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Introduction

This work gathers the results contained in the research papers [5] and [6] as a com-
pendium of my recent research, accomplished during my PhD program at the University
of Turin. The contents of the above papers are very related and logically interconnected,
so that it is worth to give a joint account of the main motivations that have led to the
study of the questions answered therein. A more technical and rigorous introduc-
tion will precede every one of the two chapters, in order to equip the reader with the
notations and settings needed in the two treated problems.

The achievements presented in this thesis are the result of a fruitful collaboration with
my PhD Advisor Prof. Susanna Terracini and my co-Advisor Prof. Vivina Barutello.

The N-centre problem of Celestial Mechanics

A deep view and comprehension on how the N-centre problem is treated and under-
stood in the contemporary literature can not take place without a glimpse on the most
classical and famous problem of Celestial Mechanics, from which it actually came to life:
the N-body problem. The really challenging, and actually simple in its formulation,
question that many mathematicians have attempted to answer through the centuries
is the following: how does a finite number of heavy bodies move in the Euclidean
space under their mutual gravitational attraction? To fix the ideas, we can define the
positions of the bodies as N functions z;: I C R — R3 which evolve with respect to a
time variable and N positive numbers mj > 0 that represent their masses. In this way,
the Newton'’s law provides N second order ordinary differential equations that rule the
motion of the system:

mdE(t) = — Z mem; (24(t) — 25(t) forevery k=1,...,N.

2 ol - OF

The 2-body problem has been solved and clearly understood, thanks to the works of
Newton and Kepler. On the other hand, when N > 3, the situation changes dramatically
and the problem, if considered in a completely general setting, is really far from being
solved. In particular, the dynamical system results to be not analytically integrable
and the presence of a huge singular set, which is represented by every possible collision
between the bodies, is responsible for a very complex dynamics. Indeed, if we introduce
the gravitational potential
MMy,

V($) :V(:cl,...,xN) izi
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the system joins a Hamiltonian structure, with respect to the Hamiltonian function

H(z,v) = K(v) — Z |UZ‘Z Z T

—~ m por |z — x|

where the singularity of the potential V' is determined by the collision set, i.e., when-
ever x; = x; for some k # j. These singularities of the system determine the non-
completeness of the associated flow (see [31]), raising up the complexity of the problem
and inducing a chaotic behaviour on the orbits (see [29]). A lot of results have been
obtained in the study of such singularities, mainly analysing the behaviour of a collision
trajectory producing asymptotic estimates (see [64}169, 63,57, 58, [7]), but also employing
the powerful tool of the McGehee coordinates introduced in [52], in which the singular-
ity is blown-up and the flow is extended through collisions glueing a collision manifold
in the phase space.

Classically, there is a great interest in periodic solutions of Hamiltonian systems
since, according to the Poincaré conjecture, a complex and possibly chaotic dynamics
for the trajectories is strictly connected with the existence of a dense set of periodic
solutions. Some of the hurdles that arise in looking for periodic trajectories of the
N-body problem can be partially tackled if one considers some particular situations,
taking into account a less general setting. A first approach to find families of periodic
solutions consists in imposing symmetries on the motion of the bodies. In this context
variational techniques reveal to be very efficient and have induced a plethora of results
to enrich the set of periodic solutions (see [13} 35, 22, 21}, 65| [10], [8]).

Another simplified, but still far from being trivial, version of the N-body problem can
be introduced as follows: consider (/N + 1) heavy bodies and assume that one of them
is moving much faster than the others. In this way, NV of the bodies can be assumed
motionless, while the one remaining is moving under their attraction (we assume its
mass to be equal to 1). This is how the N-centre problem of Celestial Mechanics is
usually stated, assuming as an approximation that N bodies are fixed and thus they
represent a finite number of centres of mass. In R3, assuming that the Coriolis’ and
centrifugal forces are neglected, if we denote by ci,...,cy € R3 the position of the
centres, by my,...,my > 0 their masses and weletz: I C R — R3 be the motion law
of the moving particle, the equation of motion is the following

. m;i(x(t) — ¢4
i =2 ot

Again, the previous equation has Hamiltonian structure, with Hamiltonian

m;

1, ., -
H(z,v) = K(v) = V(2) = S| —Z

1’35_%

and, in this setting, a singularity for V' occurs whenever x = c; for some j. The function
H(z,v) represents exactly the total energy of the system and thus a conservation of the
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energy characterizes every solution of the equation of motion in this way

1
5\x(t)|2 —V(xz(t)) =he€R, foreveryte .

As for the N-body problem, the number of the centres plays an essential role with respect
to the integrability of the system. If V = 1 we end up with the Kepler problem, which is
integrable and whose solutions are conic sections. A very interesting situation appears
when we consider two centres of mass: note that in this case the equation of motion
approximates the one of the restricted three body problem, where by restricted we mean
that one of the three bodies has a negligible mass with respect to the others. Euler started
to study the 2-centre problem in 1760 and he showed that it is integrable ([34]), while
explicit solutions have been provided by Jacobi in his famous book Vorlesungen iiber
Dynamik (1866) (see also [4] for a more recent explanation of these results). Concerning
the applications, the 2-centre problem revealed to be very useful in the determination
of the orbit of a satellite, assuming that the Earth is placed in one of the two centres (see
[67]); moreover, the 2-centres can be also considered as atomic nuclei and the particle
can play the role of an electron in the model of a diatomic molecule (see [68] for further
details). As expected, also in the N-centre problem the integrability of the system fails
when we consider more than 2 centres. A first step in this direction has been made
by Bolotin in [14], where the author showed that the planar N-centre problem is not
analytically integrable when N > 3 if we restrict the dynamical system to energy shells
H~Y(h), with h > 0. Concerning the 3-dimensional case, the non-integrability of the
system has been discussed separately in [15] by Bolotin and Negrini and in [48] by
Knauf and Taimanov: in the first paper, the authors showed the presence of positive
topological entropy for non-negative energies h > 0, while in the second one the authors
showed that over a threshold h > h > 1, no real-analytic integral exists for the spatial
N-centre problem, N > 3. To conclude this brief digression on integrability, we also
observe that in [47] the authors proved that, again over a high energy threshold, the
N-centre problem is completely integrable through C*°-integrals both in R? and R3.

Many research papers have also provided a qualitative description of this dynam-
ical system. A fundamental contribution to the planar problem at positive energy is
contained in [44]: therein the authors used global analysis methods and Riemannian
geometry in order to give a rigorous description of the scattering for the N-centre prob-
lem. Moreover, the existence of a symbolic dynamics in positive energy shells has been
established in the same paper. A generalization and some extensions of this result have
been given in [45]] for the 3-dimensional setting; the author used perturbation techniques
at high positive energies in order to analyse the orbits of the system, providing again a
scattering theory for the spatial /N-centre problem over a certain energy threshold. In
[18] the authors used min-max methods in order to find unbounded trajectories with
prescribed ingoing and outgoing directions in the space, assuming the energy to be 0.

When one considers negative energy shells it is useful to introduce the so-called Hill’s
region

Ry ={zeR*\{c1,...,en}: V(z) +h >0}
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since, in contrast with the case h > 0, this set is strictly contained in the punctured plane.
In this situation it is not possible to involve global arguments based on the fundamental
group of R? \ {ci,...,cn} as in [44], since the non-boundedness of the Hill’s region
introduces a degeneration on the Jacobi metric. Indeed, a portion of the boundary 0R},
has null Jacobi measure and thus it would be a minimizer for the Jacobi functional,
but it would not solve the N-centre problem with fixed ends. This is why in [61] the
authors used a finite dimensional reduction in order to obtain closed periodic solutions
for the planar N-centre problem at negative energies. They separated the proof inside
and outside a ball of radius R > 0, finding solution arcs with two different techniques
and then glueing them together on the circle dBg. Other results, with much stricter
assumptions, have been obtained for the negative energy case in this way:

e in [16] the authors considered 3 centres in the plane, one of them placed very far
from the others, and used perturbation techniques in order to show the dynamical
system is chaotic through the Poincaré-Melnikov theory;

e in [32] perturbation methods for the 3-centre problem are used as well, assuming
this time that the third centre is less attracting than the others and that the energy
is very small in absolute value, obtaining invariant sets of chaotic quasi-colliding
solutions.

We conclude this discussion on the N-centre problem observing that it is also possible
to find periodic solutions prescribing the period 7' > 0, without any information on the
energy of the system. Two interesting contributions in this direction can be found in
[20 Q1.

The anisotropic Kepler problem

In the research paper [37], Gutzwiller firstly introduced the anisotropic Kepler problem
as a classical mechanical system that approximates a quantum system. A natural
situation in which this system arises is when one analyses the ground states of an
electron near the donor impurity of a semi-conductor. In the perspective of Gutzwiller,
the anisotropy resides in the kinetic energy of the planar system through an anisotropic
mass tensor, while the potential is induced by a Coulumbic force field. Motivated by
these physical applications, firstly on the basis of numerical computations ([37]) and
after with analytical methods ([38]]), he provided a qualitative description of periodic
solutions in negative energy shells (see also [39]). In particular, he showed that a
continuous and one-to-one map can be constructed between the initial conditions and
the binary sequences composed by two real numbers, actually proving that the Poincaré
map is topologically conjugate to a Bernoulli shift (cf. Definition[2.1.5).

Deepening a more geometrical point of view, another series of remarkable contri-
butions in this direction have been given by Devaney during the same years. In the
research paper [25], he introduced the one-parameter family of Hamiltonian systems
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driven by

H,(,0) = Ky (v) = Vi(2) = & (uo? +03) — -,

2 ]

with x = (21,22) € R?\ {0}, v = (v1,v2) € R? and g > 1. When p = 1, the system
reduces to the classical Kepler problem and the energy and angular momentum integrals
provide the integrability; on the other hand, when ;1 grows beyond 1, the spherical
symmetry of the system disappears and the angular momentum is no longer conserved
along a solution. This fact completely changes the phase portrait of the system and the
regular structure of the orbits. Indeed, as the parameter p increases, the trajectories start
to draw extensive oscillations about the x5 axis due to the anisotropic kinetic energy
K ,,. In particular, when ;1 > 9/8, these oscillations become highly random: for instance,
one can find orbits that oscillate an arbitrarily large number of times about the x-axis
before they cross the zi-axis. As a result, the integrability of the system ceases to
exist when anisotropy is introduced and this suggests to investigate the existence of a
symbolic dynamics. This whole analysis has been carried out in [25], where the author
in particular showed that, for an open and dense subset of parameters ;1 contained in
(9/8,400), the anisotropic Kepler problem displays symbolic dynamics. Notice that
when 0 < p < 1 the situation symmetrically reflects, then producing oscillations about
the x;-axis. The key investigation objects are the bi-collision trajectories, which have
been studied using the McGehee’s change of coordinates ([52}53]). This technique has
been introduced in the context of the collinear three-body problem and consists in a
blow-up of the singularity in the phase space, which is replaced by an invariant torus,
the so-called collision manifold. In this way, the flow is extended beyond the singularity
and bi-collision trajectories reveal to be heteroclinic solutions of the new dynamical
system (for other perspectives on the qualitative analysis of this system we refer also to
129, 27, [19, 40])).

Another considerable difficulty in this context is represented by the non regulariz-
ability of collision trajectories. When the total energy is negative, the Kepler problem
admits a cylinder of trajectories which start and collapse again in the origin after a
certain time, the so-called homothetic trajectories. These solutions are not defined for
all the times, but it is a classical result that the Levi-Civita transform permits to extend
them through collisions, so that they display a bounce at the collision instant and then
result analytically regularized (see [64]). This can be done also employing a topological
surgery technique, using the so-called isolating blocks ([33} 23]), but also in a variational
fashion ([55] 56]). The regularization then reveals to be a powerful tool in applications
in order to avoid collisions and to build periodic solutions (see for instance [61}35]), but
Devaney discovered that this process does not agree with anisotropic context. Indeed,
in [26], he used the approach introduced by Easton in [33] to show that there exists an
open and dense set of parameters p in (1, +00) such that the corresponding anisotropic
Kepler problem is not regularizable by surgery.

In [29] Devaney remarked that an equivalent formulation of this problem, via an
easy change of variables, can be considered and thus one can take into account the



Hamiltonian )

2 2’
pry + s

,(,0) = K(0) = V(o) = 5ol -

where the kinetic energy K is standard, while the anisotropy is now contained inside the
potential V},. From this point of view, further generalisations of V,, could be considered,
as has been done in the recent papers [11,12]. The authors introduced a wider class of
anisotropic problems, considering a family of singular homogeneous potentials

{v € C2(R\ {0})
V(z) = |z[~*V (x/]x]),

with a € (0,2) and d > 2 and studying the zero-energy dynamical system

{a'c'(t) = VV (z(t))
e =V (@)

whose solutions are usually referred as parabolic trajectories. In this context, itis extremely
useful to introduce the central configurations of V as all the unitary vectors that are critical
points for the restriction V|gs-1. Indeed, a zero-energy solution x(t) enjoys asymptotic
properties: its norm |z ()| blows up when ¢ — 400 and, if we assume that the set of
central configurations is discrete, we have that

z(t) gt

|z (t)]

where ¢* are central configurations for V. In [11} [12], the existence of entire parabolic
trajectories with prescribed asymptotic directions at infinity is provided using a varia-
tional approach, in which a zero-energy solution is characterized as a Morse minimizer
for the Jacobi metric. Following the approach of McGehee in [52]], parabolic solutions are
shown to correspond to heteroclinic connections between two saddles in the collision
manifold and their existence is strictly related to the choice of the homogeneity degree.
In particular, in [11] the authors deepen the study in the planar case; when d = 2, one
can introduce polar coordinates x = (r cos ¥, r sin /) and write

ast — +o0,

V(z) =V (rcosd,rsind) =r *U(V),

where U is exactly the restriction of V to the sphere S'. With this notations, a cen-
tral configuration for V is actually an angle ¥ € S' and this allows to analyse more
precisely the qualitative behaviour of the trajectories. If we fix 97,9~ € S! minimal
non-degenerate central configurations, then there exists at most one homogeneity degree
a = a(U,97,97) € (0,2) for which a parabolic Morse minimizer exists. In particular,
this threshold of existence is also related to the absence of collisions for fixed-ends Bolza
problems (see also [24]), but also to the existence of non-collision periodic orbits having
a prescribed winding number; we want to remark that these results are very close to

vi



the minimizing properties of Keplerian ellipses studied by Gordon in [36]. Parabolic
trajectories for systems driven by homogeneous potentials have also been analysed from
an index theory point of view in [42]].

The study of this wide class of anisotropic potentials reveals to be very useful in the
applications of some particular situations arising from the N-body problem. As enlight-
ened by Devaney in [28, 30], after a combination of Jacobi and McGehee coordinates,
the planar isosceles three-body problem can be reduced to a dynamical system driven
by an anisotropic potential of the form

1 4¢3/?
- + ,
V2cost /2 + 4sin? ¥

where the two symmetric masses m; = my = 1 and the third mass mg = ¢ > 0.
Analogous situations can appear when 4 bodies are considered and particular symmetry
conditions are required. For instance, in [60} 49], two degenerate situations of the four
body problem with only two degrees of freedom are considered: the symmetric collinear
four body problem and the rectangular four body problem. In these settings, chosen
changes of coordinates allow to reduce the dynamical system to a unique ordinary
differential equation, which involves an anisotropic potential. In this way, the total
collapse and ejection-collision trajectories are characterized exploiting an analysis of the
flow on the collision manifold. Analogous anisotropic potentials come out when one
considers the rhomboidal four body problem as in [50], but also in a charged setting (see
[1]). To conclude this brief discussion on the applications, we also cite the recent research
paper [2], in which the authors study ejection-collision orbits for the symmetric collinear
four body problem, dealing with an anisotropic potential arising in this context.

U(0)

Main results

In this last paragraph we collect the main results contained in the two following chapters.

Minimal collision arcs asymptotic to central configurations ([5])

In Chapter(ljwe introduce a class of singular anisotropic homogeneous potentials V() =
||~V (x/|z|), with « € (0,2) and € R? (d > 2), and we consider the conservative
Newtonian system

B(t) = VV(2(1)),

or the same system driven by lower order perturbations of V. Our objects of interest
are those trajectories which collide with the origin in finite time (collision solutions).
Assuming that the set of central configurations of V' is discrete, the normalized configu-
ration x.oy(t) /|xcon(t)| of a collision solution x4 (t) converges to a central configuration
s* € S9! for V. Because of the occurrence of such singular trajectories, the flow associ-
ated to the dynamical system is not complete. Using McGehee coordinates, the flow can
be extended to the collision manifold having central configurations as stationary points,
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endowed with their stable and unstable manifolds. We focus on the case in which the
asymptotic central configuration s* is a global minimizer of the restriction of V' to the
sphere S¢~! and we take into account the local stable manifold W;? (s*) associated with
s*. If we introduce the Jacobi-length functional

T
La(x) = /0 ()i V(D) dt

and we define the space of H'-collision paths starting from a position ¢ € R?\ {0} as

Hq

col

= {e e HY([0,TRY) : 2(0) = ¢, 2(T) =0, [a(t)| < |q|, ¥¢ € (0,T)}

with some restrictions on |¢|, since o € (0,2), we can find at least a minimizer for
Ly, in the above space. Our main goal then is to show that the local stable manifold
W (s*) coincides with that of the initial data of minimal collision arcs for £j,. This
characterisation may be extremely useful in building complex trajectories with a broken
geodesic method. The proof takes advantage of a generalised version of the Sundman’s
monotonicity formula.

Symbolic dynamics for the anisotropic N-centre problem ([6])

In Chapter |2/ we consider an anisotropic version of the planar N-centre problem in
which every centre is associated with a different homogeneous potential. In particular,
given cy, ..., cy € R? the positions of the centres, we consider Vi, ..., Viy € C3(R?\ {0})
homogeneous functions and we introduce the singular potential

N

V(z)=> Vj(x—c);

j=1

if we denote by x(t) the position of the moving particle in the plane, we study the
conservative Newtonian system

We assume that the energy —h is negative, with h << 1 and we require the following
hypotheses on the potential V/

Vjis — aj;-homogeneous, Vj =1,..., N
O<ap<as<...<apy
(1) ap <2

aj >a;, Vji=1,...,N
V; admits at least a striclty minimal central configuration, Vj =1,..., N,
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where a; € (0,2) is a threshold homogeneity degree which guarantees the absence of
collisions with the centre ¢; and will be rigorously specified later (see (V]), Remark[2.1.1]
at page [32] and Theorem 2.4.23 at page [78). Our main result then is to prove that, if
V satisfies assumptions (I), then there exist infinitely many periodic solutions for the
anisotropic N-centre problem in negative energy shells, which are collision-less and
free of self-intersections.

The idea of the proof is to build such solutions as a juxtaposition of different pieces
of trajectories, following the approach of [61], which is based on the broken geodesics
method introduced by Seifert in [59] in a completely different context. Since the energy
is negative, the Hill’s region is a proper subset of R?\ {cy, ..., ¢y } and an arc contained in
its boundary has null length with respect to the Jacobi metric. Because of the presence of
this degeneration, global arguments (see for instance [44]) do not apply in this context
and we need to separate the proof close/far from the singularity set. In particular,
when the particle is close to the centres, the solution arcs are provided through the
minimization of the Maupertuis’ functional under a suitable topological constraint. On
the other hand, when the particle travels far from the singularity set, a perturbation
technique is employed, including all the centres in a small ball and thus reducing
the system to a perturbed anisotropic Kepler problem driven by one of the potentials
associated to the centres. As a final step, we alternate an outer and an inner arc and then
we glue them together, in order to obtain a closed periodic solution. Even if every single
trajectory obtained in the two previous steps is smooth, we need to show that such
smoothness is preserved through the junctions. This will be made by minimizing the
Jacobi-length functional with respect to the endpoints, so that a minimizer will match
the derivatives in the contact points. We point out that requiring the energy to be small
in absolute value is a fundamental assumption. Indeed, if & becomes very large, then
the Hill’s region {x € R?\ {c1,...,en} : V(x) > h} could be disconnected and this
would represent a pathologic situation in this strategy of proof.

The presence of infinitely many periodic solutions allows us to characterize this
dynamical system with a symbolic dynamics. Using pairs composed by a partition of
the centres and a minimal non-degenerate central configuration of the potential with
the smallest homogeneity degree, we determine a finite alphabet Q. Then, we consider
the metric space of bi-infinite sequences of symbols Q% and we introduce the discrete
dynamical system induced by the right Bernoulli shift map. In this way, we determine
an invariant subset of the original dynamical system and we show that the first return
map is topologically semi-conjugate to the Bernoulli shift. Assuming (I)), the symbolic
dynamics is collision-less and for m minimal non-degenerate central configurations the
number of symbols is m(2N-1 — 1), assuming furthermore that N > 2 and m > 1,
with one of the inequalities holding strictly. As a final remark, if the threshold on the
homogeneity degrees a; > @&; in (1)) is violated for some j, collisions with the centres
may arise; nonetheless, within certain limits, the existence of a symbolic dynamics
persists, using a smaller set of symbols and taking into account the collisions.
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1. Minimal collision arcs asymptotic to
central configurations

1.1. Introduction and main result

Many papers of the recent literature are focused on the variational properties of ex-
panding (parabolic or hyperbolic) or collapsing trajectories for N-body and N-centre
type problems (see e.g. [11,[12} 18] 17,19, 51]), framing them in a Morse-theoretical per-
spective. Indeed, in addition to answering natural questions about the nature of these
motions, the variational approach is a fruitful tool when building complex trajectories
exploiting gluing techniques (cf. Chapter [2, but also [6] |61]). These applications are
the original motivations for this work and show a natural link with the next chapter,
although we believe that the obtained result is interesting in itself. In order to state it in
detail, we need some preliminaries on the motion near collision for a class of singular
anisotropic homogeneous potentials of degree —«a, with a € (0, 2) (and their lower order
perturbations).

In this chapter we consider the Newtonian system of ordinary differential equations

(1.1) E(t) = VV(x(t)),
whose solutions satisfy the energy relation

(1.2 SR = V(a(t) = h

with h € R. It is possible to reword equations (1.I)-(I.2) using the Hamiltonian for-
malism, choosing, as usual, the total energy to be the Hamiltonian function. Taking
into account the singularity of V, we introduce the configuration space R? \ {0} and the
phase space (R? \ {0}) x R? of the system. Since we will study fixed-energy trajectories,
it makes sense to restrict our discussion to the (2d — 1)-dimensional energy shell

Hy, = {(q,p) € (R*\ {0}) x R*: %W ~V(g) = h},

and thus, every solution of (1.1)-(1.2) can be seen as an evolving pair (¢, p) € H; which
solves

13 ¢=p
43 {1’) = VV(q).



Our potential V' is a not too singular perturbation of a —a-homogeneous potential S.
To be precise, for d > 2, let us introduce a function U € C?(S91) such that

(5°0) JIs* € Sl st. U(s) > U(s*) > 0, Vs € ST,
s
30,p>0: VseSi st [s—s*|<d = U(s)—U(s*) > pls — s*|%,

and then consider a potential V' € C*(R?\ {0}) such that

V=S+W,

(V0) S € C?2(R4\ {0}) and S(z) = |z|~*U(x/|x|), for some a € (0,2);
|1'1‘m0 |z (W () + |z - [VW (z)]) = 0, for some o/ < av.
x|—

Here, S has a singularity in the origin and it represents a generalization of the anisotropic
Kepler potential introduced by Gutzwiller ([37, 38, 39]). On the other hand, the per-
turbation term W becomes negligible with respect to S as x| — 0. In particular,
recalling that a central configuration for S is a unitary vector which is a critical point of
the restriction of S to the sphere, the assumptions on U state that s* is a globally
minimal non-degenerate central configuration for S. As an example, for d = 2 and
x = (x1,22) € R?\ {0}, one can consider the function

1 1
— —|- ,
Viad+ a3 /2t + a3

where 1 > 1. Notice that the third requirement in is fulfilled for every o’ € (1/2,1).
As another interesting application, we can consider the /N-centre problem driven by N
anisotropic potentials satisfying hypotheses (s*0)-(V0). In this situation, when the
particle is significantly close to one of the centres, the remaining /N — 1 centres generate
a potential with the same properties of the perturbation function W. We are concerned
with the behaviour of those trajectories which collide with the attraction centre in
finite time (collision solutions). It is well known that, as |¢(t)] — 0, the normalized
configuration ¢(t)/|q(t)| has infinitesimal distance from the set of central configurations
of S. In particular, if this set is discrete, any collision trajectory admits a limiting central
configuration 5 € S%-1 (see for instance [7,[35,[12])), that is

V(z)=9S(z)+ W(x)

(1.4) lim +— 2 = §,

for some T > 0. Given a central configuration § € S9! for S, we define the set of initial
conditions for (1.3) in #;, which evolve to collision with limiting configuration 5

Sh(8) = {(q,p) € Hp, : the solution of (1.3), with ¢(0) = ¢, p(0) = p, satisfies (1.4)}.

The corresponding motion is termed $-asymptotic trajectory and we want to remark that
the above set is non-empty, since the 3-homothetic trajectory with energy h is entirely
contained in it.



Following McGehee ([52}53])), it is possible to prove the next result (see Sections
[1.3for a step-by-step proof in the planar unperturbed case), in order to give a dynamical
interpretation of the set Sj,(s*) when s* € S9! satisfies (5*0). From now on, we will
consider the tangent bundle 7'S?~!, which is nothing but the union of all the pairs
{(s,u) : u € TS 1}, where s € S¥! and T;S%! is the tangent space of the sphere
S?1in s. Let us observe that both S%~! and T;S?! are (d — 1)-dimensional manifolds.
Moreover, let us recall that an equilibrium point for a non-linear dynamical system is
hyperbolic if all the eigenvalues of the Jacobian matrix of the associated vector field have
real part different from zero.

Lemma 1.1.1. Given h € R, consider a potential V € C1(R%\ {0}) and s* € ST satisfying
respectively (V 0) and (s*0). Then, there exists a diffeomorphism
¢: Hp — [0, +00) x TS !
(¢;p) = ¢(q,p) = (r,5,u)
such that, for some C?-vector field F: [0, +00) x TS*™! — [0, +00) x TS and a certain time

rescaling T = 7(t), considering the dynamical system (where “' " stands for the derivative with
respect to T)

(1'5) (’r/7 8/7 ul) = F(’r’ 87 u)’
we have:

(i) to a solution (q,p) = (q(t),p(t))cpr) S Hn of there corresponds a solution
(r,s,u) = (r(1),s(1),u(r))r>0 C [0, +00) x TSt of (T.5);

(i1) (0,s*,0) is a hyperbolic equilibrium point for (1.5);

(iii) there exists a d-dimensional stable manifold W¥ for (0, s*,0), which is locally the graph
of a C2~function W: U — TsS?1, where U C [0, +00) x S is a sufficiently small
neighbourhood of (0, s*) and ¥ (0, s*) = 0.

In other words, defining
Wlic = WS n (u X \IJ(U)),

it turns out that

(iv) in a neighbourhood of the origin, S(s*) corresponds to Wi _ through the diffeomorphism
¢, so that a s*-asymptotic collision trajectory will be represented by an orbit contained in
Wi

To have an idea of the geometrical description of the coordinates (r, s, u) introduces
in the previous lemma, we point out that (7, s) is the expression in polar coordinates of
the position coordinate ¢, while u is a rescaled version of the velocity p.



Our goal is to establish a link between orbits contained in Wj] . and collision trajectories
which minimize the geometric functional naturally associated with the Hamiltonian
system. For this reason, let us introduce the Jacobi-length functional

T
Laly) = /0 9IVR+ V),

for y € H'([0, T]; RY) such that || > 0 and h + V (y) > 0. Itis well known that a critical
point y of L, corresponds to a classical solution on (0,7") of in Hj, for a certain
T > 0,if |y(t)| # 0 for every t € (0,T) (see for instance [4} 46| 54]).
In particular, for a properly chosen 7 = 7(h) > 0 and for ¢ € By = By(0), introducing
the set of collision paths
HY, = {y e H'([0,TERY) : y(0) = q, y(T) =0, [y(t)| < al, t € (0,T)},

coll —

contrary to the case a > 2, in which £}, is never finite on collisions, when a € (0, 2),
we are able to find at least a minimizer for the Jacobi length in the above space. Such
a minimizer is not necessarily unique; indeed, any of these minimal paths is associated
with the starting velocity ¢(0) of the trajectory. This leads to the construction of the
multivalued map

Fin: Br — P(T,R)

coll

q— Fr(q) = {y(O) : y = argmin Eh}

in which F(q) represents the set of all the initial velocities for which a minimal collision
arc exists.

Now, in the fashion of Lemma without loss of generality, we can assume that
U = [0,7) x Bg(s*) for some 6 > 0, so that

Wl%c = Wlic(ﬁ 5)

In this way, our main result consists in showing that, if 7 and ¢ are sufficiently small,
a collision minimizer starting at ¢ € By, with ¢/|q| € Bj(s*), is actually unique and its
¢-corresponding orbit is entirely contained in W;? . This means that, for such starting
points, the set 75 (g) is not only a singleton, but it verifies (g, F1(q)) € W;,... For this
reason, it makes sense to introduce another local set in the phase space, which is spanned
by all the unique minimizers above mentioned

My (7,0) = {¢(q, Fulq) : q € Br, q/lql € Bs(s")},
and to state our core result in this way:

Theorem 1.1.2. Given h € R, consider a potential V € C'(R? \{0}) and s* € S verifying
respectively (VO) and (s*0). Then, there exist ¥ = 7(h) > 0 and § = §(s*) > 0 such that

Wi (7, 6) = I, (7, 6).



Remark 1.1.3. The assumption (s*0) that the minimal central configuration is non-degenerate,
though stringent, holds generically. It can be easily lifted in some particular situations, for
example in the case of the —a-homogeneous N-body problem, that is when

Vg, - ,qn) = Zlq

mim;

Z_CI]‘Q ‘

In this case the potential is invariant under common rotations of all the bodies and obviously no
central configuration can be non-degenerate. However, our main result still holds true under the
assumption of non-degeneration of the SO(d)-orbit of the minimal central configuration under
examination. Indeed, using again McGehee change of coordinates and extending the flow on the
collision manifold, Lemma can be rephrased in terms of a normally invariant manifold of
stationary points endowed with their stable and unstable (local) manifolds. Given this alteration,
the statement and proof easily follows.

For the sake of a better comprehension and visualization of the proofs, we will carry
out our work in a simplified case, which can be easily generalized to the setting intro-
duced above. In particular, from now on we will take into account a planar anisotropic
Kepler problem as proposed in [11] and we will work in negative energy shells, i.e., we
will assume

o d=2;
o W =0
e h<O.

Useful complementary material needed for the proof in the more general setting will
be provided in Section The paper is organised as follows: Section [1.2| introduces
the collision manifold for the planar case and recalls the main features of the extended
flow, whereas Section[I.3]is devoted to the analysis of the extended flow near its critical
points. The object of Section [I.4]are Bolza minimizing arcs and their properties, while
the Main Theorem will be eventually proved in Section in the unperturbed and
planar case, whereas in Section [1.6| we will discuss the modifications needed to cover
the perturbed d-dimensional case.

1.2. The collision manifold for the planar problem

As aforementioned, we will develop this and the following sections working on the
plane and with an unperturbed potential V. The following construction, which is the
two-dimensional version of Lemma exploits a technique firstly introduced by
R. McGehee in the study of the collinear 3-body problem ([52] 53]) and furthermore
employed by Devaney and others for the anisotropic Kepler problem ([25, 29} 30, 143])).
Exploiting a space-time change of coordinates, this method consists in attaching a
collision manifold to the phase space, where the flow can be extended in a suitable



way, having central configurations as stationary points, endowed with their stable and
unstable manifolds. In particular, a very similar approach with possibly different time
parameterization can be found in [11, 12, 42]. We shall follow here the Devaney’s
approach ([25]). For our purposes, for a point z € R? \ {0} it makes sense to introduce
polar coordinates x = (q1, g2) = (r cos ¥, rsind), where

(arctan(ga/q1) ifg1 >0, ¢g2>0
/2 ifg1=0,¢>0
r=4/¢+ q3, ¥ = < arctan(qa/q1) + 7 if g1 <0 ,
37T/2 ifgr =0, g2<0
(arctan(ga/q1) + 27 if g1 >0, g2 <0

with7 > 0and ¥ € [0, 27). In this way, any —a-homogeneous potential V € C%(R?\ {0})
can be written as
V() =r=*U(9),

where U € C%(SY), U > 0 and

U(¥) = V(cos?,sind).

