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Introduction

This work gathers the results contained in the research papers [5] and [6] as a com-
pendiumofmy recent research, accomplishedduringmyPhDprogramat theUniversity
of Turin. The contents of the above papers are very related and logically interconnected,
so that it is worth to give a joint account of the main motivations that have led to the
study of the questions answered therein. A more technical and rigorous introduc-
tion will precede every one of the two chapters, in order to equip the reader with the
notations and settings needed in the two treated problems.

The achievements presented in this thesis are the result of a fruitful collaborationwith
my PhD Advisor Prof. Susanna Terracini and my co-Advisor Prof. Vivina Barutello.

The N -centre problem of Celestial Mechanics

A deep view and comprehension on how the N -centre problem is treated and under-
stood in the contemporary literature can not take place without a glimpse on the most
classical and famous problem of CelestialMechanics, fromwhich it actually came to life:
the N -body problem. The really challenging, and actually simple in its formulation,
question that many mathematicians have attempted to answer through the centuries
is the following: how does a finite number of heavy bodies move in the Euclidean
space under their mutual gravitational attraction? To fix the ideas, we can define the
positions of the bodies as N functions xk : I ⊆ R → R3 which evolve with respect to a
time variable and N positive numbersmk > 0 that represent their masses. In this way,
the Newton’s law providesN second order ordinary differential equations that rule the
motion of the system:

mkẍk(t) = −
∑
j 6=k

mkmj(xk(t)− xj(t))
|xk(t)− xj(t)|3

, for every k = 1, . . . , N.

The 2-body problem has been solved and clearly understood, thanks to the works of
Newton andKepler. On the other hand, whenN ≥ 3, the situation changes dramatically
and the problem, if considered in a completely general setting, is really far from being
solved. In particular, the dynamical system results to be not analytically integrable
and the presence of a huge singular set, which is represented by every possible collision
between the bodies, is responsible for a very complex dynamics. Indeed, if we introduce
the gravitational potential

V (x) = V (x1, . . . , xN )
.

=
∑
j 6=k

mjmk

|xj − xk|
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the system joins a Hamiltonian structure, with respect to the Hamiltonian function

H(x, v)
.

= K(v)− V (x) =
1

2

N∑
i=1

|vi|2
mi
−
∑
j 6=k

mjmk

|xj − xk|

where the singularity of the potential V is determined by the collision set, i.e., when-
ever xk = xj for some k 6= j. These singularities of the system determine the non-
completeness of the associated flow (see [31]), raising up the complexity of the problem
and inducing a chaotic behaviour on the orbits (see [29]). A lot of results have been
obtained in the study of such singularities, mainly analysing the behaviour of a collision
trajectory producing asymptotic estimates (see [64, 69, 63, 57, 58, 7]), but also employing
the powerful tool of the McGehee coordinates introduced in [52], in which the singular-
ity is blown-up and the flow is extended through collisions glueing a collision manifold
in the phase space.
Classically, there is a great interest in periodic solutions of Hamiltonian systems

since, according to the Poincaré conjecture, a complex and possibly chaotic dynamics
for the trajectories is strictly connected with the existence of a dense set of periodic
solutions. Some of the hurdles that arise in looking for periodic trajectories of the
N -body problem can be partially tackled if one considers some particular situations,
taking into account a less general setting. A first approach to find families of periodic
solutions consists in imposing symmetries on the motion of the bodies. In this context
variational techniques reveal to be very efficient and have induced a plethora of results
to enrich the set of periodic solutions (see [13, 35, 22, 21, 65, 10, 8]).
Another simplified, but still far from being trivial, version of theN -body problem can

be introduced as follows: consider (N + 1) heavy bodies and assume that one of them
is moving much faster than the others. In this way, N of the bodies can be assumed
motionless, while the one remaining is moving under their attraction (we assume its
mass to be equal to 1). This is how the N -centre problem of Celestial Mechanics is
usually stated, assuming as an approximation that N bodies are fixed and thus they
represent a finite number of centres of mass. In R3, assuming that the Coriolis’ and
centrifugal forces are neglected, if we denote by c1, . . . , cN ∈ R3 the position of the
centres, by m1, . . . ,mN > 0 their masses and we let x : I ⊆ R → R3 be the motion law
of the moving particle, the equation of motion is the following

ẍ(t) = −
N∑
j=1

mj(x(t)− cj)
|x(t)− cj |3

.

Again, the previous equation has Hamiltonian structure, with Hamiltonian

H(x, v) = K(v)− V (x) =
1

2
|v|2 −

N∑
j=1

mj

|x− cj |

and, in this setting, a singularity for V occurs whenever x = cj for some j. The function
H(x, v) represents exactly the total energy of the system and thus a conservation of the
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energy characterizes every solution of the equation of motion in this way

1

2
|ẋ(t)|2 − V (x(t)) = h ∈ R, for every t ∈ I.

As for theN -bodyproblem, thenumber of the centres plays an essential rolewith respect
to the integrability of the system. IfN = 1 we end upwith the Kepler problem, which is
integrable and whose solutions are conic sections. A very interesting situation appears
when we consider two centres of mass: note that in this case the equation of motion
approximates the one of the restricted three body problem, where by restrictedwemean
that one of the three bodies has a negligiblemasswith respect to the others. Euler started
to study the 2-centre problem in 1760 and he showed that it is integrable ([34]), while
explicit solutions have been provided by Jacobi in his famous book Vorlesungen über
Dynamik (1866) (see also [4] for a more recent explanation of these results). Concerning
the applications, the 2-centre problem revealed to be very useful in the determination
of the orbit of a satellite, assuming that the Earth is placed in one of the two centres (see
[67]); moreover, the 2-centres can be also considered as atomic nuclei and the particle
can play the role of an electron in the model of a diatomic molecule (see [68] for further
details). As expected, also in the N -centre problem the integrability of the system fails
when we consider more than 2 centres. A first step in this direction has been made
by Bolotin in [14], where the author showed that the planar N -centre problem is not
analytically integrable when N ≥ 3 if we restrict the dynamical system to energy shells
H−1(h), with h > 0. Concerning the 3-dimensional case, the non-integrability of the
system has been discussed separately in [15] by Bolotin and Negrini and in [48] by
Knauf and Taimanov: in the first paper, the authors showed the presence of positive
topological entropy for non-negative energies h ≥ 0, while in the second one the authors
showed that over a threshold h > h̃ � 1, no real-analytic integral exists for the spatial
N -centre problem, N ≥ 3. To conclude this brief digression on integrability, we also
observe that in [47] the authors proved that, again over a high energy threshold, the
N -centre problem is completely integrable through C∞-integrals both in R2 and R3.

Many research papers have also provided a qualitative description of this dynam-
ical system. A fundamental contribution to the planar problem at positive energy is
contained in [44]: therein the authors used global analysis methods and Riemannian
geometry in order to give a rigorous description of the scattering for theN -centre prob-
lem. Moreover, the existence of a symbolic dynamics in positive energy shells has been
established in the same paper. A generalization and some extensions of this result have
been given in [45] for the 3-dimensional setting; the author usedperturbation techniques
at high positive energies in order to analyse the orbits of the system, providing again a
scattering theory for the spatial N -centre problem over a certain energy threshold. In
[18] the authors used min-max methods in order to find unbounded trajectories with
prescribed ingoing and outgoing directions in the space, assuming the energy to be 0.
When one considers negative energy shells it is useful to introduce the so-calledHill’s

region
Rh .

=
{
x ∈ R2 \ {c1, . . . , cN} : V (x) + h ≥ 0

}
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since, in contrast with the case h ≥ 0, this set is strictly contained in the punctured plane.
In this situation it is not possible to involve global arguments based on the fundamental
group of R2 \ {c1, . . . , cN} as in [44], since the non-boundedness of the Hill’s region
introduces a degeneration on the Jacobi metric. Indeed, a portion of the boundary ∂Rh
has null Jacobi measure and thus it would be a minimizer for the Jacobi functional,
but it would not solve the N -centre problem with fixed ends. This is why in [61] the
authors used a finite dimensional reduction in order to obtain closed periodic solutions
for the planar N -centre problem at negative energies. They separated the proof inside
and outside a ball of radius R > 0, finding solution arcs with two different techniques
and then glueing them together on the circle ∂BR. Other results, with much stricter
assumptions, have been obtained for the negative energy case in this way:

• in [16] the authors considered 3 centres in the plane, one of them placed very far
from the others, and used perturbation techniques in order to show the dynamical
system is chaotic through the Poincaré-Melnikov theory;

• in [32] perturbation methods for the 3-centre problem are used as well, assuming
this time that the third centre is less attracting than the others and that the energy
is very small in absolute value, obtaining invariant sets of chaotic quasi-colliding
solutions.

We conclude this discussion on the N -centre problem observing that it is also possible
to find periodic solutions prescribing the period T > 0, without any information on the
energy of the system. Two interesting contributions in this direction can be found in
[20, 70].

The anisotropic Kepler problem

In the research paper [37], Gutzwiller firstly introduced the anisotropic Kepler problem
as a classical mechanical system that approximates a quantum system. A natural
situation in which this system arises is when one analyses the ground states of an
electron near the donor impurity of a semi-conductor. In the perspective of Gutzwiller,
the anisotropy resides in the kinetic energy of the planar system through an anisotropic
mass tensor, while the potential is induced by a Coulumbic force field. Motivated by
these physical applications, firstly on the basis of numerical computations ([37]) and
after with analytical methods ([38]), he provided a qualitative description of periodic
solutions in negative energy shells (see also [39]). In particular, he showed that a
continuous and one-to-one map can be constructed between the initial conditions and
the binary sequences composed by two real numbers, actually proving that the Poincaré
map is topologically conjugate to a Bernoulli shift (cf. Definition 2.1.5).
Deepening a more geometrical point of view, another series of remarkable contri-

butions in this direction have been given by Devaney during the same years. In the
research paper [25], he introduced the one-parameter family of Hamiltonian systems

iv



driven by

Hµ(x, v) = Kµ(v)− V (x) =
1

2
(µv2

1 + v2
2)− 1

|x| ,

with x = (x1, x2) ∈ R2 \ {0}, v = (v1, v2) ∈ R2 and µ ≥ 1. When µ = 1, the system
reduces to the classicalKepler problemand the energy andangularmomentum integrals
provide the integrability; on the other hand, when µ grows beyond 1, the spherical
symmetry of the system disappears and the angular momentum is no longer conserved
along a solution. This fact completely changes the phase portrait of the system and the
regular structure of the orbits. Indeed, as the parameter µ increases, the trajectories start
to draw extensive oscillations about the x2 axis due to the anisotropic kinetic energy
Kµ. In particular, when µ > 9/8, these oscillations become highly random: for instance,
one can find orbits that oscillate an arbitrarily large number of times about the x2-axis
before they cross the x1-axis. As a result, the integrability of the system ceases to
exist when anisotropy is introduced and this suggests to investigate the existence of a
symbolic dynamics. This whole analysis has been carried out in [25], where the author
in particular showed that, for an open and dense subset of parameters µ contained in
(9/8,+∞), the anisotropic Kepler problem displays symbolic dynamics. Notice that
when 0 < µ ≤ 1 the situation symmetrically reflects, then producing oscillations about
the x1-axis. The key investigation objects are the bi-collision trajectories, which have
been studied using the McGehee’s change of coordinates ([52, 53]). This technique has
been introduced in the context of the collinear three-body problem and consists in a
blow-up of the singularity in the phase space, which is replaced by an invariant torus,
the so-called collision manifold. In this way, the flow is extended beyond the singularity
and bi-collision trajectories reveal to be heteroclinic solutions of the new dynamical
system (for other perspectives on the qualitative analysis of this system we refer also to
[29, 27, 19, 40]).
Another considerable difficulty in this context is represented by the non regulariz-

ability of collision trajectories. When the total energy is negative, the Kepler problem
admits a cylinder of trajectories which start and collapse again in the origin after a
certain time, the so-called homothetic trajectories. These solutions are not defined for
all the times, but it is a classical result that the Levi-Civita transform permits to extend
them through collisions, so that they display a bounce at the collision instant and then
result analytically regularized (see [64]). This can be done also employing a topological
surgery technique, using the so-called isolating blocks ([33, 23]), but also in a variational
fashion ([55, 56]). The regularization then reveals to be a powerful tool in applications
in order to avoid collisions and to build periodic solutions (see for instance [61, 35]), but
Devaney discovered that this process does not agree with anisotropic context. Indeed,
in [26], he used the approach introduced by Easton in [33] to show that there exists an
open and dense set of parameters µ in (1,+∞) such that the corresponding anisotropic
Kepler problem is not regularizable by surgery.
In [29] Devaney remarked that an equivalent formulation of this problem, via an

easy change of variables, can be considered and thus one can take into account the
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Hamiltonian
H̃µ(x, v) = K(v)− Vµ(x) =

1

2
|v|2 − 1√

µx2
1 + x2

2

,

where the kinetic energyK is standard, while the anisotropy is now contained inside the
potential Vµ. From this point of view, further generalisations of Vµ could be considered,
as has been done in the recent papers [11, 12]. The authors introduced a wider class of
anisotropic problems, considering a family of singular homogeneous potentials{

V ∈ C2(Rd \ {0})
V (x) = |x|−αV (x/|x|),

with α ∈ (0, 2) and d ≥ 2 and studying the zero-energy dynamical system{
ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 = V (x(t))

,

whose solutions areusually referred as parabolic trajectories. In this context, it is extremely
useful to introduce the central configurations of V as all the unitary vectors that are critical
points for the restriction V |Sd−1 . Indeed, a zero-energy solution x(t) enjoys asymptotic
properties: its norm |x(t)| blows up when t → ±∞ and, if we assume that the set of
central configurations is discrete, we have that

x(t)

|x(t)| → ξ±, as t→ ±∞,

where ξ± are central configurations for V . In [11, 12], the existence of entire parabolic
trajectories with prescribed asymptotic directions at infinity is provided using a varia-
tional approach, in which a zero-energy solution is characterized as a Morse minimizer
for the Jacobimetric. Following the approach ofMcGehee in [52], parabolic solutions are
shown to correspond to heteroclinic connections between two saddles in the collision
manifold and their existence is strictly related to the choice of the homogeneity degree.
In particular, in [11] the authors deepen the study in the planar case; when d = 2, one
can introduce polar coordinates x = (r cosϑ, r sinϑ) and write

V (x) = V (r cosϑ, r sinϑ) = r−αU(ϑ),

where U is exactly the restriction of V to the sphere S1. With this notations, a cen-
tral configuration for V is actually an angle ϑ ∈ S1 and this allows to analyse more
precisely the qualitative behaviour of the trajectories. If we fix ϑ+, ϑ− ∈ S1 minimal
non-degenerate central configurations, then there exists atmost onehomogeneitydegree
ᾱ = ᾱ(U, ϑ+, ϑ−) ∈ (0, 2) for which a parabolic Morse minimizer exists. In particular,
this threshold of existence is also related to the absence of collisions for fixed-ends Bolza
problems (see also [24]), but also to the existence of non-collision periodic orbits having
a prescribed winding number; we want to remark that these results are very close to
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the minimizing properties of Keplerian ellipses studied by Gordon in [36]. Parabolic
trajectories for systems driven by homogeneous potentials have also been analysed from
an index theory point of view in [42].

The study of this wide class of anisotropic potentials reveals to be very useful in the
applications of some particular situations arising from theN -body problem. As enlight-
ened by Devaney in [28, 30], after a combination of Jacobi and McGehee coordinates,
the planar isosceles three-body problem can be reduced to a dynamical system driven
by an anisotropic potential of the form

U(ϑ) =
1√

2 cosϑ
+

4ε3/2√
2ε+ 4 sin2 ϑ

,

where the two symmetric masses m1 = m2 = 1 and the third mass m3 = ε > 0.
Analogous situations can appearwhen 4bodies are considered andparticular symmetry
conditions are required. For instance, in [60, 49], two degenerate situations of the four
bodyproblemwith only twodegrees of freedomare considered: the symmetric collinear
four body problem and the rectangular four body problem. In these settings, chosen
changes of coordinates allow to reduce the dynamical system to a unique ordinary
differential equation, which involves an anisotropic potential. In this way, the total
collapse and ejection-collision trajectories are characterized exploiting an analysis of the
flow on the collision manifold. Analogous anisotropic potentials come out when one
considers the rhomboidal four body problem as in [50], but also in a charged setting (see
[1]). To conclude this brief discussion on the applications, we also cite the recent research
paper [2], inwhich the authors study ejection-collision orbits for the symmetric collinear
four body problem, dealing with an anisotropic potential arising in this context.

Main results

In this last paragraphwe collect themain results contained in the two following chapters.

Minimal collision arcs asymptotic to central configurations ([5])

InChapter 1we introduce a class of singular anisotropic homogeneouspotentialsV (x) =
|x|−αV (x/|x|), with α ∈ (0, 2) and x ∈ Rd (d ≥ 2), and we consider the conservative
Newtonian system

ẍ(t) = ∇V (x(t)),

or the same system driven by lower order perturbations of V . Our objects of interest
are those trajectories which collide with the origin in finite time (collision solutions).
Assuming that the set of central configurations of V is discrete, the normalized configu-
ration xcoll(t)/|xcoll(t)| of a collision solution xcoll(t) converges to a central configuration
s∗ ∈ Sd−1 for V . Because of the occurrence of such singular trajectories, the flow associ-
ated to the dynamical system is not complete. UsingMcGehee coordinates, the flow can
be extended to the collisionmanifold having central configurations as stationary points,
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endowed with their stable and unstable manifolds. We focus on the case in which the
asymptotic central configuration s∗ is a global minimizer of the restriction of V to the
sphere Sd−1 and we take into account the local stable manifoldWS

loc(s
∗) associated with

s∗. If we introduce the Jacobi-length functional

Lh(x) =

∫ T

0
|ẋ(t)|

√
h+ V (x(t)) dt

and we define the space of H1-collision paths starting from a position q ∈ Rd \ {0} as

Hq
coll = {x ∈ H1([0, T ];Rd) : x(0) = q, x(T ) = 0, |x(t)| < |q|, ∀ t ∈ (0, T )}

with some restrictions on |q|, since α ∈ (0, 2), we can find at least a minimizer for
Lh in the above space. Our main goal then is to show that the local stable manifold
WS
loc(s

∗) coincides with that of the initial data of minimal collision arcs for Lh. This
characterisation may be extremely useful in building complex trajectories with a broken
geodesic method. The proof takes advantage of a generalised version of the Sundman’s
monotonicity formula.

Symbolic dynamics for the anisotropic N -centre problem ([6])

In Chapter 2 we consider an anisotropic version of the planar N -centre problem in
which every centre is associated with a different homogeneous potential. In particular,
given c1, . . . , cN ∈ R2 the positions of the centres, we consider V1, . . . , VN ∈ C2(R2 \{0})
homogeneous functions and we introduce the singular potential

V (x) =
N∑
j=1

Vj(x− cj);

if we denote by x(t) the position of the moving particle in the plane, we study the
conservative Newtonian system{

ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 − V (x(t)) = −h.

We assume that the energy −h is negative, with h << 1 and we require the following
hypotheses on the potential V

(1)



Vj is − αj-homogeneous, ∀ j = 1, . . . , N

0 < α1 ≤ α2 ≤ . . . ≤ αN
α1 < 2

αj > ᾱj , ∀ j = 1, . . . , N

Vj admits at least a striclty minimal central configuration, ∀ j = 1, . . . , N,
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where ᾱj ∈ (0, 2) is a threshold homogeneity degree which guarantees the absence of
collisions with the centre cj and will be rigorously specified later (see (V ), Remark 2.1.1
at page 32 and Theorem 2.4.23 at page 78). Our main result then is to prove that, if
V satisfies assumptions (1), then there exist infinitely many periodic solutions for the
anisotropic N -centre problem in negative energy shells, which are collision-less and
free of self-intersections.

The idea of the proof is to build such solutions as a juxtaposition of different pieces
of trajectories, following the approach of [61], which is based on the broken geodesics
method introduced by Seifert in [59] in a completely different context. Since the energy
is negative, theHill’s region is a proper subset ofR2\{c1, . . . , cN} and an arc contained in
its boundary has null lengthwith respect to the Jacobimetric. Because of the presence of
this degeneration, global arguments (see for instance [44]) do not apply in this context
and we need to separate the proof close/far from the singularity set. In particular,
when the particle is close to the centres, the solution arcs are provided through the
minimization of the Maupertuis’ functional under a suitable topological constraint. On
the other hand, when the particle travels far from the singularity set, a perturbation
technique is employed, including all the centres in a small ball and thus reducing
the system to a perturbed anisotropic Kepler problem driven by one of the potentials
associated to the centres. As a final step, we alternate an outer and an inner arc and then
we glue them together, in order to obtain a closed periodic solution. Even if every single
trajectory obtained in the two previous steps is smooth, we need to show that such
smoothness is preserved through the junctions. This will be made by minimizing the
Jacobi-length functional with respect to the endpoints, so that a minimizer will match
the derivatives in the contact points. We point out that requiring the energy to be small
in absolute value is a fundamental assumption. Indeed, if h becomes very large, then
the Hill’s region {x ∈ R2 \ {c1, . . . , cN} : V (x) ≥ h} could be disconnected and this
would represent a pathologic situation in this strategy of proof.
The presence of infinitely many periodic solutions allows us to characterize this

dynamical system with a symbolic dynamics. Using pairs composed by a partition of
the centres and a minimal non-degenerate central configuration of the potential with
the smallest homogeneity degree, we determine a finite alphabet Q. Then, we consider
the metric space of bi-infinite sequences of symbols QZ and we introduce the discrete
dynamical system induced by the right Bernoulli shift map. In this way, we determine
an invariant subset of the original dynamical system and we show that the first return
map is topologically semi-conjugate to the Bernoulli shift. Assuming (1), the symbolic
dynamics is collision-less and formminimal non-degenerate central configurations the
number of symbols is m(2N−1 − 1), assuming furthermore that N ≥ 2 and m ≥ 1,
with one of the inequalities holding strictly. As a final remark, if the threshold on the
homogeneity degrees αj > ᾱj in (1) is violated for some j, collisions with the centres
may arise; nonetheless, within certain limits, the existence of a symbolic dynamics
persists, using a smaller set of symbols and taking into account the collisions.
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1. Minimal collision arcs asymptotic to
central configurations

1.1. Introduction and main result

Many papers of the recent literature are focused on the variational properties of ex-
panding (parabolic or hyperbolic) or collapsing trajectories for N -body and N -centre
type problems (see e.g. [11, 12, 18, 17, 9, 51]), framing them in a Morse-theoretical per-
spective. Indeed, in addition to answering natural questions about the nature of these
motions, the variational approach is a fruitful tool when building complex trajectories
exploiting gluing techniques (cf. Chapter 2, but also [6, 61]). These applications are
the original motivations for this work and show a natural link with the next chapter,
although we believe that the obtained result is interesting in itself. In order to state it in
detail, we need some preliminaries on the motion near collision for a class of singular
anisotropic homogeneous potentials of degree−α, withα ∈ (0, 2) (and their lower order
perturbations).
In this chapter we consider the Newtonian system of ordinary differential equations

(1.1) ẍ(t) = ∇V (x(t)),

whose solutions satisfy the energy relation

(1.2) 1

2
|ẋ(t)|2 − V (x(t)) = h,

with h ∈ R. It is possible to reword equations (1.1)-(1.2) using the Hamiltonian for-
malism, choosing, as usual, the total energy to be the Hamiltonian function. Taking
into account the singularity of V , we introduce the configuration space Rd \ {0} and the
phase space (Rd \ {0})× Rd of the system. Since we will study fixed-energy trajectories,
it makes sense to restrict our discussion to the (2d− 1)-dimensional energy shell

Hh =

{
(q, p) ∈ (Rd \ {0})× Rd :

1

2
|p|2 − V (q) = h

}
,

and thus, every solution of (1.1)-(1.2) can be seen as an evolving pair (q, p) ∈ Hh which
solves

(1.3)
{
q̇ = p

ṗ = ∇V (q).
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Our potential V is a not too singular perturbation of a −α-homogeneous potential S.
To be precise, for d ≥ 2, let us introduce a function U ∈ C2(Sd−1) such that

(s∗0)
{
∃ s∗ ∈ Sd−1 s.t. U(s) ≥ U(s∗) > 0, ∀s ∈ Sd−1;

∃ δ, ρ > 0 : ∀s ∈ Sd−1 s.t. |s− s∗| < δ =⇒ U(s)− U(s∗) ≥ ρ|s− s∗|2,

and then consider a potential V ∈ C1(Rd \ {0}) such that

(V 0)


V = S +W ;

S ∈ C2(Rd \ {0}) and S(x) = |x|−αU(x/|x|), for some α ∈ (0, 2);

lim
|x|→0

|x|α′(W (x) + |x| · |∇W (x)|) = 0, for some α′ < α.

Here,S has a singularity in the origin and it represents a generalization of the anisotropic
Kepler potential introduced by Gutzwiller ([37, 38, 39]). On the other hand, the per-
turbation term W becomes negligible with respect to S as |x| → 0. In particular,
recalling that a central configuration for S is a unitary vector which is a critical point of
the restriction of S to the sphere, the assumptions (s∗0) on U state that s∗ is a globally
minimal non-degenerate central configuration for S. As an example, for d = 2 and
x = (x1, x2) ∈ R2 \ {0}, one can consider the function

V (x) = S(x) +W (x) =
1√

µx2
1 + x2

2

+
1

4
√
x2

1 + x2
2

,

where µ > 1. Notice that the third requirement in (V 0) is fulfilled for every α′ ∈ (1/2, 1).
As another interesting application, we can consider the N -centre problem driven by N
anisotropic potentials satisfying hypotheses (s∗0)-(V 0). In this situation, when the
particle is significantly close to one of the centres, the remainingN − 1 centres generate
a potential with the same properties of the perturbation functionW . We are concerned
with the behaviour of those trajectories which collide with the attraction centre in
finite time (collision solutions). It is well known that, as |q(t)| → 0, the normalized
configuration q(t)/|q(t)| has infinitesimal distance from the set of central configurations
of S. In particular, if this set is discrete, any collision trajectory admits a limiting central
configuration ŝ ∈ Sd−1 (see for instance [7, 35, 12]), that is

(1.4) lim
t→T

q(t)

|q(t)| = ŝ,

for some T > 0. Given a central configuration ŝ ∈ Sd−1 for S, we define the set of initial
conditions for (1.3) inHh which evolve to collision with limiting configuration ŝ

Sh(ŝ) = {(q, p) ∈ Hh : the solution of (1.3), with q(0) = q, p(0) = p, satisfies (1.4)}.

The correspondingmotion is termed ŝ-asymptotic trajectory andwewant to remark that
the above set is non-empty, since the ŝ-homothetic trajectory with energy h is entirely
contained in it.
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Following McGehee ([52, 53]), it is possible to prove the next result (see Sections 1.2-
1.3 for a step-by-step proof in the planar unperturbed case), in order to give a dynamical
interpretation of the set Sh(s∗) when s∗ ∈ Sd−1 satisfies (s∗0). From now on, we will
consider the tangent bundle TSd−1, which is nothing but the union of all the pairs
{(s, u) : u ∈ TsSd−1}, where s ∈ Sd−1 and TsSd−1 is the tangent space of the sphere
Sd−1 in s. Let us observe that both Sd−1 and TsSd−1 are (d− 1)-dimensional manifolds.
Moreover, let us recall that an equilibrium point for a non-linear dynamical system is
hyperbolic if all the eigenvalues of the Jacobian matrix of the associated vector field have
real part different from zero.

Lemma 1.1.1. Given h ∈ R, consider a potential V ∈ C1(Rd \ {0}) and s∗ ∈ Sd−1 satisfying
respectively (V 0) and (s∗0). Then, there exists a diffeomorphism

φ : Hh → [0,+∞)× TSd−1

(q, p) 7→ φ(q, p) = (r, s, u)

such that, for some C2-vector field F : [0,+∞)×TSd−1 → [0,+∞)×TSd−1 and a certain time
rescaling τ = τ(t), considering the dynamical system (where “ ′ ” stands for the derivative with
respect to τ )

(1.5) (r′, s′, u′) = F (r, s, u),

we have:

(i) to a solution (q, p) = (q(t), p(t))t∈[0,T ) ⊆ Hh of (1.3) there corresponds a solution
(r, s, u) = (r(τ), s(τ), u(τ))τ≥0 ⊆ [0,+∞)× TSd−1 of (1.5);

(ii) (0, s∗, 0) is a hyperbolic equilibrium point for (1.5);

(iii) there exists a d-dimensional stable manifoldWS for (0, s∗, 0), which is locally the graph
of a C2-function Ψ: U → TsSd−1, where U ⊆ [0,+∞) × Sd−1 is a sufficiently small
neighbourhood of (0, s∗) and Ψ(0, s∗) = 0.

In other words, defining
WS
loc =WS ∩ (U ×Ψ(U)),

it turns out that

(iv) in a neighbourhood of the origin, Sh(s∗) corresponds toWS
loc through the diffeomorphism

φ, so that a s∗-asymptotic collision trajectory will be represented by an orbit contained in
WS
loc.

To have an idea of the geometrical description of the coordinates (r, s, u) introduces
in the previous lemma, we point out that (r, s) is the expression in polar coordinates of
the position coordinate q, while u is a rescaled version of the velocity p.
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Ourgoal is to establish a linkbetweenorbits contained inWS
loc and collision trajectories

which minimize the geometric functional naturally associated with the Hamiltonian
system. For this reason, let us introduce the Jacobi-length functional

Lh(y) =

∫ T

0
|ẏ|
√
h+ V (y),

for y ∈ H1([0, T ];Rd) such that |ẏ| > 0 and h+ V (y) > 0. It is well known that a critical
point y of Lh corresponds to a classical solution on (0, T ) of (1.3) in Hh for a certain
T > 0, if |y(t)| 6= 0 for every t ∈ (0, T ) (see for instance [4, 46, 54]).

In particular, for a properly chosen r̄ = r̄(h) > 0 and for q ∈ Br̄ = Br̄(0), introducing
the set of collision paths

Hq
coll = {y ∈ H1([0, T ];Rd) : y(0) = q, y(T ) = 0, |y(t)| < |q|, t ∈ (0, T )},

contrary to the case α ≥ 2, in which Lh is never finite on collisions, when α ∈ (0, 2),
we are able to find at least a minimizer for the Jacobi length in the above space. Such
a minimizer is not necessarily unique; indeed, any of these minimal paths is associated
with the starting velocity ẏ(0) of the trajectory. This leads to the construction of the
multivalued map

Fh : Br̄ → P(TqRd)

q 7→ Fh(q) =

{
ẏ(0) : y = arg min

Hq
coll

Lh
}

in whichFh(q) represents the set of all the initial velocities for which aminimal collision
arc exists.
Now, in the fashion of Lemma 1.1.1, without loss of generality, we can assume that
U = [0, r̄)×Bδ̄(s∗) for some δ̄ > 0, so that

WS
loc =WS

loc(r̄, δ̄).

In this way, our main result consists in showing that, if r̄ and δ̄ are sufficiently small,
a collision minimizer starting at q ∈ Br̄, with q/|q| ∈ Bδ̄(s∗), is actually unique and its
φ-corresponding orbit is entirely contained inWS

loc. This means that, for such starting
points, the set Fh(q) is not only a singleton, but it verifies φ(q,Fh(q)) ∈ WS

loc. For this
reason, it makes sense to introduce another local set in the phase space, which is spanned
by all the unique minimizers above mentioned

Mh(r̄, δ̄) = {φ(q,Fh(q)) : q ∈ Br̄, q/|q| ∈ Bδ̄(s∗)} ,

and to state our core result in this way:

Theorem 1.1.2. Given h ∈ R, consider a potential V ∈ C1(Rd \ {0}) and s∗ ∈ Sd−1 verifying
respectively (V 0) and (s∗0). Then, there exist r̄ = r̄(h) > 0 and δ̄ = δ̄(s∗) > 0 such that

WS
loc(r̄, δ̄) = Mh(r̄, δ̄).
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Remark 1.1.3. The assumption (s∗0) that the minimal central configuration is non-degenerate,
though stringent, holds generically. It can be easily lifted in some particular situations, for
example in the case of the −α-homogeneous N -body problem, that is when

V (q1, · · · , qN ) =
∑
i 6=j

mimj

|qi − qj |α
.

In this case the potential is invariant under common rotations of all the bodies and obviously no
central configuration can be non-degenerate. However, our main result still holds true under the
assumption of non-degeneration of the SO(d)-orbit of the minimal central configuration under
examination. Indeed, using again McGehee change of coordinates and extending the flow on the
collision manifold, Lemma 1.1.1 can be rephrased in terms of a normally invariant manifold of
stationary points endowed with their stable and unstable (local) manifolds. Given this alteration,
the statement and proof easily follows.

For the sake of a better comprehension and visualization of the proofs, we will carry
out our work in a simplified case, which can be easily generalized to the setting intro-
duced above. In particular, from now on we will take into account a planar anisotropic
Kepler problem as proposed in [11] and we will work in negative energy shells, i.e., we
will assume

• d = 2;

• W ≡ 0;

• h < 0.

Useful complementary material needed for the proof in the more general setting will
be provided in Section 1.6. The paper is organised as follows: Section 1.2 introduces
the collision manifold for the planar case and recalls the main features of the extended
flow, whereas Section 1.3 is devoted to the analysis of the extended flow near its critical
points. The object of Section 1.4 are Bolza minimizing arcs and their properties, while
the Main Theorem will be eventually proved in Section 1.5 in the unperturbed and
planar case, whereas in Section 1.6 we will discuss the modifications needed to cover
the perturbed d-dimensional case.

1.2. The collision manifold for the planar problem

As aforementioned, we will develop this and the following sections working on the
plane and with an unperturbed potential V . The following construction, which is the
two-dimensional version of Lemma 1.1.1, exploits a technique firstly introduced by
R. McGehee in the study of the collinear 3-body problem ([52, 53]) and furthermore
employed by Devaney and others for the anisotropic Kepler problem ([25, 29, 30, 43]).
Exploiting a space-time change of coordinates, this method consists in attaching a
collision manifold to the phase space, where the flow can be extended in a suitable
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way, having central configurations as stationary points, endowed with their stable and
unstable manifolds. In particular, a very similar approach with possibly different time
parameterization can be found in [11, 12, 42]. We shall follow here the Devaney’s
approach ([25]). For our purposes, for a point x ∈ R2 \ {0} it makes sense to introduce
polar coordinates x = (q1, q2) = (r cosϑ, r sinϑ), where

r =
√
q2

1 + q2
2, ϑ =



arctan(q2/q1) if q1 > 0, q2 ≥ 0

π/2 if q1 = 0, q2 > 0

arctan(q2/q1) + π if q1 < 0

3π/2 if q1 = 0, q2 < 0

arctan(q2/q1) + 2π if q1 > 0, q2 < 0

,

with r > 0 and ϑ ∈ [0, 2π). In this way, any−α-homogeneous potential V ∈ C2(R2 \{0})
can be written as

V (x) = r−αU(ϑ),

where U ∈ C2(S1), U > 0 and

U(ϑ) = V (cosϑ, sinϑ).

Hypotheses on V : In this setting, the original assumptions (V 0)-(s∗0) reduce respec-
tively to:

(V 1)
{
V ∈ C2(R2 \ {0});
V (x) = |x|−αU(x/|x|), with α ∈ (0, 2) and U ∈ C2(S1),

and

(U1) ∃ϑ∗ ∈ S1 s.t. U(ϑ) ≥ U(ϑ∗) > 0 ∀ϑ ∈ S1 and U ′′(ϑ∗) > 0.

With these notations, we study the motion and energy equations in the plane

(1.6)
{
ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 − V (x(t)) = h,

with h < 0. As usual, the conservation of energy forces every solution of (1.6) to be
included into the Hill’s region

Rh =
{
x ∈ R2 \ {0} : V (x) + h ≥ 0

}
.

Now, since
∇r = r−1(q1, q2), ∇ϑ = r−2(−q2, q1),

we can compute

∇V (x) = r−α−2
[
−αU(ϑ)(q1, q2) + U ′(ϑ)(−q2, q1)

]
.
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In this way, introducing the momentum vector (p1, p2) = (q̇1, q̇2), we can rewrite equa-
tions (1.6) as

(1.7)


q̇1 = p1

q̇2 = p2

ṗ1 = r−α−2 [−U ′(ϑ)q2 − αU(ϑ)q1]

ṗ2 = r−α−2 [U ′(ϑ)q1 − αU(ϑ)q2] ,

and
1

2

(
p2

1 + p2
2

)
− r−αU(ϑ) = h.

If we are not on the boundary of Rh, we have that |p| 6= 0 and so, for every solution
of (1.7), we can find smooth functions z > 0 and ϕ ∈ [0, 2π) in such a way that p1 =
r−α/2z cosϕ, p2 = r−α/2z sinϕ, choosing

(1.8) z =
√

2U(ϑ) + 2hrα.

By standard calculations, equations (1.7) become

(1.9)


ṙ = r−α/2z cos(ϕ− ϑ)

ϑ̇ = r−1−α/2z sin(ϕ− ϑ)

ż = r−1−α/2 [U ′(ϑ) sin(ϕ− ϑ) + αhrα cos(ϕ− ϑ)]

ϕ̇ = 1
z r
−1−α/2 [U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ)]

and this system has a singularity when r = 0, which indeed corresponds to the collision
set {0} ⊆ R2 of problem (1.6). Introducing a new time variable τ which verifies

dt

dτ
= zr1+α/2,

the singularity of (1.9) can be removed in order to extend the vector field to the singular
boundary {r = 0}. The effect of this rescaling is to blow-up the instant of an eventual
collision, so that the particle will virtually never reach the singularity. In this way, we can
rewrite (1.9) as (here “ ′ ” denotes the derivative with respect to τ )

r′ = rz2 cos(ϕ− ϑ)

ϑ′ = z2 sin(ϕ− ϑ)

z′ = z [U ′(ϑ) sin(ϕ− ϑ) + αhrα cos(ϕ− ϑ)]

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

Moreover, the conservation of energy, together with definition (1.8), allows us to elimi-
nate the variable z from the system, and thus to consider the 3-dimensional system

(1.10)


r′ = 2r(U(ϑ) + hrα) cos(ϕ− ϑ)

ϑ′ = 2(U(ϑ) + hrα) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ)
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which we shortly denote by (r′, ϑ′, ϕ′) = F (r, ϑ, ϕ), with F : [0,+∞)×TS1 → [0,+∞)×
TS1. Since r′ = 0 when r = 0, the boundary {r = 0} is an invariant set for the above
system. In other words, we can restrict the vector field F to {r = 0} and study the
independent dynamical system

(1.11)
{
ϑ′ = U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ)

which defines a 2-dimensional collision manifold and whose stationary points are

(ϑ̂, ϑ̂+ kπ), with k ∈ Z and U ′(ϑ̂) = 0.

If we denote by JF |{r=0} the Jacobian matrix of the vector field associated to (1.11) and
we evaluate it at (ϑ̂, ϑ̂+ kπ), we obtain

JF |{r=0}(ϑ̂, ϑ̂+ kπ) = cos(kπ)U(ϑ̂)

( −2 2
U ′′(ϑ̂)

U(ϑ̂)
− α α

)
,

whose eigenvalues are

µ± =
1

2
cos(kπ)U(ϑ̂)

α− 2±
[

(α− 2)2 + 8
U ′′(ϑ̂)

U(ϑ̂)

] 1
2

 .

For the sake of completeness, we present here a full characterization of the equilibrium
points of (1.11), depending on the value of U ′′(ϑ̂).

