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Algebraic numbers close to 1: results and methods.

Francesco Amoroso

§1 Introduction.

Let α 6= 1 be an algebraic number and denote by F (x) = a(x−α1) · · · (x−αd)
(a > 0) its minimal polynomial over Z. We are interested in lower bounds for |α−1|
depending on the degree d of α and on its Mahler measure

M(α) = M(F ) = a

d∏
h=1

max(|αh|, 1).

Liouville’s inequality gives

log |α− 1| ≥ −(d− 1) log 2− logM(α). (1.1)

This bound is sharp ifM(α) is large, say logM(α) ≥ (constant)×d. Otherwise, bet-
ter results are known, obtained using two different methods. In 1979 M. Mignotte
[M1] gave the lower bound:

log |α− 1| ≥ −4
√
d log(4d) (1.2)

provided that M(α) ≤ 2. In this range, (1.2) improves (1.1) by a factor
√
d(log d)−1.

To prove (1.2), Mignotte applied the Gel’fond method. He used Siegel’s Lemma to
construct a polynomial P with integer coefficients and low height vanishing at 1 with
relatively high multiplicity. Then (1.2) follows by applying Liouville’s inequality.

Recently M. Mignotte and M. Waldschmidt [MW] improved (1.2) by finding
for any µ > logM(α) the lower bound

log |α− 1| ≥ −3

2

√
dµ log+(d/µ)− 2µ− log+(d/µ), (1.3)

where log+ x = max(log x, 0) (x > 0). The approach of M. Mignotte and M.
Waldschmidt differs from Mignotte’s paper essentially by two arguments: firstly,
they use the Schneider method; secondly they employ an interpolation determinant,
which avoids the use of Siegel’s Lemma.

The inequality (1.3) was slightly improved upon by Y. Bugeaud, M. Mignotte
and F. Normandin [BMN] and by A. Dubickas [Du], who found better values for
the constants involved, also giving simpler proofs.
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Algebraic numbers close to 1.

The aim of this paper is to briefly describe the crucial steps in the proofs of
these lower bounds. In section 2 we first describe Mignotte’s approach (Gel’fond’s
method and Siegel’s Lemma: Theorem 2.1). Then we study the relation between
the behaviour of the height of a product of cyclotomic polynomials with prescribed
vanishing at 1 and the lower bounds for |α − 1| (Theorem 2.2). This allows us to
describe the limit of Gel’fond’s method. We also show that the determinant which
appears in Mignotte and Waldschmidt’s approach (Schneider’s method and inter-
polation determinant) is a product of cyclotomic polynomials with high vanishing
at 1 and low height, hence a “good” auxiliary function for Gel’fond’s method. This
remark gives, by using Theorem 2.2, an alternative proof of the main result of
[MW] (Theorem 2.3). In section 3 we describe the main result of [A2], an explicit
construction of algebraic numbers close to 1, which shows that the inequality (1.3)
is almost sharp. Finally, in section 4 we discuss a generalization in several variables
of these results.

Acknowledgements. I am indebted to Michel Waldschmidt for his encourage-
ment during a discussion we had at the airport of Madras. The main part of
this paper was written during the International Conference on Discrete Mathemat-
ics and Number Theory which took place in Tiruchiripally, India, in January 3-6,
1996. I am grateful to the organizers, especially to R. Balakrishnan, K. Murty and
M. Waldschmidt. I am also indebted to Yann Bugeaud for his useful remarks.

§2 1-dimensional results.

In this section we shall prove bounds of the shape |α−1| ≥ f
(
degα,M(α)

)
. In

order to prove such a bound, we assume |α| ≤ 1, since otherwise β = 1/α satisfies
|β| < 1, |β − 1| ≤ |α − 1|, deg β = deg α and M(β) = M(α). Obviously, we also
assume α 6= 0.

We start with Mignotte’s approach, which uses Gel’fond ’s method and Siegel’s
Lemma.

First step: construction of the auxiliary function.
Let m < N be two positive integers; the Bombieri and Vaaler version of Siegel’s

Lemma (see [BV], Theorem 1) gives a non-zero polynomial P ∈ Z[x] of degree < N ,
vanishing at 1 with multiplicity m(P ) ≥ m and such that its height H(P ) (i.e. the
maximum modulus of its coefficients) satisfies the inequality (1)

logH(P ) ≤ m2

2(N −m)
log

cN

m
, c =

1

4
exp

3

2
.

