = −2(2p2
7 + p2

8 − 2)(−2p2p3p7 + p2
2 + p2

3). Moreover, one can
show that q5 = q6 implies p2 = p3p7. Now, (5.8) implies h4 = 0, which was already ruled out
in the previous case. In case (4.c), again by (5.10) and (5.8), we have

p1 = 2p3p7 + p4p8 − p2,

h2 = 2h4p7 − h3,

which implies λ = 0. This concludes case (b.1).

5.3.2 Case (c.3): g = su(3), k = su(2)

Consider the B̃-orthogonal basis of g given by

f1 =

0 i 0
i 0 0
0 0 0

 f2 =

 0 1 0
−1 0 0
0 0 0

 f3 =

i 0 0
0 −i 0
0 0 0

 f4 =

0 0 i
0 0 0
i 0 0


f5 =

 0 0 1
0 0 0
−1 0 0

 f6 =

0 0 0
0 0 i
0 i 0

 f7 =

0 0 0
0 0 1
0 −1 0

 f8 =
1√
3

i 0 0
0 i 0
0 0 −2i

.
Then, k = 〈f1, f2, f3〉. Let a := 〈f8〉 and n := 〈f4, f5, f6, f7〉. Hence, m = a⊕ n. Since the
Ad(K)-invariant irreducible modules in the decomposition of g are pairwise inequivalent, the
metric g on Mprinc is diagonal. In particular, it is of the form

g = dt2 + h(t)2B̃|a×a + f(t)2B̃|n×n,

for some positive h, f ∈ C∞(
◦
I). Moreover, with respect to the frame (ei)i=1,...,6 of Mprinc,

the structure equations are given by

de1 = 0, de2 = −
√

3e36, de3 =
√

3e26,

de4 = −
√

3e56, de5 =
√

3e46, de6 = −
√

3(e23 + e45).

Fix the volume form Ω = e1...6. One can easily show that a pair of generic G-invariant forms
(ω, ψ+) on Mprinc of degree two and three is given by

ω =h1 e
16 + h2 (e23 + e45) + h3 (e24 − e35) + h4(e25 + e34),

ψ+ =p1 (e123 + e145) + p2 (e124 − e135) + p3(e246 − e356) + p4(e236 + e456)

+ p5 (e125 + e134) + p6 (e256 + e346),
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with hi, pj ∈ C∞(
◦
I), i = 1, . . . , 4, j = 1, . . . , 6. As we did for case (b.1), we are going to show

that the system of equations resulting from imposing conditions (1)-(7) is incompatible. A
simple computation shows that dψ+ = 0 is equivalent to

p′6 − 2
√

3 p2 = 0,

p′3 + 2
√

3 p5 = 0,

p4 = p′4 = 0.

By the G-invariance,

ψ− :=q1 (e123 + e145) + q2 (e124 − e135) + q3(e246 − e356) + q4(e236 + e456)

+ q5 (e125 + e134) + q6 (e256 + e346),

where the qi’s are functions of p1, . . . , p6. Therefore, dψ− = 0 holds if and only if
q′6 − 2

√
3q2 = 0,

q′3 + 2
√

3q5 = 0,

q4 = q′4 = 0.

In particular, it follows from p4 = 0 that we have

q4 =
2(p2

3 + p2
6)p1√

−λ
,

with λ = −4(p2
1 (p2

3 + p2
6) + (p2 p6− p3 p5)2). We suppose that ψ+ is stable with λ < 0. Then,

q4 = 0 holds if and only if p1 = 0 does. Since p1 has to be equal to zero, it can be shown that
the compatibility condition ψ+ ∧ ω = 0 is equivalent to the following system of equations:{

h3p3 + h4p6 = 0,

h3p2 + h4p5 = 0.
(5.11)

Moreover, the positive-definiteness of g implies h1 > 0. Then, the normalization condition
ψ+ ∧ ψ− = 2

3ω
3 is equivalent to

|p2p6 − p3p5| = h1(h2
2 + h2

3 + h2
4). (5.12)

The balanced condition dω2 = 0 is satisfied if and only if

2
√

3h1h2 + (h2
2 + h2

3 + h2
4)′ = 0. (5.13)

Finally, the Kähler condition dω = 0 holds if and only if{
h3 = h4 = 0√

3h1 + h′2 = 0.
(5.14)

Multiplying (5.12) by h4 and using (5.11), we obtain h4h1(h2
2 + h2

3 + h2
4) = 0. Since h1 > 0

and h2 = h3 = h4 = 0 would imply ω3 = 0, we necessarily have h4 = 0. Then, (5.11) implies{
h3p3 = 0

h3p2 = 0,
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from which h3 = 0 follows, since p2 = p3 = 0 would imply λ = 0. Then, (5.13) reads
h2(
√

3h1 +h′2) = 0 and, since h2 6= 0, in order to have ω3 6= 0 we have
√

3h1 +h′2 = 0, forcing
dω = 0. Therefore, every G-invariant balanced SU(3)-structure on the corresponding M is
necessarily Kähler. This concludes case (c.3).