Hypotheses on V: In this setting, the original assumptions (1 0)-(s*0) reduce respec-
tively to:

Ve C*(R*\ {0});
(V1) .

V(z) = |z|~2U(x/|z|), with a € (0,2) and U € C%(S),
and
(U1) J9* e Stst. UW) > UW*) >0V € St and U”(9%) > 0.

With these notations, we study the motion and energy equations in the plane
06 i(t) = YV (a(1))
2|20 =V (x(t) =,

with . < 0. As usual, the conservation of energy forces every solution of (1.6) to be
included into the Hill’s region

Ry ={z €R*\{0}: V(z)+h>0}.

Now, since
VT‘:’I“_I(quz), VQ9:T_2(—Q2aQ1)a

we can compute

VV(x) =r o2 [—aU(ﬁ)(Ql; q) + U/<19)(—QQ,(]1)] )



In this way, introducing the momentum vector (p1,p2) = (41, g2), we can rewrite equa-
tions as

41 = p1
1.7) =k
p1=r"""[-U'(¥)q2 — aU(V)q1]
pr =12 [U'(9)q — aU(9)qa]
and

1
3 (p? +p3) —r~“UW) = h.

If we are not on the boundary of R}, we have that |p| # 0 and so, for every solution
of (1.7), we can find smooth functions z > 0 and ¢ € [0,27) in such a way that p; =
7=/2% cos p, py = r~*?zsin ¢, choosing

(1.8) z =/2U(9) + 2hre.

By standard calculations, equations become

=12z cos(p — 1)

0 =r~17%2z5in(p — )

5= 122 [U(9) sin(p — 9) 4+ ahr® cos(p — 9)]

¢ = 171792 [ (9) cos(¢ — 9) + U (9) sin(p — V)]

(1.9)

and this system has a singularity when r = 0, which indeed corresponds to the collision
set {0} C R? of problem (L.6). Introducing a new time variable T which verifies

dt

% _ Z,'nl—i—oc/Q7
the singularity of (1.9) can be removed in order to extend the vector field to the singular
boundary {r = 0}. The effect of this rescaling is to blow-up the instant of an eventual

collision, so that the particle will virtually never reach the singularity. In this way, we can
rewrite (1.9) as (here “’” denotes the derivative with respect to 7)

2 cos(p — 1)

V' = 22 sin(p — 1)
2 =z [U'(9)sin(p — 9) + ahr® cos(p — V)]
¢ =U'(V9) cos(p — V) + aU(9) sin(p — 9).

r'=rz

Moreover, the conservation of energy, together with definition (L.8), allows us to elimi-
nate the variable z from the system, and thus to consider the 3-dimensional system

' =2r(U(9) + hr®) cos(p — )
(1.10) W =2(U(9) + hr*) sin(p — )
¢ =U'(9) cos(p — 9) + aU(9) sin(p — 9)



which we shortly denote by (', 9, ¢') = F(r,9,¢), with F: [0, +00) x TSt — [0, +00) x
TS!. Since ' = 0 when r = 0, the boundary {r = 0} is an invariant set for the above
system. In other words, we can restrict the vector field F' to {r = 0} and study the
independent dynamical system

111) ¥ = U(9)sin(p — )

. ¢ =U'(9) cos(¢p — V) + aU(9) sin(p — 9)

which defines a 2-dimensional collision manifold and whose stationary points are
(9,9 + kr), with k € Z and U’(9) = 0.

If we denote by JF|{,—g; the Jacobian matrix of the vector field associated to (1.11) and
we evaluate it at (0, + k), we obtain

whose eigenvalues are

A~

PR R -2 2

JF|fr=03 (0,0 + km) = cos(km)U (V) (U”(@) ) )
"

v

(a—2)2+8U (A)

Ty " @
1
2
U } '
For the sake of completeness, we present here a full characterization of the equilibrium

points of (L.11), depending on the value of U” (9).
For an equilibrium point (9,9 + k) of (L.11)) we can have:

ut = %cos(kﬁr)U(@) {a -2+

o ifU"(Y) < —%U(@), then u* € C \ R and thus
— if k is even then (19, 0+ k) is a sink;
— if kis odd then (9,9 + kr) is a source;

o ifU"(Y) = —%U(@), then p= = p* € R and thus
— if k is even then (9,0 + k) is asymptotically stable;
— if k is odd then (0,9 + k) is unstable;

o ifU"(D) > 220 (), then
— ifU"(0) > 0, then p~ - u < 0 and thus (0,0 + kn) is a saddle;
— if U"() = 0, then one of the eigenvalues is zero and thus
% if k is even then (J,9) + k) is a stable degenerate node;
+ if k is odd then (0,9 + k) is a unstable degenerate node;

~

- if0>U"(9) > —%U(@), then sign(u~) = sign(u*) and thus



% if k is even then (), + k) is a stable tangent-node;
% if k is odd then (1,7 + k) is a unstable tangent-node.
Now, we assume again (V' 1)-(U1) and so, in particular, (¢¥*,9* + k) is a saddle

equilibrium point for (1.11). Coming back to the 3-dimensional system (1.10), the
Jacobian of F evaluated in the stationary points (0, 9*, ¥* + k) is

2 0 0

JF(0,9%,9* + kn) = U(9*) cos(kr) | 0 —2 2
U”(’l9*)

Uy & &

In this way, we note that the r-eigenvalue is always non-zero, i.e.
o if k is odd the orbit enters in the collision manifold;
e if £ is even the orbit leaves the collision manifold.

Since we are interested in studying the behaviour of a trajectory which approaches the
singularity, we focus our attention on the case in which £ is odd. With the choice of
k = 1, the Jacobian becomes

—2U (¥*) 0 0
JF(0,9%,9* + 1) = ( 0 20U (9*) 2U(19*)) :
0 aU(9*) = U"(9*) —alU(9")

the eigenvalues are

Ar = —=2U(0%) <0
2 —«

A =

1
U(9*) + 5¢(2 — )2U(9%)2 48U (9*)U"(9*) = 0
and the relative eigendirections are

v, = (1,0,0)

1 a1 U’ (9*)
+ - SR — )2
v (0,1,2+4:|:4\/(2 a) +8U(19*)>'

Remark 1.2.1. The orbits of the stable manifold associated to the equilibrium point (0, 0*, ¥*+)
will enter in the collision manifold being tangent to v, or v—, depending on the sign of the quantity

U//(/l9>k)
U (%)

—(4-a

(for instance, if negative, the tangency will be with respect to v™). In particular, for the classical
Kepler problem in which « = 1, U(9*) = 1 and U"(9*) = 0, the above quantity is always
negative.



1.3. The stable manifold

In the previous section we have shown the existence of an invariant set for (1.10), the
collision manifold {r = 0}. Moreover, from the linearisation of the vector field, it follows
that the only way for a point in the phase space to evolve entering in {r = 0} is to belong
to the stable set of an equilibrium point (0,4, 9 + kr), with U’() = 0 and k odd. For
this reason, in this section we focus our attention on the study of the stable manifold of
such equilibrium points, with the not restrictive choice of k£ = 1. We start our analysis
with the case h = 0, which presents a simplified and clearer structure.

1.3.1. Collision orbits for h = 0
In this setting, system (1.10) reads
" = 2rU(¥) cos(p — )

(1.12) ¥ = 2U(9) sin(p — V)
¢ =U'(9)cos(p — 9) + aU(9) sin(¢p — 9)

and the set o )
{(r,9,9+m): r>0,U ") =0}

is invariant for the system and it gathers all the collision J-homothetic trajectories. Once
¥ € S! critical point for U is fixed, such a set reduces to a ray which enters the collision
manifold in the equilibrium point (0, 9, ¥ + 7).

Lemma 1.3.1. Assume (V1)-(U1). Then, there exist 6 > 0, a stable manifold W* for the
equilibrium point (9*,9* + =) of (IL11) and a C*-function ¥ : (9* — 6,9* + &) — St such that
U (9*) = 9" + 7 and for every ¥ € (V* — 6,9* +9)

o (V,p) € Woifand only if p = U(9);
o o <V+mifte (0 —0,9%) [resp. ¢ >V +mif € (9, 9% +9)].

Moreover, R>o x W* is the stable manifold of the equilibrium point (0,9*,9* + ) for system
(1.12).

Proof. We firstly analyse the 2-dimensional system (1.11), keeping in mind the eigendi-
rections v and v~ computed in the previous section. From the Stable Manifold Theorem
(see for instance [41]],[66]) we have that there exist W%, W* C2-curves on the collision
manifold {r = 0} such that

o (V0" +m) e W WS5;
e V¥ is tangent to v~ and W is tangent to v™ in (9*, 9* + 7);
e forevery (07, ¢") € W*and (9, ¢~) € W* we have

lim (9%(7), o5 (1)) = (9%, 9% + 7).

T—F00
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In particular, since (9%, ¥* 4 ) is a hyperbolic equilibrium point, W* is locally the graph
of a C%-curve ¢ = p(V), i.e.

We = {(0,0(0)): 9 € (¥ — 69" +5) withd >0, p € C%, p(*) =" + 7},

which is tangent to v~ in (9%, 9* 4+ 7). This is a consequence of the fact that the local stable
manifold has the same dimension of the stable eigenspace (Hartman-Grobman Theorem, see
for instance [66]).

Now, since the second and third equations of system (1.12) are uncoupled for every
r > 0, if we consider the set

Rso x We ={(r,9,¢): r>0, (¥,p) € W},

defining the flow associated to (1.12) as ™ = &7 (r, ¥, ¢), we have that for every (r, ¥, ) €
RZO x W#
lim &7 (r,9,¢) = (0,9%,9" + ).

T—+00

Indeed, @7 (r, 9, ¢) € R>og x W* for every 7 > 0, since the projection of the vector field
Fp on the manifold {r = 0}, m,—o Fo(®7 (1,9, ¢)), is tangent to W* for every 7 > 0, where
Fy represents the vector field associated to (1.12). O

1.3.2. Collision orbits for h < 0

When h < 0, we come back again to system (L.10), which we recall here for the reader’s
convenience

' =2r(U(9) + hr*) cos(p — V)

¥ =2(U(9) + hr*)sin(e — )

@' =U'(9)cos(p — 1) + aU(V) sin(p — 9).

The collision manifold {r = 0} is exactly the same of the zero-energy system and we
still have the invariance of the collision homothetic trajectories set

{(r,0,0+n): r>0, U'®) =0}

However, we point out that for » < 0 the set Rf x W? is not the stable manifold
for (0,9,9 + 7). Beside that, assuming (VI)-{T1), the hyperbolicity of the fixed point
(0, 9%, 9* +m) still guarantees the existence of a 2-dimensional stable manifold W?*, which
contains the homothetic trajectories and the 1-dimensional stable manifold W*.

Now, the dynamical systems and share the same linearisation with respect
to the equilibrium point (0,9*,¥* 4+ 7). These means that, below some * > 0, they are
topologically equivalent. In particular, we can imagine W* N {r < r*} as a C? h-
deformation of [0,7*) x W?*, in which the 1-dimensional components {0} x W* and
(0,7*) x {U9*} x {¥* + 7} stay always fixed.

As a consequence of these discussions, we deduce the following analytic and geo-
metric description of WW* in a neighbourhood of the equilibrium point, which locally
generalizes Lemma([I.3.1}

11



Lemma 1.3.2. Assume (VI)-(U1). Given h < 0, there exist 1, > 0, 010 > 0 and a C?-
function V: [0,750¢) X (9% = Sjoe, 9* + S1oc) — St such that U(0,9*) = 9* + 7 and for every
(7’, Q9) € (07 7’loc) X (19* - 5l007 9* + 5[00)

o (r,9,¢p) e Weifand only if o = V(r,9);
o o <V+mifd € (U — joc, V) [resp. ¢ >0+ mwif v € (V*,9" + di0c)]-
In other words, we have just characterized locally W* as the graph of a function ¥
Wige = {90, ¥(r,9)) : 7 € [0,710c), I € (9" = bioe, U™ + G1oc) } S W,

Remark 1.3.3. To better understand the meaning of the previous lemma, we can refer to the
configurations space the behaviour of a point evolving in W, . and eventually entering in the
collision manifold. In particular, Lemma guarantees the existence of a cone

C = {q = (q17 q2) S R2 : |CZ’ < Tlocs arCtan(QZ/QI) S (79* - 5[00779* + 5100)}

such that, for every trajectory which starts in C and reaches the collision being tangent to 9%, it
never leaves C (see Figure[I.1). We would stress that this confinement result is strictly addressed
to those orbits which, in the phase space, are contained in W, .. Indeed, every collision orbit that
is not tangent to ¥* in the origin is not necessarily contained in the cone C.

1.4. Collision orbits as Bolza minimizers

The first task of this work is to highlight the relationship which stands between the
dynamical nature of this problem and our variational approach. Therefore, we present
here the minimality argument which leads to the existence of a solution for (L.I)-(L.2)
and provide further properties of this underlying variational structure of the problem.
The Maupertuis’ Principle states that every critical point of a suitable functional, which
could be either the Lagrange-action, the Jacobi-length or the Maupertuis’ functional, if
properly manipulated is a classical solution of (L.I)-(T.2) (see [4],[3]). In the first part
of this section, we state and prove a similar result which guarantees the existence of a
trajectory which reaches the origin in finite time, once a critical point is provided. From
now on, we will always consider 1 < 0 fixed and assume (U1)-(V1), unless differently
specified.

1.4.1. The Maupertuis’ Principle for collision trajectories

Given g € Ry, \ {0}, consider the space of all the collision H!-paths starting from ¢ and
reaching the origin in finite time 7" > 0

HY, = {uec H'([0,T];R?) : u(0) = q, u(T) =0, u(t) € Ry, for every t € (0,T)}.

12



Figure 1.1.: The local stable manifold characterized in Remark

Moreover, let us introduce the Maupertuis’ functional My, : H 41 — RU{+o0} such that

1 [T T
My (u) = 2/ \u(s)|2d5/ (h+V(u(s)))ds
0 0
which is differentiable over [ I nand, if My (u) > 0, it makes sense to define the quantity
T 2
h+V
(1.13) w = (W) >0
ifo [

It is well-known that critical points of the Maupertuis’ functional in a suitable space, if
reparametrized, solves classically the motion and energy equations (1.1)-(2.3) (see for
instance [3] and Appendix [C|for further details). As a starting point, we show that a
minimizer of M, in H cqol , at a positive level, if exists, cannot collide in the interior of its
interval of definition.

Lemma 1.4.1. Let u € ﬁgoll be a minimizer of My, with My (u) > 0. Then, u(t) # 0 for
everyt € (0,7).

Proof. Assume by contradiction that there exists 7 € (0,7") such that u(7) = 0. Observe
thatthe path v(t) = u(t-7/T) defined for¢ € [0, T belongsto H’ . Since the Maupertuis’

13



functional is invariant through time rescalings, with a standard change of variable we

obtain
(3 s 1) ([ v
_1 T|u|2 T(h+V(u))+1 T|a|2 T(h+V(U))
)i o))
/\uF/ (h+V(u +;/TT\u\2/TT(h+V(U))

= My, (v) + [positive terms].

The reason why the remaining terms are positive is that a path in H 4 ) cannot leave the
Hill’s region Ry,. Indeed, if V(u) + h = 0 in one of the two intervals, the path would
lie constantly on the boundary of the Hill’s region, so that it will never reach the origin.
On the other hand, if \u|2 = 0, then there would be no motion and this would lead to
g = 0 which is impossible, since ¢ € Ry, \ {0}. In this way, we reach a contradiction for
the minimality of u in HZ . O

In the next theorem we show that a minimizer of the Maupertuis” functional at a
positive level actually solves equations (L.I)-(2.3) except for collision and its normalized
configuration converges to a minimal non degenerate central configuration of V' as it
approaches the origin. We can consider this result as a collision counterpart of the
well-known Maupertuis’ principle.

Theorem 1 4 2. Letuc H.  bea minimizerfor Mh such that My,(u) > 0. Then, for w given
by ([LI3), z(t) = u(wt) isa “Classical solution of (L1} in [0,T/w) such that

o 2(0)=¢q x(T/w)=0;
z(t)/|x(t)| — 9* ast — (T/w)~, with 9* € St central configuration for V;
e for some positive constant K, we have |x(t)| ~ K(T/w — )%/ %) ast — (T/w)~.

Proof. Since M} (u) = 0 we have

v]:/OTu-z)/(]T(h+V(u))+;/OTMQ/OTVV(U)-v:O,

for every v € H{ ([0, T]; R?) and so, since My,(u) > 0

T T
w2/ u-@+/ VV(u)-v=
0 0

for every v € H{ ([0, T]; R?). In other words, u is a weak solution of the equation

(1.14) wrii = VV (u),

14



but also, by standard regularity arguments and by Lemma a classical solution
of the same equation in [0,7'). Now, it is readily checked that z(t) = wu(wt) solves
(1.I)-(1.2) in [0,7/w) and that the required boundary conditions are satisfied. The
limiting behaviours as ¢t — (7'/w)~ follow from the well-known asymptotic estimates
(see [7,12,[11]). Moreover, from equation (1.14), we deduce that there exists k£ € R such

that
2

la)? = V() = k,

for every ¢t € [0,T). Integrating the above equation over [0, T"), we necessarily get k = h
and the energy equation (1.2) for = holds as well. O

1.4.2. Existence through direct methods

In what follows, we show the existence of minimizers for the Maupertuis” functional,
which correspond to collision trajectories through Theorem However, it will be
clear that such motions cannot start too far from the singularity. The initial distance
r = |q| of the particle is indeed linked to the well-known Lagrange-Jacobi inequality (see
for instance [69]), which we prove below in our setting.

Lemma 1.4.3 (Lagrange-Jacobi inequality). Define Uy, = 1rgniS]r} U(9) and
€

(2 - a)Umin é

Ly = { oh } > 0.

For every solution x of (L.I)-(1.2) such that |z| < rr;, we have that the moment of inertia

I(z(t)) = 3|z(t)|? is strictly convex with respect to t. In particular, for a solution z(t) =

r(t)e™") which collides with the origin after a time T > 0, we have r'(t) < 0in (0, T).
Proof. By standard calculations and using (1.1)-(1.2) we obtain

2
%I(w)) = (VV(z(t)),z(t)) +2(V(2(t)) + h)
= [z(t)|7*(2 — a)U(I(t)) + 2R

> (2 = a)ry TUnmin +2h = 0.
O

The previous result suggests to consider a smaller minimization set than .FAIgO” and
to require the natural constraint for a path not to leave the ball where it started from.
Indeed, the Lagrange-Jacobi inequality assures that for a solution of (I.1)-(1.2) starting
from the interior of B,, ,, its radial component is strictly decreasing and so it cannot
leave the ball B,, ,. To be precise, given r > 0 and ¢ € 0B,, we introduce the set of all
the H!-paths which start in ¢ and collapse in the origin in finite time, without leaving
the ball B,

H, = {ue H'([0,1;R?) : u(0) =g, u(l) =0, |u(s)| < r for every s € [0,1]}.
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Here and later, in order to simplify the notation, we have set 7' = 1.

We now present two lemmata which allow us to apply the direct method of the
calculus of variations; to this aim, we will often make use of the Poincaré inequality,
which clearly holds in the space HZ .

Lemma 1.4.4. For every q € B,, ,, there exists a positive constant C' such that

0<C< inf Mp(u) < +oo.
ueH?

coll

Proof. Fix r € (0,7) and ¢ € dB,. From the definition of r; given in Lemma [1.4.3}

q
we have that, for every u € H_

ah

—

1 1
(1.15) / (h+ V(u)ds > / (7= Upin) ds > 77§ Upnin = —
0 0

Moreover, for u € HZ,, we can write

r = [u(1) — u(0)] < /01 (il ds < </01 yu|2ds>

and so, together with (1.15), we obtain

1/2

ahr?

2 —«

=C>0, foreveryuec H!

coll”

1 1
M) = [“fifds [ (v s> -

. then @ € L2([0,1];R?) and V (u) € L*([0,1];R?), by means of
the limiting behaviour provided in Theorem This proves the upper bound and
concludes the proof. O

Moreover, since u € HY.

Lemma 1.4.5. For every q € By, ,;, My, is coercive on HY .

Proof. Fixr € (0,rr7) and ¢ € 0B, and consider (uy), C Hgoll, such that ||uy|| g1 — +00

as n — +oo. Since |uy(s)| < r for every s € [0, 1] and for every n € N, we obtain that
necessarily

1
lim / i |* ds = +00
0

n—-4o0o

and so, together with (1.15), we conclude that My, (u,,) — +oc. d

We are about to prove that a minimizer of M, exists and thus, invoking Theorem
[1.4.2} a collision trajectory x(t) satisfying (1.I)-(1.2) can be provided.

Theorem 1.4.6. Given h < 0 and rr; > 0as in Lemma the Maupertuis’ functional
1 1
My (u) = / e ds/ (h+V(u))ds
0 0

admits at least a minimizer u € HY

oy at a positive level, for every q € B, ;.
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Proof. Let us fix r € (0,r7) and ¢ € 0B,. Since the weak convergence implies the
uniform one in H', we first observe that H!  is weakly closed in H' (equivalently, the
weak closure follow from the fact that H_ , is convex and strongly closed).

Now, let us consider a sequence (uy,), C Hgoll such that

Mi(un) = inf Mp(u),

ucH!?

coll

asn — +o00. From and we have that (u,,),, is bounded in H' and so u,, — u in
H' up to a subsequence. In particular, since H? , is weakly closed, u € H! . Moreover,
from the weakly lower semi-continuity of the L? norm, we deduce that

1 1

(1.16) / [u* ds < lim inf/ |1, |* ds
0 n—oo 0

and, from Lemma for every n € N we obtain that

0<C < Mp(up) < oo

and thus V(u,) € L'(0,1), for every n € N. This implies that the set {t € [0,1] :
un(t) = 0} has null measure and hence, since u,, converges to u uniformly, we have

that V' (u,,) — V(u) almost everywhere. We can now use Fatou’s Lemma to deduce that
V(u) € L*(0,1) and that

1 1
/ (h+ V(u)) ds < lim inf/ (h+ V(u)) ds.
0 0

n—oo

This, together with (1.16)), proves that

. _ .
Mn(w) < liminf M (up) = inf Mp(u) 0

coll

1.4.3. A compactness lemma

Theorem shows that once h < 0 and ¢ € B,,, are fixed, we can always find at
least a minimizer of the Maupertuis’ functional in the space H . In this way, if we fix
r € (0,rr7), we can define a function 1, : 9B, — R* such that

Yr(q) = H}}n My (u) forq € 0B,.
ueH!

coll

Remark 1.4.7. In the next proposition we are going to make use of the Jacobi-length functional

1
Ly(u) :/0 i /B + V() ds,

which, for a path u € H'([0, 1]; R?), is well-defined whenever h+V (u) > 0. Therefore, it makes
sense to consider paths which live far from the boundary of the Hill’s region OR},. Nonetheless,
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with our choice of r1,y provided in Lemma this condition is already satisfied. Indeed, taking

q .
q€ B, ,andu € H_;, we can write

ah

2—a:C>0'

h+ V() > b+ 170 Uin = —

Moreover, from the energy equation, we clearly have |4| > 0.

Proposition 1.4.8. For h < 0 and r € (0,rr), the function 1y, is Lipschitz continuous on
OB, In other words, there exists L = L(rry) > 0 such that

[Yn(q2) — ¥n(q1)| < L|da — 4], for every q1 = re™t | gy = re’? € OB,..

Proof. Fix h < 0and r € (0,rr). Given ¢ € 0B,, for a path u € Hgoll we can define the
Jacobi-length functional

1
[,h(u):/o |u|\/h 4+ V (u)dt,

which is linked to M, in this way:

. . 9
22117111 My, = (min Lp,)".

coll coll

Therefore, if we define the function wy(q) = min L, for ¢ € B, and we show that it is
coll

Lipschitz continuous we are done.
Fix g1 = re’1, ¢o = re’’? € 9B, and consider the circular path

Ugre(t) = reI7DNH892) — for g < [0, 1].

We have

1
Eh(uarc) = T‘ﬂQ _191|/0 \/h+T_aU(Q9(t))dt

< L”lgz — 191|, where L = L(TLJ) = Ti}a/Q\/ Uz
Now, since Ly, is a length, it is invariant under time rescaling and so we can write

min Ly, < Lp,(Ugre) + min Lp.
qu q2

coll coll
Finally, from the definition of wy, we obtain

wr(q1) < wi(gz) + L2 — 94|
and, with the same argument

wi(q2) < wp(qr) + Lva — 94 O

Corollary 1.4.9. Given h < 0,7* € (0,717), h* € (h,0) and ¥* € S, consider three sequences
(hk)k - ]R, (T'k)k - R and (ﬁk)k - Sl such that
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o hy € (h,0) for every k € Nand hy, — h* as k — +o00;
o 0 <1 <rpyforeveryk € Nand r, — r*as k — +oo;
o ¢, = et — ¢ =r e as k — +oo.

Then
min My, < min My,- + O(|9* — Vk|) + O(|h* — hg]) + O(Jr™ — ri]),
4 q

coll coll

as k — +oo.

Proof. Fix h < 0,7* € (0,r1;), h* € (h,0) and ¥* € S'. Consider the three sequences as
in the statement and fix £ € N. We can write

Un(g) = min M, dp=(g7) = min M-,

coll coll

so that
Uhy (k) — Y (@7) = Yny (ar) — iy, (@) + ¥n,, (@) — Y= (7).

Let us start by the estimate of the term 1y, (¢*) —¢n+ (¢*) on the right-hand side. Consider
u* € Hg;” such that
Yp(¢") = min Mp+ = Mp«(u®).

HT

coll

For the minimality of u*, we obtain
(€)= Pne (") < Mpy (u7) = My (u)
1
< |n* - hk]/ [0 ds < C1[P* — hy,
0

with C1 > 0. Now, concerning the term v, (¢x) — ¥n, (¢*), if we consider the point

T*

@, = —qk € OBy~
Tk
we can write
Uy, (k) — Un (@7) = Uy (@) — Yng (@) + Uny (@) — n, (07).
Take vy € H g(%ll such that

whk(q;{:) = mi,n th = th(vk)

q
Hcclfll
and define the path
Tk Tk
Vg = rf*vk S Hcoll
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We can write

Uy, ()= 0n, (q1.)
< My, (0) — M, (vk)

— /01 | o[ ds/ol(hk —I—V(ﬁk))ds_/ol 05| ds/ol(hk—i-V(vk))ds
:/Olmpds/l [hk (%)2_hk+ (ﬁ)ﬂv(vk)—vwk)} ds

— 1@23 k—’_rr_r* Uw s
—/O\k\d/[k()(k )+ V(vk) (r)2a ]d

< Co(|r™ = mil),
with Cy > 0. Finally, since ¢}, ¢* € dB,~, we can apply Proposition to obtain
whk(Q;c) — p, (¢%) < L9 — 0. O

Now we prove the following compactness lemma on sequences of minimizers of the
Maupertuis’ functional.

Lemma 1.4.10. Given h < 0, 7* € (0,71), h* € (h,0) and 9* € S, consider three sequences
(hi)r CRT, (rg)r C Rand (9g), C St such that

o hy € (h,0) for every k € Nand hy, — h* as k — +00;
o 0 <1, <rpyforeveryk € Nand r, — r*as k — +oo;
o g, = eVt — ¢* =r*e as k — +o0.

Define the classes

= {ue H'([0,1;R?) : u(0) = g4, u(l) =0, |u(s)| < ry for every s € [0,1]}

col

and
Hcoll ={uc H'([0,1;R?): u(0) = ¢*, u(1) =0, |u(s)| < r* for every s € [0,1]}.
If uy, is a minimizer of My, in H™, for every k € N, then
(1) wr — u*in H([0, 1]; R?);
(ii) up — u* in C2([0,b]; R?), for every b < 1.

In particular, u* is a minimizer of My in the class of paths H? .
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Proof. Fixh < 0,7* € (0,r17), h* € (h,0) and ¥* € S! and consider the sequences (hy)s,
(rk)r and (¥%)x as in the statement. For every k € N, consider a minimizer u;, of My, in
H . For k € Nand for every s € [0, 1], following Remark we have

coll*
hy + V(uk(s)) > h+ T',;a min > b+ T'Z?Umin =C>0.

In this way, we can write

1 1 1
inf My, = My, (uy) :/ yude.s/ (hi + V (ug)) ds > C/ |ig,|? ds
H 0 0 0

coll

and so, by Lemma and the Poincaré inequality, the sequence (uy) is bounded in
H' and hence uj, — u* in H' and uniformly. So, from Fatou’s lemma, we have

My« (u*) < liminf My, (ug).
k—o0

Now, suppose by contradiction that there exists a minimizer w,y;, of My« in H g;l , such
that

Mps (Umin) < Mp=(u®).
From Corollary we actually obtain that, as k — +oo

M, (ur) < M (Umin) + O(|07 = Og|) + O(Ih* = hee]) + O(|r" — rg])

and so
lim inf My, (ug) < Mps (Umin),

k—oo

which leads to a contradiction. Therefore, u* is a minimizer. Moreover, the same
argument leads to a strong convergence in H! assuming by contradiction that

1 1
/ [u**ds < limsup/ i) ds.
0 k—oo JO

Finally, since 7, — 7* > 0, we have inf;, r; > 0 and so we can consider B; with
7 = % infy ry,. From Lemma there exists a sequence (by,); such that |uy(b)| = 7 and
0 < by < 1 for every k € N. Defining b = infj, b, again from Lemma we deduce
that 0 < b < 1. In this way, we obtain

wii,(t) = VV (ug(t)) fort € [0,b], for every k € N
and thus VV (uy) converges uniformly to VV (u*) on [0, b]. This proves that uj, converges

in C2([0, b)). O

21



1.5. Proof of Theorem[1.1.2

In general, the minimizer provided by Theorem is not unique. However, for a
particular class of collision trajectories, we have the following result.

Lemma 1.5.1. Assume (UI)-(VI). Given h < 0, 7* € (0,[~U(9*)/h]"/*] and taking ¢* =
r*e", there exists a unique minimizer for the Maupertuis’ functional M, in Hg;”. This arc is
nothing but the monotone ¥*-homothetic collision trajectory.

Proof. Let us define the homothetic trajectory as upom(s) = rhom(s)ew*, with 77,6, (0) =

¥, Thom(1) = 0 and Fpem(s) < 0 for every s € (0,1). For every u € Hgo*” we can write
u(s) = r(s)e?’(), so that

1 1
My (1) = / rel? 4 irdel? 2 ds / (h+ r=oU(9)) ds
0 0
1 1
2/ 72 ds/ (h+ 7" %Upin) ds > Mp(tpom)-
0 0

Indeed, the last inequality is strict if (s) is not monotone in (0, 1), otherwise we end up
with an equality, since the Maupertuis’ functional is invariant under time rescaling (see
the proof of Theorem 1.4.2). O

In order to enlarge the set of those minimizers which are also unique, we are going
to exploit the dynamical features of our problem. Therefore, we come back to our
study started in Sections From Lemma and Remark1.3.3we have a precise
characterization of the local stable manifold W; . of the fixed point (0, 9*, ¥* + 7). Given
a starting point g, the Maupertuis” functional M}, does not necessarily admit a unique
minimizer on the class of collision paths Hgoll but, actually, this set of minimizers is in
1-1 correspondence with the set of their starting velocities. This fact is a consequence
of the uniqueness of the solutions of the relative Cauchy problems and it suggests to
establish a link between every minimizer and its initial velocity. In this way, we can
introduce the set of the reparametrizations through McGehee’s coordinates of every
minimizer with starting position ¢ as follows

(1.17) my,(q) = {7, : rep(7,) minimizes My, in HZ ,, with ¢ € S'},

with v, = 7, (7) for 7 > 0 and where rep(v,) represents a suitable reparametrization of
7, With this notation, the angle ¢ is nothing but the direction of the starting velocity,
since its module is already fixed for the conservation of energy.

Following this preliminary discussion, we state and prove below the main result of
this chapter, which is nothing but the planar unperturbed version of Theorem [I.1.2]
presented in the Introduction of this paper, in a negative energy shell.

