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Abstract
In this paper we consider a class of evolution operators with coefficients depending on
time and space variables (t, x) ∈ T × R

n , where T is the one-dimensional torus, and
prove necessary and sufficient conditions for their global solvability in (time-periodic)
Gelfand–Shilov spaces. The argument of the proof is based on a characterization of
these spaces in terms of the eigenfunction expansions given by a fixed self-adjoint,
globally elliptic differential operator on R

n .

Mathematics Subject Classification 46F05 · 35B10 · 35B65 · 35A01

1 Introduction

Global solvability for evolution operators with periodic coefficients is a huge field of
investigation which counts many contributions, see for instance [1, 11–13, 29, 30, 35].
In the most part of situations, this problem is strictly connected with the one of the
global hypoellipticity. In the above mentioned papers, the operators under considera-
tion have coefficients which are periodic with respect to both time and space variables
(t, x) or just with respect to t and independent from x . Hence, the coefficients are
defined on the torus (or on products of tori). More recently, the problem of solvabil-
ity has been investigated also in other compact settings with special attention to Lie
groups, e.g. [3, 4, 31, 32]. In particular, we point out that an important tool, present in
all these references and here, is a Fourier analysis characterizing the functional spaces
under investigation.
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The aim of this paper is to discuss global solvability for operators of the form

L = Dt + c(t)P(x, Dx ), (t, x) ∈ T × R
n, (1)

where Dt = i−1∂t , the coefficient c(t) = a(t)+ib(t) is complex-valued andbelongs to
someGevrey classGσ (T), σ > 1, cf. Sect. 2, and P(x, Dx ) is a self-adjoint differential
operator of type

P = P(x, D) =
∑

|α|+|β|≤m

cα,β xβ∂α
x , cα,β ∈ R, (2)

of order m ≥ 2, satisfying the global ellipticity property

pm(x, ξ) =
∑

|α|+|β|=m

cα,β xβ(iξ)α �= 0, (x, ξ) �= (0, 0). (3)

Before treating in detail the evolution operator (1), let us consider the operator P in
(2). Self-adjointness and condition (3) imply that P has a discrete spectrum consisting
in a sequence of real eigenvalues λ j such that |λ j | → ∞ for j → ∞ and satisfying

|λ j | ∼ ρ j m/2n, as j → ∞, (4)

for some positive constant ρ. Moreover, the eigenfunctions of P form an orthonormal
basis of L2(Rn). The most relevant example is the Harmonic oscillator P(x, D) =
|x |2 − 	, where 	 denotes the standard Laplace operator on R

n . Such operators
and their pseudodifferential generalizations have been deeply studied on the Schwartz
spaceS (Rn)of smooth rapidly decreasing functions andon the dual space of tempered
distributionsS ′(Rn), cf. [38]. More recently, however, it has been shown that a more
appropriate functional setting for such operators is given by the so-called Gelfand–
Shilov spaces of typeS , introduced in [24, 25] as an alternative setting to the Schwartz
space for the study of partial differential equations.

Given μ > 0, ν > 0, the Gelfand–Shilov space Sμ
ν (Rn) is defined as the space of

all f ∈ C∞(Rn) such that

sup
α,β∈Nn

sup
x∈Rn

A−|α+β|α!−νβ!−μ|xα∂β
x f (x)| < +∞

for some A > 0, or equivalently,

sup
β∈Nn

sup
x∈Rn

C−|β|β!−μ exp(c|x |1/ν)|∂β
x f (x)| < +∞

for someC, c > 0. Elements of Sμ
ν (Rn) are then smooth functions presenting uniform

analytic or Gevrey estimates onRn and admitting an exponential decay at infinity. The
elements of the dual space (Sμ

ν )′(Rn) are commonly known as temperate ultradistri-
butions, cf. [36].
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Globally solvable time-periodic evolution equations in... 401

In the last two decades, Gelfand–Shilov spaces have become very popular in the
study of microlocal and time-frequency analysis with many applications to partial dif-
ferential equations, see for instance [5–8, 16, 18–23, 33, 37] and the references quoted
therein. Concerning in particular the operators in (2), (3), we mention the hypoellip-
ticity results in [18, 19] which show that the solutions u ∈ S ′(Rn) of the equation
Pu = f ∈ Sμ

ν (Rn) actually belong to Sμ
ν (Rn). In particular, the eigenfunctions of

P are in S1/2
1/2 (R

n). Recently, these spaces have been also characterized in terms of
eigenfunction expansions, see [17, 26].

In the paper [9], we introduced the time-periodic Gelfand–Shilov spaces Sσ,μ(T×
R

n) with σ ≥ 1, μ ≥ 1/2, (Sσ,μ in short), as the space of all smooth functions on
T × R

n such that

|u|σ,μ,C := sup
α,β∈Nn ,γ∈N

C−|α+β|−γ γ !−σ (α!β!)−μ sup
(t,x)∈T×Rn

|xα∂β
x ∂

γ
t u(t, x)| (5)

is finite for some positive constant C , and we studied the global hypoellipticity of the
operator L in (1) in this setting. Notice that the elements of Sσ,μ(T×R

n) belong to the
symmetric Gelfand–Shilov spaces Sμ

μ(Rn), cf. [24, 25], with respect to the variable
x , while are Gevrey regular and periodic in t .

In order to achieve our result we adapted to the periodic setting a characterization
of classical Gelfand–Shilov spaces in terms of eigenfunction expansions proved in
[26]. Precisely, the orthonormal basis of eigenfunctions {ϕ j } j∈N of P allows to write
any u ∈ Sσ,μ(T×R

n) (respectively u ∈ S ′
σ,μ(T×R

n)) as the sum of a Fourier series

u(t, x) =
∑

j∈N
u j (t)ϕ j (x),

where u j (t) is a sequence of Gevrey functions (respectively distributions) on the
torus satisfying suitable exponential estimates. This allowed to discretize the equation
Lu = f and to apply the typical arguments of the analysis on the torus. The results
proved in [9] will be also used in the present paper and for this reason they are briefly
recalled in Sect. 2.

Let us now come to the main results of the paper. In order to introduce a suitable
notion of global solvability for our problem, let us consider the space

Fμ =
⋃

σ>1

Sσ,μ.

Definition 1 The operator L is said to be Sμ-globally solvable if for every f ∈ Fμ

there exists a solution u ∈ Fμ of the equation Lu = f .

Remark 1 As we shall notice in the next Lemma 4, the condition Lu = f ∈ Fμ

imposes some constraints on the Fourier coefficients of f . For this reason, in Sect. 3
we shall modify the notion of global solvability given above by assuming f to belong
to a suitable subspace of admissible functions, cf. Definition 2 below.
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As standard in this type of problems, the solvability of the operator is strictly
conditioned by the behavior of the imaginary part b(t) of the coefficient c(t) and in
particular by its sign changing. Namely, denoting

a0 = (2π)−1
∫ 2π

0
a(t) dt, b0 = (2π)−1

∫ 2π

0
b(t) dt, c0 = a0 + ib0,

we have that when the sign of b is constant, some algebraic conditions, called Dio-
phantine conditions, on c0 (or rather on a0) appear, whereas when b changes sign the
global solvability is related with the topological properties of the sets

�r =
{

t ∈ T :
∫ t

0
b(s) ds > r

}
, r ∈ R, (6)

and with the size of the set

Z = { j ∈ N; λ j c0 ∈ Z}. (7)

The main result of this paper reads as follows.