For an equilibrium point (ϑ̂, ϑ̂+ kπ) of (1.11) we can have:

• if U ′′(ϑ̂) < − (α−2)2

8 U(ϑ̂), then µ± ∈ C \ R and thus

– if k is even then (ϑ̂, ϑ̂+ kπ) is a sink;

– if k is odd then (ϑ̂, ϑ̂+ kπ) is a source;

• if U ′′(ϑ̂) = − (α−2)2

8 U(ϑ̂), then µ− = µ+ ∈ R and thus

– if k is even then (ϑ̂, ϑ̂+ kπ) is asymptotically stable;

– if k is odd then (ϑ̂, ϑ̂+ kπ) is unstable;

• if U ′′(ϑ̂) > − (α−2)2

8 U(ϑ̂), then

– if U ′′(ϑ̂) > 0, then µ− · µ+ < 0 and thus (ϑ̂, ϑ̂+ kπ) is a saddle;

– if U ′′(ϑ̂) = 0, then one of the eigenvalues is zero and thus
∗ if k is even then (ϑ̂, ϑ̂+ kπ) is a stable degenerate node;

∗ if k is odd then (ϑ̂, ϑ̂+ kπ) is a unstable degenerate node;

– if 0 > U ′′(ϑ̂) > − (α−2)2

8 U(ϑ̂), then sign(µ−) = sign(µ+) and thus
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∗ if k is even then (ϑ̂, ϑ̂+ kπ) is a stable tangent-node;

∗ if k is odd then (ϑ̂, ϑ̂+ kπ) is a unstable tangent-node.

Now, we assume again (V 1)-(U1) and so, in particular, (ϑ∗, ϑ∗ + kπ) is a saddle
equilibrium point for (1.11). Coming back to the 3-dimensional system (1.10), the
Jacobian of F evaluated in the stationary points (0, ϑ∗, ϑ∗ + kπ) is

JF (0, ϑ∗, ϑ∗ + kπ) = U(ϑ∗) cos(kπ)

2 0 0
0 −2 2

0 U ′′(ϑ∗)
U(ϑ∗) − α α

 .

In this way, we note that the r-eigenvalue is always non-zero, i.e.

• if k is odd the orbit enters in the collision manifold;

• if k is even the orbit leaves the collision manifold.

Since we are interested in studying the behaviour of a trajectory which approaches the
singularity, we focus our attention on the case in which k is odd. With the choice of
k = 1, the Jacobian becomes

JF (0, ϑ∗, ϑ∗ + π) =

−2U(ϑ∗) 0 0
0 2U(ϑ∗) −2U(ϑ∗)
0 αU(ϑ∗)− U ′′(ϑ∗) −αU(ϑ∗)

 ,

the eigenvalues are

λr = −2U(ϑ∗) < 0

λ± =
2− α

2
U(ϑ∗)± 1

2

√
(2− α)2U(ϑ∗)2 + 8U(ϑ∗)U ′′(ϑ∗) ≷ 0

and the relative eigendirections are

vr = (1, 0, 0)

v± =

(
0, 1,

1

2
+
α

4
± 1

4

√
(2− α)2 + 8

U ′′(ϑ∗)

U(ϑ∗)

)
.

Remark 1.2.1. The orbits of the stablemanifold associated to the equilibrium point (0, ϑ∗, ϑ∗+π)
will enter in the collisionmanifold being tangent to vr or v−, depending on the sign of the quantity

U ′′(ϑ∗)

U(ϑ∗)
− (4− α)

(for instance, if negative, the tangency will be with respect to v−). In particular, for the classical
Kepler problem in which α = 1, U(ϑ∗) = 1 and U ′′(ϑ∗) = 0, the above quantity is always
negative.
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1.3. The stable manifold

In the previous section we have shown the existence of an invariant set for (1.10), the
collision manifold {r = 0}. Moreover, from the linearisation of the vector field, it follows
that the only way for a point in the phase space to evolve entering in {r = 0} is to belong
to the stable set of an equilibrium point (0, ϑ̂, ϑ̂ + kπ), with U ′(ϑ̂) = 0 and k odd. For
this reason, in this section we focus our attention on the study of the stable manifold of
such equilibrium points, with the not restrictive choice of k = 1. We start our analysis
with the case h = 0, which presents a simplified and clearer structure.

1.3.1. Collision orbits for h = 0

In this setting, system (1.10) reads

(1.12)


r′ = 2rU(ϑ) cos(ϕ− ϑ)

ϑ′ = 2U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ)

and the set
{(r, ϑ̂, ϑ̂+ π) : r ≥ 0, U ′(ϑ̂) = 0}

is invariant for the system and it gathers all the collision ϑ̂-homothetic trajectories. Once
ϑ̂ ∈ S1 critical point for U is fixed, such a set reduces to a ray which enters the collision
manifold in the equilibrium point (0, ϑ̂, ϑ̂+ π).

Lemma 1.3.1. Assume (V 1)-(U1). Then, there exist δ > 0, a stable manifold W s for the
equilibrium point (ϑ∗, ϑ∗ + π) of (1.11) and a C2-function Ψ: (ϑ∗ − δ, ϑ∗ + δ)→ S1 such that
Ψ(ϑ∗) = ϑ∗ + π and for every ϑ ∈ (ϑ∗ − δ, ϑ∗ + δ)

• (ϑ, ϕ) ∈W s if and only if ϕ = Ψ(ϑ);

• ϕ < ϑ+ π if ϑ ∈ (ϑ∗ − δ, ϑ∗) [resp. ϕ > ϑ+ π if ϑ ∈ (ϑ∗, ϑ∗ + δ)].

Moreover, R≥0 ×W s is the stable manifold of the equilibrium point (0, ϑ∗, ϑ∗ + π) for system
(1.12).

Proof. We firstly analyse the 2-dimensional system (1.11), keeping in mind the eigendi-
rections v+ and v− computed in the previous section. From the Stable Manifold Theorem
(see for instance [41],[66]) we have that there exist W u,W s C2-curves on the collision
manifold {r = 0} such that

• (ϑ∗, ϑ∗ + π) ∈W u,W s;

• W s is tangent to v− andW u is tangent to v+ in (ϑ∗, ϑ∗ + π);

• for every (ϑ+, ϕ+) ∈W u and (ϑ−, ϕ−) ∈W s we have

lim
τ→±∞

(ϑ±(τ), ϕ±(τ)) = (ϑ∗, ϑ∗ + π).
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In particular, since (ϑ∗, ϑ∗+π) is a hyperbolic equilibrium point,W s is locally the graph
of a C2-curve ϕ = ϕ(ϑ), i.e.

W s =
{

(ϑ, ϕ(ϑ)) : ϑ ∈ (ϑ∗ − δ, ϑ∗ + δ) with δ > 0, ϕ ∈ C2, ϕ(ϑ∗) = ϑ∗ + π
}
,

which is tangent to v− in (ϑ∗, ϑ∗+π). This is a consequence of the fact that the local stable
manifold has the same dimension of the stable eigenspace (Hartman-Grobman Theorem, see
for instance [66]).
Now, since the second and third equations of system (1.12) are uncoupled for every

r ≥ 0, if we consider the set

R≥0 ×W s = {(r, ϑ, ϕ) : r ≥ 0, (ϑ, ϕ) ∈W s},

defining theflowassociated to (1.12) asΦτ = Φτ (r, ϑ, ϕ), wehave that for every (r, ϑ, ϕ) ∈
R≥0 ×W s

lim
τ→+∞

Φτ (r, ϑ, ϕ) = (0, ϑ∗, ϑ∗ + π).

Indeed, Φτ (r, ϑ, ϕ) ∈ R≥0 ×W s for every τ > 0, since the projection of the vector field
F0 on the manifold {r = 0}, πr=0F0(Φτ (r, ϑ, ϕ)), is tangent toW s for every τ > 0, where
F0 represents the vector field associated to (1.12).

1.3.2. Collision orbits for h < 0

When h < 0, we come back again to system (1.10), which we recall here for the reader’s
convenience 

r′ = 2r(U(ϑ) + hrα) cos(ϕ− ϑ)

ϑ′ = 2(U(ϑ) + hrα) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

The collision manifold {r = 0} is exactly the same of the zero-energy system and we
still have the invariance of the collision homothetic trajectories set

{(r, ϑ̂, ϑ̂+ π) : r ≥ 0, U ′(ϑ̂) = 0}.

However, we point out that for h < 0 the set R+
0 × W s is not the stable manifold

for (0, ϑ̂, ϑ̂ + π). Beside that, assuming (V 1)-(U1), the hyperbolicity of the fixed point
(0, ϑ∗, ϑ∗+π) still guarantees the existence of a 2-dimensional stablemanifoldWs, which
contains the homothetic trajectories and the 1-dimensional stable manifoldW s.
Now, the dynamical systems (1.12) and (1.10) share the same linearisationwith respect

to the equilibrium point (0, ϑ∗, ϑ∗ + π). These means that, below some r∗ > 0, they are
topologically equivalent. In particular, we can imagine Ws ∩ {r < r∗} as a C2 h-
deformation of [0, r∗) × W s, in which the 1-dimensional components {0} × W s and
(0, r∗)× {ϑ∗} × {ϑ∗ + π} stay always fixed.
As a consequence of these discussions, we deduce the following analytic and geo-

metric description of Ws in a neighbourhood of the equilibrium point, which locally
generalizes Lemma 1.3.1.
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Lemma 1.3.2. Assume (V 1)-(U1). Given h < 0, there exist rloc > 0, δloc > 0 and a C2-
function Ψ: [0, rloc)× (ϑ∗ − δloc, ϑ∗ + δloc)→ S1 such that Ψ(0, ϑ∗) = ϑ∗ + π and for every
(r, ϑ) ∈ (0, rloc)× (ϑ∗ − δloc, ϑ∗ + δloc)

• (r, ϑ, ϕ) ∈ Ws if and only if ϕ = Ψ(r, ϑ);

• ϕ < ϑ+ π if ϑ ∈ (ϑ∗ − δloc, ϑ∗) [resp. ϕ > ϑ+ π if ϑ ∈ (ϑ∗, ϑ∗ + δloc)].

In other words, we have just characterized locallyWs as the graph of a function Ψ

Ws
loc

.
= {(r, ϑ,Ψ(r, ϑ)) : r ∈ [0, rloc), ϑ ∈ (ϑ∗ − δloc, ϑ∗ + δloc)} ⊆ Ws.

Remark 1.3.3. To better understand the meaning of the previous lemma, we can refer to the
configurations space the behaviour of a point evolving in Ws

loc and eventually entering in the
collision manifold. In particular, Lemma 1.3.2 guarantees the existence of a cone

C = {q = (q1, q2) ∈ R2 : |q| ≤ rloc, arctan(q2/q1) ∈ (ϑ∗ − δloc, ϑ∗ + δloc)}

such that, for every trajectory which starts in C and reaches the collision being tangent to ϑ∗, it
never leaves C (see Figure 1.1). We would stress that this confinement result is strictly addressed
to those orbits which, in the phase space, are contained inWs

loc. Indeed, every collision orbit that
is not tangent to ϑ∗ in the origin is not necessarily contained in the cone C.

1.4. Collision orbits as Bolza minimizers

The first task of this work is to highlight the relationship which stands between the
dynamical nature of this problem and our variational approach. Therefore, we present
here the minimality argument which leads to the existence of a solution for (1.1)-(1.2)
and provide further properties of this underlying variational structure of the problem.
The Maupertuis’ Principle states that every critical point of a suitable functional, which
could be either the Lagrange-action, the Jacobi-length or the Maupertuis’ functional, if
properly manipulated is a classical solution of (1.1)-(1.2) (see [4],[3]). In the first part
of this section, we state and prove a similar result which guarantees the existence of a
trajectory which reaches the origin in finite time, once a critical point is provided. From
now on, we will always consider h < 0 fixed and assume (U1)-(V 1), unless differently
specified.

1.4.1. The Maupertuis’ Principle for collision trajectories

Given q ∈ Rh \ {0}, consider the space of all the collision H1-paths starting from q and
reaching the origin in finite time T > 0

Ĥq
coll = {u ∈ H1([0, T ];R2) : u(0) = q, u(T ) = 0, u(t) ∈ Rh for every t ∈ (0, T )}.

12



Figure 1.1.: The local stable manifold characterized in Remark 1.3.3.

Moreover, let us introduce theMaupertuis’ functionalMh : Ĥq
coll → R∪{+∞} such that

Mh(u) =
1

2

∫ T

0
|u̇(s)|2 ds

∫ T

0
(h+ V (u(s))) ds

which is differentiable over Ĥq
coll and, ifMh(u) > 0, it makes sense to define the quantity

(1.13) ω =

(∫ T
0 (h+ V (u))

1
2

∫ T
0 |u̇|2

) 1
2

> 0.

It is well-known that critical points of the Maupertuis’ functional in a suitable space, if
reparametrized, solves classically the motion and energy equations (1.1)-(2.3) (see for
instance [3] and Appendix C for further details). As a starting point, we show that a
minimizer ofMh in Ĥq

coll at a positive level, if exists, cannot collide in the interior of its
interval of definition.

Lemma 1.4.1. Let u ∈ Ĥq
coll be a minimizer ofMh, withMh(u) > 0. Then, u(t) 6= 0 for

every t ∈ (0, T ).

Proof. Assume by contradiction that there exists τ ∈ (0, T ) such that u(τ) = 0. Observe
that thepath v(t) = u(t·τ/T )defined for t ∈ [0, T ]belongs to Ĥq

coll. Since theMaupertuis’
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functional is invariant through time rescalings, with a standard change of variable we
obtain

Mh(u) =

(
1

2

∫ τ

0
|u̇|2 +

1

2

∫ T

τ
|u̇|2
)(∫ τ

0
(h+ V (u)) +

∫ T

τ
(h+ V (u))

)
=

1

2

∫ τ

0
|u̇|2

∫ τ

0
(h+ V (u)) +

1

2

∫ τ

0
|u̇|2

∫ T

τ
(h+ V (u))

+
1

2

∫ T

τ
|u̇|2

∫ τ

0
(h+ V (u)) +

1

2

∫ T

τ
|u̇|2

∫ T

τ
(h+ V (u))

=Mh(v) + [positive terms].

The reason why the remaining terms are positive is that a path in Ĥq
coll cannot leave the

Hill’s region Rh. Indeed, if V (u) + h = 0 in one of the two intervals, the path would
lie constantly on the boundary of the Hill’s region, so that it will never reach the origin.
On the other hand, if |u̇|2 = 0, then there would be no motion and this would lead to
q = 0 which is impossible, since q ∈ Rh \ {0}. In this way, we reach a contradiction for
the minimality of u in Ĥq

coll.

In the next theorem we show that a minimizer of the Maupertuis’ functional at a
positive level actually solves equations (1.1)-(2.3) except for collision and its normalized
configuration converges to a minimal non degenerate central configuration of V as it
approaches the origin. We can consider this result as a collision counterpart of the
well-knownMaupertuis’ principle.

Theorem 1.4.2. Let u ∈ Ĥq
coll be a minimizer forMh such thatMh(u) > 0. Then, for ω given

by (1.13), x(t) = u(ωt) is a classical solution of (1.1)-(1.2) in [0, T/ω) such that

• x(0) = q, x(T/ω) = 0;

• x(t)/|x(t)| → ϑ∗ as t→ (T/ω)−, with ϑ∗ ∈ S1 central configuration for V ;

• for some positive constantK, we have |x(t)| ∼ K(T/ω − t)2/(2+α) as t→ (T/ω)−.

Proof. SinceM′h(u) = 0 we have

M′h(u)[v] =

∫ T

0
u̇ · v̇

∫ T

0
(h+ V (u)) +

1

2

∫ T

0
|u̇|2

∫ T

0
∇V (u) · v = 0,

for every v ∈ H1
0 ([0, T ];R2) and so, sinceMh(u) > 0

ω2

∫ T

0
u̇ · v̇ +

∫ T

0
∇V (u) · v = 0,

for every v ∈ H1
0 ([0, T ];R2). In other words, u is a weak solution of the equation

(1.14) ω2ü = ∇V (u),
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but also, by standard regularity arguments and by Lemma 1.4.1, a classical solution
of the same equation in [0, T ). Now, it is readily checked that x(t) = u(ωt) solves
(1.1)-(1.2) in [0, T/ω) and that the required boundary conditions are satisfied. The
limiting behaviours as t → (T/ω)− follow from the well-known asymptotic estimates
(see [7, 12, 11]). Moreover, from equation (1.14), we deduce that there exists k ∈ R such
that

ω2

2
|u̇(t)|2 − V (u(t)) = k,

for every t ∈ [0, T ). Integrating the above equation over [0, T ), we necessarily get k = h
and the energy equation (1.2) for x holds as well.

1.4.2. Existence through direct methods

In what follows, we show the existence of minimizers for the Maupertuis’ functional,
which correspond to collision trajectories through Theorem 1.4.2. However, it will be
clear that such motions cannot start too far from the singularity. The initial distance
r = |q| of the particle is indeed linked to the well-known Lagrange-Jacobi inequality (see
for instance [69]), which we prove below in our setting.

Lemma 1.4.3 (Lagrange-Jacobi inequality). Define Umin = min
ϑ∈S1

U(ϑ) and

rLJ =

[
(2− α)Umin
−2h

] 1
α

> 0.

For every solution x of (1.1)-(1.2) such that |x| < rLJ , we have that the moment of inertia
I(x(t)) = 1

2 |x(t)|2 is strictly convex with respect to t. In particular, for a solution x(t) =

r(t)eiϑ(t) which collides with the origin after a time T > 0, we have r′(t) < 0 in (0, T ).

Proof. By standard calculations and using (1.1)-(1.2) we obtain

d2

dt2
I(x(t)) = 〈∇V (x(t)), x(t)〉+ 2(V (x(t)) + h)

= |x(t)|−α(2− α)U(ϑ(t)) + 2h

> (2− α)r−αLJ Umin + 2h = 0.

The previous result suggests to consider a smaller minimization set than Ĥq
coll and

to require the natural constraint for a path not to leave the ball where it started from.
Indeed, the Lagrange-Jacobi inequality assures that for a solution of (1.1)-(1.2) starting
from the interior of BrLJ , its radial component is strictly decreasing and so it cannot
leave the ball BrLJ . To be precise, given r > 0 and q ∈ ∂Br, we introduce the set of all
the H1-paths which start in q and collapse in the origin in finite time, without leaving
the ball Br

Hq
coll

.
= {u ∈ H1([0, 1];R2) : u(0) = q, u(1) = 0, |u(s)| ≤ r for every s ∈ [0, 1]}.
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Here and later, in order to simplify the notation, we have set T = 1.
We now present two lemmata which allow us to apply the direct method of the

calculus of variations; to this aim, we will often make use of the Poincaré inequality,
which clearly holds in the space Hq

coll.

Lemma 1.4.4. For every q ∈ BrLJ , there exists a positive constant C such that

0 < C ≤ inf
u∈Hq

coll

Mh(u) < +∞.

Proof. Fix r ∈ (0, rLJ) and q ∈ ∂Br. From the definition of rLJ given in Lemma 1.4.3,
we have that, for every u ∈ Hq

coll

(1.15)
∫ 1

0
(h+ V (u)) ds ≥

∫ 1

0
(h+ r−αUmin) ds > h+ r−αLJ Umin = − αh

2− α > 0.

Moreover, for u ∈ Hq
coll, we can write

r = |u(1)− u(0)| ≤
∫ 1

0
|u̇| ds ≤

(∫ 1

0
|u̇|2 ds

)1/2

and so, together with (1.15), we obtain

Mh(u) =

∫ 1

0
|u̇|2 ds

∫ 1

0
(h+ V (u)) ds ≥ − αhr

2

2− α = C > 0, for every u ∈ Hq
coll.

Moreover, since u ∈ Hq
coll, then u̇ ∈ L2([0, 1];R2) and V (u) ∈ L1([0, 1];R2), by means of

the limiting behaviour provided in Theorem 1.4.2. This proves the upper bound and
concludes the proof.

Lemma 1.4.5. For every q ∈ BrLJ ,Mh is coercive on Hq
coll.

Proof. Fix r ∈ (0, rLJ) and q ∈ ∂Br and consider (un)n ⊆ Hq
coll, such that ‖un‖H1 → +∞

as n → +∞. Since |un(s)| ≤ r for every s ∈ [0, 1] and for every n ∈ N, we obtain that
necessarily

lim
n→+∞

∫ 1

0
|u̇n|2 ds = +∞

and so, together with (1.15), we conclude thatMh(un)→ +∞.

We are about to prove that a minimizer ofMh exists and thus, invoking Theorem
1.4.2, a collision trajectory x(t) satisfying (1.1)-(1.2) can be provided.

Theorem 1.4.6. Given h < 0 and rLJ > 0 as in Lemma 1.4.3, the Maupertuis’ functional

Mh(u) =

∫ 1

0
|u̇|2 ds

∫ 1

0
(h+ V (u)) ds

admits at least a minimizer u ∈ Hq
coll at a positive level, for every q ∈ BrLJ .
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Proof. Let us fix r ∈ (0, rLJ) and q ∈ ∂Br. Since the weak convergence implies the
uniform one in H1, we first observe that Hq

coll is weakly closed in H1 (equivalently, the
weak closure follow from the fact that Hq

coll is convex and strongly closed).
Now, let us consider a sequence (un)n ⊆ Hq

coll such that

Mh(un)→ inf
u∈Hq

coll

Mh(u),

as n→ +∞. From 1.4.4 and 1.4.5 we have that (un)n is bounded inH1 and so un ⇀ u in
H1 up to a subsequence. In particular, sinceHq

coll is weakly closed, u ∈ Hq
coll. Moreover,

from the weakly lower semi-continuity of the L2 norm, we deduce that

(1.16)
∫ 1

0
|u̇|2 ds ≤ lim inf

n→∞

∫ 1

0
|u̇n|2 ds

and, from Lemma 1.4.4, for every n ∈ N we obtain that

0 < C ≤Mh(un) <∞

and thus V (un) ∈ L1(0, 1), for every n ∈ N. This implies that the set {t ∈ [0, 1] :
un(t) = 0} has null measure and hence, since un converges to u uniformly, we have
that V (un)→ V (u) almost everywhere. We can now use Fatou’s Lemma to deduce that
V (u) ∈ L1(0, 1) and that∫ 1

0
(h+ V (u)) ds ≤ lim inf

n→∞

∫ 1

0
(h+ V (un)) ds.

This, together with (1.16), proves that

Mh(u) ≤ lim inf
n→+∞

Mh(un) = inf
u∈Hq

coll

Mh(u).

1.4.3. A compactness lemma

Theorem 1.4.6 shows that once h < 0 and q ∈ BrLJ are fixed, we can always find at
least a minimizer of the Maupertuis’ functional in the space Hq

coll. In this way, if we fix
r ∈ (0, rLJ), we can define a function ψh : ∂Br → R+ such that

ψh(q)
.

= min
u∈Hq

coll

Mh(u) for q ∈ ∂Br.

Remark 1.4.7. In the next proposition we are going to make use of the Jacobi-length functional

Lh(u) =

∫ 1

0
|u̇|
√
h+ V (u) ds,

which, for a path u ∈ H1([0, 1];R2), is well-defined whenever h+V (u) ≥ 0. Therefore, it makes
sense to consider paths which live far from the boundary of the Hill’s region ∂Rh. Nonetheless,
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with our choice of rLJ provided in Lemma 1.4.3, this condition is already satisfied. Indeed, taking
q ∈ BrLJ and u ∈ Hq

coll, we can write

h+ V (u) ≥ h+ r−αLJ Umin = − αh

2− α = C > 0.

Moreover, from the energy equation, we clearly have |u̇| > 0.

Proposition 1.4.8. For h < 0 and r ∈ (0, rLJ), the function ψh is Lipschitz continuous on
∂Br. In other words, there exists L = L(rLJ) > 0 such that

|ψh(q2)− ψh(q1)| ≤ L|ϑ2 − ϑ1|, for every q1 = reiϑ1 , q2 = reiϑ2 ∈ ∂Br.

Proof. Fix h < 0 and r ∈ (0, rLJ). Given q ∈ ∂Br, for a path u ∈ Hq
coll we can define the

Jacobi-length functional

Lh(u) =

∫ 1

0
|u̇|
√
h+ V (u) dt,

which is linked toMh in this way:

2 min
Hq
coll

Mh = (min
Hq
coll

Lh)2.

Therefore, if we define the function ωh(q)
.

= min
Hq
coll

Lh for q ∈ ∂Br and we show that it is

Lipschitz continuous we are done.
Fix q1 = reiϑ1 , q2 = reiϑ2 ∈ ∂Br and consider the circular path

uarc(t) = rei((1−t)ϑ1+tϑ2), for t ∈ [0, 1].

We have
Lh(uarc) = r|ϑ2 − ϑ1|

∫ 1

0

√
h+ r−αU(ϑ(t)) dt

< L|ϑ2 − ϑ1|, where L = L(rLJ) = r
1−α/2
LJ

√
Umax.

Now, since Lh is a length, it is invariant under time rescaling and so we can write

min
H
q1
coll

Lh ≤ Lh(uarc) + min
H
q2
coll

Lh.

Finally, from the definition of ωh, we obtain

ωh(q1) ≤ ωh(q2) + L|ϑ2 − ϑ1|

and, with the same argument

ωh(q2) ≤ ωh(q1) + L|ϑ2 − ϑ1|.

Corollary 1.4.9. Given h < 0, r∗ ∈ (0, rLJ), h∗ ∈ (h, 0) and ϑ∗ ∈ S1, consider three sequences
(hk)k ⊆ R, (rk)k ⊆ R+ and (ϑk)k ⊆ S1 such that
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• hk ∈ (h, 0) for every k ∈ N and hk → h∗ as k → +∞;

• 0 < rk < rLJ for every k ∈ N and rk → r∗ as k → +∞;

• qk = rke
iϑk → q∗ = r∗eiϑ

∗ as k → +∞.

Then
min
H
qk
coll

Mhk ≤ min
Hq∗
coll

Mh∗ +O(|ϑ∗ − ϑk|) +O(|h∗ − hk|) +O(|r∗ − rk|),

as k → +∞.

Proof. Fix h < 0, r∗ ∈ (0, rLJ), h∗ ∈ (h, 0) and ϑ∗ ∈ S1. Consider the three sequences as
in the statement and fix k ∈ N. We can write

ψhk(qk) = min
H
qk
coll

Mhk , ψh∗(q
∗) = min

Hq∗
coll

Mh∗ ,

so that
ψhk(qk)− ψh∗(q∗) = ψhk(qk)− ψhk(q∗) + ψhk(q∗)− ψh∗(q∗).

Let us start by the estimate of the termψhk(q∗)−ψh∗(q∗) on the right-hand side. Consider
u∗ ∈ Hq∗

coll such that
ψh(q∗) = min

Hq∗
coll

Mh∗ =Mh∗(u
∗).

For the minimality of u∗, we obtain

ψhk(q∗)− ψh∗(q∗) ≤Mhk(u∗)−Mh∗(u
∗)

≤ |h∗ − hk|
∫ 1

0
|u̇∗|2 ds ≤ C1|h∗ − hk|,

with C1 > 0. Now, concerning the term ψhk(qk)− ψhk(q∗), if we consider the point

q′k =
r∗

rk
qk ∈ ∂Br∗

we can write

ψhk(qk)− ψhk(q∗) = ψhk(qk)− ψhk(q′k) + ψhk(q′k)− ψhk(q∗).

Take vk ∈ Hq′k
coll such that

ψhk(q′k) = min
H
q′
k
coll

Mhk =Mhk(vk)

and define the path
ṽk =

rk
r∗
vk ∈ Hqk

coll.
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We can write

ψhk(qk)−ψhk(q′k)

≤Mhk(ṽk)−Mhk(vk)

=

∫ 1

0
| ˙̃vk|2 ds

∫ 1

0
(hk + V (ṽk)) ds−

∫ 1

0
|v̇k|2 ds

∫ 1

0
(hk + V (vk)) ds

=

∫ 1

0
|v̇k|2 ds

∫ 1

0

[
hk

(rk
r∗

)2
− hk +

(rk
r∗

)2−α
V (vk)− V (vk)

]
ds

=

∫ 1

0
|v̇k|2 ds

∫ 1

0

[
hk
rk + r∗

(r∗)2
(rk − r∗) + V (vk)

r2−α
k − (r∗)2−α

(r∗)2−α

]
ds

≤ C2(|r∗ − rk|),

with C2 > 0. Finally, since q′k, q∗ ∈ ∂Br∗ , we can apply Proposition 1.4.8 to obtain

ψhk(q′k)− ψhk(q∗) ≤ L|ϑ∗ − ϑk|.

Now we prove the following compactness lemma on sequences of minimizers of the
Maupertuis’ functional.

Lemma 1.4.10. Given h < 0, r∗ ∈ (0, rLJ), h∗ ∈ (h, 0) and ϑ∗ ∈ S1, consider three sequences
(hk)k ⊆ R+, (rk)k ⊆ R and (ϑk)k ⊆ S1 such that

• hk ∈ (h, 0) for every k ∈ N and hk → h∗ as k → +∞;

• 0 < rk < rLJ for every k ∈ N and rk → r∗ as k → +∞;

• qk = rke
iϑk → q∗ = r∗eiϑ

∗ as k → +∞.

Define the classes

Hqk
coll = {u ∈ H1([0, 1];R2) : u(0) = qk, u(1) = 0, |u(s)| ≤ rk for every s ∈ [0, 1]}

and

Hq∗

coll = {u ∈ H1([0, 1];R2) : u(0) = q∗, u(1) = 0, |u(s)| ≤ r∗ for every s ∈ [0, 1]}.

If uk is a minimizer ofMhk in H
qk
coll for every k ∈ N, then

(i) uk → u∗ in H1([0, 1];R2);

(ii) uk → u∗ in C2([0, b];R2), for every b < 1.

In particular, u∗ is a minimizer ofMh∗ in the class of paths Hq∗

coll.
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Proof. Fix h < 0, r∗ ∈ (0, rLJ), h∗ ∈ (h, 0) and ϑ∗ ∈ S1 and consider the sequences (hk)k,
(rk)k and (ϑk)k as in the statement. For every k ∈ N, consider a minimizer uk ofMhk in
Hqk
coll. For k ∈ N and for every s ∈ [0, 1], following Remark 1.4.7, we have

hk + V (uk(s)) > h+ r−αk Umin > h+ r−αLJ Umin = C > 0.

In this way, we can write

inf
H
qk
coll

Mhk =Mhk(uk) =

∫ 1

0
|u̇k|2 ds

∫ 1

0
(hk + V (uk)) ds > C

∫ 1

0
|u̇k|2 ds

and so, by Lemma 1.4.4 and the Poincaré inequality, the sequence (uk)k is bounded in
H1 and hence uk ⇀ u∗ in H1 and uniformly. So, from Fatou’s lemma, we have

Mh∗(u
∗) ≤ lim inf

k→∞
Mhk(uk).

Now, suppose by contradiction that there exists a minimizer umin ofMh∗ in Hq∗

coll such
that

Mh∗(umin) <Mh∗(u
∗).

From Corollary 1.4.9, we actually obtain that, as k → +∞

Mhk(uk) ≤Mh∗(umin) +O(|ϑ∗ − ϑk|) +O(|h∗ − hk|) +O(|r∗ − rk|)

and so
lim inf
k→∞

Mhk(uk) ≤Mh∗(umin),

which leads to a contradiction. Therefore, u∗ is a minimizer. Moreover, the same
argument leads to a strong convergence in H1 assuming by contradiction that∫ 1

0
|u̇∗|2 ds < lim sup

k→∞

∫ 1

0
|u̇k|2 ds.

Finally, since rk → r∗ > 0, we have infk rk > 0 and so we can consider Br̃ with
r̃ = 1

2 infk rk. From Lemma 1.4.3, there exists a sequence (bk)k such that |uk(bk)| = r̃ and
0 < bk < 1 for every k ∈ N. Defining b = infk bk, again from Lemma 1.4.3 we deduce
that 0 < b < 1. In this way, we obtain

ω2ük(t) = ∇V (uk(t)) for t ∈ [0, b], for every k ∈ N

and thus∇V (uk) converges uniformly to∇V (u∗) on [0, b]. This proves that uk converges
in C2([0, b]).
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1.5. Proof of Theorem 1.1.2

In general, the minimizer provided by Theorem 1.4.6 is not unique. However, for a
particular class of collision trajectories, we have the following result.

Lemma 1.5.1. Assume (U1)-(V 1). Given h < 0, r∗ ∈ (0, [−U(ϑ∗)/h]1/α] and taking q∗ =

r∗eiϑ
∗ , there exists a unique minimizer for the Maupertuis’ functionalMh inHq∗

coll. This arc is
nothing but the monotone ϑ∗-homothetic collision trajectory.

Proof. Let us define the homothetic trajectory as uhom(s) = rhom(s)eiϑ
∗ , with rhom(0) =

r∗, rhom(1) = 0 and ṙhom(s) < 0 for every s ∈ (0, 1). For every u ∈ Hq∗

coll we can write
u(s) = r(s)eiϑ(s), so that

Mh(u) =

∫ 1

0
|ṙeiϑ + irϑ̇eiϑ|2 ds

∫ 1

0
(h+ r−αU(ϑ)) ds

≥
∫ 1

0
ṙ2 ds

∫ 1

0
(h+ r−αUmin) ds ≥Mh(uhom).

Indeed, the last inequality is strict if r(s) is not monotone in (0, 1), otherwise we end up
with an equality, since the Maupertuis’ functional is invariant under time rescaling (see
the proof of Theorem 1.4.2).

In order to enlarge the set of those minimizers which are also unique, we are going
to exploit the dynamical features of our problem. Therefore, we come back to our
study started in Sections 1.2-1.3. From Lemma 1.3.2 and Remark 1.3.3 we have a precise
characterization of the local stable manifoldWs

loc of the fixed point (0, ϑ∗, ϑ∗+π). Given
a starting point q, the Maupertuis’ functionalMh does not necessarily admit a unique
minimizer on the class of collision paths Hq

coll but, actually, this set of minimizers is in
1-1 correspondence with the set of their starting velocities. This fact is a consequence
of the uniqueness of the solutions of the relative Cauchy problems and it suggests to
establish a link between every minimizer and its initial velocity. In this way, we can
introduce the set of the reparametrizations through McGehee’s coordinates of every
minimizer with starting position q as follows

(1.17) mh(q) = {γϕ : rep(γϕ) minimizesMh in Hq
coll, with ϕ ∈ S1},

with γϕ = γϕ(τ) for τ > 0 and where rep(γϕ) represents a suitable reparametrization of
γϕ. With this notation, the angle ϕ is nothing but the direction of the starting velocity,
since its module is already fixed for the conservation of energy.
Following this preliminary discussion, we state and prove below the main result of

this chapter, which is nothing but the planar unperturbed version of Theorem 1.1.2
presented in the Introduction of this paper, in a negative energy shell.

Theorem 1.5.2. Assume (U1)-(V 1). Given h < 0, there exist r̄ > 0 and δ̄ > 0 such that,
defining

Q0 = {q0 = reiϑ0 : r ∈ (0, r̄) and ϑ0 ∈ (ϑ∗ − δ̄, ϑ∗ + δ̄)},
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and mh as in (1.17), then

(1.18) Ws
loc(r̄, δ̄) =

⋃
q0∈Q0

mh(q0).

Moreover, for every q0 ∈ Q0, the Maupertuis’ functionalMh admits a unique minimizer in
Hq0
coll.

Proof. Fix h < 0 and, adopting the notations of Lemma 1.3.2 and Lemma 1.4.3, choose

r̄ = min{rloc, rLJ}.

We start with showing that the uniqueness of a minimizer follows from inclusion (⊇)
in (1.18). Indeed, Lemma 1.3.2 guarantees thatWs

loc is the graph of a C2-function, which
associates to every initial position q0 ∈ Q0 a unique initial velocity. Therefore, once q0 is
fixed, there necessarily exists a uniqueminimal arc solving the correspondent fixed-end
collision problem.
Inclusion (⊇): Take q0 = reiϑ0 , with r ∈ (0, r̄) and ϑ0 ∈ (ϑ∗ − δloc, ϑ∗ + δloc) (as in

Lemma 1.3.2). Therefore, by Theorem 1.4.6, there exists γ = γϕ0 ∈ mh(q0) for some
ϕ0 ∈ S1. Our goal is to show that, up to make δloc smaller, γ is entirely contained in the
local stable manifold Ws

loc. The orbit γ(τ) = (r(τ), ϑ(τ), ϕ(τ)) solves (1.10) in (0,+∞)
so that, by the definition of stable manifold, we have

(1.19) γ ∈ Ws ⇐⇒


r(τ)→ 0 as τ → +∞
ϑ(τ)→ ϑ∗ as τ → +∞
ϕ(τ)→ ϕ∗ = ϑ∗ + π as τ → +∞,

but also, from Lemma 1.3.2

γ ∈ Ws
loc ⇐⇒ for every τ > 0, ϕ(τ) = Ψ(r(τ), ϑ(τ)).

Assume by contradiction that there exists (ϑk(0))k ⊆ S1 such that

qk = reiϑk(0) → q∗ = reiϑ
∗ as k → +∞,

but there exists a sequence of reparametrized minimizers (γk)k ⊆ (mh(qk))k such that

γk = {γk(τ) = (rk(τ), ϑk(τ), ϕk(τ)) : τ ≥ 0} 6⊆ Ws
loc, for every k ∈ N.

Notice that, from Lemma 1.4.10 and Lemma 1.5.1, the sequence (γk)k converges in
H1([0, 1];R2), and thus uniformly in [0, 1], to the ϑ∗-homothetic motion. For this reason,
we can split our proof in two situations, whose discriminant is the uniform convergence
of the sequence (ϑk)k = (ϑk(τ))k. Indeed, despite the convergence of (γk)k, for instance
it could happen that the sequence of angle functions (ϑk)k starts to oscillate dramatically
as k goes to +∞.
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Case 1: Assume that γk 6⊆ Ws
loc for infinitely many k and that

lim
k→+∞

sup
τ≥0
|ϑk(τ)− ϑ∗| = 0.

By (1.19), we necessarily have that there exists ε̄ > 0 such that

lim sup
k→+∞

sup
τ≥0
|ϕk(τ)− ϕ∗| = ε̄ > 0.

In this way, up to subsequences, from the definition of sup and limsup we can find a
sequence (τk)k ⊆ [0,+∞) such that

(1.20) |ϕk(τk)− ϕ∗| ≥
ε̄

2
, for every k ∈ N.