Since the maximum modulus |P | of P on the unit circle is bounded by N ·H(P ),
we deduce the inequality

log |P | ≤ m2

2(N −m)
log

cN

m
+ logN. (2.1)

(1) By using the box-principle we easily obtain the weaker estimate

logH(P ) ≤ m(m+ 1)

2(N −m)
logN.

The bound of [BV] allows us to save a factor
√

2 in Theorem 2.1.
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Algebraic numbers close to 1.

Second step: multiplicity estimate.
To ensure that P (α) 6= 0 we must have N ≤ m+ d. It is convenient to choose

N as large as possible: therefore we fix N = m+ d.

Third step: maximum principle.
Let P be any polynomial of degree ≤ N , vanishing at 1 with multiplicity ≥ m

such that P (α) 6= 0. For any embedding σ:Q(α)→ C we have

|σP (α)| ≤ max{1, |σα|}N |P |. (2.2)

Moreover, by the maximum principle on the disk |z| = N/(N −m),

|P (α)| ≤ |α− 1|m NN

mm(N −m)N−m
|P | ≤ |α− 1|m

(
eN

m

)m
|P |. (2.3)

Since P (α) 6= 0, the inequalities (2.2) and (2.3) together give

1 ≤ aN
∏
σ

|σP (α)| ≤ |α− 1|m
(
eN

m

)m
M(α)N |P |d,

whence we obtain

− log |α− 1| ≤ 1 + log
N

m
+
N

m
logM(α) +

d

m
log |P |. (2.4)

Last step: choice of the parameter m.
Substituting (2.1) and the contraint N = m+ d into (2.4), we obtain

− log |α− 1| ≤ log(2eM(α)) +
d

m
log(2dM(α)) +

m

2
log

2cd

m
(2.5)

for any positive integer m ≤ d. We choose

m = 1 +

[
2

√
d log(2dM(α))

log(2d)

]
.

Assume first 2
√
d log(2dM(α)) < d

√
log(2d). Then m ≤ d and (2.5) yields, using

the inequality 2cd/m ≤ c
√
d <
√

2d,

− log |α− 1| < log(2eM(α)) +
1

4
log(2d) +

√
d log(2d) log(2dM(α)). (2.6)

Otherwise, if 2
√
d log(2dM(α)) ≥ d

√
log(2d), the right hand side of (2.6) is

≥ logM(α) +
1

2
d log(2d) > logM(α) + (d− 1) log 2

and Liouville’s inequality (1.1) implies (2.6). Therefore, (2.6) holds in any case.
We have proved:

3



Algebraic numbers close to 1.

Theorem 2.1.
Let α 6= 1 be an algebraic number of degree d. Then

|α− 1| ≥ 2−5/4e−1d−1/4M(α)−1 exp
{
−
√
d log(2d) log(2dM(α))

}
.

It can be shown that any polynomial with integer coefficients having small
degree and high vanishing at 1 must also vanish at several roots of unity (see [BV],
section 5, and [A1]).

Let α = exp(2jπi/k) be a primitive k-th root of unity (k > 1). Then d =
deg α = φ(k) and |α − 1| = 2| sin(jπ/k)| ≥ 2 sin(π/k). Since sinx ∼ x for x → 0
and

lim inf
k→+∞

φ(k) log log k

k
= e−γ

where γ is Euler’s constant (see [HW] , Theorem 328), we have

|α− 1| ≥
(
1 + od(1)

)2π

eγ
(d log log d)−1 (2.7)

where od(1) is a function of d satisfying lim
d→+∞

od(1) = 0. Hence, in order to find

lower bounds for |α− 1|, we can assume that α is not a root of unity. (2)

Denote by Φk(x) the k-th cyclotomic polynomial and let

Γ = {xe0Φe11 · · ·Φ
ek
k , such that k ∈ N and e0, . . . , ek ∈ Z} .