5.3.3 Case (a.1): g = su(2)⊕ 2R, k = {0}

Since k = {0}, we can write TpM ∼= 〈e1|p〉 ⊕ ĝ
∣∣
p
, for each p ∈ Mprinc. Moreover, every

k-form α on Mprinc of the form

α =
∑

1≤i1<...<ik≤6

αi1...ike
i1...ik ,

with αi1...ik ∈ C∞(
◦
I), is G-invariant. Let

ω =
∑

1≤i<j≤6

hije
ij , ψ+ =

∑
1≤i<j<k≤6

pijke
ijk (5.15)

be a pair of generic G-invariant forms on Mprinc of degree two and three, respectively, with

coefficients hij , pijk ∈ C∞(
◦
I). If we choose a B̃-orthogonal basis of su(2) with vectors of

constant norm, say

fi =

 ẽi

0

0

, i = 1, 2, 3,

and extend it to a basis (fi)i=1,...,5 of g, the structure equations with respect to the frame
(ei)i=1,...,6 of Mprinc are given by

de1 = 0, de2 = −2e34, de3 = 2e24, de4 = −2e23, de5 = 0, de6 = 0.

Fix the volume form Ω := −e1...6. We consider the forms given in (5.15) and set

p134 = p234 = 1,

p136 = p235 = p246 = −p145 = e2t,

h12 =
3

2

e4t

√
9 + 3e6t

,

h34 = −1

3

(
−3 +

√
9 + 3e6t

)
e−2t,

h35 = h36 = h46 = −h45 = 1,

h56 = 2e2t,

for each t ∈ (−1, 1), with all the other coefficients equal to zero. Then, by performing the
change of variable

t̃(t) :=

∫ t

0
a(s)ds, a(s) =

√
3

2
(9 + 3 e6t)−

1
4 e2t,
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one can easily check that the resulting pair (ω, ψ+) defines a G-invariant balanced non-Kähler
SU(3)-structure on the corresponding Mprinc. With respect to the t parameter, the metric
on Mprinc is represented by the matrix

(gij) =



3

2

e4t

√
9 + 3e6t

0 0 0 0 0

0
3

2

e4t

√
9 + 3e6t

0 0 0 0

0 0
3 +
√

9 + 3e6t

3e2t
0 1 −1

0 0 0
3 +
√

9 + 3e6t

3e2t
1 1

0 0 1 1 2e2t 0
0 0 −1 1 0 2e2t


.

However, using the results from [129], we can check that this example cannot be extended
to the singular orbits to give a smooth metric on the whole manifold. This concludes the
proof of Theorem 5.6.

We will finally prove our main theorem.

Theorem 5.10. Let M be a 6-dimensional simply connected cohomogeneity one manifold
under the almost effective action of a compact connected Lie group G. Then, M admits no
G-invariant balanced non-Kähler SU(3)-structures.

Proof. By Theorem 5.6, we only need to discuss whether there exist balanced non-Kähler
SU(3)-structures of cohomogeneity one arising as the compactification of the principal part
determined by the pair (g, k) = (su(2)⊕ 2R, {0}).

By [85], a 6-dimensional compact simply connected cohomogeneity one manifoldM whose
corresponding principal part is determined by the pair (g, k) = (su(2)⊕ 2R, {0}) at the Lie
algebra level is G-equivariantly diffeomorphic to the product of two 3-dimensional spheres,
i.e., M ∼= S3×S3. If we denote by Hi, i = 1, 2, the singular isotropy groups for the G-action
on M and by hi = Lie(Hi), i = 1, 2, their respective Lie algebras, we have that both h1

and h2 are isomorphic to R so that both the singular orbits of M are 4-dimensional compact
submanifolds of M . Letting bi be the i-th Betti number of M , then we have b4 = 0. By
Michelsohn’s obstruction ([106, Corollary 1.7]), if M admitted any 4-dimensional compact
complex submanifold S, thenM would not admit a balanced metric. Therefore, we can make
a few considerations by focusing on one tubular neighborhood of a singular orbit G ⊃ H ⊃ K
at a time. In particular, we divide the discussion depending on the immersion of h ⊂ g. Let
S be the singular orbit determined by the group diagram G ⊃ H ⊃ K. We notice that, if S is
J-invariant, a complex structure onM would give rise to a complex structure on S, so we can
discard all these cases by Michelsohn’s obstruction. In particular, we have TqM = TqS ⊕ V ,
where V = TqS

⊥ is the slice at q ∈ S. Since S is 4-dimensional, V is always a 2-plane. We
recall that the H-action on TqS is given by the adjoint representation, while the H-action
on V is given via slice representation. Since V is 2-dimensional, this action is just a rotation
on V of a certain speed, say a. Let us start by considering the case where h is contained in
the center of g, z(g). In this case, the H-action on TqS is trivial. Therefore, TqS ⊕ V are
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inequivalent modules of the H-action on TqM and, since J commutes with the H-action, J
preserves TqS for each q ∈ S, i.e., S is an almost complex submanifold of M and we may
apply Michelsohn’s obstruction to discard this case. Therefore, we may suppose that h has
a non-trivial component in the su(2)-factor of g. In particular, since rk(su(2)) = 1 and the
adjoint action ignores components in the center of g, we may assume h = 〈f1〉 without loss of
generality and using the notation from Section 5.3.3. Moreover, if we let m denote the tangent
space to S via the usual identification, the decomposition of m in irreducible H-modules is
given by