Theorem 1 Let L be defined by (1), (2), with P self-adjoint and satisfying (3). Then:

(a) if b does not change sign, then L is Sμ-globally solvable if and only if either b �≡ 0
or b ≡ 0 and a0 satisfies the following condition:
(A ) for every ε > 0 there exists Cε > 0 such that

|τ − a0λ j | � Cε exp
(
−ε j

1
2nμ

)
,

for all (τ, j) ∈ Z × N, such that τ − c0λ j �= 0.
(b) if b changes sign, then L is Sμ-globally solvable if and only if ZC = N \ Z is

finite and the sets �r in (6) are connected for all r ∈ R.

Greenfield and Wallach have first observed the presence of Diophantine approx-
imations in this type of investigations, see [27]. Diophantine conditions have then
widely explored in the context of periodic operators, as the reader can see in [10, 14,
27, 29, 35] and the references therein. Concerning the connectedness conditions in
(b), it was introduced first by Treves in [40] and it frequently appears in the study of
global solvability on the torus, see for instance [11–13].

Remark 2 As we shall see in Sect. 4 the proof of Theorem 1 relies on a suitable
characterization of time-periodic Gelfand–Shilov spaces in terms of eigenfunction
expansions proved in [26]. Notice that in the same paper an analogous characteri-
zation has been proved for the Schwartz spaces S (Rn),S ′(Rn). Hence it would be
natural to investigate global hypoellipticity and solvability for the operator L in spaces
of functions which are periodic (and smooth or Gevrey) in t and are Schwartz func-
tions in x . Such spaces have started to be considered in this type of investigations very
recently, cf. [34], but there are no results yet concerning the operator L in (1).

123
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The paper is organized as follows. In Sect. 2 we introduce time-periodic Gelfand–
Shilov spaces and their characterization in terms of eigenfunction expansions.
Moreover, we discretize the equation Lu = f reducing it to a family of ordinary
differential equations involving the Fourier coefficients of u and f . Finally, we recall
the results obtained in [9] about global hypoellipticity. In Sect. 3 wemake some prepa-
ration to the proof of Theorem 1. Namely, we introduce a space of admissible functions
f out of which global solvability cannot be obtained and relate it to the kernel of the
transpose operator t L . Moreover, we prove necessary and sufficient conditions for
global solvability in the case when the coefficient c(t) is constant. Then we start to
treat the case of time depending coefficients and show that it is possible to reduce
L to a normal form via a suitable transformation. In Sect. 4 we prove Theorem 1.
The proof consists in several steps and the strategy is the following: first, we verify
the sufficiency part in Theorem 14. The analysis of the necessity part is the focus of
Sect. 4.2. The algebraic conditions are given by Propositions 15, 16, and 17. Finally,
the topological condition on �r is verified by Theorem 18.

2 Notations and preliminary results

Let us start by recalling some basic properties of the spaces Sσ,μ and S ′
σ,μ.

2.1 Time-periodic Gelfand–Shilov spaces and eigenfunction expansions

Throughout the paper we denote by Gσ,h(T), h > 0 and σ ≥ 1, the space of all smooth
functions ϕ ∈ C∞(T) such that there exists C > 0 satisfying

sup
t∈T

|∂kϕ(t)| ≤ Chk(k!)σ , ∀k ∈ N.

Hence, Gσ,h(T) is a Banach space endowed with the norm

‖ϕ‖σ,h = sup
k∈N

{
sup
t∈T

|∂kϕ(t)|h−k(k!)−σ

}
,

and the space of periodic Gevrey functions of order σ is defined by

Gσ (T) = ind lim
h→+∞ Gσ,h(T),

Its dual space will be denoted by (Gσ )′(T).
Similarly, fixed σ ≥ 1, μ ≥ 1/2, C > 0 and denoting by Sσ,μ,C the space of all

smooth functions on T × R
n for which the norm (5) is finite, it is easy to prove that

Sσ,μ,C is a Banach space and we can endow Sσ,μ = ⋃
C>0 Sσ,μ,C with the inductive

limit topology

Sσ,μ = ind lim
C→+∞ Sσ,μ,C .
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404 F. de Ávila Silva, M. Cappiello

We shall then denote by S ′
σ,μ the space of all linear continuous forms u : Sσ,μ → C.

Remark 3 By [26, Lemma 3.1] an equivalent norm to (5) on Sσ,μ,C is given by the
following:

‖u‖σ,μ,C := sup
γ,M∈N

C−M−γ M !−mμγ !−σ ‖P M∂
γ
t u‖L2(T×Rn) (8)

In order to take advantage of the properties of P , in the proof of Theorem 18 we will
use the norm (8) rather than (5).

Now we want to recover the Fourier analysis presented in [9]. With this purpose
we recall the characterization of Sσ,μ and S ′

σ,μ in terms of eigenfunction expansions.

For this, let ϕ j ∈ S1/2
1/2 (R

n), j ∈ N, be the eigenfunctions of the operator P in (2). We
have the following results.

Theorem 2 Let μ ≥ 1/2 and σ ≥ 1 and let u ∈ S ′
σ,μ. Then u ∈ Sσ,μ if and only if it

can be represented as

u(t, x) =
∑

j∈N
u j (t)ϕ j (x),

where

u j (t) =
∫

Rn
u(t, x)ϕ j (x)dx,

and there exist C > 0 and ε > 0 such that

sup
t∈T

|∂k
t u j (t)| ≤ Ck+1(k!)σ exp

[
−ε j

1
2nμ

]
∀ j, k ∈ N. (9)

Proof See [9, Theorem 2.4]. 
�
Proposition 3 Let {u j } j∈N ⊂ Gσ (T) be a sequence such that for any ε > 0, there
exists Cε > 0 such that

sup
t∈T

|u j (t)| ≤ Cε exp
(
ε j

1
2nμ

)
, ∀ j ∈ N.

Then,

u(t, x) =
∑

j∈N
u j (t)ϕ j (x)

belongs to S ′
σ,μ and

〈u j , ψ(t)〉 = 〈u , ψ(t)ϕ j (x)〉, ∀ψ ∈ Gσ (T).

We use the notation {u j } � u ∈ Sσ,μ.
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Proof See [9, Lemma 2.7 and Theorem 2.9]. 
�

2.2 Discretization of equation Lu = f and global hypoellipticity

In this subsection, we apply Fourier expansions in the equation Lu = f and recall the
results on global hypoellipticity proved in [9]. To do this, consider the space

Uμ =
⋃

σ>1

S ′
σ,μ,

and let u ∈ Uμ be a solution of equation Lu = f ∈ Sσ,μ. By using

u(t, x) =
∑

j∈N
u j (t)ϕ j (x) and f (t, x) =

∑

j∈N
f j (t)ϕ j (x),

we get that Lu = f if and only if

∂t u j (t) + iλ j c(t)u j (t) = i f j (t), t ∈ T, j ∈ N. (10)

The last equations can be solved by elementary methods by

u j (t) = ξ j exp

(
−iλ j

∫ t

0
c(r)dr

)
+ i

∫ t

0
exp

(
iλ j

∫ s

t
c(r)dr

)
f j (s)ds, (11)

for some ξ j ∈ C. From the ellipticity of Eq. (10) we get u j ∈ Gσ (T), for all j ∈ N.
Now, let Z the set defined in (7). By the periodicity condition u j (0) = u j (2π) we

have the following:

Lemma 4 If j ∈ Z and Lu = f ∈ Sσ,μ, then

∫ 2π

0
exp

(
iλ j

∫ t

0
c(s)ds

)
f j (t)dt = 0. (12)

In particular,

u j (t) =
∫ t

0
exp

(
iλ j

∫ s

t
c(r)dr

)
f j (s)ds (13)

is a solution of (10).