Now, we perform the following change of variables and time shifting
r̃k(τ) = r

rk(τk)rk(τ + τk)

ϑ̃k(τ) = ϑk(τ + τk)

ϕ̃k(τ) = ϕk(τ + τk)

and, if we define λk = rk(τk)/r ≤ 1, we have that the orbit γ̃k = (r̃k(τ), ϑ̃k(τ), ϕ̃k(τ)) for
τ ≥ 0 solves the system

r̃′k = 2r̃k(U(ϑ̃k) + hkr̃
α
k ) cos(ϕ̃k − ϑ̃k)

ϑ̃′k = 2(U(ϑ̃k) + hkr̃
α
k ) sin(ϕ̃k − ϑ̃k)

ϕ̃′k = U ′(ϑ̃k) cos(ϕ̃k − ϑ̃k) + αU(ϑ̃k) sin(ϕ̃k − ϑ̃k),

where hk = λαkh and so hk ∈ [h, 0). Now, denoting by xk the reparametrization of the
trajectory γk in time t in the configurations space, xk solves the problem{

ẍk = ∇V (xk)
1
2 |ẋk|2 − V (xk) = h,

for every k ∈ N. Therefore, the function

x̃k(t) =
xk(tk + λ

1+α/2
k t)

λk
,

with tk such that x̃k(0) = xk(0), will solve the problem{
d2

dt2
x̃k(t) = ∇V (x̃k(t))

1
2 | ddt x̃k(t)|2 − V (x̃k(t)) = hk,

for every k ∈ N. Hence, under a suitable change of scales, there exists a sequence (ũk)k
of minimizers of the Maupertuis’ functional, with starting point respectively in (q̃k)k
such that

q̃k = r̃k(0)eiϑ̃k(0) = reiϑk(τk) → q∗ = reiϑ
∗ as k → +∞.
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For Lemma 1.4.10, we have that such a sequence of minimizers converges in H1 and
thus uniformly to a minimal arc connecting q∗ to the origin. On the other hand, from
(1.20) we have that ϕ̃k(0) = ϕk(τk) 6→ ϕ∗ = ϑ∗+π as k → +∞. This means that the limit
arc cannot be the ϑ∗-homothetic trajectory, which is impossible for Proposition 1.5.1.
Case 2: Assume that γk 6∈ Ws for infinitely many k and that there exists ε̄ > 0 such

that

(1.21) lim sup
k→+∞

sup
τ≥0
|ϑk(τ)− ϑ∗| = ε̄.

Hence, up to subsequences, there exists a sequence (τk)k ⊆ [0,∞) such that

(1.22) |ϑk(τk)− ϑ∗| ≥
ε̄

2
, for every k ∈ N.

Moreover, since from Lemma 1.4.10 and Proposition 1.5.1 the sequence (γk)k converges
C2 to the homothetic motion on every bounded interval, we necessarily deduce that
τk → +∞ as k → +∞. In particular, since every γk is a collision arc, again from Lemma
1.4.10 we have that

(1.23) rk(τk)→ 0, as k → +∞.

Now, for every k ∈ N define the orbit γ̃k = (r̃k, ϑ̃k, ϕ̃k) such that
r̃k(τ) = rk(τ + τk)

ϑ̃k(τ) = ϑk(τ + τk)

ϕ̃k(τ) = ϕk(τ + τk),

for τ ∈ [−τk,+∞). We have that, for every k ∈ N, γ̃k verifies equations
r̃′k = 2r̃k(U(ϑ̃k) + hr̃αk ) cos(ϕ̃k − ϑ̃k)
ϑ̃′k = 2(U(ϑ̃k) + hr̃αk ) sin(ϕ̃k − ϑ̃k)
ϕ̃′k = U ′(ϑ̃k) cos(ϕ̃k − ϑ̃k) + αU(ϑ̃k) sin(ϕ̃k − ϑ̃k).

Since τk → +∞, we have that, for every T > 0, there exists k̄ ∈ N such that, for every
k ≥ k̄

τk > T.

Let us fix T > 0. For τ ∈ [−T, T ] and for every k ≥ k̄ we have

τ + τk ∈ [0,+∞)

and so
r̃k(τ) = rk(τ + τk) ≤ rk(0) < r̄.

Moreover,
ϑ̃k(τ), ϕ̃k(τ) ∈ S1
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and
|r̃′k(τ)| ≤ 2r̄(Umax − hr̄α) = C < +∞

and, with analogous calculations, the same holds for ϑ̃′k(τ) and ϕ̃′k(τ). From the Ascoli-
Arzelà theorem, we have that

(r̃k, ϑ̃k, ϕ̃k)→ (r̃, ϑ̃, ϕ̃) as k → +∞

uniformly on [−T, T ]. Moreover, from (1.23) we deduce that

−r̃αk (τ)h ≤ −r̃αk (0)h = −rαk (τk)h→ 0 as k → +∞.

This, together with the uniform convergence, implies that (r̃, ϑ̃, ϕ̃) satisfy the equations

(1.24)


r̃′ = 2r̃U(ϑ̃) cos(ϕ̃− ϑ̃)

ϑ̃′ = 2U(ϑ̃) sin(ϕ̃− ϑ̃)

ϕ̃′ = U ′(ϑ̃) cos(ϕ̃− ϑ̃) + αU(ϑ̃) sin(ϕ̃− ϑ̃),

on [−T, T ]. Repeating the same argument for every T > 0, we have that the sequences
converges uniformly on every compact of R, with limit defined and verifying (1.24) on
the whole R. Moreover, let us notice that

r̃k(0) = rk(τk)→ 0 = r̃(0) as k → +∞

and so, for the uniqueness of the solution of a Cauchy problem, we actually deduce that
r̃(τ) ≡ 0. This means that the solution of (1.24) is actually a motion on the collision
manifold {r = 0}.
Let us now investigate the asymptotic behaviour of ϑ̃. From the non-degeneracy of

ϑ∗, it is not restrictive to assume that ε̄ = d/2 in (1.21), where

d
.

= min{|ϑ∗ − ϑ̂| : ϑ̂ ∈ S1, U ′(ϑ̂) = 0, ϑ̂ 6= ϑ∗}.

In this way, from (1.22), we can deduce that for every k ∈ N

|ϑk(τ)− ϑ∗| < d

2
, for every τ ∈ [0, τk)

and so, in other words, for every k ∈ N

|ϑ̃k(τ)− ϑ∗| < d

2
, for every τ ∈ [−τk, 0).

From the convergence of ϑ̃k to ϑ̃we can easily deduce that

(1.25) |ϑ̃(τ)− ϑ∗| ≤ d

2
, for every τ ∈ (−∞, 0).

Now, it is known (see [29, 11]) that

lim
τ→±∞

ϑ̃(τ) = ϑ±, lim
τ→±∞

ϕ̃(τ) = ϑ± + π,
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with ϑ± central configuration for U . Assume by contradiction that ϑ− 6= ϑ∗, i.e. that for
every ε there exists τε ∈ R such that

τ < τε =⇒ |ϑ̃(τ)− ϑ−| < ε.

Choosing ε = d/4 andusing (1.25)wehead to a contradiction and sonecessarilyϑ− = ϑ∗.
To conclude the proof, consider the function

v(τ) =

√
U(ϑ̃(τ)) cos(ϕ̃(τ)− ϑ̃(τ)),

which is non-decreasing and non-constant on every solution of (1.24) (see Theorem 4,
[11]), so that

−
√
Umin = −

√
U(ϑ∗) = lim

τ→−∞
v(τ) < lim

τ→+∞
v(τ) = −

√
U(ϑ+).

This is clearly a contradiction since ϑ∗ is a global minimal central configuration for U .
Inclusion (⊆): From any (r, ϑ0, ϕ0) ∈ Ws

loc it starts a unique orbit that ends in the
equilibrium point (0, ϑ∗, ϑ∗ + π), which connects the point q0 = reiϑ0 to the origin in
the configuration space. This is nothing but a reparametrization of a minimal fixed-end
arc: indeed, a minimizer from q0 to the origin exists by means of Theorem 1.4.6 and it
is unique, as we have already shown.

1.6. General setting

This final section collects some useful remarks for the adaptation of the previous proof
in the general setting presented in the introduction. This material is mainly thought to
ease the reader’s comprehension, for it will be clear that the argument used in the proof
is exactly the same. We made the choice to split the generalization in two sub-cases. In
the first one, we take into account a perturbed potential and a conservative system with
possibly non-negative energy. The second one is focused on the higher dimensional
case.

1.6.1. d = 2,W 6≡ 0, h ∈ R

As a first step, we set equation (1.1) again in the plane (d = 2), but we perturb our
potential V exactly as stated in (V 0). Moreover, we wish to work also in non-negative
energy shells, so that equation (1.2) will be given with h ∈ R. Using polar coordinates
(r, ϑ) and adopting the same argument as in Section 1.2, we find an analogous of system
(1.10) in our actual setting, i.e., the dynamical system

(1.26)


r′ = 2r(U(ϑ) + rαW (r, ϑ) + hrα) cos(ϕ− ϑ)

ϑ′ = 2(U(ϑ) + rαW (r, ϑ) + hrα) sin(ϕ− ϑ)

ϕ′ = (U ′(ϑ)− rαWϑ) cos(ϕ− ϑ) + (αU(ϑ) + rα+1Wr) sin(ϕ− ϑ)

,
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where we have set
Wr =

∂W

∂r
(r, ϑ), Wϑ =

∂W

∂ϑ
(r, ϑ).

It is easy to notice that the collisionmanifold {r = 0} induced by (1.26) is nothing but the
one described by (1.11) in Section 1.2, regardless of the sign of h. This fact also implies
that the dynamical systems (1.26) and (1.10) share not only the same equilibrium points
(0, ϑ∗, ϑ∗+kπ), but also the same linearisation. As a consequence, with the help ofminor
changes, the dynamical characterization provided in Section 1.3 naturally extends to the
setting considered above and it is possible to reformulate Lemma 1.3.2.
On second thought, basically all the proofs contained in Section 1.4 strongly depend

on the Lagrange-Jacobi inequality (Lemma 1.4.3) and its consequences. In particular, when
W ≡ 0, the −α-homogeneity of V and the convexity of the inertial moment allow us
to provide all the useful (upper or lower) estimates on the term h + V . Again, this can
be reset in our new framework, since the hypotheses (V 0) on the perturbation W tell
us that we can recover a −α-homogeneity on V when r is sufficiently small. Indeed,
the term rαW + rα+1|∇W | → 0 as r → 0, so that, eventually choosing a smaller rLJ in
Lemma 1.4.3, we can carry out again the entire argument.
Finally, we want to remark that a complementary choice of h ≥ 0 is not dramatic in

this setting. In particular, ifW ≡ 0, this will induce the choice rLJ = +∞ and thus the
presence of an infinite Hill’s region, as expected in a parabolic or hyperbolic problem.
On the other hand, ifW 6≡ 0, we could still have a bound on rLJ , depending on the sign
ofW close to the singularity.

1.6.2. d > 2,W 6≡ 0, h ∈ R

In this higher dimensional setting, the construction presented in Sections 1.2-1.3 needs
to be properly modified, in order to take into account the more abstract nature of this
case. We want to make once more clear that the variational approach of Section 1.4-1.5
is not affected by taking into account higher dimensions. Moreover, since the discussion
of the previous paragraph on the lower order perturbations does not change for d > 2,
we will assumeW ≡ 0. In order to face the dynamical complications, we will basically
adopt the technique introduced by R. McGehee in [52] (see also [25, 29, 12]) in order to
sketch a proof for Lemma 1.1.1. As a starting point, for x = x(t) ∈ Rd, introduce the
new variables 

r(t) = |x(t)|
s(t) = r(t)−1x(t)

v(t) = r(t)α/2〈ẋ(t), s(t)〉
u(t) = r(t)α/2πTsSd−1 ẋ(t),

where πTsSd−1 represents the orthogonal projection on the tangent space of Sd−1, i.e.,

πTsSd−1z = z − 〈z, s〉s, for every z ∈ Rd.

To have an intuitive description the coordinates (r, s, v, u), we point out that (r, s) is the
expression in polar coordinates of the position x, while (v, u) is the decomposition of
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the velocity ẋ in the tangent bundle TSd−1 (cf. Lemma 1.1.1). In this way, slowing down
the time with the time-rescaling

dt = r1+α/2dτ,

solutions of (1.1) will be equivalent to solutions of

(1.27)


r′ = rv

v′ = α
2 v

2 + |u|2 − αV (s)

s′ = u

u′ = −2−α
α vu− |u|2s+∇TV (s),

where the homogeneity gives V (x) = r−αV (s) and
∇TV (s) = ∇V (s)− 〈∇V (s), s〉s = πTsSd−1∇V (s)

is commonly known as the tangential gradient of V . The conservation of energy law
(1.2) in this variables translates to

1

2

(
|u|2 + v2

)
− V (s) = rαh,

and defines the energy shell

Hh =

{
(r, v, s, u) ∈ (0,+∞)× R× Sd−1 × TsSd−1 :

1

2
(|u|2 + v2)− V (s) = rαh

}
.

InHh the variable v reads
v±(r, s, u) = ±

√
2(V (s) + rαh)− |u|2.

The choice of v−/v+ corresponds to the choice of studying in/outgoing trajectories
to/from the singularity r = 0. Indeed, equations (1.27) can be reduced to a (r, s, u)-
system, admitting {r = 0} as an invariant set. We denote by Λ such a set, which is
commonly knownas collisionmanifold, which actually is a smoothmanifold of dimension
2d− 2 (see [29, Proposition 1, pag.234]). Since we are interested in collision trajectories,
we will take into account v−, so that in Λ system (1.27) reads

(1.28)
{
s′ = u

u′ = 2−α
α u

√
2V (s)− |u|2 − |u|2s+∇TV (s).

From the linearisation of (1.28), it is possible to deduce the hyperbolicity of the
equilibrium points of the (r, s, u)-system

p∗ = (0, s∗, 0) such that ∇TV (s∗) = 0,

as long as V is a Morse function (see [29, Proposition 4, pag. 237]). This leads to the
existence of stable and unstablemanifoldsWS andWU for p∗, with dimWS+dimWU =
2d− 1. Again for our purpose of studying ingoing collision orbits, we naturally choose
the r-eigenvalue to be negative so that (still following [29], Lemma 5, pag.238) we infer
that dimWS = dwhile dimWU = d− 1.

The hyperbolicity of p∗ gives rise to a local description of the manifold WS as the
graph of a C2-function in the variables (r, s) (see [66], Theorem 7.3).
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2. Symbolic dynamics for the anisotropic
N -centre problem

2.1. Introduction and main results

We consider the planarN -centre problem of Celestial Mechanics, in which we associate
to every centre a non-radial anisotropic potential. In order to do that, we name the
position of the N ≥ 2 centres by c1, . . . , cN ∈ R2 and we introduce a finite family of
non-negative singular functions V1, . . . , VN ∈ C2(R2 \ {0}). Moreover, we require every
functionVj to be−αj-homogeneous so thatwewill consider themost general anisotropic
behaviour for our system, assuming so far that αj ∈ (0, 2) (stricter, though fundamental
assumptions will be added later). In this way, for every x ∈ R2 \{c1, . . . , cN}, our model
will be driven by the total potential

V (x) =
N∑
j=1

Vj(x− cj) =
N∑
j=1

|x− cj |−αjVj
(
x− cj
|x− cj |

)
,

recalling that any −αj-homogeneous function Vj easily verifies

Vj(y) = Vj

(
|y| y|y|

)
= |y|−αjVj

(
y

|y|

)
,

whenever y 6= 0. Clearly, V ∈ C2(R2 \ {c1, . . . , cN}) and the equation of motion is the
following

(2.1) ẍ(t) = ∇V (x(t)),

where x = x(t) represents the position of the moving particle at time t ∈ R. Without
loss of generality we can assume

α1 ≤ α2 ≤ . . . ≤ αN ,

thus admitting that more than one centre might have the same homogeneity degree.
As it will be clear in the following, the smallest degree of homogeneity α1 plays an
important role in our treatment. For instance, if we assume that α1 = α2 = . . . = αk
for some 1 ≤ k < N , it is useful to put α .

= α1 and to gather all the −α-homogeneous
potential in this way

W (x)
.

=

k∑
i=1

Vi(x− ci) =

k∑
i=1

|x− ci|−αVi
(
x− ci
|x− ci|

)
,
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so thatW ∈ C2(R2 \ {c1, . . . , ck}) and

(2.2) V (x) = W (x) +

N∑
j=k+1

|x− cj |−αjVj
(
x− cj
|x− cj |

)
.

Note that, if k = N , the problem becomes much simpler because we would have a
unique homogeneity degree. In particular, when N = 1 we end up with an anisotropic
Kepler problem driven by a −α-homogeneous potential. This is exactly the situation
studied in [11] in which the authors provided non-collision Bolza minimizers with a
blow-up analysis.
At this point, let us present the rigorous hypotheses that we will require on the

potentials that characterize this problem. For every j = 1, . . . , N , we introduce the
restriction to the 1-dimensional sphere of every potential Vj , defining Uj

.
= Vj |S1 and let

also

U(ϑ)
.

=
k∑
i=1

Ui(ϑ), for ϑ ∈ S1.

Clearly U1, . . . , UN , U ∈ C2(S1), so that we can finally state our precise hypotheses on V
in this way:

(V )



α < 2;

∃ (ϑ∗l )
m−1
l=0 ⊆ S1 : ∀ l = 0, . . . ,m− 1, m > 0, U ′′(ϑ∗l ) > 0, U(ϑ) ≥ U(ϑ∗l ) > 0, ∀ ϑ ∈ S1;

∀ j = 1, . . . , N ∃ϑj ∈ S1 : Uj(ϑ) ≥ Uj(ϑj) > 0, ∀ϑ ∈ S1, U ′′j (ϑj) > 0;

∀ j = 1, . . . , N αj > ᾱj(Uj , ϑj).

Remark 2.1.1. The previous requirements on V are referred to the strength of the homogeneities
αj and to the extremality with respect to Uj of some particular directions. To be precise, the
assumptions (V )1 and (V )4 require some thresholds on the homogeneity degrees, which will play
a fundamental role in the dynamics both close and far from the centres. Moreover, recalling that
a central configuration for a potential is a critical point of its restriction to the unit sphere, (V )2
and (V )3 guarantee the existence of a finite number of strictly minimal central configurations for
every potential Uj , but also for the sum of the −α-homogeneous potentials U1, . . . , Uk.

A non-collision solution of (2.1) is a function x : J ⊆ R → R2 such that x(t) 6= cj for
every t ∈ J and for every j = 1, . . . , N and that solves (2.1) in the classical sense. Given
h > 0, we are interested in those non-collision solutions of equation (2.1) which are
confined in the 3-dimensional negative energy shell

Eh =

{
(x, v) ∈ (R2 \ {c1, . . . , cN})× R2 :

1

2
|v|2 − V (x) = −h

}
and thus, every solution of (2.1) should verify the energy conservation law

(2.3) 1

2
|ẋ|2 − V (x) = −h.
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Moreover, equation (2.1) has a Hamiltonian structure in (R2 \ {c1, . . . , cN})×R2, driven
by the Hamiltonian function

H(x, v) =
1

2
|v|2 − V (x),

which coincides with the total energy once (2.1) is written as the first order autonomous
system ż = F (z), where

z =

(
x
v

)
F (z) =

(
v

∇V (x)

)
.

The conservation of the energy also implies that such solutions will be confined to the
Hill’s region

(2.4) Rh = {x ∈ R2 \ {c1, . . . , cN} : V (x) ≥ h}.

Remark 2.1.2. From now on, without loss of generality, we will assume that max
j
|cj | ≤ 1 and

we define
m = min

j=1,...,N
min
S1

Uj .

Then, for x ∈ R2 \ {c1, . . . , cN} we have

V (x) ≥ m

N∑
j=1

|x− cj |−αj ≥
m

(|x|+ 1)α
.

Then, if we fix h > 0, those x such that |x| ≤ (m/h)1/α − 1 necessarily belong to the Hill’s
region Rh associated with such h. We can argue in this way to put a bound on h in order to
rule out those h for which Rh = ∅. To have a well-posed problem, we need to require that every
centre lies inside Rh and so that the moving particle can reach at least every region (except for
collisions) of the ballB1. This is surely the case if (m/h)1/α− 1 > 1 (see Figure 2.1); this means
that our problem makes sense at least for those energies h such that

0 < h <
m

2α
.

= h̃.

For this reason, from now on we will always assume h ∈ (0, h̃). This is actually really natural
in our approach to this problem, since later in this paper we will make use of perturbation
methods, which work fine only when the particle is very far from the centres. Indeed, as for the
classical Kepler problem, small negative energies allow the particle to reach regions farther from
the singular set.

In order to state our main result, we need to introduce some further notation. Fol-
lowing [61], we consider all the possible partitions of the N centres in two disjoint
non-empty and non-ordered sets, which are exactly

1

2

((
N

1

)
+ . . .+

(
N

N − 1

))
=

1

2

(
N∑
k=0

(
N

k

)
− 2

)
= 2N−1 − 1,
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B1

{|x| ≤
(
m
h

)1/α − 1}

Rh

Figure 2.1.: An example of Hill’s region for the anisotropic N -centre problem that in-
cludes a ball of radius greater than 1 (see Remark 2.1.2).

and we denote the set of these partitions as

P = {Pj : j = 0, . . . , 2N−1 − 2}.

Due to the non-radial nature of the potentialwhichdescribes our system,weneed to take
into account thenon-degenerateminimal central configurations of the−α-homogeneous
component of V . Indeed, they will play a fundamental role in the construction of a
periodic solution for (2.1) as a peculiarity of anisotropic problems (see [12, 11, 5]). We
define the finite set (see (V ))

Ξ
.

= {ϑ∗ ∈ S1 : U ′(ϑ∗) = 0 and U ′′(ϑ∗) > 0} = {ϑ∗0, . . . , ϑ∗m−1}

and we associate to every central configuration in Ξ a partition of P . In this way, we
collect together all the possible choices in the set

Q = {Qj : j = 0, . . . ,m(2N−1 − 1)− 1}.

Moreover, define the following subsets

P0 = {Q0, . . . , Qm−1} = {Q0·m+0, Q0·m+1, . . . , Q0·m+(m−1)}
P1 = {Qm, . . . , Q2m−1} = {Q1·m+0, Q1·m+1, . . . , Q1·m+(m−1)}
...
Pl = {Qlm, . . . , Q(l+1)m−1} = {Ql·m+0, Ql·m+1, . . . , Ql·m+(m−1)}
...

P2N−1−2 = {Q(2N−1−2)m, . . . , Q(2N−1−1)m−1}
= {Q(2N−1−2)·m+0, Q(2N−1−2)·m+1, . . . , Q(2N−1−2)·m+(m−1)}
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where Pl represents all the possible combinations of the partition Pl of the centres and
a central configuration chosen in Ξ and, of course, Q = P0 ∪ . . . ∪ P2N−1−2. In this
way, it is easy to verify that, for j ∈ {0, . . . ,m(2N−1 − 1) − 1}, if j ≡ r mod m for
r ∈ {0, . . . ,m− 1} it means that Qj ∈ Pl, with l = (j − r)/m. In particular Qj = Qlm+r,
so that, in other words, Qj represents the pair (Pl, ϑ

∗
r).

Remark 2.1.3. We will show that our system has a symbolic dynamics and that the alphabet
of symbols will be exactly the set Q. For this reason, in order to have a non-trivial symbolic
dynamics, we need to have at least 2 elements in Q, so that we will assume

N ≥ 3, m ≥ 1 or N ≥ 2, m ≥ 2.

Moreover, for n ∈ N and (Qj1 , . . . , Qjn) ∈ Qn, consider the element Qjk for some k ∈
{1, . . . , n}. It is useful to introduce the quotient and the remainder of the division of jk bym in
this way

(2.5) jk = lkm+ rk,

so that the element Qjk will refer to the partition Plk and the central configuration ϑ∗rk . Note
that the symbol Qjk will reflect the geometrical behaviour of solution arc: according to (2.5), the
corresponding arc will divide the centres realizing the partition Plk and then, when it travels far
from the centres, it will pass close to the central configuration ϑrk .

Our main result is to prove the existence of periodic solutions of (2.1) in negative
energy shells (see Figure 2.2).

Theorem 2.1.4. Assume thatN ≥ 3 andm ≥ 1 or, equivalently,N ≥ 2 andm ≥ 2. Consider
a function V satisfying (V ). There exists h̄ > 0 such that, for every h ∈ (0, h̄), n ∈ N≥1 and
(Qj0 , . . . , Qjn−1) ∈ Qn, there exists a periodic non-collision and self-intersection-free solution
x = x(Qj0 , . . . , Qjn−1 ;h) of (2.1) satisfying (2.3), which depends on (Qj0 , . . . , Qjn−1) in this
way: there exists R̄ = R̄(h) > 0 such that the solution x crosses 2n times the circle ∂BR̄ in one
period, at times (tk)k=0,...,2n−1, in such a way that, according to (2.5):

• in the interval (t2k, t2k+1) the solution stays outside BR̄ and there exists a neighbourhood
Urk = U(R̄eiϑ

∗
rk ) such that

x(t2k), x(t2k+1) ∈ Urk ;

• in the interval (t2k+1, t2k+2) the solution stays inside BR̄ and separates the centres ac-
cording to the partition Plk .

As a consequence of the above theorem, we will prove that the dynamical system
considered admits a symbolic dynamics. In order to state this result, we need to
introduce some general notations on symbolic dynamics. Consider a finite set S with at
least two elements and introduce therein the discrete metric ρ(sj , sk) = δjk, where δjk is
the Kronecker delta and sj , sk ∈ S. Consider the set of bi-infinite sequences of elements
of S

SZ .
= {(sm)m∈Z : sm ∈ S, for allm ∈ Z}
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x0 x1

x2

x3 x4

x5

ϑ∗0

ϑ∗1 ϑ∗2

c1
c2

c3
c4 c5

c6

∂BR̄

Figure 2.2.: An example of classical periodic solution provided in Theorem 2.1.4

and make it a metric space with the distance

d((sm), (tm))
.

=
∑
m∈Z

ρ(sm, tm)

2|m|
,

defined for every (sm), (tm) ∈ SZ. Introduce also the Bernoulli right shift as the map

Tr : SZ → SZ

(sm) 7→ Tr((sm))
.

= (sm+1),

which actually determines the discrete dynamical system (SZ, Tr). Then, we have the
following definition.

Definition 2.1.5. Let S be a finite set, E be a metric space andR : E → E be a continuous map.
Then, we say that the dynamical system (E ,R) has a symbolic dynamics with set of symbols S
if there exist a subset Π ⊆ E which is invariant throughR and a continuous and surjective map
π : Π→ SZ such that the diagram

Π Π

SZ SZ

R

π π

Tr

commutes. In other words, we are saying that the mapR|Π is topologically semi-conjugate to the
Bernoulli right shift Tr in the metric space (SZ, d).
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Remark 2.1.6. Many properties of the discrete dynamical system (SZ, Tr) are known, which
point toward the concept of chaos. Indeed, it is possible to prove that (see for instance [66]):

• (SZ, Tr) has a dense countable set of periodic points, since all the periodic sequences are
periodic points for the Bernoulli shift;

• (SZ, Tr) displays high sensitivity with respect initial data, i.e., if we define as T kr the k-th
iteration of the Bernoulli shift, we have that for any % > 0 there exist two arbitrarily close
sequences (sm), (tm) ∈ SZ such that

sup
k∈Z

d(T kr ((sm)), T kr ((tm))) ≥ %;

• the previous property actually holds for several initial data, to be precise, the dynamical
system (SZ, Tr) has positive topological entropy.

For this reason, the existence of a symbolic dynamics for a dynamical system (E ,R) reflects a very
complex behaviour of its trajectories. Indeed, the semi-conjugacy through the map π relates the
dynamical properties of the Bernoulli shift with the ones of the first return mapR. We point out
that this in general is not enough to show that the dynamical system (E ,R) is chaotic, since the
projection map π is generally not invertible. However, it is clear that the existence of a symbolic
dynamics is a necessary condition for the density of periodic orbits and the presence of chaos, so
that one usually proves it as an intermediate step in this direction.

Theorem 2.1.7. In the same setting of Theorem 2.1.4, take h ∈ (0, h̄), with h̄ > 0 therein
defined. Then, there exists a subset Πh of the energy shell Eh, a first return map R : Πh → Πh

and a continuous and surjective map π : Πh → QZ, such that the diagram

Πh Πh

QZ QZ

R

π π

Tr

commutes. In other words, for any h sufficiently small, the anisotropic N -centre problem at
energy −h admits a symbolic dynamics with sets of symbols Q.

2.1.1. Outline of the proof

The key idea is to consider a different N -centre problem starting from the dynamical
system (2.1) and the energy equation (2.3). Defining a suitable rescaled version of
potential V , we end up with the problem

(2.6)
{
ÿ(t) = ∇V ε(y(t))
1
2 |ẏ(t)|2 − V ε(y(t)) = −1,

where ε = h1/α > 0 and V ε takes into account the rescaled centres c′j = εcj . In this way,
all the new centres are confined in the ballBε(0) and collapse to the origin as the energy
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h of the original problem becomes very small, since ε → 0+ as h → 0+. It turns out
that it is equivalent to look for periodic solutions of (2.1)-(2.3) and periodic solutions of
(2.6). Moreover, as ε becomes very small, outside a ball of radius R� ε and centred in
the origin, the potential Vε is a small perturbation of a suitable anisotropic Kepler-like
potential. This fact, which, together with the previous discussion, is the content of
Section 2.2, allows us to split the proof of the main result outside and inside the ball
BR(0) and to carry out a broken geodesics argument.
In Section 2.3 we prove the existence of pieces of solutions of (2.6), starting in ∂BR(0)

and lying outside BR(0).
In Section 2.4 we show how to build solution arcs which start in ∂BR and go through

the centres without collisions.
In Section2.5weglue together thepieces of solutionsobtained in theprevious sections,

in order to obtain periodic solutions of (2.6) and thus of (2.1)-(2.3).
In Section 2.6 we show that this dynamical system admits a symbolic dynamics with

respect to a chosen set of symbols.

2.2. A useful rescaling

Given ε > 0 and y ∈ R2 \ {c1, . . . , cN}, let us introduce the rescaled potential

(2.7) V ε(y)
.

= W ε(y) +
N∑

j=k+1

εαj−αVj(y − εcj),

where

W ε(y)
.

=
k∑
i=1

Vi(y − εci).

Notice that, with this notations and recalling that we have assumed that max |cj | ≤ 1
(see Remark 2.1.2), the new centres εcj will be included inside the ball Bε.

Proposition 2.2.1. Let V ∈ C2(R2 \{c1, . . . , cN}) be defined as in (2.2) and x ∈ C2((a, b);R2)
be a classical solution of

(2.8)
{
ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 − V (x(t)) = −h, h > 0.

Then, in the interval (h
α+2
2α a, h

α+2
2α b), the function

y(t)
.

= h1/αx(h−
α+2
2α t)

solves the problem

(2.9)
{
ÿ(t) = ∇V ε(y(t))
1
2 |ẏ(t)|2 − V ε(y(t)) = −1,
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where ε = h1/α and V ε is defined as in (2.7).
Conversely, if y ∈ C2((c, d);R2) is a solution of (2.9) then, taking h = εα, the function

x(t)
.

= h−1/αy(h
α+2
2α t)

is a solution of (2.8) in the interval (h−
α+2
2α c, h−

α+2
2α d).

Proof. Suppose that x ∈ C2((a, b);R2) is a solution of (2.8), set ε = h1/α > 0 and define

y(t)
.

= h1/αx(h−
α+2
2α t) = εx(ε−

α+2
2 t).

Let us start by checking that y(t) satisfies the energy relation in (2.9). A straightforward
computation leads to

1

2
|ẏ(t)|2 =

ε−α

2
|ẋ(ε−

α+2
2 t)|2 = ε−αV

(
x(ε−

α+2
α t)

)
− 1;

moreover, for every x ∈ R2 \ {c1, . . . , cN}, we have that

V (x) = W (x) +

N∑
j=k+1

Vj(x− cj)

= εα
k∑
i=1

Vi(εx− εci) +

N∑
j=k+1

εαjVj(εx− εcj)

= εα

 k∑
i=1

Vi(εx− εci) +
N∑

j=k+1

εαj−αVj(εx− εcj)

 .

Therefore, for t ∈ (ε
α+2

2 a, ε
α+2

2 b), we get

(2.10)
1

2
|ẏ(t)|2 =

k∑
i=1

Vi

(
εx
(
ε−

α+2
2 t
)
− εci

)
+

N∑
j=k+1

εαj−αVj

(
εx
(
ε−

α+2
2 t
)
− εcj

)
− 1

= V ε(y(t))− 1.

Again, by calculation, we obtain

ÿ(t) = ε−α−1ẍ(ε−
α+2

2 t) = ε−α−1∇V (x(ε−
α+2

2 t))

and, for every x ∈ R2 \ {c1, . . . , cN}

∇V (x) = εα+1
k∑
i=1

∇Vi(εx− εci) +

N∑
j=k+1

εαj+1∇Vj(εx− εcj)

= εα+1

 k∑
i=1

∇Vi(εx− εci) +

N∑
j=k+1

εαj−α∇Vj(εx− εcj)

 .
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Finally, for every t ∈ (εα+2a, εα+2b), we have

ÿ(t) =
k∑
i=1

∇Vi(y(t)− εci) +
N∑

j=k+1

εαj−α∇Vj(y(t)− cj) = ∇V ε(y(t)).

This, together with (2.10), concludes the proof, since the converse follows in an analo-
gous way.

In the rest of this section we show that, outside a ball of radius R > ε > 0, if ε is
sufficiently small problem (2.9) can be seen as a perturbation of a Kepler problem, driven
by a sum of −α-homogeneous potentials. We start by showing a limiting behaviour for
V ε as ε→ 0+.

Proposition 2.2.2. Let δ > 0 and V ε be defined as in (2.7). Then, for every y ∈ R2 \Bδ

V ε(y) = W 0(y) +O(εγ) as ε→ 0+,

where γ .
= min{1, αk+1 − α} > 0 and, according to (2.7)

(2.11) W 0(y) =

k∑
i=1

Vi(y) = |y|−α
k∑
i=1

Vi

(
y

|y|

)
.

Moreover, the potential V ε is smooth with respect to ε and V ε → W 0 uniformly as ε → 0+ on
every compact subset of R2 \ {0}.

Proof. As a starting point, since ε → 0+, we can assume δ > ε; moreover, if we fix
j ∈ {1, . . . , N} and |y| > δ, for every σ ∈ R we have

|y − εcj |−σ =
[
|y|2 − 2ε〈y, cj〉+ ε2|cj |2

]−σ/2
= |y|−σ

[
1− 2ε

〈y, cj〉
|y|2 + ε2 |cj |2

|y|2
]−σ/2

= |y|−σ + εσ
〈y, cj〉
|y|σ+2

+ o(ε) = |y|−σ +O(ε).

In this way, for every j ∈ {1, . . . , N}, as ε→ 0+ we can write

Vj

(
y − εcj
|y − εcj |

)
= Vj

(
(y − εcj)

(
1

|y| +O(ε)

))
= Vj

(
y

|y| +O(ε)

)
and so

Vj

(
y − εcj
|y − εcj |

)
= Vj

(
y

|y|

)
+

〈
∇Vj

(
y

|y|

)
, O(ε)

〉
+ o(ε) = Vj

(
y

|y|

)
+O(ε).

40



To conclude, we write

V ε(y) =

k∑
i=1

|y − εci|−αVi
(
y − εci
|y − εci|

)
+

N∑
j=k+1

εαj−α|y − εcj |−αjVj
(
y − εcj
|y − εcj |

)

= |y|−α
k∑
i=1

Vi

(
y

|y|

)
+

N∑
j=k+1

εαj−α|y|−αjVj
(
y

|y|

)
+O(ε)

= W 0(y) +O(εγ),

where γ = min{1, αk+1 − α} > 0.
To conclude, the uniform convergence on compact subsets of R \ {0} is an easy

consequence of the fact that the singularity set of V ε is proportional to ε.

Remark 2.2.3. Observe that the potentialW 0 defined in (2.11) is singular in the origin, while
the potential W ε has multiple poles at εc1, . . . , εck. Thus, it turns out that assumption (V )2
requires that W 0 admits m strictly minimal central configurations, for some m > 0 (see also
Remark 2.1.1).

To conclude this section, we notice that the energy bound found in Remark 2.1.2 for
problem (2.8) corresponds to the following bound on the parameter ε for problem (2.9)

(2.12) ε ∈ (0, ε̃), where ε̃ = h̃1/α =
m1/α

2
,

where we recall that m = min
j=1,...,N

min
S1

Vj |S1 . Naturally, this bound guarantees that the

ball Bε containing the rescaled centres is completely included in the Hill’s region of
problem (2.9)

Rε .
= {y ∈ R2 : V ε(y) ≥ 1}.

Indeed, following the same computations of Remark 2.1.2, if ε ∈ (0, ε̃) and |y| ≤ ε, then

V ε(y) ≥ m|y − εc1|−α ≥ 1.

2.3. Outer dynamics

At this point, the idea is to exploit a perturbation argument suggested by Proposition
2.2.2 and to build pieces of periodic solutions for (2.9), which lie far from the centres
and that will be denoted as outer arcs. Note that, if y : J → R2, with J ⊆ R is a solution
of (2.9), then

V ε(y(t)) ≥ 1, for every t ∈ J ;

for this reason, we need to show that there exists anR > 0 such that, for every ε ∈ (0, ε̃),

(2.13) Bε ⊂ BR ⊂ {y ∈ R2 : V ε(y) ≥ 1} = Rε.
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Following the same approach as in the end of the previous section, we have that, for
any ε ∈ (0, ε̃),

Bm1/α−ε ⊂ {y ∈ R2 : V ε(y) ≥ 1}.
Hence, choosing

(2.14) R ∈ (ε̃,m1/α − ε̃)

the inclusions (2.13) hold for any ε ∈ (0, ε̃).
In Section 2.2 we have shown that it is possible to obtain a useful rescaling of the

potential V , putting all the centres inside a ball of radius ε > 0 and thus considering the
rescaled potential

V ε(y) =

k∑
i=1

Vi(y − εci) +

N∑
j=k+1

εαj−αVj(y − εcj),

so that a periodic solution of our initial problem is equivalent to a solution of aN centre
problem driven by V ε and with energy −1 (see Proposition 2.2.1). Moreover, if ε is
sufficiently small, by Proposition 2.2.2 we know that outside a ball of radius R > ε > 0
the motion follows the dynamics of a perturbed −α-homogeneous anisotropic Kepler
problem. Inspired by this, we are going to look for solutions of the ε-problem (2.9)
which start in ∂BR(0) and travel in R2 \ BR(0); note that, in this setting, R will satisfy
(2.14). These solution arcs will be found as perturbed solutions of an anisotropic Kepler
problem driven byW 0; given p0, p1 ∈ ∂BR(0), we are going to look for solutions of the
following problem

(2.15)



ÿ(t) = ∇V ε(y(t)) t ∈ [0, T ]

1

2
|ẏ(t)|2 − V ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| > R t ∈ (0, T )

y(0) = p0, y(T ) = p1,

for some T > 0 possibly depending on ε.

2.3.1. Homothetic solutions for the anisotropic Kepler problem

The core of our perturbation argument consists in focusing on some special trajectories
of an anisotropic Kepler problem driven byW 0, in order to study the behaviour of the
close-by orbits. For this reason, we take ε = 0 and we consider the problem

(2.16)
{
ẍ = ∇W 0(x), x ∈ R2 \ {0}
1
2 |ẋ|2 −W 0(x) = −1,

recalling thatW 0 ∈ C2(R2 \{0}) is a−α-homogeneous anisotropic potential (see Propo-
sition 2.2.2). Note that, if we introduce polar coordinates x = (r cosϑ, r sinϑ) with r > 0
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and ϑ ∈ [0, 2π), the potentialW 0 can be written as

W 0(x) = r−α
k∑
i=1

Vi(cosϑ, sinϑ) = r−α
k∑
i=1

Ui(ϑ) = r−αU(ϑ),

where Ui
.

= Vi|S1 and U
.

=
k∑
i=1

Ui (see (V )). From the energy equation in (2.16), the

boundary of the Hill’s region for this problem is the curve parametrized by polar
coordinates in this way

∂R0
.

= {U(ϑ)1/α(cosϑ, sinϑ) : ϑ ∈ [0, 2π)}.