Theorem 1.5.2. Assume (U1)-(V1). Given h < 0, there exist ¥ > 0 and & > 0 such that,
defining ' ) i
Qo = {qo = 7™ . r € (0,7) and 9y € (9" — §,9* +9)},
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and wy, as in (1.17), then

(1.18) Wine(7:6) = | mn(a0)-

q0€Qo

Moreover, for every qo € Qo, the Maupertuis’ functional M, admits a unique minimizer in
qu

coll”

Proof. Fix h < 0 and, adopting the notations of Lemma and Lemma choose
7 = min{7c, 17}

We start with showing that the uniqueness of a minimizer follows from inclusion (2)
in (1.18). Indeed, Lemma guarantees that W; _is the graph of a C>-function, which
associates to every initial position gy € Qo a unique initial velocity. Therefore, once ¢y is
fixed, there necessarily exists a unique minimal arc solving the correspondent fixed-end
collision problem.

Inclusion (D): Take gy = 7€', with r € (0,7) and ¥y € (¥ — Sjoe, V* + o) (as in
Lemma [I.3.2). Therefore, by Theorem there exists v = v, € my(go) for some
@o € S'. Our goal is to show that, up to make §;,. smaller, 7 is entirely contained in the
local stable manifold W; .. The orbit v(7) = (r(7),9(7), ¢(7)) solves in (0, 400)
so that, by the definition of stable manifold, we have

r(t) =0 as 7 — +00
(1.19) vyEW?® = L Y(1) = as 7 — 400
o(r) > ¢*=v"+m  asT — +o0,

but also, from Lemma|1.3.2
vyeEW,, < forevery T >0, o(1) =¥ (r(1),d(7)).
Assume by contradiction that there exists (9x(0)); C S* such that

i9:(0) * iw*

qr, =T€e —q =re as k — +o0,

but there exists a sequence of reparametrized minimizers (v;)r € (mp(gr))x such that

Vi = { (1) = (ri(7), 96 (7), i(7)) : 7> 0} £ W}, foreveryk € N.

Notice that, from Lemma and Lemma the sequence (7)), converges in
H*([0,1]; R?), and thus uniformly in [0, 1], to the ¥*-homothetic motion. For this reason,
we can split our proof in two situations, whose discriminant is the uniform convergence
of the sequence (V) = (Vr(7))r. Indeed, despite the convergence of (7x), for instance
it could happen that the sequence of angle functions (), starts to oscillate dramatically
as k goes to +-oo.
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Case 1: Assume that v, € W _ for infinitely many & and that
lim sup |9 — 9% =0.
Hm_sup [9k(7) — 07

By (1.19), we necessarily have that there exists £ > 0 such that
limsupsup |pr(7) — ¢*| =& > 0.

k—+oco >0
In this way, up to subsequences, from the definition of sup and limsup we can find a

for every k € N.

)

sequence (7). C [0,400) such that

DO |

lor (k) — ¢ >

(1.20)
Now, we perform the following change of variables and time shifting
Tk (T -+ T k)

() = 5
Ui (1) = Op(T + 1)

k(1) = or(T + 1)

and, if we define A\, = ri(7x)/r < 1, we have that the orbit 4y, = (74 (7), 9x(7), ¢x(7)) for

7 > 0 solves the system
7. = 27(U (Ok) + hyeid) cos(@r, — V)

0, = 2(U£5‘k) + hy) sin (@ — @E) )
@), = U'(9y) cos(@y, — Uy) + aU (Jx) sin(@y, — Ur),

where h, = A{h and so hy, € [h,0). Now, denoting by x, the reparametrization of the
trajectory 7, in time ¢ in the configurations space, x;, solves the problem

."L"k = VV(l'k)
slinl? = V(xr) = h,

or(te + Ay 1)

for every k € N. Therefore, the function
S (4) =
Tr(t) "

with ¢, such that 74 (0) = z4(0), will solve the problem
AE(t) = VV (@(1))
sla TP = V(2x(t) = ha,
for every k € N. Hence, under a suitable change of scales, there exists a sequence ()
of minimizers of the Maupertuis’ functional, with starting point respectively in (gx)x

k(o)eiék(o) — ret(Th) ¢ = re®"  ask — +oo.

such that
gy =T
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For Lemma we have that such a sequence of minimizers converges in H! and
thus uniformly to a minimal arc connecting ¢* to the origin. On the other hand, from
we have that ¢5(0) = (1) 4 ¢* = 9*+mas k — +oo. This means that the limit
arc cannot be the ¥*-homothetic trajectory, which is impossible for Proposition [1.5.1]

Case 2: Assume that v, ¢ W? for infinitely many £ and that there exists £ > 0 such
that

(1.21) limsupsup |9y (1) — 0*| = &.

k—+oco 720

Hence, up to subsequences, there exists a sequence (%), C [0, 00) such that
(1.22) |0 (1) — 0% > g, for every k € N.

Moreover, since from Lemma|1.4.10|and Proposition the sequence (;)x converges
C? to the homothetic motion on every bounded interval, we necessarily deduce that
T, — +00 as k — +o0. In particular, since every +;, is a collision arc, again from Lemma

[L4.10 we have that
(123) T’k(Tk) — 0, ask — +oo.

Now, for every k € N define the orbit 5, = (7, ., @) such that

7:k<7_) = Tk(T+ Tk)
Ui (1) = Up(T + )
(1) = Pr(T + 71),

for 7 € |71, +00). We have that, for every k € N, 7, verifies equations

7 = 27 (U(Dy) + hi) cos(@r — I)
V), = 2(ng9;€) + hig) si~n(<,5k - ﬁkz ]
952 = U’(ﬁk) COS(Sék - ﬂk) + OéU(ﬁk) sin(cﬁk — ﬁk)
Since 7;; — +00, we have that, for every T' > 0, there exists k € N such that, for every

kE>k
T > T

Let us fix T > 0. For 7 € [-T, T] and for every k > k we have
T+ 7 € [0, +00)

and so

Fe(7) = (7 + 1) < 7(0) < 7.

Moreover,

Oy (1), pr(r) € St
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and
"F;c(T” < 277(Umax - h":a) =C< +0oo

and, with analogous calculations, the same holds for 52(7) and @) (7). From the Ascoli-
Arzela theorem, we have that

(7 Opy §1) — (7,0, ) ask — +00
uniformly on [T, T'|. Moreover, from we deduce that
—(T)h < =R (0)h = =1 (k)b = 0 as k — +00.
This, together with the uniform convergence, implies that (7, 7, () satisfy the equations

7 = 27U () cos(p — 1))
(1.24) V' = 2U (D) sin(@ — 0)
@ = U (D) cos(¢ — 9) + alU(9) sin(@ — 9),

on [T, T]. Repeating the same argument for every 7" > 0, we have that the sequences
converges uniformly on every compact of R, with limit defined and verifying (1.24) on
the whole R. Moreover, let us notice that

fk(O) = Tk(Tk) — 0= 77(0) ask — +oo

and so, for the uniqueness of the solution of a Cauchy problem, we actually deduce that
7(7) = 0. This means that the solution of is actually a motion on the collision
manifold {r = 0}.

Let us now investigate the asymptotic behaviour of ¥. From the non-degeneracy of
¥*, it is not restrictive to assume that € = d/2 in (1.21), where

d=min{|0* —9|: 9 e S, U'(9) =0, 9 # 9*}.
In this way, from (1.22), we can deduce that for every k € N
d

[0k (T) — 07| < 2 for every T € [0, 73)
and so, in other words, for every k € N

_ .o d

|9k (7) — 9%| < X for every T € [—7,0).

From the convergence of ¥, to ¥ we can easily deduce that

~ d
(1.25) [9(1) —v*| < 5 for every 7 € (—00,0).
Now, it is known (see [29, [11]) that

lim J(r) =9,  lim @(r) =9 +,

T—F00 T—F00
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with 9* central configuration for U. Assume by contradiction that ¥~ # 9%, i.e. that for
every ¢ there exists 7. € R such that

T<T = [I(1)-07| <e.

Choosing e = d/4 and using (1.25) we head to a contradiction and so necessarily ¥~ = 9*.
To conclude the proof, consider the function

v(r) = \/U@(r)) cos(@(r) — I(7)),

which is non-decreasing and non-constant on every solution of (1.24) (see Theorem 4,
[11]), so that

—V Upin = =/ U(0*) hm (1) < lim v(1) = —/UWT).
T—r+00

This is clearly a contradiction since ¥* is a global minimal central configuration for U.

Inclusion (C): From any (7,99, ¢0) € W, . it starts a unique orbit that ends in the
equilibrium point (0,9*,9* + 7), which connects the point gy = re’’ to the origin in
the configuration space. This is nothing but a reparametrization of a minimal fixed-end
arc: indeed, a minimizer from ¢y to the origin exists by means of Theorem and it
is unique, as we have already shown. ]

1.6. General setting

This final section collects some useful remarks for the adaptation of the previous proof
in the general setting presented in the introduction. This material is mainly thought to
ease the reader’s comprehension, for it will be clear that the argument used in the proof
is exactly the same. We made the choice to split the generalization in two sub-cases. In
the first one, we take into account a perturbed potential and a conservative system with
possibly non-negative energy. The second one is focused on the higher dimensional
case.

161. d=2 W £0,h € R

As a first step, we set equation again in the plane (d = 2), but we perturb our
potential V exactly as stated in (V'0). Moreover, we wish to work also in non-negative
energy shells, so that equation will be given with h € R. Using polar coordinates
(r,9) and adopting the same argument as in Section[1.2} we find an analogous of system
in our actual setting, i.e., the dynamical system

v’ =2r(U(9) + r*W (r,9) + hr*) cos(p — )
(1.26) =2(U) + r*W(r,9) + hr®) sin(¢ — ) ,
¢ = (U'(9) — r*Wy) cos(p — 9) + (aU (W) + r*HW,.) sin(p — )
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where we have set oW P
W, = W(r, ), Wy= %(r, v).

It is easy to notice that the collision manifold { = 0} induced by isnothing but the
one described by in Section [1.2} regardless of the sign of h. This fact also implies
that the dynamical systems and share not only the same equilibrium points
(0,9*,9*+km), but also the same linearisation. As a consequence, with the help of minor
changes, the dynamical characterization provided in Section[I.3|naturally extends to the
setting considered above and it is possible to reformulate Lemma

On second thought, basically all the proofs contained in Section [1.4]strongly depend
on the Lagrange-Jacobi inequality (Lemma|[1.4.3) and its consequences. In particular, when
W = 0, the —a-homogeneity of V' and the convexity of the inertial moment allow us
to provide all the useful (upper or lower) estimates on the term h + V. Again, this can
be reset in our new framework, since the hypotheses on the perturbation W tell
us that we can recover a —a-homogeneity on V' when r is sufficiently small. Indeed,
the term r*W + r®™1|[VW| — 0 as r — 0, so that, eventually choosing a smaller 7, in
Lemma we can carry out again the entire argument.

Finally, we want to remark that a complementary choice of » > 0 is not dramatic in
this setting. In particular, if W = 0, this will induce the choice 77; = +00 and thus the
presence of an infinite Hill’s region, as expected in a parabolic or hyperbolic problem.
On the other hand, if W # 0, we could still have a bound on 7,7, depending on the sign
of W close to the singularity.

1.62. d>2, W £0,h € R

In this higher dimensional setting, the construction presented in Sections needs
to be properly modified, in order to take into account the more abstract nature of this
case. We want to make once more clear that the variational approach of Section [1.41.5]
is not affected by taking into account higher dimensions. Moreover, since the discussion
of the previous paragraph on the lower order perturbations does not change for d > 2,
we will assume W = 0. In order to face the dynamical complications, we will basically
adopt the technique introduced by R. McGehee in [52] (see also [25} 29, [12]) in order to
sketch a proof for Lemma As a starting point, for x = z(t) € R?, introduce the
new variables

r(t) = |z (t)]

s(t) =r(t)" = (t)

u(t) = r(t)*(@(t), s(t)
u(t) = r(t)**rp,saad(t),

where 7, ga-1 represents the orthogonal projection on the tangent space of S471, i.e.,
Trgi-12 = 2 — (z,8)s, forevery z € R4,

To have an intuitive description the coordinates (r, s, v, u), we point out that (r, s) is the
expression in polar coordinates of the position =, while (v, u) is the decomposition of
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the velocity  in the tangent bundle 7S?~! (cf. Lemmal(l.1.1). In this way, slowing down
the time with the time-rescaling

dt = r'+o/2qr,

solutions of (1.1) will be equivalent to solutions of

/

r=rv
(127) v/’ = Sv? 4+ |ul? — aV(s)
s=u

f= gy — |ul?s + V7V (s),

«

S

where the homogeneity gives V (z) = r~*V(s) and
VrV(s) = VV(s) = (VV(s),s)s = mpga-1VV(s)

is commonly known as the tangential gradient of V. The conservation of energy law
(1.2) in this variables translates to

Ll ) - Vi) = o,
and defines the energy shell
= {@«,v,s,u) € (0,+00) x R x §¥71 x T8 ; %W +v%) = V(s) = ro‘h} .

In H;, the variable v reads
vE(r, s,u) = £4/2(V(s) + 7oh) — |ul2.

The choice of v~ /vT corresponds to the choice of studying in/outgoing trajectories
to/from the singularity » = 0. Indeed, equations can be reduced to a (, s, u)-
system, admitting {r = 0} as an invariant set. We denote by A such a set, which is
commonly known as collision manifold, which actually is a smooth manifold of dimension
2d — 2 (see [29) Proposition 1, pag.234]). Since we are interested in collision trajectories,
we will take into account v~, so that in A system (1.27) reads

s=u
1.28
(1.28) {u’ = 2jTo‘u\/2V(s) — [ul? = ul?s + VrV (s).
From the linearisation of (1.28), it is possible to deduce the hyperbolicity of the
equilibrium points of the (7, s, u)-system

p* = (0,5%,0) such that VoV (s*) =0,

as long as V' is a Morse function (see [29, Proposition 4, pag. 237]). This leads to the
existence of stable and unstable manifolds WW* and WV for p*, with dim W* 4+ dim WY =
2d — 1. Again for our purpose of studying ingoing collision orbits, we naturally choose
the r-eigenvalue to be negative so that (still following [29], Lemma 5, pag.238) we infer
that diim W* = d while dim WY = d — 1.

The hyperbolicity of p* gives rise to a local description of the manifold W* as the
graph of a C?-function in the variables (r, s) (see [66], Theorem 7.3).
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2. Symbolic dynamics for the anisotropic
N-centre problem

2.1. Introduction and main results

We consider the planar /N-centre problem of Celestial Mechanics, in which we associate
to every centre a non-radial anisotropic potential. In order to do that, we name the
position of the N > 2 centres by cy,...,cy € R? and we introduce a finite family of
non-negative singular functions Vi, ..., Viy € C2(R?\ {0}). Moreover, we require every
function V; to be —aj-homogeneous so that we will consider the most general anisotropic
behaviour for our system, assuming so far that «; € (0, 2) (stricter, though fundamental
assumptions will be added later). In this way, for every x R2\ {c1,...,cn}, our model
will be driven by the total potential

N .
x):;vj@c Z'x—cﬂ " (|x—c|>

recalling that any —a;-homogeneous function V; easily verifies

v = (W) =l (1),

whenever y # 0. Clearly, V € C?(R?\ {c1,...,cn}) and the equation of motion is the
following

2.1 B(t) = VV (x(t)),

where © = x(t) represents the position of the moving particle at time ¢t € R. Without
loss of generality we can assume

a; <az < ... < an,

thus admitting that more than one centre might have the same homogeneity degree.
As it will be clear in the following, the smallest degree of homogeneity «; plays an
important role in our treatment. For instance, if we assume that a1 = ap = ... =
for some 1 < k < N, it is useful to put @ = «; and to gather all the —a-homogeneous
potential in this way

W(x)izk:v(x_cl Z\x el av(!x ZZ’)

=1 =1
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so that W € C?(R?\ {e1,...,c}) and

N Xr — Cj
(2.2) Viz)=W()+ Y |x—cj\—afvj< J).

j=k+1 |z = ¢

Note that, if & = N, the problem becomes much simpler because we would have a
unique homogeneity degree. In particular, when NV = 1 we end up with an anisotropic
Kepler problem driven by a —a-homogeneous potential. This is exactly the situation
studied in [11] in which the authors provided non-collision Bolza minimizers with a
blow-up analysis.

At this point, let us present the rigorous hypotheses that we will require on the
potentials that characterize this problem. For every j = 1,..., N, we introduce the
restriction to the 1-dimensional sphere of every potential V;, defining U; = Vj|s: and let

also
k

UW) =>» Ui(9), foryeS

i=1

Clearly Uy, ..., Uy, U € C%(S'), so that we can finally state our precise hypotheses on V/
in this way:

a < 2;

FJOHECS : Vi=0,...,m—1, m>0, U'(W]) >0, UW) >UW;) >0, VI €S}
Vi=1,...,N39; €S': U;(¥) > U;(¥;) >0, VI € S', U/ (¥;) > 0;
Vi=1,...,N a; > a&;(Uj,0;).

V)

Remark 2.1.1. The previous requirements on V' are referred to the strength of the homogeneities
o and to the extremality with respect to U; of some particular directions. To be precise, the
assumptions (V) and (V) require some thresholds on the homogeneity degrees, which will play
a fundamental role in the dynamics both close and far from the centres. Moreover, recalling that
a central configuration for a potential is a critical point of its restriction to the unit sphere, (V)),
and (V)5 guarantee the existence of a finite number of strictly minimal central configurations for
every potential U;, but also for the sum of the —a-homogeneous potentials Uy, . . ., Uy,

A non-collision solution of is a function z: J C R — R? such that z(t) # ¢; for
every t € J and for every j = 1,..., N and that solves in the classical sense. Given
h > 0, we are interested in those non-collision solutions of equation which are
confined in the 3-dimensional negative energy shell

& = {(m,v) € (R?\ {c1,...,en}) xR?: %MQ —V(z) = h}

and thus, every solution of (2.1) should verify the energy conservation law

23) %m? V(@)= —h.
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Moreover, equation (2.1) has a Hamiltonian structure in (R?\ {cy, ..., cn}) x R?, driven
by the Hamiltonian function

H(x,v) = lw ~V(),

which coincides with the total energy once is written as the first order autonomous

system 2 = F(z), where
= (;) Fe= <vvv<x>) '

The conservation of the energy also implies that such solutions will be confined to the
Hill’s region

(2.4) Ry ={r e R*\ {c1,...,en}: V(z) > hl
Remark 2.1.2. From now on, without loss of generality, we will assume that max |c;| < 1 and
J
we define
m= mln min Uj;.
Jj=1,..,N s

Then, for z € R*\ {ci, ..., cn} we have

> — aj [ —
‘“Z'x ™ 2 e

Then, if we fix h > 0, those x such that |z| < (m/h)Y® — 1 necessarily belong to the Hill's
region Ry, associated with such h. We can argue in this way to put a bound on h in order to
rule out those h for which Ry, = 0. To have a well-posed problem, we need to require that every
centre lies inside Ry, and so that the moving particle can reach at least every region (except for
collisions) of the ball By. This is surely the case if (m/h)'/® —1 > 1 (see Figure ; this means
that our problem makes sense at least for those energies h such that
m ~
0<h< 2a = h.

For this reason, from now on we will always assume h € (0, h). This is actually really natural
in our approach to this problem, since later in this paper we will make use of perturbation
methods, which work fine only when the particle is very far from the centres. Indeed, as for the
classical Kepler problem, small negative energies allow the particle to reach regions farther from
the singular set.

In order to state our main result, we need to introduce some further notation. Fol-
lowing [61]], we consider all the possible partitions of the N centres in two disjoint
non-empty and non-ordered sets, which are exactly

() (1) - (0 )
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Figure 2.1.: An example of Hill’s region for the anisotropic N-centre problem that in-
cludes a ball of radius greater than 1 (see Remark [2.1.2).

and we denote the set of these partitions as
P={Pj:j=0,...,2N"1-2}.

Due to the non-radial nature of the potential which describes our system, we need to take
into account the non-degenerate minimal central configurations of the —a-homogeneous
component of V. Indeed, they will play a fundamental role in the construction of a
periodic solution for (2.1) as a peculiarity of anisotropic problems (see [12, 11} 5]). We
define the finite set (see (V)

E={9 S UW)=0and U"(9*) >0} = {95,...,95,_1}

and we associate to every central configuration in = a partition of P. In this way, we
collect together all the possible choices in the set

Q={Qj: j=0,....,m2"N "1 —1)—1}.
Moreover, define the following subsets

Po=A{Qo,- -, Qm-1} = {Q0-m+0, Qom+1, - - -, Qoem+(m—-1)}
P1={Qm;---, Q2m-1} = {Q1m+0, Qrm+1, -+ s Qrmt(m—1)}

Pl = {le7 ceey Q(l+l)mfl} = {Ql-erO? Ql-m+17 ceey Ql-er(mfl)}

Pon-1_9 = {Q(QN—172)ma e 7Q(2N—171)m71}

= {Q(2N*1—2)-m+07 Q(ZNfl—Q)-m—l-l? B Q(2N*1—2)-m+(m—1)}
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where P, represents all the possible combinations of the partition P, of the centres and
a central configuration chosen in = and, of course, @ = Py U ... U Pyn-1_5. In this
way, it is easy to verify that, for j € {0,...,m(2V¥"! — 1) — 1}, if = r mod m for
r € {0,...,m — 1} it means that Q; € P, withl = (j — r)/m. In particular Q; = Qi+,
so that, in other words, Q; represents the pair (P}, U}).

Remark 2.1.3. We will show that our system has a symbolic dynamics and that the alphabet
of symbols will be exactly the set Q. For this reason, in order to have a non-trivial symbolic
dynamics, we need to have at least 2 elements in Q, so that we will assume

N>3, m>1 or N>2, m?>2.

Moreover, for n € N and (Qj,,...,Q;,) € Q", consider the element Q;, for some k €
{1,...,n}. It is useful to introduce the quotient and the remainder of the division of jj, by m in
this way

(2.5) Jk = lgm + 7y,

so that the element Qj, will refer to the partition P, and the central configuration ¥y, . Note
that the symbol Q ;, will reflect the geometrical behaviour of solution arc: according to (2.5), the
corresponding arc will divide the centres realizing the partition Pj, and then, when it travels far
from the centres, it will pass close to the central configuration 9, .

Our main result is to prove the existence of periodic solutions of (2.1) in negative
energy shells (see Figure[2.2).

Theorem 2.1.4. Assume that N > 3 and m > 1 or, equivalently, N > 2 and m > 2. Consider
a function V satisfying (V). There exists h > 0 such that, for every h € (0,h), n € N> and
(Qjo,---+Qj,_,) € Q, there exists a periodic non-collision and self-intersection-free solution
T =12(Qjp,---,Qj, 1;h) of satisfying (2.3), which depends on (Qjy, ..., Q;, ) in this
way: there exists R = R(h) > 0 such that the solution x crosses 2n times the circle B, in one
period, at times (t;.)k=o....2n—1, in such a way that, according to (2.5):

e in the interval (to, tor+1) the solution stays outside By and there exists a neighbourhood
Uy, = U(Re""v) such that
x(tor), x(tops1) € Uy, ;

e in the interval (tog1,torr2) the solution stays inside Br and separates the centres ac-
cording to the partition P, .

As a consequence of the above theorem, we will prove that the dynamical system
considered admits a symbolic dynamics. In order to state this result, we need to
introduce some general notations on symbolic dynamics. Consider a finite set S with at
least two elements and introduce therein the discrete metric p(s;, si) = 05, where 64 is
the Kronecker delta and s;, s;, € S. Consider the set of bi-infinite sequences of elements
of §

S = {(sm)mez : sm € S, for allm € Z}
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Figure 2.2.: An example of classical periodic solution provided in Theoremm

and make it a metric space with the distance
- P(8ms tm)
A((sm). (b)) = 3 20,
meZ
defined for every (s,,), (tm) € S%. Introduce also the Bernoulli right shift as the map

T,: S - s
(sm) = Tr((5m)) = (8m+1),

which actually determines the discrete dynamical system (S%,T;). Then, we have the
following definition.

Definition 2.1.5. Let S be a finite set, £ be a metric space and R: £ — £ be a continuous map.
Then, we say that the dynamical system (£,R) has a symbolic dynamics with set of symbols S
if there exist a subset I1 C & which is invariant through R and a continuous and surjective map
72 I — S% such that the diagram

m—2.n

S

SZ T SZ

commutes. In other words, we are saying that the map R|r is topologically semi-conjugate to the
Bernoulli right shift T, in the metric space (S, d).
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Remark 2.1.6. Many properties of the discrete dynamical system (SZ,T,.) are known, which
point toward the concept of chaos. Indeed, it is possible to prove that (see for instance [606]]):

o (SZ T,) has a dense countable set of periodic points, since all the periodic sequences are
periodic points for the Bernoulli shift;

o (S7,T,) displays high sensitivity with respect initial data, i.e., if we define as T* the k-th
iteration of the Bernoulli shift, we have that for any o > 0 there exist two arbitrarily close
sequences (s, ), (tm) € S% such that

sup d(T3* ((sm)), T ((tm))) = o;
kEZ

e the previous property actually holds for several initial data, to be precise, the dynamical
system (SZ, T, has positive topological entropy.

For this reason, the existence of a symbolic dynamics for a dynamical system (€, R) reflects a very
complex behaviour of its trajectories. Indeed, the semi-conjugacy through the map r relates the
dynamical properties of the Bernoulli shift with the ones of the first return map R. We point out
that this in general is not enough to show that the dynamical system (€, R) is chaotic, since the
projection map w is generally not invertible. However, it is clear that the existence of a symbolic
dynamics is a necessary condition for the density of periodic orbits and the presence of chaos, so
that one usually proves it as an intermediate step in this direction.

Theorem 2.1.7. In the same setting of Theorem take h € (0,h), with h > 0 therein
defined. Then, there exists a subset 11, of the energy shell &, a first return map R: I, — 11,
and a continuous and surjective map 7: 11;, — QF, such that the diagram

Hh L Hh

QZ Ir QZ
commutes. In other words, for any h sufficiently small, the anisotropic N-centre problem at
energy —h admits a symbolic dynamics with sets of symbols Q.
2.1.1. Outline of the proof

The key idea is to consider a different N-centre problem starting from the dynamical
system (2.1) and the energy equation (2.3). Defining a suitable rescaled version of
potential V, we end up with the problem

{y(t) = VVe(y(t))

2.6
20) L) = Ve(y(e) = —1,

where ¢ = h!/® > (0 and V* takes into account the rescaled centres c; = ec;. In this way,
all the new centres are confined in the ball B.(0) and collapse to the origin as the energy
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h of the original problem becomes very small, since e — 0 as h — 07. It turns out
that it is equivalent to look for periodic solutions of (2.1)-(2.3) and periodic solutions of
. Moreover, as € becomes very small, outside a ball of radius R >> ¢ and centred in
the origin, the potential V is a small perturbation of a suitable anisotropic Kepler-like
potential. This fact, which, together with the previous discussion, is the content of
Section allows us to split the proof of the main result outside and inside the ball
Br(0) and to carry out a broken geodesics argument.

In Section 2.3 we prove the existence of pieces of solutions of ([2.6), starting in d B (0)
and lying outside Bg(0).

In Sectionwe show how to build solution arcs which start in 9 Br and go through
the centres without collisions.

In Section[2.5|we glue together the pieces of solutions obtained in the previous sections,
in order to obtain periodic solutions of and thus of 2.1)-(2.3).

In Section [2.6|we show that this dynamical system admits a symbolic dynamics with
respect to a chosen set of symbols.

2.2. A useful rescaling

Givene > 0and y € R%2\ {cy,...,cn}, let us introduce the rescaled potential
N
27) VE(y) = Wey) + Y e Vly —ecy),
j=k+1
where

k
We(y) = 3 Vily — ca).
=1

Notice that, with this notations and recalling that we have assumed that max |¢;| < 1
(see Remark[2.1.2), the new centres ec; will be included inside the ball B..

Proposition 2.2.1. Let V € C?(R?\ {c1, ..., cn}) be defined as in and x € C*((a,b); R?)
be a classical solution of

2.8)

Then, in the interval (h%2 a, hSs b), the function

y(t) = hYou(h™ 55 t)
solves the problem

(2.9)
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where ¢ = h'/* and V* is defined as in 2.7).
Conversely, if y € C?((c,d); R?) is a solution of then, taking h = €%, the function
x(t) = hHoy(ha )

a+2

is a solution of (2.8)) in the interval (h*%c, h™ 2 d).
Proof. Suppose that 2 € C?((a,b); R?) is a solution of (2.8), set ¢ = h/* > 0 and define

a+2 _a+2

y(t) = hM o2 (h™ % t) = ex(e™ "2 t).

Let us start by checking that y(¢) satisfies the energy relation in (2.9). A straightforward
computation leads to

-«

L. 2 € Py ST S —ot2 .
SOP = -l TP ==V (2(0) - 1
moreover, for every x € R?\ {c1,...,cn}, we have that
N
Vi) =W(@)+ Y Vilz—¢)
Jj=k+1
k N
zaaZVi(ax—eci)—F Z Y Vj(ex — ecj)
i=1 j=k+1

k N
=e° Z Vi(ex —ec;) + Z e Wi(ex — ecy)
i1 j=kt1

Therefore, for t € (&?OLT+2 a, e b), we get

210) 5'9“”2:;”(% (1) —ea) + 2 ey (s (+F0) o) -1

Jj=k+1
=Vi(y(t) - 1.
Again, by calculation, we obtain

a+2

t) = eIV (a(e= 5 L))

_at2
2

i(t) =< i(e

and, for every v € R\ {cy,...,cen}

k N
VV(z) =e*t Z VVi(ex — e¢;) + Z eIV (ex — ecj)
i=1

j=k+1
k N
= gotl Z VVi(ex —e¢;) + Z VTV Vj(ex — ecy) | -
i=1 Jj=k+1
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Finally, for every ¢ € (¢“72a,e*2b), we have

k

N
(1) =) VVily(t) —eci) + Y e¥TOVVi(y(t) — ¢;) = VVE(y(1)).
i=1 j=k+1

This, together with (2.10), concludes the proof, since the converse follows in an analo-
gous way. O

In the rest of this section we show that, outside a ball of radius R > ¢ > 0, if ¢ is
sufficiently small problem can be seen as a perturbation of a Kepler problem, driven
by a sum of —a-homogeneous potentials. We start by showing a limiting behaviour for
Vease — 0T

Proposition 2.2.2. Let § > 0 and V* be defined as in @.7). Then, for every y € R? \ B;
Ve(y) =W (y) +O0(") ase— 0T,
where v = min{1, a1 — a} > 0and, according to
k k
@1 ) = S =l S ()

Moreover, the potential V¢ is smooth with respect to € and VE — WO uniformly as e — 0% on
every compact subset of R? \ {0}.

Proof. As a starting point, since ¢ — 07, we can assume § > ¢; moreover, if we fix
je{l,...,N}and |y| > J, for every o € R we have

_ —0/2
ly — eei| 77 = [lyf? — 20y, ¢5) + ;2]

_ () ole?17°
=|y|™° [1 — 2 +e
v PR

—o Y, ¢ —o
=ly|77 +eo fy!"ig +o(e) = |y|~7 + O(e).

In this way, for every j € {1,..., N}, ase¢ — 0" we can write

4 (=) = (e (e 00)) = (g o)
and so

(52) - (3) (oo (5 o - ) e
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To conclude, we write

—e¢|”V; eN Ty —ec;| T <]>
Z‘y ™ < 5CZ|> Z | i ly — ecjl

=k+1

=|y|§:jv(|z) S ooy, (L) +o@

j=k+1

=W2y) + O("),

where v = min{1, ax+1 — a} > 0.
To conclude, the uniform convergence on compact subsets of R \ {0} is an easy
consequence of the fact that the singularity set of V* is proportional to . O

Remark 2.2.3. Observe that the potential W° defined in (2.11)) is singular in the origin, while
the potential W< has multiple poles at ec, ..., eci. Thus, it turns out that assumption (V),
requires that W° admits m strictly minimal central configurations, for some m > 0 (see also

Remark )

To conclude this section, we notice that the energy bound found in Remark for
problem (2.8) corresponds to the following bound on the parameter ¢ for problem (2.9)

- 1/a
(2.12) € E (0,5), where &€ = hl/a — %,
where we recall that m = I{IIDN IIéln Vjlst. Naturally, this bound guarantees that the
j=

ball B, containing the rescaled centres is completely included in the Hill’s region of

problem
R.={ycR?: Ve(y) > 1}.