m = l0 ⊕ l1,
where H acts trivially on l0 and via rotation of speed d on l1. Therefore, when the integer a
is different from d, the modules l0, l1 and V are inequivalent for the H-action and must be
preserved by J , as a consequence. In particular, we have J(TqS) ⊆ TqS and we may apply
Michelsohn’s obstruction as before. For the remaining case a = d, we have that the two
modules l1 and V are equivalent, hence, J(l1 ⊕ V ) ⊆ l1 ⊕ V but not necessarily J(l1) ⊆ l1.
In particular, when this case occurs, the orbit S is not J-invariant and we do not have
obstructions to the existence of balanced metrics. Therefore, from now on, we assume this is
the case.

Let ∂/∂x be a vector field such that (ξ|q, ∂/∂x|q) is an orthonormal basis for the slice V
and T ∗qM = 〈e1|q, dx|q, e3|q, e4|q, e5|q, e6|q〉. Let ϕ : h ! End(TqM) be the h-action on TqM .
Then, in order to have l1 and V h-equivalent, up to rescaling f1, ϕ(f1)∗ acts on 1-forms given
in the previous basis as

ϕ(f1)∗ =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 − 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Fix the volume form Ω = e1...6 and consider the 3-form
ψ+ := p1e

123 + p2e
124 + p3e

125 + p4e
126 + p5e

134 + p6e
135 + p7e

136 + p8e
145

+ p9e
146 + p11e

234 + p12e
235 + p13e

236 + p14e
245 + p15e

246 + p16e
256

+ p17e
345 + p18e

346 + p19e
356 + p20e

456,

with pj ∈ C∞((−1, 1)), j = 1, . . . , 20.
The condition dψ+ = 0 is equivalent to the following ode system:

p′11 = 0,

p′12 + 2p8 = 0,

p′13 + 2p9 = 0,

p′14 − 2p6 = 0,

p′15 − 2p7 = 0,

p′17 + 2p3 = 0,

p′18 + 2p4 = 0,

p16 = p19 = p20 = 0.

(5.16)
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From now on, we shall assume p16 = p19 = p20 = 0.
Let the slice be V ∼= R2, so that the singular point q ∈ O1 is identified with 0 ∈ R2, and

let r : V ! R be the radial distance, such that for v = (v1, v2) ∈ V , r(v) = |v| =
√
v2

1 + v2
2.

Then, r 6∈ C∞(V ) and neither are the odd powers of r. Via the exponential map, we can
identify t+ 1 with the radial distance r.

Let α be a G-invariant 1-form on M . Then,

α(t) =

6∑
i=1

αi(t)e
i,

for t ∈ (−1, 1) and some smooth functions αi, i = 1, ..., 6. This expression has to extend
smoothly to t = −1. In particular, the Taylor expansion of αk(t) around t = −1 for k ≥ 2
only has even powers of (t+ 1):

αk(t) ∼
∑
n>1

ak,2n(t+ 1)2n.

Now, for 2 ≤ i < j < k ≤ 6 fixed, the eijk-coefficients extend smoothly to t = −1. Hence,

p12(t) ∼
∑
n>1

a2n(t+ 1)2n,

with analogous expressions holding for p13(t), p14(t) and p15(t) around t = −1. Therefore,
we have limt!−1 p

′
12(t) = limt!−1 p

′
13(t) = limt!−1 p

′
14(t) = limt!−1 p

′
15(t) = 0. From (5.16),

we obtain limt!−1 p6(t) = limt!−1 p7(t) = limt!−1 p8(t) = limt!−1 p9(t) = 0.
The 3-form ψ+ at t = 0 has to be H-invariant, hence it can be written as

ρ = c3e
1 ∧ dx ∧ e5 + c4e

1 ∧ dx ∧ e6 + c6e
135 + c7e

136

+ c8e
145 + c9e

146 − c8dx ∧ e35 − c9dx ∧ e36

+ c6dx ∧ e45 + c7dx ∧ e46 + c17e
345 + c18e

346,

for some c3, c4, c6, c7, c8, c9, c17, c18 ∈ R. But ci = limt!−1 pi(t) = 0 for i = 6, 7, 8, 9. There-
fore, one can easily compute

λ|t=−1 = (c18c3 − c17c4)2 ≥ 0.