From this, the following definition makes sense:

Definition 2.3.1. For any ϑ ∈ [0, 2π), for every R > 0 which satisfies

(2.17) 0 < R < U(ϑ)
1
α ,

define ξ = Reiϑ. An out-in homothetic solution for (2.16) which starts in ξ is a function x̂ξ
which solves (2.20) and such that

x̂ξ(t)
.

= λ(t)ξ,

where λ : [0, Tξ]→ R+ and

(2.18)
{
λ(t) > 1 for every t ∈ (0, Tξ),

λ(0) = 1 = λ(Tξ),

for some Tξ > 0.

We aim to understand which conditions are satisfied a posteriori on ξ and λ once a
homothetic solution for (2.20) is provided. If we plug x̂ξ

.
= λξ into the motion equation

ẍ = ∇W 0(x), we obtain

(2.19) λ̈(t)ξ = λ(t)−α−1∇W 0(ξ)

and thus the Euler’s theorem for homogeneous functions gives

R2λ̈(t) = −αλ(t)−α−1W 0(ξ).

In this way, we obtain the equation

(2.20) λ̈(t) = −µξλ(t)−α−1,

with µξ = αR−α−2U(ϑξ), i.e., λ solves a 1-dimensional −α-Kepler problem. Since the
homothetic solution x̂ξ has energy −1 and λ(0) = 1, we can associate to equation (2.20)
the initial conditions

λ(0) = 1, λ̇(0) =
1

R

√
2(W 0(ξ)− 1)

43



obtaining a solution which satisfies (2.18). Moreover, recalling that for x ∈ R2 the
moment of inertia of x is defined as I(x) = 1

2 |x|2 and ∇I(x) = x, comparing (2.19) and
(2.20), we note that ξ solves the equation

(2.21) ∇W 0(ξ) + µξ∇I(ξ) = 0.

Definition 2.3.2. A central configuration forW 0 is a critical point ofW 0 constrained to a level
surface of the inertial moment I . In other words, a central configuration is a vector ξ ∈ ∂BR(0)
that verifies (2.21).

To sum up, we have found out that a homothetic motion for (2.16) is a function
x̂ξ = λξ such that ξ ∈ ∂BR(0) is a central configuration forW 0, R > 0 verifies (2.17) and
λ : [0, Tξ]→ R+ is the unique solution of{

λ̈(t) = −µξλ(t)−α−1

λ(0) = 1, λ̇(0) = 1
R

√
2(W 0(ξ)− 1).

From now on, when we consider the quantity R > 0, we will always assume (2.17) and
we will refer to ξ = (R cosϑξ, R sinϑξ) or simply to ϑξ as a central configuration forW 0,
meaning that ξ verifies (2.21) or, equivalently, that

U ′(ϑξ) = 0.

Collecting together all the previous discussions, given a central configuration ξ ∈
∂BR(0), we can consider the following Cauchy problem

(2.22)
{
ẍ(t) = ∇W 0(x(t))

x(0) = ξ, ẋ(0) = vξ = 1
R

√
2(W 0(ξ)− 1))ξ,

which admits as unique solution the homothetic trajectory x̂ξ, that reaches again the
position ξ after a time Tξ > 0, with opposite velocity.

2.3.2. Shadowing homothetic solutions in the anisotropic Kepler problem

In Proposition 2.2.2 we have seen that V ε reduces to W 0 as ε → 0+, together with all
the ε-centres collapsing to the origin. For this reason, the aim of this paragraph is to
provide an intermediate result, i.e., to prove the existence of trajectories for problem
(2.16) which start very close to a given homothetic trajectory x̂ξ. In other words, we
investigate the existence of a solution for

ẍ(t) = W 0(x(t)), t ∈ [0, T ]

1

2
|ẋ(t)|2 −W 0(x(t)) = −1, t ∈ [0, T ]

|x(t)| > R, t ∈ (0, T )

x(0) = p0, x(T ) = p1,
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where p0 and p1 are chosen sufficiently close to a central configuration ξ ∈ ∂BR forW 0.
This indeed corresponds to show the existence of solutions for problem (2.15) when
ε = 0 and we believe that it is a result of independent interest.
In the previous paragraph we have seen that a homothetic solution for an anisotropic

Kepler problem driven by W 0 is actually the unique solution of the Cauchy problem
(2.22). For our convenience, we need a characterization of the homothetic motion x̂ξ in
Hamiltonian formalism and so we reword (2.22) as

(2.23)
{
ż = F (z)

z(0) = zξ,

where
z =

(
x
v

)
, F (z) =

(
v

∇W 0(x)

)
and zξ =

(
ξ
vξ

)
.

According to this, to satisfy the energy constraint in (2.16) we restrict the domain of the
vector field F to the 3-dimensional energy shell

E =

{
(x, v) ∈ (R2 \ {0})× R2 :

1

2
|v|2 −W 0(x) = −1

}
and we term ẑξ the homothetic solution in the Hamiltonian formalism, i.e., the unique
solution of (2.23). Introducing the flow associated to the differential equation in (2.23)

Φ: Ω ⊂ R× E → E
(t, z) 7→ Φ(t, z) = Φt(z)

we notice that

ẑξ(t) = Φt(zξ) and x̂ξ(t) = πx(ẑξ(t)) = πxΦt(zξ),

where πx(z) and πv(z) represent the two canonic projections of z. Now, if we introduce
the 2-dimensional inertial surface

Σ = {(x, v) ∈ E : |x| = R} ⊆ E

it turns out that both the starting and ending point of the homothetic motion lie on Σ,
i.e., ẑξ(0), ẑξ(Tξ) ∈ Σ. Moreover, since the initial conditions ξ and vξ are parallel, with a
slight abuse of notation on the gradient of I we have that

〈F (ξ, vξ),∇I(ξ)〉 = 〈vξ, ξ〉 6= 0

and so the field F is transversal to Σ in (ξ, vξ).
Inspired by this, it is easy to prove the following proposition and thus to define a first

return map on Σ.

Proposition 2.3.3. Given ξ ∈ ∂BR(0) central configuration forW 0, there exists a neighbour-
hood U × V of (ξ, vξ) and a function T ∈ C1(U × V;R+) such that

45



• T (ξ, vξ) = Tξ;

• for every (x, v) ∈ U × V , for t > 0 holds

Φt(x, v) ∈ Σ if and only if t = T (x, v).

Moreover, if we define d

dz
Φt(z) as the derivative of Φ with respect to z = (x, v) (see Appendix

B), given z0 ∈ U × V we have that

〈∇T (z0), ζ〉 = −

〈
πxΦT (z0)(z0), πx

d

dz
ΦT (z0)(z)

∣∣∣
z=z0

ζ

〉
〈
πxΦT (z0)(z0), πvΦT (z0)(z0)

〉 ,

for every ζ ∈ Tz0(U × V), where Tz0 denotes the tangent space at the vector z0.

Proof. Defining the map G(x, v) = |x|2 − R2 for every (x, v) ∈ E , we can consider its
composition with the flow Φ, to obtain the C1 map

f : R× E → R
(t, x, v) 7→ f(t, x, v)

.
= G(Φt(x, v)).

Since f(Tξ, ξ, vξ) = G(ξ,−vξ) = 0 and

∂

∂t
f(t, x, v)

∣∣∣
(Tξ,ξ,vξ)

=
〈
∇G(ΦTξ(ξ, vξ)), F (ΦTξ(ξ, vξ))

〉
=
〈
(2ξ, 0), (−vξ,∇W 0(ξ))

〉
6= 0,

the first part of the statement easily follows from the Implicit Function Theorem. More-
over, for every (x, v) ∈ U × V we have

∇T (x, v) = −∇x,vf(T (x, v), x, v)
∂
∂tf(T (x, v), x, v)

= − ∇G(ΦT (x,v)(x, v))Jx,vΦ
T (x,v)(x, v)〈

∇G(ΦT (x,v)(x, v)), F (ΦT (x,v)(x, v))
〉 .

Therefore, given z0 = (x0, v0) ∈ U × V we can define the differential

dT (z0) : Tz0(U × V)→ R
ζ 7−→ dT (z0)ζ = 〈∇T (z0), ζ〉,

with

〈∇T (z0), ζ〉 = −

〈
∇G(ΦT (z0)(z0)),

d

dz
ΦT (z0)(z)

∣∣∣
z=z0

ζ

〉
〈∇G(ΦT (z0)(z0)), F (ΦT (z0)(z0))〉

= −

〈
πxΦT (z0)(z0), πx

d

dz
ΦT (z0)(z)

∣∣∣
z=z0

ζ

〉
〈
πxΦT (z0)(z0), πvΦT (z0)(z0)

〉 .
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Hence, given ξ ∈ ∂BR(0) central configuration for W 0 and U ,V as in Proposition
2.3.3, for every (x0, v0) ∈ U × V there exists a unique instant T (x0, v0) > 0 such that

(x1, v1)
.

= ΦT (x0,v0)(x0, v0) ∈ Σ.

In this way, if we fix x0 ∈ U , we can define the arriving point x1 as a function of v0 ∈ V

(2.24) x1(v0)
.

= πx(ΦT (x0,v0)(x0, v0)).

Our aim is to prove that the previousmap is invertible, so that wewould be able to build
solution arcs starting in a point x0 ∈ ∂BR(0) and arriving in another point x1 ∈ ∂BR(0),
with x0, x1 sufficiently close to ξ.

Theorem 2.3.4. Given ξ ∈ ∂BR a central configuration forW 0 such that U ′′(ϑξ) ≥ 0, the map
x1 defined in (2.24) is invertible in a neighbourhood of vξ.

The proof of Theorem 2.3.4 is rather technical and relies on a series of lemmata which
we state and prove below.

Lemma 2.3.5. Assume that there exists ξ ∈ ∂BR central configuration forW 0. Following the
notations of Proposition 2.3.3, define the map

g : U × V → Σ

(x, v) 7→ g(x, v)
.

= ΦT (x,v)(x, v).

Then, g is C1-differentiable over U × V and

dg(zξ)ζ =
d

dz
ΦTξ(z)

∣∣∣
z=zξ

ζ + F (ΦTξ(zξ))〈∇T (zξ), ζ〉,

for every ζ ∈ Tzξ (U × V).

Proof. In order to prove this result, we need to give a characterization of the partial
derivative of the flow Φ with respect to the variable v. First of all, observe that for the
C1-dependence on initial data of the flow Φt and for Proposition 2.3.3, the map g is well
defined and C1-differentiable over U × V . If we call as usual z = (x, v) and zξ = (ξ, vξ),
we can observe that

g(zξ) = (ξ,−vξ)

and, following the notation introduced in Appendix B, the differential of g in the point
zξ ∈ U × V is the linear map

(2.25)
dg(zξ) : Tzξ(U × V)→ T(ξ,−vξ)Σ

ζ 7→ dg(zξ)ζ =
d

dz

[
ΦT (z)(z)

]
z=zξ

ζ.
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In this way, if we compute the derivative of g with respect to z we get

d

dz

[
ΦT (z)(z)

]
z=zξ

= lim
‖η‖→0

ΦT (zξ+η)(zξ + η)− ΦT (zξ)(zξ)

η

= lim
‖η‖→0

ΦT (zξ+η)(zξ + η)− ΦT (zξ+η)(zξ)

η
+ lim
‖η‖→0

ΦT (zξ+η)(zξ)− ΦT (zξ)(zξ)

η

=
d

dz
ΦT (zξ)(z)

∣∣∣
z=zξ

+ F (ΦT (zξ)(zξ))∇T (zξ).

Finally, recalling that T (zξ) = Tξ, we have shown that

dg(zξ)ζ =
d

dz
ΦTξ(z)

∣∣∣
z=zξ

ζ + F (ΦTξ(zξ))〈∇T (zξ), ζ〉,

for every ζ ∈ Tzξ (U × V).

Lemma 2.3.6. In the same setting of Lemma 2.3.5, given ζ ∈ Tzξ(U ×V) and t ∈ (0, Tξ), define

q(t)
.

= πx
d

dz
Φt(z)

∣∣∣
z=zξ

ζ

and name also sξ = ξ/|ξ| the ξ-direction unit vector and its orthogonal unit vector sτ
.

= s⊥ξ .
Then, the projection of q over the direction sτ

qτ (t) = 〈q(t), sτ 〉sτ

solves the problem {
q̈τ = 〈∇2W 0(x̂ξ(t))sτ , sτ 〉qτ
qτ (0) = 〈πxζ, sτ 〉sτ ,

recalling that x̂ξ is the unique (homothetic) solution of (2.22).

Proof. Following Appendix B, we know that the partial derivative of Φ with respect
to z satisfies the variational equation along the homothetic solution x̂ξ, which gives
us information about how the flow is sensitive under variations made on the initial
condition z(0) = (x(0), ẋ(0)). Since the Jacobian matrix of the vector field F in z reads

JF (z) =

(
02 I2

∇2W 0(x) 02

)
,

by Remark B.1, the variational equation along the homothetic solution reads
d

dt

(
d

dz
Φt(z)

∣∣∣
z=zξ

ζ

)
=

(
02 I2

∇2W 0(x̂ξ(t)) 02

)
d

dz
Φt(z)

∣∣∣
z=zξ

ζ,

d

dz
Φ0(z)

∣∣∣
z=zξ

ζ = ζ,
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for every ζ ∈ Tzξ(U × V). In this way, writing(
q(t)
w(t)

)
=

d

dz
Φt(z)

∣∣∣
z=zξ

ζ,

we see that q(t) must satisfy the problem

(2.26)
{
q̈ = ∇2W 0(x̂ξ(t))q

q(0) = πxζ.

Now, we can decompose q in two orthogonal components

q = qξ + qτ = 〈q, sξ〉sξ + 〈q, sτ 〉sτ
and so, by the first equation in (2.26), we get

q̈ξ + q̈τ = ∇2W 0(x̂ξ(t))qξ +∇2W 0(x̂ξ(t))qτ

= 〈q, sξ〉∇2W 0(x̂ξ(t))sξ + 〈q, sτ 〉∇2W 0(x̂ξ(t))sτ .

From (A.2) (Appendix (A)), the vectors∇2W 0(x̂ξ(t))sξ and∇2W 0(x̂ξ(t))sτ are respec-
tively parallel to sξ and sτ . Thus, problem (2.26) can be projected along the tangential
direction sτ to finally obtain{

q̈τ = 〈∇2W 0(x̂ξ(t))sτ , sτ 〉qτ
qτ (0) = 〈πxζ, sτ 〉sτ .

and conclude the proof.

In the proof of the next lemma we are going to use again the differential of the flow
Φ. Therefore, following again Appendix B, it is useful to provide a characterization of
the elements of the tangent space of the surface Σ. If we take into account the maps

H(x, v) =
1

2
|v|2 −W 0(x), G(x, v) = |x|2 −R2, (x, v) ∈ E

with gradients

∇H(x, v) = (−∇W 0(x), v), ∇G(x, v) = 2(x, 0),

we note that
E = H−1(−1), Σ = H−1(−1) ∩G−1(0).

Therefore, for a point (x, v) ∈ Σ, we have that

(q, w) ∈ T(x,v)Σ⇔
{
〈v, w〉 − 〈∇W 0(x), q〉 = 0

〈x, q〉 = 0,

and, if ξ ∈ ∂BR(0) is a central configuration forW 0, from (2.21) we get that

(2.27) (q, w) ∈ T(ξ,−vξ)Σ⇔
{
〈vξ, w〉 = 0

〈ξ, q〉 = 0.
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Lemma 2.3.7. Given ξ ∈ ∂BR(0) central configuration for W 0 such that U ′′(ϑξ) ≥ 0, the
jacobian matrix

(2.28) πx
∂

∂v
[ΦT (x,v)(x, v)]

is invertible in (ξ, vξ).

Proof. Recall that (ξ, vξ) = zξ and assume by contradiction that the matrix (2.28) is not
invertible in zξ. Following again the notations of Proposition 2.3.3, from Lemma 2.3.5
and, in particular, from (2.25) it is clear that

∂

∂v

[
ΦT (x,v)(x, v)

]
(x,v)=zξ

= dg(zξ)
∣∣∣
{0}×Tvξ (V)

.

This means that our absurd hypothesis can be translated as follows: there exists ζ =
(0, w) ∈ T(ξ,vξ)(U × V), with w 6= 0 such that

πxdg(zξ)ζ = 0.

In this way, by Lemma 2.3.5, we have that

πx

(
d

dz
ΦTξ(z)

∣∣∣
z=zξ

ζ + F (ΦTξ(zξ))〈∇T (zξ), ζ〉
)

= 0

and so
πx

d

dz
ΦTξ(z)

∣∣∣
z=zξ

ζ = −〈∇T (zξ), ζ〉πxF (ΦTξ(zξ)) = 〈∇T (zξ), ζ〉vξ,

recalling that, by (2.25)

(2.29) πx
d

dz
ΦTξ(z)

∣∣∣
z=zξ

ζ ∈ πxT(ξ,−vξ)Σ.

At this point, since ξ and vξ are parallel, by (2.27) and (2.29) we deduce that necessarily

〈∇T (zξ), ζ〉 = 0.

This means that, if we take

q(t) = πx
d

dz
Φt(z)

∣∣∣
z=zξ

ζ

then
q(Tξ) = 0

and thus, clearly
qτ (Tξ) = 〈q(Tξ), sτ 〉sτ = 0.
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Now, from Lemma 2.3.6, we know that the projection of q on the direction sτ , qτ (t),
solves the Sturm-Liouville problem

(2.30)
{
q̈τ + c(t)qτ = 0

qτ (0) = 0 = qτ (Tξ),

where by (A.4) (Appendix A)

c(t)
.

= −〈∇2W 0(x̂ξ(t))sτ , sτ 〉 = |x̂ξ(t)|−α−2(αU(ϑξ)− U ′′(ϑξ)).

The function u(t)
.

= |x̂ξ(t)| is nothing but a normalized version of the 1-dimensional
homothetic trajectory already studied in Paragraph 2.3.1. Indeed, u(t) = |x̂ξ(t)| = λ(t)R,
where λ(t) solves the 1-dimensional α-Kepler problem{

λ̈+ αR−α−2U(ϑξ)λ
−α−1 = 0

λ(0) = 1 = λ(Tξ),

and so, by calculation, u solves

(2.31)
{
ü+ αu−α−2U(ϑξ)u = 0

u(0) = R = u(Tξ).

Now, since U ′′(ϑξ) ≥ 0, we have that

c(t) ≤ αu(t)−α−2U(ϑξ)

and therefore, if we apply the Sturm comparison theorem to (2.30) and (2.31) we have
that there exists T ∈ (0, Tξ) such that u(T ) = 0. This is finally a contradiction and
concludes the proof, since |x̂ξ(t)| cannot be null in the interval [0, Tξ].

Remark 2.3.8. Following the notation of the previous proof, since by (A.3) (Appendix A) we
have that

c1(t)
.

= −〈∇2W 0(x̂ξ(t))sξ, sξ〉 = −u(t)−α−2α(α+ 1)U(ϑξ)

one could think to study the Sturm-Liouville problem{
q̈ξ + c1(t)qξ = 0

qξ(0) = 0 = qξ(Tξ)

instead of problem (2.30). Since it is always true that

c1(t) ≤ αu(t)−α−2U(ϑξ),

then we should drop the hypothesis U ′′(ϑξ) ≥ 0. However, this would not lead to a contradiction
in our argument, since in this case qξ(t) and u(t) are proportional and so we would not deduce
from the Sturm theorem the existence of a null point for u in the interval (0, Tξ).
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At this point the proof of Theorem 2.3.4 is very easy to get.

Proof of Theorem 2.3.4. It is enough to observe that

∂

∂v
x1(v)

∣∣
v=vξ

=
∂

∂v
πx

[
ΦT (ξ,v)(ξ,v)

]
v=vξ

= πx
∂

∂v

[
ΦT (x,v)(x, v)

]
(x,v)=(ξ,vξ)

,

which is invertible for Lemma 2.3.7.

Now, we are ready to prove the main result of this section, which concerns the
existence of outer arcs for the anisotropic Kepler problem.

Theorem 2.3.9. Let ξ = (R cosϑξ, R sinϑξ) be a central configuration forW 0. Assume that

U ′′(ϑξ) ≥ 0.

Then, there exists a neighbourhood Uξ of ξ on ∂BR such that, for any p0, p1 ∈ Uξ there exist
T > 0 and a solution x = x(t) of

ẍ(t) = ∇W 0(x(t)), t ∈ [0, T ]

1

2
|ẋ(t)|2 −W 0(x(t)) = −1, t ∈ [0, T ]

|x(t)| > R, t ∈ (0, T )

x(0) = p0, x(T ) = p1.

Moreover, x depends on a C1-manner on the endpoints p0, p1.

Proof. Define the shooting map

Ψ: U × U × V → R2

(p0, p1, v0) 7→ Ψ(p0, p1, v0)
.

= x(T (p0, v0); p0, v0)− p1,

where the sets U and V are respectively the neighbourhoods of ξ and vξ found in
Proposition 2.3.3, T : U × V is the C1 first return map defined in the same proposition
and x(·; p0, v0) is the unique solution of the Cauchy problem

(2.32)
{
ẍ(t) = ∇W 0(x(t))

x(0) = p0, ẋ(0) = v0

in the time interval [0, T (p0, v0)]. Note that, following the notation of Lemma 2.3.7, we
have

x(t; p0, v0) = πxΦt(p0, v0), for every t ∈ [0, T (p0, v0)].

Themap Ψ is C1 in its domain both for the C1 dependence of the solutions of the Cauchy
problem (2.32) on initial data and time and for the differentiability of the first return
map T (see Proposition 2.3.3). Moreover, we have that

Ψ(ξ, ξ, vξ) = x(T (ξ, vξ); ξ, vξ)− ξ = πxΦTξ(ξ, vξ)− ξ = 0
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and

∂Ψ

∂v0
(p0, p1, v0)

∣∣∣
(ξ,ξ,vξ)

=
∂

∂v0
x(T (p0, v0); p0, v0)

∣∣∣
(ξ,vξ)

= πx
∂

∂v

[
ΦT (p,v)(p, v)

]
(ξ,vξ)

,

which is invertible thanks to Lemma 2.3.7. Therefore, by the Implicit Function Theorem,
we have that there exist a neighbourhood V ′ ⊆ V of vξ, a neighbourhood Uξ ⊆ U of ξ
and a unique C1 function η : Uξ × Uξ → V ′ such that η(ξ, ξ) = vξ and

Ψ(p0, p1, η(p0, p1)) = 0 for every (p0, p1) ∈ Uξ × Uξ.

This actually means that, if we fix (p0, p1) ∈ Uξ × Uξ, we can find a solution x of
(2.32), defined in the time interval [0, T ], with v0 = η(p0, p1) and T = T (p0, η(p0, p1)) =
T (p0, v0). Furthermore, note that this solution has constant energy −1, since

(p0, η(p0, p1)) = (p0, v0) ∈ Uξ × V ′ ⊂ U × V ⊂ Σ ⊂ E .

The C1-dependence on initial data is a straightforward consequence of the Implicit
Function Theorem.

2.3.3. Outer solution arcs for the N -centre problem

We conclude this section with the proof of the existence of an outer solution arc for
the anisotropic N -centre problem driven by V ε. As a starting point, we recall that, by
Proposition 2.2.2, if |y| > R > 0, then

V ε(y) = W 0(y) +O(εγ), as ε→ 0+

for a suitable γ > 0. This suggests to repeat the proof of Theorem 2.3.9, this time taking
into account the perturbation induced by the presence of the centres. Before we start
with the proof, it is useful to recall the set of strictly minimal central configurations of
W 0, defined as

Ξ = {ϑ∗ ∈ S1 : U ′(ϑ∗) = 0 and U ′′(ϑ∗) > 0} = {ϑ∗0, . . . , ϑ∗m−1}.

Note that, actually, as it is clear from the assumptions of Theorem 2.3.9, it would be
enough to require the (not necessarily strict) minimality of the above central configura-
tions. Beside that, the non-degeneration of such critical points will be a fundamental
requirement on Section 2.5 and however we decide to keep it since it is a natural as-
sumption in anisotropic settings (see for instance [12, 11, 5]).

Theorem 2.3.10. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied and

fix R > 0 as in (2.14). Then, there exists εext > 0 such that, for any ϑ∗ ∈ Ξ minimal non-
degenerate central configuration for W 0, defining ξ∗ .

= Reiϑ
∗ , there exists a neighbourhood

Uext(ξ∗) of ξ∗ on ∂BR with the following property:
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for every ε ∈ (0, εext), for any pair of endpoints p0, p1 ∈ Uext(ξ∗), there exist Text =
Text(p0, p1; ε) > 0 and a unique solution yext(t) = yext(t; p0, p1; ε) of the outer problem

ÿext(t) = ∇V ε(yext(t)) t ∈ [0, Text]

1

2
|ẏext(t)|2 − V ε(yext(t)) = −1 t ∈ [0, Text]

|yext(t)| > R t ∈ (0, Text)

yext(0) = p0, yext(Text) = p1.

Moreover, the solution depends on a C1-manner on its endpoints p0 and p1.

Proof. Recalling the definition (2.12) of ε̃, define the shooting map

Ψ: [0, ε̃)× U × U × V → R2

(ε, p0, p1, v0) 7→ Ψ(ε, p0, p1, v0)
.

= y(T (p0, v0); p0, v0; ε)− p1,

where the sets U and V are respectively the neighbourhoods of ξ and vξ found in
Proposition 2.3.3, T : U × V → R+ is the C1 first return map defined in the same
proposition and y(·; p0, v0; ε) is the unique solution of the Cauchy problem

(2.33)
{
ÿ(t) = ∇V ε(y(t))

y(0) = p0, ẏ(0) = v0,

in the time interval [0, T (p0, v0)]. Note that, following the notation of Lemma 2.3.7, we
have

y(t; p0, v0; 0) = πxΦt(p0, v0) for every t ∈ [0, T (p0, v0)].

Moreover, the map Ψ is C1 in its domain both for the dependence of the solutions of
(2.33) on the initial data and time, for the differentiability of V ε with respect to ε (see
Proposition 2.2.2) and for the C1 differentiability of the map T in U ×V (see Proposition
2.3.3).
We furthermore note that

Ψ(0, ξ, ξ, vξ) = y(T (ξ, vξ); ξ, vξ; 0)− ξ = πxΦTξ(ξ, vξ)− ξ = 0

and
∂Ψ

∂v0
(ε, p0, p1, v0)

∣∣∣
(0,ξ,ξ,vξ)

=
∂

∂v0
y(T (p0, v0); p0, v0; ε)

∣∣∣
(0,ξ,ξ,vξ)

= πx
d

dv

[
ΦT (p,v)(p, v)

]
(ξ,vξ)

,

which is invertible thanks to Lemma 2.3.7 (see also Figure 2.3). Therefore, by the Implicit
Function theorem, we have that there exist a neighbourhood V ′ ⊂ V of vξ, εext ∈ (0, ε̃),
a neighbourhood Uext(ξ∗) ⊂ U of ξ and a unique C1 function η : [0, εext) × Uext(ξ∗) ×
Uext(ξ∗)→ V ′ such that η(0, ξ, ξ) = vξ and

Ψ(ε, p0, p1, η(ε, p0, p1)) = 0 for every (ε, p0, p1) ∈ [0, εext)× Uext(ξ∗)× Uext(ξ∗).
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ξ∗ ξ∗
p0 p1

yext(t)

∂R ∂R

homothetic

∂BR ∂BR

Figure 2.3.: The proof of Theorem 2.3.10: here ∂R denotes the boundary of the Hill’s
region for the rescaled N -centre problem driven by V ε. On the left side
we have drawn the homothetic trajectory through ξ∗: it is a 1-dimensional
motion that starts in ξ∗, it reaches the boundary ∂R and then it hits again
∂BR in ξ∗. On the right we can see that, if we shoot with initial position
sufficiently close to ξ∗, there will be a first return on the sphere, guaranteed
by the transversality of the flow. On the other hand, the dashed trajectory
on the right could never reach again the sphere since its starting point is
outside the existence neighbourhood provided in the theorem.

This actually means that, if we fix ε ∈ [0, εext) and (p0, p1) ∈ Uext(ξ∗) × Uext(ξ∗), we
can find a unique solution yext of (2.15), defined in the time interval [0, Text], starting
with velocity v0 = η(ε, p0, p1) and such that Text = T (p0, η(ε, p0, p1)) in the fashion of
Proposition 2.3.3. Finally, note that this solution has constant energy −1, since

(p0, η(ε, p0, p1)) ∈ Uext(ξ∗)× V ′ ⊂ U × V ⊂ Σ ⊂ E .

To conclude, the C1-dependence on the endpoints is a straightforward consequence on
the perturbation technique used in the proof.

We conclude this section providing upper and lower bounds for the time interval in
which an external solution is defined, that will be useful later in this work.

Lemma 2.3.11. Let ε ∈ (0, εext), let ϑ∗ ∈ S1 be a minimal non-degenerate central configuration
for W 0 and Uext(ξ∗) be its neighbourhood on ∂BR found in Theorem 2.3.10. Let p0, p1 ∈
Uext(ξ∗) and let yext(·; p0, p1; ε) be the unique solution found in Theorem 2.3.10, defined in its
time interval [0, Text(p0, p1; ε)]. Then, there exist c, C > 0 such that

c ≤ Text(p0, p1; ε) ≤ C.

Such constants do not depend on the choice of p0, p1 inside the neighbourhood.

Proof. The proof is a direct consequence of the continuous dependence of the solution
on initial data and of its perturbative nature.
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2.4. Inner dynamics

This section is named Inner dynamics since we will look for solution arcs of the rescaled
N -centre problem (2.6), which bridge any pair of points of ∂BR (R >> ε > 0 already
chosen in Section 2.3) and lie inside the ball BR along their motion. It is clear that
the main difficulty is given by the possible interactions with the centres; indeed, since
we are looking for classical solutions with fixed end-points, we need to avoid every
possible collision. Moreover, since we will be working inside BR, we cannot make use
of Proposition 2.2.2 and thus perturbation techniques do not apply in this case. For this
reason, following [61], we opt for a variational approach and our inner solution arcs will
be (reparametrizations of) minimizers of a suitable geometric functional. In the last two
sections of this paper we will build closed periodic orbits for the anisotropic N -centre
problem as a juxtaposition of outer and inner arcs using a broken geodesics technique
and, as a corollary, we will link this result with the presence of a symbolic dynamics. In
the Section 2.1 we have already defined those symbols that will compose the alphabet
of our dynamics, which can be roughly thought as all the possible choices of a suitable
partition of the centres and of a central configuration for the leading potentialW 0. With
some intermediate steps, we will define a suitable topological constraint that forces
every inner arc to separate the centres according to a prescribed partition. To be clear,
the main result of this section is to prove that, for ε > 0 sufficiently small and for any
p1, p2 ∈ ∂BR, there exists a solution y(·; p1, p2; ε) of the following problem

(2.34)



ÿ(t) = ∇V ε(y(t)) t ∈ [0, T ]

1

2
|ẏ(t)|2 − V ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| < R t ∈ (0, T )

y(0) = p1, y(T ) = p2,

for some T > 0, possibly depending on ε, and such that the trajectory y separates the
centres according to a chosen partition.

2.4.1. Functional setting and variational principles

In order to follow a variational approach, we introduce the set of admissible paths on
which we will minimize some suitable geometric functionals. We build our setting
referring to the starting equations (2.1)-(2.3) and thus we take into account again the
potential V and the energy −h < 0 is fixed. However, we notice that a scaling on the
centres, and thus on thewhole problem (see problem (2.9)), does not affect the following
discussion. Recalling the notations of the Section 2.1, we fix p1, p2 inside the open Hill’s
region R̊h (see (2.4)) and we define

Ĥ = Ĥp1,p2([a, b])
.

=

{
u ∈ H1([a, b];R2)

∣∣∣∣∣ u(a) = p1, u(b) = p2,

u(t) 6= cj ∀ t ∈ [a, b], ∀ j

}
,
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i.e., all the H1-paths that join p1, p2 and do not collapse on the centres, and also the
H1-collision paths

Coll = Collp1,p2([a, b])
.

=

{
u ∈ H1([a, b];R2)

∣∣∣∣∣ u(a) = p1, u(b) = p2, ∃ t ∈ [a, b],

∃ j ∈ {1, . . . , N} s.t. u(t) = cj

}
.

We introduce also the set

H = Hp1,p2([a, b])
.

= Ĥp1,p2([a, b]) ∪ Collp1,p2([a, b])

= {u ∈ H1([a, b];R2) : u(a) = p1, u(b) = p2}

and it is easy to check that H is the closure of Ĥ with respect to the weak topology of
H1([a, b];R2). Let us define the Maupertuis’ functional as

Mh(·) .
=Mh([a, b]; ·) : Hp1,p2([a, b]) −→ R ∪ {+∞}

u 7−→Mh(u)
.

=
1

2

∫ b

a
|u̇(t)|2 dt

∫ b

a
(−h+ V (u(t))) dt

which is differentiable over the non-collision paths space Ĥ . The next classical result,
known as theMaupertuis’ principle (see [3]), establishes a link between classical solutions
of the equation ẍ = ∇V (x) at energy −h and critical points at a positive level ofMh in
the space Ĥ . Note that, ifMh(u) > 0 for some u ∈ H , then we can define the positive
quantity

(2.35) ω2 .
=

∫ b
a (−h+ V (u))

1
2

∫ b
a |u̇|2

,

that plays and important role in the next result.

Theorem 2.4.1 (The Maupertuis’ principle). Let u ∈ Ĥp1,p2([a, b]) be a critical point ofMh

at a positive level and let ω > 0 be defined by (2.35). Then, x(t)
.

= u(ωt) is a classical solution
of the fixed-end problem

ẍ(t) = ∇V (x(t)) t ∈ [a/ω, b/ω]
1
2 |ẋ(t)|2 − V (x(t)) = −h t ∈ [a/ω, b/ω]

x(a/ω) = p1, x(b/ω) = p2

while u itself is a classical solution of
ω2ü(t) = ∇V (u(t)) t ∈ [a, b]
ω2

2 |u̇(t)|2 − V (u(t)) = −h t ∈ [a, b]

u(a) = p1, u(b) = p2.

The converse holds also true, i.e., if x is a classical solution of the fixed-end problem above in
a certain interval [a′, b′], then, setting ω = 1/(a′ − b′), u(t) = x(t/ω) is a critical point of
Mh([a, b]; ·) at a positive level, for some suitable values a, b.
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Proof. Since u is a critical point forMh, then∫ b

a
〈u̇, v̇〉

∫ b

a
(−h+ V (u)) +

1

2

∫ b

a
|u̇|2

∫ b

a
〈∇V (u), v〉 = 0, ∀ v ∈ H1

0 ([a, b];R2).

SinceMh(u) > 0 we thus have

ω2

∫ b

a
〈u̇, v̇〉 = −

∫ b

a
〈∇V (u), v〉, ∀ v ∈ H1

0 ([a, b];R2)

and so u solves weakly (and thus classically by routine regularity arguments)

ω2ü(t) = ∇V (u(t)), ∀ t ∈ [a, b].

If we define
g(t)

.
=
ω2

2
|u(t)|2 − V (u(t))

we immediately get that g(t) is constant in [a, b] and, by (2.35) we necessarily have that
g(t) ≡ −h and the energy conservation follows.

Moreover, defining x(t)
.

= u(ωt) we have

ẍ(t) = ∇V (x(t)), ∀ t ∈ [a, b].

In order to apply direct methods of the Calculus of Variations toMh we will work
in H , which is weakly closed in H1. As a first step we show that a (possibly colliding)
minimizer ofMh in H preserves the energy almost everywhere.

Lemma 2.4.2. If u ∈ H is a minimizer ofMh at a positive level, then

ω2

2
|u̇(t)|2 − V (u(t)) = −h for a.e. t ∈ [a, b].

Proof. It is enough to observe that u is an extremal with respect to time reparametriza-
tions which keep the ends fixed, i.e., if ϕ ∈ C∞c (a, b) and we define uλ(t)

.
= u(t+ λϕ(t))

for λ ∈ R+, then

(2.36) d

dλ
Mh(uλ)

∣∣∣
λ=0

= 0.

Let us prove (2.36). If λ is small enough then the function t→ t+ λϕ(t) is increasing in
[a, b] and so it is invertible. Through the change of variable s = t+ λϕ(s) we have

Mh(uλ) =
1

2

∫ b

a
|u̇(s)|2(1 + λϕ̇(t(s))) ds

∫ b

a

V (u(s))− h
1 + λϕ̇(t(s))

ds,

where t(s) = s − λϕ(t). The one-parameter family of functions tλ(s)
.

= t(s) uniformly
converges to 0 in [a, b] as λ→ s since

|tλ(s)− s| ≤ λ‖ϕ‖∞, ∀ t ∈ [a, b].
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For this reason we have

d

dλ
Mh(uλ)

∣∣∣
λ=0

=
1

2

∫ b

a
|u̇(s)|ϕ̇(s)2 ds

∫ b

a
(−h+ V (u(s))) ds

− 1

2

∫ b

a
|u̇(s)|2 ds

∫ b

a
(−h+ V (s)) ϕ̇(s) ds

=

∫ b

a

[
1

2

(∫ b

a
(V (s)− h) ds

)
|u̇(s)|2 − 1

2
‖u̇‖22 (−h+ V (u(s)))

]
ϕ̇(s) ds

= 0

for every ϕ ∈ C∞0 (a, b), and thus (2.36) is proved. In particular, we deduce that

1

2

(∫ b

a
(V (s)− h) ds

)
|u̇(s)|2 − 1

2
‖u̇‖22 (−h+ V (u(s))) = k a.e. in [a, b]

for some k ∈ R. Now, sinceMh(u) > 0 we have

ω2

2
|u̇(s)|2 = V (u(s))− h+ k, a.e. in [a, b]

and from (2.35) the proof is complete.

The lack of additivity ofMh induces the introduction of the Jacobi-length functional

Lh(u)
.

=

∫ 1

0
|u̇(t)|

√
−h+ V (u(t)) dt

whose domain is the weak H1-closure of the set

Hp1,p2

h ([a, b])
.

=

{
u ∈ H1([a, b];R2)

∣∣∣∣∣ u(a) = p1, u(b) = p2,

V (u(t)) > h, |u̇(t)| > 0, for every t ∈ [a, b]

}
.

Indeed, Theorem 2.4.1 could be rephrased for Lh and thus classical solutions will be
suitable reparametrizations of critical points of Lh (see for instance [54] and Appendix
C for more precise details on this functional). Finally, we notice that the Maupertuis’
functional is not additive, while it is well-known that the Jacobi-length functional is and
it is also invariant under reparametrizations, since it is a length. Despite that, exploiting
the correspondence which stands between minimizers ofMh and minimizers of the
Jacobi-length functional (see Proposition C.3), an easy proof leads to the following
proposition.

Proposition 2.4.3. Let u be a minimizer of Mh([a, b]; ·) in Hp1,p2([a, b]). Then, for any
subinterval [c, d] ⊆ [a, b], the restriction u|[c,d] is a minimizer of Mh([c, d]; ·) in the space
Hu(c),u(d)([c, d]).
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2.4.2. Minimizing through direct methods

At this point, we go back to the N -centre problem (2.34), introducing the notation
c′j

.
= εcj for the ε-centres included in Bε. We aim to prove the existence of a minimizer

for the Maupertuis’ functional, requiring the following topological constraint: an inner
arc has to cross the ball Bε, dividing the centres into two non-trivial subsets. This
can be done introducing the winding number with respect to every centre; but since a
path in Ĥ is not necessarily closed, we need to close it artificially. Let us fix [a, b] ⊆ R,
p1, p2 ∈ ∂BR and write

p1 = Reiϑ1 , p2 = Reiϑ2

for ϑ1, ϑ2 ∈ [0, 2π). For u ∈ Ĥp1,p2([a, b]), if p1 6= p2 we close u glueing an arc of ∂BR in
counter-clockwise direction, i.e., we define

Γu(t)
.