Indeed, following the same computations of Remark ife € (0,€) and |y| < ¢, then

VE(y) > mly —ec1| 7@ > 1.

2.3. Outer dynamics

At this point, the idea is to exploit a perturbation argument suggested by Proposition
and to build pieces of periodic solutions for (2.9), which lie far from the centres
and that will be denoted as outer arcs. Note that, if y: J — R?, with J C R is a solution

of (2.9), then

VE(y(t)) > 1, foreveryte J;

for this reason, we need to show that there exists an R > 0 such that, for every ¢ € (0, ¢),

(2.13) B.CBrC{yeR?: Ve(y) > 1} = R..
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Following the same approach as in the end of the previous section, we have that, for
any ¢ € (0,8),
Boija_. C{y e R?: Vi(y) > 1}.

m

Hence, choosing
(2.14) Re (&,m'/* — &)

the inclusions hold for any ¢ € (0, ).

In Section 2.2 we have shown that it is possible to obtain a useful rescaling of the
potential V, putting all the centres inside a ball of radius € > 0 and thus considering the
rescaled potential

k N
Vey) = Vily—eci)+ > e Vi(y —ecy),

i=1 j=k+1

so that a periodic solution of our initial problem is equivalent to a solution of a IV centre
problem driven by V¢ and with energy —1 (see Proposition 2.2.1). Moreover, if ¢ is
sufficiently small, by Proposition 2.2.2) we know that outside a ball of radius R > ¢ > 0
the motion follows the dynamics of a perturbed —a-homogeneous anisotropic Kepler
problem. Inspired by this, we are going to look for solutions of the e-problem (2.9)
which start in 9Bg(0) and travel in R? \ Bg(0); note that, in this setting, R will satisfy
(2.14). These solution arcs will be found as perturbed solutions of an anisotropic Kepler
problem driven by WY; given pg, p1 € dBg(0), we are going to look for solutions of the
following problem

§(t) = VVE(y(t)) t€0,T]
(2.15) %WN? —VE(y(t) =-1 tel0,T]
y(@) > R te(0,T)

y(0) =po, y(T)=p1,

for some 7' > 0 possibly depending on ¢.

2.3.1. Homothetic solutions for the anisotropic Kepler problem

The core of our perturbation argument consists in focusing on some special trajectories
of an anisotropic Kepler problem driven by W?, in order to study the behaviour of the
close-by orbits. For this reason, we take ¢ = 0 and we consider the problem

216) {i:VWO(a:), z € R2\ {0}

3le? = Wo(z) = -1,

recalling that W° € C%(R?\ {0}) is a —a-homogeneous anisotropic potential (see Propo-
sition[2.2.2). Note that, if we introduce polar coordinates « = (r cos ¥, 7 sin ) with r > 0
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and ¥ € [0,27), the potential W can be written as

k k
WO(x) =r=) Vi(cos®,sind) = r=* Y _U;(9) = r "U(¥),
=1 =1

where U; = Vj|s1 and U = Z U; (see (V). From the energy equation in (2.16), the

boundary of the Hill’s reglon for this problem is the curve parametrized by polar
coordinates in this way

ORy = {U(9)"/*(cos ¥, sind) : ¥ € [0,2m)}.
From this, the following definition makes sense:
Definition 2.3.1. For any 9 € [0, 2), for every R > 0 which satisfies
(2.17) 0<R<U®W):s,
define § = Rew An out-in homothetic solution for which starts in & is a function T¢
which solves (2.20) and such that

where X: [0, T¢] — RT and

(2.18) {A(t) 1 for every t € (0, Tg),

A0) = 1= A(T),
for some T > 0.

We aim to understand which conditions are satisfied a posteriori on £ and A once a
homothetic solution for (2.20) is provided. If we plug Z¢ = A{ into the motion equation
i = VW9(z), we obtain

(2.19) A()E = A(t) > 'VIO(€)

and thus the Euler’s theorem for homogeneous functions gives
R2A\(t) = —aX(t) " 1w O(¢).

In this way, we obtain the equation

(2.20) A(t) = —peA(t) ">,

with e = aR™*72U(Y;), i.e., A solves a 1-dimensional —a-Kepler problem. Since the
homothetic solution #¢ has energy —1 and A(0) = 1, we can associate to equation (2.20)
the initial conditions

M0)=1, A0)=—2(W0(¢) — 1)
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obtaining a solution which satisfies (2.18). Moreover, recalling that for z € R? the
moment of inertia of z is defined as I(z) = }|z|*> and VI(z) = z, comparing (2.19) and
(2.20), we note that ¢ solves the equation

(2.21) VWO(&) + ueVI(E) = 0.

Definition 2.3.2. A central configuration for W9 is a critical point of W constrained to a level
surface of the inertial moment I. In other words, a central configuration is a vector { € 0BRr(0)

that verifies (2.21)).

To sum up, we have found out that a homothetic motion for (2.16) is a function
Z¢ = A such that £ € OBg(0) is a central configuration for W°, R > 0 verifies (2.17) and
A: [0,T¢] — R7 is the unique solution of

{X(ﬂ-—‘—ﬂgkﬁ)al
A0) =1, A(0) = £+/2(WO(¢) — 1).

From now on, when we consider the quantity R > 0, we will always assume (2.17) and
we will refer to & = (R cos ¢, Rsindg) or simply to J¢ as a central configuration for W9,
meaning that £ verifies (2.21) or, equivalently, that

U/(l%) =0.

Collecting together all the previous discussions, given a central configuration { €
0BRr(0), we can consider the following Cauchy problem

(2.22)

which admits as unique solution the homothetic trajectory ¢, that reaches again the
position ¢ after a time T¢ > 0, with opposite velocity.

2.3.2. Shadowing homothetic solutions in the anisotropic Kepler problem

In Proposition we have seen that V¢ reduces to W9 as ¢ — 07, together with all
the e-centres collapsing to the origin. For this reason, the aim of this paragraph is to
provide an intermediate result, i.e., to prove the existence of trajectories for problem
which start very close to a given homothetic trajectory Z¢. In other words, we
investigate the existence of a solution for

i(t) = WO (z(t)), t€1[0,7]
SHOP —Wa(t) =1, te[o,T]
z(t)] > R, te(0,7T)
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where pg and p; are chosen sulfficiently close to a central configuration { € 9B, for wo.
This indeed corresponds to show the existence of solutions for problem when
¢ = 0 and we believe that it is a result of independent interest.

In the previous paragraph we have seen that a homothetic solution for an anisotropic
Kepler problem driven by W0 is actually the unique solution of the Cauchy problem
(2.22). For our convenience, we need a characterization of the homothetic motion T¢ In
Hamiltonian formalism and so we reword as

z2=F(z)
229 {z(@) e

=00 o) = (9

According to this, to satisfy the energy constraint in (2.16) we restrict the domain of the
vector field F' to the 3-dimensional energy shell

where

1
&= {(w,v) e (R?\ {0}) x R?: §|v|2 —Wo%z) = —1}
and we term Z¢ the homothetic solution in the Hamiltonian formalism, i.e., the unique

solution of (2.23). Introducing the flow associated to the differential equation in (2.23)

P:QCRxE=E
(t,2) = ®(t,2) = B'(2)

we notice that
Ze(t) = ®'(2) and  @¢(t) = ma(Z(t)) = mo P (2¢),

where 7,(z) and 7, (2) represent the two canonic projections of z. Now, if we introduce
the 2-dimensional inertial surface

Y={(z,v)e&: |xz|=R}CE

it turns out that both the starting and ending point of the homothetic motion lie on 3,
i.e., 2¢(0), 2¢(T¢) € 3. Moreover, since the initial conditions ¢ and v are parallel, with a
slight abuse of notation on the gradient of I we have that

(F(& ), VI(E)) = (vg, &) # 0

and so the field F is transversal to ¥ in (£, ve).
Inspired by this, it is easy to prove the following proposition and thus to define a first
return map on X.

Proposition 2.3.3. Given & € OBg(0) central configuration for W9, there exists a neighbour-
hood U x V of (&, ve) and a function T € C*(U x V;RY) such that

45



i T(f,’l)g) = Tﬁ/

e for every (x,v) € U x V, for t > 0 holds
' (z,v) € X ifand only if t = T(z,v).

d
Moreover, if we define d—@(z) as the derivative of ® with respect to z = (x,v) (see Appendix
z

[B), given zy € U x V we have that
<7Tz‘1>T(Z0) (20), mi@T(ZO) (2) §>
dz z2=20

(m,®T(20)(2g), w1, ®T(20) (20) ) ’
for every ¢ € T.,(U x V), where T, denotes the tangent space at the vector z.

(VT'(20),¢) = —

Proof. Defining the map G(x,v) = |z|> — R? for every (z,v) € £, we can consider its
composition with the flow ®, to obtain the C* map

fiRxE =R

(t,z,v) = f(t,z,0) = G(O'(2,0)).
Since f(T¢, &, ve) = G(§, —ve) = 0 and

0 T, T,
o/ 6m0)] = (TGETE(E 00, @76 ve)))

= ((2¢,0), (—ve, VIWO(€))) # 0,

the first part of the statement easily follows from the Implicit Function Theorem. More-
over, for every (z,v) € U x V we have

VT(.T 1)) _ _Va;,vf(T(x,’l)),g;7U) B
7 %f(T(x,v),x,v)

VG(®T@) (1, v)) T, ,®T @) (2, v)
(VG(@T@V) (2, v)), F(PT@) (2,v)))

Therefore, given zy = (20, v9) € U x V we can define the differential

dT(Z())t 7;()(1/{ X V) —R
(= dT(20)¢ = (VT(20),¢),

(V6@ ), Lot )

(VG(@T(0)(20)), F(2T0) (2)))

<7Tx®T(ZO)(ZO),7TxdéT(ZO)(Z) C>
dZ Z2=z0

<7qu)T(ZO) (20), m, ®T(20) (ZO)>

with

(VT'(20),¢) = -
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Hence, given £ € 0BR(0) central configuration for WO° and U,V as in Proposition
for every (g, vp) € U x V there exists a unique instant 7'(x, v9) > 0 such that

(1‘1, ’Ul) = (I)T(IO’UO) (1‘0, ’Uo) €.
In this way, if we fix g € U, we can define the arriving point z; as a function of vy € V
(2.24) 21(vg) = o (@700 (29, vy)).

Our aim is to prove that the previous map is invertible, so that we would be able to build
solution arcs starting in a point g € 0Br(0) and arriving in another point z; € dBg(0),
with z, z; sufficiently close to &.

Theorem 2.3.4. Given & € 0Bp a central configuration for W° such that U" (9¢) > 0, the map
x1 defined in (2.24) is invertible in a neighbourhood of ve.

The proof of Theorem is rather technical and relies on a series of lemmata which
we state and prove below.

Lemma 2.3.5. Assume that there exists ¢ € OBg central configuration for W°. Following the
notations of Proposition define the map
g UXY =X
(2,0) > gla,v) = BT (2, 0).

Then, g is C 1—diﬂerentiable overU XV and

do(ze)C = -0 (2)| ¢ F(8T(20)) (VT (=), )

Z:Z£
forevery ¢ € T, (U x V).

Proof. In order to prove this result, we need to give a characterization of the partial
derivative of the flow ® with respect to the variable v. First of all, observe that for the
C!-dependence on initial data of the flow ®! and for Proposition2.3.3] the map g is well
defined and C!-differentiable over U x V. If we call as usual z = (z,v) and z¢ = (&, ve),
we can observe that

g(ze) = (€, —ve)

and, following the notation introduced in Appendix B} the differential of g in the point
z¢ € U x Vis the linear map

dg(ze): TeeU X V) = T(g,—00) %

¢ dglz)C = o= [870()] ¢

Z:Z§

(2.25)
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In this way, if we compute the derivative of g with respect to z we get

T () (2 4 1) — @TC (2

4 [CDT(Z)(Z)L:ZE = lim

dz lIll—0 n
iy DTC (e ) — @TE () T (5 — TG (2)
= 11m 1m
[Iml|—0 n Inll—0 n
d Z, zZ
= £¢T( 9 (z) et F(T59)(2¢)) VT (2¢).

Finally, recalling that T'(z¢) = T¢, we have shown that

(+ F((2¢)) (VT (2¢),¢),

Z:,Zg

d
dglz)C = - 075(2)

forevery ( € T, (U x V). O
Lemma 2.3.6. In the same setting of Lemma[2.3.5] given ¢ € T, (U x V) and t € (0, Ty), define

alt) = 7o ()

¢

Z=z¢

and name also s¢ = £/|§| the {-direction unit vector and its orthogonal unit vector s, = sé-.
Then, the projection of q over the direction s,

solves the problem
{mzwmwwm%&m
r(0) = (m2C, 5r)sr,
recalling that Z¢ is the unique (homothetic) solution of ([2.22).
Proof. Following Appendix |B, we know that the partial derivative of ® with respect
to z satisfies the variational equation along the homothetic solution Z¢, which gives

us information about how the flow is sensitive under variations made on the initial
condition z(0) = (x(0),#(0)). Since the Jacobian matrix of the vector field F' in z reads

TF(z) = <V21/(I]/20(x) éi) ’

by Remark the variational equation along the homothetic solution reads

4 (4 g _ 0 L) d g

dt <dzq) =) sz) - <V2W0(§;§(t)) 02> PR
d o _

aq) (Z) Z:ZEC - C)
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for every ¢ € T..(U x V). In this way, writing

(i) = =¥

we see that ¢(¢) must satisfy the problem

2.26) {q' = VWO (ie(t)q

¢,

2=Z¢

q(0) = m,(C.
Now, we can decompose ¢ in two orthogonal components
q = qe + qr = (4, 5¢)5¢ + (0, 57) 57
and so, by the first equation in (2.26), we get
Ge + Gr = VWO (¢(t))ge + VW (i¢(1))g-
= (0, 5¢) VWO & (1)) s + (a0, 57) VWO (@ (t))sr

From (A2) (Appendix (A)), the vectors V2W(Z¢(t))se and VZWO(i¢(t))s, are respec-
tively parallel to s¢ and s,. Thus, problem (2.26) can be projected along the tangential
direction s, to finally obtain

Gr = (V2WO(i¢(t))sr, 57)4r
¢-(0) = (m2(, S7)S7.
and conclude the proof. O

In the proof of the next lemma we are going to use again the differential of the flow
®. Therefore, following again Appendix (B} it is useful to provide a characterization of
the elements of the tangent space of the surface 3. If we take into account the maps

Hr,v) = gof? = Wo@), Gla,v) = o — B, (2,0) € &
with gradients
VH(z,v) = (-VW%(x),v), VG(z,v)=2(z,0),

we note that
E=H'Y-1), L=H'Y-1)nGY0).

Therefore, for a point (z,v) € ¥, we have that

<’U, ’U)) - <VW0(IE>7 Q> =0

(z,q) =0,

and, if ¢ € dBg(0) is a central configuration for W, from (2:21)) we get that

(Q7w) € 72:13,7.))2 <~ {

<Uﬁ’w> =0

(2.27) (¢, w) € Tig,—v) X & {@7 ¢) = 0.
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Lemma 2.3.7. Given £ € dBg(0) central configuration for WO such that U" (9¢) > 0, the
jacobian matrix

(2.28) oy (070 (2, 0)]

is invertible in (§, ve).

Proof. Recall that (§,v¢) = z¢ and assume by contradiction that the matrix (2.28) is not
invertible in z¢. Following again the notations of Proposition from Lemma
and, in particular, from (2.25) it is clear that

9 [@T(m’”)(x, v)}

o = dg(zs)‘ :

{0}XToe (V)

(z,v)=2¢

This means that our absurd hypothesis can be translated as follows: there exists { =
(0,) € Tigwe) (U x V), withw # 0 such that

ﬂ'xdg(Zg)z =0.

In this way, by Lemma we have that

d
T 7CI)T£
7r (dz (2)

¢+ F(97(20)) (VT (z¢). c>> —0

Z:Z§

and so

d T,
T, — PLe
@ Z<I> (2)

Z; = —(VT(2), O)maF (972 (2¢)) = (VT (2¢), () ve,

z=

recalling that, by (2.25)

d
2.29 L — e
(2.29) Mo (2)

Z € 7T$7E§7_U£)E.
3

At this point, since £ and v¢ are parallel, by (2.27) and (2.29) we deduce that necessarily
(VT(2),¢) = 0.

This means that, if we take

then

and thus, clearly
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Now, from Lemma we know that the projection of ¢ on the direction s, ¢-(t),
solves the Sturm-Liouville problem

(2.30) Gr +c(t)gr =0
QT(O) =0= QT(TE)a

where by (Appendix[A)
oft) = —(VWO (i¢(t))s7, 57) = | (£)| " (aU (W) — U" ().

The function u(t) = |Z¢(t)| is nothing but a normalized version of the 1-dimensional
homothetic trajectory already studied in Paragraph[2.3.1l Indeed, u(t) = |Z¢(t)| = A(t)R,
where A(t) solves the 1-dimensional a-Kepler problem

A+ aR*2UWHN 1 =0
A0) =1 = A(T),

and so, by calculation, u solves

2.31) {u + au™2U (Y¢)u = 0

U(O) =R = u(TE).
Now, since U”(9¢) > 0, we have that
c(t) < au(t) U (¥)

and therefore, if we apply the Sturm comparison theorem to (2.30) and (2.31) we have
that there exists T € (0,7¢) such that u(T) = 0. This is finally a contradiction and
concludes the proof, since |Z¢(t)| cannot be null in the interval [0, 7¢]. O

Remark 2.3.8. Following the notation of the previous proof, since by (A.3) (Appendix [A) we
have that
er(t) = —(VIWO(ie(8))se, 5¢) = —u(t) ™ 2a(a + 1)U(Je)

one could think to study the Sturm-Liouville problem

instead of problem (2.30). Since it is always true that
er(t) < au(t) 20 (%),

then we should drop the hypothesis U" (9¢) > 0. However, this would not lead to a contradiction
in our argument, since in this case q¢(t) and u(t) are proportional and so we would not deduce
from the Sturm theorem the existence of a null point for u in the interval (0, T¢).
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At this point the proof of Theorem is very easy to get.
Proof of Theorem[2.3.4 It is enough to observe that

0 _ 9 T(£0)(E) _ 9 [T
8’1)1:1 (U) ‘U:vf - O o |:q) ]v:vg T v |:(I) (:E’ U):| (x,v)=(&,ve) ’
which is invertible for Lemma [2.3.71 O

Now, we are ready to prove the main result of this section, which concerns the
existence of outer arcs for the anisotropic Kepler problem.

Theorem 2.3.9. Let & = (R cos ¢, Rsind¢) be a central configuration for W°. Assume that
U”(ﬂg) > 0.

Then, there exists a neighbourhood U of £ on OBg such that, for any po,p1 € U there exist
T > 0 and a solution x = x(t) of

#(t) = VIW9(z(t)), t€[0,T)
SEOP — W) = -1, €[0T
|z(t)] > R, t € (0,T)

2(0) = po, z(T) = p1.
Moreover, z depends on a C'-manner on the endpoints po, p1.

Proof. Define the shooting map

U:UXUXY R
(o, 1, v0) = ¥(po, p1,v0) = z(T'(po, vo); Po, vo) — p1,
where the sets ¢/ and V are respectively the neighbourhoods of ¢ and v found in

Proposition T:U x V is the C! first return map defined in the same proposition
and z(+; po, vo) is the unique solution of the Cauchy problem

. o 0
z(0) = po, #(0) =wvo
in the time interval [0, T'(po, vo)]. Note that, following the notation of Lemma we

have
z(t; po, vo) = mx®'(po,v0), foreveryt € [0, T (po,vo)].

The map ¥ is C! in its domain both for the C* dependence of the solutions of the Cauchy
problem (2.32) on initial data and time and for the differentiability of the first return
map T (see Proposition 2.3.3). Moreover, we have that

W(E,& ve) = 2(T(& ve); € ve) — € = T @8 (&, ve) =€ =0
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and

ov 0

- _ @T(pzv)
Bog (po, P1,v0) Cen)  Bug (p, U)}

z(T'(po, vo); o, vo)

= My )
(&,0¢) ov [ (€,v¢)

which is invertible thanks to Lemma[2.3.7] Therefore, by the Implicit Function Theorem,
we have that there exist a neighbourhood V' C V of v¢, a neighbourhood U C U of £
and a unique C! function n: U x Ug — V' such that n(¢, €) = ve and

W (po, p1,1(po,p1)) =0 forevery (po,p1) € Us X Us.

This actually means that, if we fix (po,p1) € U x Ue, we can find a solution z of
(2.32), defined in the time interval [0, T, with vo = 7(po, p1) and T = T(po, n(po,p1)) =
T'(po,vp). Furthermore, note that this solution has constant energy —1, since

(po,n(po,p1)) = (po,v0) EUs XV CUXV CE CE.

The C!-dependence on initial data is a straightforward consequence of the Implicit
Function Theorem. O

2.3.3. Outer solution arcs for the N-centre problem

We conclude this section with the proof of the existence of an outer solution arc for
the anisotropic /N-centre problem driven by V¢. As a starting point, we recall that, by
Proposition if [y| > R > 0, then

Ve(y) = Woy) +0(7), ase—0F

for a suitable v > 0. This suggests to repeat the proof of Theorem 2.3.9} this time taking
into account the perturbation induced by the presence of the centres. Before we start
with the proof, it is useful to recall the set of strictly minimal central configurations of
WO, defined as

== {9 eS': U'(W)=0and U"(¥*) > 0} = {03,...,0%_,}.

Note that, actually, as it is clear from the assumptions of Theorem it would be
enough to require the (not necessarily strict) minimality of the above central configura-
tions. Beside that, the non-degeneration of such critical points will be a fundamental
requirement on Section [2.5( and however we decide to keep it since it is a natural as-
sumption in anisotropic settings (see for instance [12, 11} 5]).

Theorem 2.3.10. Assume that the assumptions on the potentials (Vj);\f:1 are satisfied and
fix R > 0as in (2.14). Then, there exists cepe > 0 such that, for any 9* € E minimal non-
degenerate central configuration for W°, defining £* = Re™”, there exists a neighbourhood
Uert (€¥) of & on OBR with the following property:
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for every € € (0,€eqt), for any pair of endpoints po,p1 € Uert(E*), there exist Tey =
Teat(po, p1;€) > 0 and a unique solution Yeyt(t) = Yeat (t; po, p1;€) of the outer problem

yext(t) = VV*(Yeat (1)) le [07 Tezt]
1, . .

§’yezt(t)‘2 -V (yext(t)) =-1 te [OaText]
|ye:ct(t)| >R te (OuText)

yext(o) = D0, Yext (Text) = P1-
Moreover, the solution depends on a Ct-manner on its endpoints py and p;.

Proof. Recalling the definition (2.12) of ¢, define the shooting map

U: [0,6) xU XU xV — R?
(€7p07p17U0) = \I’(Evp()?plyv()) = y(T(p07v0);p07U0;8) — D1,

where the sets i/ and V are respectively the neighbourhoods of ¢ and v found in
Proposition T:U xV — RT is the C! first return map defined in the same
proposition and ¥(-; po, vo; €) is the unique solution of the Cauchy problem

{y(t) = VVE(y(t))

(2.33) .
y(0) = po, 9(0) = wo,

in the time interval [0, T'(po, vo)]. Note that, following the notation of Lemma we
have

y(t; po, vo; 0) = T, @ (po, vo) for every t € [0,T(po, vo)]-

Moreover, the map ¥ is C! in its domain both for the dependence of the solutions of
(2.33) on the initial data and time, for the differentiability of V* with respect to ¢ (see
Proposition 2.2.2) and for the C! differentiability of the map T inU x V (see Proposition
2.3.3).

We furthermore note that

\11(075757”6) = y(T(f,Ug);f,Ug;O) - 5 = Wx(I)Tg(évvﬁ) - 5 =0

and
o

GT)O(ff,po,pl,Uo)‘

0
(0767571"&) B aUOy (Ovévavﬁ)
d
= mp— | BT (p,v ,

which is invertible thanks to Lemma|[2.3.7|(see also Figure[2.3). Therefore, by the Implicit
Function theorem, we have that there exist a neighbourhood V' C V of vg, ezt € (0, €),
a neighbourhood Ue.+(¢*) C U of ¢ and a unique C! function 7: [0, eext) X Uezt(E¥) X
Uert(§*) — V' such that (0, &, §) = ve and

(T'(po,vo); po, vo; 6)‘

\P(gap07p17n(€7p07pl)) = 0 for eVery (€7p0ap1) S [07€emt) X Z/[ext(g*) X Ue:ct(f*)-
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homothetic

(9.33/—_<

¢

\ 9B T,

} b1
&

Figure 2.3.: The proof of Theorem here OR denotes the boundary of the Hill’s
region for the rescaled N-centre problem driven by V. On the left side
we have drawn the homothetic trajectory through £*: it is a 1-dimensional
motion that starts in £, it reaches the boundary OR and then it hits again
0Bp in £*. On the right we can see that, if we shoot with initial position
sufficiently close to £*, there will be a first return on the sphere, guaranteed
by the transversality of the flow. On the other hand, the dashed trajectory
on the right could never reach again the sphere since its starting point is
outside the existence neighbourhood provided in the theorem.

This actually means that, if we fix ¢ € [0,e¢¢) and (po, p1) € Ueqt(§*) X Uert(€¥), We
can find a unique solution y.,; of (2.15), defined in the time interval [0, 7,,], starting
with velocity vy = n(e, po, p1) and such that T.,; = T'(po, n(¢, po, p1)) in the fashion of
Proposition Finally, note that this solution has constant energy —1, since

(po,n(g,p0,p1)) € Ueat () xV CU XV C X CE.

To conclude, the C'-dependence on the endpoints is a straightforward consequence on
the perturbation technique used in the proof. O

We conclude this section providing upper and lower bounds for the time interval in
which an external solution is defined, that will be useful later in this work.

Lemma 2.3.11. Lete € (0,ccqt), let 0* € S' be a minimal non-degenerate central configuration
for WO and Ui (£¥) be its neighbourhood on 0BpR found in Theorem Let py,p1 €
Ueat () and let yeqt(-; po, p1; €) be the unique solution found in Theorem defined in its
time interval [0, Tezt(po, p1;€)]. Then, there exist ¢, C' > 0 such that

c< Text(p07p1§5) < C.

Such constants do not depend on the choice of po, p1 inside the neighbourhood.

Proof. The proof is a direct consequence of the continuous dependence of the solution
on initial data and of its perturbative nature. O
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2.4. Inner dynamics

This section is named Inner dynamics since we will look for solution arcs of the rescaled
N-centre problem (2.6), which bridge any pair of points of 9Bg (R >> ¢ > 0 already
chosen in Section and lie inside the ball Br along their motion. It is clear that
the main difficulty is given by the possible interactions with the centres; indeed, since
we are looking for classical solutions with fixed end-points, we need to avoid every
possible collision. Moreover, since we will be working inside Bgr, we cannot make use
of Proposition [2.2.2]and thus perturbation techniques do not apply in this case. For this
reason, following [61], we opt for a variational approach and our inner solution arcs will
be (reparametrizations of) minimizers of a suitable geometric functional. In the last two
sections of this paper we will build closed periodic orbits for the anisotropic N-centre
problem as a juxtaposition of outer and inner arcs using a broken geodesics technique
and, as a corollary, we will link this result with the presence of a symbolic dynamics. In
the Section 2.1) we have already defined those symbols that will compose the alphabet
of our dynamics, which can be roughly thought as all the possible choices of a suitable
partition of the centres and of a central configuration for the leading potential W°. With
some intermediate steps, we will define a suitable topological constraint that forces
every inner arc to separate the centres according to a prescribed partition. To be clear,
the main result of this section is to prove that, for ¢ > 0 sufficiently small and for any
p1,p2 € O0BR, there exists a solution y(+; p1, p2; €) of the following problem

§() = VVE(() te0,T]
S0P~ VW) =1 1e0.T]
y(®) < R te(0,7)
y(0) =p1, y(T) = po,

(2.34)

for some 7' > 0, possibly depending on ¢, and such that the trajectory y separates the
centres according to a chosen partition.

2.4.1. Functional setting and variational principles

In order to follow a variational approach, we introduce the set of admissible paths on
which we will minimize some suitable geometric functionals. We build our setting
referring to the starting equations 2.I)-(2.3) and thus we take into account again the
potential V' and the energy —h < 0 is fixed. However, we notice that a scaling on the
centres, and thus on the whole problem (see problem (2.9)), does not affect the following
discussion. Recalling the notations of the Section 2.1} we fix p1, p2 inside the open Hill’s
region Ry, (see ([2.4)) and we define

H = Flpl,m([aab]) = {u € Hl([aa b]§R2)

u(a) = p1, u(b) = pa,
u(t) # cjVtelab], Vi’
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i.e., all the H!-paths that join p;,ps and do not collapse on the centres, and also the
H!-collision paths

Coll = Colly, ,([a,b]) = {u € H'([a,b];R?)

u(a) = D1, u(b) =p2, It E [avb]a
dje{l,...,N}s.tu(t) =c¢ '

We introduce also the set

H = le,pz([aa b]) = HPLPQ([av b)) U CU[[pLPQ([a’ b])
= {u € H'([a,b); R?) : u(a) = p1, u(b) = pa}

and it is easy to check that H is the closure of H with respect to the weak topology of
H!([a,b]; R?). Let us define the Maupertuis’ functional as

M () = My([a, b]; ) Hp, p,([a,b]) — RU {+o0}
1 b b
s My(u) = 2/ yu(t)|2dt/ (—h + V(u(t))) dt

which is differentiable over the non-collision paths space H. The next classical result,
known as the Maupertuis’ principle (see [3]]), establishes a link between classical solutions
of the equation & = VV(x) at energy —h and critical points at a positive level of M, in
the space H. Note that, if M n(u) > 0 for some u € H, then we can define the positive
quantity

b
—h+V
(2.35) w? = Jo(Ch+ VW) N b+ : (®) )
3 Ja [0
that plays and important role in the next result.

Theorem 2.4.1 (The Maupertuis’ principle). Let u € H,, ,,([a, b)) be a critical point of My,
at a positive level and let w > 0 be defined by (2.35). Then, x(t) = u(wt) is a classical solution
of the fixed-end problem

Z(t) = VV(x(t)) t€la/w,b/w

slEOF =V (z(t) = —h  t€la/w,b/w]

w(a/w) = p1, x(b/w) = p»

while w itself is a classical solution of

The converse holds also true, i.e., if x is a classical solution of the fixed-end problem above in
a certain interval [a’,b'], then, setting w = 1/(a’ — V'), u(t) = x(t/w) is a critical point of
My, ([a, b]; -) at a positive level, for some suitable values a, b.
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Proof. Since w is a critical point for My, then

b b b b
/<u,v>/ (—h+V(u))+;/ yu?/ (VV(),0) =0, Yoe H([a,b:R).
Since M, (u) > 0 we thus have
b b
w2/ (@, v) :—/ (VV(u),v), Yo H}(a,b];R?)

and so u solves weakly (and thus classically by routine regularity arguments)

Wri(t) = VV (u(t)), Vt€ [a,b].

If we define )
. w
g(t) = = [u®)]* = V(u(®))
we immediately get that g(¢) is constant in [a, b] and, by (2.35) we necessarily have that
g(t) = —h and the energy conservation follows.

Moreover, defining x(t) = u(wt) we have
Z(t) = VV(x(t)), Vtea,b]. O

In order to apply direct methods of the Calculus of Variations to M), we will work
in H, which is weakly closed in H!. As a first step we show that a (possibly colliding)
minimizer of M, in H preserves the energy almost everywhere.

Lemma 2.4.2. If u € H is a minimizer of My, at a positive level, then

w2

7\ﬂ(t)|2 —V(u(t)) = —h forae.t € [a,b].

Proof. It is enough to observe that u is an extremal with respect to time reparametriza-
tions which keep the ends fixed, i.e., if ¢ € C2°(a, b) and we define uy(t) = u(t + A\p(t))
for A € Rt, then

(2.36) d%/\/lh(m)‘ —0.