Also let, for t ≥ 0, Γ(t) be the set of non-constant polynomials P ∈ Γ satisfying the
inequality log |P | ≤ t · deg P . Notice that Γ(t) 6= ∅, since x ∈ Γ(t) for any t ≥ 0.
We define a function r: [0,+∞)→ [0, 1] by setting

r(t) = sup
P∈Γ(t)

m(P )

degP
,

where m(P ) denotes the multiplicity of P at x = 1. Let α be an algebraic number
of degree d which is not a root of unity and let h = d−1 logM(α) > 0 be its
logarithmic height. Let also t > 0; from the definition of r(t) it follows that for any
ε > 0 there exists a polynomial P ∈ Γ of degree N , vanishing at 1 with multiplicity
m such that log |P | ≤ t ·N and m/N ≥ (1 + ε)−1r(t). Then (2.4) implies

− log |α− 1| ≤ 1 + log
1 + ε

r(t)
+ (1 + ε)

d(h+ t)

r(t)
.

Since this inequality holds for any ε > 0, we have:

(2) The lower bound (2.7) is stronger than the result available in the general
case. This suggests that also for algebraic numbers of very small height (say M(α)
bounded by an absolute constant) strong results can be proved.

4



Algebraic numbers close to 1.

Theorem 2.2.
For any algebraic number α of degree d and logarithmic height h > 0 and for

any t > 0 we have

log |α− 1| ≥ −1− log
1

r(t)
− d(h+ t)

r(t)
.

For small values of h a good choice of the parameter t is t = h:

Corollary 2.1.
For any algebraic number α of degree d and logarithmic height h > 0 we have

log |α− 1| ≥ −1− log
1

r(h)
− 2dh

r(h)
.

It can be shown that r(t) ≤ c
√
t for some absolute constant c > 0 (see [M1],

[A1] and [BV], section 5). Hence the limit of Gel’fond’s method seems to be a lower
bound of the shape

log |α− 1| ≥ −1− log
1

c
− 1

2
log

d

logM(α)
− 2

c

√
d logM(α).

We now consider Schneider’s approach. The auxiliary function is a polynomial
with coefficients in Q(α) vanishing at several powers of α. The corresponding
interpolation determinant is

∆ = Det
(
αij
)
i=0,...,k−1;
j=0,...,k−1

=
∏

0≤i<j≤k−1

(αj − αi) 6= 0

where k ∈ N is a parameter at our disposal. We consider this determinant as a
polynomial ∆(α) ∈ Z[α]. (3) Then ∆ ∈ Γ and an easy computation shows that
∆ has degree 1

6 (k − 1)k(2k − 1), vanishes at 0 with multiplicity 1
6 (k − 1)k(k − 2)

and vanishes at 1 with multiplicity m := 1
2k(k − 1). Moreover, by Hadamard’s

inequality, |∆| ≤ kk/2. Consider the polynomial P (x) = x−(k−1)k(k−2)/6∆(x) ∈ Γ
of degree N := 1

6 (k − 1)k(k + 1). We have

log |P |
N

≤ (1 + ok(1))
3 log k

k2
,

m

N
= (1 + ok(1))

3

k
,

where ok(1)→ 0 for k → +∞. Let t > 0; choosing k = 1 +
[√

3
2t log 1

t

]
we obtain

log |P |
N

≤ (1 + ot(1))t,
m

N
= (1 + ot(1))

√
6t

log 1/t
,

where ot(1)→ 0 for t→ 0. This proves that

r(t) ≥ (1 + ot(1))

√
6t

log 1/t
.

(3) This polynomial was firstly introduced by Dobrowolski (see [D]).
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Algebraic numbers close to 1.

Let α be an algebraic number of degree d and logarithmic height h > 0. By applying
Corollary 2.1 we find that for any ε ∈ (0, 1) there exists C(ε) > 1 such that

log |α− 1| ≥ −2− 1

2
log

(
1

6h
log

1

h

)
− (1 + ε/2)d

√
2

3
h log 1/h, (2.8)

for any algebraic number α of degree d and logarithmic height h ∈
(
0, logC(ε)

)
.

Moreover

logM(α) ≥ 1

4

(
log log d

log d

)3

, (2.9)

by a recent result of [V] concerning the Lehmer problem. A fortiori, for any ε > 0
there exists δ(ε) > 0 such that

2 +
1

2
log

(
1

3h
log

1

h

)
≤ ε

2
d

√
2

3
h log 1/h (2.10)

provided that d ≥ δ(ε). Collecting (2.8) and (2.10) together we find the following
version of the main result of [MW]:

Theorem 2.3.
Let α be an algebraic number of degree d which is not a root of unity. Then

for any ε > 0 there exist C(ε) > 1 and δ(ε) > 0 such that

log |α− 1| ≥ −(1 + ε)

√
2

3
d logM(α) log

d

logM(α)

provided that M(α) ≤ C(ε)d and d ≥ δ(ε).