If j /∈ Z equations (10) have a unique solution,which can bewritten in the following
equivalent two ways:

u j (t) = i

1 − e−2π iλ j c0

∫ 2π

0
exp

(
−iλ j

∫ t

t−s
c(r) dr

)
f j (t − s)ds, (14)
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or

u j (t) = i

e2π iλ j c0 − 1

∫ 2π

0
exp

(
iλ j

∫ t+s

t
c(r) dr

)
f j (t + s)ds. (15)

Using formulas (14) and (15) in [9] we proved necessary and sufficient conditions
for global hypoellipticity. Recall that a differential operator Q on T × R

n is said to
be Sμ-globally hypoelliptic if conditions u ∈ Uμ andQu ∈ Fμ imply u ∈ Fμ. Also
in this case Diophantine conditions appear naturally to control the behavior of the
sequences

� j = |1 − e−2π ic0λ j |−1 and � j = |e2π ic0λ j − 1|−1. (16)

Namely, inspired by Ref. [12], let us set the following condition for a complex number
ω:

(B) for every ε > 0 there exists Cε > 0 such that

|τ − ωλ j | � Cε exp
(
−ε j

1
2nμ

)
,

for all (τ, j) ∈ Z × N.

Notice that (B) for ω = a0 implies condition (A ) appearing in Theorem 1. The
behavior of sequences in (16) and the condition (B) can be connected in view of
the following Lemma whose proof can be obtained by a slight modification of the
arguments in the proof of Lemma 2.5 in [12]. We leave the details to the reader.

Lemma 5 Consider η ≥ 1 and ω ∈ C. The following two conditions are equivalent:

(i) for each ε > 0 there exists a positive constant Cε such that

|τ − ωλ j | � Cε exp{−ε(|τ | + j)1/η}, ∀τ ∈ Z, ∀ j ∈ N.

(ii) for each δ > 0 there exists a positive constant Cδ such that

|1 − e2π iωλ j | � Cδ exp{−δ j1/η}, ∀ j ∈ N.

We can now recall the global hypoellipticity results proved in [9] concerning the
case when the coefficient c(t) is constant or depending on t respectively.

Theorem 6 Operator

L = Dt + (α + iβ)P(x, Dx ), α, β ∈ R,

is Sμ-globally hypoelliptic if and only if one of the following conditions holds:

(a) β �= 0;
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(b) β = 0 and α satisfies condition (B), or equivalently, for every ε > 0 there exists
Cε > 0 such that

inf
τ∈Z |τ − αλ j | � Cε exp

(
−ε j

1
2nμ

)
, as j → ∞.

Proof See [9, Theorem 3.6]. 
�
Theorem 7 Operator L = Dt + c(t)P(x, Dx ) is Sμ-globally hypoelliptic if and only
if one of the following conditions holds:

(a) b is not identically zero and does not change sign;
(b) b ≡ 0 and a0 satisfies condition (B).

Proof See [9, Theorem 3.11]. 
�

3 Global solvability

In this section, we start the study of global solvability andmake some preliminary steps
to the proof of Theorem 1. First, we observe that in view of Lemma 4 it is necessary
to introduce a class of admissible functions for the operator L , namely, the space EL,μ

of all f ∈ Fμ such that

∫ 2π

0
exp

(
iλ j

∫ t

0
c(s)ds

)
f j (t)dt = 0,

whenever j ∈ Z.Therefore,we can refine the notionof solvability given inDefinition 1
as follows.

Definition 2 We say that operator L is Sμ-globally solvable if for every f ∈ EL,μ

there exists u ∈ Fμ such that Lu = f .

Weobserve that the solvability of operator L is strongly connectedwith properties of
its transpose t L , cf. [13].We recall that P is self-adjoint, with constant real coefficients,
implying t P = P in view of

t Pu = P∗(u) = P(u) = Pu.

Therefore,

t L = −Dt + c(t)P(x, Dx ),

and if f = Lu for some u ∈ Fμ and v ∈ ker(t L), we get

〈v, f 〉 = 〈v, Lu〉 = 〈t Lv, u〉 = 0,

123
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and

L(Sσ,μ) ⊂ [ker(t L)]◦ .= {φ ∈ Fμ : 〈ω, φ〉 = 0, ∀ω ∈ ker(t L)}.

In particular,wemaycharacterize ker(t L) in termsofFourier coefficients as follows.

Lemma 8 We have ω ∈ ker(t L) if and only if

ω j (t) =
{
0, j /∈ Z,

η j exp
(

iλ j
∫ t
0 c(s)ds

)
, j ∈ Z,

(17)

for some η j ∈ C. In particular, EL,μ = [ker (t L)]◦.

Proof Note that ω ∈ ker(t L) if and only if

exp

(
−iλ j

∫ t

0
c(s)ds

)
ω j (t) = η j

where η j ∈ C satisfies the condition

η j
[
1 − exp

(
iλ j2πc0

)] = 0,

since ω j (t) is 2π -periodic. If j /∈ Z , then η j = 0 and ω j (t) ≡ 0. On the other hand,
for j ∈ Z , η j can be chosen arbitrarily.

Now, given φ ∈ Fμ and ω = ∑
j∈N ω j (t)ϕ j (x) ∈ ker(t L) we obtain

〈ω, φ〉 =
∑

k∈Z

{
ηk

∫ 2π

0
exp

(
iλk

∫ t

0
c(s)ds

)
φk(t)dt

}
. (18)

By definition, if φ ∈ EL,μ, then

∫ 2π

0
exp

(
iλk

∫ t

0
c(s)ds

)
φk(t)dt = 0, ∀k ∈ Z.

which implies 〈ω, φ〉 = 0, then φ ∈ [ker(t L)]◦.
Conversely, if φ ∈ [ker(t L)]◦, then, fixed � ∈ Z , we can define a function ω� ∈

ker(t L) by setting

ω�
k(t) =

{
0, if k �= �,

exp
(

iλ�

∫ t
0 c(s)ds

)
, if k = �.

Hence, from (18) we obtain

0 = 〈ω�, φ〉 =
∫ 2π

0
exp

(
iλ�

∫ t

0
c(s)ds

)
φ�(t)dt,

123



Globally solvable time-periodic evolution equations in... 409

implying φ ∈ EL,μ. 
�
As for global hypoellipticity, in order to prove Theorem 1 we shall treat separately

the case when the coefficient c in (1) is constant and the one when it depends on t .
However, first we state the following general fact.

Proposition 9 If L is Sμ-globally hypoelliptic, then it is Sμ-globally solvable.

Proof It follows from Theorem 7 that either b ≡ 0 and a0 satisfies condition (B) or
b does not change sign, then b0 �= 0. In both cases the set Z is finite, cf. [9, Theorem
3.14 and Corollary 3.9]. Moreover, by the equivalency of expressions (14) and (15)
we can admit b(t) ≥ 0 without loss of generality.

Now, for any f ∈ EL,μ we may assume that { f j } j∈N ⊂ Gσ (T). If j ∈ Z we define
u j (t) by expression (13), while in case j /∈ Z we choose u j (t) as in (14). Therefore,
u j (t) ∈ Gσ (T) for all j and

∂t u j (t) + iλ j c(t)u j (t) = i f j (t), t ∈ T.

Since Z is finite, then estimates for u j (t) in the case j ∈ Z have no influence. On
the other hand, for j /∈ Z , by a similar argument as in the proof of [9, Theorem 3.6]
(for b0 = 0) and [9, Theorem 3.12] (for b(t) �≡ 0) we obtain that {u j } � u ∈ Fμ and
Lu = f . 
�

3.1 Time independent coefficients

In this subsection, we consider the time independent coefficients operator

L = Dt + (α + iβ)P(x, Dx ), t ∈ T, α, β ∈ R.