Let us prove (2.36). If X is small enough then the function ¢ — ¢ + Ap(t) is increasing in
[a,b] and so it is invertible. Through the change of variable s = t + Ap(s) we have

" V(u(s)) —h

b
Mh(m)_;/a yu(s)|2(1+w(t(s)))d8/a T+ 2p(t(s)) ©

where t(s) = s — Ap(t). The one-parameter family of functions ¢5(s) = ¢(s) uniformly
converges to 0 in [a, b] as A — s since

|t/\(3)_3‘ S/\H90HOO7 Vite [a7b]'
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For this reason we have
Aomatun)|_ =3 [ gt as [ hr vy d
ax 123N ,\:0_20‘“5(’08 Sa u\s S

b b
- / [i(s) 2 ds / (=h+V(s)) $(s) ds
b1y

b
. 1. ‘
- / [2 </ (V(s) —h) ds) Ja(s)[” — 5”““% (=h+V(u(s)))| ¢(s)ds
=0
for every ¢ € C3°(a,b), and thus (2.36) is proved. In particular, we deduce that

b
% (/a (V(s)—h) ds> la(s)|? — %”uug (=h+V(u(s)) =k ae. ina,b]

for some k € R. Now, since M (u) > 0 we have

UJ2
?]ﬂ(s)|2 =V(u(s)) —h+k, ae. inla,b

and from (2.35) the proof is complete. O

The lack of additivity of M}, induces the introduction of the Jacobi-length functional

1
L) = [ fa)V/ =R+ Via(o) de
0
whose domain is the weak H!-closure of the set

u(@) = pr, ulb) = 2 } |

HEP(a, 1) = {“ HEEDY ) > b, ide)] > 0, for every t € fa 8

Indeed, Theorem could be rephrased for £, and thus classical solutions will be
suitable reparametrizations of critical points of £}, (see for instance [54] and Appendix
for more precise details on this functional). Finally, we notice that the Maupertuis’
functional is not additive, while it is well-known that the Jacobi-length functional is and
itis also invariant under reparametrizations, since it is a length. Despite that, exploiting
the correspondence which stands between minimizers of M, and minimizers of the
Jacobi-length functional (see Proposition [C.3), an easy proof leads to the following
proposition.

Proposition 2.4.3. Let u be a minimizer of My([a,b];-) in Hp, p,([a,b]). Then, for any
subinterval [c,d] C la,b], the restriction uli g is a minimizer of Mp([c,d];-) in the space
Hu(c),u(d) ([67 d])
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2.4.2. Minimizing through direct methods

At this point, we go back to the N-centre problem (2.34), introducing the notation
c; = ec; for the e-centres included in B.. We aim to prove the existence of a minimizer
for the Maupertuis’ functional, requiring the following topological constraint: an inner
arc has to cross the ball B;, dividing the centres into two non-trivial subsets. This
can be done introducing the winding number with respect to every centre; but since a
path in H is not necessarily closed, we need to close it artificially. Let us fix [a,b] C R,
p1,p2 € 0BRr and write
p1=Re"', p; = Re'™

for 91,95 € [0,27). Foru € Hy, ,,([a,b]), if p1 # pz we close u glueing an arc of dBg in
counter-clockwise direction, i.e., we define

u(t) te [aa b] i

A if 9 <

{Rez(t—b+192) te (b’ b+ 19 + 27 — 292) ' ’

Tou(t) = 4 u(t) t € [a,0] if v =92
u(t) t € [a, 0] i

A if 9 >0

{Rez(t—b+192) t e (b,b+ 9 —V2) 1 :

and so, we can introduce the winding number of u with respect to a centre ¢} as

1 d
Ind(u;c})im/ Z, €7, forallj=1,...,N.
i Jr, 2 = ¢}

Since a path u has to separate the centres with respect to a given partition in two
non-trivial subsets, we can choose the parity of the winding numbers Ind(u;c;) as a
dichotomy property. Following this, we introduce the set of admissible winding vectors

(2.37) N ={lezl 35 ke{l,....N}, j#k, st #l}
and, for I € 3V (which we fix from now on), we consider the class of paths
H={uecH: Ind(u; ¢;) = 1j (mod 2), Vj=1,...,N}.

Of course, the above set is not closed with respect to the weak topology of H' and so,
as before, we include the collision paths in our minimization set. For j € {1,..., N}
define the set
Coll] = {u € H : Ind(u;c}) = Iy (mod 2) Vk # j and 3t € [a,b] s.t. u(t) = ¢}}
i.e., the collision paths behaving like a path in H, with respect to every centre, except for
c; in which the particle collides. In the same way, we can include two collision centres
/ /

¢4, ¢, defining

Collf172 = {u cH

Ind(u; c},) = I, (mod 2) Vk # j1, j» and }

Jt1,ty € [a,b] s.tu(ty) = ¢, ulty) = ¢,
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and so on

J1,J2,J3
Coll] 272 =,

Co[[ll""’N = CollN = {u € H : u collides in every centre}.

At this point, we can collect together all the admissible collision paths with respect to a
fixed winding vector I € 3V in the set

N
Coll; = U @0[[{ U U @0[[{173‘2 U U €0[[11,.“,1\/
J=1 1<j1<j2<N

and prove the following result.

Proposition 2.4.4. The set
H; = H; U Coll;

is weakly closed in H.

Proof. Take (u,) C H, such that v, — u in H' and so, in particular, u,, uniformly
converges to v in [a, b]. Then, if u has a collision then u € €oll;. On the other hand, if u
is collision-free, then the uniform convergence implies the existence of ng € N such that

unGI:IanZno = uefll. O

Finally, we look for solution arcs which lie inside Bg along their trajectory, and so
it makes sense to add another constraint on them. For this reason we will restrict our
investigation to the sets:

K= KPP (la,b) = {u € Hy: Ju(t)] < R, Vt € [a,8]}

2.38
(239) K= KPP ([a,b]) = {u € Hy: |u(t)| < R, Vt € [a,b]},

(see Figure[2.4for an explanation on the geometrical meaning of the constraint induced
by these sets).

The following proposition guarantees that we are in the convenient setting to perform
a variational argument.

Proposition 2.4.5. The set K, is weakly closed in H'.

Proof. The proof is trivial since K; is a subset of H; which is stable under uniform
convergence. O

For any u € K; = K" ([0, 1]), we take into account the Maupertuis’ functional
1 1 1
M =5 [ lawPar [ -1+ Vo)) de
0 0

and we remark two facts:
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p2

0Br 0Br 0Br

p2 p2

Figure 2.4.: The geometrical interpretation of the topological constraint: in the first pic-

ture we have a collision-less path realizing the winding vector (0,0,0,1, 1,1);
the second arc collides with cg, thus it belongs to the closed space K;, with
! =1(0,0,0,1,1,0) or l = (0,0,0,1,1,1); in the third picture we have a non-
admissible path, since it has winding vector [ = (1,1,1,1,1,1) ¢ JV. This
also explains why, in order to have the centres geometrically divided by an
arc, such arc cannot have indices with the same parity with respect to every
centres. Indeed, in this case the path would belong to the space K; with
l=(1,1,1,1,1,1) or L = (0,0,0,0,0,0).

e since M is invariant under time reparametrizations, we have puta = 0and b = 1;

e actually, M = MyJ, but we have omitted this dependence since we will mainly
work with both € > 0 and the energy fixed. When we will move such ¢ or the
energy, we will use the more explicit notations.

We now prove three lemmata in order to apply direct methods to the Maupertuis’
functional.

Lemma 2.4.6. There exists C' > 0 such that

M(u) > C >0, foreveryu € Kj.

Proof. Since u € K then |u(t)| < R for every t € [0, 1] and so

lu(t) = cj] < R+e

forevery j = 1,..., N and for every ¢ € [0, 1]. Now, recalling that

m= min_ minU;
j:17“'7N Sl

we have that

(2.39)

5 /| —a m
VE(u(t)) > |u(t) — ¢y "m > m7

for every ¢ € [0, 1]. Recalling (2.12) and (2.14), we have that R € (¢, m'/® — ¢) for every

g, hence
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In this way, we have shown that there exists C' > 0 such that
1
(2.40) M) > C / at)|2 dt,
0

for every u € Kj. At this point, let us define t* € (0, 1) as the first instant at which u
crosses B.. Using the Holder inequality, we note that

@41) o<aiR—asww—uwnséﬂmmﬁsum2

and the proof is concluded. O
Lemma 2.4.7. The Maupertuis’ functional M is coercive in K;.

Proof. Take (u,) C Kj such that |lu,||z1 — +o00. Since the sequence (||uy|2) C R is
bounded we have that necessarily

. .2
lim[Jin3 = +o0
and thus the proof is complete for (2.40). O

Lemma 2.4.8. The Maupertuis’ functional M is weakly lower semi-continuous (w.l.s.c.) in
K.

Proof. It is equivalent to show that the set
MY ={ue K : M(u)<C}

is weakly closed in H' for every C € R. Fix C' € R and take (u,) € M¢ such that
Uy — u € K;in H'. Since the H'-norm is w.l.s.c. we have

lranll3 + i3 < tirm nf (3 + i 2%)

The weak convergence implies the uniform one and so, in particular, v, — v in L?. For
this reason
.2 .. .2
U < liminf ||4,]5.
i3 < T inf 13

By assumption we have M(u,) < C for every n € N and so, in particular, V°(u,) €
L'(0,1) for every n € N. This means that the set

{t €10,1] : up(t) = ¢; for some j}
has null measure and so, again from the uniform convergence of (u,,), we have

VE(un(t)) = VE(u(t)) a.e.in|0,1].
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Therefore, Fatou Lemma implies that

1 1
/(1+V€(u(t))) dtgnminf/ (=1 + V=(un(t))) dt
0 0

n——+oo

and, in particular, that V¢(u) € L'(0,1). At this point we can conclude the proof
observing that, since

1 1
M(u) = ;/O |u(t)|2dt/0 (—1+ VE(u(t))) dt
1 1
< ;gﬂg/o \un(t)|2dt/0 (—1+ VE(un () dt

< lim sup M (uy,)

n—-+o0o

<C,
then u € MC. O

We are ready to prove the next result which claims the existence of a minimizer for

the Maupertuis” functional in the set K.
Proposition 2.4.9. Assume that the assumptions on the potentials (Vj);\f: | are satisfied.

Fix e € (0,€) as in @12), fix R € (5, mY/* — &) as in Q.14) and fix | € IN. Then, for any
p1,p2 € OBR, the Maupertuis’ functional

1 1
AMM=;AhWWﬁA(4+V%Mmﬁ

admits a minimizer w € K" ([0, 1]) at a positive level.

Proof. Apply the direct method of Calculus of Variations to the Maupertuis’ functional,
making use of Lemmata 2.4.6}[2.4.7|and [2.4.8] O

Now, if we show that the minimizer v € K verifies:
(CF) wis collision-free,
(R) |u(t)| < R foreveryt e (0,1),
we have that J
ﬁj\/l(u + A(p)}/\zo =0 foreveryy e CX(0,1),

so that Theorem applies and we can find a classical solution y: [0,7] — R? of the
inner problem
y(t) = VV=i(y(t)) t€[0,T]

S0P~ V() = -1 te[0.7)
ly(t)| < R te(0,7T)
y(0) =p1, y(T)=p2.
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The next two sections are devoted to show respectively that u joins the properties (CF)
and (R), to finally obtain a classical solution arc for the anisotropic N-centre problem
inside. As a starting point, we characterize the sets of colliding instants and of the times
at which |u| = R. In particular, if we define

Te(u) = {t € [0,1] : u(t) = ¢ forsome j € 1,...,N} C (0,1)

(2.42) Tr(u) = {t € [0,1] : |u(t)] = R} C [0,1],

we can easily notice that, since M(u) < +oo, T,(u) is a closed set of null measure
and its complement [0, 1] \ 7¢(u) is a union of a countable or finite number of open
intervals. Moreover, when the minimizer travels along a connected component of
[0,1] \ (T¢(u) U Tgr(u)), it can be reparametrized to obtain a classical solution of the
N-centre problem through Theorem and the energy is conserved along this path.
This is shown in the next lemma.

Lemma 2.4.10. Given a minimizer u € K; of the Maupertuis’ functional M:

(i) w verifies

%WMF—V%MD:—é—mammﬂ;

(1) if (a,b) is a connected component of [0, 1] \ (T.(u) U Tr(u)) then u| (4 € C*(a,b) and

wrii(t) = VVE(u(t)) foreveryt € (a,b).

Proof. The proof is a consequence of the minimality of © with respect to compact support
variations in [0, 1]\ (T¢(u) UTR(u)) (see the proof of Theorem and Lemma]2.4.2). [

2.4.3. Qualitative properties of minimizers: absence of collisions and
(self-)intersections

In what follows we are going to provide the absence of collisions (C'F)) for a minimizer
u obtained in the previous subsections. In order to do that, we will carry out a local
study near-collisions. Since we will be working close to the centres, the radius of the
ball B. will play no role here. For this reason, without loss of generality we fix ¢. Fix
an admissible partition of the centres, that corresponds to fix [ € 3V and consider a
minimizer u € K (see and for their definitions). To start with, we show that
the collisions are isolated. Recalling the definition of T¢.(u) in (2.42), this is the content
of the next lemma that, moreover, provides a Lagrange-Jacobi identity for colliding arcs.

Lemma 2.4.11. The set T,.(u) is discrete and it has a finite number of elements. In particular,
if the minimizer u has a collision with the centre c}, the function I(t) = |u(t) — ¢} |? is strictly
convex in a neighbourhood of the colliding instant.

Proof. Without loss of generality assume that u collides with the centre ¢} and assume
by contradiction that ¢y is an accumulation point for T.(u) and u(ty) = ¢}. Since u
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is continuous in [0, 1], only collision instants with the centre ¢| can accumulate in ¢.
Therefore, there exists a sequence (a,, b, ) of open intervals such that (ay, b,) C [0, 1] for
every n € N, a,, — tg and b, — tg as n — +00, u(a,) = ¢} = u(by,) for every n € N and

lu(t) — cj| >0 forallt € (ay,by).
In particular, again from the continuity of u, we have that, at least for n sufficiently large
lu(t) — | >C >0 and |u(t)| <R,

for all t € (an,by), for every k # 1. Define the inertial moment of u with respect to the
centre ¢ as the function

I(t) = fu(t) — & .
Now, since (ay,, by,) is a connected component of [0, 1]\ (7,(u) UTr(w)) if n is sufficiently
large, by Lemma and using the Euler theorem for homogeneous functions, we
can obtain a Lagrange-Jacobi-like identity

1(t) = 2(u(t), u(t) — cy) + 2[u(t)]?

243) = 2OV u0), ult) — ) + g (V) 1)
=t 2 aVAlt) — ) + Fu(D),

for every ¢ € (ay, b,) and for some smooth function f. The continuous function I(t)
e is positive;
e is zero whent € {ay, b, };

e admits a maximizer &, € (an, by).

Therefore, we would have I (&n) < 0 for every n € N. But, if n — +o00 the second term
in blows up, while the others stay bounded. This is clearly a contradiction. For
this reason ¢y is an isolated point for 7 (u) and, since [0, 1] is compact, in particular we
have that 7 (u) is finite. O

In the next two propositions we discuss some important properties of minimizers of
M, concerning the (self-)intersections at points which are different from the centres.

Proposition 2.4.12. Let u € KI'"'"? be a minimizer of M. Then, u parametrizes a path without
self-intersections at points different from the centres.

Proof. By contradiction, assume that there exist ¢, < t.. suchthatu(t.) = u(t.) = p # ¢
for all j and |p| < R. Hence, there exists (a, b) connected component of ([0, 1] \ (7¢(u) U
Tr(u))) such that ¢, € (a,b). From Lemma we have that u(,;) is a classical
solution of w?ii = VV (u) (and so, in particular, it is C! in the same interval) and the
conservation of energy implies that

U(ts), W) #0,  |u(ts)] = |u(tu)]-

This leads us to consider three possible alternatives

66



1. a(ty) is transverse to U(t.);
2. u(ty) is tangent to (.. ) with opposite direction (i () = —u(t«));
3. u(ty) is tangent to (.. ) with same direction (4 (t,) = u(tss)).

The alternative (3.) is impossible by means of the uniqueness theorem for Cauchy
problems, but also is alternative (2.) since our problem joins time-reversibility.

For (1.) we can produce an explicit variation v € K; for which M (v) = M(u) but such
that v ¢ C! in a neighbourhood of t., which is impossible. To build such a variation
is enough to travel along u until t*, then to change the orientation of the loop between
t* and t**, and then to travel again along u until the end. Notice that the new path v
preserves the parity of the winding number with respect to every centre; indeed, for
every j € {1,..., N} we have

Ind(v; ¢;) = Ind(u; ¢;) — 2Ind (u g pe; ).

O]

Remark 2.4.13. In light of the previous proposition, we can affirm that we could start this
minimization process choosing among only those paths with winding index equals to 0 or 1 with
respect to every centre, even if this choice could seem unnatural at the beginning. We also remark
that a priori we do not necessarily need the paths to do not self-intersect; nonetheless, Proposition
[2.4.12]shows that this is actually an intrinsic property of the minimizers.

Lemma 2.4.14. Let u € K" be a minimizer of M, let q1 = u(c) and g2 = u(d) for some
sub-interval [c,d) C [0,1]. If we define K%+92(u) as the weak H*-closure of the space

.Rmﬂ%u)i:{vefﬂquyR%

v(c) = q1, v(d) = g2, |v| < R, v is homotopic
to ul (. q) in the punctured ball Bg \ (...

then
M(uljeq) = min M.

Proof. Assume by contradiction that there exists w € K% (u) such that

min M = M(w) < M(ulq)-

K1:92 (u)

The path
ai{wwﬁ)teMdUMﬂ

w t € [e,d]

belongs to the space K}'** and minimizes M in that space. This is in contrast with the
minimality of u in the same space. O

67



Proposition 2.4.15. Let u € K" be a minimizer of M. Let [ €3N, p1,ps € OBg
and v € KPP be a minimizer of M. Then, if u intersects v at least in two distinct points

01,92 € BR\ {c}, ..., cy}, the portions of u and v between g and go are not homotopic paths
in the punctured ball. As a consequence, if | = 1, then u cannot intersect v more than once.

Proof. Since the Maupertuis” functional is invariant under time-reparametrizations, to
prove the assertion we can assume that there exist g1, g2 € Br \ {¢], ...,y } such that

u(d) = g2 = v(d),
for some interval [c, d] C [0, 1]. Assume by contradiction that the paths u|}. 4 and v|. g
are homotopic in the punctured ball By \ {c}, ...,y }; this means in particular that

KM% (y) = K% (v) (for their definitions see the statement of Lemma [2.4.14). Now,
again from Lemma|2.4.14} we deduce that

M(usfe,d)) = min M= min M= M(vi[e,d]).

For this reason, if we define the path (see Figure
() ifte[0,¢)U(d, 1]
u(t) = .
v(t) if t € [c,d]
we clearly have that @ € K7*""* and

M(a) = M(u) = min M.

P1-P2
Kl

By Lemma the instants ¢ and d belong to two connected components of [0,1] \
(Tt(u) UTg(u)) and therefore Lemma applies too. This is finally a contradiction
since the path @ cannot be differentiable in ¢ and d (note that u(c) # v(c) for the
uniqueness of solutions of Cauchy problems; the same holds at d for time-reversibility).

For the situation | = [ the proof is trivial, once provided Proposition O

At this point we are ready to start a local analysis in order to rule out the presence of
collisions with the centres. Let us now assume that the minimizer u has a collision with
the }Serﬁtre c; at time t. By means of Lemma 2.4.11) we have that there exist ¢, d € [0, 1]
such that

e ¢ <ty < dand tyis the unique instant of collision of « in [c, d];
e the inertial moment 7(¢) = |u(t) — c}]Z is strictly convex in [c, d].

We define p; = u(c) and ps = u(d). Since u € C([c,d]; R?), then there exists r* > 0 such
that

(2.44) lu(t) —cj| >r* >0 foreveryt € [c,d] and for every k # j
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Figure 2.5.: Situation of Proposition [2.4.15

and, without loss of generality, we can assume that p;, p» € 05, (c;-), for some r < r*.
Since we are getting close to the collision, it makes sense to localize the potential and
to write

VE) = Vily — ) + I (y),  with fi(y) = > Vi(y — ).
k#j

Notice that inside the ball B, (c) the quantity f?(y) is smooth and bounded.
Let us introduce the space

v(c) = p1, v(d) = pa, v(t) # VL E [e,d], ¥
u(t) ift e [0,¢)U (d,1]

KPrPr = d oy e H'([e,d]; R?) | the function G, (t) =
: ve H'(le,d; R?) | the fu D=\ fteled

belongs to K772
and its weak H'-closure
KPP = KPP U {v € HY ([e,dl; R?) = v(e) = pi, v(d) = P2, Gy € Colly}
and restrict the Maupertuis’ functional to KJ'7* in this way
o o 1 rd d
MPP2 KPP R (oo}, MV (y) = 2/C b(t)]th/c (—1 4 Ve(u(t)) dt.

We can repeat the proof of Subsection and show that Mf P2 admits a minimizer in
K772 at a positive level. Moreover, from Lemma [2.4.14} this minimizer is nothing but

v = u\ [e,d]
For the sake of simplicity assume ¢ = 0.
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Proposition 2.4.16. The following behaviour holds:
VE(y) = Vi(y) + C+ O(lyl), asy — 07,

for some constant C' > 0. In particular, when |y| is sufficiently small, the problem is a small
perturbation of an anisotropic Kepler problem driven by the —«;-homogeneous potential V.

Proof. Itis enough to observe that, with the same computation of the proof of Proposition
we have that, for every k # j

|y — k|~ = lci|7** + O(lyl), as |yl — 0"

and

Y
W ( Ut ) _C+0(yD), aslyl - 0"
|y—ck|

In particular, defining r* > 0 as in (2.44), for r € (0,7*) and for |y| < r we can write

VE(y) = Vi(y) + C +rGr(ly]),

with G, uniformly bounded with respect to r. O

At this point we need a result from [5] (see also Chapter [I) on the properties of
minimal collision orbits for a perturbed anisotropic Kepler problem. In order to take
it into account, we need to introduce some further notations. Let 7* be as in (2.44); for
r € (0,r*) and ¢ € 9B, we define the set of H!-colliding paths on a generic real interval
[c,d] CR

Hgoll = {’LU € Hl([c7 d]sz) : U)(C) =4q, U)(d) - 07 |w(t)| <, Vite [Cv d]} :
Moreover, for a potential V¢ € C?(B, \ {0}) which is a perturbation of an anisotropic
potential as in Proposition 2.4.16| consider the Maupertuis’ functional

1 [ d
M(w) =5 / | (t)]? dt/ (=1 + VE(w(t)))dt
for w € HZ,,. Up to choosing a smaller r*, we proved the following result; in order to

ease the notation, we will denote a minimal non-degenerate central configuration for U;
as ¥* instead of ¥, (see (V).

Lemma 2.4.17 (Theorem 5.2,[5]; cf Theorem|[1.5.2) Remark([1.3.3). Let 9* € S! be a minimal
non-degenerate central configuration for U;. There exist r* > 0 and 6 > 0 such that, for
every q = re?’ with r < r* and 9 € (9* — 8,9* + &) there exists a unique minimizer of the
Maupertuis’ functional in the set of colliding paths HZ . In particular, this path cannot leave
the cone emanating from the origin and bounded by the arc-neighbourhood (V* — 6,9* + 9).
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The presence of this region foliated by minimal arcs inside a cone spanned by ¥,
together with Proposition suggests to choose one of this paths and to use it as
a barrier, in order to determine a region of the ball B, in which a minimizer with end-
points on dB; has to be confined. Indeed, in order to rule out the presence of collisions
for a minimizer in IC{’ P2 we aim to follow the ideas contained in a result from [11]],
which holds true for minimizers that do not leave a prescribed angular sector. For a
r > 0, a potential V¢ € C?(B, \ {0}) as in Proposition and 7' > 0, introduce the
action functional Ar: H'([0,T]; R?) — R U {400} such that

Tr1
Ar(o) = [ (2|¢(t)|2 FVEa(t)) - 1) d.
0
Definition 2.4.18. Wesay that x € H'([0, T]; R?) is a fixed-time Bolza minimizer associated
with the endpoints x1 = z(0), 2 = z(T), if, for every y € H'([0, T); R?) there holds
y(0) = 21, y(T) = 22 = Ar(z) < Ar(y).

We recall an important result from [11], which represent our starting point to get the
absence of collisions for our minimizers.

Lemma 2.4.19 (Theorem 2, [11])). Consider a perturbed potential V € C*(R?\ {0}) such that,
writing in polar coordinates x = (r cos ¥, rsin )

V(z) =r"U0) + W (z),
where o > 0 and

lim 7 (W (z) +r|VW(z)|) =0

r—0+t

for some o/ < o Assume that there exists at least 9* € S* such that

U@W)>U®W) >0, vJeS!
U"(v*) > 0,
i.e., V" is a minimal non-degenerate central configuration for U, and define
©={deR: V=194 2nn, forsomen € Z}.

Then, for every ¥~ < 9 € O there exists a(U,9~,97) € (0,2) such that if « > & all the
fixed-time Bolza minimizers in the angular sector [9~, 9] are collision-less.

As a first step, we show that the previous lemma can be extended for those H L
paths with fixed ends which minimize the Maupertuis” functional instead of the action
functional. Indeed, with the same proof of Subsection[2.4.2} one can prove the existence
of a minimizer for the Maupertuis” functional

1 1
M) =5 [ [ nevi)

in the space of the H!-paths which join two points within the sector [J—, 97|, for h € R.
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Lemma 2.4.20. In the same setting of Lemma|2.4.19) if h € Rand if « > a(U,9~,9"), then all
the minimizers of the Maupertuis’ functional M, within the sector [9~, 9] are collision-less.

Proof. Assume that u € H'([0,1]; R?) minimizes the Maupertuis’ functional in the set
of the H!-paths which join two points ¢, g2 within the sector [J~,9*] and assume also
that « has a collision with the origin. If we define z(t) = u(wt), with

1/2
(fo —h+V(u )) 0

2 fo |a?
then, from Theorem we know that x solves
i(t) = VV(x(t)) te0,1/w]
st | V(z(t)) =—h t€l0,1/w]
z(0) = q1, z(1/w) = g

At this point we define 7' = 1/w and we find the fixed-time Bolza minimizer of the
action functional associated with the sector [, 91| and we define

Hy = {y € H'([0,T;R?) : y(0) = q1, y(T) = g2, y(t) € [97, 97Vt € [0, 7]}
We call this minimizing path

=a A
rg min 7(y)

and, by Lemma [2.4.19) we know that it cannot collide with the origin; this also proves
that x # 7.
Now, we know that x(t) = u(t/T) for all t € [0, T, and so we can compute

Ap(z) = /OT (;m(t)? V(b)) — h> dt

:/01 (2%1"“( )2 + TV (u(s)) —Th) ds

and, from the conservation of the energy for u and the definition of w = 1/T, we can
find that

AT(x)z/OI;yu( J2ds = V2 </ (s |2d5/ —h+ V(u ()))ds>1/2:2 M ().

At this point, since the Maupertuis functional is invariant under time-reparametrizations
we have

2/ M = min min A7r(y) < min Ar(y) = Ar(Z) < Ar(z) = 24/ My (u),

T>0 yeHr yEHT

which is a contradiction since 7 is collision-less. O
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In the next result we show that it is possible to improve the previous lemma. In
particular, a sequence of minimal paths cannot accumulate to a collision path. We will
prove this result taking into account the potential V¢ as in Proposition [2.4.16|because it
is meaningful to our purposes, but the same result holds in the setting of Lemma[2.4.19|

Lemma 2.4.21. In the same setting of Lemma there exists © > 0 such that, for any
ro € (0,7), for every k € N\ {0}, for every sector [9~, 9] such that 9* — 9~ = 2k, for every

a > a(U;j,0~,07), there exists & > 0 such that, for every q1, g2 € OBy, the Bolza minimizer u
considered in Lemma from qi to qo in the sector [0~ , 9" is such that

i )| > 6.
trer[lég]IU()b To

Proof. Assume by contradiction that, for every 7 > 0, there exists ry € (0, 7), there exists
k € N, ¥* € S! minimal non-degenerate central configuration for U; and there exists
a > a(U;,v*,9" + 2kr) such that, for any 6 > 0 there exists ¢1, ¢2 € 0By, such that the
Maupertuis’ minimizer « which connects ¢; and ¢z in the sector [¢*, 9* + 2k7] is such
that

min_|u(t)| < drp.
te[0,1]| (®)] < éro
It is not restrictive to assume instead the following:
e there exists r, — 07 sequence of positive real numbers;

o fixkeN;

e fix¥* € S! minimal non-degenerate central configuration for U; (this is not restric-
tive since U; admits just a finite number of them);

e there exists o; > a(Uj;, V", 0* + 2kn);
e take d,, — 07 sequence of positive real numbers;
e take two sequences of points (¢7'), (¢5) € (0B;,);

e consider the sequence of minimizers (u,,) of the Maupertuis’ functional

1 1
Mun) =5 [ il [ (<14 Ve,
2.Jo 0
every one of them respectively in the space
H" = {u, € Hl([oa 1];R2) tun(0) = qf, un(l) = g3, [un| <o}

and within the sector [¢*, ¥* + 2kn],
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such that
n <_ ntn-
tH[l(l)rh [un ()] < dpr

Define the blow-up sequence

v (t) = %un(t) fort € [0, 1], for every n € N

which, for every n € N, verifies the following:

ap = vn(0), @4 =v,(1) € 0By;
(2.45) lon(t)] < 1 foreveryt € [0, 1];

min_|vy,(t)] < 6y.

te(0,1]

Recalling the behaviour of V¢ (see Proposition[2.4.16), observe that, if we fix y € R\ {0}
we can compute

VE(rag) = ra Vi) + €+ O(ra) = ra® (Vi) +130C + 0™

as n — +oo. In this way we have

M(up) = M(rpvp) = / \rnvnz/ -1+ VE(rpvy))
.2 / \vn\Q/ —rpd 4+ V(vg) 4+ r2C + O(r "‘]“))

/w/ (0a) + O(r))

and so, if we define

we have shown that

-2

M(vy) =y’ “M(uy), foreveryn c N.