=



{
u(t) t ∈ [a, b]

Rei(t−b+ϑ2) t ∈ (b, b+ ϑ1 + 2π − ϑ2)
if ϑ1 < ϑ2

u(t) t ∈ [a, b] if ϑ1 = ϑ2{
u(t) t ∈ [a, b]

Rei(t−b+ϑ2) t ∈ (b, b+ ϑ1 − ϑ2)
if ϑ1 > ϑ2

and so, we can introduce the winding number of uwith respect to a centre c′j as

Ind(u; c′j)
.

=
1

2πi

∫
Γu

dz

z − c′j
∈ Z, for all j = 1, . . . , N.

Since a path u has to separate the centres with respect to a given partition in two
non-trivial subsets, we can choose the parity of the winding numbers Ind(u; cj) as a
dichotomy property. Following this, we introduce the set of admissible winding vectors

(2.37) IN
.

= {l ∈ ZN2 : ∃ j, k ∈ {1, . . . , N}, j 6= k, s.t. lj 6= lk}

and, for l ∈ IN (which we fix from now on), we consider the class of paths

Ĥl
.

= {u ∈ Ĥ : Ind(u; c′j) ≡ lj (mod 2), ∀ j = 1, . . . , N}.

Of course, the above set is not closed with respect to the weak topology of H1 and so,
as before, we include the collision paths in our minimization set. For j ∈ {1, . . . , N}
define the set

Colljl
.

= {u ∈ H : Ind(u; c′k) ≡ lk (mod 2) ∀ k 6= j and ∃ t ∈ [a, b] s.t. u(t) = c′j}

i.e., the collision paths behaving like a path in Ĥl with respect to every centre, except for
c′j in which the particle collides. In the same way, we can include two collision centres
c′j1 , c

′
j2
defining

Collj1,j2l
.

=

{
u ∈ H

∣∣∣∣∣ Ind(u; c′k) ≡ lk (mod 2) ∀ k 6= j1, j2 and
∃ t1, t2 ∈ [a, b] s.t. u(t1) = c′j1 , u(t2) = c′j2

}
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and so on

Collj1,j2,j3l
.

= . . . ,

...
Coll1,...,Nl = Coll1,...,N

.
= {u ∈ H : u collides in every centre}.

At this point, we can collect together all the admissible collision paths with respect to a
fixed winding vector l ∈ IN in the set

Colll
.

=
N⋃
j=1

Colljl ∪
⋃

1≤j1<j2≤N
Collj1,j2l ∪ · · · ∪ Coll1,...,Nl

and prove the following result.

Proposition 2.4.4. The set
Hl

.
= Ĥl ∪ Colll

is weakly closed in H1.

Proof. Take (un) ⊆ Hl such that un ⇀ u in H1 and so, in particular, un uniformly
converges to u in [a, b]. Then, if u has a collision then u ∈ Colll. On the other hand, if u
is collision-free, then the uniform convergence implies the existence of n0 ∈ N such that

un ∈ Ĥl ∀n ≥ n0 =⇒ u ∈ Ĥl.

Finally, we look for solution arcs which lie inside BR along their trajectory, and so
it makes sense to add another constraint on them. For this reason we will restrict our
investigation to the sets:

(2.38)
K̂l

.
= K̂p1,p2

l ([a, b])
.

= {u ∈ Ĥl : |u(t)| ≤ R, ∀ t ∈ [a, b]}
Kl

.
= Kp1,p2

l ([a, b])
.

= {u ∈ Hl : |u(t)| ≤ R, ∀ t ∈ [a, b]},

(see Figure 2.4 for an explanation on the geometrical meaning of the constraint induced
by these sets).
The following proposition guarantees that we are in the convenient setting to perform

a variational argument.

Proposition 2.4.5. The setKl is weakly closed in H1.

Proof. The proof is trivial since Kl is a subset of Hl which is stable under uniform
convergence.

For any u ∈ Kl = Kp1,p2

l ([0, 1]), we take into account the Maupertuis’ functional

M(u) =
1

2

∫ 1

0
|u̇(t)|2 dt

∫ 1

0
(−1 + V ε(u(t))) dt

and we remark two facts:
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∂BR
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∂BR

p1
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c1
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c3

c4
c5
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∂BR

Figure 2.4.: The geometrical interpretation of the topological constraint: in the first pic-
turewe have a collision-less path realizing thewinding vector (0, 0, 0, 1, 1, 1);
the second arc collides with c6, thus it belongs to the closed space Kl, with
l = (0, 0, 0, 1, 1, 0) or l = (0, 0, 0, 1, 1, 1); in the third picture we have a non-
admissible path, since it has winding vector l = (1, 1, 1, 1, 1, 1) 6∈ IN . This
also explains why, in order to have the centres geometrically divided by an
arc, such arc cannot have indices with the same parity with respect to every
centres. Indeed, in this case the path would belong to the space Kl with
l = (1, 1, 1, 1, 1, 1) or l = (0, 0, 0, 0, 0, 0).

• sinceM is invariant under time reparametrizations, we have put a = 0 and b = 1;

• actually, M = Mε
1, but we have omitted this dependence since we will mainly

work with both ε > 0 and the energy fixed. When we will move such ε or the
energy, we will use the more explicit notations.

We now prove three lemmata in order to apply direct methods to the Maupertuis’
functional.

Lemma 2.4.6. There exists C > 0 such that

M(u) ≥ C > 0, for every u ∈ Kl.

Proof. Since u ∈ Kl then |u(t)| ≤ R for every t ∈ [0, 1] and so

|u(t)− c′j | ≤ R+ ε

for every j = 1, . . . , N and for every t ∈ [0, 1]. Now, recalling that

m = min
j=1,...,N

min
S1

Uj

we have that

(2.39) V ε(u(t)) ≥ |u(t)− c′1|−αm ≥
m

(R+ ε)α
,

for every t ∈ [0, 1]. Recalling (2.12) and (2.14), we have that R ∈ (ε,m1/α − ε) for every
ε, hence

V ε(u(t))− 1 ≥ C > 0.
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In this way, we have shown that there exists C > 0 such that

(2.40) M(u) ≥ C
∫ 1

0
|u̇(t)|2 dt,

for every u ∈ Kl. At this point, let us define t∗ ∈ (0, 1) as the first instant at which u
crosses Bε. Using the Hölder inequality, we note that

(2.41) 0 < C1
.

= R− ε ≤ |u(0)− u(t∗)| ≤
∫ 1

0
|u̇(t)| dt ≤ ‖u̇‖2

and the proof is concluded.

Lemma 2.4.7. The Maupertuis’ functionalM is coercive inKl.

Proof. Take (un) ⊆ Kl such that ‖un‖H1 → +∞. Since the sequence (‖un‖2) ⊆ R is
bounded we have that necessarily

lim
n→+∞

‖u̇n‖22 = +∞

and thus the proof is complete for (2.40).

Lemma 2.4.8. The Maupertuis’ functionalM is weakly lower semi-continuous (w.l.s.c.) in
Kl.

Proof. It is equivalent to show that the set

MC .
= {u ∈ Kl : M(u) ≤ C}

is weakly closed in H1 for every C ∈ R. Fix C ∈ R and take (un) ⊆ MC such that
un ⇀ u ∈ Kl in H1. Since the H1-norm is w.l.s.c. we have

‖un‖22 + ‖u̇n‖22 ≤ lim inf
n→+∞

(
‖un‖22 + ‖u̇n‖22

)
.

The weak convergence implies the uniform one and so, in particular, un → u in L2. For
this reason

‖u̇n‖22 ≤ lim inf
n→+∞

‖u̇n‖22.

By assumption we haveM(un) ≤ C for every n ∈ N and so, in particular, V ε(un) ∈
L1(0, 1) for every n ∈ N. This means that the set

{t ∈ [0, 1] : un(t) = cj for some j}

has null measure and so, again from the uniform convergence of (un), we have

V ε(un(t))→ V ε(u(t)) a.e. in [0, 1].
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Therefore, Fatou Lemma implies that∫ 1

0
(−1 + V ε(u(t))) dt ≤ lim inf

n→+∞

∫ 1

0
(−1 + V ε(un(t))) dt

and, in particular, that V ε(u) ∈ L1(0, 1). At this point we can conclude the proof
observing that, since

M(u) =
1

2

∫ 1

0
|u̇(t)|2 dt

∫ 1

0
(−1 + V ε(u(t))) dt

≤ 1

2
lim inf
n→+∞

∫ 1

0
|u̇n(t)|2 dt

∫ 1

0
(−1 + V ε(un(t))) dt

≤ lim sup
n→+∞

M(un)

≤ C,

then u ∈MC .

We are ready to prove the next result which claims the existence of a minimizer for
the Maupertuis’ functional in the setKl.

Proposition 2.4.9. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied.

Fix ε ∈ (0, ε̃) as in (2.12), fix R ∈ (ε̃,m1/α − ε̃) as in (2.14) and fix l ∈ IN . Then, for any
p1, p2 ∈ ∂BR, the Maupertuis’ functional

M(u) =
1

2

∫ 1

0
|u̇(t)|2 dt

∫ 1

0
(−1 + V ε(u(t))) dt

admits a minimizer u ∈ Kp1,p2

l ([0, 1]) at a positive level.

Proof. Apply the direct method of Calculus of Variations to the Maupertuis’ functional,
making use of Lemmata 2.4.6, 2.4.7 and 2.4.8.

Now, if we show that the minimizer u ∈ Kl verifies:

(CF ) u is collision-free,

(R) |u(t)| < R for every t ∈ (0, 1),

we have that
d

dλ
M(u+ λϕ)

∣∣
λ=0

= 0 for every ϕ ∈ C∞c (0, 1),

so that Theorem 2.4.1 applies and we can find a classical solution y : [0, T ] → R2 of the
inner problem 

ÿ(t) = ∇V ε(y(t)) t ∈ [0, T ]

1

2
|ẏ(t)|2 − V ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| < R t ∈ (0, T )

y(0) = p1, y(T ) = p2.
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The next two sections are devoted to show respectively that u joins the properties (CF )
and (R), to finally obtain a classical solution arc for the anisotropic N -centre problem
inside. As a starting point, we characterize the sets of colliding instants and of the times
at which |u| = R. In particular, if we define

(2.42)
Tc(u)

.
= {t ∈ [0, 1] : u(t) = c′j for some j ∈ 1, . . . , N} ⊆ (0, 1)

TR(u)
.

= {t ∈ [0, 1] : |u(t)| = R} ⊆ [0, 1],

we can easily notice that, since M(u) < +∞, Tc(u) is a closed set of null measure
and its complement [0, 1] \ Tc(u) is a union of a countable or finite number of open
intervals. Moreover, when the minimizer travels along a connected component of
[0, 1] \ (Tc(u) ∪ TR(u)), it can be reparametrized to obtain a classical solution of the
N -centre problem through Theorem 2.4.1 and the energy is conserved along this path.
This is shown in the next lemma.

Lemma 2.4.10. Given a minimizer u ∈ Kl of the Maupertuis’ functionalM:

(i) u verifies
1

2
|u̇(t)|2 − V ε(u(t)) = − 1

ω2
a.e. in [0, 1];

(ii) if (a, b) is a connected component of [0, 1] \ (Tc(u) ∪ TR(u)) then u|(a,b) ∈ C2(a, b) and

ω2ü(t) = ∇V ε(u(t)) for every t ∈ (a, b).

Proof. The proof is a consequence of theminimality of uwith respect to compact support
variations in [0, 1]\(Tc(u)∪TR(u)) (see the proof of Theorem 2.4.1 and Lemma 2.4.2).

2.4.3. Qualitative properties of minimizers: absence of collisions and
(self-)intersections

In what follows we are going to provide the absence of collisions (CF ) for a minimizer
u obtained in the previous subsections. In order to do that, we will carry out a local
study near-collisions. Since we will be working close to the centres, the radius of the
ball Bε will play no role here. For this reason, without loss of generality we fix ε. Fix
an admissible partition of the centres, that corresponds to fix l ∈ IN and consider a
minimizer u ∈ Kl (see (2.37) and (2.38) for their definitions). To start with, we show that
the collisions are isolated. Recalling the definition of Tc(u) in (2.42), this is the content
of the next lemma that, moreover, provides a Lagrange-Jacobi identity for colliding arcs.

Lemma 2.4.11. The set Tc(u) is discrete and it has a finite number of elements. In particular,
if the minimizer u has a collision with the centre c′j , the function I(t)

.
= |u(t) − c′j |2 is strictly

convex in a neighbourhood of the colliding instant.

Proof. Without loss of generality assume that u collides with the centre c′1 and assume
by contradiction that t0 is an accumulation point for Tc(u) and u(t0) = c′1. Since u
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is continuous in [0, 1], only collision instants with the centre c′1 can accumulate in t0.
Therefore, there exists a sequence (an, bn) of open intervals such that (an, bn) ⊆ [0, 1] for
every n ∈ N, an → t0 and bn → t0 as n→ +∞, u(an) = c′1 = u(bn) for every n ∈ N and

|u(t)− c′1| > 0 for all t ∈ (an, bn).

In particular, again from the continuity of u, we have that, at least for n sufficiently large

|u(t)− c′k| ≥ C > 0 and |u(t)| < R,

for all t ∈ (an, bn), for every k 6= 1. Define the inertial moment of u with respect to the
centre c′1 as the function

I(t)
.

= |u(t)− c′1|2.
Now, since (an, bn) is a connected component of [0, 1] \ (Tc(u)∪TR(u)) if n is sufficiently
large, by Lemma 2.4.10 and using the Euler theorem for homogeneous functions, we
can obtain a Lagrange-Jacobi-like identity

(2.43)

Ï(t) = 2〈ü(t), u(t)− c′1〉+ 2|u̇(t)|2

=
2

ω2
〈∇V ε(u(t)), u(t)− c′1〉+

4

ω2
(V ε(u(t))− 1)

= − 4

ω2
+

2

ω2
(2− α)V1(u(t)− c′1) + f(u(t)),

for every t ∈ (an, bn) and for some smooth function f . The continuous function I(t)

• is positive;

• is zero when t ∈ {an, bn};

• admits a maximizer ξn ∈ (an, bn).

Therefore, we would have Ï(ξn) ≤ 0 for every n ∈ N. But, if n → +∞ the second term
in (2.43) blows up, while the others stay bounded. This is clearly a contradiction. For
this reason t0 is an isolated point for Tc(u) and, since [0, 1] is compact, in particular we
have that Tc(u) is finite.

In the next two propositions we discuss some important properties of minimizers of
M, concerning the (self-)intersections at points which are different from the centres.

Proposition 2.4.12. Let u ∈ Kp1,p2

l be a minimizer ofM. Then, u parametrizes a path without
self-intersections at points different from the centres.

Proof. By contradiction, assume that there exist t∗ < t∗∗ such thatu(t∗) = u(t∗∗) = p 6= c′j
for all j and |p| < R. Hence, there exists (a, b) connected component of ([0, 1] \ (Tc(u) ∪
TR(u))) such that t∗ ∈ (a, b). From Lemma 2.4.10 we have that u|(a,b) is a classical
solution of ω2ü = ∇V (u) (and so, in particular, it is C1 in the same interval) and the
conservation of energy implies that

u̇(t∗), u̇(t∗∗) 6= 0, |u(t∗)| = |u(t∗∗)|.
This leads us to consider three possible alternatives
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1. u̇(t∗) is transverse to u̇(t∗∗);

2. u̇(t∗) is tangent to u̇(t∗∗) with opposite direction (u̇(t∗) = −u̇(t∗∗));

3. u̇(t∗) is tangent to u̇(t∗∗) with same direction (u̇(t∗) = u̇(t∗∗)).

The alternative (3.) is impossible by means of the uniqueness theorem for Cauchy
problems, but also is alternative (2.) since our problem joins time-reversibility.
For (1.) we can produce an explicit variation v ∈ Kl for whichM(v) =M(u) but such

that v 6∈ C1 in a neighbourhood of t∗, which is impossible. To build such a variation
is enough to travel along u until t∗, then to change the orientation of the loop between
t∗ and t∗∗, and then to travel again along u until the end. Notice that the new path v
preserves the parity of the winding number with respect to every centre; indeed, for
every j ∈ {1, . . . , N}we have

Ind(v; c′j) = Ind(u; c′j)− 2 Ind(u|[t∗,t∗∗]; c′j).

Remark 2.4.13. In light of the previous proposition, we can affirm that we could start this
minimization process choosing among only those paths with winding index equals to 0 or 1 with
respect to every centre, even if this choice could seem unnatural at the beginning. We also remark
that a priori we do not necessarily need the paths to do not self-intersect; nonetheless, Proposition
2.4.12 shows that this is actually an intrinsic property of the minimizers.

Lemma 2.4.14. Let u ∈ Kp1,p2

l be a minimizer ofM, let q1 = u(c) and q2 = u(d) for some
sub-interval [c, d] ⊆ [0, 1]. If we defineKq1,q2(u) as the weak H1-closure of the space

K̂q1,q2(u)
.

=

{
v ∈ H1([c, d];R2)

∣∣∣∣∣ v(c) = q1, v(d) = q2, |v| ≤ R, v is homotopic
to u|[c,d] in the punctured ball BR \ {c′1, . . . , c′N}

}
,

then
M(u|[c,d]) = min

Kq1,q2 (u)
M.

Proof. Assume by contradiction that there exists w ∈ Kq1,q2(u) such that

min
Kq1,q2 (u)

M =M(w) <M(u|[c,d]).

The path

ũ
.

=

{
u|[0,c](t) t ∈ [0, c] ∪ [d, 1]

w t ∈ [c, d]

belongs to the spaceKp1,p2

l and minimizesM in that space. This is in contrast with the
minimality of u in the same space.
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Proposition 2.4.15. Let u ∈ Kp1,p2

l be a minimizer of M. Let l̃ ∈ IN , p̃1, p̃2 ∈ ∂BR
and v ∈ K p̃1,p̃2

l̃
be a minimizer ofM. Then, if u intersects v at least in two distinct points

q1, q2 ∈ BR \ {c′1, . . . , c′N}, the portions of u and v between q1 and q2 are not homotopic paths
in the punctured ball. As a consequence, if l = l̃, then u cannot intersect v more than once.

Proof. Since the Maupertuis’ functional is invariant under time-reparametrizations, to
prove the assertion we can assume that there exist q1, q2 ∈ BR \ {c′1, . . . , c′N} such that

u(c) = q1 = v(c)

u(d) = q2 = v(d),

for some interval [c, d] ⊆ [0, 1]. Assume by contradiction that the paths u|[c,d] and v|[c,d]

are homotopic in the punctured ball BR \ {c′1, . . . , c′N}; this means in particular that
Kq1,q2(u) = Kq1,q2(v) (for their definitions see the statement of Lemma 2.4.14). Now,
again from Lemma 2.4.14, we deduce that

M(u; [c, d]) = min
Kq1,q2 (u)

M = min
Kq1,q2 (v)

M =M(v; [c, d]).

For this reason, if we define the path (see Figure 2.5)

ũ(t)
.

=

{
u(t) if t ∈ [0, c) ∪ (d, 1]

v(t) if t ∈ [c, d]

we clearly have that ũ ∈ Kp1,p2

l and

M(ũ) =M(u) = min
K
p1,p2
l

M.

By Lemma 2.4.11 the instants c and d belong to two connected components of [0, 1] \
(Tc(u) ∪ TR(u)) and therefore Lemma 2.4.10 applies too. This is finally a contradiction
since the path ũ cannot be differentiable in c and d (note that u̇(c) 6= v̇(c) for the
uniqueness of solutions of Cauchy problems; the same holds at d for time-reversibility).

For the situation l = l̃ the proof is trivial, once provided Proposition 2.4.12.

At this point we are ready to start a local analysis in order to rule out the presence of
collisions with the centres. Let us now assume that the minimizer u has a collision with
the centre c′j at time t0. By means of Lemma 2.4.11, we have that there exist c, d ∈ [0, 1]
such that

• c < t0 < d and t0 is the unique instant of collision of u in [c, d];

• the inertial moment I(t) = |u(t)− c′j |2 is strictly convex in [c, d].

We define p̄1 = u(c) and p̄2 = u(d). Since u ∈ C([c, d];R2), then there exists r∗ > 0 such
that

(2.44) |u(t)− c′k| ≥ r∗ > 0 for every t ∈ [c, d] and for every k 6= j

68



p1

p2

p̃1

p̃2

q1

q2

∂BR

v

u

ũ

Figure 2.5.: Situation of Proposition 2.4.15

and, without loss of generality, we can assume that p̄1, p̄2 ∈ ∂Br(c′j), for some r < r∗.
Since we are getting close to the collision, it makes sense to localize the potential and

to write
V ε(y) = Vj(y − c′j) + f j(y), with f j(y)

.
=
∑
k 6=j

Vk(y − c′k).

Notice that inside the ball Br(c′j) the quantity f j(y) is smooth and bounded.
Let us introduce the space

K̂p̄1,p̄2

l
.

=

v ∈ H
1([c, d];R2)

∣∣∣∣∣∣∣∣∣∣

v(c) = p̄1, v(d) = p̄2, v(t) 6= c′j ∀ t ∈ [c, d], ∀ j

the function Gv(t)
.

=

{
u(t) if t ∈ [0, c) ∪ (d, 1]

v(t) if t ∈ [c, d]

belongs to K̂p1,p2

l


and its weak H1-closure

Kp̄1,p̄2

l
.

= K̂p̄1,p̄2

l ∪
{
v ∈ H1([c, d];R2) : v(c) = p̄1, v(d) = p̄2, Gv ∈ Colll

}
and restrict the Maupertuis’ functional to Kp̄1,p̄2

l in this way

Mp̄1,p̄2

l : Kp̄1,p̄2

l → R ∪ {+∞}, Mp̄1,p̄2

l (v) =
1

2

∫ d

c
|v̇(t)|2 dt

∫ d

c
(−1 + V ε(v(t))) dt.

We can repeat the proof of Subsection 2.4.2 and show thatMp̄1,p̄2

l admits a minimizer in
Kp̄1,p̄2

l at a positive level. Moreover, from Lemma 2.4.14, this minimizer is nothing but
v

.
= u|[c,d].
For the sake of simplicity assume c′j = 0.
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Proposition 2.4.16. The following behaviour holds:

V ε(y) = Vj(y) + C +O(|y|), as y → 0+,

for some constant C > 0. In particular, when |y| is sufficiently small, the problem is a small
perturbation of an anisotropic Kepler problem driven by the −αj-homogeneous potential Vj .

Proof. It is enough toobserve that, with the same computationof theproof of Proposition
2.2.2, we have that, for every k 6= j

|y − c′k|−αk = |c′k|−αk +O(|y|), as |y| → 0+

and

Vk

(
y − c′k
|y − c′k|

)
= C +O(|y|), as |y| → 0+.

In particular, defining r∗ > 0 as in (2.44), for r ∈ (0, r∗) and for |y| ≤ r we can write

V ε(y) = Vj(y) + C + rGr(|y|),

with Gr uniformly bounded with respect to r.

At this point we need a result from [5] (see also Chapter 1) on the properties of
minimal collision orbits for a perturbed anisotropic Kepler problem. In order to take
it into account, we need to introduce some further notations. Let r∗ be as in (2.44); for
r ∈ (0, r∗) and q ∈ ∂Br we define the set ofH1-colliding paths on a generic real interval
[c, d] ⊆ R

Hq
coll

.
=
{
w ∈ H1([c, d];R2) : w(c) = q, w(d) = 0, |w(t)| ≤ r, ∀ t ∈ [c, d]

}
.

Moreover, for a potential V ε ∈ C2(Br \ {0}) which is a perturbation of an anisotropic
potential as in Proposition 2.4.16, consider the Maupertuis’ functional

M(w) =
1

2

∫ d

c
|ẇ(t)|2 dt

∫ d

c
(−1 + V ε(w(t))) dt

for w ∈ Hq
coll. Up to choosing a smaller r∗, we proved the following result; in order to

ease the notation, we will denote a minimal non-degenerate central configuration for Uj
as ϑ∗ instead of ϑj (see (V )).

Lemma 2.4.17 (Theorem 5.2,[5]; cf Theorem 1.5.2, Remark 1.3.3). Let ϑ∗ ∈ S1 be a minimal
non-degenerate central configuration for Uj . There exist r∗ > 0 and δ > 0 such that, for
every q = reiϑ with r < r∗ and ϑ ∈ (ϑ∗ − δ, ϑ∗ + δ) there exists a unique minimizer of the
Maupertuis’ functional in the set of colliding paths Hq

coll. In particular, this path cannot leave
the cone emanating from the origin and bounded by the arc-neighbourhood (ϑ∗ − δ, ϑ∗ + δ).
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The presence of this region foliated by minimal arcs inside a cone spanned by ϑj ,
together with Proposition 2.4.15, suggests to choose one of this paths and to use it as
a barrier, in order to determine a region of the ball Br in which a minimizer with end-
points on ∂Br has to be confined. Indeed, in order to rule out the presence of collisions
for a minimizer in Kp̄1,p̄2

l , we aim to follow the ideas contained in a result from [11],
which holds true for minimizers that do not leave a prescribed angular sector. For a
r > 0, a potential V ε ∈ C2(Br \ {0}) as in Proposition 2.4.16 and T > 0, introduce the
action functional AT : H1([0, T ];R2)→ R ∪ {+∞} such that

AT (x)
.

=

∫ T

0

(
1

2
|ẋ(t)|2 + V ε(x(t))− 1

)
dt.

Definition 2.4.18. We say that x ∈ H1([0, T ];R2) is afixed-time Bolzaminimizer associated
with the endpoints x1 = x(0), x2 = x(T ), if, for every y ∈ H1([0, T ];R2) there holds

y(0) = x1, y(T ) = x2 =⇒ AT (x) ≤ AT (y).

We recall an important result from [11], which represent our starting point to get the
absence of collisions for our minimizers.

Lemma 2.4.19 (Theorem 2, [11]). Consider a perturbed potential V ∈ C1(R2 \{0}) such that,
writing in polar coordinates x = (r cosϑ, r sinϑ)

V (x) = r−αU(ϑ) +W (x),

where α ≥ 0 and
lim
r→0+

rα
′
(W (x) + r|∇W (x)|) = 0

for some α′ < α. Assume that there exists at least ϑ∗ ∈ S1 such that{
U(ϑ) ≥ U(ϑ∗) > 0, ∀ϑ ∈ S1

U ′′(ϑ∗) > 0,

i.e., ϑ∗ is a minimal non-degenerate central configuration for U , and define

Θ
.

= {ϑ ∈ R : ϑ = ϑ∗ + 2nπ, for some n ∈ Z} .

Then, for every ϑ− < ϑ+ ∈ Θ there exists ᾱ(U, ϑ−, ϑ+) ∈ (0, 2) such that if α > ᾱ all the
fixed-time Bolza minimizers in the angular sector [ϑ−, ϑ+] are collision-less.

As a first step, we show that the previous lemma can be extended for those H1-
paths with fixed ends which minimize the Maupertuis’ functional instead of the action
functional. Indeed, with the same proof of Subsection 2.4.2, one can prove the existence
of a minimizer for the Maupertuis’ functional

Mh(u) =
1

2

∫ 1

0
|u̇|2

∫ 1

0
(−h+ V (u))

in the space of theH1-paths which join two points within the sector [ϑ−, ϑ+], for h ∈ R.
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Lemma 2.4.20. In the same setting of Lemma 2.4.19, if h ∈ R and if α > ᾱ(U, ϑ−, ϑ+), then all
the minimizers of the Maupertuis’ functionalMh within the sector [ϑ−, ϑ+] are collision-less.

Proof. Assume that u ∈ H1([0, 1];R2) minimizes the Maupertuis’ functional in the set
of the H1-paths which join two points q1, q2 within the sector [ϑ−, ϑ+] and assume also
that u has a collision with the origin. If we define x(t)

.
= u(ωt), with

ω
.

=

(∫ 1
0 (−h+ V (u))

1
2

∫ 1
0 |u̇|2

)1/2

> 0

then, from Theorem 2.4.1, we know that x solves
ẍ(t) = ∇V (x(t)) t ∈ [0, 1/ω]
1
2 |ẋ(t)|2 − V (x(t)) = −h t ∈ [0, 1/ω]

x(0) = q1, x(1/ω) = q2.

At this point we define T = 1/ω and we find the fixed-time Bolza minimizer of the
action functional associated with the sector [ϑ−, ϑ+] and we define

HT
.

=
{
y ∈ H1([0, T ];R2) : y(0) = q1, y(T ) = q2, y(t) ∈ [ϑ−, ϑ+] ∀ t ∈ [0, T ]

}
.

We call this minimizing path
x̄ = arg min

y∈HT
AT (y)

and, by Lemma 2.4.19, we know that it cannot collide with the origin; this also proves
that x 6= x̄.

Now, we know that x(t) = u(t/T ) for all t ∈ [0, T ], and so we can compute

AT (x) =

∫ T

0

(
1

2
|ẋ(t)|2 + V (x(t))− h

)
dt

=

∫ 1

0

(
1

2T
|u̇(s)|2 + TV (u(s))− Th

)
ds

and, from the conservation of the energy for u and the definition of ω = 1/T , we can
find that

AT (x) =

∫ 1

0

1

T
|u̇(s)|2 ds =

√
2

(∫ 1

0
|u̇(s)|2 ds

∫ 1

0
(−h+ V (u(s))) ds

)1/2

= 2
√
Mh(u).

At this point, since theMaupertuis functional is invariantunder time-reparametrizations
we have

2
√
Mh(u) = min

T>0
min
y∈HT

AT (y) ≤ min
y∈HT

AT (y) = AT (x̃) < AT (x) = 2
√
Mh(u),

which is a contradiction since x̃ is collision-less.
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In the next result we show that it is possible to improve the previous lemma. In
particular, a sequence of minimal paths cannot accumulate to a collision path. We will
prove this result taking into account the potential V ε as in Proposition 2.4.16 because it
is meaningful to our purposes, but the same result holds in the setting of Lemma 2.4.19.

Lemma 2.4.21. In the same setting of Lemma 2.4.19, there exists r̄ > 0 such that, for any
r0 ∈ (0, r̄), for every k ∈ N \ {0}, for every sector [ϑ−, ϑ+] such that ϑ+−ϑ− = 2kπ, for every
α > ᾱ(Uj , ϑ

−, ϑ+), there exists δ > 0 such that, for every q1, q2 ∈ ∂Br0 the Bolza minimizer u
considered in Lemma 2.4.20 from q1 to q2 in the sector [ϑ−, ϑ+] is such that

min
t∈[0,1]

|u(t)| > δr0.

Proof. Assume by contradiction that, for every r̄ > 0, there exists r0 ∈ (0, r̄), there exists
k ∈ N, ϑ∗ ∈ S1 minimal non-degenerate central configuration for Uj and there exists
α > ᾱ(Uj , ϑ

∗, ϑ∗ + 2kπ) such that, for any δ > 0 there exists q1, q2 ∈ ∂Br0 such that the
Maupertuis’ minimizer u which connects q1 and q2 in the sector [ϑ∗, ϑ∗ + 2kπ] is such
that

min
t∈[0,1]

|u(t)| ≤ δr0.

It is not restrictive to assume instead the following:

• there exists rn → 0+ sequence of positive real numbers;

• fix k ∈ N;

• fix ϑ∗ ∈ S1 minimal non-degenerate central configuration forUj (this is not restric-
tive since Uj admits just a finite number of them);

• there exists αj > ᾱ(Uj , ϑ
∗, ϑ∗ + 2kπ);

• take δn → 0+ sequence of positive real numbers;

• take two sequences of points (qn1 ), (qn2 ) ⊆ (∂Brn);

• consider the sequence of minimizers (un) of the Maupertuis’ functional

M(un) =
1

2

∫ 1

0
|u̇n|2

∫ 1

0
(−1 + V ε(un)),

every one of them respectively in the space

Hn .
= {un ∈ H1([0, 1];R2) : un(0) = qn1 , un(1) = qn2 , |un| ≤ rn}

and within the sector [ϑ∗, ϑ∗ + 2kπ],
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such that
min
t∈[0,1]

|un(t)| ≤ δnrn.

Define the blow-up sequence

vn(t)
.

=
1

rn
un(t) for t ∈ [0, 1], for every n ∈ N

which, for every n ∈ N, verifies the following:

(2.45)


q̄n1

.
= vn(0), q̄n2

.
= vn(1) ∈ ∂B1;

|vn(t)| ≤ 1 for every t ∈ [0, 1];

min
t∈[0,1]

|vn(t)| ≤ δn.

Recalling the behaviour of V ε (see Proposition 2.4.16), observe that, if we fix y ∈ R2 \{0}
we can compute

V ε(rny) = r
−αj
n Vj(y) + C +O(rn) = r

−αj
n

(
Vj(y) + r

αj
n C +O(r

αj+1
n )

)
as n→ +∞. In this way we have

M(un) =M(rnvn) =
1

2

∫ 1

0
|rnv̇n|2

∫ 1

0
(−1 + V ε(rnvn))

= r2
n

1

2

∫ 1

0
|v̇n|2

∫ 1

0
r
−αj
n

(
−rαjn + Vj(vn) + rαnC +O(r

αj+1
n )

)
= r

2−αj
n

1

2

∫ 1

0
|v̇n|2

∫ 1

0

(
Vj(vn) +O(r

αj
n )
)

and so, if we define

M̄(vn)
.

=
1

2

∫ 1

0
|v̇n|2

∫ 1

0

(
Vj(vn) +O(r

αj
n )
)

we have shown that

M̄(vn) = r
αj−2
n M(un), for every n ∈ N.

Now, since M̄(vn) andM(un) are proportional and un minimizesM inHn, if we define

H̄n .
= {vn ∈ H1([0, 1];R2) : vn(0) = q̄n1 , vn(1) = q̄n2 , |vn| ≤ 1}

we easily deduce that
M̄(vn) = min

H̄n
M̄.
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At this point, we want to show that (vn) admits a weak limit in the H1 topology. Since
Vj is bounded from below in S1 we have that there exists C1 > 0 such that

M̄(vn) ≥ C1

∫ 1

0
|v̇n|2, for every n ∈ N.

On the other hand, sinceO(r
αj
n ) is uniformly bounded as n→ +∞ by a constantC2 > 0,

we have that there exists C3 > 0 such that

M̄(vn) = min
H̄n
M̄ ≤ min

v∈H̄n

1

2

∫ 1

0
|v̇|2

∫ 1

0
Vj(v) + C2 ≤ C3.

Moreover, the sequence (vn) is uniformly bounded by 1 and so its L2-norm is too. For
this reason, we deduce that there exists v0 ∈ H1 such that vn ⇀ v0 in the H1-topology
and thus uniformly; in particular, from (2.45) and the uniform convergence we have that

q̄1
.

= v0(0), q̄2
.

= v0(1) ∈ ∂B1;

|v0(t)| ≤ 1, for every t ∈ [0, 1];

min
t∈[0,1]

|v0(t)| = 0.

In other words, we have shown that the blow-up limit v0 is a collision path in the space

H̄
.

= {v ∈ H1([0, 1];R2) : v(0) = q̄1, v(1) = q̄2, |v| ≤ 1}

in the sector [ϑ∗, ϑ∗ + 2k̄π]. For this reason, it is enough to show that v0 minimizes the
Maupertuis’ functional

M̄0(v0) =
1

2

∫ 1

0
|v̇0|2

∫ 1

0
Vj(v0)

in the space H̄ ; indeed, we would reach a contradiction thanks to Lemma 2.4.20, since
αj > ᾱ(Uj , ϑ

∗, ϑ∗ + 2kπ) and a minimizer cannot have collisions.
From Fatou lemma we have that

M̄0(v0) =
1

2

∫ 1

0
|v̇0|2

∫ 1

0
Vj(v0) ≤ lim inf

n→+∞
M̄(vn);

on the other hand, since vn minimizes M̄ in H̄n for every n ∈ N, we have that

M̄(vn) ≤ M̄(v0) ≤ 1

2

∫ 1

0
|v̇0|2

∫ 1

0
Vj(v0) + C4r

α
n ,

for some C4 > 0 and for every n ∈ N. In this way, we also have that

lim inf
n→+∞

M̄(vn) ≤ 1

2

∫ 1

0
|v̇0|2

∫ 1

0
Vj(v0) = M̄0(v0)

and so vn → v0 strongly in H1. This shows that v0 is a minimizer in H̄ and concludes
the proof.
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At this point, we want to prove something stronger than the previous lemma, which
will involve Lemma 2.4.17. Indeed, our idea is to show that it is possible to extend
Lemma 2.4.21 to those sectors that are determined by two minimal arcs of the foliation
provided in Lemma 2.4.17. We are interested in those curved sectors which have as
barriers one minimal arc and its 2kπ-copy for some k ∈ N. Note that in [5], the authors
give a particular characterization of the foliation of minimal arcs: it is possible to
parametrize every minimal arc with respect to its distance from the origin, thanks to a
monotonicity property of the radial variable (see [5, Lemma 4.3]). Recalling that ϑ∗ is a
minimal non-degenerate central configuration for Uj , we consider the unique minimal
arc γ∗, parametrized as the polar curve γ∗(r) = (r, ϕ∗(r)), such that ϕ∗(r0) = ϑ∗. For
k ∈ N, we can define

Σ(ϑ∗, k)
.

= {(r, ϑ(r)) : ϕ∗(r) ≤ ϑ(r) ≤ ϕ∗(r) + 2kπ, for 0 ≤ r ≤ r0}

andwe are able to prove the following result. Again, wewill refer the proof to a potential
V ε as in Proposition 2.4.16.

Lemma 2.4.22. In the same setting of Lemma 2.4.19, there exists r∗ > 0 such that, for every
r0 ∈ (0, r∗), for every k ∈ N, for every α > ᾱ(Uj , ϑ

∗, ϑ∗ + 2kπ), there exists δ > 0 such that,
for every q1, q2 ∈ Σ(ϑ∗, k)∩∂Br0 , the Bolza minimizer u which connects q1 and q2 is such that:

(i) u belongs pointwisely to the sector Σ(ϑ∗, k);

(ii) u verifies
min
t∈[0,1]

|u(t)| > δr0.

Proof. We start with the proof of (ii). Following the same technique used in the proof
of Lemma 2.4.21, assume by contradiction that:

• there exists rn → 0+ sequence of positive real numbers and, without loss of
generality, assume that rn ≤ r∗ for n sufficiently large, with r∗ > 0 as in Lemma
2.4.17;

• fix k ∈ N;

• fix ϑ∗ ∈ S1 minimal non-degenerate central configuration forUj (this is not restric-
tive since Uj admits just a finite number of them);

• there exists αj > ᾱ(Uj , ϑ
∗, ϑ∗ + 2kπ);

• take δn → 0+ sequence of positive real numbers;

• define the sequence of curved sectors

Σn
.