Note that (α + iβ)λ j ∈ Z if and only if β = 0 and αλ j ∈ Z. In this case, EL,μ is
given by all functions f ∈ Fμ such that

∫ 2π

0
exp

(
iλ jαt

)
f j (t)dt = 0, ∀ j ∈ Z.

The following standard formula will be useful in the sequel.

Lemma 10 Let s, p be positive numbers and τ ∈ N. For every η > 0 there exist
Cη > 0 such that

γ τ p exp
(
−ηγ 1/s

)
≤ Cτ

η (τ !)sp, ∀γ ∈ N.

Theorem 11 Operator L is Sμ-globally solvable if and only if either β �= 0 or β = 0
and α satisfies condition (A ).
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Proof If β �= 0, then the solvability is a consequence of Theorem 6 and Proposition 9.
On the other hand, suppose that β = 0 and assume condition (A ).

Let f ∈ EL,μ be fixed. If j ∈ Z , we set

u j (t) = exp(−iλ jαt)
∫ t

0
exp

(
iλ jαs

)
f j (s)ds,

and

u j (t) = i

1 − e−2π iλ j α

∫ 2π

0
exp

(−iλ jαs
)

f j (t − s)ds, (19)

if j /∈ Z .
In the first case, it follows by Leibniz formula that

∂
γ
t u j (t) = (−iλ jα)γ exp

(−iλ jαt
) ∫ t

0
exp

(
iλ jαs

)
f j (s)ds

+
∑

0 �=δ≤γ

(
γ

δ

)
(−iλ jα)γ−δ

∑

β≤δ−1

(
δ − 1 − β

β

)
(iλ jα)β∂

δ−1−β
t f j (t),

and, by |λ j | ≤ C ′ jm/2n, we get

|∂γ
t u j (t)| ≤ C(C ′|α|)γ j

m|γ |
2n exp(−ε0 j

1
2nμ )

+
∑

δ,γ,β

(C ′|α|)γ−δ+β j
m(γ−δ+β)

2n Cδ−β(δ − 1 − β)!σ exp(−ε0 j
1

2nμ ),

where

∑

δ,γ,β

=
∑

0 �=δ≤γ

(
γ

δ

) ∑

β≤δ−1

(
δ − 1 − β

β

)
.

The last estimate, Lemma 10 and standard factorial inequalities guarantee that
u j ∈ Gσ (T) and

|∂γ
t u j (t)| ≤ Cγ+1γ !max{σ,mμ} exp

(
−ε0

2
j

1
2nμ

)

for some positive constant C independent of γ. Similarly, in case j /∈ Z , using Faà di
Bruno formula, we obtain the same type of estimate for (19). Therefore, {u j } � u ∈
Fμ and Lu = f , which imply the solvability.

Conversely, assume that α + iβ does not satisfy condition (A ). By Lemma 5 there
are ε0 > 0 and a sequence ( j�, τ�) ∈ N × Z such that | j�| + |τ�| is increasing and

0 < |τ� − (α + iβ)λ j� | < exp
(
−ε0/2(|τ�| + j�)

1/2nμ
)

.
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Since j� /∈ Z , for all �, then

f j (t) =
{
0, j �= j�,

exp
[
−ε0

2
(|τ�| + j�)1/2nμ + iτ�t

]
, j = j�

is such that { f j } � f ∈ EL,μ. Therefore, if u ∈ Fμ satisfies Lu = f we should
have

u j� (t) = i

1 − e−2π iλ j� (α+iβ)

∫ 2π

0
exp

(−iλ j� (α + iβ)s
)

f j� (t − s)ds,

implying

|u j� (0)| =
exp

[
−ε0

2
(|τ�| + j�)1/2nμ

]

|τ� − (α + iβ)λ j� |
> 1, ∀� ∈ N,

which contradicts (9). 
�

3.2 Application: Cauchy problem

Our results can be applied also to the problem of the existence and uniqueness of
periodic solutions to the Cauchy problem associated to the operator L in (1). We shall
not give an exhaustive analysis of this problem but we shall limit to outline some
examples.

Example 1 Consider the operator L = Dt + (α + iβ)H and the Cauchy problem

{
Dt u + (α + iβ)Hu = f ,

u(0, x) = g(x)
(20)

defined on T × R, where H stands for the Harmonic oscillator

H = − d2

dx2
+ x2, x ∈ R,

for which λ j = 2 j + 1, j ∈ N.
If β �= 0, then L is globally solvable. In view of the Fourier expansions g(x) =∑
j∈N g jϕ j (x), we get

g j = u j (0) = u j (2π), j ∈ N.

In the homogeneous case f ≡ 0, we have

u j (t) = g j exp [−i(2 j + 1)(α + iβ)t]
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with

g j (1 − exp [−i2π(2 j + 1)(α + iβ)]) = 0.

Since β �= 0, then g j = 0 for all j and consequently u ≡ 0 is the unique solution of
(20), with g ≡ 0. If g �= 0 then the Cauchy problem (20) has no solutions. Similar
conclusion holds if β = 0 and α /∈ Q.

Consider β = 0, α = 1/3. In this case

|τ − αλ j | ≥ 1

3

whenever τ − 1/3(2 j + 1) �= 0. Then, condition (A ) is fulfilled and L is globally
solvable. In particular,

u j (t) =
{

g j exp
(−iκ j t

)
, if (2 j + 1) ∈ 3N,

0, if (2 j + 1) /∈ 3N,

where κ j = (2 j + 1)/3 ∈ N, generate the unique solution of (20).
Now, let us consider the non-homogeneous case. Assuming β ≥ 0, if L is globally

solvable, then we have

u j (t) = exp (−iαt)

[
g j +

∫ t

0
exp

(
iλ jαs

)
f j (s)ds

]

if j ∈ Z and

u j (t) = i

e2π iλ j (α+iβ) − 1

∫ 2π

0
exp

(
iλ j (α + iβ)s

)
f j (t + s)ds,

whenever j /∈ Z , then we must have

g j = i

e2π iλ j (α+iβ) − 1

∫ 2π

0
exp

(
iλ j (α + iβ)s

)
f j (s)ds.

The latter condition can be viewed as a compatibility condition between f and the
initial datum g.

We observe that if v = v(t, x) is a solution of the non-homogeneous problem with
the initial datum h(x) = ∑

j∈N h jϕ j (x). Then,

‖g − h‖2L2(R)
=

∑

j∈N
|g j − h j |2

and

|g j (t) − h j (t)| =
{
0, j /∈ Z,

|g j − h j |, j ∈ Z.
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Example 2 Let us now consider L = Dt + (sin(t) + cos(t) + 1)H and the problem

{
∂t u + i(sin(t) + cos(t) + 1)Hu = 0,
u(0, x) = g(x)

defined on T × R.
In this case, a0 = 1 and Z = N. Since

|τ − λ j a0| > 1,

whenever τ − λ j a0 �= 0 we see that L is globally solvable. Moreover,

u j (t) = g j exp
[−iλ j (sin(t) − cos(t) + t)

]
.

3.3 Reduction to the normal form

In this subsection, we show that operator L is globally solvable if and only if the same
occurs to its normal form, namely, the operator

La0 = Dt + (a0 + ib(t))P(x, Dx ).

This is a consequence of a conjugation formula presented in the next Proposition.

Proposition 12 There exists a linear isomorphism � : Fμ → Fμ such that

�−1 ◦ L ◦ � = La0 . (21)

Proof For each u = ∑
j∈N u j (t)ϕ j (x) ∈ Fμ we define

�u =
∑

j∈N
u j (t) exp(−iλ j A(t))ϕ j (x) (22)

and

�−1u =
∑

j∈N
u j (t) exp(iλ j A(t))ϕ j (x),

where A(t) = ∫ t
0 a(s)ds − a0t .