Now, since M(vy,) and M (uy,) are proportional and ,, minimizes M in H", if we define
A" = (v, € B0, 1) : 0a(0) = ', vn(1) = 3, fon] < 1)

we easily deduce that

M (v,) = min M.
H’n/
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At this point, we want to show that (v,,) admits a weak limit in the H! topology. Since
V; is bounded from below in S' we have that there exists C; > 0 such that

1
M(vy) > Cl/ o, |%,  for every n € N.
0

On the other hand, since O(rffj ) is uniformly bounded as n — +oo by a constant C > 0,
we have that there exists C'5 > 0 such that

M(v,) = min M < min / |v|2/ Vj(v) + Cy < Cs.
Hn veHn™ 2

Moreover, the sequence (v;,) is uniformly bounded by 1 and so its L?-norm is too. For
this reason, we deduce that there exists vy € H! such that v,, — v in the H!-topology
and thus uniformly; in particular, from (2.45) and the uniform convergence we have that

q1 = v0(0), g2 = vo(1) € IBy;

lvo(t)] < 1, for every t € [0, 1];
i t)| = 0.

min vo(2)]

)

In other words, we have shown that the blow-up limit vy is a collision path in the space
H = {ve H([0,1;R?) : v(0) = @1, v(1) = @, [v| <1}

in the sector [9*,9* + 2k]. For this reason, it is enough to show that vy minimizes the

Maupertuis’ functional
1 1 ) 1
=3 [l [ Vi)
0 0

in the space H; indeed, we would reach a contradiction thanks to Lemma [2.4.20] since
a; > a(U;j,9%,9* 4+ 2km) and a minimizer cannot have collisions.
From Fatou lemma we have that

_ 1 1 ) 1 _
_ 1 ) ' < T .
Mo (vo) 5 /0 |00 /0 Vj(vo) < Eﬂ{}f/\/‘(”")’
on the other hand, since v,, minimizes M in H,, for every n € N, we have that

M(Un) <M Uo / |’Ug| / V ’UQ +C'4rn,

for some Cy > 0 and for every n € N. In this way, we also have that

lim inf M(vy,) < /|Uo\/ {(v0) = Mo (vo)

n—-+o00

and so v, — v strongly in H'. This shows that vy is a minimizer in H and concludes
the proof. O
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At this point, we want to prove something stronger than the previous lemma, which
will involve Lemma Indeed, our idea is to show that it is possible to extend
Lemma to those sectors that are determined by two minimal arcs of the foliation
provided in Lemma We are interested in those curved sectors which have as
barriers one minimal arc and its 2km-copy for some k£ € N. Note that in [5], the authors
give a particular characterization of the foliation of minimal arcs: it is possible to
parametrize every minimal arc with respect to its distance from the origin, thanks to a
monotonicity property of the radial variable (see [5, Lemma 4.3]). Recalling that * is a
minimal non-degenerate central configuration for U;, we consider the unique minimal
arc v*, parametrized as the polar curve v*(r) = (r, ¢*(r)), such that ¢*(rg) = ¥*. For
k € N, we can define

(0" k) = {(0(r)) : ¢ (r) <9(r) < 9" (r) + 2k, for 0 <7 < ro}

and we are able to prove the following result. Again, we will refer the proof to a potential
V¢ as in Proposition[2.4.16]

Lemma 2.4.22. In the same setting of Lemma |2.4.19, there exists r* > 0 such that, for every
ro € (0,7%), for every k € N, for every o > a(Uj, 9", 9* + 2km), there exists § > 0 such that,
for every q1, g2 € X(U*, k) N OBy, the Bolza minimizer u which connects q and gz is such that:

(1) w belongs pointwisely to the sector 3(9*, k);
(13) u verifies
i t)| > dro.
nin |u(®)] > dro

Proof. We start with the proof of (i7). Following the same technique used in the proof
of Lemma [2.4.21} assume by contradiction that:

e there exists 7, — 07 sequence of positive real numbers and, without loss of
generality, assume that r,, < r* for n sufficiently large, with 7* > 0 as in Lemma

o fixkeN;

e fix¥* € S! minimal non-degenerate central configuration for U; (this is not restric-
tive since U; admits just a finite number of them);

e there exists o; > a(Uj;, v*, 0" + 2km);
e take &, — 07 sequence of positive real numbers;
o define the sequence of curved sectors
Yo ={(r,d(r)) : ¢*(r) <I(r) < ¥ (r) + 2km, for0 <r <r,},

where v*(r) = (1, ¢*(r)) is the polar curve which parametrizes the unique minimal
arc of the foliation provided in Lemma[2.4.17} such that ¢*(r*) = ¥%;
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o take two sequences of points (¢7'), (¢5) C (X, NIB,,);

e consider the sequence of minimizers (u,,) of the Maupertuis’ functional

M) =5 [ fial? [ 1 Vo)

every one of them respectively in the space
H" ={uy, € Hl([(), 1];R2) D un(0) = qf, un(l) = q3, |un| < rp}
and within the curved sector ¥,,, requiring that every w,, satisfies

min_|uy,(t)] < 0pry.

te[0,1]
Define the blow-up sequence
1
v (t) = r—un(t), fort € [0, 1], for every n € N,

which, for every n € N, verifies the following;:

q? = ’Un(O), Cfg = 'Un(l) S 831;
|on (t)] < 1 for every ¢ € [0, 1];

()] < 5,
tg[lérh o ()] <

With the same proof of Lemma[2.4.21} one can prove that every v,, (at least for n large)

minimizes the functional
/ |vn|2/ (o) + O(3))

H" = {v, € H'([0,1; R?) : v,(0) = @}, v(1) = G5, |va| < 1}.

in the space

Moreover, defining the angular variable ¢}, (r) = ¢*(r,r) and the blow-up sector
Xn = {(r,9(r)) + @h(r) < 9(r) < @p(r) + 2km, for 0 <r <1},

one can easily verify that v,, € %, for every n € N.
At this point, with the same technique of Lemma [2.4.21} one can prove that v,, = v
uniformly in [0, 1], with vy minimizer of the functional

1 1 o 1
w) =3 [ 1P [ Vi
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in the space
H={ve H(0,1;R?): v(0) = q1, v(1) = ga, Jv] <1},
for some G, go € 0B; and such that

2.46 i )| = 0.
(2.46) in, lvo(t)]

Moreover, from Lemma since r, — 07, we have that the sequence of functions
¢y = ¢r (r) uniformly converges to ¥* on the r-interval [0, 1] and so

Yp = [05,9% + 2kn] asn — +oc.

This means that vy minimizes M in H within the sector [¢9*,9* + 2k7| and, thanks to
(2.46), has a collision. This is a contradiction for Lemma and proves (i7).

In order to prove (i) it is enough to observe that a minimizer of the Maupertuis’
functional M with endpoints in the sector (9%, k) cannot leave this sector. Indeed,
Y (¥*, k) has a minimal collision arc and its 2k7-copy as boundary; these arcs act as
a barrier, since Proposition applies also in this context and a Bolza minimizer
cannot intersect another minimal arc more than once. O

We now we extend the previouslocal study to a global setting,which takes into account
all the other centres. In order to do this, we need to show that the local minimization
process provides two minimizers which do not collide in ¢; and such that, if juxtaposed,
have winding number equal to 1 with respect to c;-. In this way, if one takes a minimizer
u € K and assumes that u collides in c;», then a contradiction arises. Indeed, the portion
of u close enough to ¢; must correspond to one of the two local minimizers above,
depending onif [; = 0orl; = 1.

Theorem 2.4.23. In the same setting of Lemma |2.4.19, there exists r* > 0 such that, for
every ro € (0,7%), for every o > a(U;,0*,0* + 4x), there exists 6 > 0 such that, for every
q1,q2 € 0By, there exist two Bolza minimizers u, and ug which connect ¢, and gz such that

() forevery i = 1,2 we have
min_|u;(¢)| > dro;
t€[0,1] s ¢)] 0
(43) the juxtaposition u of uy and usg is a closed path which has winding number 1 with respect
to the origin, up to choose a suitable time-parametrization.

Proof. Take q; = roe’l, go = roe’’? € 0B,, and, without loss of generality, assume that
q1,92 € X(04,1) so that, in particular |1 — 2] < 2m. Moreover, it is not restrictive
to assume that 91 < 2. By Lemma there exists a Bolza minimizer u; which
connects ¢; and g2 and verifies properties (i) and (ii) of such lemma. At this point,
define ¢; = roei(m“”) which, of course, coincides with ¢; in the Euclidean space, but
not with respect to the curved sectors. Indeed, we have that ¢; € X(¢;,2)\ (9, 1) and,
of course, also g2 € X(¥;,2) (see Figure[2.6). For this reason, again from Lemma[2.4.22}
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Figure 2.6.: Situation of Theorem We remark that the picture is not referred to
the Euclidean space. Indeed, here we denote by 7, the unique collision
minimizer which starts from re’’s in the fashion of Lemma and by
v; + 2m and v; + 4 its 27 and 47 copies respectively. This minimal arcs
determine the curved sectors used in the proof, while the concatenation of
u1 and us is a closed path which winds around the origin.

we deduce the existence of the second minimal arc us, which connects ¢o and ¢; with
the same properties of u;. Consider the concatenation u of u; and ug, which, of course,
is a closed curve from g¢; to itself. Since both u; and g are collision-less, the winding
number of u with respect to the origin is 1. O

At this point, we are ready to prove that a minimizer v € K for the Maupertuis’
functional joins property (C'F).

Theorem 2.4.24. Assume that the assumptions on the potentials (Vj)évz | are satisfied and
fix1 € 3V, Fixe € (0,8) as in @12) and R € (£, m"/® — &) as in 2.14). Then, there exists
d > 0 such that, for every p1, p2 € OBRr every minimizer u of the Maupertuis” functional

M= [ [ e ve)
2Jo 0
in the space K*"** found in Proposition joins the following properties:
(1) w is free of self-intersections;
(79) w satisfies
tgf(i)ﬂ] lu(t) —cj| > 6, foreveryj=1,...,N.

Therefore, in particular w is collision-less.
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Proof. Fix € and R as in the statement, fix [ € N and p1,p2 € OBp. Assume by
contradiction thataminimizer v € K}"'"* of the Maupertuis’ functional M has a collision
with the centre ¢ for some j € {1,..., N}; for the sake of simplicity we will assume

again c;- = 0. Then, u € €oll, there exists to € (0, 1) such that u(tp) = 0 and in particular
Ind(u;c,) =l (mod 2), Vk#j.

Then, localizing the collision as in the beginning if this section, we can find an interval
[e,d] C [0, 1] such that:

e 1y € [c,d] and the collision is isolated therein;
e p1 =ul(c),p2 = u(d) € 0B, withr < r* and r* > 0 as in Lemma[2.4.17]

Then, by means of Lemma [2.4.14} the restriction v = u]|. 4 is @ minimizer of the Mau-
pertuis’ functional

o R
Mpw) =5 [P [ e vee)
in the weak H'-closure KJ'7? of the H' restricted paths

v(c) = p1, v(d) = P2, v(t) # ¢Vt € le,d], V]
u(t) ifte|0,c)U(d,1]

KPPz = 4y e H'Y(Je,d); R?) : the function G, (t) =
. v ([e, d]; R?) e function G, () ot) iftcle.d

belongs to K772

Since v solves a Bolza problem for the Maupertuis” functional inside B,, by Theorem
we know that, up to time reparametrizations, v connects p; and p, belonging to
Y(¥4,1) or to X(¥5,2) \ ¥(¢;,1), depending on the value of the index [;. Therefore, by
claim (i) of Theorem[2.4.23] a contradiction arises both if /; = 0 or [; = 1. Thus u cannot
have a collisions and in particular, again from Theorem (ii) is proved. Claim (i)
follows from this property and Proposition[2.4.12] O

2.4.4. Classical solution arcs

In this section we will conclude the proof of the existence of internal arcs, finally showing
that the minimizer of the Maupertuis” functional satisfies property (&) introduced at
page Indeed, in the previous section we have already showed that the minimizer
is collision-less, i.e., we proved (C'F). In particular, in the next result we show that,
given a minimizer u provided in Proposition if u has endpoints sufficiently close
to minimal non-degenerate central configurations of W, then |u(t)] < R whenever
t € (0,1). Recall that W? is —a-homogeneous (see (2.11)) and it is the leading component
of the total potential V¢(y) as ¢ — 0" and |y| becomes very large. Indeed, we have
already observed along Section that, when we are far from the singularity set,
the problem reduces to a perturbation of an anisotropic Kepler problem driven by
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WO. This suggests to use compactness properties of sequences of minimizers and their
convergence to a minimal collision arc for the anisotropic Kepler problem driven by W°.
In particular, we will consider again Lemma from [5]], in which the authors show
that all the collision minimizers starting sufficiently close to minimal non-degenerate
central configurations describe a foliation which is strictly contained in a given cone.
Recall that, from the second line of assumption (V), as already observed in Remark
the sum potential W° admits a finite number of minimal non-degenerate central
configurations

E={9*eS: UW)=0and U"(¥*) >0} = {I5,...,95_1},
where, in polar coordinates y = (p, ¥)

k

WOy) = W(p,9) = p~U(9) = p=* 3 Ui(¥).

Therefore, it is not restrictive to work with two of this central configurations 9*, ¥** ¢ St,
since we are solving a Bolza problem, but it is clear that the result holds choosing any
pair (not necessarily distinct) of central configurations.

Theorem 2.4.25. Assume that the assumptions on the potentials (Vj)é\[:1 are satisfied and

fix R > 0as in (2.14). Then, there exists € > 0 such that, for any 9*,9** € E minimal non
degenerate central configurations for W°, defining £&* = Re™" ¢ = Re"’™" € OBp, there
exist two neighbourhoods Ug+ , Ug++ on 0 Bg with the following property:

Ve € (0,8), VI € 3V, Vp1 € Uev, ¥ pa € Uger there holds  |u(t)| < R, forall t € (0,1).

P2

where wis the minimizer of the Maupertuis’ functional in the space K" provided in Proposition

2.4.9

Proof. Assume by contradiction that there exist the following sequences:
o (¢,) CRT, withe, — 0T,
o (p7) C Ug and (ph) C Ugs+,
e (t,) € (0,1),

e a sequence of minimizers (u,) C (K} 0P éL) for the sequence of functionals (M,,)
defined by

1 1
M) =5 [ lial? [ 14V ).

such that
|un(tn)] = R, foralln € N.
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Up to subsequences and without loss of generality we can assume that
qu —p1 € u§*
pgb — P2 € Ug**
tn, — t €10,1]
as n — +o0o. Indeed, concerning the limits of (p}') and (ph), it is enough to choose

smaller neighbourhoods of £* and £**. Recalling the limiting behaviour of V= ase — 0"
(see Proposition|2.2.2) and thus the definition of the —a-homogeneous potential W, if

we define ) )
1
M) = 5 [P [ (14 W),
2 Jo 0

from Lemma we know that there exista unique u* € H”), and a unique u** € H??,
such that

Mo(u”) = Hpiln Mo,  Mo(u™) = g{l,}gl Mo.

coll coll

In particular, from Proposition we have that there exists a unique ug € HP*P?,
where

HPP2 = Ly e H'([0,1;R?) : u(0) = p1, u(l) = p2, u(ty) =0, for some ty € (0,1)},
such that
Mo(up) = min Moy,

HP1:P2

where this path ug is nothing but the concatenation of u* and u**. We claim that

(2.47) lim M, (uy) = Mo(up)

n—-4o00

and we start by showing that

(2.48) lim inf M, (uy,) < Mo(up).

n—-+o0o

For every n € N let us introduce the Jacobi-length functionals

1 1
[,n(un) i/ |un\\/—1+V5n(un), ,Co(uO) i/ ‘u0|\/—1+W0(UO)
0 0
and, since u,, and ug are minimizers, we have

Ly (un) = /2Mp(uy), foralln e N, Lo(ug) =/ 2Mo(up).

Our idea is to provide an explicit variation w,, € K| P2 such that, for large n
(2.49) Lo (un) < Ln(wn) < Lo(ug) + O(e),

for some 8 > 0, which would prove (2.48). In order to build such w,, we need to define
some points inside Bpg:
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o define p} € ¢,0Bp as the first intersection between u( and the sphere ¢,,0Bg;
e define p} € €,0Br as the second intersection between ug and the sphere ¢,,0Bg;
e define ¢ = enRé—i' € en0BRr and ¢ = enR% € €,0BR.

Note that, once n is fixed, the points p7, p3 are uniquely determined since both u* and
u** are strictly decreasing with respect to ¢ thanks to the Lagrange-Jacobi inequality (see
[5, Lemma 4.3], cf Lemma|1.4.3). Moreover, we define the building blocks of w,, in this
way:

e define arc(py, p1) as the shorter (in the Euclidean metric) parametrized arc of 0Bp,
connecting p} to p; with constant angular velocity;

define ~; as the portion of v, that goes from p; to p7;

define arc(py, ¢7') as as the shorter (in the Euclidean metric) parametrized arc of
0Bp, connecting p7 to ¢" with constant angular velocity;

n n
define ¢,, as the minimizer of £,, in the space K| ;11 92,

define as above the analogous path composed by the pieces arc(¢%,py), V¥,
arc(pz, py ), which goes from pj to p5.

At this point, we build w,, as the concatenation of the previous pieces with a suitable
time parametrization

arc(py,p1) from p} to p;
Yo from p; to p}
arc(pt,q) from pf to qf
Wy =} ¢n from q7 to ¢3
arc(qy,py) from gy to py
T from py to ps

arc(pz,py) from po to py

(see Figure . Now, since £,, is additive, the length of w, is exactly the sum of the
length of every piece and, in particular, since w, € K lp P2 and w,, is a minimizer of £,

we have
L (upn) < Ly(wy).

The next estimates on the arch lengths easily follow:

pT — p1, Py — D2 = Ly(arc(py, p1)) = O(1), Ly(arc(p2,py)) = O(1)
ﬁ?aﬁga q’?? qg 6 EnaBR — ‘Cn(arc(ﬁ?a Q?)) = O(En)’ ‘Cn(arc(qgaﬁg)) = O(En)

as n — +o0. From Proposition we know that, if y € R?\ Bs with § > ¢, then

Ver(y) = Wo(y) + O™ +17h)  asn - 400
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hence _
Ln(vn) + Ln(v,") < Lo(uo) + 0(5?111{1’%“_(1}/2), asn — +o00.

Therefore, to prove (2.49), we need to provide an estimate on £,,(¢,,); to do that, let us
define the blow-up sequence

(t) = Eigon(t), fort € [0, 1]

n

and note that

(2.50) Gu(0) = & <

€| [l
Moreover, recalling the definition (2.7) of V*», forn € Nand y € R2\ {c1,...,cn} we
can compute

k N
Ver(eny) = Z Vi(eny —enci) + Z en’ “Vj(eny — ency)
i=1 j=k+1
k N
=" Y Vily )+ Y Vily— )
i=1 J=k+1
=" V(y)

and thus we have

1
Ln(pn) = La(enPn) = /0 5n‘85n|\/_1 + Ven(endn)

1
Z%AI%IaﬁF#+V@M)

2—a 1 .

=%2/|%|—ﬁ+vwm
0

2—a

=¢ep? ['n (@n)v
where we have put

1
Ln(Pn) = / |Pn|/—€2 + V (), foreveryn e N.
0

Notice that the function ¢, is clearly a minimizer for L, in the space

ko kk 0 — *, 1 =q** < R,
Ind(¢;¢j) =1; mod2,Vj=1,...,N

where ¢* and ¢** have been defined in (2.50). If we furthermore define the functional

1
EwmiA!MVW@
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we have that, for every n € N and for every test function ¢

L(@n) < La(p) < Lo(y)

and so, in particular
Ln(@n) < min Ly < C,
Slq* 7q**
for some C' > 0. This last inequality finally gives the estimates (2.49) and thus (2.48).
At this point, in order to get the claim (2.47), we prove the reverse inequality, i.e.,

(2.51) Mo(uo) < lim inf My (uy).

Since every component of the potential V*» is bounded on S! and |u,| < R, together
with (2.47) we can deduce that there exists C7, Cy > 0 such that

1
Cl > Mn(un) > CQ/ ’un‘27
0

at least for n large enough. From this, we deduce a uniform bound on the H'-norm of
(uy,) and the existence of a H'-weak and uniform in [0, 1] limit u € HP'P2. Fatou lemma,
the semi-continuity of the H'-norm and the a.e. convergence of V°» to W? in R? then
give

Mo(a) < %gl}rlg Mo, (u).
At this point, the minimality of ug for M in the space HP*P? gives the inequality (2.51)
and, together with (2.48), we get the claim (2.47)

nll)r_ir_loo M (un) = Mo(uo)
with, in particular
Up — ug uniformly in [0, 1].

At this point, a bootstrap technique helped by the conservation of the energy for (u,,)
leads to a C*-convergence outside the collision instant o of uo; this proves that |ug(f)| =
R. If t € (0,1) this is a contradiction for Lemma because the minimizer cannot
leave the cone therein defined; otherwise, if for instance ¢,, — 0, we would find that
10(0) is tangent to 0 Bg. This indeed is also a contradiction: up to make U+ smaller, the
unique collision trajectory from p; € Ug+ must have initial velocity direction close to the
initial velocity of the homothetic motion starting from £*, which is normal to sphere. [

Now, we can finally show that a minimizer of the Maupertuis’ functional is actually
a reparametrization of a classical solution arc of the inner problem.

Theorem 2.4.26. Assume that the assumptions on the potentials (Vj)é\f:1 are satisfied and

fix R > 0 as in (2.14). Then, there exists i,y > 0 such that, for any ¥*,9** € = minimal
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Figure 2.7.: The proof of Theorem the blue path w,, piecewise built in the proof
belongs to the space K lp 1P2 a5 well as the blue dashed path u,,. This makes
it a suitable competitor for u,, and allows to use the minimization argument.
In this picture, the red dashed path ug represents the limit collision path

which belongs to the space HP'*? and that actually connects p; and p, on
O0BR.

non degenerate central configurations for W0, defining £* = Re™” £ = Re""" € OBp, there
exist two neighbourhoods Ug+ , Ug++ on 0B with the following property:

forany e € (0, &), for any | € IV, for any pair of endpoints py € Ug+,py € Ug++, there exist
T > 0 and a classical (collision-less) solution y € K P1P2([0,T1) of the inner problem

i) = YV (y(0) te o
S0P = Vt) = -1 teloT]
ly(t)] < R te (0,7)

y(0) =p1, y(T)=p2

In particular, y is a re-parametrization of a minimizer of the Maupertuis’ functional in the space
KPVP2([0,1]) and it is free of self-intersections and there exists 6 > 0

i — ¢ e {1,....N}.
té?é,%]'y(t) il >0, foranyje{l,....N}

Proof. The proofis a direct consequence of Theorem[2.4.24, Theorem|2.4.25/and Theorem
(the Maupertuis’ principle). O

In order to conclude the construction of the interior arcs for the N-centre problem,
we need to give a version of Theorem [2.4.26| which takes into account the language of
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b1
0Br

b2

Figure 2.8.: An example of two minimal arcs which realize the same partition of the cen-
tres. Indeed, both the paths divide the centres with respect to the partition

{{e1}, {ca, es}}, but g € KIpP3) whileus € Kl 92 .

partitions. We invite the reader to go back at page [33| and we note that a minimizer
u € KPP which is free of self intersections satisfies the topological constraint of
separation of the centres (see Proposition and Remark 2.4.13). In particular,
recalling the definition of the set of all the partitions in two non-trivial subsets of the
centres

P={P;:j=0,...,2N1_2}

a choice of I € IV will induce a choice of P; € P, for some j and this is not 1-1.
Notice that the lack of the 1-1 property is due to the fact that, for instance, if N = 3 the
winding vectors (1,0, 0) and (0, 1, 1) produce respectively two minimizers that separate
the centres with respect to the same partition (see Figure[2.8).

Following the notations introduced in [61], define the map .A: 3V — P which asso-
ciates to every winding vector

ifl, =0thenk e Ag C {1,...,N}

l=(l,...,In), ith th t
(14 N), Wi eproperY{jfljzlthenjeAlg{l,...,N}

the partition
.A(l) = {{Ck 2 € Ao}, {Cj : lj S Al}} .

As already observed, the map A is surjective, but not injective, since A(l) = A(l), for
every [,1 € 3V such that

lj+1;=1, foreveryj=1,...,N.
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At this point, for any j € {0,... ,2N=1 — 2} and for any pi,p2 € 0Bg, these sets are
well-defined

(2.52) KPj = Kﬁ;,pQ([()? 1]) = {u € ]:A(lpl,pz([o? 1]) = _Afl(‘Pj)}
. Kp, = Kp™([0,1]) = {u € K[*7*([0,1]) : 1 = A7Y(P))}.

The set K p, is the weak H L_closure of K p; and, if P; = A(l) = .A(Z), it turns out that it
is exactly the union of two disjoint connected components, i.e.,

(2.53) Kpj =K U KZ

Remark 2.4.27. From the previous discussion we deduce that once a partition P; is fixed, the
corresponding minimizer of the Maupertuis’ functional is not unique (see Figure[2.8).

We can now state the main theorem of this section which is readily proven.

Theorem 2.4.28. Assume that the assumptions on the potentials (Vj)é\f:1 are satisfied and
fix R > 0as in (2.14). Then, there exists ;s > O such that, for any 9*,9** € S* minimal
non degenerate central configurations for WO, defining £* = Re™" & = Re™"" € OBg, there
exist two neighbourhoods Ug+ , Ug+~ on 0B with the following property:

for any € € (0,eims), for any P; € P, for any pair of endpoints py € Uge,py € Uge,
there exist 11, Ty > 0 and two classical (collision-less) solutions y; € Kf—,?p *([0,11]) and

Y2 € Kf;; P2(10, Ty]) of the inner problems

i) = YV (1) te .1y
SO Vo) = -1 €07
ly(t)] < R t € (0,T;)

y(0) =p1, y(T)=p2

fori = 1,2. Inparticular, y, and y, are re-parametrizations of two minimizers of the Maupertuis’
functional, every one of them in a different connected component of K p, (see (2.53)). Moreover,
y1 and yo are free of self-intersections and there exists § > 0 such that

in |y;(t) —ci| >0, ic{1,...,N},
ten[}){%]ly() il forany j € { }

fori=1,2.

We conclude this section with a property of the inner solution arcs found in Theorem
2.4.28, i.e., we show that there exists a uniform bound on the time intervals of such
solutions.

Lemma 2.4.29. Let ¢ € (0,¢in), let 9%, 9" € S be two minimal non-degenerate central
configurations for WO and U*,U** be their suitable neighbourhoods, let p1 € U* and py € U™,
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let P; € P and let yp,(+; p1, pe; €) be one of the two classical solutions found in Theorem|2.4.28
defined in its time interval [0, Tp, (p1,p2;€)]. Then, there exist c, C' > 0 such that

c < Tp;(p1,p2;6) < C.
Such constants do not depend on the choice of p1, pp and P;.

Proof. If we denote by up,(-;p1,pa;e) € Kﬁ;’p %(0,1]) the minimizer of the Mauper-
tuis functional that re-parametrizes the solution Yp;, from Theorem we have that
Tp,(p1,p2,€) = 1/wp, (p1,p2; €), where
Jo (=1 4V (up)

1. .

%fo |tu 2

Therefore, if we prove equivalent bounds on w P, We are done. It is clear that we can
fix P; since P is finite. Moreover, we will prove the statement for points p;, p» which
can belong to all the sphere 0Bg; this is actually a weaker hypothesis that will give the

proof anyway and that will simplify the notations in this context.
Let us fix q1,¢q2 € dBg and consider a path v € K;%_"D([O, 1]) such that there exist

C, n > 0 such that
[5(t)] = C, for every t € [0,1]
|o(t) — )| > p, forevertt € [0,1], forallk =1,...,N.

wp, (p1,p2;€) =

Recalling the definition (2.7) of V¢ and that the restriction of every potential to S! is
bounded, we have that there exists C; > 0 such that

1 1
; :;/ |f;(t)|2dt/ (~14 VE(0(1)) dt

(2.54) / 2 : a—aj , —aj
< — -1+ E Vi + J J V
[L InaX e 15 1% InSaX

< (1.
In general, for every path that connects two points on 0Bk, i.e., for every

ve U &R0

p1,p2€0BR

we have a constant Cy > which does not depends on the endpoints such that

m

1
(2.55) /0( LV 2 o

(see (2.39) in the proof of Lemma l Moreover if v e K Pl ([0 1]) is a minimizer of
M, we have that M(v) < M(v) and thus, from (2.54) and (2.55) we get

/||2 201

—1i02>0
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The previous bound has to be refined because the constant C'; depends on C, which is
not uniform with respect to ¢; and ¢o. To this aim, let us consider p1,p2 € 0Bgr\ {q1, ¢2}
and, up to time re-parametrizations, define the path

arc(pi,q1) fromp; toqp
=<7 from ¢, to ¢
arc(qq, p2) from go to po,
where arc(p1, ¢1) (respectively arc(gz, p2)) denotes the shortest (in the Euclidean metric)
parametrized arc of 0 B, connecting p; to ¢; (respectively ¢, to ps) with constant angular
velocity. Since the angular velocity is clearly uniformly bounded with respect to the
endpoints from above and from the definition of v it is easy to see that there exists a
constant C's > 0 which does not depends on p; and p» such that

M(0) < Cs.

For this reason, this bound is conserved for all the minimizers with endpoints in 0B,
ie.,

(256) M(“Pj(';plap27;€)) S 037 fOI' allplapZ S 8BR?
which, together with (2.55) gives

2C5
(257) /‘UP s P2, P25 € )’ < C —C4, forallpl,pgeaBR.

Moreover, from (2.41) in the proof of Lemma [2.4.6| we have seen that the constant C =
(R —€)? > 0 is a uniform lower bound for the quantity ||u||3, for any u € Kp1 P2(10,1]),

for any p1,p2 € 0BRg, so that in particular

1
(2.58) / [ip, (-;p1,p2;€)[> > C5, forall pr,ps € OBg.
0
This, together with (2.56), proves that
! . 2C3 .
(2.59) (=1+ V=(up,(;p1,p2;€))) < o Ces forallpi,ps € OBg.
0

At this point we have that (2.57) and (2.58) give

1 1
Cs < inf / lip, (- p1,p2;e)|* < sup / |ip, (-5 p1, p2; €)* < C,
p1,p2€0BR p1,p2€0BR JO

while (2.55) and (2.59) lead to

1
Ce < inf —14+V=(up, 3 P1,P25 €
2 _Pl,pzeaBR/o ( ( PJ( P1,p2 )))

1
< sup / (=14 V=(up,(;;p1,p2;€))) < Cé;
p1,p2€0BR JO

the definition of wp,; then clearly concludes the proof. O
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Remark 2.4.30. In the following, when the partition of the centres will not have a relevance, we
will denote one of the internal arcs provided in Theorem|2.4.28|in this way

Yint (; p1, D25 €),

in order to highlight that it is an arc lying inside Br that connects py and ps. Moreover, the
corresponding neighbourhoods on 0 Br will be denoted as

uint(§*>7 Mint (f**)

2.5. Glueing pieces and multiplicity of periodic solutions

Since we have proved the existence of outer and inner fixed-ends solution arcs, respec-
tively in Section[2.3]and Section 2.4} this section is devoted to build periodic trajectories

which solve
§=VVi(y)
{%IQQ —-Ve(y) = -1,
glueing together solution pieces on dBr. The assumptions on R will be again (2.14)

as well as the requirements on V¢, We recall the set of strictly minimal central
configurations for the leading potential in the outer dynamics

Z={9*ecS: UW)=0and U"(¥*) >0} = {J5,...,95 _}.

Let ¢ € (0, min{eins, Ecar}), With €ipnt, €cor > 0 provided in Theorem [2.3.10|and Theo-
rem2.4.28} and let n € N>, be the number of pairs of inner and outer arcs; the idea is to
relate a periodic trajectory in the punctured plane with a double sequence of this kind

(2.60) (Fo,&0) (P1,61)5 -+ 5 (P15 6521)

where P; € P is a partition of the centres and ¢} = Re™i, with U7 € E for every
j=0,...,n— 1. Note that we admit the situation in which two or more elements of the
sequence could be equal.

From Theorem[2.3.10|we know that, for every j = 0, ..., n—1 there exists a neighbour-
hood um(g;f) C 0Bpg of 5; such that, for every (p2;, p2j+1) € um(g;f) X Llext(é’}k) there
exists an outer arc Ye,¢(-; p2j, p2j+1; €) which starts in py; and arrives in pyj41. This arc
actually solves problem (2.15) with boundary conditions in (pa;, p2;+1) and in a suitable
time interval [0, 7% o,;]. We have selected 2n points on 0B

{pOap17p2a v 7p2nf2ap2n71}7

sothat paj, pajr1 € Ueat (fj) are connected through an outer arc, forevery j = 0,...,n—1.

Now, for any j = 1,...,n — 1, thanks to Theorem and in view of the notations
introduced in Remark if poj_1 € Z/{mt(fj_l) and py; € Uiy (5;), we can connect
them through a minimizing inner arc Y, (-; p2;j—1, p2;; €) verifying the partition P;. Up
to time re-parametrizations, the inner arc will be defined in the interval [0, 7% 2;_1].
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At this point, in order to build a closed orbit, for any j = 0,...,n — 1 we introduce a
smaller neighbourhood of ¢}

uj = Ut (5;) N Uing (5;)

and we select an ordered sequence of pairs (p2;, p2j+1) € U;j X U;. Moreover, to close the
orbit, we add a last inner arc, joining p2,—1 and p2,, = po and that realizes the partition
Py. We denote this arc as yint(-; Pan—1,P2n;€) and we parametrize it on the interval
[0, T 2n—1]-

In addition, it is useful to define

U = (Z/[O X Z/f()) X (Z/{l X Ul) X ... X (un—l X un—l) X Z/[O C (8BR)2n+1
and thus to introduce the following closed set

S = {p = (p07p17 s ap2n) eU: Pbo :p2n} - (aBR)2n+1>

which describes all the possible cuts on the sphere 0 Br which an orbit could do, once
sequence (2.60) is fixed. In this way, for every p € S, we can define the periodic

trajectory . p as the alternating concatenation of n outer arcs and n inner arcs, up to
2n—1

time re-parametrizations. This curve will be T.-periodic, where T. = ) T, ; and
3=0

piecewise-differentiable thanks to Theorem [2.3.10[and Theorem [2.4.28| In general, the

function v , is not C! in the junction points and, indeed, the main result of this section

is to prove this differentiability through a variational technique.

Remark 2.5.1. We are going to minimize a geometric functional over S in order to provide the
smoothness of the junctions. Indeed, we have defined S as a subset of the closure of U to induce
compactness. However, we know from Theorem [2.3.10|and Theorem [2.4.28|that the construction
of outer and inner arcs works just for the interior points of U;. For this reason, we might make
such neighbourhoods smaller, keeping the same notation. Furthermore, without loss of generality,
we assume that the non-degeneracy of every central configuration 95 of WO is preserved along
its corresponding neighbourhood Uj, i.e., we require that the function U is strictly convex on the
whole U;.