This concludes case (a.1).
We note that it is possible to reach a contradiction just by studying the behaviour around

one of the singular orbits. However, if we do not use the information coming fromMichelsohn’s
obstruction, the computations get significantly more complicated. The main point is that
dψ− = 0 and the stability condition λ < 0 imply p10 = 0. If we assume this too, the 3-form
ψ+ at t = −1 can be written as

ρ = c1e
1 ∧ dx ∧ e3 + c2e

1 ∧ dx ∧ e4 + c3e
1 ∧ dx ∧ e5 + c4e

1 ∧ dx ∧ e6

+ c5e
134 + c6e

135 + c7e
136 + c8e

145 + c9e
146

+ c11dx ∧ e34 + c12dx ∧ e35 + c13dx ∧ e36 + c14dx ∧ e45 + c15dx ∧ e46

+ c17e
345 + c18e

346,

for some ci ∈ R, i = 1, . . . , 18, i 6= 10, 16. Then, once again, we obtain λ|t=−1 = (c18c3 −
c17c4)2 ≥ 0 concluding the case.
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Remark 5.11. In case (a.1) and when h = R, we also note that we can remove the hypothesis
of simply connectedness from the non-compact case and still get a non-existence result. Let
M be a 6-dimensional non-compact cohomogeneity one manifold under the almost effective
action of a compact connected Lie group G and letK,H be the principal and singular isotropy
groups, respectively, with (g, h, k) = (su(2)⊕ 2R,R, {0}). Then, M admits no G-invariant
balanced non-Kähler SU(3)-structures.

Remark 5.12. In [66], balanced metrics were constructed on the connected sum of k ≥ 2
copies of S3 × S3. However, it is not known whether S3 × S3 admits balanced structures.
In [106, Example 1.8], Michelsohn proved that S3 × S3 endowed with the Calabi–Eckmann
complex structure does not admit any compatible balanced metrics. By [4, Remark 1], in a
manifold with six real dimensions, there is no non-Kähler Hermitian metric which is simul-
taneously balanced and strong Kähler-with-torsion (a.k.a. SKT). In [60], Fino and Vezzoni
conjectured that on non-Kähler compact complex manifolds it is never possible to find an
SKT metric and also a balanced metric. In [74], an example of an SKT structure on S3× S3

was provided. The key case that needed to be tackled in Theorem 5.10 was precisely S3×S3.

From Theorem 5.10, we get the following corollary.

Corollary 5.13. There are no non-Kähler balanced SU(3)-structures on S3 × S3 which are
invariant under a cohomogeneity one action.

Remark 5.14. In the non-simply-connected case, by Theorem 5.6, we can discard cases (b.1)
and (c.3), as these do not admit local solutions to conditions (1)–(7). Moreover, as observed
in [117, Section 3], one can also rule out cases (b.3) and (c.2), as the G-action would not be
almost effective, as well as case (c.1) since it would give rise to a 3-dimensional J-invariant
subspace, a contradiction.



Chapter 6

Appendix 1

Table 6.1 contains the isomorphism classes of 6-dimensional real nilpotent Lie algebras
gi, i = 1, . . . , 34, including their first Betti numbers and an indication of whether they
admit half-flat structures and symplectic forms. Explicit examples of mean convex closed
SU(3)-structures on these Lie algebras, whenever they exist, are given in Table 6.3. We also
indicate which ones are half-flat. Table 6.2 contains all 6-dimensional symplectic solvable
(non-nilpotent) unimodular Lie algebras, up to isomorphism, specifying which ones admit
tamed closed SL(3,C)-structures.

91
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Table 6.1: 6-dimensional real nilpotent Lie algebras, up to isomorphism

g Structure constants b1(g) Half-flat Symplectic

g1 (0, 0, e12, e13, e14 + e23, e34 − e25) 2 – –

g2 (0, 0, e12, e13, e14, e34 − e25) 2 – –

g3 (0, 0, e12, e13, e14, e15) 2 – 3

g4 (0, 0, e12, e13, e14 + e23, e24 + e15) 2 3 3

g5 (0, 0, e12, e13, e14, e23 + e15) 2 – 3

g6 (0, 0, e12, e13, e23, e14) 2 3 3

g7 (0, 0, e12, e13, e23, e14 − e25) 2 3 3

g8 (0, 0, e12, e13, e23, e14 + e25) 2 3 3

g9 (0, 0, 0, e12, e14 − e23, e15 + e34) 3 3 3

g10 (0, 0, 0, e12, e14, e15 + e23) 3 3 3

g11 (0, 0, 0, e12, e14, e15 + e23 + e24) 3 3 3

g12 (0, 0, 0, e12, e14, e15 + e24) 3 3 3

g13 (0, 0, 0, e12, e14, e15) 3 3 3

g14 (0, 0, 0, e12, e13, e14 + e35) 3 3 –

g15 (0, 0, 0, e12, e23, e14 + e35) 3 3 –

g16 (0, 0, 0, e12, e23, e14 − e35) 3 3 –

g17 (0, 0, 0, e12, e14, e24) 3 – –

g18 (0, 0, 0, e12, e13 − e24, e14 + e23) 3 – 3

g19 (0, 0, 0, e12, e14, e13 − e24) 3 – 3

g20 (0, 0, 0, e12, e13 + e14, e24) 3 – 3

g21 (0, 0, 0, e12, e13, e14 + e23) 3 3 3

g22 (0, 0, 0, e12, e13, e24) 3 3 3

g23 (0, 0, 0, e12, e13, e14) 3 – 3

g24 (0, 0, 0, e12, e13, e23) 3 3 3

g25 (0, 0, 0, 0, e12, e15 + e34) 4 3 –

g26 (0, 0, 0, 0, e12, e15) 4 – 3

g27 (0, 0, 0, 0, e12, e14 + e25) 4 3 3

g28 (0, 0, 0, 0, e13 − e24, e14 + e23) 4 3 3

g29 (0, 0, 0, 0, e12, e14 + e23) 4 3 3

g30 (0, 0, 0, 0, e12, e34) 4 3 3

g31 (0, 0, 0, 0, e12, e13) 4 3 3

g32 (0, 0, 0, 0, 0, e12 + e34) 5 3 –

g33 (0, 0, 0, 0, 0, e12) 5 3 3

g34 (0, 0, 0, 0, 0, 0) 6 3 3
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Table 6.2: 6-dimensional unimodular solvable non-nilpotent Lie algebras admitting symplectic
structures, up to isomorphism [47, 103].