If �,�−1 : Fμ → Fμ are well defined, then it is easy to verify linearity and
the equality (21). Therefore, it is enough to prove that �u, �−1u ∈ Fμ. For this, let
u ∈ Sθ,μ and set

ψ j (t) = u j (t) exp(−iλ j A(t)), j ∈ N.
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Let γ ∈ N be fixed. By Leibniz and Faà di Bruno formulas we get

|∂γ
t ψ j (t)| ≤ 2πC1

γ∑

�=0

⎧
⎨

⎩

(
γ

�

)
C�
2

∑

	(k), �

1

k! · �!
�1! · · · �k ! j

km
2n C�−k+1

3 [(� − k)!]σ

× sup
τ∈[0,2π ]

|∂γ−�
t u j (τ )|

}
,

since |λ j | ≤ C4 jm/2n by (4), where
∑

	(k), � = ∑�
k=1

∑
�1+...+�k=�

�ν≥1,∀ν

.

Since u ∈ Fμ, there exist ε0 > 0 and C5 > 0 such that

sup
τ∈[0,2π ]

|∂γ−�
t u j (τ )| ≤ Cγ−�+1

5 [(γ − �)!]θ exp
(
−ε0 j

1
2nμ

)
.

Moreover, applying Lemma 10 with s = 2nμ and p = m/2n, we have

j km/2n ≤ Ck
ε0

(k!)mμ exp
(ε0

2
j

1
2nμ

)
.

Hence, by setting σ̃ = max{θ, σ } we get

|∂γ
t ψ j (t)| ≤ Cγ+1(γ !)max{̃σ ,mμ−1} exp

(
−ε0

2
j

1
2nμ

)
,

implying �u ∈ Smax{̃σ ,mμ−1},μ and that it is well defined.
With similar arguments we may prove the same for �−1. 
�

Proposition 13 Let ELa0 ,μ be the space of admissible functions of operator La0 , that
is, the set of all f ∈ Fμ such that

∫ 2π

0
exp

(
iλ j

∫ t

0
(a0 + ib(s))ds

)
f j (t)dt = 0,

whenever j ∈ Z . Then:

(a) � : ELa0 ,μ → EL,μ is an isomorphism;
(b) L is Sμ-globally solvable if and only if the same is true for La0 ;
(c) If Z = N, then L is Sμ–globally solvable if and only if

Lb = Dt + ib(t)P(x, Dx )

it is also Sμ-globally solvable.

Proof Part (a) is trivial. To verify (b), assume that L is Sμ-globally solvable and let
f ∈ ELa0 ,μ. There exists u ∈ Fμ such that Lu = �( f ), then it follows from (22)

that La0 [�−1(u)] = f and the solvability of La0 .
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Viceversa, assume that La0 isSμ-globally solvable.Given f ∈ EL,μ there isu ∈ Fμ

such that La0u = �−1( f ) implying L[�(u)] = f and the global solvability of L .
To verify (c) it is sufficient to observe that if Z = N, then functions

ψ̃ j (t) = u j (t) exp

(
−iλ j

∫ t

0
a(s)ds

)

are 2π -periodic for every j ∈ N and we may use

�̃u =
∑

j∈N
ψ̃ j (t)ϕ j (x)

to obtain a new conjugation formula instead of (21). 
�

4 Proof of Theorem 1

In this section, we prove Theorem 1. We divide the proof in several steps.

4.1 Sufficient conditions

The first step is Theorem 14 where we show that each of the conditions (a) and (b) in
Theorem 1 is sufficient for the global solvability of operator L .

In particular, we point out that in view of Proposition 13 it is equivalent to consider
the operator

La0 = Dt + (a0 + ib(t))P(x, Dx ).

Notice that if b does not change sign and c0 satisfies (A ), then either b ≡ 0 on T

and a0 satisfies (A ) or b is not identically zero. Then, the sufficiency in item (a) of
Theorem 1 is a direct consequence of the following result.

Theorem 14 Each of the following conditions is sufficient to guarantee the Sμ-global
solvability of operator La0 .

(a) b ≡ 0 and a0 satisfies (A );
(b) b �≡ 0 and does not change sign;
(c) b changes sign, ZC is finite and �r is connected for all r ∈ R.

Proof Under condition (a), La0 = Dt + a0P and we may apply Theorem 11. Case
(b) is a consequence of Theorem 7 and Proposition 9. To prove (c) we first assume
Z = N. In this case, b0 = 0 and that by Proposition 13 it is sufficient to consider

Lb = Dt + ib(t)P(x, Dx ).
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Let f ∈ ELb,μ = [ker(t Lb)]◦ be fixed. Since
∫ 2π

0
exp

(
−λ j

∫ t

0
b(r)dr

)
f j (t)dt = 0,∀ j ∈ N.

we obtain that the functions

u j (t) = i exp

(
λ j

∫ t

0
b(r)dr

)∫ t

t j

exp

(
−λ j

∫ s

0
b(r)dr

)
f j (s)ds, (23)

for any t j ∈ T, belong to Gσ (T) and solve

Dt u j (t) + λ j ib(t)u j (t) = f j (t). (24)

We assume that λ j > 0 (the general case is analyzed in Remark 4). By defining

rt =
∫ t

0
b(r)dr , t ∈ T (25)

we obtain that the set

�t =
{

s ∈ T;
∫ s

0
b(τ )dτ ≥ rt

}

is connected. Therefore, if t1 ∈ T is given by

∫ t1

0
b(r)dr = max

t∈T

{∫ t

0
b(r)dr

}

then t, t1 ∈ �t and there is an arc γt,t1 ⊂ �t joining t and t1 implying

∫ s

0
b(r)dr ≥

∫ t

0
b(r)dr , ∀s ∈ γt,t1 .

Then,

u j (t) = i
∫

γt,t1

exp

[
λ j

(∫ t

0
b(r)dr −

∫ s

0
b(r)dr

)]
f j (s)ds (26)

is a solution of (24). Moreover,

λ j

(∫ t

0
b(r)dr −

∫ s

0
b(r)dr

)
≤ 0, ∀s, t ∈ γt ,

implying that the exponential term in (26) is bounded by one.
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The estimates for u j (t) are obtained by usingLeibniz rule andFaà diBruno formula.
Then, we get {u j } � u ∈ Fμ.

For the general case Z �= N, consider the operator

La0 = Dt + (a0 + ib(t))P,

and f ∈ ELa0 ,μ. If j ∈ ZC we define u j by expression (14). Since ZC is finite,
estimates are unnecessary. Now, for j ∈ Z we replace (26) by

u j (t) = i
∫

γt,t1

exp

[
λ j

(
ia0(s − t) +

∫ t

0
b(r)dr −

∫ s

0
b(r)dr

)]
f j (s)ds

and proceed as before. 
�
Remark 4 We point out that with a slight modification in the previous proof we can
cover the general case where λ j is not positive for all j . To see this, consider the sets

W+ = { j ∈ N; λ j > 0} and W− = { j ∈ N; λ j < 0}.

• If W− is finite: we use (13) as a solution of Eq. (24) when j ∈ W− and (26) for
j ∈ W+.

• IfW+ is finite: we take (13) as a solution of (24) if j ∈ W+, while in case j ∈ W−
we proceed as follows: let rt be as in (25) and consider the connected set

�̃t =
{

s ∈ T;
∫ s

0
b(τ )dτ ≤ rt

}
.