= {(r, ϑ(r)) : ϕ∗(r) ≤ ϑ(r) ≤ ϑ∗(r) + 2kπ, for 0 ≤ r ≤ rn} ,

where γ∗(r) = (r, ϕ∗(r)) is the polar curvewhich parametrizes the uniqueminimal
arc of the foliation provided in Lemma 2.4.17, such that ϕ∗(r∗) = ϑ∗;
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• take two sequences of points (qn1 ), (qn2 ) ⊆ (Σn ∩ ∂Brn);

• consider the sequence of minimizers (un) of the Maupertuis’ functional

M(un) =
1

2

∫ 1

0
|u̇n|2

∫ 1

0
(−1 + V ε(un)),

every one of them respectively in the space

Hn .
= {un ∈ H1([0, 1];R2) : un(0) = qn1 , un(1) = qn2 , |un| ≤ rn}

and within the curved sector Σn, requiring that every un satisfies

min
t∈[0,1]

|un(t)| ≤ δnrn.

Define the blow-up sequence

vn(t)
.

=
1

rn
un(t), for t ∈ [0, 1], for every n ∈ N,

which, for every n ∈ N, verifies the following:
q̄n1

.
= vn(0), q̄n2

.
= vn(1) ∈ ∂B1;

|vn(t)| ≤ 1 for every t ∈ [0, 1];

min
t∈[0,1]

|vn(t)| ≤ δn.

With the same proof of Lemma 2.4.21, one can prove that every vn (at least for n large)
minimizes the functional

M̄(vn)
.

=
1

2

∫ 1

0
|v̇n|2

∫ 1

0
(Vj(vn) +O(r

αj
n ))

in the space

H̄n .
= {vn ∈ H1([0, 1];R2) : vn(0) = q̄n1 , vn(1) = q̄n2 , |vn| ≤ 1}.

Moreover, defining the angular variable ϕ∗n(r)
.

= ϕ∗(rnr) and the blow-up sector

Σ̄n
.

= {(r, ϑ(r)) : ϕ∗n(r) ≤ ϑ(r) ≤ ϕ∗n(r) + 2kπ, for 0 ≤ r ≤ 1},

one can easily verify that vn ∈ Σ̄n for every n ∈ N.
At this point, with the same technique of Lemma 2.4.21, one can prove that vn → v0

uniformly in [0, 1], with v0 minimizer of the functional

M̄0(v0) =
1

2

∫ 1

0
|v̇0|2

∫ 1

0
Vj(v0)
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in the space

H̄
.

= {v ∈ H1([0, 1];R2) : v(0) = q̄1, v(1) = q̄2, |v| ≤ 1},

for some q̄1, q̄2 ∈ ∂B1 and such that

(2.46) min
t∈[0,1]

|v0(t)| = 0.

Moreover, from Lemma 2.4.17, since rn → 0+, we have that the sequence of functions
ϕ∗n = ϕ∗n(r) uniformly converges to ϑ∗ on the r-interval [0, 1] and so

Σ̄n → [ϑ∗, ϑ∗ + 2kπ] as n→ +∞.

This means that v0 minimizes M̄ in H̄ within the sector [ϑ∗, ϑ∗ + 2kπ] and, thanks to
(2.46), has a collision. This is a contradiction for Lemma 2.4.20 and proves (ii).

In order to prove (i) it is enough to observe that a minimizer of the Maupertuis’
functionalM with endpoints in the sector Σ(ϑ∗, k) cannot leave this sector. Indeed,
Σ(ϑ∗, k) has a minimal collision arc and its 2kπ-copy as boundary; these arcs act as
a barrier, since Proposition 2.4.15 applies also in this context and a Bolza minimizer
cannot intersect another minimal arc more than once.

Wenowweextend theprevious local study to aglobal setting,which takes into account
all the other centres. In order to do this, we need to show that the local minimization
process provides twominimizers which do not collide in c′j and such that, if juxtaposed,
have winding number equal to 1 with respect to c′j . In this way, if one takes a minimizer
u ∈ Kl and assumes that u collides in c′j , then a contradiction arises. Indeed, the portion
of u close enough to c′j must correspond to one of the two local minimizers above,
depending on if lj = 0 or lj = 1.

Theorem 2.4.23. In the same setting of Lemma 2.4.19, there exists r∗ > 0 such that, for
every r0 ∈ (0, r∗), for every α > ᾱ(Uj , ϑ

∗, ϑ∗ + 4π), there exists δ > 0 such that, for every
q1, q2 ∈ ∂Br0 , there exist two Bolza minimizers u1 and u2 which connect q1 and q2 such that

(i) for every i = 1, 2 we have
min
t∈[0,1]

|ui(t)| > δr0;

(ii) the juxtaposition u of u1 and u2 is a closed path which has winding number 1 with respect
to the origin, up to choose a suitable time-parametrization.

Proof. Take q1 = r0e
iϑ1 , q2 = r0e

iϑ2 ∈ ∂Br0 and, without loss of generality, assume that
q1, q2 ∈ Σ(ϑj , 1) so that, in particular |ϑ1 − ϑ2| < 2π. Moreover, it is not restrictive
to assume that ϑ1 < ϑ2. By Lemma 2.4.22 there exists a Bolza minimizer u1 which
connects q1 and q2 and verifies properties (i) and (ii) of such lemma. At this point,
define q̃1

.
= r0e

i(ϑ1+2π) which, of course, coincides with q1 in the Euclidean space, but
not with respect to the curved sectors. Indeed, we have that q̃1 ∈ Σ(ϑj , 2) \Σ(ϑj , 1) and,
of course, also q2 ∈ Σ(ϑj , 2) (see Figure 2.6). For this reason, again from Lemma 2.4.22,
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ϑj

ϑj + 2π

ϑj + 4π

γj

γj + 2π

γj + 4π

Σ(ϑj, 1)

q1

q2

q̃1

u1

u2

Figure 2.6.: Situation of Theorem 2.4.23. We remark that the picture is not referred to
the Euclidean space. Indeed, here we denote by γj the unique collision
minimizer which starts from r0e

iϑj in the fashion of Lemma 2.4.17 and by
γj + 2π and γj + 4π its 2π and 4π copies respectively. This minimal arcs
determine the curved sectors used in the proof, while the concatenation of
u1 and u2 is a closed path which winds around the origin.

we deduce the existence of the second minimal arc u2, which connects q2 and q̃1 with
the same properties of u1. Consider the concatenation u of u1 and u2, which, of course,
is a closed curve from q1 to itself. Since both u1 and u2 are collision-less, the winding
number of uwith respect to the origin is 1.

At this point, we are ready to prove that a minimizer u ∈ Kl for the Maupertuis’
functional joins property (CF ).

Theorem 2.4.24. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied and

fix l ∈ IN . Fix ε ∈ (0, ε̃) as in (2.12) and R ∈ (ε̃,m1/α − ε̃) as in (2.14). Then, there exists
δ > 0 such that, for every p1, p2 ∈ ∂BR every minimizer u of the Maupertuis’ functional

M(u) =
1

2

∫ 1

0
|u̇|2

∫ 1

0
(−1 + V ε(u))

in the spaceKp1,p2

l found in Proposition 2.4.9 joins the following properties:

(i) u is free of self-intersections;

(ii) u satisfies
min
t∈[0,1]

|u(t)− c′j | > δ, for every j = 1, . . . , N.

Therefore, in particular u is collision-less.
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Proof. Fix ε and R as in the statement, fix l ∈ IN and p1, p2 ∈ ∂BR. Assume by
contradiction that aminimizeru ∈ Kp1,p2

l of theMaupertuis’ functionalMhas a collision
with the centre c′j for some j ∈ {1, . . . , N}; for the sake of simplicity we will assume
again c′j = 0. Then, u ∈ Colljl , there exists t0 ∈ (0, 1) such that u(t0) = 0 and in particular

Ind(u; c′k) ≡ lk (mod 2), ∀ k 6= j.

Then, localizing the collision as in the beginning if this section, we can find an interval
[c, d] ⊆ [0, 1] such that:

• t0 ∈ [c, d] and the collision is isolated therein;

• p̄1
.

= u(c), p̄2
.

= u(d) ∈ ∂Br, with r < r∗ and r∗ > 0 as in Lemma 2.4.17.

Then, by means of Lemma 2.4.14, the restriction v .
= u|[c,d] is a minimizer of the Mau-

pertuis’ functional

Mp̄1,p̄2

l (v) =
1

2

∫ d

c
|v̇|2

∫ d

c
(−1 + V ε(v))

in the weak H1-closure Kp̄1,p̄2

l of the H1 restricted paths

K̂p̄1,p̄2

l
.

=

v ∈ H
1([c, d];R2) :

v(c) = p̄1, v(d) = p̄2, v(t) 6= c′j ∀ t ∈ [c, d], ∀ j

the function Gv(t)
.

=

{
u(t) if t ∈ [0, c) ∪ (d, 1]

v(t) if t ∈ [c, d]

belongs to K̂p1,p2

l

 .

Since v solves a Bolza problem for the Maupertuis’ functional inside Br, by Theorem
2.4.23, we know that, up to time reparametrizations, v connects p̄1 and p̄2 belonging to
Σ(ϑj , 1) or to Σ(ϑj , 2) \ Σ(ϑj , 1), depending on the value of the index lj . Therefore, by
claim (i) of Theorem 2.4.23, a contradiction arises both if lj = 0 or lj = 1. Thus u cannot
have a collisions and in particular, again from Theorem 2.4.23, (ii) is proved. Claim (i)
follows from this property and Proposition 2.4.12.

2.4.4. Classical solution arcs

In this sectionwewill conclude the proof of the existence of internal arcs, finally showing
that the minimizer of the Maupertuis’ functional satisfies property (R) introduced at
page 64. Indeed, in the previous section we have already showed that the minimizer
is collision-less, i.e., we proved (CF ). In particular, in the next result we show that,
given a minimizer u provided in Proposition 2.4.9, if u has endpoints sufficiently close
to minimal non-degenerate central configurations of W 0, then |u(t)| < R whenever
t ∈ (0, 1). Recall thatW 0 is−α-homogeneous (see (2.11)) and it is the leading component
of the total potential V ε(y) as ε → 0+ and |y| becomes very large. Indeed, we have
already observed along Section 2.3 that, when we are far from the singularity set,
the problem reduces to a perturbation of an anisotropic Kepler problem driven by
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W 0. This suggests to use compactness properties of sequences of minimizers and their
convergence to aminimal collision arc for the anisotropic Kepler problem driven byW 0.
In particular, we will consider again Lemma 2.4.17 from [5], in which the authors show
that all the collision minimizers starting sufficiently close to minimal non-degenerate
central configurations describe a foliation which is strictly contained in a given cone.
Recall that, from the second line of assumption (V ), as already observed in Remark
2.2.3, the sum potentialW 0 admits a finite number of minimal non-degenerate central
configurations

Ξ
.

= {ϑ∗ ∈ S1 : U ′(ϑ∗) = 0 and U ′′(ϑ∗) > 0} = {ϑ∗0, . . . , ϑ∗m−1},

where, in polar coordinates y = (ρ, ϑ)

W 0(y) = W 0(ρ, ϑ) = ρ−αU(ϑ) = ρ−α
k∑
i=1

Ui(ϑ).

Therefore, it is not restrictive toworkwith two of this central configurations ϑ∗, ϑ∗∗ ∈ S1,
since we are solving a Bolza problem, but it is clear that the result holds choosing any
pair (not necessarily distinct) of central configurations.

Theorem 2.4.25. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied and

fix R > 0 as in (2.14). Then, there exists ε̄ > 0 such that, for any ϑ∗, ϑ∗∗ ∈ Ξ minimal non
degenerate central configurations for W 0, defining ξ∗ .

= Reiϑ
∗
, ξ∗∗

.
= Reiϑ

∗∗ ∈ ∂BR, there
exist two neighbourhoods Uξ∗ , Uξ∗∗ on ∂BR with the following property:

∀ ε ∈ (0, ε̄), ∀l ∈ IN , ∀ p1 ∈ Uξ∗ , ∀ p2 ∈ Uξ∗∗ there holds |u(t)| < R, for all t ∈ (0, 1).

whereu is theminimizer of theMaupertuis’ functional in the spaceKp1,p2

l provided inProposition
2.4.9.

Proof. Assume by contradiction that there exist the following sequences:

• (εn) ⊆ R+, with εn → 0+,

• (pn1 ) ⊆ Uξ∗ and (pn2 ) ⊆ Uξ∗∗ ,

• (tn) ⊆ (0, 1),

• a sequence of minimizers (un) ⊆ (K
pn1 ,p

n
2

l ) for the sequence of functionals (Mn)
defined by

Mn(un)
.

=
1

2

∫ 1

0
|u̇n|2

∫ 1

0
(−1 + V εn(un)) ,

such that
|un(tn)| = R, for all n ∈ N.
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Up to subsequences and without loss of generality we can assume that

pn1 → p1 ∈ Uξ∗
pn2 → p2 ∈ Uξ∗∗
tn → t̄ ∈ [0, 1]

as n → +∞. Indeed, concerning the limits of (pn1 ) and (pn2 ), it is enough to choose
smaller neighbourhoods of ξ∗ and ξ∗∗. Recalling the limiting behaviour of V ε as ε→ 0+

(see Proposition 2.2.2) and thus the definition of the −α-homogeneous potentialW 0, if
we define

M0(u)
.

=
1

2

∫ 1

0
|u̇|2

∫ 1

0

(
−1 +W 0(u)

)
,

fromLemma 2.4.17we know that there exist a unique u∗ ∈ Hp1

coll and a unique u∗∗ ∈ Hp2

coll

such that
M0(u∗) = min

H
p1
coll

M0, M0(u∗∗) = min
H
p2
coll

M0.

In particular, from Proposition 2.4.3, we have that there exists a unique u0 ∈ Hp1,p2 ,
where

Hp1,p2 .
=
{
u ∈ H1([0, 1];R2) : u(0) = p1, u(1) = p2, u(t0) = 0, for some t0 ∈ (0, 1)

}
,

such that
M0(u0) = min

Hp1,p2
M0,

where this path u0 is nothing but the concatenation of u∗ and u∗∗. We claim that

(2.47) lim
n→+∞

Mn(un) =M0(u0)

and we start by showing that

(2.48) lim inf
n→+∞

Mn(un) ≤M0(u0).

For every n ∈ N let us introduce the Jacobi-length functionals

Ln(un)
.

=

∫ 1

0
|u̇n|

√
−1 + V εn(un), L0(u0)

.
=

∫ 1

0
|u̇0|
√
−1 +W 0(u0)

and, since un and u0 are minimizers, we have

Ln(un) =
√

2Mn(un), for all n ∈ N, L0(u0) =
√

2M0(u0).

Our idea is to provide an explicit variation wn ∈ Kpn1 ,p
n
2

l such that, for large n

(2.49) Ln(un) ≤ Ln(wn) ≤ L0(u0) +O(εβn),

for some β > 0, which would prove (2.48). In order to build such wn we need to define
some points inside BR:
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• define p̂n1 ∈ εn∂BR as the first intersection between u0 and the sphere εn∂BR;

• define p̂n2 ∈ εn∂BR as the second intersection between u0 and the sphere εn∂BR;

• define qn1
.

= εnR
ξ∗

|ξ∗| ∈ εn∂BR and qn2
.

= εnR
ξ∗∗

|ξ∗∗| ∈ εn∂BR.

Note that, once n is fixed, the points p̂n1 , p̂n2 are uniquely determined since both u∗ and
u∗∗ are strictly decreasingwith respect to t thanks to the Lagrange-Jacobi inequality (see
[5, Lemma 4.3], cf Lemma 1.4.3). Moreover, we define the building blocks of wn in this
way:

• define arc(pn1 , p1) as the shorter (in the Euclideanmetric) parametrized arc of ∂BR,
connecting pn1 to p1 with constant angular velocity;

• define γ∗n as the portion of u0 that goes from p1 to p̂n1 ;

• define arc(p̂n1 , qn1 ) as as the shorter (in the Euclidean metric) parametrized arc of
∂BR, connecting p̂n1 to qn1 with constant angular velocity;

• define ϕn as the minimizer of Ln in the spaceKqn1 ,q
n
2

l ;

• define as above the analogous path composed by the pieces arc(qn2 , p̂n2 ), γ∗∗n ,
arc(p2, p

n
2 ), which goes from p̂n2 to pn2 .

At this point, we build wn as the concatenation of the previous pieces with a suitable
time parametrization

wn =



arc(pn1 , p1) from pn1 to p1

γ∗n from p1 to p̂n1
arc(p̂n1 , qn1 ) from p̂n1 to qn1
ϕn from qn1 to qn2
arc(qn2 , p̂n2 ) from qn2 to p̂n2
γ∗∗n from p̂n2 to p2

arc(p2, p
n
2 ) from p2 to pn2

(see Figure 2.7). Now, since Ln is additive, the length of wn is exactly the sum of the
length of every piece and, in particular, since wn ∈ Kpn1 ,p

n
2

l and un is a minimizer of Ln
we have

Ln(un) ≤ Ln(wn).

The next estimates on the arch lengths easily follow:

pn1 → p1, p
n
2 → p2 =⇒ Ln(arc(pn1 , p1)) = O(1), Ln(arc(p2, p

n
2 )) = O(1)

p̂n1 , p̂
n
2 , q

n
1 , q

n
2 ∈ εn∂BR =⇒ Ln(arc(p̂n1 , qn1 )) = O(εn), Ln(arc(qn2 , p̂n2 )) = O(εn)

as n→ +∞. From Proposition 2.2.2, we know that, if y ∈ R2 \Bδ with δ > εn, then

V εn(y) = W 0(y) +O(ε
min{1,αk+1−α}
n ), as n→ +∞
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hence
Ln(γ∗n) + Ln(γ∗∗n ) ≤ L0(u0) +O(ε

min{1,αk+1−α}/2
n ), as n→ +∞.

Therefore, to prove (2.49), we need to provide an estimate on Ln(ϕn); to do that, let us
define the blow-up sequence

ϕ̃n(t)
.

=
1

εn
ϕn(t), for t ∈ [0, 1]

and note that

(2.50) ϕ̃n(0) =
ξ∗

|ξ∗|R
.

= q∗ ∈ ∂BR, ϕ̃n(1) =
ξ∗∗

|ξ∗∗|R
.

= q∗∗ ∈ ∂BR.

Moreover, recalling the definition (2.7) of V εn , for n ∈ N and y ∈ R2 \ {c1, . . . , cN} we
can compute

V εn(εny) =
k∑
i=1

Vi(εny − εnci) +
N∑

j=k+1

ε
αj−α
n Vj(εny − εncj)

= ε−αn

k∑
i=1

Vi(y − ci) + ε−αn

N∑
j=k+1

Vj(y − cj)

= ε−αn V (y)

and thus we have

Ln(ϕn) = Ln(εnϕ̃n) =

∫ 1

0
εn| ˙̃ϕn|

√
−1 + V εn(εnϕ̃n)

= εn

∫ 1

0
| ˙̃ϕn|

√
ε−αn (−εαn + V (ϕ̃n))

= ε
2−α

2
n

∫ 1

0
| ˙̃ϕn|

√
−εαn + V (ϕ̃n)

= ε
2−α

2
n L̃n(ϕ̃n),

where we have put

L̃n(ϕ̃n)
.

=

∫ 1

0
| ˙̃ϕn|

√
−εαn + V (ϕ̃n), for every n ∈ N.

Notice that the function ϕ̃n is clearly a minimizer for L̃n in the space

Sq
∗,q∗∗

l
.

=

{
ϕ ∈ H1([0, 1];R2) :

ϕ(0) = q∗, ϕ(1) = q∗∗ |ϕ| ≤ R,
Ind(ϕ; cj) ≡ lj mod 2, ∀ j = 1, . . . , N

}
,

where q∗ and q∗∗ have been defined in (2.50). If we furthermore define the functional

L̃0(ϕ)
.

=

∫ 1

0
|ϕ̇|
√
V (ϕ)
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we have that, for every n ∈ N and for every test function ϕ

L̃n(ϕ̃n) ≤ L̃n(ϕ) ≤ L̃0(ϕ)

and so, in particular
L̃n(ϕ̃n) ≤ min

Sq
∗,q∗∗
l

L̃0 ≤ C,

for some C > 0. This last inequality finally gives the estimates (2.49) and thus (2.48).
At this point, in order to get the claim (2.47), we prove the reverse inequality, i.e.,

(2.51) M0(u0) ≤ lim inf
n→+∞

Mn(un).

Since every component of the potential V εn is bounded on S1 and |un| ≤ R, together
with (2.47) we can deduce that there exists C1, C2 > 0 such that

C1 ≥Mn(un) ≥ C2

∫ 1

0
|u̇n|2,

at least for n large enough. From this, we deduce a uniform bound on the H1-norm of
(un) and the existence of aH1-weak and uniform in [0, 1] limit ū ∈ Hp1,p2 . Fatou lemma,
the semi-continuity of the H1-norm and the a.e. convergence of V εn to W 0 in R2 then
give

M0(ū) ≤ lim inf
n→+∞

Mn(un).

At this point, the minimality of u0 forM0 in the spaceHp1,p2 gives the inequality (2.51)
and, together with (2.48), we get the claim (2.47)

lim
n→+∞

Mn(un) =M0(u0)

with, in particular
un → u0 uniformly in [0, 1].

At this point, a bootstrap technique helped by the conservation of the energy for (un)
leads to a C1-convergence outside the collision instant t0 of u0; this proves that |u0(t̄)| =
R. If t̄ ∈ (0, 1) this is a contradiction for Lemma 2.4.17, because the minimizer cannot
leave the cone therein defined; otherwise, if for instance tn → 0, we would find that
u̇0(0) is tangent to ∂BR. This indeed is also a contradiction: up to make Uξ∗ smaller, the
unique collision trajectory from p1 ∈ Uξ∗ must have initial velocity direction close to the
initial velocity of the homotheticmotion starting from ξ∗, which is normal to sphere.

Now, we can finally show that a minimizer of the Maupertuis’ functional is actually
a reparametrization of a classical solution arc of the inner problem.

Theorem 2.4.26. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied and

fix R > 0 as in (2.14). Then, there exists εint > 0 such that, for any ϑ∗, ϑ∗∗ ∈ Ξ minimal
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p1

pn
1

p̂n
1

qn1

qn2

p̂n
2

p2

pn
2

ϑ∗

ϑ∗∗

∂Bεn

εn∂BR

∂BR

wn

u0

un

1

Figure 2.7.: The proof of Theorem 2.4.25: the blue path wn piecewise built in the proof
belongs to the spaceKpn1 ,p

n
2

l , as well as the blue dashed path un. This makes
it a suitable competitor for un and allows to use the minimization argument.
In this picture, the red dashed path u0 represents the limit collision path
which belongs to the space Hp1,p2 and that actually connects p1 and p2 on
∂BR.

non degenerate central configurations forW 0, defining ξ∗ .
= Reiϑ

∗
, ξ∗∗

.
= Reiϑ

∗∗ ∈ ∂BR, there
exist two neighbourhoods Uξ∗ , Uξ∗∗ on ∂BR with the following property:
for any ε ∈ (0, εint), for any l ∈ IN , for any pair of endpoints p1 ∈ Uξ∗ ,p2 ∈ Uξ∗∗ , there exist

T > 0 and a classical (collision-less) solution y ∈ K̂p1,p2

l ([0, T ]) of the inner problem

ÿ(t) = ∇V ε(y(t)) t ∈ [0, T ]

1

2
|ẏ(t)|2 − V ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| < R t ∈ (0, T )

y(0) = p1, y(T ) = p2

.

In particular, y is a re-parametrization of a minimizer of the Maupertuis’ functional in the space
Kp1,p2

l ([0, 1]) and it is free of self-intersections and there exists δ > 0

min
t∈[0,T ]

|y(t)− c′j | > δ, for any j ∈ {1, . . . , N}.

Proof. The proof is a direct consequence of Theorem2.4.24, Theorem2.4.25 andTheorem
2.4.1 (the Maupertuis’ principle).

In order to conclude the construction of the interior arcs for the N -centre problem,
we need to give a version of Theorem 2.4.26 which takes into account the language of
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p1

p2

c1 c2
c3

∂BR

u1

u2

Figure 2.8.: An example of twominimal arcs which realize the same partition of the cen-
tres. Indeed, both the paths divide the centres with respect to the partition
{{c1}, {c2, c3}}, but u1 ∈ Kp1,p2

(0,1,1) while u2 ∈ Kp1,p2

(1,0,0).

partitions. We invite the reader to go back at page 33 and we note that a minimizer
u ∈ K̂p1,p2

l which is free of self intersections satisfies the topological constraint of
separation of the centres (see Proposition 2.4.12 and Remark 2.4.13). In particular,
recalling the definition of the set of all the partitions in two non-trivial subsets of the
centres

P = {Pj : j = 0, . . . , 2N−1 − 2}

a choice of l ∈ IN will induce a choice of Pj ∈ P , for some j and this is not 1-1.
Notice that the lack of the 1-1 property is due to the fact that, for instance, if N = 3 the
winding vectors (1, 0, 0) and (0, 1, 1) produce respectively two minimizers that separate
the centres with respect to the same partition (see Figure 2.8).
Following the notations introduced in [61], define the map A : IN → P which asso-

ciates to every winding vector

l = (l1, . . . , lN ), with the property
{
if lk = 0 then k ∈ A0 ⊆ {1, . . . , N}
if lj = 1 then j ∈ A1 ⊆ {1, . . . , N}

the partition
A(l) = {{ck : lk ∈ A0}, {cj : lj ∈ A1}} .

As already observed, the map A is surjective, but not injective, since A(l) = A(l̃), for
every l, l̃ ∈ IN such that

lj + l̃j = 1, for every j = 1, . . . , N.

87



At this point, for any j ∈ {0, . . . , 2N−1 − 2} and for any p1, p2 ∈ ∂BR, these sets are
well-defined

(2.52)
K̂Pj

.
= K̂p1,p2

Pj
([0, 1]) = {u ∈ K̂p1,p2

l ([0, 1]) : l = A−1(Pj)}
KPj

.
= Kp1,p2

Pj
([0, 1]) = {u ∈ Kp1,p2

l ([0, 1]) : l = A−1(Pj)}.

The set KPj is the weak H1-closure of K̂Pj and, if Pj = A(l) = A(l̃), it turns out that it
is exactly the union of two disjoint connected components, i.e.,

(2.53) KPj = Kl ∪Kl̃.

Remark 2.4.27. From the previous discussion we deduce that once a partition Pj is fixed, the
corresponding minimizer of the Maupertuis’ functional is not unique (see Figure 2.8).

We can now state the main theorem of this section which is readily proven.

Theorem 2.4.28. Assume that the assumptions (V ) on the potentials (Vj)
N
j=1 are satisfied and

fix R > 0 as in (2.14). Then, there exists εint > 0 such that, for any ϑ∗, ϑ∗∗ ∈ S1 minimal
non degenerate central configurations forW 0, defining ξ∗ .

= Reiϑ
∗
, ξ∗∗

.
= Reiϑ

∗∗ ∈ ∂BR, there
exist two neighbourhoods Uξ∗ , Uξ∗∗ on ∂BR with the following property:
for any ε ∈ (0, εint), for any Pj ∈ P , for any pair of endpoints p1 ∈ Uξ∗ ,p2 ∈ Uξ∗∗ ,

there exist T1, T2 > 0 and two classical (collision-less) solutions y1 ∈ K̂p1,p2

Pj
([0, T1]) and

y2 ∈ K̂p1,p2

Pj
([0, T2]) of the inner problems

ÿ(t) = ∇V ε(y(t)) t ∈ [0, Ti]

1

2
|ẏ(t)|2 − V ε(y(t)) = −1 t ∈ [0, Ti]

|y(t)| < R t ∈ (0, Ti)

y(0) = p1, y(T ) = p2

for i = 1, 2. In particular, y1 and y2 are re-parametrizations of twominimizers of theMaupertuis’
functional, every one of them in a different connected component ofKPj (see (2.53)). Moreover,
y1 and y2 are free of self-intersections and there exists δ > 0 such that

min
t∈[0,Ti]

|yi(t)− c′j | > δ, for any j ∈ {1, . . . , N},

for i = 1, 2.

We conclude this section with a property of the inner solution arcs found in Theorem
2.4.28, i.e., we show that there exists a uniform bound on the time intervals of such
solutions.

Lemma 2.4.29. Let ε ∈ (0, εint), let ϑ∗, ϑ∗∗ ∈ S1 be two minimal non-degenerate central
configurations forW 0 and U∗,U∗∗ be their suitable neighbourhoods, let p1 ∈ U∗ and p2 ∈ U∗∗,
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let Pj ∈ P and let yPj (·; p1, p2; ε) be one of the two classical solutions found in Theorem 2.4.28,
defined in its time interval [0, TPj (p1, p2; ε)]. Then, there exist c, C > 0 such that

c ≤ TPj (p1, p2; ε) ≤ C.
Such constants do not depend on the choice of p1, p2 and Pj .

Proof. If we denote by uPj (·; p1, p2; ε) ∈ K̂p1,p2

Pj
([0, 1]) the minimizer of the Mauper-

tuis functional that re-parametrizes the solution yPj , from Theorem 2.4.1 we have that
TPj (p1, p2, ε) = 1/ωPj (p1, p2; ε), where

ωPj (p1, p2; ε) =

∫ 1
0 (−1 + V ε(uPj ))

1
2

∫ 1
0 |u̇Pj |2

.

Therefore, if we prove equivalent bounds on ωPj we are done. It is clear that we can
fix Pj since P is finite. Moreover, we will prove the statement for points p1, p2 which
can belong to all the sphere ∂BR; this is actually a weaker hypothesis that will give the
proof anyway and that will simplify the notations in this context.
Let us fix q1, q2 ∈ ∂BR and consider a path v̄ ∈ K̂q1,q2

Pj
([0, 1]) such that there exist

C̄, µ > 0 such that{
| ˙̄v(t)| = C̄, for every t ∈ [0, 1]

|v̄(t)− c′k| ≥ µ, for evert t ∈ [0, 1], for all k = 1, . . . , N.

Recalling the definition (2.7) of V ε and that the restriction of every potential to S1 is
bounded, we have that there exists C1 > 0 such that

(2.54)

M(v̄) =
1

2

∫ 1

0
| ˙̄v(t)|2 dt

∫ 1

0
(−1 + V ε(v̄(t))) dt

≤ C̄2

2

∫ 1

0

−1 +
k∑
i=1

µ−α max
S1

Vi +
N∑

j=k+1

εα−αjµ−αj max
S1

Vj


≤ C1.

In general, for every path that connects two points on ∂BR, i.e., for every

v ∈
⋃

p1,p2∈∂BR

K̂p1,p2

Pj
([0, 1])

we have a constant C2 >which does not depends on the endpoints such that

(2.55)
∫ 1

0
(−1 + V ε(v)) ≥ m

(R+ ε)α
− 1

.
= C2 > 0

(see (2.39) in the proof of Lemma 2.4.6). Moreover, if ṽ ∈ K̂q1,q2
Pj

([0, 1]) is a minimizer of
M, we have thatM(ṽ) ≤M(v̄) and thus, from (2.54) and (2.55) we get∫ 1

0
| ˙̃v|2 ≤ 2C1

C2
.
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The previous bound has to be refined because the constant C1 depends on C̄, which is
not uniform with respect to q1 and q2. To this aim, let us consider p1, p2 ∈ ∂BR \ {q1, q2}
and, up to time re-parametrizations, define the path

v̂
.

=


arc(p1, q1) from p1 to q1

ṽ from q1 to q2

arc(q2, p2) from q2 to p2,

where arc(p1, q1) (respectively arc(q2, p2)) denotes the shortest (in the Euclidean metric)
parametrized arc of ∂BR, connecting p1 to q1 (respectively q2 to p2) with constant angular
velocity. Since the angular velocity is clearly uniformly bounded with respect to the
endpoints from above and from the definition of v̂ it is easy to see that there exists a
constant C3 > 0 which does not depends on p1 and p2 such that

M(v̂) ≤ C3.

For this reason, this bound is conserved for all the minimizers with endpoints in ∂BR,
i.e.,

(2.56) M(uPj (·; p1, p2, ; ε)) ≤ C3, for all p1, p2 ∈ ∂BR,
which, together with (2.55) gives

(2.57)
∫ 1

0
|u̇Pj (·; p2, p2; ε)|2 ≤ 2C3

C2

.
= C4, for all p1, p2 ∈ ∂BR.

Moreover, from (2.41) in the proof of Lemma 2.4.6, we have seen that the constant C5
.

=
(R − ε)2 > 0 is a uniform lower bound for the quantity ‖u̇‖22, for any u ∈ K̂p1,p2

Pj
([0, 1]),

for any p1, p2 ∈ ∂BR, so that in particular

(2.58)
∫ 1

0
|u̇Pj (·; p1, p2; ε)|2 ≥ C5, for all p1, p2 ∈ ∂BR.

This, together with (2.56), proves that

(2.59)
∫ 1

0

(
−1 + V ε(uPj (·; p1, p2; ε))

)
≤ 2C3

C5

.
= C6 for all p1, p2 ∈ ∂BR.

At this point we have that (2.57) and (2.58) give

C5 ≤ inf
p1,p2∈∂BR

∫ 1

0
|u̇Pj (·; p1, p2; ε)|2 ≤ sup

p1,p2∈∂BR

∫ 1

0
|u̇Pj (·; p1, p2; ε)|2 ≤ C4,

while (2.55) and (2.59) lead to

C2 ≤ inf
p1,p2∈∂BR

∫ 1

0

(
−1 + V ε(uPj (·; p1, p2; ε))

)
≤ sup

p1,p2∈∂BR

∫ 1

0

(
−1 + V ε(uPj (·; p1, p2; ε))

)
≤ C6;

the definition of ωPj then clearly concludes the proof.
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Remark 2.4.30. In the following, when the partition of the centres will not have a relevance, we
will denote one of the internal arcs provided in Theorem 2.4.28 in this way

yint(·; p1, p2; ε),

in order to highlight that it is an arc lying inside BR that connects p1 and p2. Moreover, the
corresponding neighbourhoods on ∂BR will be denoted as

Uint(ξ∗), Uint(ξ∗∗).

2.5. Glueing pieces and multiplicity of periodic solutions

Since we have proved the existence of outer and inner fixed-ends solution arcs, respec-
tively in Section 2.3 and Section 2.4, this section is devoted to build periodic trajectories
which solve {

ÿ = ∇V ε(y)
1
2 |ẏ|2 − V ε(y) = −1,

glueing together solution pieces on ∂BR. The assumptions on R will be again (2.14)
as well as the requirements (V ) on V ε. We recall the set of strictly minimal central
configurations for the leading potential in the outer dynamics

Ξ = {ϑ∗ ∈ S1 : U ′(ϑ∗) = 0 and U ′′(ϑ∗) > 0} = {ϑ∗0, . . . , ϑ∗m−1}.

Let ε ∈ (0,min{εint, εext}), with εint, εext > 0 provided in Theorem 2.3.10 and Theo-
rem 2.4.28, and let n ∈ N≥1 be the number of pairs of inner and outer arcs; the idea is to
relate a periodic trajectory in the punctured plane with a double sequence of this kind

(2.60) (P0, ξ
∗
0), (P1, ξ

∗
1), . . . , (Pn−1, ξ

∗
n−1)

where Pj ∈ P is a partition of the centres and ξ∗j = Reiϑ
∗
j , with ϑ∗j ∈ Ξ for every

j = 0, . . . , n− 1. Note that we admit the situation in which two or more elements of the
sequence could be equal.
FromTheorem 2.3.10we know that, for every j = 0, . . . , n−1 there exists a neighbour-

hood Uext(ξ∗j ) ⊆ ∂BR of ξ∗j such that, for every (p2j , p2j+1) ∈ Uext(ξ∗j ) × Uext(ξ∗j ) there
exists an outer arc yext(·; p2j , p2j+1; ε) which starts in p2j and arrives in p2j+1. This arc
actually solves problem (2.15) with boundary conditions in (p2j , p2j+1) and in a suitable
time interval [0, Tε,2j ]. We have selected 2n points on ∂BR

{p0, p1, p2, . . . , p2n−2, p2n−1},

so that p2j , p2j+1 ∈ Uext(ξ∗j ) are connected through an outer arc, for every j = 0, . . . , n−1.
Now, for any j = 1, . . . , n− 1, thanks to Theorem 2.4.28 and in view of the notations

introduced in Remark 2.4.30, if p2j−1 ∈ Uint(ξ∗j−1) and p2j ∈ Uint(ξ∗j ), we can connect
them through a minimizing inner arc yint(·; p2j−1, p2j ; ε) verifying the partition Pj . Up
to time re-parametrizations, the inner arc will be defined in the interval [0, Tε,2j−1].
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At this point, in order to build a closed orbit, for any j = 0, . . . , n− 1 we introduce a
smaller neighbourhood of ξ∗j

Uj .
= Uext(ξ∗j ) ∩ Uint(ξ∗j )

and we select an ordered sequence of pairs (p2j , p2j+1) ∈ Uj ×Uj . Moreover, to close the
orbit, we add a last inner arc, joining p2n−1 and p2n

.
= p0 and that realizes the partition

P0. We denote this arc as yint(·; p2n−1, p2n; ε) and we parametrize it on the interval
[0, Tε,2n−1].
In addition, it is useful to define

U
.

= (U0 × U0)× (U1 × U1)× . . .× (Un−1 × Un−1)× U0 ⊆ (∂BR)2n+1

and thus to introduce the following closed set

S .
=
{
p = (p0, p1, . . . , p2n) ∈ U : p0 = p2n

}
⊆ (∂BR)2n+1,

which describes all the possible cuts on the sphere ∂BR which an orbit could do, once
sequence (2.60) is fixed. In this way, for every p ∈ S, we can define the periodic
trajectory γε,p as the alternating concatenation of n outer arcs and n inner arcs, up to

time re-parametrizations. This curve will be Tε-periodic, where Tε
.

=
2n−1∑
j=0

Tε,j and

piecewise-differentiable thanks to Theorem 2.3.10 and Theorem 2.4.28. In general, the
function γε,p is not C1 in the junction points and, indeed, the main result of this section
is to prove this differentiability through a variational technique.

Remark 2.5.1. We are going to minimize a geometric functional over S in order to provide the
smoothness of the junctions. Indeed, we have defined S as a subset of the closure of U to induce
compactness. However, we know from Theorem 2.3.10 and Theorem 2.4.28 that the construction
of outer and inner arcs works just for the interior points of Uj . For this reason, we might make
such neighbourhoods smaller, keeping the same notation. Furthermore, without loss of generality,
we assume that the non-degeneracy of every central configuration ϑ∗j of W 0 is preserved along
its corresponding neighbourhood Uj , i.e., we require that the function U is strictly convex on the
whole Uj .
In order to proceed, let us first fix a sequence (2.60) and ε ∈ (0,min{εext, εint}). Define

the total Jacobi length function L : S → R as

L(p)
.

= L([0,Tε]; γε,p)

=
n−1∑
j=0

L([0, Tε,2j ]; yext(t; p2j , p2j+1; ε)) +
n∑
j=1

L([0, Tε,2j−1]; yint(t; p2j−1, p2j ; ε))

=
n−1∑
j=0

∫ Tε,2j

0
|ẏext(t; p2j , p2j+1; ε)|

√
(V ε(yext(t; p2j , p2j+1; ε))− 1) dt

+

n∑
j=1

∫ Tε,2j−1

0
|ẏint(t; p2j−1, p2j ; ε)|

√
(V ε(yint(t; p2j−1, p2j ; ε))− 1) dt.
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The compactness of the set S implies the following result.

Lemma 2.5.2. There exists p̄ ∈ S that minimizes L.

Proof. The proof goes exactly as in Step 1) of Theorem 5.3. of [61].

The aim of this section is thus to prove through several steps the following result.