In the original paper [MW] the constant was slightly worse, 1 instead of
√

2/3.

The constant
√

2/3 was firstly obtained in [BMN]. A further improvement has

been recently proved by A. Dubickas, who replaces
√

2/3 by π/4 (see [D]). This
improvement comes from the use of a more complicated determinant which leads,
in our interpretation of the method, to a better asymptotic lower bound for r(t) as
t→ +∞.

§3 Explicit construction of algebraic number close to 1.

In this section we recall the main result of [A2]:

Theorem 3.1.
Let r be a positive integer and consider the polynomial

G(z) = 1 + (z − 1)

r∏
n=1

(z2n−1 + 1)

of degree d = 1+r2. Then there exists a root α of G such that |α−1| ≤ (r2 +1)2−r.
Moreover, the Mahler measure of α is bounded by:

exp

{
1

π2
(log r)2 + 3 log r + 7

}
. (3.1)

6



Algebraic numbers close to 1.

Notice that the bound (1.3) gives in this case

log |α− 1| ≥ −(1 + ε)

√
2

π
r(log r)3/2

for any ε > 0 and for any r sufficiently large with respect to ε−1. Hence the term√
d in (1.3) cannot be replaced by d1/2−δ for any δ > 0.

Proof of Theorem 3.1.
Let α = α1, . . . , αd be the roots of G and assume that α is the root closest

to 1. From

G′(z) = G(z)

d∑
i=1

1

z − αi
, z 6= α1, . . . , αd

we deduce, taking into account G(1) = 1 and G′(1) = 2r,

|α− 1| ≤ d2−r = (r2 + 1)2−r.

We now prove (3.1). Let

F (z) =

r∏
n=1

(z2n−1 − 1).

Since
|G(eit)| ≤ 1 + 2|F (−eit)| ≤ 3 max{|F (−eit)|, 1}

and since, by Jensen’s formula,

M(G) = exp

(
1

2π

∫ π

−π
log |G(eit)|dt

)
,

we have

logM(G) ≤ log 3 +
1

2π

∫ π

−π
log+ |F (eit)| dt. (3.2)

Using standard Fourier analysis, it can be shown that

1

2π

∫ π

−π
log+ |F (eit)| dt ≤

(1

2
log r + 2

)
K0 + 2 log r + 3

where

K0 =
1

2π

∫ π

−π

∣∣∣∣ r∑
n=1

cos(2n− 1)t

∣∣∣∣ dt
(see [A2], Theorem 1.2). An easy computation shows that K0 ≤ 2

π2 (log r) + 1.
Hence

1

2π

∫ π

−π
log+ |F (eit)| dt ≤ 1

π2
(log r)2 + 3 log r + 5

and , by (3.2),

logM(G) ≤ 1

π2
(log r)2 + 3 log r + 7.

7
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§4 Generalization in several variables.

The aim of this section is to generalize (1.3) for several algebraic numbers.

Theorem 4.1.
Let K be a number field of degree d and let α(1), . . . , α(n) be multiplicatively

independent elements of K. (4) Let h = h(α(1)) · · ·h(α(n)). Then

log max
j=1,...,n

|α(j) − 1| ≥ − (n+ 1)d

(
h log+ 1

h

)1/(n+1)

− 2d

n∑
j=1

h(α(j))− log
(
3nd2

)
.

(4.1)

Moreover, for any ε > 0 there exists c = c(ε) > 0 such that

log max
j=1,...,n

|α(j) − 1| ≥ −(1 + ε)

(
2

3
(n+ 1)

)n/(n+1)

d

(
h log+ 1

h

)1/(n+1)

−d
6

n∑
j=1

h(α(j))− log
(
nd2
)
,

provided that h ≤ cn.

Although a slightly weaker form of this result already appeared in corollary 4 of
[MW], but the proof we present here follows a different scheme. We shall see that an
explicit auxiliary function is given by the natural generalisation of the determinant
∆ of section 2. This auxiliary function is a polynomial in several variables with
high vanishing at 1 and low height, hence, by using the method of §2, we easily
obtain the proof of Theorem 4.1.