Choosing t1 ∈ T as before we have t, t1 ∈ �̃t and consequently there is an arc
γ̃t,t1 ⊂ �̃t joining t and t1. In particular,

0 ≤
∫ t

0
b(r)dr −

∫ s

0
b(r)dr , ∀s ∈ γ̃t,t1 .

Hence, for j ∈ W− we define

u j (t) = i
∫

γ̃t,t1

exp

[
λ j

(∫ t

0
b(r)dr −

∫ s

0
b(r)dr

)]
f j (s)ds (27)

Then

λ j

(∫ t

0
b(r)dr −

∫ s

0
b(r)dr

)
≤ 0, ∀s, t ∈ γ̃t,t1 ,

implying that the exponential term in (27) is bounded by one.
• If both setsW+ andW− are infinite: we use (26) for j ∈ W+ and (27) for j ∈ W−.
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4.2 Necessary conditions

In this section, we investigate the necessity of each condition in Theorem 1.
Given σ > 1 and an open interval I ⊆ R, let us denote by Gσ

c (I ) the space of
Gevrey functions of order σ with compact support contained in I .

Proposition 15 If b does not change sign and c0 does not satisfy (A ), then L is not
Sμ-globally solvable.

Proof Assume b ≥ 0. There is ε0 > 0 and an increasing sequence j� such that

0 < |1 − e−2π i(a0+ib0)λ j� | < exp
{
−ε0 j1/2nμ

�

}
, � ∈ N.

Letφ ∈ Gσ
c (π/2−δ, π/2+δ)be a cutoff function such thatφ ≡ 1 in a neighborhood

of (π/2 − δ/2, π/2 + δ/2), where δ > 0 is such that (π/2 − δ, π/2 + δ) ⊂ (0, π).
Consider f j� (t) a 2π -periodic extension of

f̃ j� (t) = exp
{
−ε0 j1/2nμ

�

}
exp

[
iλ j�a0(π − t)

]
φ(t), � ∈ N.

and set

f j (t) =
{
0, j �= j�,
f j� (t), j = j�,

for which { f j } � f ∈ Fμ.
Note that either b0 �= 0, or b0 = 0 and a0λ j� /∈ Z, for all � ∈ N. In both cases,

j� /∈ Z for all � ∈ N and f j ≡ 0 for j ∈ Z . It follows from Lemma 8 that f ∈ EL,μ.
Now, we assume that λ j� > 0 for all � (See Remark 5 for the general case). If

u ∈ Fμ is a solution of Lu = f we obtain

u j� (t) = � j�

∫ 2π

0
φ(t − s) exp

{
λ j�

∫ t

t−s
b(r)dr

}
ds,

where

� j� = i(1 − e−2π i(a0+ib0)λ j� )−1 exp
{
−ε0 j1/2nμ

�

}
exp

{
iλ j�a0

}
.

In particular, for t = π ,

u j� (π) = � j�

∫ π+δ
2

π−δ
2

exp

{
λ j�

∫ π

π−s
b(r)dr

}
ds.

Since λ j�

∫ π

π−s b(r)dr ≥ 0,

|u j� (π)| ≥ δ|1 − e2π i(a0+ib0)λ j� |−1 exp
{
−ε0 j1/2nμ

�

}
≥ δ
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which is a contradiction. 
�
Remark 5 We can adapt the arguments in order to cover the case where λ j� are not
positive for every �. Indeed, consider

W+ = {� ∈ N; λ j� > 0} and W− = {� ∈ N; λ j� < 0}.

• IfW+ is infinite, we redefine the sequence f j (t) as follows:

f j (t) =
{
0, j �= j�, or � ∈ W−,

f j� (t), j = j�, and � ∈ W+.

• IfW+ is finite, we then consider

f j (t) =
{
0, j �= j�, or � ∈ W+,

f j� (t), j = j�, and � ∈ W−

and

u j� (t) = �̃ j�

∫ 2π

0
φ(t + s) exp

{
−λ j�

∫ t+s

t
b(r)dr

}
ds,

where

�̃ j� = i(e2π i(a0+ib0)λ j� − 1)−1 exp
{
−ε0 j1/2nμ

�

}
exp

{
iλ j�a0

}
.

Since −λ j�

∫ π

π−s b(r)dr ≥ 0, we can proceed as before.

Next we analyze the case when b changes sign. In this case the necessity in item
(b) of Theorem 1 can be proved in several steps.

Proposition 16 If b changes sign and b0 �= 0, then L is not Sμ-globally solvable.

Proof Assume, without loss of generality, that λ j > 0 for all j ∈ N. We set

H(s, t) =
∫ t

t−s
b(τ )dτ, s, t ∈ [0, 2π ],

and

M = max
s,t∈[0,2π ] H(s, t) = H(s∗, t∗).

Since b changes signwe have M > 0. In particular, wemay assume s∗ �= 0, s∗ �= t∗
and

0 < s∗, t∗, γ < 2π,
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where γ = t∗ − s∗.
Consider δ > 0 such that (γ − δ, γ + δ) ⊂ (0, t∗) and fix a cutoff function

φ ∈ Gσ
c (γ − δ, γ + δ) satisfying 0 ≤ φ ≤ 1 and φ ≡ 1 on a neighborhood of interval

(γ − δ/2, γ + δ/2). Let f j (t) be a 2π -periodic extension of

f̃ j (t) = exp
(−λ j M

)
exp

[
iλ j a0(t

∗ − t)
]
φ(t), j ∈ N.

Since M > 0, we get { f j } � f ∈ Fμ. We claim that f ∈ [ker(t L)]◦. Indeed, by
b0 �= 0 we get Z = ∅. Then, it follows from Lemma 8 that ω ∈ ker(t L) if and only if
ω j (t) ≡ 0 for all j ∈ N.

Next, we show that there is not u ∈ Fμ such that Lu = f . To verify this we
proceed by a contradiction argument: if there were such u we would have

u j (t) = � j

∫ t−γ+δ

t−γ−δ

φ(t − s) exp

{
λ j

[
−M + ia0(t

∗ − t) +
∫ t

t−s
b(τ )dτ

]}
ds,

where � j = i
(
1 − e−2π iλ j c0

)−1
. In particular,

u j (t
∗) = � j

∫ s∗+δ

s∗−δ

φ(t∗ − s) exp
{−λ j

[
M − H(s, t∗)

]}
ds.

Since b0 �= 0, there is a constant 0 < C ≤ |� j |, for all j . Also, by the hypotheses
on φ:

|u j (t
∗)| ≥ C

∫ s∗+δ/2

s∗−δ/2
exp

{−λ j
[
M − H(s, t∗)

]}
ds.

The function ψ(s) = M − H(s, t∗) is positive with ψ(s∗) = 0. Then, s∗ is a zero
of even order and there exists k ∈ N such that

ψ(2k)(s∗) �= 0, and ψ(n)(s∗) = 0, n = 1, . . . , 2k − 1.

By Taylor’s formula we obtain η ∈ (s∗ − δ/2, s∗ + δ/2) satisfying

ψ(s) = ψ(2k)(s∗)
(2k)! (s − s∗)2k + R2k+1(s),

for s ∈ (s∗ − δ/2, s∗ + δ/2), where

R2k+1(s) = ψ(2k+1)(η)

(2k + 1)! (s − s∗)2k+1.

Denoting

C1 =
∣∣∣∣∣
ψ(2k+1)(η)

(2k + 1)!

∣∣∣∣∣ and C2 =
∣∣∣∣∣
ψ(2k)(s∗)

(2k)!