Theorem 2.5.3. There exists ε̄ > 0 such that, for every ε ∈ (0, ε̄), for every n ≥ 1 there exists
p̄ = (p̄0, p̄1, . . . , p̄2n) ∈ S̊ such that

(i) the following holds
min
p∈S

L(p) = L(p̄);

(ii) the corresponding function γε,p̄ is a periodic solution in [0,Tε] of the N -centre problem

(2.61)
{
γ̈ = ∇V ε(γ)
1
2 |γ̇|2 − V ε(γ) = −1.

The idea is to provide global smoothness of γε,p̄ as a consequence of the Euler-
Lagrange equation

∇L(p̄) = 0.

In order to compute the partial derivatives of L we need the uniqueness for each of
the 2n pieces that compose the concatenation γε,p̄. The C1-dependence on initial data
guarantees this property for the outer arcs (see Theorem 2.3.10). On the contrary, the
Maupertuis’ principle that we have used so far to find internal solution arcs, does not
provide the uniqueness of such paths (see indeed 2.4.28). To overcome this, it would be
necessary to proceed as in [61, 62] and to restrict again the neighbourhoods Uj in order
to work inside a strictly convex neighbourhood. Indeed, it is known that there exists a
unique geodesic that connects two points which belong to some neighbourhoods with
such property. Since a rigorous treatment in this direction would be very technical and,
actually, a repetition of what has been made in the quoted addendum, we will assume
that the neighbourhoods Uj fits this uniqueness properties and thus we will compute
directly the partial derivatives andwe assume the validity of this lemmawithout further
details.

Lemma 2.5.4. The function L admits partial derivatives in S̊ .

2.5.1. Partial derivatives of the Jacobi length with respect to the endpoints

In this paragraph wemake the explicit computations of the partial derivatives of L. The
only non-trivial contributions involved in the computation of the partial derivative of
L with respect to some pk are given by the length of a selected pair of outer and inner
arcs, i.e., the ones that share the contact point pk. Therefore, for the sake of simplicity,
in the following proofs we are going to consider only the length of the first outer arc
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yext(t; p0, p1; ε) and the last of the inner arcs yint(t; p2n−1, p2n; ε) = yint(t; p2n−1, p0; ε),
which connect in p0.
From Theorem 2.3.10 and following the notations introduced at the beginning of

this section, given ϑ∗0 ∈ Ξ and ξ∗0 = Reiϑ
∗
0 ∈ ∂BR, we know that, for every ε ∈

(0,min{εext, εint}) and for every p0, p1 ∈ U0, there exists a unique outer arc yext(t) =
yext(t; p0, p1; ε) which solves the problem

(2.62)



ÿext(t) = ∇V ε(yext(t)) t ∈ [0, Tε,0]

1

2
|ẏext(t)|2 − V ε(yext(t)) = −1 t ∈ [0, Tε,0]

|yext(t)| > R t ∈ (0, Tε,0)

yext(0) = p0, yext(Tε,0) = p1.

It is important to remark that both Tε,0 and yext, with its first and second derivative,
depend on p0 and p1, while ε does not depend on p0 and p1. In particular, from the proof
of Theorem 2.3.10, we have that Tε,0 = Tε,0(ε, p0, p1)

.
= T (p0, η(ε, p0, p1)), where η is the

implicit function defined by the shooting map. As usual, we can associate to (2.62) its
flow Φt(p0, v0) which actually depends on ε too; we omit this dependence to ease the
notations. Moreover, keeping in mind the notation of Proposition 2.3.3, we have that

yext(Tε,0; p0, p1; ε) = πxΦTε,0(p0, v0),

where v0 = v0(ε, p0, p1) = η(ε, p0, p1) = ẏext(0; p0, p1; ε) and

(2.63)
Φ0(p0, v0) = (p0, v0) ∈ Σ

ΦTε,0(p0, v0) = (p1, v1) ∈ Σ,

with v1 = v1(ε, p0, p1) = −η(ε, p1, p0) and we recall the definition of Σ as the inertial
sphere on the phase space

Σ
.

= {(x, v) ∈ E : |x| = R}.

Finally, we observe that problem (2.62) is time-reversible, since it is not difficult to prove
that

(2.64) yext(t; p0, p1; ε) = yext(Tε,0 − t; p1, p0; ε) for every t ∈ [0, Tε,0].

Consider the length of the external arc Lext : U0 × U0 → R+
0 such that

Lext(p0, p1)
.

=

∫ Tε,0

0
|ẏext(t)|

√
(V ε(yext(t))− 1) dt,

which, using the conservation of energy, can be written in the following two equivalent
forms
(2.65)

Lext(p0, p1) =
1√
2

∫ Tε,0

0
|ẏext(t)|2 dt =

1√
2

∫ Tε,0

0

(
1

2
|ẏext(t)|2 + V ε(yext(t))− 1

)
dt.

94



Lemma2.5.5. The functionLext ∈ C1(U0×U0) and its differential, for every (p0, p1) ∈ U0×U0,
is dLext(p0, p1) : Tp0(∂BR)× Tp1(∂BR)→ R and

dLext(p0, p1)[ϕ,ψ] = − 1√
2
〈v0(ε, p0, p1), ϕ〉+

1√
2
〈v1(ε, p0, p1), ψ〉

= − 1√
2
〈ẏext(0), ϕ〉+

1√
2
〈ẏext(Tε,0), ψ〉.

Proof. Thanks to the C1-dependence of problem (2.62) on the initial data and time, the
function Lext is of class C1 in U0 × U0. Moreover, from (2.65) we have
(2.66)

∂

∂p0
Lext(p0, p1) =

1√
2

∂

∂p0

[∫ Tε,0

0
|ẏext(t)|2 dt

]
=

1√
2

[
|ẏext(Tε,0)|2∂Tε,0

∂p0
+

∫ Tε,0

0

∂

∂p0

(
1

2
|ẏext(t)|2 + V ε(yext(t))− 1

)
dt

]
=

1√
2

[
|ẏext(Tε,0)|2∂Tε,0

∂p0
+

∫ Tε,0

0

(
ẏext(t)

∂ẏext(t)

∂p0
+∇V ε(yext(t))

∂yext(t)

∂p0

)
dt

]
=

1√
2

[
|ẏext(Tε,0)|2∂Tε,0

∂p0
+

[
ẏext(t)

∂yext(t)

∂p0

]Tε,0
0

+

∫ Tε,0

0
(−ÿext(t) +∇V ε(yext(t)))

∂yext(t)

∂p0
dt

]
=

1√
2

(
|ẏext(Tε,0)|2∂Tε,0

∂p0
+

[
ẏext(t)

∂yext(t)

∂p0

]Tε,0
0

)
.

Note that the term ẏext(t)
∂ẏext(t)
∂p0

is actually a (1× 2) · (2× 2) matrix product, so that we
would have to transpose the vector ẏext(t) firstly. Anyway, we are going to omit this and
other transpositions in order to ease the notation.
Now, we can also compute the total derivative of the boundary conditions in (2.62)

with respect to p0, obtaining

(2.67) d

dp0
yext(0) =

∂yext(0)

∂p0
= I2

and

(2.68) d

dp0
yext(Tε,0) = ẏext(Tε,0)

∂Tε,0
∂p0

+
∂yext(Tε,0)

∂p0
= 02.

Moreover, multiplying both sides of (2.68) by ẏext(Tε,0), we have

|ẏext(Tε,0)|2∂Tε,0
∂p0

+ ẏext(Tε,0)
∂yext(Tε,0)

∂p0
= 0

This, together with (2.66) and (2.67), leads to
∂

∂p0
Lext(p0, p1) = − 1√

2
ẏext(0) = − 1√

2
v0(ε, p0, p1).
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In the same way, one could obtain

∂

∂p1
Lext(p0, p1) =

1√
2

(
|ẏext(Tε,0)|2∂Tε,0

∂p1
+

[
ẏext(t)

∂yext(t)

∂p1

]Tε,0
0

)
d

dp1
yext(0) =

∂yext(0)

∂p1
= 02

d

dp1
yext(Tε,0) = ẏext(Tε,0)

∂Tε,0
∂p1

+
∂yext(Tε,0)

∂p1
= I2,

and so, multiplying both sides of the last equation by ẏext(Tε,0), we have that

∂

∂p1
Lext(p0, p1) =

1√
2
ẏext(Tε,0) =

1√
2
v1(ε, p0, p1).

As before, for ε ∈ (0,min{εext, εint}), we can consider the length of the inner arc
yint(t)

.
= yint(t; p2n−1, p0; ε) as the function Lint : U2n−1 × U0 → R+

0 such that

Lint(p2n−1, p0)
.

=

∫ Tε,2n−1

0
|ẏint(t)|

√
(V ε(yint(t))− 1) dt

and prove the following lemma.

Lemma 2.5.6. The function Lint ∈ C1(U2n−1×U0) and its differential, for every (p2n−1, p0) ∈
U2n−1 × U0, is dLint(p2n−1, p0) : Tp2n−1(∂BR)× Tp0(∂BR)→ R and

dLint(p2n−1, p0)[ν, ϕ] = − 1√
2
〈ẏint(0), ν〉+

1√
2
〈ẏint(Tε,2n−1), ϕ〉.

Proof. As we have already remarked at page 93, the differentiability of this length func-
tion is a consequence of the results contained in [62], up to restrict the neighbourhoods
U2n−1 and U0. Concerning the computation of the differential, the proof goes exactly as
in Lemma 2.5.5.

2.5.2. The minimizing points of the Jacobi length are not in the boundary

The purpose of this section is to prove the first statement of Theorem 2.5.3. FromLemma
2.5.2 it sufficient to show that the minimizer p̄ does not occur on the boundary of S. As
already anticipated, this is made exploiting the minimizing property of p̄. In the next
two paragraphs we will study the local behaviour of the external and internal arcs with
respect to small variations on the endpoints. In short, what happens is that, if p̄ ∈ ∂S ,
then a particular variation on the endpoints gives a contradiction against theminimality
of p̄.
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An explicit variation on the external path

In order to do this, let us start by defining the matrix function

M(t)
.

=
∂yext(t)

∂p1
= πx

∂

∂p1
Φt(p0, v0),

which, from (2.62), satisfies

M̈(t) = ∇2V ε(yext(t))M(t) for every t ∈ [0, Tε,0].

Moreover, from the computations on the boundary conditions (2.63), we have that

M(0) = πx
∂

∂p0
Φ0(p0, v0) = πx

(
02,

∂v0

∂v0

)
= 02

M(Tε,0) = πx
∂

∂p1
ΦTε,0(p0, v0) = πx

(
I2,

∂v1

∂p1

)
= I2,

so thatM(t) is a solution of the linearised boundary value problem

(2.69)
{
M̈(t) = ∇2V ε(yext(t; p0, p1; ε))M(t), t ∈ [0, Tε,0]

M(0) = 02, M(Tε,0) = I2.

Lemma 2.5.7. LetM = M(t) be a solution of (2.69). Then,

Jp0,p1v0(ε, p0, p1) =
(
−Ṁ(Tε,0), Ṁ(0)

)
,

where v0 = ẏext(0; p0, p1; ε) (see the notations at page 94).

Proof. From Lemma 2.5.5 and since problem (2.62) is time-reversible (see (2.64)), we
have that

∂

∂p0
v0(ε, p0, p1) =

∂

∂p0

(
d

dt
yext(t; p0, p1; ε)

∣∣∣
t=0

)
=

d

dt

(
∂yext(t; p0, p1; ε)

∂p0

)
t=0

=
d

dt

(
∂

∂p0
yext(Tε,0 − t; p1, p0; ε)

)
t=0

=
d

dt
M(Tε,0 − t)

∣∣∣
t=0

= −Ṁ(Tε,0).

∂

∂p1
v0(ε, p0, p1) =

∂

∂p1

(
d

dt
yext(t; p0, p1; ε)

∣∣∣
t=0

)
=

d

dt

(
∂yext(t; p0, p1; ε)

∂p1

)
t=0

= Ṁ(0).

Let us focus on some details for amoment. The functionM(t) is, actually, the solution
of the variational equation (see Remark B.1 in Appendix B) around an external arc yext,
which gives information on how the flow associated to such solution changes under
infinitesimal variations on the boundary conditions. Moreover, we know that yext (and
thus,M ) depends on ε in a C1 manner, sincewehave shown that the anisotropicN -centre
problem is a perturbation of a Kepler problem driven by W 0 (see Proposition 2.2.2 in
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Section 2.2). Therefore, it makes sense to simplify the proof and to consider a particular
linearised problem, i.e., the one around the homothetic solution emanating from ξ∗0 and
to put ε = 0. Indeed, from Appendix A, we have an explicit characterization of the
hessian of a −α-homogeneous potential like W 0 when it is valued on an homothetic
motion which will be very useful in this context. Finally, the non-degeneracy of W 0,
which is fundamental in the forthcoming proof, is guaranteed also in a neighbourhood
of ξ∗0 , so that the argument can be easily extended near ξ∗0 (see Remark 2.5.1). Therefore,
let us consider the homothetic trajectory ŷξ∗0 (t) = yext(t; ξ

∗
0 , ξ
∗
0 ; 0). Around this solution,

problem (2.69) becomes

(2.70)
{
M̈(t) = ∇2W 0(ŷξ∗0 (t))M(t), t ∈ [0, T0]

M(0) = 02, M(T0) = I2,

where clearly T0 = T0,0 and it is the first return time of the homothetic motion.

Lemma 2.5.8. Let M = M(t) be a solution of (2.70) and let us define sξ
.

= ξ∗0/|ξ∗0 | and it
unitary orthogonal vector sτ = s⊥ξ . Moreover, define the 1-dimensional functions

w(t)
.

= 〈M(t)sτ , sτ 〉, v(t)
.

= 〈M(t)sτ , sξ〉
c(t)

.
= −〈∇2W 0(ŷξ∗0 (t))sτ , sτ 〉 = |ŷξ∗0 (t)|−α−2

(
αU(ϑ∗0)− U ′′(ϑ∗0)

)
,

where the last equality has been proven in (A.4) in Appendix A. Then w solves

(2.71)
{
ẅ + c(t)w = 0

w(0) = 0, w(T0) = 1

and
v ≡ 0 in [0, T0].

Proof. From the definition of w and sinceM(t) solves (2.70) it is clear that

ẅ(t)− 〈∇2W 0(ŷξ∗0 (t))M(t)sτ , sτ 〉 = 0 for every t ∈ [0, T0].

Now, since ∇2W 0(ŷξ∗0 (t)) is symmetric and admits sτ as eigenvector (see (A.2) in Ap-
pendix A) with for some eigenvalue λτ (t), we can write

〈∇2W 0(ŷξ∗0 (t))M(t)sτ , sτ 〉 = 〈M(t)sτ ,∇2W 0(ŷξ∗0 (t))sτ 〉
= λτ (t)w(t)

= 〈∇2W 0(ŷξ∗0 (t))sτ , sτ 〉w(t).

Hence, considering the boundary conditions satisfied by M(t) in (2.70) we conclude
that w solves (2.71).
Concerning v, using the same argument, we deduce that it solves{

v̈ = λξ(t)v

v(0) = 0 = v(T0),

with λξ(t) = |ŷξ∗0 (t)|−α−2α(α+ 1)U(ϑ∗0). Since λξ(t) > 0 then v ≡ 0 in [0, T0].
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As a consequence of Lemma 2.5.7 and Lemma 2.5.8, we can directly deduce this useful
result.

Corollary 2.5.9. LetM , w and v as in Lemma 2.5.8 and recall the notations of Lemma 2.5.7.
Then

Jp0,p1v0(0, ξ∗0 , ξ
∗
0) =

(
−Ṁ(T0), Ṁ(0)

)
and, for every k ∈ [−1, 1],〈
Jp0,p1v0(0, ξ∗0 , ξ

∗
0)

[
sτ
ksτ

]
, sτ

〉
= −〈Ṁ(T0)sτ , sτ 〉+ k〈Ṁ(0)sτ , sτ 〉 = −ẇ(T0) + kẇ(0),

and

(2.72)
〈
Jp0,p1v0(0, ξ∗0 , ξ

∗
0)

[
sτ
ksτ

]
, sξ

〉
= −v̇(T0) + kv̇(0) = 0.

At this point, our aim is to prove a result which actually gives an estimate of the
tangential component of the velocity v0 = v0(0, p0, p1), with respect to oscillations of p0

and p1 around the central configuration ξ∗0 . In order to do this, it is useful to introduce
polar coordinates to provide an explicit dependence of p0 and p1 on an angular variation.
Indeed, we characterize every point p ∈ U0 as a function of the counter-clockwise angle
φ ∈ (−π, π) joining p and ξ∗0 , so that

(2.73) p(0) = ξ∗0 = Rsξ, and p(φ) = R cosφ sξ +R sinφ sτ .

We furthermore remark that when we write the orthogonal of a vector we mean a
counter-clockwise rotation of π/2 of such vector.

Lemma2.5.10. There exists δ = δ(ϑ∗0), C = C(ϑ∗0) > 0 such that, for anyφ0, φ1 ∈ R verifying
0 < |φ0| < δ and |φ1| ≤ |φ0|, the following holds

−〈v0(0, p0(φ0), p1(φ1)), p0(φ0)⊥〉
φ0

≥ C.

Proof. For the sake of simplicity we introduce these notations

v0(p0, p1)
.

= v0(0, p0, p1),

vξ∗0
.

= v0(p0(0), p1(0)).

Furthermore, we prove the statement for φ0 > 0; if φ0 is negative, the proof is the same
up to minor changes. Since vξ∗0 is the initial velocity of the homothetic motion along a
central configuration, it is orthogonal to sτ , then

〈vξ∗0 , p0(0)⊥〉 = 0

and so we can write

〈v0(p0(φ0), p1(φ1)), p0(φ0)⊥〉
= 〈v0(p0(φ0), p1(φ1))− vξ∗0 , p0(φ0)⊥〉+ 〈vξ∗0 , p0(φ0)⊥ − p0(0)⊥〉.
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ξ∗0

p0(φ0)

sξ
sτφ0

−φ0

φ1

p1(φ1)

v0(p0, p1)

p0(φ0)⊥

∂BR

Figure 2.9.: The notations of Lemma 2.5.10 and the behaviour of the initial velocity with
respect to variations on the endpoints p0 and p1.

From the notations in (2.73), if φ→ 0+, than we have

p(φ)− p(0) = Rφsτ + o(φ) and p(φ)⊥ − p(0)⊥ = −Rφsξ + o(φ),

hence, as φ0 → 0+,

〈vξ∗0 , p0(φ0)⊥ − p0(0)⊥〉 = −R|vξ∗0 |φ0 + o(φ0).

Furthermore, again as φ0 → 0+ (and thus, as φ1 → 0+)

v0(p0(φ0), p1(φ1))− vξ∗0 = Jp0,p1v0(ξ∗0 , ξ
∗
0)

[
p0(φ0)− p0(0)
p1(φ1)− p1(0)

]
+ o(φ0)

= RJp0,p1v0(ξ∗0 , ξ
∗
0)

[
φ0sτ
φ1sτ

]
+ o(φ0).

Assuming now φ1 = kφ0 for some k ∈ [−1, 1], and using (2.72) in Corollary 2.5.9 and
the fact that p0(0)⊥ = Rsτ , we have〈

v0(p0(φ0), p1(φ1))− vξ∗0 , p0(φ0)⊥
〉

= R2φ0

〈
Jp0,p1v0(ξ∗0 , ξ

∗
0)

[
sτ
ksτ

]
, sτ

〉
+ o(φ0).

so that

〈v0(p0(φ0), p1(φ1)), p0(φ0)⊥〉 = Rφ0

(
R

〈
Jp0,p1v0(ξ∗0 , ξ

∗
0)

[
sτ
ksτ

]
, sτ

〉
− |vξ∗0 |

)
+ o(φ0).
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In order to conclude we need to prove the existence of a positive constant C, depending
on φ0 and k, such that

−
(
R

〈
Jp0,p1v0(ξ∗0 , ξ

∗
0)

[
sτ
ksτ

]
, sτ

〉
− |vξ∗0 |

)
≥ C > 0.

By means of Corollary 2.5.9, this is equivalent to prove that

Rẇ(T0)− kRẇ(0) + |vξ∗0 | ≥ C > 0,

where w(t) solves (2.71).
Let now u(t) = |ŷξ∗0 (t)|; then u solves the 1-dimensional problem

(2.74)

ü+
αU(ϑ∗0)

uα+2
u = 0

u(0) = R = u(T0).

Since by assumption U ′′(ϑ∗0) > 0 we have

(2.75) d(t)
.

=
αU(ϑ∗0)

u(t)α+2
>
αU(ϑ∗0)− U ′′(ϑ∗0)

u(t)α+2

.
= c(t) in [0, T0],

recalling that the function c(t) has been introduced in Lemma 2.5.8.
Since u(t) 6= 0 for any t ∈ [0, T0], we can define f(t) = w(t)

u(t) whose derivatives are

ḟ =
ẇ

u
− wu̇

u2

f̈ =
ẅ

u
− 2

ẇu̇

u2
− wü

u2
+ 2

wu̇2

u3
= −2

u̇

u

(
ẇ

u
− wu̇

u2

)
+
w

u

(
ẅ

w
− ü

u

)
.

Multiplying both sides by u2 we deduce that f solves the problem

(2.76)


d

dt

(
u2ḟ

)
= (d(t)− c(t))u2f

f(0) = 0, f(T0) = 1/Rf.

Wewant to prove that f is strictly positive in (0, T0]; hence, suppose by contradiction that
there exists t∗ ∈ (0, T0) such that f(t∗) = 0. Then, it is clear that there exists tm ∈ (0, t∗]
such that

f(tm) ≤ 0, ḟ(tm) = 0, f̈(tm) > 0.

In this way, considering the equation in (2.76) and the inequality (2.75), we get

0 < u2(tm)f̈(tm) = (d(tm)− c(tm))u2(tm)f(tm) ≤ 0,

which is a contradiction. Therefore, f is strictly positive in the interval (0, T0].
Now, integrating the equation in (2.76) in [0, T0] we get

u2(T0)ḟ(T0)− u2(0)ḟ(0) > 0
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and, using the explicit expression of ḟ , we have

(2.77) Rẇ(T0)−Rẇ(0) > u̇(T0) =
1

R
〈ŷξ∗0 (T0), ˙̂yξ∗0 (T0)〉 = −|vξ∗0 |.

Moreover, since f cannot vanish in (0, T0], we have that necessarily ḟ(0) ≥ 0 and thus

(2.78) ẇ(0) ≥ w(0)u̇(0)

u2(0)
= 0.

At this point, let us consider γ ∈ (0, 1) and define the function

uγ : [0,T0]→ R+

t 7−→ uγ(t)
.

= u(t)γ ,

which verifies
üγ = γ(γ − 1)uγ−2u̇2 + γuγ−1ü.

In this way, by (2.74) we have

− üγ
uγ

= γ

[
− ü
u

+ (1− γ)
u̇2

u2

]
= γ

[
αU(ϑ∗0)

uα+2
+ (1− γ)

u̇2

u2

]
;

in other words, uγ solves the problem{
üγ + dγ(t)uγ = 0

uγ(0) = Rγ = uγ(T0),

where

(2.79) dγ(t) = γ

[
αU(ϑ∗0)

u(t)α+2
+ (1− γ)

u̇(t)2

u(t)2

]
.

Moreover
u̇γ
uγ

=
γuγ−1u̇

uγ
= γ

u̇

u
;

therefore, if we show that there exists γ ∈ (0, 1) such that dγ(t) ≥ c(t) in [0, T0], we can
repeat the previous argument and, as in (2.77), show that for such γ

(2.80) Rẇ(T0)−Rẇ(0) + γ|vξ∗0 | ≥ 0.

By (2.79), such inequality is satisfied if there exists γ ∈ (0, 1) such that, for every t ∈ [0, T0]

dγ(t) = γ

[
αU(ϑ∗0)

u(t)α+2
+ (1− γ)

u̇(t)2

u(t)2

]
≥ αU(ϑ∗0)

u(t)α+2
− U ′′(ϑ∗0)

u(t)α+2
= c(t)

or, equivalently, if

γ(1− γ)
u̇(t)2

u(t)2
≥ (1− γ)

αU(ϑ∗0)

uα+2
− U ′′(ϑ∗0)

uα+2
.
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Since the left-hand side is always non-negative, it is enough to find a γ ∈ (0, 1) such that

U ′′(ϑ∗0)

αU(ϑ∗0)
> 1− γ,

but such γ clearly exists since U ′′(ϑ∗0) > 0 and U(ϑ∗0) > 0 and, moreover, does not
depends on t. Since now (2.80) is proved, using (2.78) we easily deduce that

ẇ(T0)− kẇ(0) + γ|vξ∗0 | ≥ 0 for every k ∈ [−1, 1]

and, choosing C = (1− γ)|vξ∗0 | > 0, the lemma is finally proved.

Remark 2.5.11. One could think that the proof of Lemma 2.5.10 could be concluded with the
inequality (2.77) since, for every k ∈ [−1, 1]

ẇ(T0)− kẇ(0) + |vξ∗0 | ≥ ẇ(T0)− ẇ(0) + |vξ∗0 | = C > 0.

However, this estimate would not be enough for the purposes of this work, since we need a uniform
estimate which does not depend on ε. On the other hand, the constant (1 − γ)|vξ∗0 | provided at
the end of the lemma depends only on ϑ∗0 and so it joins this uniformity and allows us to extend
this argument also for the N -centre problem driven by V ε when ε is sufficiently small.

As a consequence of Lemma 2.5.10, of Remark 2.5.11 and of the uniform behaviour
of the dynamical system when ε is small and p0 and p1 are not far from ξ∗0 (see the
discussion at page 97), we can obtain the same result for the N -centre problem. Note
that herewewill refer to the notations of Lemma 2.5.5 and thuswewill consider only the
Jacobi length from p0 to p1; of course, an equivalent result holds for any pair (p2j , p2j+1),
for j = 1, . . . , n− 1, since, concerning the external arc, the derivative of L with respect
to p2j involves only the contribute Lext(p2j , p2j+1).

Theorem 2.5.12. There exists ε̄ext > 0 such that, for any ε ∈ (0, ε̄ext), if

p̄ = (p̄0, p̄1, . . . , p̄2n) ∈ S

is a minimizer of L provided in Lemma 2.5.2, then there exists ψ ∈ Tp0(∂BR) and there exists
Cext > 0 such that

∂Lext
∂p0

(p̄0, p̄1)[ψ] = − 1√
2
〈ẏext(0), ψ〉 ≤ −Cext < 0.

An explicit variation on the internal path

To conclude this section and to finally prove that a minimizer of L is actually an inner
point of S, we need another preliminary result. Indeed, it is necessary to give an
estimate of the final velocity of the inner arc yint = yint(p2n−1, p0), with respect to the
tangent space spanned by p⊥0 . As for the external arc, we are going to provide a result
for ε = 0 and then we will extend it for ε sufficiently small by uniformity. In order to
do this, consider again the notation introduced before the Lemma 2.5.10. We prove the
following result.
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Lemma 2.5.13. There exist δ = δ(ϑ∗0), C = C(ϑ∗0) > 0 such that, for any φ ∈ R verifying
0 < |φ| < δ , the following holds

〈ẏint(T0,2n−1), p0(φ)⊥〉
φ

≥ C,

where p0(φ) follows the notations in (2.73).

Proof. We have put ε = 0, therefore we are now studying an anisotropic Kepler problem
driven byW 0 (see Proposition 2.2.1) and, in particular, yint in this setting is exactly one of
the collision trajectories studied in [5] (cf Chapter 1). Actually, yint is a trajectory which
emanates from collision; therefore, thanks to the time reversibility, we can consider
w(t)

.
= yint(T0,2n−1− t) which is defined again in [0, T2n−1], starts from ∂BR and finishes

in collision with he origin (see also Figure 2.10). For a vector y ∈ R2 we will denote by ŷ
its angle with the horizontal axis with respect to the canonical basis of R2. As a starting
point without loss of generality we assume φ > 0 (as in the proof of Lemma 2.5.10)and
we note that

(2.81)

〈ẏint(T0,2n−1), p0(φ)⊥〉 = 〈−ẇ(0), p0(φ)⊥〉
= 〈ẇ(0),−p0(φ)⊥〉
= |ẇ(0)||p0(φ)⊥| cos

(
̂̇w(0)−

(
ϑ∗0 + φ− π

2

))
= |ẇ(0)||p0(φ)⊥| sin

(
̂̇w(0)− (ϑ∗0 + φ) + π

)
= |ẇ(0)||p0(φ)⊥| sin

(
̂̇w(0)− (ϑ∗0 + φ)− π

)
and so, since |ẇ(0)| and | − p0(φ)⊥| are far from 0 as φ → 0+, our proof reduces to
study the behaviour of the angles (cf Figure 2.10). Actually, it is clear that the angle ̂̇w(0)
depends on φ and, in particular

̂̇w(0)(φ)→ ϑ∗0 + π as |φ| → 0+,

since the inner arc tends to the collision homothetic motion as |φ| → 0+. This suggests
to follow the approach of [5] (cf Chapter 1) and to take into account the McGehee
coordinates. The change of variables, which of course depends on φ, with respect to the
trajectory w then reads

r(t) = |w(t)|
ϑ(t) = ŵ(t)

ϕ(t) = ̂̇w(t)

with


r(0) = |w(0)| = R

ϑ(0) = ŵ(0) = ϑ∗0 + φ

ϕ(0) = ̂̇w(0)

.

On the other hand, since w is a collision solution at energy −1 of the anisotropic Kepler
problem driven byW 0(w) = r−αU(ϑ), following Section 2 of [5] (cf Section 1.2) (r, ϑ, ϕ),
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after a time rescaling, solves

(2.82)


r′ = 2r(U(ϑ)− rα) cos(ϕ− ϑ)

ϑ′ = 2(U(ϑ)− rα) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

Following again Section 2 of [5] (cf Section 1.2), since ϑ∗0 is such that U ′(ϑ∗0) = 0 and
U ′′(ϑ∗0), then the triplet (0, ϑ∗0, ϑ

∗
0 + π) is a hyperbolic equilibrium point for (2.82) such

that:

• its stable manifold is two-dimensional;

• the two eigendirections that span its stable manifold are

vr = (1, 0, 0)

v− =

(
0, 1,

1

2
+
α

4
+

1

4

√
(2− α)2 + 8

U ′′(ϑ∗0)

U(ϑ∗0)

)
and the corresponding eigenvalues are

λr = −2U(ϑ∗0) < 0

λ− =
2− α

2
U(ϑ∗0)− 1

2

√
(2− α)2U(ϑ∗0)2 + 8U(ϑ∗0)U ′′(ϑ∗0) < 0.

Note that the third component of v− is greater than 1. Moreover, by the main result
(Theorem 5.2) in [5] (cf Theorem 1.5.2), we have that w = (r, ϑ, ϕ) belongs to the stable
manifold of (0, ϑ∗0, ϑ

∗
0 + π) and in particular ϕ(0) is a C2 function of ϑ(0) = ϑ∗0 + φ.

This is one of consequences of Lemma 3.2 in [5] (cf Lemma 1.3.2), together with the
fact that, when ϑ(0) → ϑ∗0 in some way, the growth ratio of ϕ = ϕ(0) as a function of
ϑ = ϑ(0) tends to the slope of v− projected on (ϑ, ϕ(ϑ)). In other words, recalling that
ϕ(ϑ∗0) = ϑ∗0 + π, we have that

ϕ(ϑ)− (ϑ∗0 + π)

ϑ− ϑ∗0
→ 1− λ−

2U(ϑ∗0)
, as ϑ→ ϑ∗0

and thus
ϕ(ϑ)− (ϑ+ π)

ϑ− ϑ∗0
→ − λ−

2U(ϑ∗0)
> 0, as ϑ→ ϑ∗0.

Now, from (2.81) and the above limiting behaviour, since ϑ → ϑ∗0 as φ → 0+, we have
that

〈ẏint(T0,2n−1), p0(φ)⊥〉
φ

= |ẇ(0)||p0(φ)⊥|
sin
(
̂̇w(0)− (φ+ ϑ∗0)− π

)
φ

= R|ẇ(0)|sin (ϕ(ϑ)− (ϑ+ π))

ϑ− ϑ∗0
∼ R|ẇ(0)|ϕ(ϑ)− (ϑ+ π)

ϑ− ϑ∗0
.
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To conclude the proof, note that ẇ(0) is uniformly bounded in φ by a constant c > 0
which depends on the initial velocity of the homothetic collision motion. Therefore, the
proof is concluded choosing the constant

C = C(ϑ∗0)
.

= − cλ−

2U(ϑ∗0)
> 0.

As we have said, it is possible to extend the previous result for ε sufficiently small.
Indeed, fromProposition 2.2.1we know that the potentialV ε converges uniformly toW 0

on every compact set of R2 \ {0}; moreover, we have already seen in Lemma 2.4.21 and
Theorem 2.4.25 that, as ε→ 0+, a sequence of minimizers of the Maupertuis’ functional
M converges uniformly to a minimizer of the Maupertuis’ functional

M0(u)
.

=
1

2

∫ 1

0
|u̇|2

∫ 1

0

(
−1 +W 0(u)

)
.

As for Theorem 2.5.12, this is enough for the proof of the next result.

Theorem 2.5.14. There exists ε̄int > 0 such that, for any ε ∈ (0, ε̄int), if

p̄ = (p̄0, p̄1, . . . , p̄2n−1) ∈ S
is a minimizer of L provided in Lemma 2.5.2, then there exists ψ ∈ Tp0(∂BR) and there exists
Cint > 0 such that

∂Lint
∂p0

(p̄2n−1, p̄0)[ψ] =
1√
2
〈ẏint(Tε,2n−1), ψ〉 ≤ −Cint < 0.

Proof of (i) of Theorem 2.5.3

Define ε̄ .
= min{ε̄ext, ε̄int}, with ε̄ext and ε̄int introduced respectively in Theorem 2.5.12

and Theorem 2.5.14, and take ε ∈ (0, ε̄). Assume by contradiction that the minimizer
p̄ = (p̄0 p̄1, . . . , p̄2n) of L provided in Lemma 2.5.2 belongs to the boundary ∂S. To
accomplish this absurd hypothesis it is not restrictive to assume that p̄0 ∈ ∂U0 and thus
to produce a variation on p̄0 such that the total length L decreases along this variation.
This would lead to a contradiction and would conclude the proof.
As a consequence of Theorem 2.5.12 and Theorem 2.5.14 there exist a variation ψ ∈
Tp0(∂BR) and a constant C > 0 such that

∂L

∂p0
(p̄0, p̄1, . . . , p̄2n−1)[ψ] =

∂Lext
∂p0

(p̄0, p̄1)[ψ] +
∂Lint
∂p0

(p̄2n−1, p̄0)[ψ]

= − 1√
2
〈ẏext(0), ψ〉+

1√
2
〈ẏint(Tε,2n−1), ψ〉

≤ −2C < 0.

Therefore, the minimality of p̄ is in contradiction with the above inequality and thus p̄
is necessarily an inner point of S.
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ξ∗

ẏint(T )

∂BR

0

p0(φ0)

φ0

p0(φ0)⊥

yint

Figure 2.10.: Situation of Lemma 2.5.13: the behaviour of the final velocity of an internal
arc.

2.5.3. Smoothness of the minimizers and existence of the corresponding
periodic solutions: proof of (ii) of Theorem 2.5.3 and of Theorem 2.1.4

We conclude this section with the proof of the smoothness of the trajectory γε,p̄ and
thuswe provide the existence of a periodic solution of the anisotropicN -centre problem
driven by V ε.

Proof of (ii) of Theorem 2.5.3. Since point (i) of Theorem 2.5.3 has been proved in the
previous paragraph, for ε ∈ (0, ε̄) we can consider a minimizer p̄ = (p̄0, p̄1, . . . , p̄2n) ∈ S̊
for L and now we know that

∂L

∂pk
(p̄) = 0, for every k = 0, . . . , 2n.

Again, we can assume k = 0 and thus, Lemma 2.5.5 and Lemma 2.5.6 give that, for
every ψ ∈ Tp0(∂BR) we have

∂L

∂p0
(p̄)[ψ] =

∂Lint
∂p0

(p̄2n−1, p̄0)[ψ] +
∂Lext
∂p0

(p̄0, p̄1)[ψ] =
1√
2
〈ẏint(T2n−1)− ẏext(0), ψ〉 = 0.

The tangent space Tp0(∂BR) is one-dimensional and it is spanned by a unit vector ν
which is orthogonal to p0. Therefore, if we denote by (ŷ, ν) the angle included between
the two vectors, we can deduce that

|ẏint(Tε,2n−1)| cos( ̂ẏint(Tε,2n−1), ν) = |ẏext(0)| cos( ̂ẏext(0), ν)
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and the conservation of the energy both for yint and yext at the point p̄0 leads to the
equality

(2.83) |ẏint(Tε,2n−1)| = |ẏext(0)|.
This implies that

cos( ̂ẏint(Tε,2n−1), ν) = cos( ̂ẏext(0), ν)

and thus, since ẏint(Tε,2n−1) and ẏext(0) point outside BR, we obtain that

( ̂ẏint(Tε,2n−1), ν) = ( ̂ẏext(0), ν).

This, together with (2.83), shows that ẏint(Tε,2n−1) = ẏext(0) and thus γε,p̄ is C1([0,Tε]).
At this point, we have shown that if p̄ ∈ S̊ is a minimizer ofL, then the corresponding

periodic trajectory γε,p̄(t) is a classical solution of theN -centre problem (2.61) at energy
-1 when t ∈ [0,Tε] \ {0, Tε,0, . . . , Tε,2n−1} and it is a C1 function in [0,Tε]. Since the
junctions on ∂BR are smooth, we can extend the trajectory γε,p̄ by Tε-periodicity to all
R. To conclude the proof of Theorem 2.5.3 we need to show that γε,p̄ is C2(R). In order
to do that, let us consider again the solution arcs yint and yext which glue on the point
p̄0 (the same argument applies for all the other building blocks) and let us compute

lim
t→T−ε,2n−1

γ̈ε,p̄(t) = lim
t→T−ε,2n−1

ÿint(t) = lim
t→T−ε,2n−1

∇V ε(yint(t))

= lim
t→0+

∇V ε(yext(t)) = lim
t→0+

ÿext(t)

= lim
t→0

γ̈ε,p̄(t).

This shows that γε,p̄ ∈ C2(R) and concludes the proof of Theorem 2.5.3.

At this point, it remains to show that the existence of multiple periodic solutions
holds also for the original N -centre problem, i.e., the problem

(2.84)
{
ẍ = ∇V (x)
1
2 |ẋ|2 − V (x) = −h,

where V is the potential referred to the original centres c1, . . . , cN (see (2.2)) and h has
to be chosen small enough. We recall that the multiplicity of periodic solutions for
problem (2.84) is determined both by a choice of a partition of the centres and by a
minimal non-degenerate central configuration forW 0. As we have already discussed at
page 33, we can describe all the possible behaviours of a periodic solution choosing a
finite sequence of elements in the set

Q = {Qj : j = 0, . . . ,m(2N−1 − 1)− 1}.
We need to link a sequence of n elements in Q with a double sequence, composed by
n partitions and n minimal non-degenerate central configurations of W 0. This can be
done using Remark 2.1.3, which yields the following correspondence

(Pl0 , . . . , Pln−1), (ϑ∗l0 , . . . , ϑ
∗
ln−1

)←→ (Qj0 , . . . Qjn−1)
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with jk = lkm + rk, for lk ∈ {0, . . . , 2N−1 − 2}, rk ∈ {0, . . . ,m − 1}, and thus jk ∈
{0, . . . ,m(2N−1 − 1) − 1}. Finally, it is useful to characterize a solution provided in
Theorem 2.5.3 with respect to its dependence on Plk and ϑrk . Once n ≥ 1 and ε ∈ (0, ε̄)
are fixed, we have a periodic solution γε,p̄, with p̄ = (p̄0, . . . , p̄2n) ∈ S̊. Actually, it is
clear from the discussion at page 91 that this solution depends on a choice of n partitions
and nminimal non degenerate central configurations, i.e.,

γε;p̄ = γ(ε;Pl0 , . . . , Pln−1 ;ϑ∗r0 , . . . , ϑ
∗
rn−1

).