In order to proceed, let us first fix a sequence (2.60) and € € (0, min{ecys, €int }). Define
the total Jacobi length function L: S — R as

L(p) = L([0, Tc];7e,p)
1

n

n

I
(]

L([0, 7% 951; Yewr (£ p2js p2j415€)) + Y L(([0, Te 25-1); Yine (£ P2j 1, P2ji €))
=1

Il
)

3 .

T: 25
/ |Geat (£; P2, P2j+15 5)|\/(Vs(yext(t§p2j7p2j+l§ e)) —1)dt
0

<
Il
o

n

Te 251
- Z/ |Yint (t; P2j—1, P25 E)I\/(Vf(ymt(t;pzj_hpzj; g)) —1)dt.
j=1""9
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The compactness of the set S implies the following result.

Lemma 2.5.2. There exists p € S that minimizes L.

Proof. The proof goes exactly as in Step 1) of Theorem 5.3. of [61]. O
The aim of this section is thus to prove through several steps the following result.

Theorem 2.5.3. There exists £ > 0 such that, for every € € (0,€), for every n > 1 there exists
P = (Po,P1,--.,D2n) € S such that

(i) the following holds

gleigL(p) = L(p);

(1) the corresponding function ~y. p is a periodic solution in [0, T| of the N-centre problem

2.61 ¥=VVi(y)
26D {w )

The idea is to provide global smoothness of v, as a consequence of the Euler-
Lagrange equation
VL(p) = 0.

In order to compute the partial derivatives of L we need the uniqueness for each of
the 2n pieces that compose the concatenation 7. 5. The C'-dependence on initial data
guarantees this property for the outer arcs (see Theorem 2.3.10). On the contrary, the
Maupertuis” principle that we have used so far to find internal solution arcs, does not
provide the uniqueness of such paths (see indeed [2.4.28). To overcome this, it would be
necessary to proceed as in [61}62] and to restrict again the neighbourhoods ¥{; in order
to work inside a strictly convex neighbourhood. Indeed, it is known that there exists a
unique geodesic that connects two points which belong to some neighbourhoods with
such property. Since a rigorous treatment in this direction would be very technical and,
actually, a repetition of what has been made in the quoted addendum, we will assume
that the neighbourhoods ¥/; fits this uniqueness properties and thus we will compute
directly the partial derivatives and we assume the validity of this lemma without further
details.

Lemma 2.5.4. The function L admits partial derivatives in S.

2.5.1. Partial derivatives of the Jacobi length with respect to the endpoints

In this paragraph we make the explicit computations of the partial derivatives of L. The
only non-trivial contributions involved in the computation of the partial derivative of
L with respect to some p, are given by the length of a selected pair of outer and inner
arcs, i.e., the ones that share the contact point p;. Therefore, for the sake of simplicity,
in the following proofs we are going to consider only the length of the first outer arc
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Yext(t; P0, p1;€) and the last of the inner arcs Yint(t; pan—1, P2n; €) = Yint(t; P2n—1,P0; €),
which connect in pg.

From Theorem and following the notations introduced at the beginning of
this section, given ¥} € = and & = Re'o € OBg, we know that, for every ¢ €
(0, min{eeqt, €int }) and for every po,p1 € Up, there exists a unique outer arc yeq+(t) =
Yeat (t; Do, p1; €) which solves the problem

gea;t(w = VVE(yezt(t)) te [07 T€70]
26 i (O = VE(yen() = =1 ¢ € [0, T2
|Yext ()| > R te (0,1%0)

yext(o) = D0, Yext (TE,O) = p1-

It is important to remark that both 7} o and y.,¢, with its first and second derivative,
depend on pg and p;, while £ does not depend on py and p;. In particular, from the proof
of Theorem [2.3.10} we have that 1% o = 7. o (¢, po, p1) = T'(po, (€, po, p1)), where 1 is the
implicit function defined by the shooting map. As usual, we can associate to (2.62) its
flow ®(pg,vo) which actually depends on e too; we omit this dependence to ease the
notations. Moreover, keeping in mind the notation of Proposition we have that

Yeut (T20; D0, P1; €) = T2 P20 (po, v0),
where vy = vo (e, po,p1) = 1(€, Po, P1) = Yeat (0; po, p1; €) and

®%(pg, vo) = (po,v0) €

(2.63)
®7=0(pg,v9) = (p1,v1) € %,

with v; = vi(g,po, p1) = —n(e, p1,p0) and we recall the definition of ¥ as the inertial
sphere on the phase space
Y ={(z,v) €£: |z| = R}

Finally, we observe that problem (2.62) is time-reversible, since it is not difficult to prove
that

(2.64) Yeat (100,01 €) = Yeat(Te0 — tip1,p0s€)  forevery t € (0,7 .

Consider the length of the external arc L., : Uy x Uy — Rar such that

T:0
Lea(po,pr) = /0 eat (DI VE eat (0) = 1) e,

which, using the conservation of energy, can be written in the following two equivalent
forms

(2.65)
Tz 0 Teo0
Coatiorn) = o5 [ licaOPat = 7o [ (Sl OF + Vo) - 1) .
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Lemma 2.5.5. The function Loy € CH Uy xUo) and its differential, for every (po, p1) € Uy xUo,
is ALyt (o, 1) Tpo(OBR) X Tp, (0Br) — Rand

ALt (o, p1) 0] = —;iwo(e,po,pl), o)+ \}§<v1<a,m,pl>,w>

= —\}§<ye$t(0), ) + \}i@ezt(Ts,O)a Y).

Proof. Thanks to the C!'-dependence of problem (2.62) on the initial data and time, the
function L., is of class C! in Uy x Uy. Moreover, from 2.65) we have
(2.66)

8 a TE’O . 2
apoﬁext(pOapl) \[3]90 / |ye:1:t(t)’ dt
1T, T ¢ o9 (1.
= — |[feat (Tt 0)|* > +/ < cat () + VE (Yeur (L —1>dt}
T Wese@e0) P50 4 [ o (Sl + Ve
1 [ . aTaO Te0 . 8yext<t) ayemt(t)
= = ex Ta 2 : +/ (ez t +VV€ ex t)—————= dt
5 e TP [ (el (e (1) 22
1 20750 { aym@)rw
= = ex + ex t
vl Ll e

Te0 . £ ayext(t)
‘*’/0 (=Feat(t) + VVE(Yewr (1)) %dt]

1 20T . OYeart (t) oo
_ ﬂQym( ORGEL + ie 2| )

Note that the term yext(t)ay%f(t) is actually a (1 x 2) - (2 x 2) matrix product, so that we
would have to transpose the vector ¢, (t) firstly. Anyway, we are going to omit this and
other transpositions in order to ease the notation.

Now, we can also compute the total derivative of the boundary conditions in (2.62)
with respect to pg, obtaining

d ayext (0)

2.67 & (0) = g
(2:67) e (0) = e
and
d . 0T o 8yemt(T50)

2.68 O ent(Te0) = teas (T, , o) g
(268) otet(Te) = Gea(Tig) =2+ e tE0)
Moreover, multiplying both sides of (2.68) by yc,¢(T:0), we have

. 8T X a o T

[Geat(T=,0)|” 8;(;0 + yext(Ta,o)yg]g;’o) =0

This, together with and (2.67), leads to

0 1 1
7‘661‘ ) = ——Yeut(0) = ——= » P05 .
910 ¢(po, p1) \/Qy +(0) \/QUO(g Do, P1)
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In the same way, one could obtain

0 1 . 0T . ayext(t) Teo
£ea: s = ex T ’ - + |: ext (T
o ¢(po, p1) 7 (!y +(T:0)| o et (1) o,
d 8yext(0)
— Yex 0) = =0
a0 = "y
d . T 8yext(Te 0)
——Yeut (1 = Yeat (T — + — = I,
;Y t(Te.0) = Yext(Te0) o an 2

and so, multiplying both sides of the last equation by y¢.:(7% ), we have that

0 1 1
7£ex y = —TYex T. = = s POy . O
o ¢(po, p1) 7Y t(Te0) ﬁvl(€ Po,P1)

As before, for ¢ € (0, min{ecyt, €int}), we can consider the length of the inner arc
Yint(t) = Yint (t; pan—1, po; €) as the function Ly : Uap—1 X Uy — ]RBL such that

T: 2n-1
Lont(Pan—1,p0) = /0 it (O (Ve Gont (0) — 1) dlt

and prove the following lemma.

Lemma 2.5.6. The function L;,; € C1(Uap—1 x Up) and its differential, for every (pan—1,p0) €
Z/{Qn_l X Uo, is dﬁmt(pgn_l,po) : 7;,%71 (8BR) X 7;,0 (8BR) — Rand

1

dﬁint(an—l;pO)[Vv 90] = _%Q/znt(o)a V> + %(yint(Ta,Qn—l)a (P>-

Proof. As we have already remarked at page[93] the differentiability of this length func-
tion is a consequence of the results contained in [62], up to restrict the neighbourhoods
Uszp—1 and Up. Concerning the computation of the differential, the proof goes exactly as
in Lemma[2.5.5 O

2.5.2. The minimizing points of the Jacobi length are not in the boundary

The purpose of this section is to prove the first statement of Theorem[2.5.3] From Lemma
it sufficient to show that the minimizer p does not occur on the boundary of S. As
already anticipated, this is made exploiting the minimizing property of p. In the next
two paragraphs we will study the local behaviour of the external and internal arcs with
respect to small variations on the endpoints. In short, what happens is that, if p € S,
then a particular variation on the endpoints gives a contradiction against the minimality
of p.
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An explicit variation on the external path

In order to do this, let us start by defining the matrix function

KN ayea}t(t) - i
op1 “om

M(t) @' (po, vo),

which, from (2.62)), satisfies
M(t) = V2V (yeut(t))M(t) for every t € [0, T% o).

Moreover, from the computations on the boundary conditions (2.63), we have that

0 Ovg
M = 1.7@0 = Ty N —
(0)=m a0 (po,v0) = <02 (%0) 02

0 ov
M(TE,O) = Wxaipl(I)Tsyo(pOa UO) = Tg (IQv 8]?1) = I,

so that M (t) is a solution of the linearised boundary value problem

(2.69) {M(f) = V2V (Yeat (t; po, 15 €)) M (1), t € [0,T%0]

M(O) = 027 M(TE,O) = [2‘
Lemma 2.5.7. Let M = M (t) be a solution of (2.69). Then,
Ton v0(&,00, 1) = (=M (To0), N(0) )

where vy = Yeqt (0; po, p1; €) (see the notations at page[94).

Proof. From Lemma and since problem (2.62) is time-reversible (see (2.64)), we
have that

iU (e ) = i q (t; 8)‘ a4 Yeat (t; Po, P15 €)
apo 0\&,Po, P1 a dtyext yPo, P15 o .

o Tt Ipo
d 0 d .
= (et (Teo — b1, po; = 2 M(T: —t’ = —M(Tvy).
p <3poy t+(Teo — t5p1,P0 €)>t:0 7 (Teo—1)| (T:0)
d o (d d [ Oyext(t; po, p1;€) ‘
e = +— | = VYext(t; D0, P1; = = = :
8plvo(e,po,pl) o1 (dty +(t; po, P1 5)‘ _ > pr ( o1 » M (O)D

Let us focus on some details for a moment. The function M () is, actually, the solution
of the variational equation (see Remark[B.1I]in Appendix[B) around an external arc ye,,
which gives information on how the flow associated to such solution changes under
infinitesimal variations on the boundary conditions. Moreover, we know that y.,: (and
thus, M) dependsoncinaC ! manner, since we have shown that the anisotropic N-centre
problem is a perturbation of a Kepler problem driven by W (see Proposition in
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Section[2.2). Therefore, it makes sense to simplify the proof and to consider a particular
linearised problem, i.e., the one around the homothetic solution emanating from &; and
to put ¢ = 0. Indeed, from Appendix [A} we have an explicit characterization of the
hessian of a —a-homogeneous potential like W° when it is valued on an homothetic
motion which will be very useful in this context. Finally, the non-degeneracy of W©,
which is fundamental in the forthcoming proof, is guaranteed also in a neighbourhood
of £, so that the argument can be easily extended near &; (see Remark[2.5.1). Therefore,
let us consider the homothetic trajectory gex (t) = yext(t; €5, £5; 0). Around this solution,

problem (2.69) becomes
M(t) = V2WO(ges ()M (t), te[0,Tt
M(0) = 09, M(Tp) = Iz,
where clearly Ty = Tp o and it is the first return time of the homothetic motion.

Lemma 2.5.8. Let M = M(t) be a solution of (2.70) and let us define s¢ = &;/|&;| and it
unitary orthogonal vector s, = sg. Moreover, define the 1-dimensional functions

w(t) = (M(t)sr,sr), v(t) = (M(t)sr, s¢)

c(t) = (VWO (Jes ()57, 50) = [9¢5 (1) 772 (U (95) = U"(9)) ,
where the last equality has been proven in in Appendix[Al Then w solves
2.71) W+ ce(t)w =0

w(0) =0, w(Tp) =1

and
v =0in [0, Tp].

Proof. From the definition of w and since M (t) solves (2.70) it is clear that
W(t) — (VW (Jez ()M (t)s7,s;) =0 for every t € [0, Tp).

Now, since VQWO(yfgg (t)) is symmetric and admits s, as eigenvector (see (A.2) in Ap-
pendix |A) with for some eigenvalue A (t), we can write

(V2WO (Jes (1) M (8)s7, 57) = (M (t)sr, VW Gy (£))s7)
= )\T(t)w(t)
- <V2W0(3}£8 (t))ST7 37>w(t)'

Hence, considering the boundary conditions satisfied by M (¢) in (2.70) we conclude

that w solves (2.71).

Concerning v, using the same argument, we deduce that it solves

U= Ae(t)v
U(O) =0= U(To),

with Ae(t) = [gez (t)| 7 2a(a + 1)U (95). Since A¢(t) > 0 then v = 0in [0, Tp). O
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As a consequence of Lemma and Lemma we can directly deduce this useful
result.

Corollary 2.5.9. Let M, w and v as in Lemma and recall the notations of Lemma [2.5.7]
Then

Tpon 000,65, 5) = (=M (Ty), M(0))
and, for every k € [—1,1],

St

(I 0.65.85) 7 ] 57') = =01 (To)sr50) + KT Q)sr, ) = —(T) + i 0,

and

Sy

2.72) <Jp0,plv0(o,gg,gg) [ks] ,s§> = —o(Tp) + ko (0) = 0.

At this point, our aim is to prove a result which actually gives an estimate of the
tangential component of the velocity vy = vy(0, po, p1), with respect to oscillations of pg
and p; around the central configuration ;. In order to do this, it is useful to introduce
polar coordinates to provide an explicit dependence of pp and p; on an angular variation.
Indeed, we characterize every point p € Uy as a function of the counter-clockwise angle
¢ € (—m, ) joining p and &, so that

(2.73) p(0) =& = Rsg, and p(¢) = Rcos¢pse + Rsing s;.

We furthermore remark that when we write the orthogonal of a vector we mean a
counter-clockwise rotation of 7 /2 of such vector.

Lemma 2.5.10. Thereexists 6 = 6(95), C = C(¥§) > 0such that, for any ¢o, ¢1 € Roerifying
0 < |¢o| < 0 and |p1] < |¢po|, the following holds

—(v0(0, po(0), p1(41)), o))
%o

Proof. For the sake of simplicity we introduce these notations

> C.

vo(po,p1) = vo(0, po, p1),
ves = vo(po(0), p1(0)).

Furthermore, we prove the statement for ¢g > 0; if ¢g is negative, the proof is the same
up to minor changes. Since Vgs is the initial velocity of the homothetic motion along a
central configuration, it is orthogonal to s., then

(vez,po(0)7) =0
and so we can write

(vo(po(d0), p1(¢1)), po(do) ™)
= (vo(po(d0), p1(1)) — vez, po(d0) ) + (vez, po(do)™ — po(0) ™).
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///aBR

’

’

Figure 2.9.: The notations of Lemma|2.5.10/and the behaviour of the initial velocity with
respect to variations on the endpoints py and p;.

From the notations in (2.73), if ¢ — 07, than we have

p(¢) — p(0) = Rps, +o(¢) and p(¢)* — p(0): = —Rese + o(9),

hence, as ¢g — 07,

(vez, po(do)™ — po(0)") = —Rlvez|do + o(¢ho).

Furthermore, again as ¢p — 0" (and thus, as ¢; — 07)

vo(po(@0), P1(61)) = vy = Jpo prv0(§0-€0) [2(1)22?; :Z(l)ggg

= RJpomlvo(SS’fS) |:Z?§Z:| + o(¢o)-

Assuming now ¢ = k¢g for some k € [—1, 1], and using (2.72) in Corollary and
the fact that py(0)* = Rs,, we have

] + o(¢o)

Sr

(in(anten). 1(62) = v (60 ) = B0 (I3 65) |7 | 57 ) + ol

so that

(r(aoln). 1 (61) polen) ) = R (R oprin(€369) | 7 | o) = Iugs) + o0n)
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In order to conclude we need to prove the existence of a positive constant C', depending
on ¢g and k, such that

* ok Sr
(Bl ) |7 | 50~ gl ) 2 0 > .

By means of Corollary this is equivalent to prove that
Rw(Ty) — kRw(0) + ‘1}§6| > C >0,

where w(t) solves (2.71).
Let now u(t) = |f¢: (t)]; then u solves the 1-dimensional problem

{u L oUW,

a+2
(0) = R = u(Tp).

(2.74)

Since by assumption U”(9{;) > 0 we have

aU(dp) _ aU(d5) — U" (%)

(2.75) d(t) = UGk w(D

=c(t) in [0, Tp],

recalling that the function c(t) has been introduced in Lemma
Since u(t) # 0 for any ¢t € [0, Ty, we can define f(t) = % whose derivatives are

f w WU

T u?
LW Wi wil wi? (W wu w (W U
u u u u u u u u w u

Multiplying both sides by u? we deduce that f solves the problem

276 9 (w27 = () — ety
£(0) =0, f(To) = 1/RF.

We want to prove that f is strictly positive in (0, 7p|; hence, suppose by contradiction that
there exists t* € (0,7p) such that f(¢*) = 0. Then, it is clear that there exists ¢,, € (0, ¥
such that _ )
f(tm) <0, f(tm):(] f(tm) > 0.
In this way, considering the equation in (2.76) and the inequality (2.75), we get
0 < u?(tm) f (tm) = (d(tm) = c(tm))u (tm) f(tm) <0,

which is a contradiction. Therefore, f is strictly positive in the interval (0, Tp].
Now, integrating the equation in in [0, Tp] we get

u?(Ty) f(To) — u*(0)£(0) >0

101



and, using the explicit expression of f , we have

@77) Ri(To) — Rib(0) > i(To) = 3 iy (T0), ey (T0) = — g

Moreover, since f cannot vanish in (0, Tp], we have that necessarily f(0) > 0 and thus

w(0)u(0)

(2.78) (0) > = 0

=0.

At this point, let us consider v € (0,1) and define the function
uy: [0,T] — RT
t— uy(t) = u(t)?,
which verifies
iy = y(y = D70 + yu) i,
In this way, by we have

. . .2 * .2
iy i U aU (95) U
Ty — (=)= | = 1—9)—|;
) 7[ i V)UQ] 7[ a2 TA=7 5

in other words, u- solves the problem

{u7 +dy(H)uy = 0
uy(0) = RY = uy (Th),

where
aU (J5) u(t)?
2.79 d-(t) = 1-—
( ) 7( ) Y {u(t)a‘ﬂ +( V)U(wg
Moreover
i _
Uy oW

therefore, if we show that there exists v € (0, 1) such that d,(t) > ¢(t) in [0, Tp], we can
repeat the previous argument and, as in (2.77), show that for such

(2.80) Rw(Ty) — Rw(0) + ’Y|U£8‘ > 0.
By (2.79), suchinequality is satisfied if there exists y € (0, 1) such that, forevery ¢ € [0, 7]

a * U 2 « * I (Q*
bi0) = | S + (-0 | = S0 - T = )

or, equivalently, if

y(1 - V)U(t)z >(1-7) ai/(;(f?) o Uz;gfg))
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Since the left-hand side is always non-negative, it is enough to find a v € (0, 1) such that

U"(J5)
al(¥5)

>1_’77

but such v clearly exists since U”(J§) > 0 and U(¢;) > 0 and, moreover, does not
depends on ¢. Since now (2.80) is proved, using (2.78) we easily deduce that

w(Ty) — kw(0) + v[vgz| > 0 forevery k € [—1,1]
and, choosing C' = (1 — v)|vgz| > 0, the lemma is finally proved. O

Remark 2.5.11. One could think that the proof of Lemma could be concluded with the
inequality (2.77) since, for every k € [—1,1]

w(Ty) — kw(0) + |U58‘ > w(Ty) — w(0) + |U§8’ =C>0.

Howewver, this estimate would not be enough for the purposes of this work, since we need a uniform
estimate which does not depend on . On the other hand, the constant (1 — «y)|vez | provided at
the end of the lemma depends only on ¥ and so it joins this uniformity and allows us to extend
this arqument also for the N-centre problem driven by V' when ¢ is sufficiently small.

As a consequence of Lemma of Remark and of the uniform behaviour
of the dynamical system when ¢ is small and pg and p; are not far from &; (see the
discussion at page [97), we can obtain the same result for the N-centre problem. Note
that here we will refer to the notations of Lemma[2.5.5/and thus we will consider only the
Jacobi length from p to p1; of course, an equivalent result holds for any pair (p2;, p2j+1),
for j =1,...,n — 1, since, concerning the external arc, the derivative of L with respect
to po; involves only the contribute Ley¢(p2j, p2j+1)-

Theorem 2.5.12. There exists E.,¢ > 0 such that, for any ¢ € (0, Eeqe), if

p= (ﬁOyﬁla"'?ﬁQn) €S

is a minimizer of L provided in Lemma then there exists 1) € Tp,(0Br) and there exists
Coeyt > 0 such that
OLext , 1

3]90 (pOaﬁl)hM = _\ﬁ«yext(o),w) S _Cext < 0.

An explicit variation on the internal path

To conclude this section and to finally prove that a minimizer of L is actually an inner
point of S, we need another preliminary result. Indeed, it is necessary to give an
estimate of the final velocity of the inner arc yin: = Yint(P2n—1,p0), with respect to the
tangent space spanned by p;. As for the external arc, we are going to provide a result
for € = 0 and then we will extend it for ¢ sufficiently small by uniformity. In order to
do this, consider again the notation introduced before the Lemma We prove the
following result.

103



Lemma 2.5.13. There exist § = 6(J5), C = C(J5) > 0 such that, for any ¢ € R verifying
0 < |¢| < &, the following holds

(Yint(To,2n-1), o (}) )
¢

where po(¢) follows the notations in (2.73).

> C,

Proof. We have put e = 0, therefore we are now studying an anisotropic Kepler problem
driven by WP (see Proposition and, in particular, y;,,; in this setting is exactly one of
the collision trajectories studied in [5] (cf Chapter . Actually, y;,,; is a trajectory which
emanates from collision; therefore, thanks to the time reversibility, we can consider
w(t) = Yint(To,2n—1 —t) which is defined again in [0, T5,,—1], starts from 0 Bg and finishes
in collision with he origin (see also Figure[2.10). For a vector y € R? we will denote by §
its angle with the horizontal axis with respect to the canonical basis of R%. As a starting
point without loss of generality we assume ¢ > 0 (as in the proof of Lemma [2.5.10)and
we note that

(@int(To,20-1), po(#) ™) = (= (0), po($)™)
= (1(0), —po(¢)")
2.81) = [(0)lpo(¢)* | cos ((0) = (V5 +¢— 7))
= [(0)[|po()* | sin (@(0) — (9 + ¢) + )
— [1(0) lpo(6)* | sin (6(0) — (95 + &) — )

and so, since |(0)| and | — po(¢)*| are far from 0 as ¢ — 0T, our proof reduces to

—

study the behaviour of the angles (cf Figure . Actually, it is clear that the angle w(0)
depends on ¢ and, in particular

—

w(0)(¢) = 95+ 7 as|g| — 07,

since the inner arc tends to the collision homothetic motion as |¢| — 07. This suggests
to follow the approach of [5] (cf Chapter [I) and to take into account the McGehee
coordinates. The change of variables, which of course depends on ¢, with respect to the
trajectory w then reads

(1) = () (0) = [w(0)] = R
I(t) =w()  with {9(0)=w(0) =9+

—_ —

p(t) = w(t) ¢(0) = (0)

On the other hand, since w is a collision solution at energy —1 of the anisotropic Kepler
problem driven by W°(w) = r~*U (%), following Section 2 of [5] (cf Section (r,9,9),
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after a time rescaling, solves

' =2r(U(¥) — r*) cos(p — )
(2.82) ¥ =2(U(9) —r¥)sin(¢ — 9)
¢ =U'(9) cos(p — 9) + aU(I) sin(p — 9).

Following again Section 2 of [5] (cf Section [I.2), since 9§ is such that U’(d§) = 0 and
U"(95), then the triplet (0, 9§, 9§ + m) is a hyperbolic equilibrium point for (2.82) such
that:

e its stable manifold is two-dimensional;
o the two eigendirections that span its stable manifold are

vy = (1,0,0)

1 o 1 l'},/(ﬁ*)
= -+ — + 2 0

and the corresponding eigenvalues are

Ar = —2U(9;) <0
2 —« 1

—SU5) - 5\/ (2 — )2U (95)2 + 8U(95)U" (92) < 0.

AT =

Note that the third component of v~ is greater than 1. Moreover, by the main result
(Theorem 5.2) in [5] (cf Theorem , we have that w = (r, 9, ¢) belongs to the stable
manifold of (0,9}, 9; + 7) and in particular ¢(0) is a C? function of ¥(0) = ¥} + ¢.
This is one of consequences of Lemma 3.2 in [5] (cf Lemma , together with the
fact that, when 9(0) — 9 in some way, the growth ratio of ¢ = ¢(0) as a function of
¥ = 9(0) tends to the slope of v~ projected on (1, ¢(¢)). In other words, recalling that
o(¥5) = U5 + m, we have that

o)~ Wy +m) N

- ¥ — 95
9 — 05 U () VTV
and thus (0)— (04 \
¥ — +7 - *
—_—t S —— v = U.
Fp—E - 20 (07) >0, asv—

Now, from (2.81) and the above limiting behaviour, since ¥ — ¥ as ¢ — 0T, we have
that

<yint(TO,2nfl)7p0(¢)J_> 1 sin (17(0\) B (¢ + 196) B 7T>

5 = [w(0)]|po(¢) 3
B . sin (p(¥) — (¢ + 7))
— mpao) D =
o e0) = (9 +m)
~ R\w(0)|ﬁ_—03.
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To conclude the proof, note that @ (0) is uniformly bounded in ¢ by a constant ¢ > 0
which depends on the initial velocity of the homothetic collision motion. Therefore, the
proof is concluded choosing the constant

cA”

C:C(ﬁg)i—2U(§6) >0

O]

As we have said, it is possible to extend the previous result for ¢ sufficiently small.
Indeed, from Propositionwe know that the potential V* converges uniformly to wo
on every compact set of R? \ {0}; moreover, we have already seen in Lemma and
Theorem [2.4.25|that, as e — 0T, a sequence of minimizers of the Maupertuis’ functional
M converges uniformly to a minimizer of the Maupertuis’ functional

1 1 1
M) =5 [ 1P [ (14 wow).
2 Jo 0
As for Theorem [2.5.12} this is enough for the proof of the next result.
Theorem 2.5.14. There exists &,y > 0 such that, for any € € (0, Ejnt), if

I—) = (ﬁ()vﬁla s 71527171) €S

is a minimizer of L provided in Lemma then there exists v € T,,(0BRr) and there exists
Cint > 0 such that
aﬁint _

Tm(an—laﬁO)[¢] = \}§<yint(Ta,2n—1)ﬂ/J> < —Cint < 0.

Proof of (i) of Theorem [2.5.3

Define & = min{écyt, Eint }, with &5+ and &, introduced respectively in Theorem
and Theorem and take ¢ € (0,£). Assume by contradiction that the minimizer
p = (Pop1,---,D2n) Of L provided in Lemma belongs to the boundary 9S. To
accomplish this absurd hypothesis it is not restrictive to assume that py € 0l and thus
to produce a variation on py such that the total length L decreases along this variation.
This would lead to a contradiction and would conclude the proof.

As a consequence of Theorem and Theorem there exist a variation ¢ €
Tpo (0BR) and a constant C' > 0 such that

6L aﬁex _ 8£m _ _

%(ﬁ&ﬁlw-w}@nfl)w}] = Wot(pmpl)[ﬂl] + 8p0t(p2n71,po)[¢]
- —\}5@%(0),@ " %@mt@gn_l),w
< -2C < 0.

Therefore, the minimality of p is in contradiction with the above inequality and thus p
is necessarily an inner point of S.
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Figure 2.10.: Situation of Lemma|2.5.13; the behaviour of the final velocity of an internal
arc.

2.5.3. Smoothness of the minimizers and existence of the corresponding
periodic solutions: proof of (ii) of Theorem and of Theorem 2.1.4

We conclude this section with the proof of the smoothness of the trajectory . p and
thus we provide the existence of a periodic solution of the anisotropic /N-centre problem
driven by V*.

Proof of (ii) of Theorem[2.5.3} Since point (i) of Theorem has been proved in the

previous paragraph, for ¢ € (0, &) we can consider a minimizer p = (po, pi,...,P2n) €S
for L. and now we know that

OL

—(p) =0, foreveryk=0,...,2n.

o (p) =0, very seeey2m

Again, we can assume k = 0 and thus, Lemma and Lemma give that, for
every ¢ € T,,(0BRr) we have

OL ,_ - OLin

OLext , 1

p = —=Uint(T2n-1) — Yex ) = U
apo PPV = 5 Gint (Ton—1) = fea (0):4) = 0
The tangent space 7,,(0Br) is one-dimensional and it is spanned by a unit vector v
which is orthogonal to py. Therefore, if we denote by (y, ) the angle included between

the two vectors, we can deduce that

(an—l ) ]50) W] +

|yint(Te,2n—1)‘ COS(Z)mt (Ts,Qn—1)7 ’/) = ’yext(o)’ COS(Qezt(0)7 V)
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and the conservation of the energy both for y;,,; and y.,: at the point py leads to the
equality

(2.83) |Yint(Te,2n-1)| = [Jewt (0)]-
This implies that
c08(Gint(T=2n-1), ) = c08(Jext(0), V)
and thus, since §int(Tx 2n—1) and ez (0) point outside Bg, we obtain that

(met(Jj%\—ﬂ,V) = (yem v).