∣∣∣∣∣
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we get

|ψ(s) − C2(s − s∗)2k | ≤ C1|s − s∗|2k+1

and

C2

(
1 − C3δ

2

)
(s − s∗)2k ≤ ψ(s) ≤ C2

(
1 + C3δ

2

)
(s − s∗)2k,

with C3 = C1/C2. Therefore, there is β > 0 such that

|ψ(s)| ≤ β(s − s∗)2k, s ∈ (s∗ − δ/2, s∗ + δ/2).

Note that

∫ s∗+δ/2

s∗−δ/2
exp

{−λ jψ(s)
}

ds ≥
∫ s∗+δ/2

s∗−δ/2
exp

{
−λ jβ(s − s∗)2k

}
ds

=
∫ δ

2

− δ
2

exp
{
−λ jβs2k

}
ds

= 1

λ
1/(2k)
j

1

β1/(2k)

∫ δ
2 (λ j β)1/(2k)

− δ
2 (λ j β)1/(2k)

exp
{
−s2k

}
ds.

Note that

∫ +∞

−∞
exp

{
−s2k

}
ds = 1

k
�

(
1

2k

)
> 0,

where � denotes the gamma function. Hence, there is j0 ∈ N such that

∫ +∞

−∞
exp

{
−s2k

}
ds ≥

∫ δ
2 (λ j β)1/(2k)

− δ
2 (λ j β)1/(2k)

exp
{
−r2k

}
dr ≥ ε > 0, ∀ j ≥ j0,

implying

λ
1/k
j |u j (t

∗)| ≥ λ
1/(2k)
j εβ−1/(2k),∀ j ≥ j0.

Finally, given N > 0 we obtain from (4) some j1 ≥ j0 such that

λ
1/k
j |u j (t

∗)| ≥ λ
1/(2k)
j εβ−1/(2k) ≥ N ,∀ j ≥ j1.

Hence,

lim
j→∞ λ

1/k
j |u j (t

∗)| = ∞,
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which is in contradiction with (9). 
�
Remark 6 We point out that the assumption λ j > 0 in the proof can be omitted. As in
Remark 4 we split the analysis considering the sets

W+ = { j ∈ N; λ j > 0} and W− = { j ∈ N; λ j < 0}.

Let us show how to proceed when W− is infinite. For j ∈ W− we use

G(s, t) =
∫ t+s

t
b(τ )dτ, s, t ∈ [0, 2π ],

and take f j (t) as the 2π -periodic extension of

f̃ j (t) = exp
(
λ j M

)
exp

[
iλ j a0(t

∗ − t)
]
φ(t), j ∈ N,

where M = maxs,t∈[0,2π ] G(s, t).
Now we define the sequence u j (t) using expression (15). Following the same

procedure we get

u j (t
∗) = �̃ j

∫ s∗+δ

s∗−δ

φ(t∗ − s) exp
{
λ j

[
M − G(s, t∗)

]}
ds,

where �̃ j = (
e2π iλ j c0 − 1

)−1
and

∫ s∗+δ/2

s∗−δ/2
exp

{
λ jψ(s)

}
ds ≥ 1

(−λ j )1/(2k)

1

β1/(2k)

∫ δ
2 ((−λ j )β)1/(2k)

− δ
2 ((−λ j )β)1/(2k)

exp
{
−s2k

}
ds,

implying

lim
j→∞(−λ j )

1/k |u j (t
∗)| = ∞.

Proposition 17 If b changes sign, b0 = 0 and ZC is an infinite set, then L is not
Sμ-globally solvable.

Proof Let λ j� be a subsequence such that j� > � and λ j�a0 /∈ Z. ConsiderH(s, t) and
M be as in the proof of Proposition 16. Also, we use t∗, s∗, γ and φ(t) as before and
set by f j� (t) a 2π -periodic extension of

f̃ j� (t) = exp
(−λ j� M

)
exp

[
iλ j�a0(t

∗ − t)
]
φ(t), � ∈ N.

Therefore, defining f j (t) ≡ 0, if j �= j�, we get { f j (t)} � f ∈ [ker(t L)]◦.
If Lu = f , then

u j� (t) = � j�

∫ t−γ+δ

t−γ−δ

φ(t − s) exp

{
λ j�

[
−M + ia0(t

∗ − t) +
∫ t

t−s
b(τ )dτ

]}
ds,
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where � j = i
(
1 − e−2π iλ j a0

)−1
, and

u j� (t
∗) = � j�

∫ s∗+δ

s∗−δ

φ(t∗ − s) exp
{−λ j�

[
M − H(s, t∗)

]}
ds

implying

|u j� (t
∗)| ≥ C

∫ s∗+δ/2

s∗−δ/2
exp

{−λ j�

[
M − H(s, t∗)

]}
ds.

Finally, we can proceed as in the proof of Proposition 16. 
�
Combining Propositions 16 and 17 we obtain that if L is Sμ-globally solvable, then

b0 = 0 andZC is finite. To conclude the proof of the necessity in Theorem 1 it is now
sufficient to prove the next result.

Theorem 18 Assume that b changes sign and Z is infinite. If �r is not connected for
some r ∈ R, then L is not Sμ-globally solvable for every μ ≥ 1

2 .

The proof of this theorem relies on the violation of the so-called Hörmander con-
dition, cf. [28, Lemma 6.1.2], which provides a necessary condition for solvability.
We point out that this kind of approach is well known in the literature, as the reader
may see in [1, 2, 11–13, 15, 29, 35]. Here we adapt the result in [28] to our functional
setting as follows.

Theorem 19 (Hörmander condition) Let L be Sμ-globally solvable. Then, given σ >

1, we obtain that for every A > 0 and B > 0 there exist a constant C > 0 such that

∣∣∣∣
∫

f v

∣∣∣∣ ≤ C‖ f ‖σ,μ,A · ‖t Lv‖σ,μ,B (28)

for all f ∈ EL,μ = [ker(t L)]◦ and v ∈ Fμ such that t Lv ∈ Sσ,μ,B, where we recall
that

‖ϕ‖σ,μ,B = sup
M,γ∈N

B−M−γ γ !−σ M−mμ‖P M∂
γ
t u‖L2(T×Rn).

Proof Consider the spaces

Gσ,μ = {v ∈ Fμ : t Lv ∈ Sσ,μ,B},

and

O = Gσ,μ

Gσ,μ ∩ ker(t L)
.
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Note that [ker(t L)]◦ is a closed subspace of Sμ and it can be endowedwith the induced
topology, while on O we consider the topology generated by the seminorms

‖[φ]‖O = ‖t Lφ‖σ,μ,k, k ∈ N.

Now, let B : [ker(t L)]◦ × O → C be the bilinear form

B( f , [φ]) =
∫

T×Rn
f (t, x)φ(t, x)dtdx .

We observe that B(·, [φ]) is continuous on [ker(t L)]◦, for every [φ] ∈ O . Let
f ∈ [ker(t L)]◦ be fixed and consider u ∈ Fμ such that Lu = f . Hence, there exists
C = C(u) > 0

|B( f , [φ])| =
∣∣∣∣
∫

T×Rn
u(t, x) t Lφ(t, x)dtdx

∣∣∣∣ = ∣∣< u,t Lφ >
∣∣ ≤ C‖t Lφ‖σ,μ,k

Therefore, we have: [ker(t L)]◦ is a Fréchet space; O is a metrizable topological
vector space; B is separately continuous on [ker(t L)]◦ × O . Under these conditions,
it follows from the Corollary of Theorem 34.1 in [39] that the bilinear form B is
continuous. Then, (28) holds true. 
�

As in [12] (see also [30, Lemma 2.2]), we make use of the following result.