Proof of Theorem 2.1.4. First of all, from Proposition 2.2.1, in order to obtain a solution of
(2.84) as a rescaling of a solution of the problem driven by V ε at energy−1, the energy h
has to be in (0, h̄), with h̄ .

= ε̄α and ε̄ > 0 is the one defined in Theorem 2.5.3. Moreover,
when such h is fixed, a unique ε = h1/α is determined such that Bε contains all the
scaled centres, as well as a ball BR which is included in the Hill’s region of V ε and
that allows to build periodic solutions for the ε-problem. In particular, from (2.14) and
Theorem 2.5.3, we have that R has to verify

ε̄ < R < m1/α − ε̄,

where the constant m has been defined in Remark 2.1.2. To such R, via Proposition
2.2.1, we can associate a radius R̄ .

= h−1/αR > 0 which plays the same for prob-
lem (2.84). Therefore, again by Proposition 2.2.1 and Remark 2.1.3, when n ≥ 1 and
(Qj0 , . . . , Qjn−1) ∈ Qn are fixed, we can define the function x = x(Qj0 , . . . , Qjn−1 ;h) as
the rescaling via h of the solution γ(ε;Pl0 , . . . , Pln−1 ;ϑ∗r0 , . . . , ϑ

∗
rn−1

), with the rule

jk = lkm+ rk, for every k = 0, . . . , n− 1.

This x will be clearly a classical and periodic solution of problem (2.84) that crosses
2n-times the circle ∂BR̄ in chosen neighbourhoods of the points R̄eiϑ

∗
rk .

2.6. Existence of a symbolic dynamics

In Theorem 2.1.4 we proved that, whenever the energy h and a sequence of labels
(Qj0 , . . . , Qjn−1) of arbitrary length n ∈ N≥1 are fixed, a periodic solution of the
anisotropic N -centre problem at energy h that satisfies the geometrical features rep-
resented by the above labels exists. This shows the existence of infinitely many periodic
solutions in negative energy shells and suggests to investigate the presence of a symbolic
dynamics for the dynamical system considered in this work.
To start with, we recall that N is the number of the centres, while m represents the

number of minimal non-degenerate central configurations for the leading potentialW 0

far from the singularity. We assume that N ≥ 3 and m ≥ 1 or, equivalently, that
N ≥ 2 andm ≥ 2, and we require again hypotheses (V ) on the potential V (see Remark
2.1.3). Moreover, we fix h ∈ (0, h̄), where the threshold h̄ has been determined in
the previous section. By means of Theorem 2.1.4 we have that, for any n ≥ 1 and
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for any finite sequence (Qj0 , . . . , Qjn−1) ⊆ Qn, there exists a classical periodic solution
x = x(Qj0 , . . . , Qjn−1 ;h) of the equation ẍ = ∇V (x) at energy −h and there exists
R̄ = R̄(h) > 0 such that the solution x crosses the circle ∂BR̄ 2n-times in one period at
the instants (tk)

2n−1
k=0 . In particular, for any k = 0, . . . , n−1 there exists a neighbourhood

Urk
.

= U(R̄eiϑ
∗
rk ) on ∂BR̄ such that, if we define xk

.
= x(tk), we have that

• when t ∈ (t2k, t2k+1) the solution stays outside BR̄ and

x2k, x2k+1 ∈ Urk

• in the interval (t2k+1, t2k+2) (we clearly set t2n
.

= t0 to close the trajectory) the
solution stays insideBR̄, it separates the centres according to the partition Plk and

x2k+2 ∈ Urk+1
,

keeping in mind the correspondence

Qjk ←→ (Plk , ϑ
∗
rk

), with jk = lkm+ rk.

We recall that this piecewise solution has been determined with several steps in the
previous sections, working with a normalized version of the N -centre problem, driven
by V ε. In the sameway, thanks to Theorem 2.3.10, Theorem 2.4.28 and Proposition 2.2.1,
we can distinguish between the solution arcs outside and inside BR̄ in this way:

• we denote by xext(·;x2k, x2k+1;h) the piece of outer solution which connects x2k

and x2k+1, defined on its re-parametrized interval [0, Text(x2k, x2k+1;h)];

• we denote by xPjk (·;x2k+1, x2k+2;h) the piece of inner solution which connects
x2k+1 and x2k+2 and separates the centres with respect to the partition Plk , defined
on its re-parametrized interval [0, TPjk (x2k+1, x2k+2;h)].

We recall that the inner arc for the ε-problemhas beendeterminedas a reparametrization
of a minimizer of the Maupertuis’ functional in Section 2.4. On the other hand, we
know that the Maupertuis’ principle (Theorem 2.4.1) joins also a vice-versa, i.e., if we
set ω(x2k+1, x2k+2;h)

.
= 1/TPjk (x2k+1, x2k+2;h), the function

vPjk (t;x2k+1, x2k+2;h)
.

= xPjk (t/ω(x2k+1, x2k+2;h);x2k+2, x2k+2;h)

will be a critical point of the Maupertuis’ functionalMh at a positive level, in a suitable
space. In particular, we can introduce the set of H1-paths

Ĥx2k+1,x2k+2
([0, 1])

.
=

{
v ∈ H1([0, 1];R2)

∣∣∣∣∣ v(0) = x2k+1, v(1) = x2k+2,

v(t) 6= cj ∀ t ∈ [0, 1]∀ j

}

and its H1-closure

Hx2k+1,x2k+2
([0, 1])

.
= {v ∈ H1([0, 1];R2) : v(0) = x2k+1, v(1) = x2k+2}.
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Now, recalling that in the ε-problem we have studied the existence of inner solutions
inside BR, with R = h1/αR̄, for any p2k+1, p2k+2 ∈ ∂BR we can consider the points
x2k+1 = h−1/αp2k+1, x2k+2 = h−1/αp2k+2 ∈ ∂BR̄. Moreover, we recall the analogue
of the space defined above in the ε-context, i.e., the spaces Ĥp2k+1,p2k+2

([0, 1]) and
Hp2k+1,p2k+2

([0, 1]) introduced in Section 2.4 and we consider the bĳective map

J : Hp2k+1,p2k+2
([0, 1])→ Hx2k+1,x2k+2

([0, 1])

such that J(u) = h1/αu, for any u ∈ Hp2k+1,p2k+2
([0, 1]). It is clear that the topological

behaviour of an arc inHp2k+1,p2k+2
([0, 1])with respect to the centres c′j naturally translates

on the same behaviour for its image through J with respect to the centres cj . In light of
this, for any Pj ∈ P , we recall the definition (2.52) of the minimization space K̂p1,p2

Pj
and

its H1-closureKp1,p2

Pj
, and we set

K̂x2k+1,x2k+2

Pj
([0, 1]) = J

(
K̂
p2k+1,p2k+2

Pj
([0, 1])

)
,

Kx2k+1,x2k+2

Pj
([0, 1]) = J

(
K
p2k+1,p2k+2

Pj
([0, 1])

)
.

Now, since the inner arc yint(·; p2k+1, p2k+2; ε) with respect to the partition Pj pro-
vided in Theorem 2.4.28 re-parametrizes a minimizer of the Maupertuis functional in
K
p2k+1,p2k+2

Pj
([0, 1]), we can immediately conclude that vPj (·;x2k+1, x2k+2;h) will be a

minimizer of the Maupertuis’ functionalMh in Kx2k+1,x2k+2

Pj
([0, 1]).

The rest of this section is devoted to the proof of Theorem 2.1.7 as a consequence of
Theorem 2.1.4, i.e., to prove the existence of a symbolic dynamics with set of symbolsQ.
For this reason, we start with the definition of a suitable subset Πh of the energy shell

Eh =

{
(x, v) ∈ (R2 \ {c1, . . . , cN})× R2 :

1

2
|v|2 − V (x) = −h

}
which is a 3-dimensional submanifold of R2 \ {c1, . . . , cN}) × R2 and it is invariant for
the flow Φt induced by the vector field

F : R2 \ {c1, . . . , cN})× R2 → R2 × R2

(x, v) 7→ F (x, v) = (v,∇V (x)).

As a starting point, for a neighbourhood Ur = U(R̄eiϑ
∗
r ) provided in Theorem 2.1.4

(r = 0, . . . ,m− 1), we define the sets of pairs (x, v) such that x ∈ Ur and v is not tangent
to the same circle, i.e.,

E±
h,R̄,r

.
= {(x, v) ∈ Eh : x ∈ Ur, 〈x, v〉 ≷ 0} .

We note that for a pair in E+
h,R̄,r

the velocity points towards the outer ofBR̄ (the converse
holds for E−

h,R̄,r
) and that both sets are included in the 2-dimensional inertial surface

Σh = {(x, v) ∈ Eh : |x| = R̄}.
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Therefore, it is clear that, if we consider the restriction Fh
.

= F |Eh of the vector field, it is
transverse to E+

h,R̄,r
(for more details we refer to Section 2.3).

For every (x, v) ∈ E+
h,R̄,r

we introduce the sets

T±(x, v)
.

=
{
t ∈ (0,+∞) : Φt(x, v) ∈ E±

h,R̄,s
, for some s ∈ {0, . . . ,m− 1}

}
and the sets (

E+
h,R̄,r

)± .
=
{

(x, v) ∈ E+
h,R̄,r

: T±(x, v) 6= ∅
}
.

Note that in general the sets T±(x, v) could be empty, since the piece of trajectory which
starts in a neighbourhood Ur and points towards the outer of BR̄ needs to have an
initial velocity v which satisfies a behaviour well described in Lemma 2.5.10. Besides
that, note that Theorem 2.1.4 ensures that the sets

(
E+
h,R̄,r

)±
are non-empty, since the

theorem provides periodic solutions of the equation ẍ = ∇V (x) that cross the circle
∂BR̄ an infinite number of times, exactly inside the neighbourhoods Ur, in which the
transversality condition 〈ẋ, x〉 ≷ 0 is clearly satisfied. Moreover, the continuous depen-
dence on initial data, together with the transversality of E+

h,R̄,r
with respect to the vector

field F guarantee that the set
(
E+
h,R̄,r

)+
is open. At this point, for (x, v) ∈

(
E+
h,R̄,r

)+
we

define
T+
min(x, v)

.
= inf T+(x, v),

while for x ∈
(
E+
h,R̄,r

)−
we set

T−min(x, v)
.

= inf T−(x, v).

If we take (x, v) ∈
(
E+
h,R̄,r

)+
∩
(
E+
h,R̄,r

)−
such that T−min(x, v) < T+

min(x, v), we can
consider the piece of the orbit emanating from (x, v) between the first two instants in
which it crosses again ∂BR̄ in two of the admissible neighbourhoods, which is exactly
the following restriction of the flow

{Φt(x, v) : t ∈ [T−min, T
+
min]},

where we have omitted the dependence on (x, v) to ease the notations (see Figure 2.11).
Recalling the set of symbols

Q = {Qj : j = 0, . . . ,m(2N−1 − 1)− 1},

and recalling that πxΦt(x, v) denotes the projection on the first component of the flow,
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(x, v) ΦT
−
min(x, v)

ΦT
+
min(x, v)

ϑ∗r

ϑ∗s

c1c2
c3

c4
c5

c6

∂BR̄

Figure 2.11.: In this picturewe can become familiarwith the notations introduced above.
Indeed, we have drawn in bold the velocity vectors associated to every
position in the configuration space, so that it is possible to visualize the flow
associated to an initial data (x, v) ∈

(
E+
h,R̄,r

)+
∩
(
E+
h,R̄,r

)−
. In particular,

the blue arc represents the projection on the configuration space of the
restriction of the flow between T−min and T+

min.

let us now define the set

EQ
h,R̄

.
=


(x, v) ∈

(
E+
h,R̄,r

)+
∩
(
E+
h,R̄,r

)−
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r ∈ {0, . . . ,m− 1}, T−min < T+
min

{πxΦt(x, v)}t∈[T−min,T
+
min]is the re-param.

of a minimizer ofMh in the space

K̂πxΦT
−
min (x,v),πxΦT

+
min (x,v)

Pl
([T−min, T

+
min]),

for some l ∈ {0, . . . , 2N−1 − 2},
with Qj = Qlm+r ∈ Q


.

The above set is non-empty sinceTheorem2.1.4 proves the existence of periodic solutions
for the N -centre problem, which then identify an infinite number of points that belong
to the set EQ

h,R̄
. Indeed, the x-components of these points are nothing but the crosses that

the periodic trajectories make on the circle ∂BR̄ when they start their motion outside
the ball. We can then define a first return map on EQ

h,R̄
in this way

R : EQ
h,R̄
→ EQ

h,R̄

(x, v) 7→ R(x, v)
.

= ΦT+
min(x, v),

which is continuous as a consequence of our construction. Moreover, we can also define
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another map χ : EQ
h,R̄
→ Q such that

χ(x, v) = Qj , if


(x, v) ∈

(
E+
h,R̄,r

)+

{πxΦt(x, v)}t∈[T−min,T
+
min] ∈ K̂

πxΦT
−
min (x,v),πxΦT

+
min (x,v)

Pl
([T−min, T

+
min])

j = lm+ r

.

We can finally define the set Πh in this way

Πh
.

=
⋂
j∈Z
Rj(EQ

h,R̄
),

which is exactly the set of all the possible initial data which generate solutions that cross
the circle ∂BR̄ an infinite number of time having velocity directed toward the exterior
of BR̄; moreover, each of these solutions, every time that travels inside BR̄, draws a
partition Pl of the centres for some l and minimizing the Maupertuis’ functional in the
corresponding space K̂Pl . To conclude this preliminary discussion we define also the
application π which maps every one of this initial data to its corresponding bi-infinite
sequence of symbols, i.e.,

π : Πh → QZ

(x, v) 7→ π(x, v)
.

= (Qjk)k∈Z, with Qjk
.

= χ(Rk(x, v));

we also introduce the restriction of the first return map to the invariant submanifold Πh

as R .
= R|Πh . At this point, we proceed with the proof of Theorem 2.1.7, i.e., we need

to prove that the map π that we have just defined is surjective and continuous. In order
to do that, we need to prove some preliminary property on the pieces of solutions. The
first one consists in showing that their intervals of definition are uniformly bounded
from above and below.

Lemma 2.6.1. There exist two constants c, C > 0 such that, for any x0, x1 ∈ ∂BR̄ for which
xext(·;x0, x1;h) exists, for any x2, x3 ∈ ∂BR̄ and for any Pj ∈ P for which xPj (·;x2, x3;h)
exists, we have

c ≤ Text(x0, x1;h) ≤ C
c ≤ TPj (x2, x3;h) ≤ C.

Proof. Lemma 2.3.11 and Lemma 2.4.29 provide such uniformbounds for the ε-problem;
the conclusion is then a direct consequence of Proposition 2.2.1.

We also need a compactness lemmaon sequences ofminimizers ofMhwhich separate
the centres with respect to the same partition. In particular, we want to prove that if the
endpoints of the minimizers converge to a limit pair (x̄2, x̄3) then the limit path is itself
a minimizer ofMh in the space K̂x̄2,x̄3

Pj
([0, 1]), for a fixed partition Pj .
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Lemma 2.6.2. Let (xn2 ) ⊆ U2 and (xn3 ) ⊆ U3 such that (xn2 , x
n
3 ) → (x̄2, x̄3), with x̄2 ∈ U3

and x̄3 ∈ U3, where U2 and U3 are the neighbourhoods of two minimal non-degenerate central
configurations of W 0 on ∂BR̄ which guarantee the existence of the internal arcs. Fix also a
partition Pj ∈ P and let vn be a minimizer ofMh in the space K̂x

n
2 ,x

n
3

Pj
([0, 1]). Then, there exist

a subsequence (vnk) of (vn) and a minimizer v̄ ofMh in the space K̂x̄2,x̄3

Pj
([0, 1]) such that

vnk ⇀ v̄ in H1.

Proof. An analogous compactness property has been proved for sequences of minimiz-
ers ofM−1 in the ε-problem in Lemma 2.4.21 and Theorem 2.4.25. Again, Proposition
2.2.1 gives the proof.

We are now ready to give the proof of Theorem 2.1.7.

Proof of Theorem 2.1.7. Surjectivity ofπ :Consider a bi-infinite sequence (Qjn)n∈Z ⊆ QZ

and the sequence of finite sequences

(Qj0), (Qj−1 , Qj0 , Qj1), . . . (Qj−n , Qj−n+1 , . . . , Qj−1 , Qj0 , Qj1 , . . . , Qjn−1Qjn), . . .

If we fix h ∈ (0, h̄), through Theorem 2.1.4 we can associate to each of these sequence
a corresponding periodic solution; this will be made using this notation that takes into
account the length of the finite sequence

(Qj−n , . . . , Qj−1 , Qj0 , Qj1 , . . . , Qjn)←→ xn(·).

Without loss of generality, we can define (xn(0), ẋn(0)) ∈ Πh as the initial data such that
the first symbol determined by xn is Qj0 , for every n ∈ N. In particular, we know that
j0 = l0m + r0 and thus this symbol will refer to a first piece of solution, composed by
an outer arc with endpoints in the neighbourhood Ur0 and inner arc that agrees with
the partition Pl0 and that arrives in the neighbourhood Ur1 . In this way, for every n we
can find a sequence of points (xnk)k∈Z ⊆ ∂BR̄ which correspond to the crosses of the
periodic trajectory xn with the circle ∂BR̄. Note that since the trajectory is periodic, the
sequence of points will be periodic too. We can now take into account the sequence of
sequences

{(xnk)k∈Z}n∈N
in order to start a diagonal process that will imply a convergence on these sequences.
If we fix k = 0, since ∂BR̄ is compact we can extract a subsequence (xn0

0 )n0∈N such that
xn0

0 → x̄0 as n0 → +∞. In the same way, we can fix k = 1 and consider the subsequence
(xn0

1 )n0∈N ⊆ ∂BR̄ and extract a sub-subsequence (xn1
1 )n1∈N such that xn1

1 → x̄1 as
n1 → +∞. This can be made for every k ∈ Z, in order to find a subsequence (xnkk )nk∈N
such that xk → x̄k as nk → +∞. At this point we can consider the diagonal sequence
(xnnk )n∈N and relabel it as (xnk)n∈N, so that

lim
n→+∞

xnk = x̄k, for all k ∈ Z.

115



Note that all these limit points belong to ∂BR̄ so that we can connect two of them
with an inner or outer arc; this would actually require that the points are inside the
neighbourhoodsUrk found in Theorem 2.1.4, but up to restrict these neighbourhoodswe
can repeat theprevious argument so that the limitswould still be inside aneighbourhood
in which the existence is guaranteed. Once this is clear, we can connect the points
x̄2k, x̄2k+1 ∈ Urk with a unique outer arc using the technique illustrated in Theorem
2.3.10; we can also connect the point x̄2k+1 ∈ Urk and the point x̄2k+2 ∈ Urk+1

following
the procedure of Theorem 2.4.28 so that the induced path would separate the centres
according to the partition Plk . Repeating this procedure for every k ∈ Z we can glue
together all these pieces to obtain a continuous function x̄ : R → : R2, using the same
technique provided in Section 2.5. We point out that x̄ is not unique, since the inner
pieces, coming from Maupertuis’ minimizers, are not unique. In the following, we are
going to show that x̄ is a classical periodic solution of the equation ẍ = ∇V (x) and
verifies {

(x̄(0), ˙̄x(0)) ∈ Πh

π((x̄(0), ˙̄x(0))) = (Qjk)k∈Z.

If we introduce the set of collision instants of x̄ as

Tc(x̄)
.

= {t ∈ R : x̄(t) = cj , for some j ∈ {1, . . . , N}} ,

due to the nature of the sequence (xn) it is enough to show that xn → x̄ in a C2 manner on
every compact subset of R \ Tc(x̄). To start with, note that if we take [a, b] ⊆ R such that
x̄(a) = x̄2k and x̄(b) = x̄2k+1, then the outer arc connecting these two points depends on
a continuous manner on the endpoints (see Theorem 2.3.10) and so xn → x̄ uniformly
on [a, b]. Moreover, if we take [c, d] ⊆ R such that x̄(c) = x̄2k+1 and x̄(d) = x̄2k+2, then
the uniform convergence on [c, d] is a straightforward consequence of Lemma 2.6.2. This
convergence also determines a unique choice for the inner solution that connects x̄2k+1

and x̄2k+2, so that now the function x̄ is uniquely determined. Moreover, since the
internal arcs provided in Theorem 2.4.28 have a uniform distance δ from the centres,
this actually proves that the uniform convergence of xn to x̄ takes place in R \Tc(x̄), i.e.,
x̄ has no collision with the centres.
At this point, the function ∇V (x̄(·)) is continuous on the whole R and, since xn is a
C2 solution of the equation ẍ = ∇V (x) by the uniform convergence of xn to x̄ on [a, b]
we have that

lim
n→+∞

ẍn(t) = lim
n→+∞

∇V (xn(t)) = ∇V (x̄(t)),

for every t ∈ [a, b]. This means that the sequence (ẋn(t)) is equi-continuous in [a, b];
moreover, the energy equation implies that

|ẋn(t)| =
√
V (xn(t))− h ≤ C

for every t ∈ [a, b] and for every n ∈ N, i.e., the sequence (ẋn(t)) is also equi-bounded in
[a, b]. This fact, together with the uniform convergence, finally shows that the sequence
(xn(t)) C2-converges to x̄(t) in [a, b], for every compact set [a, b] ⊆ R. As a consequence,
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x̄ is a C2 solution of the equation ẍ = ∇V (x) at energy−h on every compact set ofR. As
a final remark, note that the uniform convergence also implies the conservation of the
topological constraint, i.e., thepiece of x̄between thepointsx2k+1 andx2k+2 will separate
the centreswith respect toPlk . This finally proves that π((x̄(0), ˙̄x(0))) = (Qjk)k∈Z, where
jk = lkm+ rk.
Continuity ofπ: We recall that we can endow the set of bi-infinite sequencesQZ with

the distance

d((Qm), (Q̃m))
.

=
∑
m∈Z

ρ(Qm, Q̃m)

2|m|
, ∀ (Qm), (Q̃m) ∈ QZ,

where ρ is the discrete metric defined through the Kronecker delta. Moreover, for every
m ∈ Zwe define the map

πm : Πh → Q
(x, v) 7→ πm(x, v)

.
= χ(Rm(x, v)),

i.e., it associates to (x, v) the symbol corresponding to the m-th piece (composed by an
outer arc and an inner arc) of the solution with initial data (x, v). Given this, if we fix
(x0, v0) ∈ Πh, we need to show that for λ > 0 there exists δ > 0 such that

(2.85) ∀ (x, v) ∈ Πh s.t. ‖(x, v)− (x0, v0)‖ < δ =⇒
∑
m∈Z

ρ(πm(x, v), πm(x0, v0))

2|m|
< λ.

It is clear that we can findm0 ∈ N such that∑
|m|>m0,m∈Z

1

2|m|
< λ.

For this reason and for the definition of themetric d in the space (Q, d), in order to prove
(2.85) it is enough to show that two initial data sufficiently close aremapped through πm
to the same symbol Qm, for anym ∈ {−m0, . . . ,m0}. Therefore to (2.85) it is equivalent
to prove that, for anym0 ∈ N there exists η > 0 such that

∀ (x, v) ∈ Πh s.t. ‖(x, v)− (x0, v0)‖ < η =⇒ πm(x, v) = πm(x0, v0), ∀ |m| ≤ m0.

If we takem0 ∈ N, by means of Lemma 2.6.1 there exists a time interval [−a, a] such that
every solution with initial data in Πh detects at least 2m0 + 1 symbols in [−a, a], i.e., it
determines at least 4m0 + 2 crosses on ∂BR̄. Moreover, the solution which emanates
from the initial data (x0, v0) is collision-free and its projection on the x-component has
a uniform distance δ > 0 from the centres (see Theorem 2.4.28), i.e.,

|πxΦt(x0, v0)− cj | ≥ δ, ∀ t ∈ [−a, a], ∀ j ∈ {1, . . . , N},
recalling that πx denotes the projection on the x-component of the flow. At this point, if
(x, v) is sufficiently close to (x0, v0), the continuous dependence on initial data implies
that ∣∣πxΦt(x, v)− πxΦt(x0, v0)

∣∣ < δ

2
,
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for every t ∈ [−a, a]. This fact ensures that the flow associated to (x, v) determines the
same 2m0 + 1 symbols of the flow associated to (x0, v0) so that, in particular

πm(x, v) = πm(x0, v0), ∀m ∈ {−m0, . . . ,m0}.

The proof is then concluded.
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A. On the hessian matrix of homogeneous
potentials

We prefer to gather in this appendix some technical computations which concern the
differentiation of homogeneous potentials and show to be useful for the purposes of
Chapter 2.

Consider a non-negative−α-homogeneous functionW ∈ C2(R2\{0}), withα ∈ (0, 2).
We adopt the notation w(x) = W (x1, x2), we introduce polar coordinates in R2

(x1, x2) = (r cosϑ, r sinϑ)

with r =
√
x2

1 + x2
2 > 0 and ϑ = arctan (x2/x1) ∈ [0, 2π), and we define the gradient

with respect to x1 and x2 as
∇(·) = (∂x1(·), ∂x2(·));

in particular, we note that

∇r = r−1(x1, x2), ∇ϑ = r−2(−x2, x1).

Moreover, we can write

W (x1, x2) = W (r sinϑ, r cosϑ) = r−αW (cosϑ, sinϑ),

and thus, if we let U(ϑ)
.

= W (cosϑ, sinϑ), we have

W (x1, x2) = r−αU(ϑ).

In agreement with this notation, we have

U ′(ϑ) =
d

dϑ
W (cosϑ, sinϑ) = 〈∇W (cosϑ, sinϑ), (− sinϑ, cosϑ)〉 .

In this way, we can compute the gradient ofW

∇W (x1, x2) = ∇(r−αU(ϑ))

= ∇(r−α)U(ϑ) + r−α∇U(ϑ)

= −αr−α−1U(ϑ)∇r + r−αU ′(ϑ)∇ϑ
= −αr−α−2U(ϑ)(x1, x2) + r−α−2U ′(ϑ)(−x2, x1),

and so
∂x1W (x1, x2) = −αr−α−2U(ϑ)x1 − r−α−2U ′(ϑ)x2

∂x2W (x1, x2) = −αr−α−2U(ϑ)x2 + r−α−2U ′(ϑ)x1.
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In the same way, the second derivatives read

∂x1x1W (x1, x2) = α(α+ 2)r−α−4U(ϑ)x2
1 + αr−α−4U ′(ϑ)x1x2 − αr−α−2U(ϑ)

+ (α+ 2)r−α−4U ′(ϑ)x1x2 + r−α−4U ′′(ϑ)x2
2

∂x1x2W (x1, x2) = α(α+ 2)r−α−4U(ϑ)x1x2 − αr−α−4U ′(ϑ)x2
1 + (α+ 2)r−α−4U ′(ϑ)x2

2

− r−α−4U ′′(ϑ)x1x2 − r−α−2U ′(ϑ)

∂x2x1W (x1, x2) = α(α+ 2)r−α−4U(ϑ)x1x2 + αr−α−4U ′(ϑ)x2
2 − (α+ 2)r−α−4U ′(ϑ)x2

1

− r−α−4U ′′(ϑ)x1x2 + r−α−2U ′(ϑ)

∂x2x2W (x1, x2) = α(α+ 2)r−α−4U(ϑ)x2
2 − αr−α−4U ′(ϑ)x1x2 − αr−α−2U(ϑ)

− (α+ 2)r−α−4U ′(ϑ)x1x2 + r−α−4U ′′(ϑ)x2
1.

At this point, we introduce the tensor (dyadic) product between two vectors and we
make use of the following notation

(x1, x2)⊗ (x1, x2) =

(
x2

1 x1x2

x1x2 x2
2

)
(x1, x2)⊗ (−x2, x1) =

(
−x1x2 x2

1

−x2
2 x1x2

)

(−x2, x1)⊗ (x1, x2) =

(
−x1x2 −x2

2

x2
1 x1x2

)
(−x2, x1)⊗ (−x2, x1) =

(
x2

2 −x1x2

−x1x2 x2
1

)
and thus, if we let x = (x1, x2) and x⊥ = (−x2, x1), we get

(A.1)

∇2W (x) = α(α+ 2)r−α−4U(ϑ)x⊗ x− αr−α−4U ′(ϑ)x⊗ x⊥

− αr−α−2U(ϑ)I2 − (α+ 2)r−α−4U ′(ϑ)x⊥ ⊗ x

+ r−α−4U ′′(ϑ)x⊥ ⊗ x⊥ + r−α−2U ′(ϑ)

(
0 −1
1 0

)
.

Now, take ξ = (R cosϑ∗, R sinϑ∗) ∈ R2 \ {0} such that

U ′(ϑ∗) = 0,

i.e., following the notations of the previous sections, we assume that ξ is a central
configuration forW . In this way, from (A.1), we have

∇2W (ξ) = α(α+ 2)R−α−4U(ϑ∗)ξ ⊗ ξ − αR−α−2U(ϑ∗)I2 +R−α−4U ′′(ϑ∗)ξ⊥ ⊗ ξ⊥.

Furthermore, we recall that (a ⊗ b)c = 〈b, c〉a for every a, b, c ∈ R2 and, if we define
sξ

.
= R−1ξ, s⊥ξ

.
= R−1ξ⊥ ∈ S1, we get this useful characterization of sξ and s⊥ξ as

eigenvectors of the matrix∇2W (ξ)

(A.2)

∇2W (ξ)sξ = α(α+ 2)R−α−2U(ϑ∗)sξ − αR−α−2U(ϑ∗)sξ

= α(α+ 1)R−α−2U(ϑ∗)sξ

∇2W (ξ)s⊥ξ = −αR−α−2U(ϑ∗)s⊥ξ +R−α−2U ′′(ϑ∗)s⊥ξ

= R−α−2
(
−αU(ϑ∗) + U ′′(ϑ∗)

)
s⊥ξ ,
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which correspond to the eigenvalues

λξ = 〈∇2W (ξ)sξ, sξ〉 = α(α+ 1)R−α−2U(ϑ∗)(A.3)
λξ⊥ = 〈∇2W (ξ)s⊥ξ , s

⊥
ξ 〉 = R−α−2

(
−αU(ϑ∗) + U ′′(ϑ∗)

)
.(A.4)
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B. On the differential of the flow

This appendix is devoted to some properties of the flow associated to a dynamical
system, with a special focus on the so-called Variational Equation.
Let E ⊆ Rn be an open set and let F : E → Rn be a C1 vector field. Given z0 ∈ E,

consider the following problem

(B.1)
{
ż = F (z)

z(t0) = z0,

which admits a unique solution γz0 : I(z0) → Rn, defined on its maximal interval
I(z0) ⊂ R. Introducing the open set

Ω = {(t, z) ∈ R× E : t ∈ I(z)}

we can define the flow associated to the differential equation in (B.1) as the map

Φ: Ω −→ E

(t, z)→ Φ(t, z)
.

= γz(t).

We will use often the notation Φt(z) = Φ(t, z), in order to highlight the dependence on
one of the two variables. If we fix z0 ∈ E we can thus consider the map

Φ(·, z0) : I(z0) ⊂ R→ E

t 7−→ Φt(z0) = γz0(t),

whose first derivative is nothing but the partial derivative, with respect to t, of the flow
Φ. Moreover, since γz0 solves (B.1), the following chain of equalities holds

∂

∂t
Φ(t, z0)

∣∣∣
t=t0

=
d

dt
Φt(z0)

∣∣∣
t=t0

= γ̇z0(t) = F (γz0(t)) = F (Φt(z0)).

In the same way, if we fix t0 ∈ R in such a way that the set Ωt0 = {z ∈ E : t0 ∈ I(z)} is
not empty, we can consider the map

Φ(t0, ·) : Ωt0 ⊂ E → E

z 7−→ Φt0(z) = γz(t0),

whose jacobian matrix is (with a slight abuse of notation)

∂

∂z
Φ(t0, z)

∣∣∣
z=z0

=
d

dz
Φt0(z)

∣∣∣
z=z0

.
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Therefore, given z0 ∈ Ωt0 , the differential in z0 is also well defined as the linear map

dzΦ
t0(z0) : Tz0Ωt0 → TΦt0 (z0)E

ζ 7→ dzΦ
t0(z0)[ζ] =

d

dz
Φt0(z)

∣∣∣
z=z0

ζ,

where Tz0 denotes the tangent space at the vector z0.

Remark B.1. It is easy to notice that the flow Φ(t, z) is C1 in the variable t. Indeed, if we
fix z0, Φ(t, z0) is exactly the unique solution curve γz0(t) of problem (B.1) and therefore it is
differentiable. On the other hand, we can’t argue in the same way for the differentiability with
respect to the variable z, since in general it is not possible to give an explicit expression of the
jacobian matrix of Φ with respect to z. In spite of this, it is well known (see for instance [41, 66])
that the jacobian matrix

d

dz
Φt(z)

∣∣∣
z=z0

satisfies the so called Variational Equation, i.e., it is a solution of the following linearized problem
(along the solution curve γz0(t) = Φt(z0))

d

dt

(
d

dz
Φt(z)

∣∣∣
z=z0

)
= JF (γz0(t))

d

dz
Φt(z)

∣∣∣
z=z0

d

dz
Φt0(z)

∣∣∣
z=z0

= In.

This fact allows one to extrapolate several useful properties of the spatial differential of Φ and,
among them, its continuity.

Finally, we can also define the jacobian matrix of the flow Φ = Φ(t, z) in a point
(t0, z0) ∈ Ω as

JΦ(t0, z0) =

(
∂

∂t
Φ(t, z0)

∣∣∣
t=t0

,
∂

∂z
Φ(t0, z)

∣∣∣
z=z0

)
∈ Rn×(n+1)

and thus, the differential of Φ in (t0, z0) will be the linear map

dΦ(t0, z0) : T(t0,z0)Ω→ TΦ(t0,z0)Φ(Ω)

(τ, ζ) 7−→ dΦ(t0, z0)[τ, ζ] = JΦ(t0, z0)

(
τ
ζ

)
=

d

dt
Φt(z0)

∣∣∣
t=t0

τ +
d

dz
Φt0(z)

∣∣∣
z=z0

ζ.
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C. Variational principles

This final appendix collects some general variational results which involve the function-
als used along this work. In particular, we want to establish some important relations
between the Maupertuis’ functional, the Lagrange-action functional and the Jacobi-
length functional.

Consider an open set Ω ⊆ R2, a potential V ∈ C2(Ω) and introduce the second order
system

(C.1) ẍ = ∇V (x).

Note that (C.1) has Hamiltonian structure and thus we can look for those solutions x
which preserve a fixed energy h ∈ R along their motion, i.e., such that

(C.2) 1

2
|ẋ(t)|2 − V (x(t)) = h

and, in particular, such solutions will be confined inside the open Hill’s region

R̊h .
= {x ∈ Ω : V (x) + h > 0}.

For T > 0 and x ∈ H1([0, T ];R2) we define the Lagrange-action functional as

AT (x)
.

=

∫ T

0

(
1

2
|ẋ(t)|2 + V (x(t)

)
dt

and it is well known that the Least Action Principle affirms that a solution x : [0, T ] → Ω
of (C.1) corresponds to a critical point of AT .
In this work we have mainly used the Maupertuis’ functional, which in this setting

reads

Mh(u)
.

=
1

2

∫ 1

0
|u̇|2

∫ 1

0
(h+ V (u))

and it is differentiable in the space

Hh
.

= {u ∈ H1([0, 1]; Ω) : V (u) + h > 0}.

An equivalent result of the Least Action Principle can be stated forMh, the so-called
Maupertuis’ Principle (see [3], but also Theorem 2.4.1 for a version concerning fixed-ends
problems), which also provides a first relation between the critical points of the two
functionals.
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Theorem C.1. Let u ∈ Hh be a critical point ofMh at a positive level. Define ω > 0 such that

ω2 .
=

∫ 1
0 (h+ V (u))

1
2

∫ 1
0 |u̇|2

.

Then, the function x(t)
.

= u(ωt) solves (C.1)-(C.2) in the interval [0, T ], with T .
= 1/ω.

As a consequence, the function x is also a critical point of A1/ω in the spaceH1([0, 1/ω]; Ω).

The next result refines the correspondence between critical points of Mh and AT ,
showing that in particular a critical point of the Maupertuis’ functional minimizes the
action for every time T > 0.

Proposition C.2. Let u ∈ Hh be a critical point ofMh at a positive level. If, for every T > 0,
we define

xT (t)
.

= u

(
t

T

)
, for t ∈ [0, T ],

then
2
√
Mh(u) = A1/ω(x1/ω) +

h

ω
= min

T>0
(AT (xT ) + Th) .

Proof. For every T > 0, we can compute

AT (xT ) + Th =

∫ T

0

(
1

2
|ẋT (t)|2 + V (xT (t)) + Th

)
dt

=

∫ T

0

(
1

2T 2
|u̇(t/T )|2 + V (u(t/T )) + h

)
dt

=

∫ 1

0

(
1

2T
|u̇(s)|2 + TV (u(s)) + Th

)
ds.

Since u is fixed, the previous quantity depends only on T and it is easy to check that it
attains its minimum at

T =

( ∫ 1
0 |u̇|2

2
∫ 1

0 (h+ V (u))

)1/2

=
1

ω
.

The previous result also shows a well-known property of the Maupertuis’ functional,
i.e., that this functional is invariant under time reparameterizations. However,Mh is
not additive, and this suggests the introduction of another geometric functional. The
Jacobi-length functional is defined as

Lh(u) =

∫ 1

0
|u̇(t)|

√
h+ V (u(t)) dt,

for every u ∈ Hh. Note that Theorem C.1 could be rephrased for Lh and thus classical
solutions will be suitable reparameterizations of critical points of Lh (see for instance
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[54]). Moreover, the Jacobi-length functional is also a fundamental tool in differential
geometry since Lh(u) is exactly the Riemannian length of the curve parametrized by u
with respect to the Jacobi metric

gij(x)
.

= (−h+ V (x))δij ,

δij being the Kronecker delta. As theMaupertuis’ functional, Lh is invariant under time
reparameterizations and, being a length, it is also additive.
Note that, if u ∈ Hh, the Cauchy-Schwarz inequality easily gives

Lh(u) ≤
√

2Mh(u),

with the occurrence of the equality if and only if the quotient

|u̇(t)|2
V (u(t)) + h

is constant for a.e. t ∈ [0, 1]. This shows thatMh and Lh share the same critical points
u such thatMh(u) > 0. This is sufficient to give the (easy) proof of the next result.

Proposition C.3. Let u ∈ Hh be a critical point ofMh at a positive level, let ω be defined as in
Theorem C.1 and let xT be defined for every T > 0 as in Proposition C.2. Then, the following
chain of equalities holds

A1/ω(x1/ω) +
h

ω
= 2
√
Mh(u) =

2√
2
Lh(u).

We can say that, up to constant factors and time re-parametrizations, the three functionals
coincide on the non-constant critical points ofMh.
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