Proof of Theorem 4.1.
First step: choice of the determinant ∆.

Let k1, . . . , kn be positive integers such that K := k1 · · · kn > 1. We denote by
z the vector (z1, . . . , zn) and we use the standard convention zλ = zλ1 · · · zλn for a
multi-index λ. Let Λ = {(λ1, . . . , λn) ∈ Zn, 0 ≤ λj ≤ kj − 1, j = 1, . . . , n}. We fix
an arbitrary total order < on Λ and we consider the Vandermonde determinant

∆(z) = Det
(
(zλ)j

)
λ∈Λ

j=0,...K−1

=
∏
λ,µ∈Λ
µ<λ

(zλ − zµ).

Since α(1), . . . , α(n) are multiplicatively independent, ∆(α(1), . . . , α(n)) 6= 0.

Second step: upper bound for |NK
Q ∆(α(1), . . . , α(n))| and main inequality.

An easy computation shows that ∆ has partial degree

Nj :=
K(kj − 1)(4Kkj +K − 3kj)

12kj

(4) This assumption is in fact necessary. Otherwise, considering α(j) = αj , we
could improve the main term d1/2 in (1.3), which is impossible according to the
result of section 3.
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with respect to zj and vanishes at 1with multiplicity m = K(K − 1)/2. Moreover,
by Hadamard inequality,

max
|zj |=1

|∆(z1, . . . , zn)| ≤ KK/2.

Hence,

|∆(σα(1), . . . , σα(n))| ≤ KK/2
n∏
j=1

max{1, |σα|}Nj (4.2)

for any embedding σ:K→ C. Assume |α(1) − 1| ≥ |α(j) − 1| (j = 1, . . . , n) and let
N = N1 + · · ·+Nn. If |α(1) − 1| ≥ m/(N −m), then, by (4.2),

|∆(α(1), . . . , α(n))| ≤ |α(1) − 1|m
(
eN

m

)m
KK/2

n∏
j=1

max{|αj |, 1}Nj . (4.3)

Assume now |α(1) − 1| < m/(N −m), let ρ = m/
(
|α(1) − 1|(N −m)

)
and consider

the polynomial in one variable

Q(t) = ∆
(
(α(1) − 1)t+ 1, · · · , (α(n) − 1)t+ 1

)
.

By the maximum principle,

|∆(α(1), . . . , α(n))| = |Q(1)| ≤ ρ−m max
|t|=ρ

|Q(t)|

≤ (|α(1) − 1|ρ+ 1)N

ρm
KK/2

≤ |α(1) − 1|m
(
eN

m

)m
KK/2.

Hence (4.3) holds in any case. Let now aj > 0 be the leading coefficient of the
minimal equation of αj over Z, and let dj its degree. By Lemma 4 of [MW],

A = a
N1d/d1

1 · · · aNnd/dnn

d∏
l=1

σl∆(α(1), . . . , α(n))

is an integer. By using (4.2) and (4.3) we have

|A| ≤ |α(1) − 1|m
(
eN

m

)m
KdK/2

n∏
j=1

(
a
d/dj
j

d∏
l=1

max{|σlα(j)|, 1}

)Nj

≤ |α(1) − 1|m
(
eN

m

)m
KdK/2

n∏
j=1

M(α(j))Njd/dj

= |α(1) − 1|m
(
eN

m

)m
KdK/2 exp

{
d
(
N1h(α(1)) + · · ·+Nnh(α(n))

)}
.

Since the left hand side of this inequality is ≥ 1, we have

log
1

|α(1) − 1|
≤ 1 + log

N

m
+
d

m

(1

2
K logK +N1h(α(1)) + · · ·+Nnh(α(n))

)
. (4.4)

9
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An easy computation shows that

Nj
m
≤ 2

3

K

K − 1
(kj − 1) +

1

6
. (4.5)

From (4.4) and (4.5) we obtain the main inequality:

− log max
j=1,...,n

|α(j) − 1| ≤ 1 + log

2

3

K

K − 1

n∑
j=1

(kj − 1) +
n

6


+ d

 logK

K − 1
+

2

3

K

K − 1

n∑
j=1

(kj − 1)h(α(j)) +
1

6

n∑
j=1

h(α(j))

 .