Lemma 20 Suppose that there exists r ∈ R such that

�̃r =
{

t ∈ T; −
∫ t

0
b(s)ds < r

}

is not connected. Then, we can find a real number r0 < r such that �̃r0 has two
connected components with disjoint closures. Moreover, we can construct functions
f0, v0 ∈ Gσ , σ > 1, satisfying the following conditions:

∫ 2π

0
f0(s)ds = 0, supp( f0) ∩ �̃r0 = ∅, supp(v′

0) ⊂ �̃r0

and

∫ 2π

0
f0(s)v0(s)ds > 0.

Proof of Theorem 18. Assume for a moment that Z = N, and consider L = Dt +
ib(t)P . Let r ∈ R such that

�r =
{

t ∈ T :
∫ t

0
b(s) ds > r

}
=

{
t ∈ T : −

∫ t

0
b(s) ds < −r

}
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is not connected. By the previous Lemma, there is r0 < −r such that

�̃r0 =
{

t ∈ T; −
∫ t

0
b(s)ds < r0

}

has two connected components with disjoint closures, and we can fix ε > 0 such that

M = max
t∈supp(v′

0)

{
−
∫ t

0
b(s)ds

}
< ε < r0,

Define the sequences

f�(t, x) = exp

{
λ�

[
ε +

∫ t

0
b(s)ds

]}
f0(t)ϕ�(x) ∈ Sσ,1/2

and

v�(t, x) = exp

{
−λ�

[
ε +

∫ t

0
b(s)ds

]}
v0(t)ϕ�(x) ∈ Sσ,1/2,

where f0, v0 are given in the Lemma. In particular,

∫

T×Rn
f�(t, x)v�(t, x)dtdx =

∫

T

f0(t)v0(t)dt > 0, (29)

and

t Lv�(t, x) = iv′
0(t) exp

{
−λ�

[
ε +

∫ t

0
b(s)ds

]}
ϕ�(x) ∈ Sσ,1/2.

For each � ∈ N, the x-Fourier coefficients of f�(t, x) are given by

f�, j (t) = (
f�(t, ·), ϕ j (·)

)
L2(Rn)

= exp

{
λ�

[
ε +

∫ t

0
b(s)ds

]}
f0(t)

(
ϕ�(·), ϕ j (·)

)
L2(Rn)

=
{
exp

{
λ j

[
ε + ∫ t

0 b(s)ds
]}

f0(t) j = �,

0, j �= �.

Then,

∫ 2π

0
exp

(
iλ j

∫ t

0
ib(s)ds

)
f�, j (t)dt = 0, ∀ j ∈ N,

implying f�(t, x) ∈ EL,μ, ∀� ∈ N.
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We claim that sequences f� and v� violate condition (28). Indeed, let α, β ∈ N
n

and γ ∈ N. By defining

H�(t) = exp

{
λ�

[
ε +

∫ t

0
b(s)ds

]}

we get, for every M, γ ∈ N:

sup
t∈T

‖P M∂
γ
t f�(t, x)‖L2(Rn

x ) = |λ�|M sup
t∈T

|∂γ
t [H�(t) f0(t)]|

Set ��,γ (t) = ∂
γ
t [H�(t) f0(t)]. Since f0 ∈ Gσ,h it follows that

|��,γ (t)| ≤
∑

β≤γ

(
γ

β

) ∣∣∣∂β
t H�(t)∂

γ−β
t f0(t)

∣∣∣

≤
∑

β≤γ

(
γ

β

) ∣∣∣∂β
t H�(t)

∣∣∣C1hγ−β [(γ − β)!]σ ,

and by Faà di Bruno formula

∂
β
t H�(t) =

∑

	(τ), β

(λ�)
τ

τ !
β!

β1! · · · βτ !

(
τ∏

ν=1

∂
βν−1
t b(t)

)
H�(t),

where
∑

	(τ), β = ∑β
τ=1

∑
β1+...+βτ =β

βν≥1,∀ν

. In view of

∣∣∣∣∣

τ∏

ν=1

∂
βν−1
t b(t)

∣∣∣∣∣ ≤ Cβ−τ+1
2 [(β − τ)!]σ

we obtain

|��,γ (t)| ≤
∑

β≤γ

(
γ

β

) ∣∣∣∂β
t H�(t)∂

γ−β
t f0(t)

∣∣∣

≤ H�(t)
∑

β≤γ

(
γ

β

) ∑

	(τ), β

|λ�|τ
τ ! · β!

β1! · · · βτ !C
β−τ+1
2 [(γ − τ)!]σ C1hγ−β

≤ H�(t)
∑

β≤γ

(
γ

β

) ∑

	(τ), β

ρτ

τ ! · β!
β1! · · · βτ !C

β−τ+1
2 �τm/2n[(γ − τ)!]σ C1hγ−β,

where |λ�| ≤ ρ�m/2n .
We take s = 2n/m in Lemma 10. Then, for any η > 0 there is Cη > 0 such that

�τm/2n ≤ Cτ
η τ ! exp(η�m/2n),
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implying

|∂γ
t [H�(t) f0(t)]| ≤ Cγ+1

η γ !σH�(t) exp(η�m/2n)

for � large enough.
Now, applying again Lemma 10 we obtain that for every η > 0 there exists Cη > 0

such that

|λM
� | ≤ C M+1

η M !mμ exp(η�
1

2nμ ).

Hence, we can estimate the norm (8) of f� as follows:

‖ f�‖σ,μ,Cη ≤ C2
η exp(2η�1/2nμ) sup

t∈supp( f0)
{H�(t)}.

By a similar procedure:

‖t Lv�‖σ̃ ,μ,C ′ ≤ C2
η exp(2η�1/2nμ) sup

t∈supp(v′
0)

{H−1
� (t)}.

Now we recall that

ρ∗�m/2n ≤ |λ�| ≤ ρ�m/2n, � large,

for some positive constants ρ, ρ∗. If λ� > 0, then

sup
t∈supp( f0)

{H�(t)} ≤ exp(c1ρ
∗�m/2n),

and

sup
t∈supp(v′

0)

{H−1
� (t)} ≤ exp(c2ρ

∗�m/2n),

where

c1 = max
t∈supp( f0)

{
ε +

∫ t

0
b(s)ds

}
< 0,

and

c2 = max
t∈supp(v′

0)

{
−
[
ε +

∫ t

0
b(s)ds

]}
< 0.

Therefore,

‖ f�‖σ,μ,C · ‖t Lv�‖σ,μ,C ′ ≤ �m/n exp
[
ρ∗(c1 + c2)�

m/2n + 4η�1/2nμ
]
. (30)
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Then, since μ ≥ 1
2 ≥ 1

m , choosing η such that ρ∗(c1 + c2) + 4η < 0 and obtain
that

lim
�→∞

[‖ f�‖σ,μ,C · ‖t Lv�‖σ,μ,C ′
] = 0.

On the other hand, if λ� < 0, then the right-hand side in (30) becomes

�m/n exp
[
ρ(c1 + c2)�

m/2n + 4η�1/2nμ
]

and again we obtain the same contradiction.
It follows from (29) that condition (28) can not be fulfilled implying that L is not

Sμ-globally solvable, for μ ≥ 1
2 .

Finally, in the general caseZ �= N the proof is given by a slight modification in the
previous arguments. Indeed, we may consider the operator L = Dt + (a0 + ib(t))P ,
and sequences

f̃�(t, x) =
{
exp(iλ�a0t) f�(t, x), if � ∈ Z,

0, if � /∈ Z,

ṽ�(t, x) =
{
exp(−iλ�a0t)v�(t, x), if � ∈ Z,

0, if � /∈ Z.

instead of f� and v�. 
�
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