g Structure equations decomposable Tamed closed SL(3,C)-structure

g0,−1
6,3 (e26, e36, 0, e46,−e56, 0)

g0,0
6,10 (e26, e36, 0, e56,−e46, 0)

g
−1, 1

2
,0

6,13 (−1
2e

16 + e23,−e26, 1
2e

36, e46, 0, 0) X

g
1
2
,−1,0

6,13 (−1
2e

16 + e23, 1
2e

26,−e36, e46, 0, 0) X

g−1
6,15 (e23, e26,−e36, e26 + e46, e36 − e56, 0)

g−1,−1
6,18 (e23,−e26, e36, e36 + e46,−e56, 0)

g0
6,21 (e23, 0, e26, e46,−e56, 0)

g0,0
6,36 (e23, 0, e26,−e56, e46, 0)

g0
6,38 (e23,−e36, e26, e26 − e56, e36 + e46, 0) 3

g0,−1
6,54 (e16 + e35,−e26 + e45, e36,−e46, 0, 0) 3

g0,0
6,70 (−e26 + e35, e16 + e45,−e46, e36, 0, 0)

g6,78 (−e16 + e25, e45, e24 + e36 + e46, e46,−e56, 0)

g0,−1,−1
6,118 (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0) 3

n±1
6,84 (−e45,−e15 − e36,−e14 + e26 ∓ e56, e56,−e46, 0)

e(2)⊕ e(2) (0,−e13, e12, 0,−e46, e45) X

e(1, 1)⊕ e(1, 1) (0,−e13,−e12, 0,−e46,−e45) X 3

e(2)⊕ R3 (0,−e13, e12, 0, 0, 0) X

e(1, 1)⊕ R3 (0,−e13,−e12, 0, 0, 0) X

e(2)⊕ e(1, 1) (0,−e13, e12, 0,−e46,−e45) X

e(2)⊕ h3 (0,−e13, e12, 0, 0, e45) X

e(1, 1)⊕ h3 (0,−e13,−e12, 0, 0, e45) X

A−1,β,−β
5,7 ⊕ R (e15,−e25, βe35,−βe45, 0, 0), −1 ≤ β < 0 X 3

A−1
5,8 ⊕ R (e25, 0, e35,−e45, 0, 0) X

A−1,0,γ
5,13 ⊕ R (e15,−e25, γe45,−γe35, 0, 0), γ > 0 X

A0
5,14 ⊕ R (e25, 0, e45,−e35, 0, 0) X

A−1
5,15 ⊕ R (e15 + e25, e25,−e35 + e45,−e45, 0, 0) X

Aα,−α,15,17 ⊕ R (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0), α > 0 X 3

A0,0,γ
5,17 ⊕ R (e25,−e15, γe45,−γe35, 0, 0), 0 < γ < 1 X

A0,0,1
5,17 ⊕ R (e25,−e15, e45,−e35, 0, 0) X 3

A0
5,18 ⊕ R (e25 + e35,−e15 + e45, e45,−e35, 0, 0) X

A−1,2
5,19 ⊕ R (−e15 + e23, e25,−2e35, 2e45, 0, 0) X
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Table 6.3: Explicit examples of mean convex closed SU(3)-structures

g Mean convex closed SU(3)-structures Half-flat structures Half-flat mean convex structures