(4.6)

Last step: choice of the parameter k.
Let X > 1 and choose

kj =
[
(Xh)1/nh(α(j))−1

]
+ 1, j = 1, . . . , n.

Therefore K = k1 · · · kn ≥ X > 1. Since K 7→ (logK)/(K−1) and K 7→ K/(K−1)
are both decreasing for K > 1, we have, by (4.6),

− log max
j=1,...,n

|α(j) − 1| ≤ d
logX + 2

3nX
(n+1)/nh1/n

X − 1
+
d

6

n∑
j=1

h(α(j))

+ log

 2
3X

(n+1)/nh1/n

X − 1

n∑
j=1

h(α(j))−1 +
n

6

+ 1.

(4.7)

Let Ω = h−1/(n+1). To prove (4.1) we distinguish three cases.
• First case: Ω < 6

5 . The relation between the arithmetic and geometric means
shows that

n∑
j=1

h(α(j)) ≥ nh1/n = nΩ−(n+1)/n ≥
(

6

5

)−2

> log 2.

Hence

2
n∑
j=1

h(α(j)) > h(α(1)) + log 2

and Liouville’s inequality (1.1) implies (4.1).
• Second case: 6

5 ≤ Ω < 4. An easy computation shows that in this case

(n+ 1)

(
h log

1

h

)1/(n+1)

= (n+ 1)Ω−1
(
(n+ 1) log Ω

)1/(n+1)
> log 2.

Hence

(n+ 1)

(
h log

1

h

)1/(n+1)

+ 2

n∑
j=1

h(α(j)) > log 2 + h(α(1))

and Liouville’s inequality implies again (4.1).

10
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• Third case: Ω ≥ 4. Choose

X =

( 3
2 log(1/h)

n+ 1

)n/(n+1)

h−1/(n+1).

Then
logX + 2

3nX
(n+1)/nh1/n

X − 1
= fn(Ω) ·

(
h log

1

h

)1/(n+1)

(4.8)

and
2
3X

(n+1)/nh1/n

X − 1
= gn(Ω), (4.9)

where

fn(t) =

(
2

3
(n+ 1)

)n/(n+1)(
1 +

n

(n+ 1)2

log( 3
2 log t)

log t

)(
1−

(
3

2
log t

)−n/(n+1)
1

t

)−1

and

gn(t) =
log t

t( 3
2 log t)n/(n+1) − 1

.

Moreover, using for instance the inequality (2.9) of P. Voutier,

n∑
j=1

h(α(j))−1 ≤ 3nd2. (4.10)

By (4.7), (4.8), (4.9) and (4.10) we have

− log max
j=1,...,n

|α(j) − 1| ≤ fn(Ω) · d
(
h log

1

h

)1/(n+1)

+
d

6

n∑
j=1

h(α(j))

+ log
(

3d2ngn(Ω) +
n

6

)
+ 1.

(4.11)

A computation shows that fn(t) and gn(t) both decrease for t ≥ 4, fn(4) ≤ n + 1
and gn(4) ≤ 3

10 . Therefore, by (4.11),

− log max
j=1,...,n

|α(j) − 1| ≤ (n+ 1)d

(
h log

1

h

)1/(n+1)

+
d

6

n∑
j=1

h(α(j))

+ log

(
9

10
d2n+

n

6

)
+ 1

≤ (n+ 1)d

(
h log

1

h

)1/(n+1)

+
d

6

n∑
j=1

h(α(j)) + log(3d2n),

which implies (4.1).
To prove the second assertion of Theorem 4.1, we remark that

lim
t→+∞

fn(t) =

(
2

3
(n+ 1)

)n/(n+1)

and lim
t→+∞

gn(t) = 0.
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Therefore, for any ε > 0 there exists a constant C = C(ε) ≥ 1 such that if Ω ≥ C

we have fn(Ω) ≤ (1 + ε)
(

2
3 (n+ 1)

)n/(n+1)
and 3gn(Ω) ≤ 1/e− 1/6. Let c = C−2.

If h ≤ cn then Ω ≥ C and, by (4.11),

− log max
j=1,...,n

|α(j) − 1| ≤ (1 + ε)

(
2

3
(n+ 1)

)n/(n+1)

d

(
h log+ 1

h

)1/(n+1)

+
d

6

n∑
j=1

h(α(j)) + 2 log d+ log n.

The proof of Theorem 4.1 is now complete.
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