This, together with (2.83), shows that §int(T: 2n—1) = Jet(0) and thus v, 5 is C([0, T:)).
At this point, we have shown thatif p € S is a minimizer of L, then the corresponding
periodic trajectory 7. p(t) is a classical solution of the N-centre problem at energy
-1 whent € [0,T,]\ {0,7.0,...,Tc2n—1} and it is a C! function in [0, T.]. Since the
junctions on 0BR are smooth, we can extend the trajectory ~. p by T.-periodicity to all
R. To conclude the proof of Theoremwe need to show that 7. 5 is C?(R). In order
to do that, let us consider again the solution arcs y;,: and ye,+ which glue on the point
Do (the same argument applies for all the other building blocks) and let us compute
lim A p(t) = Lm  §ime(t) =  lim  VVE(yu(t))

t—T t—T t—

g,2n—1 £,2n—1 g,2n—1
o c T
= th(I)l-F VVE (Yeut (1)) = tg%h Jeat (1)
= lim 5 5(2).
This shows that 7. 5 € C?(R) and concludes the proof of Theorem 2.5.3] O

At this point, it remains to show that the existence of multiple periodic solutions
holds also for the original N-centre problem, i.e., the problem

¥=VV(x)
(2.84) {élﬂb!Z V() = -,

where V is the potential referred to the original centres ci, ..., cn (see (2.2)) and h has
to be chosen small enough. We recall that the multiplicity of periodic solutions for
problem (2.84) is determined both by a choice of a partition of the centres and by a
minimal non-degenerate central configuration for W9. As we have already discussed at
page 33| we can describe all the possible behaviours of a periodic solution choosing a
finite sequence of elements in the set

Q=1{Q;j:7=0,....m2""1—1) -1}

We need to link a sequence of n elements in Q with a double sequence, composed by
n partitions and n minimal non-degenerate central configurations of W°. This can be
done using Remark which yields the following correspondence

(Prgs---5 P, 1), (1970,...,19;"%1) — (Qjo,---Qjny)
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with ji. = lym + 1y, for I € {0,...,28N"1 — 2}, . € {0,...,m — 1}, and thus j €
{0,...,m(2V~! — 1) — 1}. Finally, it is useful to characterize a solution provided in
Theorem 2.5.3| with respect to its dependence on P, and 9,,. Oncen > 1and ¢ € (0,¢)
are fixed, we have a periodic solution 7. 5, with p = (po,...,p2n) € S. Actually, it is
clear from the discussion at page[91]that this solution depends on a choice of n partitions
and n minimal non degenerate central configurations, i.e.,
Yesp = V(E;PZO’ e Pln 1ﬂ§i07 s 779;n 1)

Proof of Theorem First of all, from Proposition[2.2.1} in order to obtain a solution of
(2.84) as a rescaling of a solution of the problem driven by V¢ at energy —1, the energy h
has to be in (0, h), with h = &% and £ > 0 is the one defined in Theorem Moreover,
when such h is fixed, a unique ¢ = hl/e is determined such that B. contains all the
scaled centres, as well as a ball B which is included in the Hill’s region of VE and

that allows to build periodic solutions for the e-problem. In particular, from (2.14) and
Theorem we have that R has to verify

E<R<ml/*—¢

where the constant m has been defmed in Remark 2.1.2] To such R, via Proposition
2.2.1, we can associate a radius R = h~'/*R > 0 which plays the same for prob-
lem (2.84). Therefore, again by Proposition 2.2.1] and Remark [2.1.3 when n > 1 and
(Qjps---,Qj,_,) € Q" are fixed, we can define the function z = 2(Qj,, ..., Qj,_,; h) as
the rescaling via h of the solution (¢; Py, ..., P, _,;97,,..., 9, _ ), with the rule

Jk =lgm + 1, forevery k =0,...,n — 1.

This x will be clearly a classical and periodic solution of problem (2.84) that crosses
2n-times the circle 0 By in chosen neighbourhoods of the points Re™re. ]

2.6. Existence of a symbolic dynamics

In Theorem we proved that, whenever the energy h and a sequence of labels
(Qjos---,Qj,_,) of arbitrary length n € N>; are fixed, a periodic solution of the
anisotropic N-centre problem at energy h that satisfies the geometrical features rep-
resented by the above labels exists. This shows the existence of infinitely many periodic
solutions in negative energy shells and suggests to investigate the presence of a symbolic
dynamics for the dynamical system considered in this work.

To start with, we recall that V is the number of the centres, while m represents the
number of minimal non-degenerate central configurations for the leading potential W°
far from the singularity. We assume that N > 3 and m > 1 or, equivalently, that
N > 2and m > 2, and we require again hypotheses on the potential V' (see Remark
2.1.3). Moreover, we fix h € (0,h), where the threshold h has been determined in
the previous section. By means of Theorem we have that, for any n > 1 and
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for any finite sequence (Qj,,...,®@;,_,) € Q", there exists a classical periodic solution
r = z(Qjy,-..,Qj,_,; h) of the equation & = VV(x) at energy —h and there exists
R = R(h) > 0 such that the solution x crosses the circle B 2n-times in one period at
the instants (tk)i’;’ol. In particular, for any £ = 0, ..., n — 1 there exists a neighbourhood

U, =U (Re"") on OB & such that, if we define x;, = z(t;), we have that

e when ¢ € (to, tar+1) the solution stays outside Bz and
Tok, Tog+1 € Uy,

e in the interval (tor+1,t2r+2) (We clearly set ta, = tp to close the trajectory) the
solution stays inside By, it separates the centres according to the partition P, and

Tok+2 € u’l‘k+1 )

keeping in mind the correspondence
ij — (Bk, ﬁ:k), with j, = l[pm + 7.

We recall that this piecewise solution has been determined with several steps in the
previous sections, working with a normalized version of the N-centre problem, driven
by V¢. In the same way, thanks to Theorem [2.3.10} Theorem 2.4.28|and Proposition[2.2.1}
we can distinguish between the solution arcs outside and inside By in this way:

e we denote by xeqt(-; ok, Tor+1; h) the piece of outer solution which connects g,
and xoy1, defined on its re-parametrized interval [0, Tept (g, Top+1; h)];

e we denote by x P, (3 X2k+1, Tap+2; h) the piece of inner solution which connects
Zok+1 and xop 2 and separates the centres with respect to the partition P, , defined
on its re-parametrized interval 0, Tij (Tok+1, Tok+2; h)].

Werecall that the inner arc for the e-problem has been determined as a reparametrization
of a minimizer of the Maupertuis’ functional in Section On the other hand, we
know that the Maupertuis” principle (Theorem joins also a vice-versa, i.e., if we
set w(ok+1, Tapt2; h) = 1/Tp;, (X241, T2p12; 1), the function

vp;, (6 Topt1, Tapt2; h) = wp;, (E/w(Tok41, Tak+2; h); Tok+2, Takto; h)

will be a critical point of the Maupertuis’ functional M}, at a positive level, in a suitable
space. In particular, we can introduce the set of H'-paths

Ho o ([0,1]) = { SHUOIERY ) ) ey v e 0,11
] 9y

v(0) = zop41, v(1) = 962k+2,}

and its H!'-closure

H$2k+17$2k+2([07 1]) = {U € Hl([()? 1];R2) : U(O) = T2k+1, U(l) - «732k+2}-
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Now, recalling that in the e-problem we have studied the existence of inner solutions
inside B, with R = h'/®R, for any pok+1,P2k+2 € OBr we can consider the points
Topi1 = h Yoy, Topro = h~Y%porys € OB Moreover, we recall the analogue
of the space defined above in the e-context, i.e., the spaces H,,, t1pons2([0,1]) and
H ([0,1]) introduced in Section 2.4/and we consider the bijective map

P2k+1:P2k+2
J: Hp2k+1,P2k+2([07 1]) — H$2k+17$2k+2([0> 1])

such that J(u) = ht/%u, for any u € Hp,, ., pse.»([0,1]). It is clear that the topological

behaviour of anarcin Hy,, ., p,, ([0, 1]) with respect to the centres ¢; naturally translates

on the same behaviour for its image through J with respect to the centres c;. In light of
this, for any P; € P, we recall the definition (2.52) of the minimization space K ’;,; P2 and

its H'-closure K7'*?, and we set
J

lﬁﬁjk+1@2k+2([oj 1]) —J (Kﬁjkﬂ:pzkw([o’ 1])) ’

KR ((0,1]) = T (KR=42(0,1)))

Now, since the inner arc in:(-; Par+1, P2k+2;€) with respect to the partition P; pro-
vided in Theorem re-parametrizes a minimizer of the Maupertuis functional in
K{;j'““”’%“([o, 1]), we can immediately conclude that vp,(:; zog41, T2r42; h) will be a
minimizer of the Maupertuis’ functional My, in Kﬁj’““’x%” ([0,1]).

The rest of this section is devoted to the proof of Theorem as a consequence of
Theorem[2.1.4} i.e., to prove the existence of a symbolic dynamics with set of symbols Q.
For this reason, we start with the definition of a suitable subset II;, of the energy shell

En = {(w,v) € (R*\ {c1,...,en}) x R%: %|v|2 —V(z)= —h}

which is a 3-dimensional submanifold of R? \ {c,...,cny}) x R? and it is invariant for
the flow @' induced by the vector field

F:R*\ {ci,...,cn}) x R? = R? x R?
(x,v) = F(z,v) = (v, VV(x)).

As a starting point, for a neighbourhood U, = U(Re'’r) provided in Theorem m
(r=0,...,m— 1), we define the sets of pairs (x, v) such that z € I, and v is not tangent
to the same circle, i.e.,

5;1?7? ={(z,v) €&, : v €Uy, (x,v) Z0}.

We note that for a pairin £ ]j 1. the velocity points towards the outer of Bj; (the converse

holds for &, ) and that both sets are included in the 2-dimensional inertial surface

Sh = {(z,v) € &, ¢ |z| = R}.
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Therefore, it is clear that, if we consider the restriction F}, = F'|¢, of the vector field, it is
+ . .
transverse to £ b Bor (for more details we refer to Section .

_l’_ .
For every (z,v) € Eh’ Ry Ve introduce the sets

T (x,v) = {t € (0, +00) : ®'(x,v) € 5;[3’8, for some s € {0,...,m — 1}}

and the sets
<5;R,r)i = {(x,v) € S;;R’T : TH(x,v) # @}.

Note that in general the sets T*(x, v) could be empty, since the piece of trajectory which
starts in a neighbourhood ¢/, and points towards the outer of By needs to have an
initial velocity v which satisfies a behaviour well described in Lemma [2.5.10} Besides

+
that, note that Theorem [2.1.4/ ensures that the sets (5;{ R T) are non-empty, since the

theorem provides periodic solutions of the equation & = VV(z) that cross the circle
0Bp an infinite number of times, exactly inside the neighbourhoods U, in which the
transversality condition (&, z) 2 0 is clearly satisfied. Moreover, the continuous depen-
dence on initial data, together with the transversality of £ l;" Ror with respect to the vector

+ +
field F' guarantee that the set (5;{ P T) is open. At this point, for (z,v) € (5 + ) we

h,R,r
define
Tk (z,v) = inf TT(z,v),
while for z € (5;}? T)i we set
Toin(z,v) =inf T™ (z,v).
+ \" + )\~ - +
If we take (z,v) € (&5 | N (& 5 ) such that T, (z,v) < Ty, (z,v), we can

consider the piece of the orbit emanating from (x,v) between the first two instants in
which it crosses again 0B in two of the admissible neighbourhoods, which is exactly
the following restriction of the flow

{®'(x,v) : t € [T, Tit:

min’ min] }7

where we have omitted the dependence on (z, v) to ease the notations (see Figure[2.11).
Recalling the set of symbols

Q={Q;: j=0,....m2""1 —1) -1},

and recalling that 7, ®!(z,v) denotes the projection on the first component of the flow,
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Figure 2.11.: In this picture we can become familiar with the notations introduced above.
Indeed, we have drawn in bold the velocity vectors associated to every
position in the configuration space, so thatitis possible to visualize the flow
associated to an initial data (x,v) € (8}:r RT)JF N (82’ R,r) . In particular,
the blue arc represents the projection on the configuration space of the
restriction of the flow between T, and T}, .

let us now define the set

re{0,....,m—1}, T < T

min min
t .
{m @ (x, ”)}te[Tgm,T;{m]ls the re-param.

of a minimizer of My, in the space

T Tt
ST @ min (z,0) 77, $ 7 min (z,v) — +
K Py ([Tminv Tm'm])v

for some [ € {0,...,2N"t — 2},
with Qj = le+r €Q

The above set is non-empty since Theorem[2.1.4|proves the existence of periodic solutions
for the N-centre problem, which then identify an infinite number of points that belong
to theset £ hQ - Indeed, the z-components of these points are nothing but the crosses that
the periodié trajectories make on the circle Bz when they start their motion outside
the ball. We can then define a first return map on £ hQ 7 in this way

. 09 Q
R:Er = &R
(x,v) = R(z,v) = @ Tmin (x,v),

which is continuous as a consequence of our construction. Moreover, we can also define
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.9
another map x: Eh7 » — Qsuch that

+
(f]}‘,'U) € (SZFLT)
X(z,v) =Q;, if {Wx@t(% U)}te[
j=Ilm+r

> Tr;ir\ Tr;;n
€ K™ T (T i, Tl

R . .
T i Tl min’ * min

min’

We can finally define the set 11}, in this way

Hh = m Rj(ghQ’)a
jEL ’

which is exactly the set of all the possible initial data which generate solutions that cross
the circle 0B an infinite number of time having velocity directed toward the exterior
of By; moreover, each of these solutions, every time that travels inside By, draws a
partition P, of the centres for some [ and minimizing the Maupertuis” functional in the
corresponding space Kp,. To conclude this preliminary discussion we define also the
application m which maps every one of this initial data to its corresponding bi-infinite
sequence of symbols, i.e.,

7T2Hh—>QZ

(2,0) = m(2,v) = (Qj )kez, With Qj, = x(R(z,v));

we also introduce the restriction of the first return map to the invariant submanifold II;,
as R = R|m,. At this point, we proceed with the proof of Theorem i.e.,, we need
to prove that the map 7 that we have just defined is surjective and continuous. In order
to do that, we need to prove some preliminary property on the pieces of solutions. The
first one consists in showing that their intervals of definition are uniformly bounded
from above and below.

Lemma 2.6.1. There exist two constants ¢, C' > 0 such that, for any xo,x1 € 0Bp for which
Teat(+; To, T1; ) exists, for any xa, 23 € OBp and for any P; € P for which xp,(+; x2,z3; h)
exists, we have

c< Text(xm T3 h) <C

c S ij (1‘2,3?3; h) < C.

Proof. Lemma|2.3.11jand Lemma2.4.29|provide such uniform bounds for the e-problem;
the conclusion is then a direct consequence of Proposition[2.2.1] O

We also need a compactness lemma on sequences of minimizers of M, which separate
the centres with respect to the same partition. In particular, we want to prove that if the
endpoints of the minimizers converge to a limit pair (Zo, z3) then the limit path is itself
a minimizer of My, in the space I@%’f‘"’ ([0,1]), for a fixed partition P;.
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Lemma 2.6.2. Let (z3) C Uy and (%) C Us such that (z5,z%) — (T2, Z3), with Ty € Us
and T3 € Us, where Uy and Us are the neighbourhoods of two minimal non-degenerate central
configurations of W° on 0By which guarantee the existence of the internal arcs. Fix also a

partition P; € P and let v, be a minimizer of My, in the space I@?wg ([0,1]). Then, there exist
J
22,73

a subsequence (vy,,) of (v,) and a minimizer v of My, in the space I@Pj ([0, 1]) such that
Up, — U in H'.

Proof. An analogous compactness property has been proved for sequences of minimiz-
ers of M_; in the e-problem in Lemma [2.4.21|and Theorem [2.4.25] Again, Proposition

gives the proof. O

We are now ready to give the proof of Theorem[2.1.7]

Proof of Theorem Surjectivity of 7 : Consider a bi-infinite sequence (Q;, Jnez C Q%
and the sequence of finite sequences

(Qj())? (Qj_17Qjo7Qj1)7 (ijnan_nH.u'”7Qj_17Qjoan17”'7an_1an)7

If we fix h € (0, k), through Theorem we can associate to each of these sequence
a corresponding periodic solution; this will be made using this notation that takes into
account the length of the finite sequence

(ijnv cee 7Qj717 Qjm Qj17 cee 7an) > xn()

Without loss of generality, we can define (2" (0), " (0)) € IIj, as the initial data such that
the first symbol determined by z" is Q,, for every n € N. In particular, we know that
Jo = lom + 79 and thus this symbol will refer to a first piece of solution, composed by
an outer arc with endpoints in the neighbourhood U, and inner arc that agrees with
the partition P}, and that arrives in the neighbourhood 4, . In this way, for every n we
can find a sequence of points (2} )xcz € 0B which correspond to the crosses of the
periodic trajectory 2" with the circle 9B 3. Note that since the trajectory is periodic, the
sequence of points will be periodic too. We can now take into account the sequence of
sequences

{(QUZ)kez}neN

in order to start a diagonal process that will imply a convergence on these sequences.
If we fix k = 0, since 0B, is compact we can extract a subsequence (z(°)n,en such that
zy° — Tp as np — +oo. In the same way, we can fix k¥ = 1 and consider the subsequence
(1°)npen € OBp and extract a sub-subsequence (z}')y,en such that 27?7 — Z; as
ny — +o0o. This can be made for every k € Z, in order to find a subsequence (Z'Zk)nkeN
such that x;, — 7} as np — 400. At this point we can consider the diagonal sequence
(2" )nen and relabel it as (2!),en, so that

lim z} =y, forallk € Z.
n—+o0o
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Note that all these limit points belong to 0Bj so that we can connect two of them
with an inner or outer arc; this would actually require that the points are inside the
neighbourhoods i, found in Theorem[2.1.4} but up to restrict these neighbourhoods we
canrepeat the previous argument so that the limits would still be inside a neighbourhood
in which the existence is guaranteed. Once this is clear, we can connect the points
Zok, Tar+1 € Uy, with a unique outer arc using the technique illustrated in Theorem
we can also connect the point Zo; 11 € U, and the point Zo; 2 € U;, ., following
the procedure of Theorem so that the induced path would separate the centres
according to the partition F),. Repeating this procedure for every k € Z we can glue
together all these pieces to obtain a continuous function z: R —: R?, using the same
technique provided in Section We point out that z is not unique, since the inner
pieces, coming from Maupertuis” minimizers, are not unique. In the following, we are
going to show that Z is a classical periodic solution of the equation & = VV'(z) and

verifies
{<x<o>,a':<o>> e 11,
7((2(0),#(0))) = (Qj, ke

If we introduce the set of collision instants of z as
Te(z) ={teR: z(t) = ¢j, forsome j € {1,...,N}},

due to the nature of the sequence (z™) itis enough to show that 2™ — z ina C?> manner on
every compact subset of R \ 7;.(Z). To start with, note that if we take [a, b] C R such that
Z(a) = To, and Z(b) = Tak+1, then the outer arc connecting these two points depends on
a continuous manner on the endpoints (see Theorem and so 2™ — Z uniformly
on [a, b]. Moreover, if we take [c¢,d] C R such that Z(c) = Zox41 and Z(d) = Tog2, then
the uniform convergence on [c, d] is a straightforward consequence of Lemma[2.6.2] This
convergence also determines a unique choice for the inner solution that connects Zo44+1
and Zg12, so that now the function z is uniquely determined. Moreover, since the
internal arcs provided in Theorem have a uniform distance § from the centres,
this actually proves that the uniform convergence of =" to = takes place in R\ 7.(z), i.e.,
z has no collision with the centres.

At this point, the function VV(z(-)) is continuous on the whole R and, since z" is a
C? solution of the equation # = VV (x) by the uniform convergence of 2" to  on [a, b]
we have that

o ami niay _
Jm 37(t) = lim VV(2"(t) = VV(2(?)),
for every t € [a,b]. This means that the sequence (4" (t)) is equi-continuous in [a, b];
moreover, the energy equation implies that

#"(0)| = V@ (@) —h < C

for every ¢ € [a,b] and for every n € N, i.e., the sequence (" (t)) is also equi-bounded in
[a, b]. This fact, together with the uniform convergence, finally shows that the sequence
(z"(t)) C%-converges to Z(t) in [a, b], for every compact set [a, b] C R. As a consequence,
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7 is a C? solution of the equation & = V'V (z) at energy —h on every compact set of R. As
a final remark, note that the uniform convergence also implies the conservation of the
topological constraint, i.e., the piece of Z between the points x9 41 and xgy 12 will separate
the centres with respect to P, . This finally proves that 7((z(0), 2(0))) = (Qj,,)kez, where
jk = lkm + 7.

Continuity of 7: We recall that we can endow the set of bi-infinite sequences Q% with
the distance

(@ =3 2O Cn) ) () € O,

meZ 2\771\
where p is the discrete metric defined through the Kronecker delta. Moreover, for every
m € Z we define the map
T Hp = Q
(2, 0) = T (2, 0) = X (R (2, 0)),
i.e., it associates to (x,v) the symbol corresponding to the m-th piece (composed by an

outer arc and an inner arc) of the solution with initial data (z,v). Given this, if we fix
(zo,vp) € I}, we need to show that for A > 0 there exists 6 > 0 such that

(l‘, U)? ﬂm(x(), UO))
2Im|

(285) V(x,0) € My st |(r,0) — (w0, w0)]| <6 = 3 2T
me7Z

<A

It is clear that we can find mg € N such that

1
Y =<
2lm|
|m|>mg,meZ
For this reason and for the definition of the metric d in the space (Q, d), in order to prove
(2.85) it is enough to show that two initial data sufficiently close are mapped through 7,
to the same symbol Q,,, for any m € {—my, ..., mo}. Therefore to (2.85) it is equivalent
to prove that, for any mg € N there exists > 0 such that

YV (z,v) € I s.t. ||(z,v) — (xo,v0)|| < = 7m(2,v) = T (0, v0), ¥ |m| < my.

If we take m( € N, by means of Lemma there exists a time interval [—a, a] such that
every solution with initial data in II;, detects at least 2mg + 1 symbols in [—a, a], i.e., it
determines at least 4mg + 2 crosses on 0Bj. Moreover, the solution which emanates
from the initial data (zo, vo) is collision-free and its projection on the z-component has
a uniform distance § > 0 from the centres (see Theorem [2.4.28), i.e.,

|7 ® (20, v0) — ¢;| >0, Vt € [~a,a], Vje€{L,...,N},

recalling that 7, denotes the projection on the z-component of the flow. At this point, if
(x,v) is sufficiently close to (xg, vp), the continuous dependence on initial data implies
that

‘ﬂ'xq)t(xav) - ﬂ-:rq)t('rO)UO)’ < 57
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for every t € [—a, a]. This fact ensures that the flow associated to (z,v) determines the
same 2m + 1 symbols of the flow associated to (zo, vp) so that, in particular

Tm(x,v) = T (x0,v0), Ym € {—mq,...,mo}.

The proof is then concluded. O
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A. On the hessian matrix of homogeneous
potentials

We prefer to gather in this appendix some technical computations which concern the
differentiation of homogeneous potentials and show to be useful for the purposes of

Chapter

Consider a non-negative —a-homogeneous function W € C%(R?\ {0}), with« € (0, 2).
We adopt the notation w(z) = W (z1, 72), we introduce polar coordinates in R?

(x1,22) = (rcosd, rsind)

with r = /2% + 23 > 0 and ¥ = arctan (z2/z1) € [0,27), and we define the gradient
with respect to z; and x5 as

V() = (2, (), Oy (1));
in particular, we note that
Vr=r"Yay,x2), VO =1r"%(—x9,11).
Moreover, we can write
W(z1,x2) = W(rsind,rcosd) = r~“W(cos 9, sinv),
and thus, if we let U(9) = W (cos ¥, sin 1), we have
W(z1,x2) = r~“U(W).

In agreement with this notation, we have
U'W) = %W(cos ¥, sin¥) = (VW (cos 9, sin ), (— sin}, cos 9)) .
In this way, we can compute the gradient of W/
VW (z1,29) = V(r=*U(?))
= V( NUW) +r VU (V)
= —ar T U)Vr + 70U (9) VY
= TO2U(9) (wy, 29) + T2 () (— 20, 1),

and so
Oy W (21, 29) = —ar 72U () g — r~ 72U ()2

Dy W (21, 29) = —ar 72U () + r~ 72U (9) 2
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In the same way, the second derivatives read

o, W (1, 22) = ala + 2)r 27U ()t + ar U (0129 — ar 72U (V)
+ (a4 2)r7 27U (9)z 129 + U (9) 23

Opy W (21, 22) = a4+ 2)r 274U () 129 — ar ™70 (9)23 + (o + 2)r 74U (9) 23
— AU (D) e — rOT2U (D)

Oy, W (21, 72) = a(a + 2)r U () x120 + ar ™ ()23 — (o + 2)r U ()22
—r T (D) ary + 72U (D)

Oy W (21, 22) = ala + 2)r~ 27U (9) 23 — ar U () 129 — ar™ 72U (V)
— (a+2)r U (9 z 2y + r AU (9) 2.

At this point, we introduce the tensor (dyadic) product between two vectors and we
make use of the following notation

P 2
x € 1T x
(21, 29) © (21, 22) ( ! ; 2> (1, 22) ® (—x2,21) —( L2 1 )

12 1‘% —.%'% 12
(cammn) ® (@nan) = (22 TT) () @ (—amen) = T2 O
2,41 1,42) — .'E% SU]_QTQ 2,41 2,41) — _xle x%

and thus, if we let x = (21, z2) and o+ = (—x9,21), we get

VAW (z) = ala+ 2)r Uz @ x — ar U (9)z @ 2t

(A1) —ar 20 W)Ly — (a + 2r T (W)t @ o

+ AU (D) at @ zt + 702U () <(1) —01> )

Now, take ¢ = (Rcos9*, Rsin9*) € R? \ {0} such that
U'(9%) = 0,

i.e., following the notations of the previous sections, we assume that £ is a central
configuration for W. In this way, from (A.1), we have

VW () = ala+2)R U0 ) @ — aR™ U@ )+ R0 @ ¢

Furthermore, we recall that (a ® b)c = (b,c)a for every a,b,c € R? and, if we define
s¢ = R1¢, sé = Rt € S, we get this useful characterization of s; and sé as
eigenvectors of the matrix V2W ()
VAW (€)s¢ = ala+ 2)R™* 72U (9)s¢ — aR™ 72U (0%)s¢

= ala+ )R 72U (") s¢
VAW (§)sg = —aR 72U (9*)sg + R™*?U"(9%)s¢

=R (—aUW*) + U"(¥")) sé,

(A2)
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which correspond to the eigenvalues

(A.3) Ae = (V2W(€)s¢, 5¢) = ala + 1) R 72U (9%)
(A.4) Aer = (VW (&)sg, s¢) = RO72 (—aU(9*) + U (%)) .
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B. On the differential of the flow

This appendix is devoted to some properties of the flow associated to a dynamical
system, with a special focus on the so-called Variational Equation.

Let E C R" be an open set and let I : E — R" be a C! vector field. Given 2 € E,
consider the following problem

z=F(2)
(B.1) {Z(to) L

which admits a unique solution ~,,: I(z9) — R", defined on its maximal interval
I(z9) C R. Introducing the open set

Q={(t,z) eRx E:tel(z)}
we can define the flow associated to the differential equation in (B.1) as the map

¢:Q— F
(t,z) = D(t, z) = 7.(t).

We will use often the notation ®'(z) = ®(t, z), in order to highlight the dependence on
one of the two variables. If we fix zy € £ we can thus consider the map

O(,2): I(2) CR — E
t— ®(20) = 7 (1),

whose first derivative is nothing but the partial derivative, with respect to ¢, of the flow
®. Moreover, since 7., solves (B.1), the following chain of equalities holds

d

0020 = 50 0)| =5 (0) = Flom () = F(®'(20)).

In the same way, if we fix typ € R in such a way that theset ;, = {z € E: ¢y € I(z)} is
not empty, we can consider the map

q’(to,-): Qto CE—F
2 — O(2) = 7. (to),

whose jacobian matrix is (with a slight abuse of notation)

0
— = —o :
Gz (to’ Z) 2=z0 dz (Z) 2=20
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Therefore, given zy € €y, the differential in z is also well defined as the linear map

dzq)to (ZQ)Z 7;09150 — 7:I>t0(z0)E

¢ 8 (a0)[(] = -8"()

¢,

2=z0
where 7., denotes the tangent space at the vector z.

Remark B.1. It is easy to notice that the flow ®(t,z) is C! in the variable t. Indeed, if we
fix zo, ®(t, 20) is exactly the unique solution curve ~y,,(t) of problem and therefore it is
differentiable. On the other hand, we can’t arque in the same way for the differentiability with
respect to the variable z, since in general it is not possible to give an explicit expression of the
jacobian matrix of ® with respect to z. In spite of this, it is well known (see for instance [41),66]])

that the jacobian matrix
d
— Pt
5,2 )

satisfies the so called Variational Equation, i.e., it is a solution of the following linearized problem
(along the solution curve 7., (t) = ®'(2))

d (d _,
dt(dz(p (2)
d

— pto
5,27 (%)

Z=20

) = IF @)L

=1I,.

z2=2z0

zZ=z20

This fact allows one to extrapolate several useful properties of the spatial differential of ® and,
among them, its continuity.

Finally, we can also define the jacobian matrix of the flow ® = ®(t, z) in a point

(to, Zo) € Qas

0 0
J®(to, 20) = <8tq)(t’ Zo)‘t:t()’ &‘I’(to, z)

) e R (n+1)

z2=z0
and thus, the differential of ® in (¢g, z9) will be the linear map
d(I)(t()? ZO) : 7Et(),z‘())gz — 7:1>(t0720)¢)(9)

(1. Q) = d(to, 20)[r.C] = J®(to, 20) <<>

d
_ fcpt(zo)]t:tof + - 0(2)

C.

z2=2z0
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C. Variational principles

This final appendix collects some general variational results which involve the function-
als used along this work. In particular, we want to establish some important relations
between the Maupertuis’ functional, the Lagrange-action functional and the Jacobi-
length functional.

Consider an open set Q C R?, a potential V € C?(Q) and introduce the second order
system

(C.1) i =VV(x).

Note that (C.I) has Hamiltonian structure and thus we can look for those solutions x
which preserve a fixed energy h € R along their motion, i.e., such that

1,.
(C2) §|x(f)l2 —V(z(t)=h
and, in particular, such solutions will be confined inside the open Hill’s region
Ry ={xeQ: V(z)+h >0}

For T > 0 and z € H'([0,T]; R?) we define the Lagrange-action functional as

Ap(z) = /OT <;|:b(t)|2 +V(x(t)> dt

and it is well known that the Least Action Principle affirms that a solution z: [0, 7] — 2
of (C.1) corresponds to a critical point of A7.

In this work we have mainly used the Maupertuis” functional, which in this setting
reads

L [
Mita) =5 [ 1P [+ viw)
0 0
and it is differentiable in the space
Hy = {u e H([0,1;Q) : V(u)+h > 0}.

An equivalent result of the Least Action Principle can be stated for My, the so-called
Maupertuis” Principle (see [3], but also Theorem[2.4.1|for a version concerning fixed-ends
problems), which also provides a first relation between the critical points of the two
functionals.
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Theorem C.1. Let uw € Hy, be a critical point of My, at a positive level. Define w > 0 such that

2. Jo(htV(w)
3 Jo lil?
Then, the function x(t) = u(wt) solves (C.1)-(C.2) in the interval [0,T], with T = 1/w.

As a consequence, the function x is also a critical point of Ay ,, in the space H'([0,1/w]; ©2).

The next result refines the correspondence between critical points of M}, and Ar,
showing that in particular a critical point of the Maupertuis’ functional minimizes the
action for every time 7" > 0.

Proposition C.2. Let u € Hj, be a critical point of M, at a positive level. If, for every T > 0,
we define

er(t) = u <;> . forte0,T],

then

2/ Ma(u) = Ayjoleag) + = min (Ar(er) +Th).

Proof. For every T' > 0, we can compute

in
>0

Ap(er) +Th = /OT (;m(t)y? F V() + Th) dt
— /OT (2;2]u(t/T)]2 + V(u(t/T)) + h> dt
_ /01 (;FW(S)P LTV (u(s)) + Th) ds.

Since u is fixed, the previous quantity depends only on 7" and it is easy to check that it

attains its minimum at 1/2
2 [y (h+ V(w) “

The previous result also shows a well-known property of the Maupertuis’ functional,
i.e., that this functional is invariant under time reparameterizations. However, My, is
not additive, and this suggests the introduction of another geometric functional. The
Jacobi-length functional is defined as

1
Ci(u) = /0 ()| /BT V(D)) d,

for every u € Hj. Note that Theorem [C.1] could be rephrased for £}, and thus classical
solutions will be suitable reparameterizations of critical points of £}, (see for instance

O
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[54]). Moreover, the Jacobi-length functional is also a fundamental tool in differential
geometry since Ly (u) is exactly the Riemannian length of the curve parametrized by u
with respect to the Jacobi metric

gij(x) = (=h + V(2))dij,

d;; being the Kronecker delta. As the Maupertuis’ functional, £, is invariant under time
reparameterizations and, being a length, it is also additive.
Note that, if u € Hj, the Cauchy-Schwarz inequality easily gives

Lp(u) < v/ 2Mp(u),
with the occurrence of the equality if and only if the quotient

()|
V(u(t) + h

is constant for a.e. ¢ € [0, 1]. This shows that M, and £}, share the same critical points
u such that My, (u) > 0. This is sufficient to give the (easy) proof of the next result.

Proposition C.3. Let u € Hy, be a critical point of M, at a positive level, let w be defined as in
Theorem [C.1)and let x1 be defined for every T > 0 as in Proposition Then, the following
chain of equalities holds

Avalona) + 2 =2/ M) = ZLata).

We can say that, up to constant factors and time re-parametrizations, the three functionals
coincide on the non-constant critical points of Mj,.
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