g1 – – –

g2 – – –

g3
ω = −e12 − e35 − e46

ρ = −5
4e

136 + 5
4e

145 − e156 − e234 − e236 + e245
– –

g4 – 3 –

g5
ω = −e12 − e35 − e46

ρ = 1
2e

134 − e156 − e236 + 2e245
– –

g6
ω = e15 − e24 − e36

ρ = e123 − e134 − e146 − e235 − e256 − e345
3 3

g7
ω = −1

2e
15 + 1

2e
24 − 3

2e
36

ρ = −3
4e

123 + 1
3e

134 − e146 + 1
12e

235 − 1
4e

256 + 3
4e

345
3 3

g8
ω = e15 − e24 − 1

2e
36

ρ = e123 − e134 − 1
2e

146 − e235 − 1
2e

256 − e345
3 3

g9 – 3 –

g10
ω = −1

2e
13 + e46 − e25

ρ = e124 − e145 + e156 − 1
2e

234 − 1
2e

236 + 1
2e

345
3 3

g11
ω = 5

4e
13 + 28

3 e
24 + e25 − 82

15e
26 + 5

4e
34 + e35 + e45 + 14

3 e
46 + e56

ρ = 2e125 + e126 − 5
4e

134 + e136 + e146 + e156 − e236 + e245 − e246
3 –

g12 – 3 –

g13
ω = e13 + e46 + e25

ρ = −e124 + e145 + e156 + e234 − e236 − e345
3 3

g14
ω = e13 − e26 + e45

ρ = −e125 − e146 + e234 + e356
3 –

g15
ω = e15 + e34 − e26

ρ = e123 + e136 − e146 + e235 − e245 + e356
3 3

g16
ω = e13 + e26 − e45

ρ = 2e124 −
√

2
2 e

156 − e235 +
√

2
2 e

346
3 3

g17
ω = e12 + e34 + e56

ρ = −e135 + 2e146 + e236 + 1
2e

245
– –

g18
ω = e12 − e34 − e56

ρ = e135 −
√

5
2 e

146 +
√

5
2 e

236 + e245 + e246
– –

g19
ω = −e12 + e34 − e56

ρ = e135 + e146 − e236 + e245
– –

g20
ω = −e12 − e34 + e56

ρ = −e135 − e146 + e235 − e236 + e245 + e246
– –

g21
ω = −e12 − e34 + e56

ρ = −2e136 + e145 + 1
2e

235 + e246
3 –

g22
ω = e16 + e23 + e45

ρ = e124 − e135 − e256 − e346
3 3

g23
ω = e12 + e34 + e56

ρ = 2e136 + 1
2e

145 + e235 − e246
– –

g24
ω = −e16 + e25 − e34

ρ = −e123 + e145 + e246 + e356
3 3

g25
ω = −e13 + e45 + e26

ρ = e156 + e124 − e235 − e346
3 3

g26
ω = e16 + e23 − e36 + e45

ρ = −2e124 + e135 + e146 − e234 + e256
– –

g27
ω = −

√
3

2 e
12 − e45 + e36

ρ = e135 + e146 + e234 + e235 − e256
3 –

g28
ω = −e12 − e34 + e56

ρ = −e136 + e145 + e235 + e246
3 3

g29
ω = e13 + e24 − e56

ρ = e126 − e145 + e235 − e346
3 3

g30
ω = e13 − e24 + e56

ρ = e125 − e126 + e145 + e146 + e236 + e345
3 3

g31
ω = −e14 − e35 + e26

ρ = −e123 + e156 − e245 − e346
3 3

g32
ω = −

√
2e13 − e24 − e56

ρ = −e125 + e146 − e236 + 2e345
3 3

g33
ω = −e13 − e24 − e56

ρ = −e125 + e146 − e236 + e345
3 3

g34 – 3 –
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Appendix 2

In this appendix, the reader can find the Maple instructions used to derive the main
results of Chapter 2.

restart;
with(LinearAlgebra); with(difforms);

for i to 6 do defform(e[i] = 1) end do;
for i to 6 do defform(dw[i] = 1) end do;

Sign := proc (p::list) local i, j, n, N; n := nops(p); N := 0;
for i to n-1 do for j from i+1 to n do
if p[j] < p[i] then N := N+1 end if end do end do;
‘if‘(N::even, 1, -1) end proc:

# Procedure to order wedge products
ord := proc (form) local i, j, k, l, m, n, list1, list2, res, temp; res := 0;
temp := simpform(form);
if wdegree(temp) = 2 then for i to 6 do for j to 6 do
if simpform(&^(e[i], e[j])) <> 0 then list1 := [i, j]; list2 := sort(list1);
res := res+Sign(list1)*coeff(temp, &^(e[i], e[j]))*&^(e[list2[1]], e[list2[2]])
+Sign(list1)*coeff(temp, &^(dw[i], dw[j]))*&^(dw[list2[1]], dw[list2[2]])
end if end do end do
elif wdegree(temp) = 3 then for i to 6 do for j to 6 do for k to 6 do
if simpform(&^(&^(e[i], e[j]), e[k])) <> 0 then list1 := [i, j, k];
list2 := sort(list1); res := res+Sign(list1)*coeff(temp, &^(&^(e[i], e[j]), e[k]))
*&^(&^(e[list2[1]], e[list2[2]]), e[list2[3]])
+Sign(list1)*coeff(temp, &^(&^(dw[i], dw[j]), dw[k]))
*&^(&^(dw[list2[1]], dw[list2[2]]), dw[list2[3]])
end if end do end do end do
elif wdegree(temp) = 4 then
for i to 6 do for j to 6 do for k to 6 do for l to 6 do
if simpform(&^(&^(&^(e[i], e[j]), e[k]), e[l])) <> 0 then
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list1 := [i, j, k, l]; list2 := sort(list1);
res := res+Sign(list1)*coeff(temp, &^(&^(&^(e[i], e[j]), e[k]), e[l]))
*&^(&^(&^(e[list2[1]], e[list2[2]]), e[list2[3]]), e[list2[4]])
+Sign(list1)*coeff(temp, &^(&^(&^(dw[i], dw[j]), dw[k]), dw[l]))
*&^(&^(&^(dw[list2[1]], dw[list2[2]]), dw[list2[3]]), dw[list2[4]])
end if end do end do end do end do
elif wdegree(temp) = 5 then
for i to 6 do for j to 6 do for k to 6 do for l to 6 do for m to 6 do
if simpform(&^(&^(&^(&^(e[i], e[j]), e[k]), e[l]), e[m])) <> 0 then
list1 := [i, j, k, l, m]; list2 := sort(list1);
res := res+Sign(list1)*coeff(temp, &^(&^(&^(&^(e[i], e[j]), e[k]), e[l]), e[m]))
*&^(&^(&^(&^(e[list2[1]], e[list2[2]]), e[list2[3]]), e[list2[4]]), e[list2[5]])
+Sign(list1)*coeff(temp, &^(&^(&^(&^(dw[i], dw[j]), dw[k]), dw[l]), dw[m]))
*&^(&^(&^(&^(dw[list2[1]], dw[list2[2]]), dw[list2[3]]), dw[list2[4]]), dw[list2[5]])
end if end do end do end do end do end do
elif wdegree(temp) = 6 then
for i to 6 do for j to 6 do for k to 6 do for l to 6 do for m to 6 do for n to 6 do
if simpform(&^(&^(&^(&^(&^(e[i], e[j]), e[k]), e[l]), e[m]), e[n])) <> 0 then
list1 := [i, j, k, l, m, n]; list2 := sort(list1);
res := res+Sign(list1)
*coeff(temp, &^(&^(&^(&^(&^(e[i], e[j]), e[k]), e[l]), e[m]), e[n]))
*&^(&^(&^(&^(&^(e[list2[1]], e[list2[2]]), e[list2[3]]), e[list2[4]]),
e[list2[5]]), e[list2[6]])
+Sign(list1)*coeff(temp, &^(&^(&^(&^(&^(dw[i], dw[j]), dw[k]), dw[l]), dw[m]), dw[n]))
*&^(&^(&^(&^(&^(dw[list2[1]], dw[list2[2]]), dw[list2[3]]), dw[list2[4]]),
dw[list2[5]]), dw[list2[6]])
end if end do end do end do end do end do end do end if;
simpform(res) end proc:

# Procedure to differentiate differential forms
dform := proc (form) local i, j, k, temp, res;
res := 0; temp := simpform(form);
if wdegree(temp) = 2 then for i to 6 do for j to 6 do
if simpform(&^(e[i], e[j])) <> 0 then
res := res+coeff(temp, &^(e[i], e[j]))*(&^(de[i], e[j])-&^(e[i], de[j]))
end if end do end do
elif wdegree(temp) = 3 then for i to 6 do for j to 6 do for k to 6 do
if simpform(&^(&^(e[i], e[j]), e[k])) <> 0 then
res := res+coeff(temp, &^(&^(e[i], e[j]), e[k]))
*(&^(&^(de[i], e[j]), e[k])-&^(&^(e[i], de[j]), e[k])+&^(&^(e[i], e[j]), de[k]))
end if end do end do end do end if; ord(res) end proc:

# Chosen orientation
Omega := &^(&^(&^(&^(&^(e[1], e[2]), e[3]), e[4]), e[5]), e[6]):
orient := coeff(Omega, &^(&^(&^(&^(&^(e[1], e[2]), e[3]), e[4]), e[5]), e[6])):
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for i to 20 do defform(p[i] = const) end do;

# Generic 3-form psip:=psi_plus
psip := p[1]*&^(e[1], e[2], e[3])+p[2]*&^(e[1], e[2], e[4])
+p[3]*&^(e[1], e[2], e[5])+p[4]*&^(e[1], e[2], e[6])
+p[5]*&^(e[1], e[3], e[4])+p[6]*&^(e[1], e[3], e[5])
+p[7]*&^(e[1], e[3], e[6])+p[8]*&^(e[1], e[4], e[5])
+p[9]*&^(e[1], e[4], e[6])+p[10]*&^(e[1], e[5], e[6])
+p[11]*&^(e[2], e[3], e[4])+p[12]*&^(e[2], e[3], e[5])
+p[13]*&^(e[2], e[3], e[6])+p[14]*&^(e[2], e[4], e[5])
+p[15]*&^(e[2], e[4], e[6])+p[16]*&^(e[2], e[5], e[6])
+p[17]*&^(e[3], e[4], e[5])+p[18]*&^(e[3], e[4], e[6])
+p[19]*&^(e[3], e[5], e[6])+p[20]*&^(e[4], e[5], e[6]):

# Structure constants
de[1] := [###]:
de[2] := [###]:
de[3] := [###]:
de[4] := [###]:
de[5] := [###]:
de[6] := [###]:

# Compute d(psip) and impose its vanishing
dform(psip)

# Construct the induced almost complex structure
for i to 6 do K1[i] := 0 end do;
for i to 6 do for j to 6 do for k from j+1 to 6 do
if simpform(&^(&^(e[i], e[j]), e[k])) <> 0 then
K1[i] := simpform(K1[i]+coeff(psip, &^(&^(e[i], e[j]), e[k]))*&^(e[j], e[k]));
if simpform(&^(&^(e[j], e[i]), e[k])) <> 0 then
K1[i] := simpform(K1[i]-coeff(psip, &^(&^(e[j], e[i]), e[k]))*&^(e[j], e[k]));
if simpform(&^(&^(e[j], e[k]), e[i])) <> 0 then
K1[i] := simpform(K1[i]+coeff(psip, &^(&^(e[j], e[k]), e[i]))*&^(e[j], e[k]))
end if end if end if end do end do end do;
for i to 6 do K1[i] := ord(&^(K1[i], psip)) end do:

for i to 6 do
K2[i] := orient
*simpform(coeff(K1[i], &^(&^(&^(&^(e[2], e[3]), e[4]), e[5]), e[6]))*e[1]
-coeff(K1[i], &^(&^(&^(&^(e[1], e[3]), e[4]), e[5]), e[6]))*e[2]
+coeff(K1[i], &^(&^(&^(&^(e[1], e[2]), e[4]), e[5]), e[6]))*e[3]
-coeff(K1[i], &^(&^(&^(&^(e[1], e[2]), e[3]), e[5]), e[6]))*e[4]
+coeff(K1[i], &^(&^(&^(&^(e[1], e[2]), e[3]), e[4]), e[6]))*e[5]



98 CHAPTER 7. APPENDIX 2

-coeff(K1[i], &^(&^(&^(&^(e[1], e[2]), e[3]), e[4]), e[5]))*e[6]) end do:

K := Matrix(6):
for i to 6 do for j to 6 do K[i, j] := -coeff(K2[j], e[i]) end do end do:

lambda := factor((1/6)*Trace(K.K)):

J := simplify(DiagonalMatrix([1/sqrt(-lambda), 1/sqrt(-lambda), 1/sqrt(-lambda),
1/sqrt(-lambda), 1/sqrt(-lambda), 1/sqrt(-lambda)]).K):

for i to 6 do Je[i] := 0 end do:
for i to 6 do for j to 6 do Je[i] := J[i, j]*e[j]+Je[i] end do end do:

# Construct psim:=J(psip)
psim := 0:
for i to 6 do for j from i+1 to 6 do for k from j+1 to 6 do
psim := ord(psim+coeff(psip, &^(&^(e[i], e[j]), e[k]))*&^(&^(Je[i], Je[j]), Je[k]))
end do end do end do:

# For simplicity, multiply d(psim) by sqrt(-lambda)
dpsim2 := ord(sqrt(-lambda)*dform(psim)):

# Construct a basis of the form {e_i,Je_i,e_j,Je_j,e_k,Je_k}
# To do so, choose three indices {i,j,k}
# and build the change of basis
listJ := [###]:
M := Matrix(6);
M[listJ[1], 1] := 1; M[listJ[2], 3] := 1; M[listJ[3], 5] := 1;
for i to 6 do M[i, 2] := J[i,listJ[1]];
M[i, 4] := J[i,listJ[2]]; M[i, 6] := J[i,listJ[3]] end do:

# Make sure det(M) is non-zero
Determinant(M)

Q := simplify(MatrixInverse(M)):

# Rewrite dpsim2 in complex coordinates, obtaining dpsim3
# dw[i], i=1,2,3, are (1,0)-forms
# dw[i], i=4,5,6, are their conjugate (0,1)-forms
h[1] := 1/2*(dw[1]+dw[4]): h[2] := (I*(1/2))*(dw[1]-dw[4]):
h[3] := 1/2*(dw[2]+dw[5]): h[4] := (I*(1/2))*(dw[2]-dw[5]):
h[5] := 1/2*(dw[3]+dw[6]): h[6] := (I*(1/2))*(dw[3]-dw[6]):
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for i to 6 do g[i] := 0 end do:
for i to 6 do for j to 6 do g[i] := Q[j, i]*h[j]+g[i] end do end do:
dpsim3 := 0:
for i to 6 do for j from i+1 to 6 do
for k from j+1 to 6 do for l from k+1 to 6 do
dpsim3 := ord(dpsim3+coeff(dpsim2, &^(&^(&^(e[i], e[j]), e[k]), e[l]))
*&^(&^(&^(g[i], g[j]), g[k]), g[l])) end do end do end do end do:

# Construct the (1,1)-form beta associated with dpsim3
beta := 0:
for i to 6 do for j from i+1 to 6 do for k from j+1 to 6 do
for l from k+1 to 6 do for r to 6 do for s from r+1 to 6 do
if &^(&^(dw[i], dw[j], dw[k], dw[l]), dw[r], dw[s]) <> 0 then
beta := ord(beta+Sign([i, j, k, l, r, s])
*(2*I)*&^(coeff(dpsim3, &^(dw[i], dw[j], dw[k], dw[l])), dw[r], dw[s]))
end if end do end do end do end do end do end do:

# Construct the 3x3 matrix B associated with beta
B := Matrix(3):
for i to 3 do for j to 3 do
B[i, j] := -(2*I)*coeff(beta, &^(dw[i], dw[j+3])) end do end do:

# Using Sylvester’s criterion, check if B is positive semidefinite
# via its principal minors
B[1, 1]

B[2, 2]

B[3, 3]

Determinant(SubMatrix(B, [1, 2], [1, 2]))

Determinant(SubMatrix(B, [1, 3], [1, 3]))

Determinant(SubMatrix(B, [2, 3], [2, 3]))

Determinant(B)
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